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Sistema de navegación monocular
para robots móviles

en ambientes interiores/exteriores

Uno de los desaf́ıos actuales de la robótica móvil es alcanzar el mayor
grado de autonomı́a, es decir, lograr que un robot desarrolle sus tareas sin la
necesidad de un operador humano. El objetivo principal de este trabajo es el
desarrollo de un nuevo sistema de navegación autónomo basado en visión para
robot móviles en entornos interiores/exteriores. El sistema propuesto utiliza
sólo una cámara y sensores de odometŕıa, no depende de ningún sistema de
localización externo o infraestructura similar. Además, es capaz de tratar con
variaciones en el ambiente (por ejemplo, cambios de iluminación o estaciones
del año) y satisface las restricciones para guiar al robot en tiempo real.

Para alcanzar el objetivo de este trabajo, se propone un enfoque h́ıbrido
que hace uso de dos técnicas de navegación visual: una basada en segmentación
de imágenes y otra basada en marcas visuales. Para representar el ambiente
se construye un mapa topológico que puede ser interpretado como un grafo,
donde las aristas corresponden a caminos navegables y los nodos a espacios
abiertos. Para recorrer los caminos (aristas) se desarrolló un método original
basado en segmentación y para navegar por los espacios abiertos (nodos) se
realizó una mejora y adaptación de un método basado en marcas visuales. Se
evaluaron diversos algoritmos de extracción de caracteŕısticas distintivas de
las imágenes para determinar cuál representa la mejor solución para el caso
de la navegación basada en marcas visuales, en términos de performance y
repetibilidad.

El sistema desarrollado es robusto y no requiere de la calibración de los
sensores. La convergencia del método de navegación se ha demostrado tanto
desde el punto de vista teórico como práctico. Su complejidad computacional
es independiente del tamaño del entorno. Para validar el método realizamos
experiencias tanto con sets de datos como con el robot móvil ExaBot, que se
presenta como parte de este trabajo. Los resultados obtenidos demuestran la
viabilidad del enfoque h́ıbrido para abordar el problema de la navegación basa
en visión en entornos complejos interiores/exteriores.

Palabras clave: robots móviles, navegación autónoma basada en visión, seg-
mentación de imágenes, caracteŕısticas de imágenes.



Vision-based mobile robot system
for monocular navigation

in indoor/outdoor environments

One of the current challenges of mobile robotics is to achieve complete
autonomy, i.e. to develop a robot that can carry out its tasks without the
need of a human operator. The main goal of this work is to develop a new
vision-based mobile robot system for autonomous navigation in indoor/out-
door environments. The proposed system uses only a camera and odometry
sensors, it does not rely on any external localization system or other similar
infrastructure. Moreover, it can deal with real environmental changing condi-
tions (illumination, seasons) and satisfies motion control constraints to guide
the robot in real time.

To achieve the goal of this work, a hybrid method is proposed that uses both
segmentation-based and landmark-base navigation techniques. To represent
the environment, a topological map is built. This map can be interpreted
as a graph, where the edges represent navigable paths and the nodes open
areas. A novel segmentation-based navigation method is presented to follow
paths (edges) and a modified landmark-based navigation method is used to
traverse open areas (nodes). A variety of image features extraction algorithms
were evaluated to conclude which one is the best solution for landmark-based
navigation in terms of performance and repeatability.

The developed system is robust and does not require sensor calibration.
The convergence of the navigation method was proved from theoretical and
practical viewpoints. Its computational complexity is independent of the envi-
ronment size. To validate the method we perform experiments both with data
sets and with the mobile robot ExaBot, which is presented as part of this work.
The results demonstrate the feasibility of the hybrid approach to address the
problem of vision based navigation in indoor/outdoor environments.

Keywords: mobile robots, autonomous vision-based navigation, image seg-
mentation, image features.
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Chapter 1

Introduction

This Chapter gives a perspective of the presented work related to the field of
robotics. It starts with the history of robots, then presents some of today’s
applications and finally puts forward the aim and structure of this Thesis.

1.1 Looking backward at the Robot

The dream of creating an artificial creature has been part of humanity through
centuries. It is possible to find it in the Jewish folklore in the form of a Golem,
an anthropomorphic being, created from inanimate material. One of the goals
in Alchemy was to create a Homunculus, a word introduced in medieval writing
derived from Latin (diminutive of homo) which means little man. During the
Islamic Empire, the arabic word Takwin refers to the artificial creation of life
in the laboratory. From medieval stories through Mary Shelley’s gothic novel
Frankenstein, the subject is the same: a mad scientist works obsessively to
create an artificial being, trying to be God, ignoring the dark forebodings and
danger of the consequences of his research.

However, the word Robot did not appear until the beginning of the XX
century and it is no coincidence that this happened when the Industrial Revo-
lution had already spread across Europe. It was in 1921, during the presenta-
tion of the play R.U.R (Rossum’s Universal Robots) in the National Theater
of Prague. The word, suggested to Karel Čapek by his brother Josef, is a neol-
ogism made from the old Czech word of Slavonic origin Robota, which means
compulsory labor, drudgery, or hard work. The meaning of the word robot
is broader than the originally intended interpretation as Labors (Labori), by
Karel Čapek. While labor are men reduced to work, Robot etymologically
refers to an orphan. That is why the word Robot better resonates with the
notion of an artificial man, one which was not naturally born. Josef and Karel
Čapek coined the word robot for the first time in the play R.U.R. The play
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conceives a future time in which all workers will be automated. Their ultimate
revolt, that happens when they acquire souls, and the ensuing catastrophe re-
sult in an exciting and vivid theatrical experience. The play gained immediate
popularity and was staged all around the world, and thus the word Robot was
made known everywhere [1].

Figure 1.1: Man-shaped robot representation which appeared in an adaption
of R.U.R. (Rossum’s Universal Robots) play in 1930.

Looking back at the beginning of the 20th century we can see, that the
robot became a popular figure working in service of the modern myth of tech-
nological progress. Robots colonized pages of science-fiction novels and short
stories very soon. The most influential neologism derived from the word robot
is Robotics, coined by Issac Asimov. He used this word, as well as the well
known Three Laws of Robotics, for the first time in his short story Runaround,
published in pulp magazine Astounding Science Fiction in 1942 [2]. The au-
thor, who calls himself “father of the modern robot stories” inspired many
scientists and engineers working in robotics laboratories in their effort to con-
struct a humanoid robot.

The next step, which is of more interest for this Thesis, comes at the end
of the 1960’s when the first general-purpose mobile robots controlled primarily
by programs which reasoned were built. The robot Shakey, developed at the
Artificial Intelligence Center of Stanford Research Institute (now called SRI
International), was the first one. Between 1966 and 1972 the Shakey project
faced basic problems of mobile robotics such as object recognition, obstacle
avoidance, world model building in structured (very simple) environments and
symbolic planning by using video processing [3]. Fantasies and dreams started

2



Figure 1.2: The neologism Robotics and the original Three Laws of Robotics
were coined by Isaac Asimov in his 1942 short story Runaround. Eventually it
became only one of several similar stories published under the common name
I, Robot, first published by Gnome Press in 1950.

to be envisioned by scientists. The success of artificial intelligence research
in the 1960s and 1970s had inspired expectations in the domain of mobile
robotics. After some years of research it was clear that it was comparatively
easy to make computers to exhibit adult-level performance in solving some
problems on intelligence tests, but it was awfully difficult to endow them with
the skills of a one-year-old child when it comes to perception and mobility.

Hans Moravec, one of the pioneers of mobile robotics in the 1970’s, was
exactly of this opinion when he wrote his book: Mind Children, The Future
of Robot and Human Intelligence in 1988 [4]. However, even by knowing this,
he expected human-like performance in mobile robotics by the end of the
last millennium. Now, a few years of the new millennium have passed and
we know that Moravec made a mistake because there is a lot of work to
be done before achieving this goal. But we have made progress: nowadays
robots are starting to move from prototypes in the laboratories into a reality
in factories, agricultural fields, households, streets, schools and even in other
planets. Scientists and engineers working in robotics still have the ambition
to fulfill the ancient dream: to build an artificial or mechanical creature: a
Robot.

3



Figure 1.3: Shakey was the first general-purpose mobile robot to be able to
reason about its own actions. It was developed at the Artificial Intelligence
Center of Stanford Research Institute (now called SRI International) between
1966 and 1972.

1.2 Applications of Mobile Robots

Mobile robotics has become one of the most interesting areas in field of robotics.
The development of new mobile robot prototypes has made significant progress
in recent decades, which has allowed their use in different environments, for a
variety of purposes.

In factories, mobile robots are used for material handling. Given the large
flow of materials in industrial production lines, Automated Guided Vehicles
(AGVs) are helpful components. The main task of AGVs in industrial environ-
ments is usually to transport materials from one workbench to another, which
is a tedious and sometimes dangerous task for human operators. The AGV’s
autonomy is based on a set of automatic processes, such as perception, path
planning and path tracking, that the industrial vehicle must perform to ac-
complish the handling task. On their way they have to avoid obstacles and at
the final docking point they have to approach it with high accuracy. Industrial
production environments are usually structured and well known. Thus, maps
exhibiting walls, doors, rails on the floor, machines and other characteristic
fixed landmarks can be used for navigation [5, 6, 7].

In agriculture, mobile robots can be used to reduce the environmental
pollution caused by excessive employment of herbicides. A potential way to
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reduce chemicals is to apply other methods, e.g. mechanical weed control be-
tween plants in the seed line. This task can be carried out by vision-based
mobile robot systems [8]. Another example is the case of autonomous trac-
tors, developed to help in row crop husbandry for precision guidance of an
agricultural cultivator or forage harvester [9]. For large fields, cooperation of
multiple autonomous and human-operated tractors has been demonstrated,
for example, in peat moss harvesting operations. The behavior and actions of
these autonomous tractors were designed to mimic manual harvest operations
while maintaining a safe operating environment [10].

(a) Hortibot (b) Modified OMG 808-FS

Figure 1.4: Mobile robots in factories and agriculture: (a) Hortibot is a pro-
totype agricultural robot that uses autonomous navigation, cameras and a
variety of tools for weed control. (b) Modified OMG 808-FS commercial fork-
lift truck in an industrial warehouse.

Mobile robots have been used for exploration as well. Perhaps the most
famous mobile robots are those used for space exploration. Nowadays, using
mobile robots is the only viable option for exploring distant planets. These
robots are able to explore large areas, can handle the extreme conditions of
outer space, carry out scientific experiments on-board and, unlike human as-
tronauts, they do not need to be returned to Earth. The first mobile robot
which landed and explored a celestial body was the soviet Lunokhod 1, in
1970. It was a rover that carried several videocameras used for its navigation
on the Moon surface. However, the Lunokhod was teleoperated from Earth
and it was not designed for autonomous operation. The first autonomous mo-
bile robot that explored another planet was the Prop-M rover, which landed
on Mars in 1971 as a part of Mars 3, an unmanned space probe of the Soviet
Mars program. It looked like a small box with a small ledge in the middle. The
devices were supposed to move over the surface using two skis. Two thin bars
at the front were the sensors to detect obstacles. The rover could determine by
itself on which side was the obstacle to retreat from it and try to get around.
Autonomy is necessary for the Mars mobile devices, since a signal from Earth
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to Mars takes between 4 and 20 minutes, which is too long for a mobile robot
control. Twenty five years later, the USA managed to place its first rover on
Mars. It was Sojourner from NASA, which landed in 1997 [11]. The Sojourner
vehicle was partially autonomous, the computationally demanding tasks were
performed at the Earth control center, where human operators used a 3D en-
vironment model recovered from the rover stereo cameras to set up a series
of waypoints. After that, the rover moved between these waypoints with a
simple reactive behaviour using structured light to detect obstacles. A new
rover Curiosity is exploring Mars at the time this Thesis is being written [12].

However, outer space is not the only place where mobile robotics can be
applied for autonomous exploration. Oceanographic and undersea exploration
can be performed by autonomous underwater vehicles (AUV’s). Equipped with
the necessary sensor technology, these robots are able to inspect port waters
or venture down to the ocean floor in search for natural resource deposits [13].
Unmanned Aerial Vehicles (UAV’s), commonly known as drones, are aerial
robots that can also be used for exploring hostile or dangerous environments
for human beings, for example after a natural disaster like an earthquake [14],
or after a nuclear and radiation accident [15]. Moreover, UAV’s can be used
for surveillance, for example in National Parks to overfly large-scale area and
prevent the hunt of endangered species or quickly detect forest fires [16].

Roads and urban streets are another environment where the autonomous
mobile robots have been tested. This is the case of the ‘intelligent’ cars. The
Defense Advanced Research Projects Agency (DARPA) Grand Challenge is
a prize competition originated on the United States, for the goal of achiev-
ing driverless vehicles [17]. The initial DARPA Grand Challenge was created
to spur the development of technologies needed to achieve the first fully au-
tonomous ground vehicles capable of completing a substantial off-road course
within a limited time. Although unsuccessful in the first years, in 2005, a team
led by a known mobile robotics researcher, Dr. Sebastian Thrun, created the
robotic vehicle known as Stanley at Stanford University, which completed the
course and won the DARPA Grand Challenge [18]. The third competition
of the DARPA, known as the Urban Challenge, extended the initial chal-
lenge to autonomous operation in a mock urban environment. This time,
the autonomous cars had to move in an urban environment with simulated
road traffic including pedestrians [19]. Following his successes, the Google
company hired Thrun and started their own autonomous car project. In Au-
gust 2012, the Google team announced that they had completed over 300,000
autonomous-driving miles, accident-free. Three USA states (Nevada, Florida
and California) have passed laws permitting driverless cars on September
2012. Some ideas of Thrun’s autonomous car are analyzed and implemented
in this Thesis.

As the prices of sensors, computational hardware and electronic compo-
nents decrease, new horizons for mobile robots in the domestic sphere have
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(a) Mars Rover Curiosity (b) Stanley autonomous vehicle

(c) Aqua2 under water robot (d) Parrot AR.Drone

Figure 1.5: Mobile robots in the air, under water, on the road and on Mars: (a)
Curiosity developed by NASA is now exploring Mars surface, (b) Stanley was
an autonomous vehicle that was able to navigate 300 km through desert terrain
in less than 10 hours, (c) Aqua2 is a under water robot used for projects ranging
from reef monitoring to aquaculture inspection. (d) The Parrot AR.Drone is a
flying quadrotor helicopter commonly used for testing autonomous navigations
in UAVs.

opened up. Many household maintenance chores do not require high cognitive
capabilities and can be performed with reactive algorithms. Brook’s subsump-
tion architecture [20] gave a new reactive paradigm to control robots using a
behavior-based approach. In this way, small mobile robots, albeit with lim-
ited sensory and computational power, are able to perform simple tasks with
satisfactory efficiency. The most notorious examples are the Roomba floor
cleaning robots [21] and the RoboMow robotic lawn mower [22]. These robots
are equipped with cheap infrared sensors, magnetic sensors and touch sensors,
which allow to avoid obstacles and to search for a charging station. Other
mobile robots have appeared at homes as pets. This is the case of AIBO
(Artificial Intelligence roBOt), an iconic series of dog-like robotic pets de-
signed and manufactured by Sony between 1999 and 2006 [23]. In recent years
Genibo, produced by Dasarobot took the place of his predecessor [24].

