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Abstract
Long-term treatment with interferon-alfa (IFN) can reduce the disease burden
of patients diagnosed with myeloproliferative neoplasms (MPNs). Determining
individual patient responses to IFN therapy may allow for efficient personalized
treatment, reducing both drop-out and disease burden. A mathematical model
describing hematopoietic stem cells and the immune system is suggested. Con-
sidering the bone marrow and the blood allows for modeling disease dynam-
ics both in the absence and presence of IFN treatment. Through comprehensive
modeling of the effects of IFN, the model was related to individualized patient-
data consisting of longitudinal hematologic andmolecularmeasurements. Treat-
ment responses were modeled on a population level, allowing for personalized
predictions from a single pretreatment data point. Personalized fits were found
to agree well with data for individual patients. This allowed for a quantita-
tive description of the treatment response, yielding a mechanistic interpreta-
tion of differences from patient to patient. The treatment responses of individual
patients were combined and a formulation of treatment responses on the pop-
ulation level was described and simulated. Based on pretreatment data and the
actual treatment scheduling, the population-level response was found to predict
the treatment response of particular patients accurately over a five-year period.
Mechanism-based modeling of treatment effects demonstrates that hematologic
and molecular observable quantities can be predicted on the level of individual
patients. Personalized patient-fits suggest that the effect of IFN treatment can
be quantified and interpreted throughmathematical modeling, despite variation
in hematologic and molecular responses between patients. Mathematical mod-
eling suggests that in general both hematologic and molecular markers must be
considered to avoid early relapse. Furthermore, personalized model-fits provide
quantitative measures of the hematologic and molecular responses, determin-
ing when treatment-cessation is appropriate. Proof-of-concept population-level
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modeling of treatment responses from pretreatment data successfully predicted
clinical measures for a 5-year period. We believe that this approach could have
direct clinical relevance, offering expert guidance for clinical decisions about IFN
treatment of MPN patients.

KEYWORDS
interferon, mathematical modeling, myeloproliferative neoplasms, personalized treatment

1 INTRODUCTION

The Philadelphia-negative myeloproliferative neoplasms
(MPNs) are blood cancers, which include the diseases
essential thrombocythemia (ET), polycythemia vera (PV),
and primary myelofibrosis (PMF) [2, 35]. These MPNs
develop in a biological continuum over decades from the
early cancer stages (ET,PV) to the advanced myelofibro-
sis stage and ultimately leukemic transformation (acute
myeloid leukemia) in a subset of patients. Thromboem-
bolic complications are common, and MPNs are asso-
ciated with a huge inflammation-mediated comorbidity
burden. The MPNs are driven by the so-called “driver”
mutations, which include the JAK2V617F (JAK2) mutation
(present in virtually all patients with PV and half of ET and
PMF patients), the CALR mutations and MPL mutations.
Additional mutations are determinant for disease progres-
sion with myelofibrotic and leukemic transformation [34].
Recent studies show that these MPNs evolve from an early
precursor MPN stage—clonal hematopoiesis of indetermi-
nate potential (CHIP)—in which the JAK2 allele burden
steadily increases to give rise to overt MPN-disease [17].
In this work, we adopt the notion of a biological contin-
uum closely related to the JAK2 allele burden, and con-
sequently focus only on ET, PV and PMF patients that
are positive for the JAK2mutation. Chronic inflammation
is considered the driving force for development of MPNs
from the CHIP-stage but also from early to advanced MPN
disease [14, 16]. Another hallmark of MPNs is a disturbed
immune system with ensuing defective tumor immune
surveillance, which likely accounts for the increased risk of
second cancers, not only after the diagnosis but also years
before the diagnosis [13, 15]. Improved understanding of
the link between disease progression, chronic inflamma-
tion and the immune system could improve future treat-
ment by halting the disease before the vicious cycle of
chronic inflammation becomes uncontrollable. Therapy
with pegylated interferon-alpha (IFN) was investigated
thoroughly in a recent clinical trial, showing that IFN
causes an exponential decline in JAK2 allele burden during
long-term therapy [28]. Despite well-documented effects
of IFN with depletion of MPN-propagating stem cells in a

murine model [23], and a history of IFN therapy for MPN
patients [33], IFN is not yet considered the standard of care
for MPN patients.
Mathematical modeling of hematologic diseases has a

long history [7, 21], with important medical advances and
findings [1, 9, 12, 18, 19, 22, 24–26, 36–39].
While validation and testing of predictive power of

mathematical modeling is necessary before clinical appli-
cation [5], mathematical modeling is apt to become an
important part of clinical assessment of disease stage
and decision-making, for both blood cancers and solid
tumors [8].
Mathematicalmodels of hematopoietic stem cells (HSC)

have given important insight about the hematopoietic sys-
tem [4, 6, 11, 20, 29, 30]. Myeloid hematologic cancers arise
from a malignant stem cell clone, leading many authors to
explicitly model the malignant clone and the competition
of stem cells [3, 31, 38]. Importantly,modeling suggests that
treatment of HSC-derived disease must target the malig-
nant stem cells [1, 10, 24, 25]. Consequently, mathematical
models of myeloid hematologic malignancies should con-
sider some notion of HSC if successful therapy is expected
to be captured by model behavior.
In a recent study, we mathematically modeled the

