
IOP Conference Series: Materials Science and Engineering

PAPER • OPEN ACCESS

The effect of coarse aggregate inclusion on the performance of reactive
powder concrete exposed to oil products
To cite this article: T S al-Attar et al 2019 IOP Conf. Ser.: Mater. Sci. Eng. 579 012044

 

View the article online for updates and enhancements.

This content was downloaded from IP address 185.206.172.59 on 16/12/2020 at 07:30

https://doi.org/10.1088/1757-899X/579/1/012044
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsvGpHUWCkGp8nMLNPnz3gt08JUv5v2HbF4UDViAz_nfP6pJ4PR6UA5U1F7ilCZ0zsC63LNd-k98eZdnI4L183s13yjMfQiKfn9V3oLnfTmvmCL8NH84866X2fDhdy4mZGZEQc07ZyaPzgvNwz4ZG0ryKfVXe-TJKBjODJM-90tXmd0KPhCo9TKhBGoTTSLDpE3StTrPU3l96sJ4DWps5JVg3X2oJkyZ4nVXLYo2fS_tJvPqmIei&sig=Cg0ArKJSzCIT2g3k3wQf&adurl=https://ecs.confex.com/ecs/239/cfp.cgi%3Futm_source%3DPW%26utm_medium%3DPDFCover%26utm_campaign%3D239AbstractSubmit%26utm_content%3DBanner2


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

1st International Conference on Petroleum Technology and Petrochemicals

IOP Conf. Series: Materials Science and Engineering 579 (2019) 012044

IOP Publishing

doi:10.1088/1757-899X/579/1/012044

1

  

The effect of coarse aggregate inclusion on the performance of 
reactive powder concrete exposed to oil products. 

T S al-Attar1, A S Ali2 and B S Al-Numan3 

1 University of Technology, Civil Engineering Department, Baghdad, Iraq 
2 Al-Nahrain University, Civil Engineering Department, Baghdad, Iraq 
3 Ishik University, Civil Engineering Department, Erbil, Iraq 

Corresponding author’s e-mail address:40076@uotechnology.edu.iq 

Abstract. Reactive powder concrete, RPC, is an ultra-high strength and high ductility cementitious 
composite with advanced mechanical and physical properties. RPC is composed of very fine 
powders (cement, sand, quartz powder and silica fume), steel fibers (optional) and superplasticizer. 
A basic principle, which was presented by the first developers of RPC, is to eliminate the coarse 
aggregate in mixture to enhance homogeneity. The main purpose of the present investigation is to 
modify RPC by including natural graded coarse aggregate in the mixture in different approaches. 
The investigation was devoted to monitor the strength development, total absorption and 
permeability of RPC after exposure to two types of oil products, kerosene and gas oil, up to 180 
days. The current results showed that eliminating coarse aggregate as a principle could be gone-
beyond. The better way for including coarse aggregate in RPC was to replace the fine sand and the 
most useful FA/A ratio is expected to be within the range of 0 - 25 % by weight. This range was 
found to create an optimum situation between strength and absorption for kerosene and gas oil 
exposures. It is not recommended to include the coarse aggregate in RPC mixtures as a replacement 
to the binder specially when dealing with oil products storage.    

1. Introduction 
Reactive Powder Concrete, RPC, was first developed in France in the early 1990s and the world’s first 
Reactive Powder Concrete structure, the Sherbrook Bridge in Canada, was erected in July 1997. RPC is an 
ultra-high strength and high ductility cementitious composite with advanced mechanical and physical 
properties. It consists of a special concrete where the microstructure is optimized by precise gradation of 
all particles in the mix to yield maximum density. It uses extensively the pozzolanic properties of highly 
refined silica fume and optimization of the Portland cement chemistry to produce the highest strength 
hydrates [1]. 

RPC is composed of very fine powders (cement, sand, quartz powder and silica fume), steel fibers 
(optional) and superplasticizer. The superplasticizer, used at its optimal dosage, decreases the water to 
cement ratio (w/c) while improving the workability of the concrete. A very dense matrix is achieved by 
optimizing the granular packing of the dry fine powders. This compactness gives RPC ultra-high strength 
and durability. RPCs have compressive strength ranging from 200 MPa to 800 MPa [2]. 

