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Abstract:  With the all transceiver systems the transmission speed is the most critical factor. The main 

objective of this paper is to design a new reference model for the multi-link system that is used to carry 

images in a real-time system, with a high resolution at high transceiver speeds, between two applications 

over physical media.  The new system, called Transceiver System based on Rapid-I/O protocol (TRIO), 

for both transmitter and receiver, based on eight parallel devices was placed at the bottom of the system 

architecture, at both transmitter and receiver. The transceiver system is designed as scalable system in 

which the system data rate increased when multiple lines connected in parallel are used to carry data 

between the transmitter and the receiver instead of using a single line. By transmitting the same packet 

of data, once over a single transceiver system and then over eight transceiver systems, ideally an eight-

fold improvement in bit-rate is expected. The TRIO is implemented on a field programmable gate array 

(FPGA) and a Terasic DE4 board will be used as the main platform for implementing and testing the 

embedded system, while Quartus-II software and tools are used to design and debug the embedded 

hardware system. 

Keywords: Rapid-IO Protocol, High Transceiver Speed, Parallel Transceiver Systems, Embedded 

System, FPGA  

1. Introduction 

To enable different devices such as computers, entertainment electronics and telecommunications 

connecting together and to communicate with each other smoothly and efficiently, a set of rules, 

called communication protocols, must be followed. A computer network is made up of hardware 

components that are responsible for the task of transmitting information from one computer to 

another. In order to organise communication, computers are programmed in a primitive machine 

language which only uses ones and zeros. A computer network is used and controlled through 

computer programming, by creating a complex software system called a network operating system. 

The network computing system needs to handle communication functions and tasks with different 

levels of complexity. These tasks and functions are bundled together in layers, which in turn are 

structured one on the top of the other and are available to the user or an application through a suitable 

interface. Computer networks have developed over the years; the first computer network, for instance, 

focused primarily on hardware and software protocols as a secondary consideration. This strategy, 

however, has changed radically, and today’s software protocols are highly organised (Meinel, 2013). 

Reference model is a term used to describe how a system carries data between two points. The main 
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standard reference models are ISO/OSI and TCP/IP, with the ISO/OSI model mostly being a 

theoretical reference model and the TCP/IP model being a practical development for practical 

application (Meinel, 2013; Severance, 2015; Bonaventure, 2011). The TCP/IP, for example, can be 

used by implement it as an embedded system (Hong, 2011), to carry data over the Ethernet (Zhong-

Zhen, 2006) but cannot operate in real time because it works as a client and a server, with a series of 

requests and responses when carrying data; it is also highly costly with complex undertaking when 

using different protocols to carry data with higher speed (Yong, 2011). The embedded system is 

implemented inside the FPGA either as partially software and partially hardware, or as full hardware. 

The architecture of the system that is implemented as partially software and partially hardware is 

shown in Figure1. The TCP/IP is one of the most commonly used models; this embedded system 

consists of an embedded CPU that controls the hardware system inside the FPGA device and is itself 

controlled by the host PC (Ri-Kun, 2006; Yan, 2010; Hashimoto, 2010). The processor’s data-rate is 

determined by the CPU speed. A data congestion inside the CPU is caused either when processing the 

incoming data inside the FPGA, and the processing takes time higher than the required time to 

generate a new image which causes loss of some of the input images, or when carrying data over the 

network, which is known as a ‘network bottleneck’ (Kim, 2009). The architecture of the second 

embedded system, which is implemented as hardware without a software part and a CPU is shown in 

Figure 2. 

 

Figure 1: The Architecture of the embedded software and hardware systems        

                                                        

Figure 2: The Architecture of the embedded hardware system 
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2. Methodology 

The TRIO (Transceiver system based on Rapid-I/O) is a complete reference model used to connect 

two applications placed at two different sides, a transmitter and a receiver, through a physical 

medium, by providing a full transceiver system that connects between the two points. The TRIO used 

to carry real-time images between two systems, a source and a destination, at high transceiver speeds. 

The TRIO divides the transmitter and receiver systems into three layers, i.e. application, transport and 

physical, as shown in Figure 3. Each layer has its own job to do, and in combination with the others it 

provides a full transceiver system. The name of each layer is given to reflect part of its job, since the 

application layer contacts the actual application at both system sides, the physical layer contacts the 

actual physical media, and the transport layer controls the flow of data between the other layers. 