Educational robotics proposes the use of mobile robots as a teaching re-
source that enables inexperienced students to approach topics in fields related
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and unrelated to robotics. One of its aims is to aid school students in build-
ing their own representations and concepts of science and technology through
the construction, handling and control of robotic environments. Educational
robotics is a growing field, with LEGO Mindstrom being the most popular
kit for outreach activities [25]. For teaching topics in robotics at Universities,
different platforms have been developed in recent years for mobile robotics,
artificial intelligence, control engineering, and related domains [26]. The mo-
bile robot ExaBot, presented in this Thesis, was also designed and successfully
tested for this goal [27].

(a) Roomba floor cleaning (b) Aibo dog-like robot

(c) Smart Pal V service robot (d) LEGO Mindstorms

Figure 1.6: Mobile Robots for edutainment and service: (a) Roomba-560 is
an autonomous floor cleaning machine, (b) Sony Aibo dog-like robot was an
iconic robotic pet between 1999 and 2006, (c) Smart Pal V is a service robot
developed by Yaskawa assists human beings, typically by performing house-
hold chores. (d) The LEGO Mindstorms series of kits contain software and
hardware to create small, customizable and programmable robots.

Service robots can be particularly useful for disabled or elderly people.
Since these individuals can be limited in their mobility, a service robot can
encourage independent living. A robotic wheelchair can provide users with
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driving assistance, taking over low-level navigation to allow its user to travel
efficiently and with greater ease [28]. Service robots can also aid with physical
tasks, and they can facilitate many cognitive and social services. For instance,
they might give the person a way to communicate with friends or relatives,
link the person to his or her doctor or give the person daily reminders [29].
Other service mobile robots have also been developed for guiding blind people
[30].

There is also a variety of mobile robot systems for military aims, however
these applications have been intentionally excluded from this thesis.

1.3 About this work

The main goal of this Thesis is to develop a new vision-based mobile robot
system for monocular navigation in indoor/outdoor environments. The pro-
posed method should reliably guide an autonomous robot along a given path.
It should use only a camera and odometry sensors and it should not rely on
any external localization system or other similar infrastructure. Moreover, it
should be able to deal with real environmental changing conditions (illumina-
tion, seasons) and satisfy motion control constraints to guide the robot in real
time.

To achieve the goal of this Thesis, a hybrid method is proposed that uses
both segmentation-based and landmark-base navigation techniques. A topo-
logical map is built to represent the environment. This map can be interpreted
as a graph, where the edges correspond to navigable paths and the nodes cor-
respond to open areas. A novel segmentation-based navigation method is
presented to follow paths (edges) and a landmark-based navigation method
is used to traverse open areas (nodes). A variety of image feature extraction
algorithms were evaluated to conclude which one represent the best solution
for landmark-based navigation in terms of performance and repeatability. The
proposed method is intended to be applicable to small low-cost mobile robots
and off the shelf cameras. In this Thesis, to test the method, a new low-cost
mobile robot called ExaBot was also developed. This mobile robot provides a
suitable platform able to adapt to different experiments.

In the next chapters, the aforementioned issues will be addressed in detail:

• First, the thesis reviews the state of the art in mobile robot navigation
in Chapter 2.

• Chapter 3 presents the ExaBot: a new mobile robot developed at the
Laboratory of Robotics, of the Department of Computer Science, Faculty
of Exact and Natural Sciences, University of Buenos Aires (FCEN-UBA).
The ExaBot is then used for experimental trials in Chapters 4, 5 and 7.
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• In Chapter 4, a novel method for autonomously drive mobile robots
through outdoors paths is detailed. This method is based on segmenting
the images captured with the camera and classifying each region to infer
a contour of navigable space.

• In Chapter 5, a known landmark based visual navigation method is en-
hanced and described for the ExaBot. This method uses the teach-
and-replay paradigm for navigation in indoor and outdoor unstructured
environments.

• In Chapter 6, the Thesis evaluates a variety of image features detector-
descriptor schemes for visual navigation. SIFT, SURF, STAR, BRIEF
and BRISK methods are tested using a long-term robot navigation data
set. The goal of this Chapter is to conclude which image feature detector-
descriptor scheme is best for visual navigation in terms of performance,
robustness and repeatability.

• In Chapter 7, an hybrid approach for monocular robot navigation in in-
door/outdoor environments is presented. This approach uses both seg-
mentation and features from images for visual navigation, and a topolog-
ical map to reliably guide an autonomous robot along an indoor/outdoor
given path.

• The last Chapter 8 concludes this Thesis and summarizes the whole
work.
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Chapter 2

Methods of Mobile Robotics

This Chapter addresses fundamental questions concerning mobile robotics,
focusing on autonomous navigation.

2.1 Introduction

One of the current challenges of mobile robotics is to achieve complete auton-
omy, i.e. to develop a robot that can carry out its tasks without the need of a
human operator. The ability to navigate by itself in its environment is funda-
mental for an autonomous mobile robotic system. Navigation can be roughly
described as the process of moving safely along a path between a starting point
and a final point. In order to navigate in the real world, a mobile robot needs
to take decisions and execute actions that maximize the chance to reach the
desired destination. Moreover, during this process it has to avoid collisions
and also detect those portions of the world that are forbidden, dangerous or
impossible to traverse.

The general problem of mobile robot navigation can be summarized by
three questions: Where am I? Where am I going? How do I get there? [31]
These three questions are respectively answered by localization, mapping and
motion planning. In the context of mobile robotics, localization means deter-
mination of the robot position in the environment [32]. Mapping addresses the
problem of building models or representations of the environment from data
acquired by robot sensors [33]. And the process of determining the path to
the desired destination and generating inputs for robot actuators to follow the
path is referred to as motion planning. [34].

Although one can address these problems separately, they are closely re-
lated and especially localization and mapping are often tackled together. For
example, the robot can incrementally add new information to a map and use
this map to estimate its position. This is called Simultaneous Localization and
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Mapping (SLAM), a method used to build up a map within an unknown en-
vironment (without a priori knowledge) while at the same time keeping track
of robot current location [35] [36].

In the next Sections of this Chapter each of these aforementioned main
issues are explained in detail, and the state of the art in mobile robot methods
is reviewed. Finally, visual-based navigation approach is presented, as it relates
directly to what we draw on in this Thesis.

2.2 Localization

Localization is a problem of pose (position and orientation) estimation of a
vehicle in either absolute or relative frame of reference. One can distinguish
between relative (or local) localization, where current position of the vehicle is
computed using a previously known position and data provided by on-board
sensors, and absolute (or global) localization, where the position is obtained
using information from exteroceptive sensors, like beacons or landmarks.

A special problem happens when the robot is suddenly moved to an ar-
bitrary location. This situation is commonly referred to as the “kidnapped
robot problem”, where the robot has no a priori knowledge of its location.
The kidnapped robot problem creates significant issues to the robot localiza-
tion system, so it is commonly used to test a robot’s ability to recover from
catastrophic localization failures.

Relative localization is also referred to as dead reckoning, a term originat-
ing from nautical navigation, where a ship had to estimate its speed relative
to ‘dead’ water. Relative localization is used with a high sampling rate in
order to maintain the robot pose up-to-date, whereas absolute localization is
applied periodically with a lower sampling rate to correct relative positioning
misalignments [37].

2.2.1 Relative localization

The most popular relative localization method in mobile robotics is odometry.
This method calculates the robot position and orientation from the signals
of its actuators, either wheels [38] or legs [39]. Most frequently, the wheeled
robots are equipped with incremental rotary (or shaft) encoder sensors at-
tached to wheel axes. The idea of this technique is to translate the wheel
speed (measured by the encoder) in a linear displacement of the robot relative
to the ground. It is well known that odometry may provide good short-term
estimation in linear displacement since it allows very high sampling rates, it is
also computationally inexpensive and easy to implement. However, the funda-
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mental idea of the odometry information integration is incremental movement
over time, which leads to the accumulation of errors which inevitably increases
proportionally with the distance traveled by the robot.

Odometry errors are of two types: systematic errors, dependent on struc-
tural characteristics of the robot (for example, the diameters of the wheels
are not equal), and non-systematic errors that do not depend on the robot
but on the environment. Non-systematic errors break the assumption that the
encoder pulses can be translated into a linear displacement relative the ground
(for example, when wheels slip on the floor). Systematic errors can be treated
and taken into account when computing the position and orientation of the
robot, but non-systematic errors are unpredictable and unmanageable [40].

Other dead reckoning methods rely on the use of inertial measurement
units [41] and gyroscopes [42]. To measure the true acceleration of a vehi-
cle, one has to take into account the gravity of Earth as well as centrifugal
and Coriolis forces. Since the speed is measured indirectly by integration of
acceleration measurements, and therefore, position is computed by double in-
tegration, then the problem of error accumulation is even more critical. These
methods are applicable to vehicles which are not in contact with a solid surface
and have been successfully used in UAV’s robots and space flight domain.

In recent years, new dead reckoning methods have been developed based
on visual input. Using sequential camera images it is possible to compute the
relative motion between two frames and thus get an accurate estimation of
the robot pose. This idea leads to a new relative location technique known as
visual odometry, term coined in [43]. Most of visual odometry methods consist
in extraction of features from consecutive images, then matching the features
using their descriptors in the second image, effectively tracking them for the
estimation of the egomotion of the camera (and of course, also the robot)
by using this information. Some visual odometry algorithms have made use
of monocular cameras [44], omnidirectional cameras [45] and stereo cameras,
either as the sole sensor [46] or in combination with inertial measurements [47].

The main disadvantage of relative localization or dead reckoning methods
rests on the fact that the position error grows over time. Although error accu-
mulation can be slowed down considerably by using precise sensors and careful
sensor calibration, measurement errors get integrated over time making dead
reckoning unsuitable for long-term localization. Even if the sensor noise were
completely eliminated, a small error in initial position angle estimation would
cause loss of position precision. Nevertheless, dead reckoning is a popular
technique for quick estimation of robot position as a part of more complex lo-
calization systems that include other sensors [48] or when the estimation of the
position of the robot has to be used only for a short term during autonomous
navigation [49].
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2.2.2 Global localization

To remove the problem of cumulative errors in dead reckoning, the robot has
to interpret signals from its exteroceptors and compare them to an a priory
known map. Map-based localization methods are always dependent on map
representation.

Another approach for global localization consists in the detection of salient,
well distinguishable localized features in sensor data, called landmarks. The
robot has to identify landmarks and measure their bearings relative to each
other. For identifying landmarks, similar features already stored in a land-
mark map have to be matched with currently measured features using sensor
information. [50]. Such sensor information is generally uncertain and contains
noise. Given the positions of landmarks on a 2D or 3D map of the environ-
ment and the noisy measurements of their bearings relative to each other, the
robot position is estimated with respect to the map of the environment by
methods originating from geometry. The major disadvantage of this approach
is that reliable and robust recognition and matching of salient features in the
environment can be computationally expensive and sometimes impossible due
to sensor noise. Commonly, landmark-based localization is performed simul-
taneously with landmark-based mapping leading to SLAM (see Section 2.4).
Typically, the landmarks are identified from camera images, but landmark
extraction is also possible from laser [51], sonar [52] or radar data [53].

A practical way to provide sensor data with well detectable and distin-
guishable landmarks is creating them by designing special, salient objects and
placing them in the environment. This is done by the use of so-called beacons.
A beacon is an artificial object, which is added to the environment to provide
aid for localization. A typical beacon-based system is composed of several
beacons on known positions. A vehicle carries a detection system, which pro-
vides angles and/or ranges to individual beacons and computes its position by
means of triangulation [54] or trilateration [55]. The advantage of triangula-
tion, i.e. determination of robot position from angles to individual beacons,
over trilateration, i.e. estimation of robot position from beacon distances, is
that triangulation provides not only robot position, but also its orientation.

One can distinguish beacons as either passive or active. Unlike passive
beacons, active beacons emit signals which can be received by vehicles. The
most notorious active beacon examples are lighthouses and the Global Posi-
tioning System (GPS) [56]. The GPS is nowadays the most popular local-
ization system, mainly because the GPS receivers are commercially available
and affordable. It consists of several active beacons that are actually satel-
lites orbiting the Earth and transmitting signals. The receiver computes its
position based on distances from individual satellites with known positions,
anywhere on or near the Earth where there is an unobstructed line of sight
to four or more GPS satellites. The usual GPS-based localization precision in
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areas with direct sky visibility and good weather conditions is about 3 meters.
However, the GPS signal is easily absorbed and reflected by water. As a result,
the GPS precision deteriorates when used in canyons, woods, heavy foliage or
between buildings. One can overcome the temporary decrease of localization
precision by combining GPS with dead-reckoning localization systems. Alter-
natively, if the GPS receiver has data about its surrounding environment, it
can use this information to reject reflected signals and improve the localization
precision [57].

2.3 Mapping

Mapping addresses the problem of acquiring models of the surrounding en-
vironment. In mobile robotics, mapping is a process during which the robot
builds its own representation about the operating environment, i.e. a map.
The type and quality of the map typically depends on the navigation task
and sensors. The most common use of a map is to help motion planning and
localization of a single robotic agent. However, it can be used for sharing en-
vironment information between several robots in multi-agents systems. When
the navigation task is focused on exploration, building a map is the goal for
the purpose of creating a precise model of the environment.

It can be distinguished between metric and topological maps. Metric maps
are built from metric sensor data and describe geometric properties of the envi-
ronment in a fixed coordinate frame. These are easy to create, and suitable for
tasks in small environments (path planning, collision avoidance, position cor-
rection). However, their use in large environments is questionable due to space
and computational complexity. Examples of metric maps are occupancy grids,
geometrical and landmark maps. By contrast, topological maps are based on
recording topological or spacial relations between observed environment fea-
tures rather than their absolute positions. The resulting representation takes
the form of a graph, where the nodes represent the observed features or salient
places in the environment and the edges represent their relations.

2.3.1 Metric maps

Grids maps

One of the oldest and most popular mapping approaches in mobile robotics
is the use of grid maps. In this approach, the environment is discretized into
equally sized cells. Each cell represents the area of the environment it covers
and has an assigned state, which describes some physical property of this area.
In the most common form, each cell contains a probability of being occupied
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by an object in the environment, which leads to so-called occupancy grids.
Occupancy grid mapping refers to a family of computer algorithms in prob-
abilistic robotics for mobile robots which address the problem of generating
maps from noisy and uncertain sensor measurement data, with the assump-
tion that the robot pose is known. The basic idea of the occupancy grid is to
represent a map of the environment as an evenly spaced field of binary ran-
dom variables each representing the presence of an obstacle at that location in
the environment. Occupancy grid algorithms compute approximate posterior
estimates for these random variables. It is assumed that the occupancy prob-
abilities are independent, and therefore, the impact of sensor measurements
on the occupancy probability can be computed for each cell separately [58].