The following basic principles were highly emphasized by the developers of the RPC [3]: 
- Enhancement of homogeneity by elimination of coarse aggregates; 
- Enhancement of compacted density by optimization of the granular mixture, and application of pressure 

before and during setting; 
- Enhancement of the microstructure by post-set heat-treating; 
- Enhancement of ductility by incorporating small-sized steel fibers; 
- Maintaining mixing and casting procedures as close as possible to existing practice. 

Collepardi et al. [4] stated that this prescribed mixture could not be considered as concrete due to the 
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absence of coarse aggregate. Moreover, the cement factor of the RPC is as high as 900-1000 kg/m3 due 
to the use of very fine sand instead of ordinary aggregate. This unusual cement factor could increase 
drying shrinkage and creep strain of the RPC with respect to ordinary concrete with cement factor usually 
in the range of 300-500 kg/m3. As a results of these claims, Collepardi et al. had modified the original 
RPC mixture to include some coarse aggregate and investigated the properties of the modified RPC 
mixtures in terms of required mixing water, compressive and flexural strength, shrinkage, swelling and 
creep. They concluded that the replacement of the fine ground quartz sand by an equal volume of well 
graded natural aggregate did not change the compressive strength of the RPC at the same water-cement 
ratio and that was in contradiction to Richard and Cheyrezy [3]. 
In the present work the same modification that proposed by Collepardi et al [4] has been adopted to study 
the effect of coarse aggregate inclusion on the performance of RPC when being exposed to kerosene and 
gas oil. In addition to that the high-reactivity Metakaolin was used as supplementary cementitious 
material instead of Silica fume and the butadiene styrene rubber was used as high-range water reducer. 
The investigation was devoted to monitor the strength development, total absorption and permeability of 
RPC. 

 
2. Experimental Work 
2.1 Materials 
The binder in the current RPC mixes consists of 80 percent by weight of ordinary Portland cement (ASTM 
C150- Type I) [5] and 20 percent high reactivity Metakaolin (ASTM C618- Type N) [6]. Table 1 lists the 
chemical and physical properties of both materials. 

Table 1. Chemical and physical properties of used binders. 
No. Property OPC HRM 

1 

 
 

Oxide 
Content, 
%. 

CaO 60.5 0.28 
SiO2 21.4 54.36 
Al2O3 5.98 32.76 
Fe2O3 3.9 1.32 
MgO 1.36 0.18 
SO3 1.82 0.12 

2 LOI 1.80 7.97 
3 IR 1.04 ---- 
4 LSF 0.92 ---- 

5 Specific surface 
(Blaine method), cm2/gm 3650 5741 

6 Soundness, % 
(Autoclave method) 0.25 ---- 

7 
Setting time (vicat's apparatus): 
Initial, hrs: min. 
Final, hrs: min. 

 
 

1:15 
2:45 

---- 

8 
Compressive strength: 
3days, N/mm2 
7days, N/mm2 

 
25 

32.3 
---- 

9 Specific gravity 3.15 3.11 
10 Strength activity index, % 100 164 

 
 

Very fine sand, with maximum size of 0.6 mm, was used as fine aggregate (BS 882:1992 - fine) [7], 
meanwhile natural gravel, with maximum size of 14 mm, was incorporated as coarse aggregate (BS 
882:1992, 5 –14 mm) [7]. Table 2 shows the sieve analysis and some characteristics of the used aggregates. 
Straight steel fibers, with a length of 13 mm and diameter of 0.18 mm, were used to produce RPC. These 
fibers have 1800 MPa tensile strength and 210 GPa modulus of elasticity. 
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Styrene butadiene rubber, SBR, emulsion was employed successfully as high-range water reducer to 
control the workability of the RPC mixes [8]. This latex is typically included in concrete in the form of a 
colloidal suspension polymer in water. 

Table 2. Properties of used aggregate. 