 

 

Figure 3: The TRIO architecture 

One of the main purposes behind designing the TRIO is to overcome the complexity involved in using 

other reference models, such as TCP/IP, and their required protocols as well as the limitations of 

using a single transceiver system. A second purpose is to increase transceiver speed by using a less 

complex and cheaper parallel Ethernet network. With the TRIO, a parallel network connection is used 

instead of a single network connection, by connecting a multiple single transceiver system in parallel 

at the physical layer, for both the transmitter and the receiver, which ensures a higher system speed 

based on the number of devices connected in parallel (Mohammed, 2017). 

2.1 Application Layer 

The application layer is the top layer of the TRIO which provides the system with the ability to access 

an application device in order to exchange data. The TRIO has a full architecture for the transmitter 

and receiver sides, and different processors are applied to the data.                                                                                                        

On the transmitter side, as shown in Figure 4, the application layer consists of several sub-layers, 

some of which are physical devices, such as the source of data (camera) with an external memory 

device, and others are implemented as an embedded system inside the FPGA device. The camera 

generates real-time data which are stored temporarily inside the external memory and which then 

interface with the embedded system inside the device. The embedded system part of the application 

layer consists of three sub-layers (see Figure 4) which carry the data before the embedded system 

interfaces with the memory in order to read the data and process it accordingly. The first sub-layer 

provides a connection between the external part of the application layer and the rest of the system, the 

second sub-layer controls reading data from the memory controller, the third sub-layer divides long 

packets read from the device into multiple sub-packet. 
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Figure 4: A schematic diagram for the TRIO application layer on the transmitter side 

However, on the receiver side, as shown in Figure 5, the application layer is placed at the final stage 

of the system and consists of several sub-layers, some of which are physical devices such as the 

destination device with the external memory device, while the others are implemented as an 

embedded hardware system. The external memory device interfaces with the embedded system inside 

the device and is used to store the data received in order to forward them to a destination application 

such as the Vision System. The embedded system part of the receiver application layer consists of 

several sub-layers. The first sublayer combines sub-packets of data in order to generate a full packet 

of the original width. The second sublayer is responsible for controlling writing data into the final 

sub-layer (the memory controller), which provides a connection with the external memory device and 

is used to monitor data flowing between the embedded system and the memory device. 

 

 

Figure 5: A schematic diagram for the TRIO application layer on the receiver side 
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2.2 Transport Layer 

The transport layer is implemented at both the transmitter and the receiver sides, between the 

application layer and the physical layer. The main objective of this layer is to synchronise data flow. 

The transport layer has two interface ports, one connected to the application layer and the other one 

connected to the physical layer. On the transmitter side, the transport layer carries data from the 

application layer to the physical layer. However, on the receiver side, this layer carries data between 

the physical layer and the application layer by changing the format of data taken from the physical 

layer into a suitable format for sending to the application layer. The operations applied to data at the 

receiver side are exactly the opposite of those applied to the same layer on the transmitter side.  

Each interface port consists of multiple cores that are used to connect one sub-model from the 

application layer with a single transceiver system at the physical layer that supports 3.125 Gbps as a 

maximum transceiver speed. These cores are called ‘data controllers’ (see Figures 6 and 7) and are 

implemented as an embedded system and connected in parallel at each side. All the data controller 

cores are triggered with the same clock in order to synchronise data movement. 

 

Figure 6: The transport layer architecture for a 3.125 Gbps single device on the transmitter side 

 

Figure 7: The transport layer architecture for a 3.125 Gbps single device on the receiver side 

2.3 Physical Layer 

The physical layer is one of the most important parts of the TRIO system. Its name defines its real 

purpose, which is based mainly on connecting one or two applications in different systems through 

physical media, in order to exchange data. The physical layer has two interface ports, one of which is 

connected with the rest of the embedded system inside the FPGA while the other one exports outside 

the FPGA in order to connect to the transceiver ports and devices. The physical layer consists of two 

sub-layers, both of which are implemented as an embedded system, and the bottom sub-layer 

interfaces the physical medium. 