Each sensor measurement can change the occupancy probability of sev-
eral cells depending on the sensor model, which characterizes the influence
of a particular sensor reading to the occupancy of the surrounding cells. A
typical example is a rangefinder measurement, which increases the occupancy
probability of the cells with the distance equal to the sensor reading while
decreasing the occupancy probability of the cells through which the ray has
travelled. Since the cells in an occupancy grid can be accessed directly, the
update of the grid after a sensor measurement depends only on the sensor
model and not on the grid size. Several sensors can be used to update the
grid simultaneously, making occupancy grid a simple and elegant method for
sensor fusion [59].

There are other approaches for grid-based mapping. For example, if the
cells contain local terrain height instead of only occupancy probability, the
map is called an elevation grid [60]. Another possibility to model terrain is to
store local terrain variance in each cell [61].

The disadvantage of occupancy grid algorithms is their memory inefficiency.
Most of the environment is empty space and therefore most cells of a typical
occupancy grid are unused. The memory requirement is particularly problem-
atic with threedimensional grids of large environments. However, this problem
can be partially solved by using octree spatial representation [62].

Geometrical maps

Geometrical maps attempt to overcome the disadvantage of memory ineffi-
ciency and represent only important areas of the environment. Moreover,
they do not discretize the environment and therefore are more precise com-
pared to occupancy grids. The geometrical maps model the environment by
a set of geometrical primitives, typically lines [63] or polygons [64] in the two
dimensional case and planes in the three dimensional case [65].

Geometrical maps are suitable for localization [66] as well as for motion
planning [67]. Though memory efficient, these maps are not easy to build
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due to sensor noise and localization uncertainty. Moreover, outdoor terrain is
usually too complex to be represented by a few geometrical primitives.

Sensor maps

A sensor map is created by recording and storing the sensory measurements
without further processing. An example of a sensor map is a point cloud,
where range measurements are stored in a global reference frame. Despite
the fact, that such a map is not very useful by itself, sensor maps preserve
all the measured data and are usually created with the goal of processing the
gathered data in the future. For example, the Robotics Data Set Repository
(Radish for short) provides a collection of standard robotics data sets in raw
format [68].

Landmark maps

Landmarks are distinct features of the environment that a robot can recognize
from its sensory input. There are two types of landmarks: artificial and nat-
ural. Natural landmarks are those objects or features that are already in the
environment whereas that artificial landmarks are specially designed objects
or markers that need to be placed in the environment with the sole purpose
of enabling robot navigation. Landmarks maps are built by detecting salient
features in the environment and computing their relative position to the robot.
The primary purpose of a landmark map is localization, so in many works these
two problems are tackled together, as we discussed in Section 2.2.2. This is
very common in vision-based mobile robot localization and mapping (SLAM)
methods, which use image features as natural landmarks [69]. However, land-
marks can be used for motion planning as well [70]. An important problem
is the extraction of the salient landmarks from the sensory data, which might
be computationally expensive. During the map building as well as during lo-
calization, the perceived landmarks have to be associated with the landmarks
stored in the map. Unless an intelligent landmark preselection is performed,
the computational expense of the association process increases with growing
map size.

2.3.2 Topological maps

Topological maps represent the world as a graph, i.e. a network of nodes and
edges where the nodes are distinctive places in the environment and the edges
represent direct paths between them. A significant issue in building topological
maps is defining distinctive places. For example, if the robot traverses two
places that look alike from the point of view of the sensor, topological mapping
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methods often have difficulty determining if these places are the same or not
(particularly if these places have been reached via different paths).

On the other hand, a bare graph does not provide much information, and
therefore additional information for localization and navigation is usually asso-
ciated with both nodes and edges. For example, a system capable of creating a
topological map of a park-like environment [71] associates orientation informa-
tion with nodes and path texture with edges. Other system, which associates
visual information with nodes detected by sonar sensors is described in arti-
cle [72].

The most significant advantage of topological maps is their scalability and
simplicity. They allow to integrate large-scale area maps without suffering
from the accumulated position error, and path planning can be easily resolved
just using Dijkstra algorithm. Moreover, topological maps are suitable for
fast, hierarchical planning and can be easily modified to include semantic
information, but they are difficult to construct directly from sensor data and
they are not suitable for precise localization and exact reconstruction of the
environment.

2.3.3 Hybrid maps

There are numerous works combining metric and topological approaches into
so called hybrid maps [73]. These approaches differ in the form the particu-
lar maps that are built, interconnected, and used. For example, in [74] the
topological layer is built on top of a grid-based map by processing Voronoi
diagrams of the thresholded grid. In [75], a statistical maximum likelihood
approach is introduced, where a topological map solves global position align-
ment problems and it is consequently used for building a fine-grained map.
The map representation in the SLAM framework Atlas [76] consists of a graph
of multiple local maps of a limited size. Each vertex represents a local coor-
dinate frame of reference and each edge denotes the transformation between
local frames as a Gaussian random variable. For indoor navigation Young-
blood [77] proposes a place-centric occupancy grid model, where each area or
room of the environment is associated with a single occupancy grid. A global
graph interconnecting these grids is used to represent the connectivity between
rooms. The extent of a room is determined by retrieving a locally confined
area followed by gateway extraction.

In [78] we present a novel mapping approach that is utilized for indoor
exploration of a-priori unknown environment. This approach uses fixed-size
interconnected occupancy grids, instead of associating one grid to each room.
Since this grid decomposition does not intend to represent the topology of the
environment, a separate graph is used for this end. In contrast to Youngblood’s
approach, our method does not rely on assumptions of the structure of walls
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and enclosed areas for gateway and topology extraction. Furthermore, with
a fixed-size grid approach, large rooms will not generate single large grids,
negatively impacting on path-finding exploration.

2.4 Simultaneous Localization and Mapping

Localization and mapping are seldom addressed separately, in most cases the
robot incrementally adds new information to a map and uses map-based lo-
calization to estimate its position. This is called Simultaneous Localization
and Mapping (SLAM) [35] [36]. In SLAM framework the map is represented
by the positions of the landmarks in the environment. As the localization
error influences the quality of the map and vice-versa, the key issue of SLAM
is dealing with uncertainty of the robot position and the map. Methods de-
scribed in [79] use probabilistic methods to update robot knowledge about its
position and the surrounding environment. Two major approaches to proba-
bilistic modeling have been used: Extended Kalman (EKF) and Particle Fil-
tering. Both approaches work sequentially, the probability distributions are
updated in so-called prediction and measurement steps, which correspond to
robot movement and sensor measurements respectively. During a prediction
step, which corresponds to robot movement, the uncertainty in robot position
increases whereas that measurement step typically causes the uncertainty to
decrease.

The Extended Kalman Filtering (EKF) SLAM models both robot and
landmark position by means of multidimensional Gaussian distributions. The
world information is kept in a vector containing robot and landmarks positions
and a covariance matrix of this state vector. Each time the robot moves or
takes a measurement, the state vector and covariance matrix are modified. The
computational cost increases with the map size. This is particularly painful in
the case of naive SLAM implementations, where computation of the Kalman
gain during map update requires inverting the covariance matrix. A huge
variety of EKF based SLAM methods have been implemented, some focusing
on speed [80, 81], some on precision [82] and other aspects [83]. The SLAM
methods which do not solve loop closing are subject to drift and therefore are
qualitatively comparable to odometry in terms of global position estimation.

The main disadvantage of Kalman filtering is that it can model only uni-
modal probability distributions. This limitation can be overcome by using
Particle Filter. The idea is to keep several ‘particles’, each with a unique
hypothesis of robot position and map [84]. Density of these particles corre-
spond to probability distribution of the robot position. Each time the robot
moves, the particles are moved and randomly distorted according to the robot
movement model (this corresponds to the prediction step). In the measure-
ment step, the sensory inputs are simulated for each particle and compared
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to the real measurements. Based on this comparison, the particles can be dis-
carded, duplicated or left alone. A major disadvantage of particle filtering is
its computational complexity, because for proper uncertainty modeling a lot
of particles have to be maintained.

The computational power of today’s computers allows real-time image pro-
cessing. Using image features as natural landmarks allows the development
of a new technique of SLAM: visual SLAM. Some visual based methods use
stereo cameras in order to obtain instant range information [85]. Other meth-
ods substitute stereo vision by motion and use a single (monocular) cam-
era [44, 86]. However, most monocular approaches are computationally ex-
pensive and achieve low operational speeds when mapping large scale envi-
ronments. This problem can be solved by dividing the large global map into
smaller maps with mutual position information [87, 88].

In recent years, an alternative to sequential, frame-by-frame SLAM has
been developed. Instead of rigidly linking feature tracking and mapping, these
tasks are split into two separate threads which run asynchronously, leading
to PTAM (Parallel Tracking and Mapping) approach. Tracking can focus on
robustness and real-time performance. Mapping is done using key-frames and
standard Structure from Motion (SFM) techniques (i.e. bundle adjustment)
and thus scales very differently to standard EKF Visual SLAM [89].

2.5 Motion planning

Motion planning addresses the fundamental problem in robotics of translating
high-level tasks in terms of human specifications into low level commands for
robot actuators. A classical version of motion planning is sometimes referred
to as the Piano Mover’s Problem. Imagine giving a precise model of a house
and a piano, the algorithm must determine how to move the piano from one
room to another in the house without hitting anything.

In mobile robotics a basic motion planning problem is to produce a continu-
ous movement that connects a starting configuration and a final configuration,
while avoiding collision with known obstacles in the environment. A configura-
tion describes a pose of the robot, and the configuration space is the set of all
possible configurations. The robot and obstacle geometries can be described
in a 2D or 3D workspace, while the motion is represented as a path in config-
uration space. The set of configurations that avoids collision with obstacles is
called the free space. [90].

The problem of motion planning is usually decomposed into two subprob-
lems, path planning and motion control.
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2.5.1 Path planning

Path planning solves the problem of finding a traversable path from the current
robot pose to the desired destination across the free space. Typically, the
resulting plan is a sequence of points, which the robot has to move through in
order to reach the goal. To plan a path, the algorithms need a map of the robot
operational space. Exact path planning for high-dimensional systems under
complex constraints is computationally intractable. However, there are some
approaches that have been successfully tested under specific hypothesis among
which we can mention grid-based, geometric, potential-field, sampling-based,
graph-based, among others.

Grid-based approaches overlay a grid over the configuration space, and
assume that each configuration is identified with a grid point. At each grid
point, the robot is allowed to move to adjacent grid points as long as the line
between them is completely contained within free space. This discretizes the
set of actions, and then a search algorithm (like A∗) can be used to find a path
from the start to the goal. The number of points on the grid grows exponen-
tially with the configuration space dimension, which makes it inappropriate
for high-dimensional problems [34]. A geometric approach consists of thinking
the path-planning as a problem of moving a polygonal object across polygonal
obstacles in two or three dimensional [91] maps. Path planning for topological
maps is based on classical graph searching methods like A∗. The Potential
Fields approach treats the robot configuration as a point in a potential field
that combines attraction to the goal, and repulsion from obstacles. The re-
sulting trajectory is output as the path. This approach has the advantage that
the trajectory is produced with little computation. However, it can become
trapped in local minima of the potential field, and fail to find a path [92].
The conventional potential field method is not suitable for path planning for
a robot in a dynamic environment where both the target destination and the
obstacles are moving, but there are some works that address this problem [93].

A major problem of the aforementioned decomposition lies on the fact that
standard path planning does not take into account robot kinodynamic con-
straints and therefore might not generate time-optimal paths. For some cases
of robot dynamic constraints, the generated path might not be traversable for
the robot at all. This disadvantage is addressed by application of Rapidly ex-
ploring Random Trees (RRT) [94]. These algorithms are able to make plans
for robots with many degrees of freedom, while respecting their kinodynamic
constraints. However, this class of algorithms is slow unless a suitable heuristic
is applied [95].
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2.5.2 Motion control

Motion control algorithms generate robot actuator inputs (e.g. wheel speeds,
motor Pulse-Width-Modulation PWM, input current to leg actuators) to move
the robot along the set of points given by path planning. These inputs are gen-
erated by a controller. There is a variety of types of controllers. To name a few:
closed-loop controllers, like the well known Proportional-Integral-Derivative
(PID) [96], predictive controllers [97], fuzzy logic [98], neural network con-
trollers [99], among others. The structure and parameters of these controllers
are strongly influenced by robot physical parameters. Optimal selection of
these parameters can be done either manually or by the controller itself. In
this Thesis we will use the Proportional-Integral-Derivative controller to set
the desired velocity for each motor of the robot (see Chapter 3).

PID controller

A Proportional-Integral-Derivative (PID) controller is a generic loop feedback
controller widely used in control systems. A PID controller calculates an error
value as the difference between a measured process variable and a desired set-
point. The controller attempts to minimize the error by adjusting the process
control inputs. The PID controller algorithm involves three separate constant
parameters, and is accordingly sometimes called three-term control: the pro-
portional, the integral and derivative values, denoted P, I, and D. Heuristically,
these values can be interpreted in terms of time: P depends on the present
error, I on the accumulation of past errors, and D is a prediction of future
errors, based on current rate of change.

Tuning a PID control loop means setting its control parameters P, I and
D to the optimum values for the desired control response. Stability (bounded
oscillation) is a basic requirement, but the main goal is that the controller
reaches the desired setpoint in the least amount of control loops. PID tuning
is a difficult problem, even though there are only three parameters and in
principle is simple to describe, because it must satisfy complex criteria within
the limitations of PID control (the parameters are constant and there ir no
direct knowledge or model of the process). There are accordingly various
methods for loop tuning, and more sophisticated techniques are the subject
of patents. In this Thesis we will use the Ziegler-Nichols tuning method. In
Chapter 3 the implementation of a PID controller for the ExaBot motors is
detailed.
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2.6 Exploration

If the goal of the navigation is to create a complete map of the surrounding
environment without steering the robot manually, the problem can be defined
as autonomous exploration. An exploration algorithm can be defined as an
iterative procedure consisting of a selection of a new goal to explore and a
navigation to this goal. Such an algorithm is terminated whenever the de-
fined condition (mission objective) is fulfilled. Besides, the usage of resources
(e.g. the exploration time, the length of the trajectory) is optimized. The
exploration strategy determines the next target position in each exploration
iteration (one exploration step) with respect to the current robot position, the
current knowledge about the environment (i.e. current map), and a selected
optimization criterion. Any exploration strategy has to be able to adapt to
any unexpected situations during map acquisition. The greedy algorithms are
often used as an exploration strategy. The robot always moves from its cur-
rent location to the closest location that has not been visited (or observed) yet,
until the environment is mapped [100]. The exploration algorithm depends on
the type of the created map; as we see in Section 2.3 it is possible to find both
metric and topological (or even hybrid) exploration approaches.