No. Test FA CA BS 882:1992 
Limitations [7] 

1 Sieve 
Analysis 

Sieve 
Size, 
mm 

% Cum. 
Passing FA CA 

14 --- 100 --- 90-100 
9.5 100 85 100 50-85 
4.75 100 10 100 0-10 

2.36 100 2 80-
100 --- 

1.18 100 --- 70-
100 --- 

0.6 100 --- 55-
100 --- 

0.3 45 --- 5-70 --- 
0.15 5 --- 0-15 --- 

2 Sp. Grav., SDD 2.73 2.75 --- --- 
3 SO3 Content, % 0.08 0.05 --- --- 
4 Absorption, % 0.70 0.63 --- --- 

 
The mix proportioning procedure, which was recommended by Richards and Cheyrezy [3], was 

adopted. To achieve 130 MPa compressive strength at 28 days with workability of 150 ± 5 mm, flow table, 
many trials were done. Finally the proportions shown in Table 3 were used for the reference RPC mix, M0.  

Two approaches were adopted to investigate the effect of coarse aggregate inclusion in the mix. The 
first is changing the fine aggregate to total aggregate by weight ratio, FA/A. The following ratios were 
investigated: 100, 52, 25 and 0 percent for mixes M0, M1, M2 and M3 respectively (series I). 

In the second approach the effect of variation in the aggregate to binder by weight ratio, A/B, on the 
behavior of RPC was studied. Only the coarse aggregate content was varied in this part of the study. The 
investigation included four weight ratios: 0.91, 1.11, 1.23 and 1.35 for mixes M0, M4, M5 and M6 
respectively (series II). Table 3 lists the details of the all investigated mixes. 

Table 3. Details of the all investigated mixes. 

Mix 

Binder, 
kg/m3 

Aggregate, 
kg/m3 FA/A 

ratio 
% 

A/B 
ratio 
by 

weight 

Water, 
kg/m3 OPC HRM FA CA 

M0 

920 230 

1050 0 100 

0.91 

212 
M1 550 500 52 212 
M2 260 790 25 203 
M3 0 1050 0 194 
M4 835 210 

1050 
111 90 1.11 201 

M5 790 197 160 87 1.23 198 
M6 750 185 215 83 1.35 203 

 
 
 

A constant volume fraction for steel fibers of 2 % was used for all mixes. The SBR content was kept 
constant also at 14 % by weight of cement. 
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2.2 Curing procedure 
RPC mixes were cured in water at 90 oC for 48 hrs and after that in water at 20oC for 24 hrs and finally 
in air at 20oC till the age of 28 days. After the age of 28 days, tested specimens were grouped in three 
series. The first continued to be cured with water, meanwhile, the second cured with kerosene and the 
third with gas oil until the age of test. Kerosene and gas oil were used to simulate the exposure conditions 
in structures for storage or transportation of oil. Table 4 shows the properties of these products.  

Table 4. Properties of used oil products. 
Property Kerosene Gas oil 
Moisture content, % by 
volume. 0 0 

Sulfur content, % by 
weight. 0.31 0.80 

pH 7.6 6.3 
Specific gravity at: 
25C� 
40C� 

 
0.708 
0.770 

 
0.825 
0.813 

Viscosity (centipoises) at: 
25C� 
40C� 

 
1.092 
0.855 

 
3.960 
2.943 

 
2.3 Testing program 
Table 5 lists the conducted tests, the adopted standards, types and dimensions of tested specimens and 
age of test for the hardened RPC mixes. 

Table 5. Details of tests, adopted standards, specimen’s types and testing age. 

Test Adopted 
standard 

Specimen 
type 

Dimensions, 
mm 

Age of test, 
days 

Compressive 
Strength 

BS EN 
12390-3 

[9]  
Cube 100*100*100 

3, 7, 28, 
30,90 and 

180 
Splitting 
Tensile 
Strength 

ASTM 
C496 
[10] 

Cylinder d=100 
h= 200 

3, 7, 28, 
30,90 and 

180 

Absorption 
ASTM 
C 267 
[11] 

Cube 100*100*100 7, 28, 60, 90 
and180,  

 
The permeability test, a non-standard test, was performed by the oil research and development center/ 

Ministry of Oil. The test was carried out on cylindrical specimens of 38 mm in diameter and 50 mm in 
thickness. The specimens were oven dried for one week, then cooled for 24 hrs and placed in the pressure 
vessel, to accelerate the saturation process. The sample was subjected to a pressure of 3.5 N/mm2 for a 
period of one week under the effect of the oil products after which, the testing sample was inserted in 
the core holder. Compressed air was used to pressurize the specimens to 0.241 N/mm2, equivalent of a 
head of 30.01 m gas oil and 31.01 m kerosene, hydrostatic pressure was maintained for 4 days.  

