

http://infor.seaninstitute.org/index.php/infokum/index

JURNAL INFOKUM, Volume 7, No.1, Desember 2018 ISSN 2302-9706

INFOKUM is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)

16

TEXT MESSAGE COMPRESSION ANALYSIS USING THE LZ77

ALGORITHM

Arjon Samuel Sitio

Program Studi Teknik Informatika

STMIK Pelita Nusantara Jl Iskandar Muda No 01 Medan, Sumatera Utara, Indonesia, 20154

samuel@gmail.com

Abstract

Data compression is a process for converting an input data stream (original data) into another data stream

in the form of output or other (compressed) streams that have a smaller size. One of the main functions of

data compression is to reduce the file size by replacing characters that are generally 8 bits in size with

shorter codes. In data compression, many algorithms can be used to process input into the desired output,

so it must be considered aspects such as compression ratio, space-saving, and compression speed of each

algorithm.

Keywords: Compression, analysis, LZ77

1. Introduction

Along with the development of large-capacity storage media, people no longer encounter problems

if they have large files. The more so if the file that we have is an image file or document or text. However,

sometimes the large file size is annoying if we have to manage the storage media that we have for various

data. Especially if we will send the file electronically, of course, the file capacity becomes a problem in

itself. Lz77 compression algorithm is a text compression algorithm that can reduce the size of the text by

dividing the same text components, so that the text size will be more concise. The lz77 compression

algorithm compresses it by replacing a portion of the data with a reference to equalize the data that has been

passed by the encoder and decoder.

This algorithm uses a "sliding window") which consists of search buffer and look-ahead buffer. A

search buffer is used as a dictionary, while a look-ahead buffer is a buffer that contains a string to be

compressed. Search buffer is a buffer that has been through the compression stage, but is used as a

dictionary. The use of search buffer and look-ahead buffer can be adjusted according to the ability of the

system. Namely by determining the length of each array of the search buffer and look-ahead buffer so that

the lz77 compression algorithm is very suitable for use in the car. In addition to compressing text the lz77

algorithm can also be used to compress files because lz77 can compress binary or bytes, so this algorithm

is very dynamic and practical.

2. Literature Riview

2.1 Compression

Basically any data is actually a series of bits 0 and 1. What distinguishes between a particular data

with other data is the size of the series of bits and how the 0 and 1 are placed in the series of bits. For

example data in the form of audio and video, in audio data a series of certain bits represents one tone,

whereas in video data a series of bits represents a video stream, where in the video stream there is an image

in one pixel. The more complex the data, the smaller the sequence of bits needed, so that the overall size is

also greater. [1]–[3]

In storing computer data transfers, in addition to the contents of the data the meters that are no less

important are the measurements. Often the data stored in a storage media is very large so it requires more

http://infor.seaninstitute.org/index.php/infokum/index
mailto:samuel@gmail.com

http://infor.seaninstitute.org/index.php/infokum/index

JURNAL INFOKUM, Volume 7, No.1, Desember 2018 ISSN 2302-9706

INFOKUM is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)

17

space and is inefficient. Especially if the data will be sent, the larger the size, the time required for delivery

will be longer. For this reason, data compression is needed to reduce the size of data without changing the

content or information contained in the data.

There are many theories and methods for data compression. One theory that is quite simple is to

use Huffman coding (Huffman coding). In encoding the Huffman code, the concept of binary tree data

structures is used. Huffman's code theory itself is not just one, but there are several variations,

optimizations, and combinations thereof. In computer science data compression is the art of representing

digital data sources and others in a more compact form. Another term for data compression is data

compression. [4]–[7]

2.2. Lz77 Compression Algorithm

The lz77 compression algorithm is a lossless data compression method that will be applied in this

research. This application aims to compress and decompress data specifically on the Android platform. The

LZ77 algorithm was introduced in 1977 by Abraham Lempel and Jacob Ziv. LZ77 algorithm is a basic

algorithm that has been developed by many people. For example, LZW, LZSS, and LZMA. The LZ77

algorithm itself is often called LZ1. This algorithm is also called the "sliding window" algorithm because

it compresses data by moving the buffer where the symbols are located each time one or more symbols are

compressed. There are two buffers needed for this compression algorithm, namely search buffer and look-

ahead buffer. Both of these buffers play an important role in compressing a file. The reason for choosing

this algorithm is that this algorithm provides the best performance for several file types compared to its

modification algorithms. [8]–[10]

The LZ77 compression algorithm compresses it by replacing the data portion with a reference to

equalize the data that has been passed by the encoder and decoder. This algorithm uses a "sliding window"

consisting of a search buffer and a look-ahead buffer. A search buffer is used as a dictionary, while a look-

ahead buffer is a buffer that contains a string to be compressed. Search buffer is a buffer that has been

through the compression stage, but is used as a dictionary, the two buffers can be seen in the following

example:

Search buffer look-ahead buffer

...this

The working principle of the LZ77 algorithm searches for the same longest set of symbols at the beginning

of the look-ahead buffer of the search buffer and issues a pointer to that similarity. In general, an LZ77

token has three parts: offset, length, and the next symbol in the look-ahead buffer. Offsets and lengths are

pointers that indicate position and number of matches. If a match is found, LZ77 adds a pointer with a

symbol behind it. If there are no matches, then a null pointer and unique symbol are generated. Then the

sliding window is shifted as much as the compressed symbol based on the pointer.