Data transmission over parallel nodes is important, especially for those systems requiring high data 

transmission rates. Many transmission protocols are designed based on parallel methods such as the 

Rapid-I/O. In TRIO systems, the Serial-Rapid-I/O (Xiao-yun, 2010; Fengfeng, 2010; Xiangyang, 

2013) is already based on the internal parallel structure and are modified to be used with the external 

parallel structure.  
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The Rapid-I/O as a Transceiver Protocol: 

The Rapid- I/O standard is a new standard that provides high-speed and low-latency interconnection 

technology, and it is commonly used in many industrial applications. It is designed as a high-speed 

packet switch with full duplex architecture employed to connect chip-to-chip and board-to-board 

(Adams, 2001; Sukhtankar, 2004). It is a switched fabric specifically designed for developers and 

researchers by the leader in the field of embedded computing. It can be used with different types of 

application, such as wireless infrastructure, military, scientific, storage, edge networking and 

industrial equipment. Moreover, the Rapid-I/O is the best choice for high performance embedded 

systems, due to its reliability, flexibility, high performance and cost effectiveness (Changrui, 2010). 

Rapid-I/O technology is based on the hierarchical layered protocol, which is currently viewed as the 

most effective way to build an embedded system, as it allows for long-term flexibility in sub-system 

upgrades. The ISO/OSI model is the most well-known example of a hierarchical layered protocol. 

Moreover, the Rapid- I/O standard consists of three main layers: the logical layer, the transport layer 

and the physical layer (Shippen, 2007).  

For the TRIO, the Rapid-I/O is an embedded transceiver protocol. For transmitting data, it converts 

low-speed parallel data into high-speed serial data, and for receiving data it converts high-speed serial 

data into low-speed parallel data. The TRIO’s physical layer consists of multiple single transceiver 

systems connected in parallel, and each transceiver system is divided into two sublayers. For the 

transmitter side, we have a frame generator (FG) with a transmitter device, while the receiver side has 

a frame checker (FC) and a receiver device. Both the frame generator and the frame checker cores are 

created as a customise IP-blocks for this system while the transmitter and the receiver devices used 

are provided by Altera in Quartus-II library. The transmission and receipt devices consist of the PCS 

(Physical Coding Sublayer) and the PMA (Physical Medium Attachment) cores. A frame generator 

and frame checker are implemented as embedded systems inside the device in order to interface the 

transport layer at one side and the PCS core at the other side, through the data and control buses. The 

PCS core consists of a 16/20 encoder on the transmitter side and a 20/16 decoder on the receiver side, 

while the PMA works on the transmitter side as a serialiser (SER) and on the receiver side as a de-

serialiser (DES).  

2.3.1 The Frame Generator (FG) 

This is the first sublayer in the transceiver system on the transmitter side. It connects between the 

transmitter device and one part of the transport layer. The FG has two interface ports, one with the 

transport layer over a 16-bit data-bus, while the other is with the PCS core on the transmitter side with 

two buses, the control bus and the data bus. The data bus, with a 16-bit signal, carries data to the PCS, 

while the 2-bit control bus is used to inform the PCS of the type of the incoming data. If they are 

equal to 0, the information being carried over the data-bus is either a length or a payload-data; 

however, if the value of the control signal is 1, the information carried over the data bus is control 

data. Besides connecting two layers, the other main purpose of the FG is to generate the data in a 

format acceptable to the next core, i.e. the PCS core, by adding a header file to the original data 

packet (see Figure 8). The process inside this core involves reading data from one part of the transport 

layer equal to 16-bit widths and various lengths (between 46 bytes and 1024 bytes), then adding a 

header file to each data packet. The header is used to align the PCS core with the coming data and it is 

assigned to 0xBCBC for at least three clock cycles. The next two bytes are used to specify the length 

of the packets in bytes, and the value of the length varies according to the length of the coming 
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packet, which is assigned by the previous core. For the transceiver systems, the length is fixed to 

0x400 bytes (1024 bytes).  

 

Figure 8: The Rapid-IO header file 

2.3.2 The Physical Coding Sublayer (PCS) 

The PCS core is the first sublayer in the transceiver system and is implemented inside the system as a 

part of the physical layer. It works as an encoder on the transmitter side and as a decoder on the 

receiver side. The PCS core has two interface ports, as shown in Fig. 9 a and b, one with the FG/FC 

via the data and control bus, while the other is with the PMA core. The data and control buses are 

used to define the type of incoming data, which is required to encode and decode them accordingly. 