The central question of exploration is where to place the robot in order
to obtain new information of the environment. The exploration method im-
plemented by Yamauchi [101] proposes to place the robot in a ‘frontier’ - a
boundary between mapped and unknown environment. Finding a frontier on
an occupancy grid map is a matter of simple mathematical morphology opera-
tion. Typically, several frontiers exist in the given map, which allows a simple
extension of this approach to multi-robot exploration [102]. Frontier based
exploration is not limited to the case of robots with rangefinding sensors only,
the frontiers can be detected by vision-based systems as well [103]. Explo-
ration approaches can be also based on the Next Best View algorithm, which
is widely used in three-dimensional mapping [104, 62]. Another approach,
based on the notion of entropy is called information-gain [105] exploration.

2.7 Vision-based navigation

As discussed at the beginning of this Chapter, autonomous navigation can
be described as the process of determining a suitable and safe path between a
starting and a goal point for a robot travelling between them. Different sensors
have been used to this purpose, which has led to a varied spectrum of solutions.
Active sensors such as sonars [106], laser range finders [107], radars [108] and
3D cameras based on time of flight[109] and structured light [110] are used
in autonomous navigation methods. These sensors are inherently suited for
the task of obstacle detection and can be used easily because they directly
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measure the distances from obstacles to the robot.

However, none of these sensors can perfectly accomplish the navigation
task and they all have disadvantages. Sonar sensors suffer from specular re-
flections and poor angular resolution. Standard laser range finders are precise,
but they only provide measurements in one plane. Three-dimensional laser
rangefinders, as well as most radars, are not suitable for small robot appli-
cations because of size, weight and energy consumption. Most 3D cameras
illuminate the perceived scene with infrared light and do not work outdoors
due to the presence of sunlight. The GPS and other beacon systems rely on
external infrastructure or structured environment. All active sensors transmit
signals which might interfere with each other if multiple sensors or multiple
robots are present in the same environment. Moreover, the distance mea-
surements provided by these sensors are not suitable to distinguish between
different types of ground surfaces or recognize the shape of a road without the
presence of bounding structures such as surrounding walls. The shaft encoders,
gyros and compass sensors are suitable, but cannot be used over long paths or
long periods of time because their measurement error grows over time.

On the other hand, visual sensors are increasingly affordable, they are small
and can provide higher resolution data and virtually unlimited measurement
ranges. They are passive and therefore do not interfere with each other. Most
importantly, visual sensors can not only detect obstacles, but also identify
forbidden areas or navigate mobile robots with respect to human-defined rules
(i.e. keep off the grass). Such forbidden areas are not obstacles, since they are
in the same plane as the path, but should be considered as non-traversable.
For these reasons vision-based navigation has long been a fundamental goal
in the field of mobile robotics research in last years. Vision-based navigation
concept is closely related to the visual servoing, that can be defined as the use
of the vision sensor in feedback control [111, 112].

As for other sensors, the different visual navigation strategies proposed in
the literature make use of several configurations to get the required environ-
mental information to navigate. Most systems are based on monocular and
binocular (stereo) cameras, although systems based on trinocular configura-
tions also exist. Another possible structure is omnidirectional cameras that
are usually obtained combining a conventional camera with a convex conic,
spherical, parabolic or hyperbolic mirror.

Traditionally, vision-based navigation solutions have mostly been devised
for Autonomous Ground Vehicles (AGV), but, recently, visual navigation is
gaining more and more popularity among researchers developing Unmanned
Aerial Vehicles (UAV) and also Autonomous Underwater Vehicles (AUV). Re-
gardless of the type of vehicle, systems that use vision for navigation can be
classified according to different criteria. Referring to mapping, those that need
previous knowledge or map of the environment, those that build a representa-
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tion of the environment as they navigate through it and those that do not need
a map at all. Also, there are systems that localize the robot in the environ-
ment and others that do not. Moreover, navigation solutions can be divided
according to the environment: outdoor, indoor, structured, unstructured [113].

2.7.1 Map-based visual navigation

For map-based visual navigation it is usual to divide the problem into two
phases, what is known as map-and-replay technique. With this approach the
robot first traverses the desired path guided by a human operator in a training
step. During this phase, the robot records visual landmarks so it can build
a representation of the environment, i.e. a map. In the second phase, the
robot can use this map to navigate autonomously through the learned path.
There are lots of works that use this technique to achieve autonomous navi-
gation. Most of them use local image features as visual landmarks [49, 114].
In Chapter 5 a map-and-replay method is presented in detail and in Chapter
6 the performance of local image features for long-term visual navigation is
comprehensively evaluated.

There are other map-based visual navigation systems that incrementally
build a map and simultaneously use this map to navigate in the environment.
In map-building basic approach, it is assumed that the localization in the envi-
ronment can be computed by some other techniques. When this assumption is
removed, the visual navigation includes the exploration and mapping of an un-
known environment. In this case the robot must accomplish three tasks: safe
exploration/navigation, mapping and localization in a simultaneous way. We
have already discussed this approach in Section 2.4 as visual SLAM. However,
the main goal of SLAM is to simultaneously perform localization and map-
ping, and therefore, the robot is generally guided through the environment by
a human-operator, which is actually not autonomous navigation.

2.7.2 Mapless visual navigation

Mapless visual-based navigation systems mostly include reactive techniques
that use visual clues derived from the segmentation of an image, optical flow,
or the tracking of image features among frames. Reactive systems usually
do not need any previous knowledge of the environment but make navigation
decisions as they perceive it. Those strategies process image frames as they
gather them, and are able to produce enough information about the unknown
and just perceived environment to navigate through it safely. Optical flow can
be defined as the apparent motion of features in a sequence of images. During
navigation, the robot movement is perceived as a relative motion of the field
of view, and, in consequence, it gives the impression that static objects and
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features move with respect to the robot. To extract optical flow from a video
stream, the direction and magnitude of translational or rotational scene feature
movement must be computed for every pair of consecutive frames [115]. The
image segmentation approach uses a combination of color and texture pixel
classification to perform a segmentation of the image in navigable and non-
navigable zones. This technique is commonly used in outdoor navigation to
follow the path [116, 117]. In Chapter 4 we present a novel segmentation-
based visual navigation method for path following in outdoor environments.
Finally, image navigation based on feature tracking uses features to track the
movement of the camera (and of course of the robot) through the environment.
This approach estimates the pose of the robot during navigation so it is closely
related to visual odometry, as we already referred in Section 2.2.

2.8 Conclusions

In this Chapter we present the state of the art in Mobile Robotics. This exten-
sive review allows us to categorize the methods associated with the main prob-
lems involved in mobile robotics. Mapping, Localization and Motion Planning
issues are addressed and advantages and disadvantages of different approaches
are described. This Chapter also shows that although most common solutions
for autonomous navigation use many expensive sensors, it is also possible to
achieve it using only standard digital cameras. Chapters 4, 5 and 7 of this
Thesis will focus on monocular visual navigation.
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Chapter 3

ExaBot: a new mobile robot

In this Chapter we present the ExaBot, its body, sensors, actuators and pro-
cessing units. We also address the motion control of the robot, which is taken
into consideration in the next Chapters where the ExaBot is used as an ex-
perimental platform.

3.1 Introduction

Mobile robots are commonly used for research and education. Taking as a
premise that “There is no robotics without robots”, it is necessary to have
platforms where different proposed methods can be tested. Nowadays, there
are many commercial mobile robots available. However, these robots do not
always meet the characteristics needed for certain tasks and are very difficult
to adapt because they have proprietary software and hardware.

For example, Khepera [118] is a mini (around 5.5 cm) differential wheeled
mobile robot that is developed and marketed by K-Team Corporation. The
basic robot comes equipped with two drive motors and eight infrared sensors
that can be used for sensing distance to obstacles, and also sensing light inten-
sities. It is very popular and widely used by over 500 universities for research
and education. However, Khepera robot serves only for indoor small environ-
ments and although some extensions can be added, it is very limited when
modifications to its sensing or programming capabilities are needed.

Another example of a well-known commercial mobile robot is the Pioneer
2-DX and its successor Pioneer 3-DX [119]. They are popular platforms for
education, exhibitions, prototyping and research projects. These robots are
quite bigger than the Khepera (more than 10 times) and have a computer
integrated into a single Pentium-based EBX board running Linux. This pro-
cessor unit is used for high-level communications and control functions. For
locomotion, the Pioneer robots have two wheels and a sonar ring as range
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sensors. They can be used for both indoor and outdoor environments. Lots of
accessories such as new sensors and actuators can be purchased from Adept
MobileRobots manufacturer. Nevertheless, because of its size, Pioneer robots
need a large workspace to move around and its weight makes it unsuitable to
be transported around easily and tedious to be operated by a single human.

Besides the above disadvantages, the main drawback of these commercial
mobile robots is their cost. For instance, a basic Pioneer robot costs approxi-
mately $5, 000 dollars, and a basic Khepera robot costs $4, 000. It is very dif-
ficult for latin american research labs and universities to afford these costs and
hence this severely limits the possibilities of buying or upgrading these robots,
for single and even more for multi-robot systems. Moreover, the maintenance
of commercial robots can be very hard for developing countries. If some com-
ponent of the robot breaks it is not easy to purchase the replacement, it could
take a lot of time due to shipping, and this in turn may delay planned experi-
ments. These issues are the main motivations for developing our own low-cost
mobile robot in our Lab. Furthermore, the knowledge gained from the design
and construction of a robot from scratch is also an important incentive for this
task. The new platform should be affordable, then the relationship between
the cost of the robot, its size and functional capabilities should be taken into
account.

(a) Khepera II (b) Pioneer 3DX

Figure 3.1: Commercial and very popular mobile robots for research and ed-
ucation: (a) Khepera is a mini robot around 5.5 cm, (b) Pioneer is more than
10 times bigger.

Thus, given that commercially available robots do not have the charac-
teristics needed for some tasks and are too expensive to acquire, repair or
modify, the development of new robot prototypes for research and education
becomes a relevant task. Additionally, the experience acquired by making a
mobile robot was essential to get an autonomous navigation system, which is
the main concern of this Thesis.

In this Chapter we present the ExaBot: a small mobile robot developed
in the Robotics Lab at our University. The rest of the Chapter is organized
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as follows: in Section 3.2 the design decisions are considered, in Section 3.3
the mechanical parts of the robot are detailed, in Section 3.4 we describe the
general hardware architecture of the ExaBot and its possible configurations, in
Section 3.5 we describe the different sensors available in the robot, in Section
3.6 we describe its actuators, in Section 3.7 motion control of the ExaBot
is detailed, Section 3.8 shows some examples of the usage of the ExaBot in
research, education and outreach activities and finally, Section 5.5 concludes
this work.

3.2 Design Considerations

The goal of the ExaBot is to have one single robotic platform that allows to
carry out research, education and outreach activities. To achieve this goal the
robot should have a reconfigurable architecture that supports many different
sensors and processing units, and can be easily reconfigured with a particular
subset of them for a given task. On the other hand, the robot should be a
low cost alternative compared to its commercial counterparts and have similar
functionalities. Therefore, we address a three way design trade-off between
size, cost and functionality.

3.2.1 Size

The body of the ExaBot should be small enough to be transported around
easily, but also big enough to support many sensors and different processing
units. On the other hand, the dimensions of the chassis should be large enough
to allow an embedded computer inside. Also, the robot should be able to carry
a laptop or a mini external PC on top of it. The relation of robot cost to robot
size indicates that off-the-shelf components are the best option. If the platform
is too small it gets expensive due to the advanced technologies and fabrication
techniques required (e.g. microelectromechanical systems, micro assembly,
etc.), and to the lack of off-the-shelf components. On the other hand, if the
platform is too big, the cost of the chassis increases considerably and it also
becomes more difficult to use because it requires a large workspace. Therefore,
we decided for a small, not mini, size for the ExaBot. The final dimensions
of the robot depend on the desired configuration, but it is around 25 cm (for
more details see Section 3.3).

3.2.2 Cost

The cost is one of the main constraints of the robot design. It should be in
the order of ten times less compared to its comercial counterparts. Thus, the
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chassis, sensors and actuators of the robot should be inexpensive, but allow a
wide application spectrum. Using a pre-built body, off-the-shelf components
and developing the electronics of ExaBot on our own, it is possible to achieve
this goal. Because the robot should be small we decided to use small, cheap
and still readily available sensors. On the other hand, as the ExaBot has the
ability to carry a laptop mounted on it, we can use it as the main processing
unit, decreasing significantly the cost of the robot.

3.2.3 Functionality

When considering functionality one must consider the domain that the robot
is expected to work in, and what it is expected to do in that domain. As we
want a multipurpose robot, that can be used for a variety of activities, the
ExaBot should be designed to support many different sensors and processing
units, and to be easily reconfigured with a particular subset of them for a
given task. Regarding locomotion, the robot should be able to operate in both
indoor and outdoor environments. In order to fulfill autonomous navigation,
it should be able to move forward, backwards and turn on the spot. However,
there is no need for moving sideways. Thus, the simpler solution is to use the
widely known differential drive with two wheels that cover the whole chassis.
Moreover, since in some situations a harsher environment can be encountered,
it could be desirable to get caterpillars instead of wheels. This locomotion
allows the robot to go over small obstacles and traverse slippery floors, giving
an advantage that can come in handy when working in outdoor unstructured
environments. Regarding sensing, the ExaBot should have a variety of sensors
including range sensors, contact sensors, vision sensors, linefollowing (floor)
sensors, shaft wheel encoders, consumption and battery voltage sensors. Fi-
nally, the robot should have different processing capabilities depending on the
task. Of course, microcontrollers are needed to handle the sensors and motors
of the robot. Also, an embedded computer can be a good solution for high-
level communications and control functions. The possibility of mounting a
laptop over the robot makes a good choice for testing new navigation methods
and research activities. In this case the embedded computer can be removed,
reducing the cost of the robot.

In summary, considering cost, size, and functionality, we designed ExaBot
as a small, low-cost, multipurpose mobile robot taking advantage of off-the-
shelf components, developing the electronics on our own and keeping a good
functionality level, comparable to its commercial counterparts, to a tenth of
their prices.
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3.3 Mechanical design

The body of the ExaBot should be rugged enough to be handled not only by
researchers but also by inexperienced students, and fit the design considera-
tions mentioned above. Since mechanical issues are not a goal of this work, the
simplest solution that meets the constraints is preferred. Hence, a pre-built
mechanical chassis was selected. We reviewed several models and decided to
use the Traxster Kit [120]. This aluminium alloy chassis is light (900 grs) and
small sized (229 mm length × 203 mm wide × 76 mm height), so it is trans-
portable and can accommodate multiple sensors and processing units. It has
two caterpillars, each connected to DC (Direct Current) motors (7.2V and 2A)
with built-in quadrature encoders. The shape of the chassis results attractive
to mount several sensors and carry a laptop or other mini PC on the top, an
embedded computer inside, and the battery on the bottom. Of course, the
election of this mechanical kit constrained future decisions, such as the layout
and design of the control board and the type of embedded computer that can
be mounted inside the chassis. More details about the motors and encoders of
the kit can be found in Section 3.6. Last but not least, this kit costs around
$200 dollars, which meets the low-cost requirements and it results cheaper
than buying the chassis, motors and encoders separately.