IFN-induced decline in disease burden observed in MPN
patients, predicting whether a state of minimal residual
disease would be attained [24]. The model described HSC,
blood-cell production, and immune-system feedback and
was originally calibrated to data from MPN patients [1].
In this work, we propose a related model in which the

description of HSC behavior has been expanded. The pro-
posed model is related to both hematologic and molec-
ular measures, demonstrating that both cell counts and
the JAK2 allele burden of MPN patients can be mod-
eled simultaneously. We first describe the model, and how
IFN therapy was interpreted mathematically. A fitting-
procedure relating the model to data of individual patients
is described. Personalized modeling suggests that care-
ful consideration of molecular measures is necessary to
determine whether treatment cessation will cause an early
relapse or not. Population-level model predictions are
made for a subcohort of patients, in which the full period
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of IFN treatment (up to 5 years) is predicted from a single
pretreatment data point. This proof-of-concept result sug-
gests that mathematical modeling on both individual and
population level could be a useful clinical tool in the near
future, predicting, for example, the responses to treatment
cessation or an increase in dosage.

2 MATERIALS ANDMETHODS

2.1 Mechanism-based mathematical
model of the hematopoietic system

To model the effect of IFN on the hematologic and molec-
ular variables of patients diagnosed with MPN, we first
introduce a mathematical model of the interplay of the
healthy hematopoietic stem cells (HSC), leukemic stem
cells (LSC), blood cells, and the immune cells. The model
is based on two previously presented models: the Cancitis
model [1, 24] and a model of HSC dynamics within the
bone marrow [30].
The model is given by a system of ordinary differen-

tial equations describing the amount of wild-type HSC
denoted 𝑁𝐻 , the amount of LSC denoted 𝑁𝐿, the num-
ber of mature blood cells arising from the wild-type HSC
denoted by 𝑀𝐻 , the number of mature blood cells arising
from the LSC denoted by𝑀𝐿, the amount of cellular debris
denoted by𝐷, and an abstract measure of the immune sys-
tem response denoted by 𝑆. We give a brief overview of
the concepts behind the model formulation, while addi-
tional details are described in the Supporting Information.
Dynamics of wild-type HSC and LSC are based on the
model of Pedersen et al. [30]. In the previous model, a pro-
duction of differentiated stem cells were described but not
modeled further. In the model presented here, the differ-
entiated stem cells give rise to a production of blood cells.
The mature blood cells undergo apoptosis (programmed
cell death), which contributes to the cellular debris (𝐷). As
in themodel presented in the work of [1], the debris upreg-
ulates the immune system (𝑆), which in turn increases
stem cell production, to maintain cell counts. This process
is thought to ensure homeostasis within the hematopoi-
etic system and results in a model with both disease-
free hematopoiesis, early-disease stages, and treatment. A
schematic diagram of the model is shown in Figure 1.
The model is given as the following system of ordinary

differential equations, describing the gain and loss of each
of the six variables:

𝑁̇𝐻 = 𝜇𝐻𝑆

(
2𝛾𝜌𝐻(1 − 𝑁𝐻 − 𝑁𝐿)

𝛼𝐻 + 1 − 𝑁𝐻 − 𝑁𝐿
− 1

)
𝑁𝐻, (1a)

𝑁̇𝐿 = 𝜇𝐿𝑆

(
2𝛾𝜌𝐿(1 − 𝑁𝐻 − 𝑁𝐿)

𝛼𝐿 + 1 − 𝑁𝐻 − 𝑁𝐿
− 1

)
𝑁𝐿, (1b)

F IGURE 1 Schematic compartment diagram of the
mathematical model wild-type HSC and the produced blood cells,
𝑁𝐻 and𝑀𝐻 , respectively, are shown as blue circles on the left, while
LSC and the LSC-derived blood cells, 𝑁𝐿 and𝑀𝐿, respectively, are
shown as red circles on the right. The cellular debris arising from
apoptotic cell death of blood cells, 𝐷, is shown as a gray circle, while
the immune system, 𝑆, is represented by a gray box in the middle.
Black arrows represent flows between compartments, and red
arrows signify upregulation by the immune system. The circles with
× represent a multiplication in numbers to the proliferation of
progenitor cells. The self-renewal of HSC and LSC is not depicted in
the figure due to its nonlinear form; however, the gray box and the
line connecting HSC and LSC represent this interaction of stem cells
within the bone-marrow niches (shown as a dark-red box at the
bottom)

𝑀̇𝐻 = 𝜔𝐻𝜅𝐻𝑆 − 𝑑𝐻𝑀𝐻, (1c)

𝑀̇𝐿 = 𝜔𝐿𝜅𝐿𝑆 − 𝑑𝐿𝑀𝐿, (1d)

𝐷̇ = 𝑑𝐻𝑀𝐻 + 𝑑𝐿𝑀𝐿 − 𝑒𝐷𝐷𝑆, (1e)