Darcy's law [12] was used to determine the permeability coefficient from the following equation: 

�
�

�
�
�

�	�
�

�
�
�

�
L
dhK

Adt
dq

o
1

                                      (1) 

Where:  
dq/dt: rate of flow through the sample, cm3/sec.  
A: the cross sectional area of the specimens exposed to the fluid, cm2.  
dh: thickness of the specimen, cm.  
Ko: coefficient of permeability, cm/sec. 
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3. Results and Discussion 
3.1 Strength development 
Irrespective of the exposure conditions, all mixes show a strength gain with aging and that is the result 
of continuous hydration of the high cement factor. Fig.1 displays the compressive strength development 
for all mixes which were cured in water after the age of 30 days. Mixes in series I: M1, M2 and M3, have 
yielded higher strength values than the reference mix M0 for the same age. For series I, the amount of 
fine sand was gradually replaced by natural graded coarse aggregate without changing the cement factor. 
The decrease in the FA/A ratio caused a reduction in the aggregate total surface area and consequently 
a reduction in the water requirements or in other words a decrease in the W/B ratio. Also increasing the 
coarse aggregate content inherited denser concrete mass and better bond. In series II, the graded coarse 
aggregate, had replaced part of the binder, Portland cement and HRM. Mixes M4, M5 and M6 attained 
lower compressive strength values than mix M0 for the same age. The probable cause for this reduction 
in strength is the increase in the W/B ratio or the reduction in the binder content. 
 

 
Fig. 1. Compressive strength development for RPC mixes. 

 

 
Fig. 2. Splitting tensile strength development for RPC mixes. 

 
 

 The effect of graded natural coarse aggregate inclusion on the splitting tensile strength development 
is shown in Fig.2. The mixes in the two investigated series I and II reached lower ultimate strength 
values with respect to the mix M0 for the same age of test. This trend could be attributed to the effect 
of smooth surfaces of used aggregate on the bond strength between aggregate and mortar [ 13, 14] and 
many researchers [14, 15] had stated that tensile strength of high strength concrete is more sensitive to 
microcracking due to coarse aggregate inclusion than compressive strength. 
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In order to magnify the effect of exposure to kerosene and gas oil on the compressive strength 
development of RPC mixes, the value of strength for specimens soaked in oil products were compared 
to those attained by specimens cured in water for the same ages. Figs. 3 and 4 show the development of 
the ratios fcK/fcW and fcG/fcW with curing age. For mixes in series I, Figs. 3a and 4a, curing with kerosene 
and gas oil have positive effect on strength gain till the ages of 120 – 150 days. Afterward, the curing in 
water has overtook and yielded higher values. Such behavior could be attributed to the densification of 
concrete caused by the ingress of oil product which have lower viscosity than water [16, 17]. After the 
assigned period, 120 – 150 days of soaking, the oil products have a slight negative effect in decreasing 
strength. This trend is diagnosed in literature but higher rates were reported [18, 19]. The gas oil showed 
more harmful effect than kerosene and that may be due to its higher sulphate content.      
Figs. 3b and 4b illustrate the development of the ratios fcK/fcW and fcG/fcW with curing age for mixes in 
series II. These mixes were produced with a varying A/B ratio. The degradation in strength was recorded 
in earlier ages than mixes in series I, as early as 60 days. Lowering the binder content could be the cause 
of such a behavior. Firstly, the hydration process will be reduced in rate and value. Secondly, reducing 
the content of finely divided binder, cement and HRM, would decrease the pore refinement physical 
effect in the microstructure of RPC [20]. 