Figure 3.2: The Traxster mechanical kit.

3.4 Hardware design

In this section we describe the hardware architecture of the ExaBot, the differ-
ent processing units, communication buses and power supply. We also present
two possible hardware configurations for the ExaBot.
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3.4.1 Configuration with an embedded computer

The standard configuration of the ExaBot has an embedded PC104 computer
as central processing unit and 3 Microchip PIC microcontrollers: one to control
most of the sensors (PIC18F4680), and one to control each DC motor included
in the Traxster Kit (PIC18F2431). Figure 3.3 shows this configuration.

Figure 3.3: ExaBot architecture

Processing units

The different goals of the ExaBot pose very different computational power
needs. Many research activities such, as vision-based navigation algorithms,
are usually computationally demanding, while most of the outreach experi-
ences can be done with very simple programs. The processing power is divided
into two levels: low level processing units for sensor and motor control, and
a high level processing unit for communications and robot high level control
functions. Low level processing is performed by one PIC18F4680 microcon-
troller [121] that controls the sensors and two PIC18F2431 [122] that control
each motor and their corresponding encoders. Despite the fact that a single
PIC18F2431 can control both motors, we decided to use two in order to be
able to export expansion ports to control further motors that might be added
to the robot in the future. The high level processing unit should ensure gen-
eral purpose programming. Thus, the most suitable CPU-based element for
this goal is an embedded processor. An embedded ARM 9 PC104 of 200 Mhz
TS-7250 [123] was included. This embedded PC has 2 USB ports, a serial
port, an Ethernet port and several General Purpose I/O. It runs Linux Kernel
2.26. This embedded PC consumes a maximum of 400mA, which represents a
reasonable consumption for a processor with those characteristics. This main
processing unit can be easily removed or replaced (see Section 3.4.2).
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Communications

The communication between the PC104 and the microcontrollers is done by
means of a SPI (Serial Peripheral Interface) bus. This is a full duplex, serial
and synchronous communication bus between one master and many slaves.
We chose it over other possible serial buses such as I2C or RS232 since it is
much simpler to implement and it meets exactly what we need: fast communi-
cation between one fixed master (the PC104) and many slaves (the PICs). To
communicate with external PCs, the ExaBot has a serial port, Ethernet and a
Wi-Fi connections provided by the PC104 and a Wi-Fi USB key. Ethernet and
Wi-Fi connections use UDP (User Datagram Protocol). For robot control, the
timing of sending commands and the return of sensors data is vital. Unlike
UDP, TCP (Transmission Control Protocol) is a connection-oriented protocol.
If the received data is corrupt, TCP protocol requests the sender to resend
corrupted data, causing delays in the communication. Receiving commands
or sensor data late, as might happen with TCP, is far worse than eventually
losing some command which might happen with UDP. For this reason we found
UDP much more suitable than TCP for robot connection protocol.

Programming the robot

Programming the robot with this configuration is very simple since the PC104
has a Linux operating system. There are several open source cross-compilers
and tool-chains to program embedded ARMs like the TS7250, for example
using C++ and the gcc compiler.

3.4.2 Configuration without embedded computer

We include the embedded PC mainly to have enough processing power for some
simple tasks. However, when more processing power is needed, the embedded
PC can be removed and another external computer can be used as the main
processing unit. In this case, high level control and communication algorithms
are executed in the external PC. By removing the embedded PC, the robot
cost is significantly reduced (the PC104 is about 20 percent of the cost of the
robot) and the power consumption also decreases, making it possible for the
ExaBot to run autonomously for longer periods of time. Two alternatives have
been tested for this configuration: one using a laptop or netbook as a main
processing unit and other mounting a Mini-ITX Asus Motherboard with GPU
(Graphics Processing Unit) over the chassis of the ExaBot. In these cases
the vision sensor (i.e. camera or laser) can be connected to the external PC.
The architecture configuration without the embedded computer is shown on
Figure 3.4.
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Figure 3.4: ExaBot architecture without the PC104

In this configuration, the robot’s control is executed in the PIC that con-
trols the sensors (PIC18F4680).

Communications

The communication between the PICs is done through the same SPI bus, but
in this case the microcontroller of the sensors PIC18F4680 is programmed
to be the master of the SPI bus. Communication with external computers is
different. When the embedded computer is removed, a RS232 driver connected
to the PIC18F4680 is used to provide an RS232 bus connection with external
PCs. In this way, sensor data can be sent to the external computer where the
high level algorithms can be run and commands to the ExaBot are sent again
through RS232 (serial) bus.

Programming

In order to program the PIC18F4680 to execute the master of the SPI bus,
we exported its programming interface, as well as the programming interface
of the other PICs. There are several cross-compilers, tool-chains and IDEs to
program these type of microcontrollers. This may prove very useful not only
to run different tasks but also if changes to the base control of the sensors
or motors are needed, or if new sensors are added to the robot (see Section
3.5.3). As the high-level algorithms are executed in the external PC, robot
programming is made easier, particularly when the laptop is used as the main
processing unit, in which case, re-compiling the code is not required.

3.4.3 Power

To supply power to the whole robot, rechargeable Ion-Lithium or Lithium-
Polymer batteries can be used. At the beginning of the project, we used two
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Ion-Lithium batteries. One 3 serial cells 1900mAh battery to deliver the 7.2V
needed by motors and other 2 serial cells 1900mAh battery to deliver 5V to
power all the electronic system, the embedded computer, the microcontrollers
and sensors. At present time we are using more modern Lithium-Polymer
batteries. In addition, if the Mini-ITX Asus Motherboard is mounted as an
external computer, another battery is needed, in this case a 6 serial cells
2500mAh Lithium-Polymer 22.2V battery is used.

3.5 Sensors

A requirement of the ExaBot is that it should be able to be used for a wide va-
riety of applications. Hence, we include different types of sensors in its design.
Sensors can either be propioceptive (measure values internal to the robot)
or exteroperceptive (acquire information from the robot’s environment). The
ExaBot has bumpers, white/black linefollowing (floor) sensors (i.e. linefol-
lowings), rangefinders, a sonar and a vision sensor as exteroperceptive sensors
and shaft enconders, current consumption and battery sensors as propiocep-
tive sensors. It also has an external port that may be used to connect further
sensors. All of these sensors can be dismounted and rearranged, turned off or
even taken out of the robot if needed for particular tasks. In this way, we get a
platform with the capability to use a wide variety of sensors, and at the same
time that may use only a few required for a particular task.

As already stated, a PIC18F4680 microcontroller is used to handle the
sonar, floor sensors, bumpers and the ring of 8 rangefinders. The encoders
and motor current consumption sensors are controlled by a PIC18F2431. The
vision sensor is directly controlled from the embedded PC104 or from the
external PC. In the next Sections we will describe the sensors available in the
ExaBot and hardware related issues.

3.5.1 Exteroceptive sensors

The range sensors chosen for the ExaBot are infrared rangefinders and a sonar.
The rangefinders are short range point sensors (the range varies depending
of the model, but is less than a meter). Sonars are non-point, long range
(several meters) sensors. Both rangefinder and sonars are cheap sensors. Also,
rangefinders have faster response than sonars. We chose to install a sonar in
the front of the robot in order to achieve a long range sensing capability in
the front, and a ring of 8 rangefinders to sense the environment surrounding
the robot in a short range. In this manner, the robot has two types of range
sensors and takes advantage of both.
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Ring of rangefinders

The chosen rangefinders are the Sharp GP2D120 [124] with a sensing range of 4
to 30 cm. The rangefinder returns a voltage value proportional to the distance
of the nearest object. This is a non-linear, analog function. Analog output
voltage vs. distance to reflective object can be seen in Figure 3.5. As this is
not a injective function, the rangefinders are placed 4 cm from the border of
the chassis to disambiguate the values. In order to digitize the values, we use
the A/D converter of the PIC18F4680. We also calibrated the rangefinders
before mounting them on the robot and to this end we built look-up table that
gives linear distance as a function of the digitized voltage. Each rangefinder
gives a new value every 38 ± 9.6 ms, and has an unpredictable value between
measurements.

Figure 3.5: Analog output voltage vs distance to reflective object of the Sharp
GP2D120, taken from [124].

Sonar

The chosen sonar is the Devantech SRF05 [125] that has a sensing range of
10 mm to 4 meters. There are sonars with larger sensing ranges (like SRF10)
but are considerably more expensive, so they were discarded. The sonar works
in the frequency of 40 KHz (wavelength 8.65 mm). It can be triggered every
50ms, giving a maximum of 20 measurements per second. The sonar output
is a digital pulse which a duration that is linearly proportional to the distance
to the closest object. Therefore, to control it we use a CCP (Capture/Com-
pare/PWM) module, and a timer to measure the length of the sonar pulse,
thus obtaining the distance to the closest object. The beam pattern of the
sonar SRF08 is conical with the width of the beam being a function of the sur-
face area of the transducers and is fixed. The beam pattern of the transducers
used on the SRF08, taken from the manufacturers data sheet, is shown below.
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Figure 3.6: The beam pattern of the Devantech sonar SRF08, taken from [125].

Line following sensors and contact sensors

The ExaBot has two line following sensors and two contact sensors (bumpers)
that are placed in the front of the robot. These sensors are connected to
interrupt-on-change pins of the PIC18F4680. In this way, whenever a bumper
is pressed or a line found on the floor, the pin changes its value and an inter-
ruption is generated.

Vision sensor

The ExaBot has already been successfully used with three types of digital cam-
eras: standard USB webcams connected directly to the embedded computer
or external laptop, a stereo Minoru USB camera connected to the external
PC and a firewire camera model 21F04, from Imaging Source, connected to a
ExpressCard in the Mini-ITX motherboard (see Figure 3.3).

3.5.2 Propioceptive Sensors

Wheel shaft encoders

Wheel quadrature encoders (built-in in the Traxster Kit motor) where included
to measure the movement of the motor. An encoder is an electro mechanical
device that converts the angular position of a shaft to an analog or digital
code. Incremental encoders provide information about the motion of the shaft,
that is, they count the pulses received since the last time the sensor was
checked. Quadrature encoders also provide information about the direction
of the movement. In the case of the Traxster Kit, it included quadrature
encoders that have a resolution of 624 Pulses per output shaft revolution.
Using a 63.5mm diameter wheel (standard Traxter Kit wheels), it can achieve
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(a) Sharp rangefinder (b) Line sensor (c) Bumper sensor

(d) Sonar SRF05 (e) Minoru stereo webcam

Figure 3.7: ExaBot exteroceptive sensors.

around 0.32mm of linear displacement per pulse of quadrature encoder, which
represents a nice resolution for odometry pose estimation.

Battery sensors

The ExaBot has two battery sensors, one for the motor power and the other
for the electronics and processing units. In this manner, it can be detected
when the battery is running too low to continue and an alert can be issued by
lighting a LED.

Motor consumption sensor

We implemented current sensor for the motors in order to have a control of the
actual consumption and in that way implement a load control, and also a fault
circuit. To sense the current we use an Allegro ACS712 current consumption
sensor [126]. This sensor is connected between the L298 driver and the motor,
it senses the current and outputs a voltage indicating the current. This voltage
is used in two ways. For one, it is an analogical input to the PIC, that is
digitalized and used to know how much current is consumed, and secondly
it is used to implement a fault circuit in order to override PWM output and
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hence stop the motors if error conditions happen (see Section 3.7).

3.5.3 Sensor expansion ports

To control the rangefinders, sonar, line-following, bumpers, and all the needed
electronics to make the PIC18F4680 a possible master of the SPI bus (SPI chip
select pins plus the control of the RS232 bus), all the 40 pins of that PIC are
used. However, the two PICs that control the motors have several pins that
are not used. We planned the pins needed for motor control in those PICs in
order to maximize the possible applications of exported pins.

In this way, the ExaBot has two expansion ports, each one exporting the
following:

• one analog pin: to connect any analog sensor like another rangefinder, a
gyroscope, light sensors, etc.

• one CCP (Capture/Compare/PWM) pin module like the one used to
control the sonar, to connect a another one, or a digital compass, for
example.

• a PWM (Pulse Width Modulation) pair module, like the ones used to
control the motors.

• the INT0 pin: an external interruption pin, in order to program an
external interruption.

• GND and Vcc to power up further sensors.

These expansion ports may prove a very useful tool to add sensors and func-
tionality to the ExaBot. The programming needed to control these added sen-
sors may be done with the exported programming ports for each PIC18F2431.

3.6 Actuators

ExaBot actuators consist of two DC (Direct Current) motors that pull the
caterpillars of the Traxster kit. These are 7.2V motors that draw a maximun
current of 2A (300mA without load). They feature a 7.2Kg/cm torque, at 160
rpm without load, and come with a built in quadrature encoder of 624 pulses
per output shaft revolution. A PIC18F2431 microcontroller connected with a
L298 driver [127] is used to control each motor and corresponding quadrature
encoder. The driver is needed because a PIC can typically drive up to 15mA
at 5V and the motors consume up to 2A at 7.2V. Moreover, the driver has a
H-bridge that allows the motor to run forward or backwards. Figure 3.8 shows
the DC motor of the robot.
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Figure 3.8: Exabot actuator: 7.2v DC Gearhead Motor

3.7 Motion control

Motion control should generate motor inputs. In the ExaBot we use Pulse
Widht Modulation (PWM) and Proportional Integrative Derivative (PID) to
control the actuators of the robot.

3.7.1 Pulse Width Modulation

In order to set the desired velocity for each motor, PWM technique can be
used. Instead of generating an analog output signal with a voltage proportional
to the desired motor velocity, it is sufficient to generate digital pulses at the
full system voltage level (in this case 7.2V). These pulses are generated at a
fixed frequency. By varying the pulse width, the equivalent or effective analog
motor signal is changed and therefore the motor speed is controlled. The term
duty cycle describes the proportion of ’on’ time to the period of PWM; a low
duty cycle corresponds to low speed, because the power is off for most of the
time. Thus, the motor behaves like an integrator of the digital input impulses
over a certain period.

3.7.2 PID controller

The ExaBot uses a PID loop feedback controller to reach the desired velocity
for each motor (desired state). To do that the duty cycle for the PWM module
has to be defined (control signal). To know the actual motor velocity the
quadrature encoder data is read (feedback signal) from the QEI module. Thus,
the input of the PID controller is the quadrature encoder data (actual velocity)
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and the output is the next PWM duty cycle (desired velocity). The PID
controller calculates an error value as the difference between a quadrature
encoder data and a desired velocity. The controller attempts to minimize the
error by adjusting the process control inputs. The proportional, integral, and
derivative terms are summed to calculate the output of the PID controller.
Defining u(t) as the controller signal or output, the formal equation of the
PID algorithm is:

u(t) = u(t− 1) +Kpe(t) +Ki

∫ t

0

e(τ)dτ +Kd

d

dt
e(t) (3.1)

where Kp is the proportional gain, Ki is the integral gain, Kd is the derivative
gain, e is the error (desired velocity - actual velocity), t is the instantaneous
time and τ is the variable of integration that takes values from 0 to the present
t. Each of the three terms of the equation can be interpreted as follows:
the first term depends on the present error, the term second depends on the
accumulation of past errors, and third term is a prediction of future errors,
based on current rate of change. For completeness, Figure 3.9 shows the
general schema of the PID controller.