𝑆̇ = 𝑟𝑆𝐷 − 𝑒𝑆𝑆 + 𝑔, (1f)

where 𝜅𝑗 = (2 − 2𝜌𝑗 +
2𝛾𝛼𝑗𝜌𝑗

𝛼𝑗 + 1 − 𝑁𝐻 − 𝑁𝐿
)𝜇𝑗Θ𝑁𝑗 . All

parameters are nonnegative. Additionally, 𝜌𝑗 ≤ 1 and
𝛾 ≥ 1. Default values given in Table 1, along with a brief
description of what biological processes the parameters
represent. It can be shown that all variables remain
nonnegative for nonnegative initial conditions. A numer-
ical solution, representing a typical disease-progression
scenario is depicted in Figure 2, together with simulated
treatment, as described in Section 2.2. Numerical solu-
tions like these suggest that the model is qualitatively
similar to those of the Cancitis model on which it is
based. Furthermore, model dynamics are similar to those
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TABLE 1 Default parameters used in simulations. Parameters 𝑢𝐻 , 𝑢𝐿, 𝑑𝑀𝐻
, 𝑑𝑀𝐿

, 𝑒𝐷 , 𝑟𝑆 , and 𝑒𝑆 are in units of [days−1], while the other
parameters are without unit. Parameters 𝑢𝐿, 𝜌𝐿, 𝛼𝐿, and 𝜔𝐿 were determined from the healthy counterparts and were modified to agree with
the disease progression as described in [28]. The remaining default values were determined in the work described in [24] and [29]

Parameter Value Description Parameter Value Description
𝜇𝐻 0.0376 Release-rate from bone-marrow niche,

HSC
𝜇𝐿 0.0432 Release-rate from bone-marrow niche,

LSC
𝜌𝐻 0.5289 Rate of self-renewing proliferation, HSC 𝜌𝐿 0.5310 Rate of self-renewing proliferation, LSC
𝛼𝐻 0.0053 Post-cell-division differentiation rate,

HSC
𝛼𝐿 0.0051 Post-cell-division differentiation-rate,

HSC
Θ 15,000 Number of quiescence-inducing stem

cell niches within bone marrow
𝛾 1 Effective new daughter-cells per stem

cell division
𝜔𝐻 4.7 × 106 Blood cells produced per stem cell

differentiation, HSC
𝜔𝐿 11.75 ⋅ 106 Blood cells produced per stem cell

differentiation, LSC
𝑑𝑀𝐻

0.0129 Death rate, healthy mature cells 𝑑𝑀𝐿
0.0129 Death-rate, leukemic mature cells

𝑒𝐷 2 × 105 Clearance rate of cellular debris 𝑟𝑆 0.0003 Debris-dependent immune-system
activation

𝑒𝑆 2 Immune-system inactivation 𝑔 7 External inflammation

F IGURE 2 Illustrative model simulation with treatment affecting 𝜌𝐿, 𝜔𝐻 , and 𝜔𝐿. Starting in the healthy steady state at time 𝑡 = 0, one
HSC is removed from 𝑁𝐻 and added to 𝑁𝐿. Due to the growth advantage of the leukemic clone for default parameters, the disease progresses
in the absence of treatment. This progression is shown in black in both panels. The relative frequency of malignant mature cells, 𝑀𝐿

𝑀𝐻+𝑀𝐿

,
reaches approximately 65% within 20 years. Between year 20 and 22, a treatment scenario is simulated, setting 𝜌𝐿 = 0.515, 𝜔𝐻 = 2 × 106, and
𝜔𝐿 = 5 × 106. At year 22, parameters are reset to their default values. The left panel depicts the mature cell counts,𝑀𝐻 +𝑀𝐿, scaled with the
cell count in the healthy steady state. The dotted blue line depicts the simulated treatment scenario. The right-hand panel shows the relative
frequency of malignant mature cells, 𝑀𝐿

𝑀𝐻+𝑀𝐿

, with the dotted blue curve showing the scenario with treatment. The gray background illustrates
the treatment period. Initial conditions: 𝑁𝐻(0) = 0.909, 𝑁𝐿(0) = Θ−1,𝑀𝐻(0) = 9.90 × 1011,𝑀𝐿(0) = 0, 𝐷(0) = 1.2 × 104, and 𝑆(0) = 5.31
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observed for similar models of the hematopoietic system
seen in the literature; examples of which were mentioned
in the introduction.
The model considers positive feedback of the inflam-

matory stimulus on the release of stem cells from
the bone-marrow niche. This is based on the idea of
inflammation-induced activation of quiescent stem cells
(see Chapter A.2 of the Supporting Information). The
parameters 𝜇𝐻 and 𝜇𝐿 relate to the rate of this activa-
tion for wild-type HSC and LSC, respectively, allowing
for a difference in how strongly inflammation affects
either population. For the default parameters given in
Table 1, 𝜇𝐿 > 𝜇𝐻 , consistent with increased inflammation-
induced activation of LSC compared to HSC. From the
local parameter sensitivity analysis given in the Sup-
porting Information, increasing 𝜇𝐻 leads to increased
counts of wild-type mature cells 𝑀𝐻 , while increased 𝜇𝐿