The 16/20 encoder and the 20/16 decoder are used with this protocol, and each PCS is connected 

directly to one FG on the transmitter side and one FC on the receiver side. The full TRIO consists of 

eight PCS cores connected in parallel on the transmitter side, and eight PCS connected in parallel on 

the receiver side. The data carried between the PCS and the PMA are low-speed parallel data 20 bit in 

width. The clock that is used to clock the whole embedded system with the PCS, the system side at 

the PMA is a low-speed 156.25MHz clock, and all the systems’ parts are connected to the same clock 

in order to synchronise the process (Corporation, 2014). 

 

(a) 

 

(b) 

Figure 9: The Rapid-I/O transceiver system at: (a) the transmitter side (b) the receiver side 
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2.3.3 The Physical Medium Attachment (PMA) 

For the Rapid-I/O transceiver protocol, the PMA is the final stage in the physical layer, and it 

connects the embedded system with the physical medium on both the transmitter and the receiver 

sides. The PMA core is based on the SerDes (Serialise Deserialise) process. For transmissions, the 

PMA works as an SER by converting low-speed parallel data into high-speed serial data, in order to 

send them out to the physical medium. On the receiver side, the PMA works as a DES by converting 

high-speed serial data received from the physical medium into low speed parallel data in order to 

forward them to the PCS core. The PMA core has two input clocks, one of which is a low-speed clock 

on the system side with a value of 156.25MHz, while the other one resides on the medium side with a 

value of 3.125GHz. Based on these two clocks, the system will serialise and de-serialise the data. Two 

modes are available to use with the Rapid-I/O protocol, a single-data rate (SDR) and a double-data 

rate (DDR). The maximum speed supported with SDR is 3.125 Gbps, while with the DDR it is 6.25 

Gbps.  

For a full TRIO architecture, the physical layer consists of eight single transceiver systems connected 

in parallel. These transceiver systems can work as transmitter systems or as receiver systems, or as 

both. The maximum theoretical data rate supported by runs up to 25 Gbps if the TRIO acts either as a 

transmitter or as a receiver system connected to each other, while if the TRIO acts as a full transceiver 

system which is connected to another full transceiver system, the maximum theoretical data rate can 

be up to 50 Gbps. The input/output of the TRIO is exported to outside of the FPGA and connected to 

other systems on the opposite side as a device-to-device network topology. The ports used to carry the 

signal to and from the system are PCML I/O ports, which are available with many transceiver devices 

such as the PCI-Express and the HSMC interface boards (Corporation, 2005, 2009, 2014). 

3. Implementation 

System implementation is based on software and hardware. Software in this regard relates to systems 

cores that are created using Quartus-II software and the Qsys builder to design the IP cores, and then 

implemented inside the FPGA as an embedded hardware system, while the hardware implementation 

means the necessary physical elements, such as a board, an FPGA device and transceiver ports. The 

Qsys builder is a newer version of the SOPC builder that provides high design performance, reliability 

and faster verification. It is used to generate a fully embedded system based on IP blocks inside the 

Qsys and connecting them internally based on the NoC, which can significantly save effort and time 

for the FPGA as well as provide high reliability in relation to interconnections along with higher 

operating frequencies (Corporation, 2011). 

The system was tested based on two different data sources; the first source was data read from fixed 

memory (internal or external), while the second one was data read from a real-time data generator. 

The memory was used as a test case for off-line systems when data are stored in the temporary 

location in order to apply further processes later, while the real-time generator was used as a test case 

for a system applying real-time images/data and requiring an immediate process. 

Transceiver System for the Rapid-I/O Transceiver Protocol: 

The physical layer includes eight subsystems connected in parallel. Each sub-system consists of a 

Frame Generator (FG) with a transmitter device on the transmitting side and a Frame Checker (FC) 
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with a receiver device on the receiving side. The FG and the FC cores both were implemented as a 

custom IP cores by writing Verilog-HDL codes for their internal processes and then converting them 

to IP blocks. 

The FG, as shown in Figure 10, was implemented as an IP block with two interface ports: one was the 

Avalon-ST sink connected internally inside the Qsys builder with an individual part of the transport 

layer, and the other port was and Avalon-ST source that was exported to outside the Qsys builder on 

the top level and connected with the transmitter device through data and control signals. The internal 

processes for this core is read data from the transport layer, added a header file to each packet of data, 

and then forwarded the data with their relevant control signals to the transmitter device. 