3. Results and Discussion

3.1 File Compression

In compressing a message has four stages, namely:

1. Design a Search Buffer and Look-ahead Buffer

This method searches one (or more) symbols in the same look-ahead buffer as the symbols in the search

buffer. The search is carried out from right to left. In practice, the comparison of the size of the search

buffer with the look-ahead buffer is roughly a few thousand to 10. This algorithm searches for the same

longest set of symbols at the beginning of the look-ahead buffer of the search buffer and issues a pointer

to that similarity. In general, an lz77 token has three parts: offset, length, and the next symbol in the

look-ahead buffer. Offsets and lengths are pointers that indicate position and number of matches. If a

match is found, lz77 adds a pointer with a symbol behind it. If there are no matches, then a null pointer

is a text that is being
Read through

http://infor.seaninstitute.org/index.php/infokum/index

http://infor.seaninstitute.org/index.php/infokum/index

JURNAL INFOKUM, Volume 7, No.1, Desember 2018 ISSN 2302-9706

INFOKUM is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)

18

and unique symbol are generated. Then the sliding window is shifted as much as the compressed symbol

based on the pointer. Following is the illustration of the lz77 compression method: Suppose the word

you want to compress is "beberapabebek"

Table 1 Simulation of Lz77 against strings

5 4 3 2 1 O

 b e b e r apa

2. Looking for the Same Character

Suppose the word to be compressed is "several digits", then the character will look for the same

characters in the following table:

Table 2 Simulation of Lz77 against strings

4 3 2 1 (OUTPUT)

 b e r apabebek (0,0,b)

 b e b a pabebek (0,0,e)

 b e b e p abebek (2,2,r)

E b e r a p e b ek (0,0,a)

B e r a p a b Ek (0,0,p)

E r a p a b e K (2,1,b)

Search buffer look-ahead buffer

3. Turn Results into Binary

To change the results from table 3 to binary numbers, it can be seen in the following table:

Table 3 results become binary

(output)
Output Is Binary

OFSET engthy Karakter

 (0,0,b) 000 000 01100010

 (0,0,e) 000 000 01100101

 (2,2,r) 010 010 01110010

 (0,0,a) 000 000 01100001

 (0,0,p) 000 000 01110000

 (2,1,b) 010 001 01100010

 (6,1,b) 110 001 01100010

 (2,1,k) 010 001 01101011

To distinguish which bits indicate position and length with symbols, are given a sign by adding 1 bit. Bit 0

indicates that the next 8 bits of the perogram are symbols, while bit 1 indicates that the next 6 bits contain

offset and symbol length followed by 8 bits containing the symbol. Then from table 3 the results will be

found as follows:

http://infor.seaninstitute.org/index.php/infokum/index

http://infor.seaninstitute.org/index.php/infokum/index

JURNAL INFOKUM, Volume 7, No.1, Desember 2018 ISSN 2302-9706

INFOKUM is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)

19

0 01100010 0 01100101 1 010 010 01110010 0 01100001 0 01110000 1 010 001 01100010 1 110 001

01100010 1 010 001 01101011

4. Getting the Character Compression

After getting the results that have been binary, the binary numbers are separated into 8 bits, so that it

produces compressed characters.

0 01100010 0 01100101 1 010 010 01110010 0 01100001 0 01110000 1 010 001 01100010 1 110 001

01100010 1 010 001 01101011

Numbers are separated into 8 bits.

00110001 00011001 01101001 00111001 00011000 01001110 00010100 01 011000 10111000 10110001

01010001 01101011

The binary above is converted into characters, i.e. gets the decimal number in the following table:

Table 4 results of decimal numbers of binary numbers

49 25 105 57 24

78 20 88 184 177

81 107

Then the characters produced from table 4 are as follows:

Table 5 results of characters from decimal numbers

So the characters in table 5 are the messages to be sent. Getting the Value of Compression Ratio The ratio

or in comparison terms is a difference between the new size and the old size, so that the numbers and the

difference between the two sizes are known. In compression it is almost certain that the size of the data bits

before being compressed to the size of the bits after being compressed is different or not the same, it is very

necessary to make the value of this ratio or comparison. Below is the formula for finding the ratio value in

percent:

𝑟𝑎𝑡𝑖𝑜 =
𝑜𝑙𝑑 𝑠𝑖𝑧𝑎 − 𝑛𝑒𝑤 𝑠𝑖𝑧𝑎

𝑜𝑙𝑑 𝑠𝑖𝑧𝑎
 𝑥 100

So if it is returned to the data compression results above, we will get the following values:

Old size = 104 bits

New size = 96 bits

𝑟𝑎𝑡𝑖𝑜 =
104 − 96

104
 𝑥 100 = 7,69%

Then the ratio value of the above formula can be determined = 7.69%

3.2 Message Decompression

1. Change the Message to Binary

The message received will be changed to a binary character, in the following way:

Table 6 messages received

http://infor.seaninstitute.org/index.php/infokum/index

http://infor.seaninstitute.org/index.php/infokum/index

JURNAL INFOKUM, Volume 7, No.1, Desember 2018 ISSN 2302-9706

INFOKUM is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)

20

From the characters in table 6, it will be changed beforehand to the decimal number, which is in the

following table:

Table 7 results in decimal numbers of characters

49 25 105 57 24

78 20 88 184 177

81 107

With the decimal numbers in table 7, binary numbers can be determined easily, which is as follows:

 00110001 00011001 01101001 00111001 00011000 01001110

 00010100 01 011000 10111000 10110001 01010001 01101011

3. Separating Offset, Length and Character

To separate the offset, length, and character with a binary that has been obtained, it can be determined by

separating the one-bit sign, which is as follows:

 00110001 00011001 01101001 00111001 00011000 01001110

 00010100 01011000 10111000 10110001 01010001 01101011

The results of the tag separation are as follows:

0 01100010 0 01100101 1 010 010 01110010 0 01100001 0 01110000 1 010 001 01100010 1

110 001 01100010 1 010 001 01101011

If the first bit is found 0, then the next 8 bits are characters and if the first bit is number 1, then the next 6

bits are binary of offset and length, the next 8 bits are characters.

Table 8. Binary of offset, length and symbol into characters

OFFSET value code (output)

0 0 1100010 (0,0,b)

0 0 1100101 (0,0,e)

10 10 1110010 (2,2,r)

0 0 1100001 (0,0,a)

0 0 1110000 (0,0,p)

10 1 1100010 (2,1,b)

110 1 1100010 (6,1,b)

10 1 1101011 (2,1,k)

4. Take the Message

How to retrieve the message, then the compressed message will be returned to the original message (the

original message), with the following steps:

Table 9 returns messages

(0,0,b) b

(0,0,e) be

(2,2,r) beber

(0,0,a) bebera

(0,0,p) beberap

(2,1,b) beberapab

(6,1,b) beberapabeb

(2,1,k) beberapabebek

http://infor.seaninstitute.org/index.php/infokum/index

http://infor.seaninstitute.org/index.php/infokum/index

JURNAL INFOKUM, Volume 7, No.1, Desember 2018 ISSN 2302-9706

INFOKUM is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)

21

So the message can be returned with the process in table 9, so that the message can return to its original

character or before it is compressed "several ducks", and the message does not experience the slightest

disability or damage. The lz77 algorithm is one of the message compression algorithms that can return the

message to the original or before it was compressed.

4. Conclusion

 The lZ77 compression algorithm process as one method of compressing text messages is by

compressing messages using search buffer and look-ahead buffer by applying the lz77 algorithm

Reference

[1] R. Krasmala, A. Budimansyah, and U. T. Lenggana, “Kompresi Citra Dengan Menggabungkan

Metode Discrete Cosine Transform (DCT) dan Algoritma Huffman,” J. Online Inform., 2017.

[2] I. Hajar and Y. Prayudi, “Kompresi Teks Pada Layanan SMS Menggunakan Metode Lempel Ziv

Welch (LZW),” in KNSI, 2009.

[3] A. Wibowo, “Kompresi data menggunakan metode huffman,” Semantik, 2012.

[4] R. G. Gallager, “Variations on a Theme by Huffman,” IEEE Trans. Inf. Theory, 1978.

[5] M. Sharma, “Compression Using Huffman Coding,” IJCSNS Int. J. Comput. Sci. Netw. Secur., 2010.

[6] A. Shahbahrami, R. Bahrampour, M. S. Rostami, and Mostafa Ayoubi, “Evaluation of Huffman and

Arithmetic Algorithms for Multimedia Compression Standards,” Int. J. Comput. Sci. Eng. Appl.,

2011.

[7] J. Adámek, “Huffman Codes,” in Foundations of Coding, 2011.

[8] T. Gunardi and R. Munir, “Implementasi Algoritma Kompresi Lz77 Pada Smartphone Blackberry,”

Konf. Nas. Inform. – KNIF, 2011.

[9] G. Pria Utama, A. Firdaus Achmad, Siswanto, and Feriadi, “Pengamanan Data Dengan

Menggunakan Algoritma Kriptografi Aes, Rc4 Dan Kompresi Lz77 Berbasis Java Pada Badan

Karantina Pertanian,” Semin. Nas. Telekomun. dan Inform. Aditya Firdaus A. Semin. Nas.

Telekomun. dan Inform., 2016.

[10] A. F. A. Siswanto, Feriadi, Gunawan Pria Utama, “Pengamanan Data Dengan Menggunakan

Algoritma Kriptografi Aes , Rc4 Dan Kompresi Lz77,” Semin. Nas. Telekomun. dan Inform.

(SELESIK 2016), 2016.

http://infor.seaninstitute.org/index.php/infokum/index