accelerates disease progression and increases𝑀𝐿.
We define the disease level in the model as the relative

frequency of blood cells derived from LSC out of all blood
cells, 𝑀𝐿

𝑀𝐻+𝑀𝐿

.
For parameters close to the default values given in

Table 1, the blood cell count in the model is of the order of
1012. The blood cell count represents the entire population
of blood cells of a person, regardless of cell type.We empha-
size that a value of 1012 is arbitrary, and that the total blood
cell count could vary from patient to patient. For this work,
the relative difference from healthy cell counts or the cell
counts of particular cell types is more relevant in regard
to the health of a patient. To consider any particular cell
type, a fraction of the total blood cell count in the model is
assumed to be of the given cell type. We define the throm-
bocyte count as𝐶𝑡ℎ𝑟𝑜 = 𝑅𝑡ℎ𝑟𝑜(𝑀𝐻 +𝑀𝐿) and the leukocyte
count as 𝐶𝑙𝑒𝑢𝑘 = 𝑅𝑙𝑒𝑢𝑘(𝑀𝐻 +𝑀𝐿), where 𝑅𝑡ℎ𝑟𝑜 and 𝑅𝑙𝑒𝑢𝑘

are the cell-specific fractions.
Mathematical analysis of the model was described in

[27].We omit a thoroughmathematical analysis here; how-
ever some brief comments are warranted. Formost choices
of model parameters, three steady states exists: A trivial
steady state with no cells, a healthy steady state with𝑁𝐿 =

𝑀𝐿 = 0, and a full-blown myeloproliferative steady state
with 𝑁𝐻 = 𝑀𝐻 = 0. In the full-blown myeloproliferative
steady state, only mature cells that have arisen from LSC
are present, and the disease level is exactly 1. As such, the
steady state represents themost extremeprogression of dis-
ease, at which the patient is at high risk of life-threatening
adverse events. Numerical investigations of local stabil-
ity reveal that typically only one steady state is stable,
while the two others are unstable. This suggests that for a
given choice of parameters the system will asymptotically
approach the stable steady state.Within the range ofmodel
parameters that we here investigate numerically, model
solutions (and hence patient trajectories)move from either

the healthy steady state toward the full-blown myelopro-
liferative steady state, or in the opposite direction. Sta-
bility of the myeloproliferative steady state is associated
with increased cell counts in the model. Hence, solutions
with disease progression exhibit increasing 𝐶𝑡ℎ𝑟𝑜 and 𝐶𝑙𝑒𝑢𝑘

toward a steady-state count and the disease level increas-
ing from 0 to 1. The opposite is the case when the healthy
steady state is stable: cell counts are decreasing toward a
steady-state count and the disease level goes toward 0. To
investigate the transient behavior during treatment, the
model can be solved numerically, simulating particular
treatment effects on parameters.

2.2 Modeling treatment effects

Treatment with IFN has been found to deplete the popula-
tion of LSC that give rise to MPN [23]. To model this effect,
we consider an IFN-induced decrease of 𝜌𝐿, the parameter
related to LSC differentiation. Preliminary model investi-
gations revealed that decreasing 𝜌𝐿 resulted in depletion of
LSC and a decrease in the disease level. Visual inspection
of data suggests a transient effect of IFN on the total cell
count, reducing both healthy and leukemic mature cells
before the disease level decreases. A change in the pro-
liferation of both healthy and leukemic progenitor cells,
as modeled by parameters 𝜔𝐻 and 𝜔𝐿, respectively, could
explain such a decrease in total cell count. Hence, when
modeling IFN treatment, we perturb parameters 𝜌𝐿, 𝜔𝐻 ,
and 𝜔𝐿. To reduce the degrees of freedom, we consider
only equal perturbation of 𝜔𝐻 and 𝜔𝐿, such that the rela-
tion 𝜔𝐿 = 2.5𝜔𝐻 is maintained throughout this work for
both default parameter values and perturbed parameters.
Perturbation of 𝜌𝐿 affects primarily the relative frequency
of cells, while perturbation of 𝜔𝐻 and 𝜔𝐿 affects the total
amount ofmature blood cells. A numerical example of per-
turbing these parameters is shown in Figure 2. Within the
first year of treatment, a transient effect of perturbing 𝜔𝐻

and 𝜔𝐿 causes a pronounced decrease in blood cell counts.
A corresponding transient increase is seenwhen treatment
is ceased. This transient effect occurs because 𝜔𝐻 and 𝜔𝐿

affects both healthy and leukemic blood cells, and as a con-
sequence, without perturbation of 𝜔𝐻 and 𝜔𝐿, the tran-
sient decrease of total blood cell counts does not occur (not
shown).
For default parameters, solutions of themodel approach