The FC, shown in Figure 11, was implemented as an IP block with two interface ports: the first one 

was the Avalon-ST source that connected the FC inside the Qsys builder with an individual part of the 

transport layer, while the other one was the Avalon-ST sink that consisted of data and control buses 

which were exported from the Qsys builder to the system’s top level and connected with the receiver 

device. The internal processes inside this core received information over the data bus with a control 

signal from the receiver device. The control signal defined the type of information carried over the 

data bus: if the control bus was equal to 0, the received information was original data; otherwise, it 

was control-data, following which the process removed all header files and control messages from the 

incoming data and generated the original packet of data in order to forward them on to the next core 

on the transport layer. Both Avalon-ST source for the FG core and Avalon-ST sink for the FC core 

had a data bus 16 bits in width and a control bus 2 bits in width. Each bit from the control bus related 

to 8 bits from the data bus. 

 

Figure 10: The Frame Generator IP core for the Rapid-I/O transceiver protocol 
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Figure 11: The Frame Checker IP core for the Rapid-I/O transceiver protocol 

 

4. Test of the Proposed System 

The system has been tested by programming the FPGA device with the embedded system and then 

configuring and debugging the FPGA device with the signal-tap analyser using a JTAG cable. Inside 

all systems an embedded counter was implemented and used to calculate the number of cycles for 

each system between reading the first byte from the source and writing the last byte to the destination 

memory. The final value of the counter was displayed by the signal-tap analyser. The counter was 

triggered by the same clock used to trigger the system, for the transceiver system based on the Rapid-

I/O protocol the clock-value was either 156.25MHZ, 195.3125MHz or 312.5MHz. 

Terasic’s DE4 board, as shown in Figure 12, consists of many components that are used to support 

several applications, and it was used herein as a main testing board for the transceiver system, namely 

the FPGA device (used as a main component on the board) with data sources including the external 

memory, the on-chip memory, and the built-in generator (Terasic, 2003-2015). 

The transceiver system was tested by exporting the transmitter and receiver signals to bank 1 on the 

HSMC board (High Speed Mezzanine Card). HSMC’s bank 1 consisted of eight ports assigned with a 

PCML voltage, with each port supporting up to 6.5 Gbps, meaning that bank 1 is suitable for different 

transceiver protocols with different speeds (Corporation, 2009). Both systems were tested in two 

ways. For the full transceiver system, this was achieved by connecting two transceiver systems 

together, exporting each one to a separate HSMC board, either on the same board as Figure 12 shows, 

or a separate testing board such as two DE4-boards, using an SMA Cable with an XTS board. 
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Figure 12: The HSMC’s TXs and RXs connecting together through SMA cables and an XTS board 

on the DE4 board (Mohammed, 2017) 

5. Experimental Results 

The transceiver system was tested by carrying data between two sides over the physical medium, once 

over the parallel lanes and once over a single lane with two test cases based on different types of 

source data: a fixed memory and a real-time generator. 

Three factors were used to compare the single and parallel systems in both test cases. First, we 

compared values read from the source with the value written to the destination, using a signal-tap 

analyser by comparing the signals of P1, that shown in Figures (13-14), with those of P2 and all the 

signals of P3 with all those of P4, in order to check whether the read data were received and written in 

the correct order and format. Secondly, we measured the processing time for the system using 

counter-2, i.e. the number of cycles required to complete the full process, starting from reading the 

first byte from the source to writing the last byte into the destination. This value was found by using 

the embedded counter inserted into all the systems, and its value was displayed with the signal-tap 

analyser under P5 in order to count the processing time for each system. 

 

 

Figure 13: A schematic diagram of a basic test for a parallel transceiver system 



Eurasian Journal of Science & Engineering                                                                            

ISSN 2414-5629 (Print), ISSN 2414-5602 (Online) 
 EAJSE

 

Volume 4, Issue 2; December, 2018 

 

50 

 

Figure 14: A schematic diagram of a basic test for a single transceiver system 

The practical data rate was determined in the actual system by calculating the total required time 

starting with reading the first byte from the memory at the transmitter side and ending with writing 

the last byte from the packet into the memory at the receiver side, which could determine the delay in 

the system between reading and writing the data, then converting this time into a data rate using 

equation (1). The time was calculated on the basis of the value provided by counter-2 and the value of 

input frequency resulting from equation (2).   

                     
                         (   )

                (   )
                                                            ( ) 

                  
              (       )

                      (  )
                                                                        ( ) 

However, the pixel-rate means the amount of pixels that can be carried at the transmitter side during 

one second in time. With transceiver systems, the image is carried with its original size, so beside the 

size of the input image the pixel data-rate will depend on the execution time as shown in equation (3). 