Figure 3.9: General schema of the PID controller.
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The analysis for designing a digital implementation of a PID controller
in a microcontroller requires the standard form of the PID controller to be
discretized. Approximations for first-order derivatives are made by backward
finite differences. The integral term is discretized, with a sampling time ∆t,
as follows:

∫ t

0

e(τ)dτ =
t∑

τ=1

e(τ)∆t (3.2)

and the derivative term is approximated as:

de(t)

dt
=

e(t)− e(t− 1)

∆t
(3.3)

Thus, if the PID is computed for each control loop, sampling time ∆t = 1
and we can replace in equation (3.1) to obtain:

u(t) = u(t− 1) +Kpe(t) +Ki

t∑

τ=1

e(τ) +Kd(e(t)− e(t− 1)) (3.4)

Using this discretized equation a pseudocode for the PID controller is pre-
sented.

Algorithm 1 Simple PID controller pseudocode
previous output ← 0
previous error ← 0
integral ← 0
loop

error ← desired velocity - measured velocity
integral ← integral + error
derivative ← error - previous error
output← previous output + Kp . error + Ki . integral + Kd . derivative
previous error ← error
previous output ← output

end loop

Then, the main problem is to set the Kp (proportional), Ki (integration)
and kd (derivative) coefficients. PID tuning is a difficult problem, even though
there are only three parameters and in principle is simple to describe, because
it must satisfy complex criteria within the limitations of PID control: the pa-
rameters are constant and there is no direct knowledge or model of the process.
There are accordingly various methods for PID tuning, and more sophisticated
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techniques are the subject of papers and patents. For this work we use the
well-know Ziegler-Nichols tuning method, which is a heuristic developed by
John G. Ziegler and Nathaniel B. Nichols. It is performed by setting the Ki

and Kd coefficients to zero. Then Kp is increased (from zero) until it reaches
the ultimate gain Ku, at which the output of the control loop oscillates with a
constant amplitude and a period Pu. Then, the oscillation period Pu and the
ultimate gain Ku are used to set the Kp, Ki and kd gains following:

Kp =
3

5
Ku

Ki =
2Kp

Pu

Kd =
KpPu

8

Using this method we experimentally found Kp = 8, Ki = 4 and Kd = 400.
The next step is to test the obtained PID controller for different velocities in
the ExaBot motors

3.7.3 Experimental results

The PID controller has been tested for different velocities in experimental
trials. Velocities are measured in quadrature encoder pulses, given by QEI
module. For the ExaBot quadrature encoders resolution, the motor velocity
can vary from 0 to 30 encoder pulses. In Figure 3.10 the results are shown.
These experiments have been performed with the motors mounted in the robot,
without load.
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(a) Desired velocity = 5 pulses (b) Desired velocity = 10 pulses

(c) Desired velocity = 15 pulses (d) Desired velocity = 20 pulses

(e) Desired velocity = 25 pulses (f) Desired velocity = 30 pulses

Figure 3.10: PID controller tests: Desired velocity (measured in quadrature
encoder pulses) vs Time (measured in PID control loops)

As shown in the Figure 3.10, the PID controller fits the duty cycle for the
PWM module to achieve the desired velocity. In less than 100 PID control
loops the actual velocity converges to the desired one. The PID control loop is
configured to be 10× the frequency of the PWM, that is a frequency of 0.1225
Khz (period of 8.1 ms). Then, as 100 PID control loops takes 810ms, our
PID controller can ensure that the desired velocity is reached in less than one
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second. Using this frequency for PID control, if we set the maximal velocity for
the motors (30 encoder pulses) the robot reaches the maximal linear velocity
of approximately 1,30m/sec. Contrary, if we set the minimal velocity for the
motors (1 encoder pulse) the robot runs at the minimal linear velocity of
approximately 0,043m/sec.

3.8 Aplications

To date six prototypes of ExaBot were built. Different configurations have
been tested in several applications fulfilling all the goals the ExaBot was de-
signed for (see Figure 3.11). These applications may be divided in three areas:
Research, Education and Outreach.

3.8.1 Research

The main research activities with the ExaBot are related to autonomous visual
navigation. In this Thesis we use the ExaBot as a experimental platform
in trials for presented navigation methods. Both image segmentation based
and image feature based algorithms have been successfully tested using the
ExaBot. For some experiments, the robot was configured to use an external
Mini-ITX board (AT5ION-T Deluxe) that includes a 16 core NVIDIA GPU
as a main processing unit, and a firewire camera (model 21F04, from Imaging
Source) as the only exteroperceptive sensor. The embedded PC104 computer
was removed and the external AT5ION-T computer was connected using the
serial port of the ExaBot board and RS232 protocol (see Figure 3.11). Another
work presents the use of disparity and depth maps for autonomous exploration
using a stereo camera [128]. In this work, a standard notebook or netbook is
used as a main processing unit and a cheap Minoru 3D USB webcam as the
only exteroperceptive sensor. The notebook connects through cabled ethernet
to the PC104 (see Figure 3.11). Finally, monocular SLAM method is being
implemented using as an Android-based smartphone as processing unit. In this
case the camera of the smartphone is used as main sensor and the commands
for the robot are given through a Wi-Fi connection (see Figure 3.11).

3.8.2 Education

The ExaBot is used in undergraduate and graduate courses of the Departa-
mento de Computación, Facultad de Ciencias Exactas y Naturales, Universi-
dad de Buenos Aires. In particular, in a Robotics Vision course that covers
several topics on computer vision applied to mobile robotics, the ExaBot has
been successfully used in two semesters during 2011 and 2012 and will be used

45



this year again. Both monocular and stereo cameras have been used as main
sensors for this course [129]. The ExaBot was also used in Artificial Neural
Netwoks course where the range sensors were trained using multi-layer per-
ceptron for obstacle avoidance. Finally, it has also been used in short lessons
in other courses to show microcontroller programming guidelines.

3.8.3 Outreach

In the last years, robotic-centered courses and other outreach activities were
designed and carried on. Three eight-week courses, five two-days courses, more
than ten one-day workshops and talks were taught to different high school
students using the ExaBots and ERBPI (Easy Robot Behaviour-Based Pro-
gramming Interface) [130]. The ERBPI is a novel application for programming
robots. Taking a behavior-based approach allows the user to define behaviors
for the robot and encapsulates the low-level step-by-step programming. The
application implements the idea of Braitenberg vehicles, where the robots sen-
sors and actuators are simple abstract components that can be connected to
each other to achieve a reactive behavior. Also, the ExaBot was part in sev-
eral science exhibitions such as ExpoUBA, TEDxŔıodelaPlata, Innovar and
Tecnópolis. These activities are part of a comprehensive outreach program
conducted by the Facultad de Ciencias Exactas y Naturales, UBA. As a result
of this, hundreds of untrained people were able to program the ExaBot to have
‘intelligent’ behavior. This represented a comprehensive test that tried out the
robustness of the ExaBot.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.11: Different configurations of the ExaBot for different aplications:
(a) ExaBot mounted with a webcam and three rangefinders, (b) Bottom view
of Exabot without cover where embedded PC104 computer can be seen (red
motherboard) (c) Exabot mounted with the sonar and three rangefinders, (d)
Exabot with a smatphone as processing and sensing unit, (e) Exabot with
an external Mini-ITX GPU board (AT5ION-T Deluxe) and a Minoru stereo
camera, (f) mounted with a netbook as main processing unit and a Minoru
stereo camera as a main sensor.
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3.9 Conclusions and future work

In this Chapter we presented the ExaBot: a new mobile robot for research
and education. The design of the ExaBot follows the premise that the robot
must be usable to pursue very different tasks, has a comfortable size and low
cost compared to commercially available robots with similar functionalities.

The hardware architecture is reconfigurable to include an embedded com-
puter or remove it when it is not necessary, reducing the robot’s cost and
power consumption. It has a wide variety of sensors that can be reconfigured,
even taken off, and it also has expansion ports that may be used to add fur-
ther sensors. All the programming ports are exported. The robot may be
programmed and controlled in three levels: from an external PC or laptop,
from the embedded PC or from the PIC18F4680 microcontroller. These char-
acteristics make the ExaBot a multipurpose robot, fulfilling its goal to serve
for research, education and outreach activities.

The motion control of the ExaBot is based on a PID controller that con-
trols the PWM duty cycle to determine each motor speed. For finding the
proportional, integrative and derivative coefficients of the controller the well-
known Ziegler-Nichols tuning method was used. The implemented algorithm
of the PID controller was tested in the real robot for different velocities. The
results show that the developed PID controller can ensure that the desired
velocity is reach in less than one second.

The main characteristics of the new mobile robot can be summarized as
follows:

• Dual-motor small chassis of 229× 203× 76 mm (length, wide, height).

• Reconfigurable hardware architecture for a variety of purposes.

• Maximal linear velocity: 1,30m/sec. Quadrature encoder resolution:
0.32mm of linear travel per pulse of encoder.

• Sensing capabilities: ring of 8 rangefinders (range 5 cm to 80 cm), sonar
(range 1 cm to 4 meters), 2 linefollowing sensors, 2 contact sensors, wheel
shaft encoders, battery sensor.

• Lithium-Polymer Battery (1 - 2 hours)

• Embedded PC with a 200 Mhz ARM9 CPU, 32 MB SDRAM, 32 MB
on-board flash drive, 2 USB ports, 2 serial ports, 1 Ethernet port and
wi-fi. Operating System: Linux 2.6.

• Fully programmable for autonomous operation.

• Wireless remote control up to 100m indoors (line of sight)
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Ongoing work on the ExaBot project includes adding further sensors such
as a gyroscope, a digital compass and a indoor laser range finder; and the
replacement of the embedded PC by a cheaper and more powerful model, like
the RaspberryPi board.
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Chapter 4

Segmentation-based visual
navigation for outdoor
environments

In this Chapter we present a novel autonomous navigation method for out-
door environments. This method allows a mobile robot equipped only with a
monocular camera to follow structured or semi-structured paths. It does not
require training phase, camera calibration or any a priori given knowledge or
map of the environment to maximize its adaptability.

4.1 Introduction

As mentioned in Chapter 2, visual navigation problems are highly associated to
the environment. Indoor robots may take advantage of architectural qualities
to represent the environment highlights in terms of simple geometric features
(i.e. lines, walls, floors) and use this guidelines to control the robot motion.
Reversely, conditions imposed by completely unstructured outdoor environ-
ments (i.e. planetary exploration) involve more complex navigation strategies,
with 3D terrain modeling, terrain classification, 3D path planning, stability
problem, among others.

For completely unstructured environments and without imposing any as-
sumptions about the workspace, a mapless image segmentation approach is
not sufficient and fails. However, if we consider some assumptions, image seg-
mentation can be a powerful tool to perform autonomous navigation. In this
work we consider that the robot navigates in outdoor flat spaces that have
been modified by the presence of humans. Such places are commonly charac-
terized by a set of regions connected by a network of dirt track, tarred or tiled
paths. For these types of environments, path identification and tracking along
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Figure 4.1: ExaBot robot performing autonomous navigation in an unknown
outdoor environment. The horizon line (red) is detected as well as contour of
navigable space (blue). Middle points of the road are computed (yellow) to
guide the robot. To achieve real-time constraints imposed by robot motion,
the image segmentation is implemented on a low-power on-board GPU (on
top of the robot).

an image sequence is a central issue. Image segmentation approach uses a
combination of color or texture pixel classification to perform a segmentation
of the image in navigable and non-navigable zones, hence it perfectly fits for
the problem at hand.

The outline of the Chapter is as follows: in Section 4.2 the main related
works are mentioned. Section 4.3 gives a brief overview of the proposed
method. In Section 4.4 the horizon detection algorithm is described. Sec-
tion 4.5 discusses different approaches for image segmentation, justifies the
choice of graph-based segmentation for CPU and an optimized implementa-
tion of Quick shift algorithm for GPU. Section 4.6 deals with the problem of
the classification of each super-pixel in traversable and non-traversable region.
Section 4.7 explains how to extract the path contour from the classified image.
Section 4.8 proposes a control motion to maintain the robot in the middle of
the path. Section 5.5 shows experimental results with an image dataset of var-
ious outdoor paths as well as with the ExaBot mobile robot. Finally, Section
5.6 concludes the Chapter.

4.2 Related work

There are several previous works that propose autonomous vision-based navi-
gation methods targeted towards outdoor environments using monocular cam-
eras as their main sensor and without requiring any given knowledge or map
of the environment. Most of them try to recognize the path’s appearance as
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well as its boundaries without any a priori information. Some basic methods
rely on recognizing the edges that separate the road from its surroundings by
identifying lines in the image (for example, using the Hough transform) [131].
But this approach is not valid for unstructured outdoor paths where the edges
are not easily distinguishable. In some cases, the road is simply estimated as a
geometrical shape as in [132] where an histogram is utilized for differentiating
between the road region defined as a triangle and its two flanking areas. In
addition, there is also a set of techniques that try to recognize the road by us-
ing the road’s vanishing point [133, 134, 135]. In general these techniques rely
on detecting converging edge directions to vote for the most likely vanishing
point. The biggest problem of this type of approach appears when the road is
not straight but curved or its edges are not well structured. Other systems de-
tect the road by performing color and texture segmentation [117, 136]. Again,
the downside of these methods is that they usually involve computationally
expensive algorithms that could not be implemented on a mobile robot with
limited computational equipment. Finally there are some works that merge
both image segmentation and vanishing point detection. Using this approach,
in [116] better results are reached and computation is performed on-board
in a mobile robot, but the robustness of the system depends on the correct
computation of the vanishing point.

Other works perform visual navigation using pixel classification. By assum-
ing that the robot is operating on a flat surface, the problem can be reduced
to classifying pixels into two classes: traversable or non-traversable. This ap-
proach, that is suitable for robots that operate on benign flat terrains, has
been used in a variety of works for indoor navigation. In [137] classification
is done at the pixel level. First, the image is preprocessed with a Gaussian
filter. Second the RGB values are transformed into the HSV (hue, saturation,
and value) color space. In the third step, an area in front of the mobile robot
is used for reference and valid hue and intensity values inside this area are
histogrammed. In the fourth step, all pixels of the input image are compared
to the hue and intensity histograms. A pixel is classified as an obstacle if its
hue or intensity histogram bin values are below some threshold. Otherwise
the pixel is classified as belonging to the ground. This method is fast, as no
complex computation is involved. The main drawback of this method is its
low robustness to variable illumination and noise.