the full-blown myeloproliferative steady state for any pos-
itive number of malignant stem cells, and, hence, relapse
always occurs. However, the degrees of parameter pertur-
bation considered in the simulated treatment affects the
time until relapse occurs. To estimate the time between
treatment cessation and relapse, we defined an arbitrary
relapse threshold corresponding to a 50% increase in blood
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F IGURE 3 The relationship between the modeled treatment
response and time to relapse. The scenario of Figure 2 was
simulated, with 2 years of simulated treatment from year 20 to year
22. A range of values of 𝜌𝐿, 𝜔𝐻 , and 𝜔𝐿 during treatment was
considered. For a given choice of values, we determined the time
from treatment cessation (at year 22) until total blood cell counts
exceeded an arbitrary relapse threshold defined as a 50% increase
compared to the healthy steady state. The vertical axis signifies the
change of both 𝜔𝐻 and 𝜔𝐿, as the relation 𝜔𝐿 = 2.5𝜔𝐻 was
maintained. The simulated scenario of Figure 2 corresponded to a
0.97-fold change of 𝜌𝐿 and a 0.43-fold change to 𝜔𝐿 and 𝜔𝐻

cells compared to the healthy steady-state count. When
total blood cell counts exceed this threshold after treat-
ment cessation, relapse is assumed to have occurred. Note
that this arbitrary threshold is a simplification compared
to diagnostic criteria for relapse. For the example shown in
Figure 2, relapse occurs 6 years after treatment cessation,
around year 28. Simulating a range of treatment-specific
values of 𝜔𝐿, 𝜔𝐻 , and 𝜌𝐿, we investigated the resulting
time to relapse. The results are shown in Figure 3. While
changes to 𝜔𝐻 and 𝜔𝐿 are important for a transient reduc-
tion in blood cell counts, the effect on the time to relapse
is minor. Conversely, reduction of 𝜌𝐿 lengthens the time
to relapse.

2.3 Data

We consider data from the prospective randomized-
controlled open-label phase III clinical trial “DALIAH”
(EudraCT number: 2011-001919-31) [24, 28]. In the trial,
a cohort of MPN patients received IFN monotherapy
(either interferon alfa-2a “Pegasys R©” or interferon alfa-2b
“PegIntron R©”). Data consisted of IFN dosage and timing,
as well as longitudinal hematologic and molecular mea-
surements. In particular, the thrombocyte and leukocyte
counts as well as the JAK2 allele burden were measured.
We consider the JAK2 allele burden as a measure of the

disease progression. Here, a total of 63 patients [24] are
included in the analysis: 17 were diagnosed with ET, 35
with PV, and 11 with PMF.

2.4 Pharmaco-kinetic modeling of
IFN-dose

IFN was given once every week, once every second week,
or once every third week in a range of dosages. For simplic-
ity, we here report a daily average dose. A pharmacokinetic
(PK) model of IFN was considered, in agreement with our
previous work [24].We assume an equal rate of uptake and
clearance of IFN, 𝜏 =

1

7

𝜇g
day

, inspired by previous work on
PK modeling of IFN [32]. Letting 𝐼(𝑡) denotes the stepwise
constant daily dose in units of 𝜇g IFN, we choose the sim-
plest possible PK description of the blood concentration:

𝐵̇(𝑡) = 𝜏(𝐼(𝑡) − 𝐵(𝑡)), (2)

where the dot denotes the time derivative. The IFN
blood concentration 𝐵(𝑡) is in units of 𝜇g IFN, assuming
a constant blood volume and ignoring patient-specific
variations in volume. For constant 𝐼(𝑡) = 𝐼0, administered
with onset at time 𝑡 = 𝑡0, this differential equation may be
solved explicitly:

𝐵(𝑡) = 𝐼0 − (𝐼0 − 𝐵(𝑡0))e−𝜏(𝑡−𝑡0). (3)

2.5 Pharmacodynamics of IFN

The pharmaco-dynamics (PD) of IFN is modeled such that
parameter perturbation depends directly on the blood con-
centration of IFN. For the perturbation of 𝜔𝐻 and 𝜔𝐿, we
define 𝜔̂𝐻 and 𝜔̂𝐿 as functions of the blood concentra-
tion 𝐵:

𝜔̂(𝐵) =

{
(1 + 𝜈𝜔𝐵)𝜔 for 𝜈𝜔 ≥ 0

𝑒𝜈𝜔𝐵𝜔 for 𝜈𝜔 < 0
, (4)

where the parameter 𝜈𝜔 describes how significant the
parameter is perturbed. For 𝜈𝜔 < 0, the parameter is
reduced, while it is increased for 𝜈𝜔 > 0. For all values of
𝜈𝜔, 𝜔̂ ≥ 0 is fulfilled.
A different perturbation for 𝜌𝐿 is considered, since 𝜌𝐿 ≤

1must be maintained for all doses. We define 𝜌̂𝐿 as

𝜌̂𝐿(𝐵) =
𝜌𝐿

𝜌𝐿 + (1 − 𝜌𝐿)e−𝜈𝜌𝐿𝐵
, (5)

where 𝜈𝜌𝐿 determines the degree of response to treatment.
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For the patients considered, the time-dependent blood
concentration, 𝐵(𝑡), is described in Section 2.4. Hence,
both 𝜔̂𝐻 , 𝜔̂𝐿, and 𝜌̂𝐿 are time dependent.