The size of the input image is fixed at 256x256-pixels, while the execution time is varied according to 

the time required to read and transmit the full packet. The time required to read data is fixed for both 

the single and the parallel transceiver systems, while the transmission-time is varied according to the 

number of the lanes used to carry data and the value of the input frequency, which depends on the 

transceiver protocol. The time was calculated on the basis of the value provided by counter-1 and the 

value of input frequency. 

           (         )   
                          (     )

               (   )
                                                        ( )   

The maximum size of a packet carried through each system cycle was 256x1024 bits. The Rapid-I/O 

devices were tested with different clock values: 156.25 MHz, 195.3125 MHz and 312.5 MHz. With 

this system and the available FPGA device (i.e. the Stratix-IV GX), the maximum value that could be 

run without losing some of the signals was 312.5MHz. In the first test case, when the data were 

provided by a fixed memory, the system took 4600h clock cycles to carry 256 Kbits through a single 

lane, the time taken varies according to the value of the input frequency used to trigger the system. In 

this instance, the system tool was 0.114ms at 156.25MHz, 0.0917ms at 195.3125MHz and 0.0573ms 
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at 312.5MHz. However, the system requires A00h to carry the same packet of data through eight 

parallel lanes, and the time taken varies according to the input frequency used to trigger the system, 

which is equal to 0.0163ms at 156.25MHz, 0.013ms at 195.3125MHz and 0.008192ms at 312.5MHz. 

Theoretically, however, the time required to carry 256 Kbits through a single lane is 0.104ms, 

0.083ms and 0.0524ms at 156.25MHz, 195.3125MHz and 312.5MHz, respectively. Through eight 

parallel lanes, the time required is 0.013ms, 0.0104ms and 0.0065ms at 156.25MHz, 195.3125MHz 

and 312.5MHz, respectively. The difference between the theoretical and the measured values was due 

to the delay inside the system, because the theoretical values were determined when the system 

showed no delay whatsoever, which was the ideal case. 

The maximum measured data rate provided by a single transceiver system was 2.29Gbps, 2.699Gbps 

and 4.574Gbps at 156.25MHz, 195.3125MHz and 312.5MHz, respectively, while the maximum 

practical data rate provided by a single transceiver system was 16.08Gbps, 20.16Gbps and 32Gbps at 

156.25MHz, 195.3125MHz and 312.5MHz respectively. The data rate to carry data over parallel lanes 

is 6.99 times faster than carrying them over a single lane, which is the main benefit of using parallel 

lanes instead of a single lane. When using the Rapid-I/O protocol, three different frequencies can be 

used which allow increasing the data rate and reducing the system execution time, which adds another 

benefit when using this protocol type. With a transceiver system, the data are supposed to be received 

by the receiver application in the same order and format. 

The pixel-rate depends on two factors: the execution time, which varies according to the value of the 

input frequency and the size of the input image which is equal to 65536 pixels (256x256-pixels). With 

Rapid-I/O as a transceiver protocol, three frequency values are used to trigger the system, since there 

are three pixel-rates: 0.138 Gpixel/sec, 0.1735 Gpixel/sec and 0.278 Gpixel/sec at 156.25MHz, 

195.3125MHz and 312.5MHz, respectively. 

6. Conclusion 

In conclusion, the TRIO was designed and implemented as a new reference model for the multi-link 

system that was used to carry images in a real-time system with a high resolution at high transceiver 

speeds between two applications over physical media. The theoretical study and the experimental 

results yielded conclusion regarding the approaches implemented by the system with the available 

technologies based on supporting devices and different transceiver speeds. The transceiver systems 

were designed as scalable systems in which the system data rate increased when multiple lines 

connected in parallel are used to carry data between the transmitter and the receiver instead of using a 

single line. The transceiver system was tested by transmitting the same packet of data, once over a 

single transceiver system and then over eight transceiver systems, ideally an eight-fold improvement 

in bit-rate is expected. In practice, we found that the result was 32 Gbps. When carrying the same 

packet of data through a single line, the transceiver data rate was 4.574Gbps. The speed in the parallel 

system was 6.99 times as high. The pixel rates were 0.138Gpixel/s, 0.1735Gpixel/s and 0.278Gpixel/s 

at the Rapid-I/O protocol when the input frequencies were 156.25MHz, 195.3125MHz and 312.5MHz 

respectively. 
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