Due to these inconveniences, the idea of segmenting the image into a num-
ber of super-pixels (i.e., contiguous regions with fairly uniform color and tex-
ture) arises. In [103] a graph-based image segmentation algorithm [138] is used
for indoor navigation in structured environments. Initially, an image is repre-
sented simply by an undirected graph, where each pixel has a corresponding
vertex. The edge is constructed by connecting pairs of neighboring pixels.
Each edge has a corresponding weight, which is a non-negative measure of the
dissimilarity between neighboring pixels. Beginning from single-pixel regions,

52



this method merges two regions if the minimum intensity difference across the
boundary is less than the maximum difference within the regions. Once the
image is over-segmented in super-pixels, each one is labeled as belonging to the
ground or non-ground region using the HSV histogram approach. While this
method is more stable and robust, it is computationally quite expensive, so
the exploration algorithm that uses this method has to stop the robot period-
ically to capture and process images of the workspace. Using the same image
segmentation algorithm, in [139] super-pixels that are likely to be classified
equally are grouped into constellations. Constellations can then be labeled as
floor or non-floor with an estimator of confidence depending on whether all
super-pixels in the constellation have the same label. This is a more robust
method, but computationally expensive. Again, the robot must be stopped
periodically to perform computations.

Finally, there is a group of works that perform visual-navigation using a
probabilistic approach. In [140] a visual model of the nearby road is learnt
using an area in front of the vehicle as a reference. A model is built which
is subsequently used to score pixels outside of the reference area. The basic
model of the road appearance is a mixture of Gaussians (MoG)-model in RGB
space. This approach was used by Thrun in his Stanley robotic vehicle, which
won the DARPA Grand Challenge in 2005.

Some of the aforementioned ideas from previous works are used to develop
a novel method for real-time image-based autonomous robot navigation for
unstructured outdoor roads. In outdoor unstructured environments, the navi-
gable area is often cluttered by small objects with a color of the forbidden area,
for example grass, tree leaves, water or snow in the middle of the path. In this
case, most classification methods working at a pixel level would perform worse
than methods which first segment the image into several areas with similar
texture or color. Since such image segmentation is computationally expensive,
we propose both CPU and also GPU-based embedded solutions to achieve the
real-time constraints imposed by robot motion. To achieve a robust classifica-
tion of the superpixels, a probabilistic approach similar to [140] is implemented,
but using HSV color space instead of RGB. From all closed super-pixels clas-
sified as navegable path, a contour of this final region is extracted. Finally,
middle points of this contour are found to compute the motion of the robot
using a simple yet stable control law.

4.3 Method Overview

The proposed method processes an input image in order to obtain a robot
control command as its final output. Figure 4.2 shows the image processing
pipeline. Each step of the pipeline is briefly described here and in detail in the
following sections:
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Horizon detection. The input image is analyzed to find the horizon and
then it is cropped such that only the region below the horizon is fed to
the rest of the pipeline (see 4.2(b)).

Color space conversion & Smoothing. Along the RGB cropped image,
an HSV version is also obtained. In the following steps, the HSV version
is almost always used, unless otherwise specified. A median-blur filter is
applied to the RGB image, in order to reduce noise, without smoothing
edges. A blured HSV version is also obtained.

Segmentation. The RGB version of the blured image is segmented. This
step produces a segment map, which consists of an image of labeled
pixels (see 4.4(a)). The segment map is processed in order to build a
list of segments or super-pixels, which describe groups of pixels with the
same label. While building this list, mean and covariance (both in RGB
and HSV color spaces) are computed for each segment.

Classification. A rectangular region of interest (ROI) corresponding to the
area directly in front of the robot gives the system an example of the
path appearance. The RGB/HSV information of this region is modeled
by a mixture of gaussians (MOG). By comparing each super-pixel in the
image to this MOG model, a classification criteria is applied to decide
weather a super-pixel belongs to the path or non-path classes. The result
of this classification is a binary mask (see 4.2(j)).

Contour extraction. From all closed regions classified as path, the most
likely one is selected and a morphological opening filter is applied in
order to ‘close’ small gaps. The contour of this final ‘navigable path’
region is found (see 4.2(k)).

Motion control. Middle points of this contour are extracted, which define a
trajectory for the robot in the image. Finally, a simple yet stable control
law sets the linear and angular speeds in order to guide the robot through
the middle of the detected path (see 4.4(d)).

4.4 Horizon detection

As mentioned above, we assume that the robot moves on a flat terrain. How-
ever, the path the robot has to follow could be uneven causing the camera
to point up and down, thus the horizon line may not always be at the same
height. Hence, a fast horizon detection algorithm is used to find the area of
the image where the horizon line is located. In [140] the authors propose an
image-based horizon detection algorithm which rests on two basic assump-
tions: 1) the horizon line will appear approximately as a straight line in the
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(a) Input image (b) Cropped & blured (c) Segment Map

(d) Hue per pixel (e) Mean hue per
super-pixel

(f) Value per pixel

(g) Mean value per
super-pixel

(h) Saturation per
pixel

(i) Mean saturation
per super-pixel

(j) Super-pixel clas-
sification as binary
mask

(k) Filtered binary
mask

(l) Path contour

Figure 4.2: Pipeline description: (a) input image as acquired from the camera,
(b) cropped image below automatically detected horizon, (a) segment map.
For each segment, mean and covariance are computed:(e), (i) and (g) show
segment hue, saturation and value means respectively (d), (h) and(f) show
pixel hue, saturation and value for reference. (j) binary mask obtained from
classification using ground models from ROI. (k) morphological opening filter
is applied in order to ‘close’ small gaps in the binary mask. (d) path contour
extracted from processed binary mask and middle points computed, on top-left
linear and angular speeds values obtained by control law.
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image; and 2) the horizon line will separate the image into two regions that
have different appearance, i.e. sky pixels will look more like other sky pixels
and less like ground pixels, and vice versa [141]. The same assumptions are
used in other image-based horizon detection algorithms [142] and are valid for
the case of autonomous vehicles that navigate through open areas or for Un-
manned Aerial Vehicles (UAV’s). However, the second hypothesis may not be
true for unstructured outdoor environments, where it is common that pixels
above the horizon line correspond to objects, like plants, trees, cars, buildings
or even people rather than only sky, and can not then be represented with the
same model.

Thus, instead of using the second hypothesis, in this work we assume that
the horizon line will be more or less parallel to the bottom of the image, which
is valid for robots that operate on flat or small slope terrains. Based on this
assumption we define the horizon as the area of the image where the greatest
change in pixel intensity over the Y axis direction is detected. We use the
Sobel filter as a discrete differentiation operator to compute an approximation
of the gradient of the image intensity in Y axis direction. Then, we apply the
Otsu thresholding method (OTM) to the image derivative in order to segment
the image into two classes and therefore obtain a binary image. OTM finds the
best threshold which maximizes interclass variance and minimizes intraclass
variance. This is appropriate for path detection, because OTM overcomes the
negative impacts caused by environmental variation, without user assistance.
Moreover, it’s low computational complexity makes it suitable for real-time
applications and it still remains one of the most referenced thresholding meth-
ods [143]. There are some previous works that use OTM for horizon detection
[142], but in this case we apply it to the image derivative.

Once we have a binary image, we apply an erosion filter to reduce noise
and remove thin lines. Afterwards, we divide the image into a number of sub-
images consisting of horizontal stripes of the same width. Then, we compute
the number of pixels above the Otsu threshold for each sub-image, which can
be thought of as a histogram of pixels that belong to the horizon, following
the idea of [142]. For our tests, we use 10 sub-images. The sub-image with the
highest amount of foreground pixels is where the horizon is expected to be.
To obtain better results we compute the histogram two times: in the second
iteration we start the division of the image at an offset corresponding to half
the height of the sub-images, in order to overlap the first iteration. This is
very useful for cases where the horizon is in between two sub-images. In this
case, we can find a better sub-image candidate containing the horizon with the
second computed histogram. In order to choose between the two sub-images
detected during each pass, the candidate sub-image with the highest amount
of foreground pixels is chosen as the winner. Because the goal of this algorithm
is to detect where the horizon is to crop the image for the next steps of the
method, and not the horizon itself, it finishes here. If the focus were placed on
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(a) Y-image derivative (b) Otsu thresholding

(c) Erode (d) Horizon detection

Figure 4.3: Pipeline description of the horizon detection algorithm:(a) Sobel
operator is first applied to the input image to obtain Y -image derivative, (b)
Otsu thresholding is used to transform Y -image derivative to binary, (c) an
erosion filter is applied in order to reduce noise and remove thin lines, (d) a
histogram is computed to find the sub-image where the horizon line is located.

detecting the horizon, then the Hough Transform could be applied to extract
the horizon line from inside the selected sub-image. Figure 4.3 resumes the
horizon finding algorithm.

4.5 Segmentation Methods

After the horizon is detected and the image is cropped, median-blur filter is
applied in order to reduce noise without smoothing edges. The next step is to
obtain the segmentation map of the resulting image.

As it will be shown, image segmentation is the most time-consuming step
of the whole navigation method. In order to satisfy real-time and on-board ex-
ecution constraints, several segmentation methods were considered and tested.
In particular, the Graph-based segmentation algorithm and Quick Shift seg-
mentation algorithm happened to be the most adequate for the two computing
platform utilized, This platform consists of a standard notebook mounted on
the robot and a low-power GPU processor on-board the robot.

4.5.1 Graph-Based segmentation

In [138] an efficient graph-based segmentation method is presented. In general
terms, the algorithm first constructs a fully connected graph where each node
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corresponds to a pixel in the image. Pixel intensities between neighbors are
analyzed and edges are broken whenever a threshold is exceeded. The resulting
unconnected sub-graphs define the segments.

The method works as follows. An undirected graph G = (V,E) is defined,
where V is the set of vertices (pixels) and E is the set of edges. Each edge
ei,j ∈ E has an associated weight wij, which indicates the dissimilarity between
vertices vi and vj. In image segmentation, this weight is obtained by a differ-
ence in pixel intensity, color, location, etc. The segmentation S can be defined
as a partition of V into connected components C ∈ S of a graph G′ = (V,E ′),
where E ′ ⊆ E. The final result of the segmention is such that edges between
two vertices in the same component have relatively low weights, and edges
between vertices in different components have higher weights. Pseudo-code is
presented in listing 2.

Algorithm 2 Graph-based image segmentation algorithm in pseudo-code.

Sort E into π = (e1, . . . , em), by non-decreasing edge weight.
Define initial segmentation S0, such that Ci = vi
for q = 1 to m do

Define vi, vj as the vertices connected by edge eq.
Construct Sq as follows: if vi and vj are in disjoint components of Sq−1

and w(eq) is small compared to the internal difference of both those
components, then merge the two components.

end for

As demonstrated by the authors, the proposed algorithm is found to have
O(m log(m)) complexity for the case of non-integer weights.

4.5.2 Quick shift segmentation

Quick shift[144] is an example of a non-parametric mode-seeking algorithm,
which aims to estimate an unknown probability density function. Density
estimation is performed by associating data points to modes of the underlying
probability density function.

One commonly used approach for the estimation is to use a Parzen-window
for the density estimation[145]. Formally, given N data points x1, . . . , xN ∈
χ = ❘d, the Parzen-window approach estimates the probability as:

p(x) =
1

N

N∑

i=1

k(x− xi), (4.1)

where k(x) is commonly referred to as the kernel, which is generally written
as a Gaussian. The mode-seeking algorithm evolves data points xi towards
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a mode of p(xi), by means of gradient ascent over the kernel. All points
associated to the same mode form a cluster.

There are several mode-seeking methods that differ in the strategy used
to evolve those data points towards a mode. Quick shift is actually an im-
provement over Medoid shift [146] which, in turn, is an improvement over
the original Mean shift [147] method. Medoid shift simplifies this evolution
of the datapoints by restricting the point trajectories to only move over the
data points xi themselves. The downside of this approach is mainly its slow
speed in practice[144]. Finally, Quick shift simplifies trajectories even further
by not analyzing the gradient and simply moving data points to their nearest
neighbor for which there is an increment in the density p(x).

In [144] Quick shift is applied to the problem of image segmentation and
it is shown that their proposed method is considerably faster than Mean shift,
and marginally faster than Medoid shift.

Algorithm 3 Quick shift image segmentation algorithm in pseudo-code.

function computeDensity(image)
for x in all pixels of image do

P [x]← 0
for y in all pixels less than 3σ away from x do

P [x]← P [x] + e
−(f [x]−f [y])2

2σ2

end for
end for
return P

end function

function linkNeighbors(image, P )
for x in all pixels of image do

for y in all pixels less than τ away from x do
if (P [y] > P [x] and distance(x, y)

is smallest among all y) then
d[x]← distance(x, y)
parent[x]← y

end if
end for

end for
return d, parent

end function
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The first step of the Quick shift algorithm involves the computation of
the density for each pixel, by means of analyzing a local neighborhood inside
which contributes to the density are the most significative. The second step
links every pixel to its nearest neighbor with higher density. Pseudo-code is
presented in listing 3.

4.5.3 Quick shift on the GPU

GPU’s (Graphics Processing Units) have lately gained considerable popular-
ity as cheap, powerful programmable general purpose processors outside their
original application domain. Recent models are able to sustain over hundreds
of GFLOPs and due to their highly parallel architecture, GPUs are attrac-
tive platforms for intensive data-parallel algorithms. This type of hardware is
therefore very well suited for on-board mobile robots with vision-based per-
ception. Although general-purpose computing on GPU (GPGPU) has been
an active area of research for decades, the introduction of Compute Unified
Device Architecture (CUDA) and CTM has finally brought it within reach
of a broader community, giving programmers access to dedicated application
programming interfaces (APIs), software development kits (SDKs) and GPU-
enabled C programming language variants.

In [148] an implementation of the Quick shift algorithm for execution on
GPU is presented. Due to the independence in the computation of the density
between different pixels, the authors exploit the parallel execution capabilities
of the GPU for this computation. By using several features of this kind of
computing platforms, the cost associated to the type of access pattern associ-
ated to a parallel implementation of Quick shift is greatly reduced. Since the
computation of the density for a single pixel requires accessing a local neigh-
borhood of pixel densities, the redundant access of neighbors is managed by
using the texture memory space of the GPU which includes efficient caching.

Compared to a CPU implementation, the proposed algorithm implementa-
tion is between 10 to 50 times faster when running on medium-range hardware.
For the case of 256 × 256 pixel resolution images, the GPU implementation
works at 10 Hz.

In this work, the Quick shift algorithm running on a GPU was chosen due to
its speed and simplicity. However, the hardware utilized for experiments by the
authors is still more powerful than the hardware found on low-power embedded
platforms commonly present on mobile robots. Therefore, in this work several
simple optimizations were included in the originally available source-code [149]
which implements the GPU version of the Quick shift algorithm.