2.6 Procedure for obtaining
individualized patient fits

Combining data for IFN dose with the parameter pertur-
bations described by the PK and PDmodeling described in
Sections 2.4 and 2.5, the response of an individual patient
to IFN treatment could be represented by two param-
eters, 𝜈𝜌𝐿 and 𝜈𝜔. Only these parameters were consid-
ered in the fitting procedure described below, with all
other parameters being fixed at the default values given in
Table 1.
Three measures were considered for determining how

well the model agreed with data; The disease-level error,
𝐸𝐽𝑎𝑘, defined as the sum of squared errors (SSE) between
model disease level and the JAK2 allele burden, the throm-
bocyte error, 𝐸𝑇ℎ𝑟𝑜, defined as the SSE of the thrombo-
cyte counts and the (scaled) blood cells counts and finally
the leukocyte error, 𝐸𝐿𝑒𝑢𝑘, defined as the SSE of leukocyte
counts and the (scaled) blood cell counts.
For the 63 patients considered, personalized model fits

were determined. A model simulation without treatment
was shifted in time such that at 𝑡 = 0 the model disease
agreed with the baseline measurement of the JAK2 allele
burden of the patient. This could also be used to estimate
the time of initial mutation and disease onset (see [28]).
Subsequently, we used an iterative three-step data-

fitting procedure. In all steps, the MATLAB function
fminsearch was used, with options TolFun:10−3 and
TolX: 0.1. Initially, a value of 𝜈𝜌𝐿 was found that mini-
mized the disease-level error, 𝐸𝐽𝑎𝑘. Second, blood cell scal-
ing factors 𝑅𝑡ℎ𝑟𝑜 and 𝑅𝑙𝑒𝑢𝑘 and treatment parameter 𝜈𝜔

were fitted such that the thrombocyte error, 𝐸𝑇ℎ𝑟𝑜, and
leukocyte error, 𝐸𝐿𝑒𝑢𝑘, were minimized. As a final step, an
additional optimization of 𝜈𝜌𝐿 with the disease-level error,
𝐸𝐽𝑎𝑘, was carried out, and scaling factors 𝑅𝑡ℎ𝑟𝑜 and 𝑅𝑙𝑒𝑢𝑘

were reoptimized to minimize thrombocyte error, 𝐸𝑇ℎ𝑟𝑜,
and leukocyte error, 𝐸𝐿𝑒𝑢𝑘. In part D of the Supporting
Information, individual patient fits are shown. In all fig-
ures, the fitted values of 𝜈𝜌𝐿 and 𝜈𝜔 are shown, along with
the adjusted R squaredmeasure for each of the three error
measures considered. The adjusted R squared measure is
shown to allow for comparison of patient fits.
We emphasize that the procedure favors agreement

between the disease burden, as given by the JAK2 allele
burden in data and model disease level given by 𝑀𝐿

𝑀𝐻+𝑀𝐿

,
rather than agreement between scaled model counts of
blood cells and the corresponding data.

3 RESULTS

3.1 Patient fits

Personalized values of 𝜈𝜌𝐿 , 𝜈𝜔, 𝑅𝑡𝑟𝑜𝑚, and 𝑅𝑙𝑒𝑢𝑘 were deter-
mined for each patient, describing the patient-specific
response to IFN of the given patients. This was done
for all 63 patients from the DALIAH trial. The result-
ing numerical solutions of the model are shown in the
Supporting Information, and two examples are shown in
Figure 4. In all figures, patient-IDs are used that corre-
spond to those used in [24]. The model reproduces both
the dynamics of hematologic measures (blood cell counts)
and molecular measures (the JAK2 allele burden) and was
found to agree with patient data irrespective of treatment
response.
Good responders are characterized by a significant

decrease in JAK2 allele burden and a normalization of cell
counts. As changes to 𝜌𝐿 primarily affects the JAK2 allele
burden while 𝜔𝐻 and 𝜔𝐿 affect the total cell count, the fit-
ted values of 𝜈𝜌𝐿 and 𝜈𝜔 identify good responders. In partic-
ular, good responders are found to have fitted values lower
than those of bad responders. Hence, the patient fits pro-
vide quantitativemeasures for howwell a patient responds
to treatment.
Patient-specific fits allow us to simulate hypothetical

treatment-scenarios. In particular, we can consider the
effect of halting treatment. In Figure 5, two simulated sce-
narios are shown for a particular patient, halting treat-
ment after 0.5 and 5 years. When treatment was ceased
early, cell counts rapidly relapse to elevated levels, with
thrombocytes above the reference interval within half a
year. After 5 years of treatment, we find that approximately
9 years without treatment is possible before the throm-
bocyte count exceeds the threshold. Note that cell counts
at the time points chosen were approximately equal (just
below 300 × 103 cells per 𝜇L), both in the model and in
data. Hence, the stage of disease at year 0.5 and year 5
would be indistinguishable, if based solely on cell counts.
Our findings suggest that monitoring the JAK2 allele bur-
den is important to determine the time to relapse and avoid
premature treatment cessation.