 
Fig. 3a. Comparison of compressive strength development between kerosene and water curing for series I 

mixes. 

 
Fig. 3b. Comparison of compressive strength development between gas oil and water curing for series II 

mixes. 
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Fig. 4a. Comparison of compressive strength development between kerosene and water curing for series I 

mixes. 

 
Fig. 4b. Comparison of compressive strength development between gas oil and water curing for series 

II mixes. 
 

3.2 Total absorption and permeability  
Figs. 5a, b and c show the results of total absorption for tested RPC mixes in water, kerosene and gas 
oil respectively for the assigned ages. Absorption values depend mainly on the viscosity of the 
penetrating fluid and the porosity of the absorbing media. The values of absorption were the highest in 
water and the lowest in gas oil. This descendant order is due to the variation in viscosity of these fluids. 
For all exposure conditions, there was a deceleration in the rate of absorption. The rate was higher for 
the period 7 - 90 days than that of the period 90 – 180 days. This trend could be resulted from the 
continuous hydration of the binder. 

Figs. 6a, b and c display the relationship between the FA/A ratio and total absorption for the studied 
mixes, series I, when they are cured in water, kerosene and gas oil respectively. For the investigated 
ratios, 52, 25 and 0 %, mix 2, with the FA/A = 25%, has the lowest absorption values when the curing 
liquid is water or kerosene. For gas oil, mix 3, with no fine sand, showed the lowest absorption values. 
This behavior could be related to the viscosity of curing liquid. Based on these observations, it could be 
concluded that replacing fine sand with natural graded coarse aggregate could be most useful with FA/A 
= 25% although the strength was not the highest, mix 2. Absorption is a crucial property when dealing 
with oil products storage. 

Furthermore, Figs. 7a, b and c show the relationship between the A/B ratio and total absorption for 
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ratios were 1.11, 1.25 and 1.35 by weight of binder. This approach leads to the increase in total 
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absorption for all mixes and for all ages. Therefore, it is not recommended to make the inclusion of 
coarse aggregate as a replacement of the binder.     

 

 

Fig. 5a. Total absorption of water-cured RPC mixes. 
 

 
Fig. 5b. Total absorption of kerosene-cured RPC mixes. 

 

 
Fig. 5c. Total absorption of gas oil-cured RPC mixes. 
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Fig. 6a. Relationship between absorption and FA/A for water-cured RPC mixes. 

 
Fig. 6b. Relationship between absorption and FA/A for kerosene-cured RPC mixes. 

 
Fig. 6c. Relationship between absorption and FA/A for gas oil-cured RPC mixes. 
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Fig. 7a. Relationship between absorption and A/B for water-cured RPC mixes. 

 

Fig. 7b. Relationship between absorption and A/B for kerosene-cured RPC mixes. 

 
Fig. 7c. Relationship between absorption and A/B for gas oil-cured RPC mixes. 
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4. Conclusions 
The following findings are based on the results of the current work: 
a. The basic principle of eliminating coarse aggregate in RPC to minimize the heterogeneity of the 

mixture could be gone-beyond.  
b. The approach of replacing fine sand partially or totally by natural graded coarse aggregate without 

changing the binder content could be adopted. The most useful FA/A weight ratio is expected to be 
within the range of 0 - 25 %. This range was found to create an optimum situation between strength 
and absorption for kerosene and gas oil exposures. 

c. It is not recommended to include the coarse aggregate in RPC mixtures as a replacement to the 
binder specially when dealing with oil products storage. 

 
Abbreviations 
A/B Aggregate to binder ratio by weight. 
ASTM American society for testing and materials. 
BS British standards. 
CA Coarse aggregate. 
FA/A Fine aggregate to total aggregate ratio by weight. 
fcG Compressive strength of gas oil-cured concrete, MPa. 
fcK Compressive strength of kerosene-cured concrete, MPa. 
fcW Compressive strength of water-cured concrete, MPa. 
HRM High reactivity Metakaolin. 
RPC Reactive powder concrete 
W/B Water to binder ratio by weight. 
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