3.2 Cell counts at steady state

For all patients, scaling factors were found, relating the
modeled sum of mature cells to the blood cell counts
observed in data. Scaling the steady state value of 𝑀𝐻

in the healthy steady state with the scaling-factor gives
a patient-specific estimate of pre-disease cell counts. For
most patients, these cell counts are found to be within the
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F IGURE 4 Examples of patient-specific fits of the model. The left panels display the blood cell counts as gray circles. The black curve
displays the sum of mature cells,𝑀𝐻 +𝑀𝐿, scaled by the appropriate scaling factors. A simulation without treatment is shown in dotted black
for comparison. Approximate healthy intervals of cell counts are shown in dashed gray, defined as between 145 × 103 and 390 × 103
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thrombocytes per 𝜇L and between 4 × 103 and 11 × 103 leukocytes per 𝜇L. On the right-hand panel, the model disease level is shown together
with the JAK2 allele burden data. A treatment-free simulation is shown in dotted black. The bottom-right panel depicts the
pharmacokinetically modeled estimate of the IFN concentration. For all possible doses between 0 and 20 𝜇g daily IFN, model stability for the
given patient-specific parameters was determined numerically. Doses for which the healthy steady state was locally stable are shown as a
green background, while doses where the full-blown myeloproliferative steady state was found to be locally stable are shown in red. Panel (a)
patient “P082” is depicted, with fit parameters 𝜈𝜌𝐿

= −0.0091, 𝜈𝜔 = −0.0821, 𝑅𝑡𝑟𝑜𝑚 = 4.1 × 10−9, and 𝑅𝑙𝑒𝑢𝑘 = 1.5 × 10−7. Panel (b) depicts
patient “P198” which had fit-parameters 𝜈𝜌𝐿

= −0.004, 𝜈𝜔 = −0.0455, 𝑅𝑡𝑟𝑜𝑚 = 6.5 × 10−9, and 𝑅𝑙𝑒𝑢𝑘 = 3.1 × 10−7

healthy interval, validating the model in the absence of
disease. Scaling the steady-state value of 𝑀𝐿 in the full-
blownmyeloproliferative steady state provides an estimate
for the cell count that would be approached if no treat-
ment had been initiated. Significantly increased blood cell
counts were predicted at the full-blown myeloproliferative
steady state. As elevated blood cell counts are included in
the diagnostic criteria, this further validates the model in
the absence of treatment. Additional details alongwith his-
tograms of the steady-state values are given in the Support-
ing Information.

3.3 Population modeling of patient
response

While the model was found to agree well with most
patients, the model reproduced data of a subcohort of
20 patients particularly well. These were not necessar-
ily patients that respond well (or poorly) to treatment,
but rather the subcohort most accurately reproduced
by the model, in terms of the adjusted 𝑅2 of model
error. Details are given in Section C of the Supporting
Information. Based on this subcohort, a two-dimensional

F IGURE 5 Simulations of halted treatment can estimate the time to relapse. Based on the model fit to data for patient “P198,” as shown
in Figure 4A, we simulated two additional scenarios: One where treatment was halted after 0.5 year, shown in dash-dotted red, and a scenario
where treatment was halted at the end of the study, year 5, shown in dash-dotted green. (For a full figure legend, see Figure 4). The colored
background of the bottom-right panel shown in Figure 4 was here omitted for visual clarity
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F IGURE 6 Virtual patient responses based on baseline measurement and IFN dosing shows good agreement with real patient response
in some cases. Patient data for patient “P082” are shown as black circles○. 1000 virtual patients were simulated, and the sum of mature cells
were scaled to agree with the baseline data point for either leukocytes or thrombocytes. The blue curve shows the median response curve. The
shaded gray areas display the distribution, with the darkest gray showing the interval from 25% to 75% of values at the given time points, the
next darkest interval shows from 10% to 90% while the final interval from 5% to 95% of virtual patient responses is shown in light gray. The
bottom right panel displays the modeled IFN blood concentration used for both the real patient and the virtual patients

log-normal distribution of 𝜈𝜌𝐿 and 𝜈𝜔 was determined.
This distribution describes the treatment-response param-
eters on a population level. Details of the method and
the validation are given in Section C of the Supporting
Information.
From the distribution, 1000 sets of dose-dependent

parameter perturbations were chosen, each describing
the response of a virtual patient. For each of these virtual
patients, we simulated treatment schedules identical
to each of the 20 patients in the subcohort. For these
simulations, initial conditions corresponding to those of
the baseline measurement of the real patient were used.
To avoid overfitting, the fit of the given patient was not
used to determine the distribution used for the virtual
patients. In Figure 6, an example is shown. Figures for all
20 patients of the subcohort are shown in Section E of the
Supporting Information.
We consider an entirely simulated patient response.

Mean baseline values of patients diagnosed with PV were
leukocyte counts of 11.4 × 103(𝜇 L)−1, thrombocyte count

of 571 × 103(𝜇L)−1, and JAK2 allele burden of 44%. Simu-
lating 1000 virtual patient responses with the mean base-
line values as initial conditions and a daily dose of 5 𝜇g
IFN (a weekly dose of 35 𝜇g IFN), we determined the
expected distribution of patient responses, illustrating the
treatment-response of an idealized PV patient. The results
are shown in Figure 7.

4 CONCLUSION

A stem cell extension of the mechanism-based Cancitis
model was presented, describing simultaneously the blood
production in the human body and the behavior of HSCs.
Through pharmacokinetic and pharmacodynamic model-
ing of the effect of IFN, the model was further extended.
Considering a cohort of MPN patients and using patient-
specific data for IFN doses, the model reproduced both
hematologic data for blood cell counts and the JAK2 allele
burden on the level of individual patients.
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F IGURE 7 Virtual patient responses based on average PV baseline measurements shows the distribution of an idealized IFN response.
Based on the average baseline values of PV patients, shown as black circles○, 1000 virtual patients were simulated and the sum of mature
cells were scaled to agree with the baseline data point for leukocytes and thrombocytes in the top-left and bottom-left panels, respectively. The
blue curve shows the median response curve. The shaded gray areas display the distribution, with the darkest gray showing the interval from
25% to 75% of values at the given time points, the next darkest interval shows from 10% to 90% while the final interval from 5% to 95% of
virtual patient responses is shown in light gray. The bottom right panel displays the modeled IFN blood concentration used, corresponding to
a constant 5 𝜇g IFN dose

We find that normalization of cell counts during IFN
treatment could be explained by an induced decrease in
self-renewal of leukemic stem cells and decreased prolifer-
ation of all progenitors cells. This finding agrees with and
expands our previous work [24].
Apart from population-level parameters shared between

patients, model-fits consisted of four fitted parameters:
Two scaling parameters of the blood cell counts and two
parameters, 𝜈𝜌𝐿 and 𝜈𝜔. The parameter 𝜈𝜔 described the
number of blood cells produced per differentiated stem
cell and was found to relate to a transient change in blood
cell counts. 𝜈𝜌𝐿 determined the proliferation of malignant
stem cells, and primarily affected long-term disease bur-
den. Furthermore, we found that the time from treatment
cessation until blood cell counts return to a heightened
value also depended on 𝜈𝜌𝐿 .
Patient-specific fits weremade to data for the JAK2 allele

burden and the thrombocyte and leukocyte counts. Such
a simultaneous agreement with both hematologic and

molecular markers is novel, and our work represents ini-
tial efforts of modeling different types of data of individual
patients. The agreement between model and data demon-
strates that mechanism-basedmathematical modeling can
accurately capture patient behavior, while allowing for a
biological interpretation of the treatment response. The
treatment response was quantified on a personalized level
by the separate effect of 𝜈𝜌𝐿 and 𝜈𝜔, with the former param-
eter describing the decrease in the JAK2 allele burden
and a lengthening of the time to relapse, while the lat-
ter describes a transient decrease in blood cell counts. In
addition, our results highlight the importance of monitor-
ing the JAK2 allele burden, by demonstrating that relapse
occurs earlier if treatment is ceased before the JAK2 allele
burden is sufficiently reduced (see Figure 5).
Quantifying the twofold effect of IFN revealed a clinical

challenge. A significant hematological response, as quan-
tified by 𝜈𝜔, suggests that high IFN doses could lead to
an excessive decrease in blood cell counts, which could
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constitute a risk for the health of the patient. However, our
results simultaneously suggested that for long-termmolec-
ular response and lengthening of the time to relapse, as
quantified by 𝜈𝜌𝐿 , the IFN dose must be increased. While
combination therapy or novel dose scheduling could solve
this challenge, the challenge ofmaximizing long-termben-
efit while minimizing short-term risk remains. Personal-
ized estimates of 𝜈𝜌𝐿 and 𝜈𝜔 quantifies this challenge on
a personal level, identifying patients suitable for increased
doses and patients that are not.
The estimates of 𝜈𝜌𝐿 and 𝜈𝜔 were based on individual

patients. By relating the patient-specific estimates across
the cohort of patients considered, treatment responses
could be described on a population level. From this, proof-
of-concept population modeling was presented. In this
population modeling, the effect of IFN treatment for vir-
tual patients could be considered and simulated. Compar-
ing the distribution of 1000 virtual patients with data from
a subcohort showed that patient data could be predicted
by the model using only pretreatment data and informa-
tion about future IFN dose and scheduling. While further
validation of our approach is necessary, predicting patient
responses before treatment initiation could be an impor-
tant clinical tool. Furthermore, updating and refining pre-
dictions during subsequent clinical follow-up, could give
the clinician an estimate of the patient trajectory, guiding
future clinical decisions.
In conclusion, we find that modeling the quantitative

dynamics of blood cell counts and the JAK2 allele bur-
den on a patient-specific level during IFN treatment is
possible. In order to make accurate predictions for treat-
ment response based on mathematical modeling, both
hematologic and molecular data are needed, highlight-
ing the importance of routinely obtaining and analyzing
both clinical andmolecular data. Furthermodel validation
and evaluation of the predictive power of the model are
required before themodelmay be used as a predictive clini-
cal tool. However, we believe that personalized mathemat-
ical modeling as described here could potentially improve
the outcome of treatment with IFN in patients withMPNs.
Furthermore, we believe that future work based on the
modeling described here could be relevant to other dis-
eases of the blood and thereby improve treatment out-
comes of an even wider range of patients.
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