The first optimizations that were introduced consist of carefully tuning
the number of concurrent threads executed and the registers required for code
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compilation (which affects the efficiency of the thread scheduling and thus
the parallelization level), and also taking into account the capabilities of the
specific card to be used. The second main optimization that was introduced
involves a simpler handling of out-of-bound accesses which arise when search-
ing the neighborhood of pixels near the edges of the image. In the original
implementation these were avoided explicitly, while in our case, the clamping
mode of the texture memory is used. Here, these accesses simply return the
nearest valid pixel in the image. By introducing this change, the code can be
simpler and more efficient. Finally, memory accesses in general were reduced
by delaying them up to the point where there was certainty that they were
required.

These optimizations reduce computation to the point of allowing real-time
execution on the robot embedded GPU. The speedup obtained when compared
to the original implementation running on the same low-power GPU is around
4.8 times (see detailed results in Section 5.5).

4.6 Classification Method

To achieve a robust classification of the segments, a probabilistic approach is
used, based on [140].

In abstract terms, the classification step aims to determine if a population
sample (a segment), modeled by a Gaussian probability distribution N (µ,Σ),
with mean vector µ and covariance matrix Σ, represents an instance of a
more general model of the ‘navigable path’ class or not. This navigable path
class is represented in turn not by a Gaussian, but by a Mixture-of-Gaussians
(MoG) model. However, unlike [140], in this work the gaussian elements of this
mixture model are readily available and therefore the global mixture model is
not explicitly computed.

In the following sections, the classification method is presented in detail.

4.6.1 Segment Model Computation

Alternatively to [140] we use HSV color space to compute the segment model.
The reason for using HSV color space is that, in contrast of the RGB color
space, is that the chrominance and luminance information are maintained
in separate channels. This provides better control when selecting thresholds
over each HSV channel and also provides some degree of invariance between
chrominance and luminance.

The segment model consists of mean and covariance of a Gaussian prob-
ability distribution N (µ,Σ). This model should be computed from segment
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pixels in the HSV representation. However, computing the mean of Hue values
from a sample is, in principle, ill-posed since this channel is actually a circular
measure (can be interpreted as an angle). The solution to this problem is to
compute first the RGB segment model and then to use this result to obtain
the HSV segment model.

Computing the segment model in the RGB color space is straightforward:
given a segment composed ofN pixels PRGB

i=1...N represented as three-dimensional
vectors in the RGB color-space, with mean µRGB and covariance ΣRGB of this
segment are computed as follows:

µRGB =
∑N

i

PRGB
i

N

ΣRGB =
(PRGB

i −µRGB)(PRGB
i −µRGB)T

N−1

(4.2)

Now, the mean µRGB is converted into HSV to obtain µHSV . Finally, in
order to compute the HSV covariance matrix ΣHSV , the distance between
a pixel PHSV

i and the mean µHSV is restricted to angles less than 180◦ in
HSV space. It should be noted that this approach requires the original RGB
representation of the image, along with the computed HSV version. However,
the RGB covariance matrix ΣRGB is actually not required.

4.6.2 Path Class Model Computation

In order to compute a model for the path class, a rectangular region of interest
(ROI) corresponding to the area directly in front of the robot is used as an
example of the navigable path class appearance. From this ROI a model is
extracted. However, this area may contain very dissimilar information due
to textures (e.g. tiled path) or outliers (e.g grass on the side of the cement
road). Therefore, this area is represented not by a Gaussian, but by a Mixture
of Gaussians (MoG) model. Given that the image is already segmented and
that each segment is modeled with a Gaussian distribution, the elements of
the mixture model are already computed. Figure 4.4 shows an example of the
segment map with the mean µRGB for each segment, the ROI corresponding to
the area in front of the robot and samples of the mean µRGB for each segment
that overlaps the ROI, with its coverage percentage.

The classification step starts by computing the intersection of the segments
of the image and the rectangular ROI. Then, segments in this intersection are
re-grouped by iteratively joining similar models. This similarity is defined
in terms of the Mahalanobis distance, defined in this case for two Gaussian
distributions. Two distributions are said to be similar when:
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(a) Segment Map (b) Segments with
µ
RGB

(c) µ
RGB samples

from segments that
overlap ROI with its
coverage percentage

(d) ROI, extracted
path contour

Figure 4.4: Classification method: (a) segment map. For each segment, mean
and covariance are computed, (b), (c) µRGB samples from segments that over-
lap ROI with coverage percentage (d) ROI, path contour extracted, on top-left
linear and angular speeds values obtained by control law.

(µ1 − µ2)
T (Σ1 + Σ2)

−1(µ1 − µ2) ≤ 1 (4.3)

The process of joining similar segments inside this ROI works iteratively,
by merging two segment’s mean and covariance matrices into one. On each
step, for each segment inside this region, among all other segments that satisfy
equation (4.3), the nearest neighbor in Mahalanobis space is chosen for merg-
ing. This merging by pairs continues until no more segments can be merged.
In order to merge two segments with means µ1, µ2, covariance matrices Σ1,Σ2

and number of pixels N1, N2, a new segment is obtained by:

Nf = N1 +N2

µf = (µ1N1 + µ2N2)/(N1 +N2)

Σf = (Σ1N1 + Σ2N2)/(N1 +N2)

With this minimal set of Gaussian models, each segment in the image can
now be classified as belonging to the path or non-path classes by comparing
them to all elements of this set. Only elements which cover the ROI by more
than a specified threshold c (coverage) are considered. In this way, small
outliers inside the ROI can be ignored. Again, the notion of similarity is defined
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as in equation (4.3). Since the ROI is represented by a mixture of Gaussians
(MoG), if the path is built of different colors or textures, for example black and
white tiles, the classification method still works and all the tiles will be labeled
as belonging to the path class. The same happens in the presence of shadows.
On the other hand, if there is a small forbidden region (e.g. a piece of grass) on
the middle of the path, this segment will have a small coverage percentage and
hence it will not affect the classification. Finally, if an obstacle (sufficiently
distinguishable) appears in the middle of the path, it will be classified as non-
path, affecting the computation of middle points and therefore the robot will
steer away from the obstacle and avoid collisions. In Figure 4.5 it can be seen
that, when a person stands in front of the robot the algorithm classifies the
person as non-path and the robot follows a trajectory to circumvent him.

In equation (4.3) the sum of the covariance matrices is post-processed in
order to include the notion of minimum covariance. These minimums are
added in the computation as a way to increase the threshold used for this
classifier from (4.3), but allowing to affect each channel of the HSV color space
differently. For the case of re-grouping similar segments, this permits to be
more permissive by relaxing the notion of similarity. On the other hand, when
classifying segments, these thresholds account for the variance which exists in
the complete visible path, as opposed to only the region inside the ROI. This
issue appears frequently since the color of the path changes smoothly towards
the vanishing point and therefore the region inside the ROI may not accurately
represent the appearance of the complete path.

In order to apply these minimums to the sum of the covariance matrices,
an eigenvalue decomposition of the summed matrix is first obtained:

Σsum = V DV T (4.4)

where V is the matrix of eigenvectors andD the diagonal matrix of eigenvalues.
Then, D is modified as

D′

i =

{

Di Di > Ti

Ti else

where T is a diagonal matrix of minimum values. Finally, a new covariance
matrix is recomposed using equation (4.4) using V and D′.

It should be noted that the thresholds used for grouping path segments
do not generally depend on the environment and can be preset. On the other
hand, thresholds used for classification may need to be adjusted when high
color variance exists in the complete path.
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4.7 Path Contour Extraction

The previous classification step produces a binary mask which distinguishes
path from non-path pixels. The goal of the following step is to extract a
contour of the path within the captured image. With this contour, a simpler
path representation (as middle points) can be used in order to apply a control
law which will maintain the robot centered.

The binary mask, however, may contain several unconnected patches of
pixels detected as path, since areas of similar appearance may exist outside
but nearby the navigable area. Therefore, the first task is to identify the correct
patch. Two possibilities were analyzed: to find the patch which includes the
center point of the rectangular ROI or to extract the contour with the largest
perimeter. Experiments have indicated that the latter approach is more robust.

Once this contour is extracted, a new binary mask consisting only of the
selected patch is generated. This second mask is then processed with a mor-
phological opening operation (an erosion followed by a dilation) with the main
purpose of removing peninsulas from the main patch, which may appear in
naturally demarcated paths and should not be included in the following steps.
While the erosion operation may disconnect these patches, the area of all path
regions will be reduced. Therefore, by dilating the image afterwards, all path
areas are again expanded without reconnecting them.

The final path contour is again extracted from the processed binary mask.

4.8 Motion control

From the previously determined contour, a path center trajectory is estimated
in order to maintain the robot centered and away from path edges. First, by
going row-by-row in the image, the middle point for the current row is obtained
by subtracting the leftmost and rightmost pixel’s horizontal positions of the
path contour.

The list of middle points is used to compute angular and linear speeds with
a simple yet effective control-law, based on previous work [150]. From the list
of n horizontal values xi of the i-th middle point of the detected path region,

angular speed
·
ω and linear speed

·
x are computed as follows:

·
ω = α

n∑

i

(

xi −
w

2

)

·
x = βn− |ω|
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where w is the width of the image and α and β are motion constants.

The effects of this control law are such that the robot will turn in the
direction where there is the highest deviation, in average, from middle points
with respect to a vertical line passing through the image center. This line can
be assumed to be the position of the camera, which is mounted centered on the
robot. Therefore, whenever a turn in the path or an obstacle is present, the
robot will turn to remain inside the path and avoid the obstacle. The linear
speed of the robot is inversely proportional to the angular speed determined
by the previous computation. This has the effect of slowing down the robot
whenever it has to take a sharp turn.

4.9 Experimental results

The proposed method was tested experimentally in several aspects. In terms
of performance, computation time was measured over two distinct platforms (a
modern laptop and an embedded hardware on-board robot) for the individual
segmentation step and for an iteration of the complete method. For qualita-
tive analysis, the road detection capability of the system was evaluated using
offline execution over previously captured images, as acquired by the robot’s
camera during a human-guided step. Finally, online testing was performed by
executing the proposed algorithm on-board the robot in real-time in order to
assess the closed-loop behavior.

The robot used for online experiments (and some offline dataset acqui-
sition) was the ExaBot[27] (Figure 4.1), which features a differential-drive
motion and supports different sensor configurations depending on the needs.
For this work, the robot was equipped with an AT3IONT Mini-ITX computer,
featuring a dual core Intel Atom 330 processor with an embedded ION nVidia
graphics card. This embedded GPU is CUDA enabled, allowing it to be used
as a GPGPU platform, with 16 cores running at 1.1 GHz and with 256 MB of
RAM. On the other hand, as a reference, a modern Laptop with an Intel Core
i5 at 2.30 GHz and 4 GB of RAM was also used for performance measurements.

A firewire camera was used for acquiring images (model 21F04, from Imag-
ing Source) with a 3.5− 8mm zoom lens, set at its widest focal length. While
the camera is capable of capturing images at 640× 480 px images at 15 fps, a
smaller resolution of 320× 240 px (at 30 fps) was chosen since it was enough
for proper road detection. This smaller resolution also decreases computation
times.
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4.9.1 Offline Testing

In order to assess the quality of the algorithm in terms of its ability to perform
path detection, the proposed method was executed on more than 1000 images,
belonging to a dataset of various environments and seasonal conditions. Im-
ages were obtained from different sources: some of them were acquired with
the camera mounted on the ExaBot robot (altitude from ground: 40 cm) while
others were acquired by a camera mounted on a Pioneer 3AT robot (altitude
from ground: 70 cm). These datasets depict different situations with varying
degrees of difficulty in terms of road distinctiveness from surrounding areas,
road shape, texture and color, under many lighting conditions including shad-
ows and reflections and during different seasons.

4.9.2 Online Testing

For the purpose of analyzing the stability of the navigation when the algorithm
is executed online with a stream of images acquired on real-time by the camera,
the robot was placed on outdoor roads and positioned in different starting
configurations, some of which consisted of extreme cases which could not be
reached without manually displacing the robot. As an example, a series of
successive frames are presented on Figure 4.6. The robot is initially placed
at one side of the road (Figure 4.6(a)), pointing away from it. After enabling
robot control, the robot soon turns towards the road (Figures 4.6(b)-4.6(d))
advances and then turns again to remain on course (Figures 4.6(e)-4.6(f)).

Since real-world testing is a time costly process, system behavior has been
first tested thoroughly over off-line datasets and then simple control law testing
was performed to ensure stability of robot motion.

4.9.3 Segmentation Methods Performance

In this work, several image segmentation methods were considered in order to
meet the real-time constraints required for on-board execution on embedded
hardware. In this section, the execution time of these algorithms is presented,
measured on different platforms. While each method utilizes a different set
of parameters, the corresponding values where chosen in each case by maxi-
mizing execution speed. The size and the number of segments (as expected,
these quantities are inversely proportional to each other) are important for the
classification quality and computation speed of the navigation algorithm as a
whole. The differences obtained in the resulting segmentations for the chosen
set of parameter values, were negligible.

In Figure 4.8, mean execution speeds (over 32 iterations) are presented
corresponding to different segmentation algorithms, executing platforms and
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Figure 4.5: Example final images processed offline, as obtained from several
datasets: the green rectangle represents the ROI used for extracting road
appearance samples, the yellow line corresponds to the automatically detected
horizon, the blue contour delimitates the detected ground region, yellow points
correspond to road middle-points from which control law is computed, small
bars in top-left show the control law output for linear (top bar) and angular
speed (bottom bar), going from 0 to 1 and from -1 to 1, respectively.
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(a) (b) (c)

(d) (e) (f)

Figure 4.6: Example of online testing: series of successive frames where robot
was started from a deviated position and ended with robot centered in road

Figure 4.7: Image used for image segmentation algorithm evaluations

relevant parameters. The algorithms were executed over a test image captured
during outdoor experiments (see Figure 4.7).

On Figure 4.8(a) acceptable timings are presented, whereas on Figure
4.8(b) the execution speeds presented do not permit real-time execution and
stable control of the robot.

The first set of measurements (Figure 4.8(a)) include the execution of the
Graph-based segmentation algorithm on the Laptop’s processor and the opti-
mized Quick shift algorithm running on the GPU of the Mini-ITX computer.
These combinations of algorithms and executing platform were found to be the
fastest ones, being also within real-time constraints. For both of these cases,
the complete image was processed (horizon set to 100%) and only the relevant
part (horizon set to 71.6%) according to the test image.

The optimal tradeoff between total number and individual size of segments
was found to be around 190 segments. For the case of the Graph-based al-
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Figure 4.8: Computation time for the segmentation step, for different algo-
rithms and executing platforms

gorithm the threshold for segment splitting was t = 140. For the Quick shift
algorithm, the thresholds used were σ = 2 and τ = 8.

For completeness, a second batch of measurements was performed (Figure
4.8(b)), comparing the previous measurements to the execution of the unmod-
ified Quick shift algorithm running on the same GPU and the Graph-based
algorithm running on the Mini-ITX dual core CPU. On these conditions, the
computation times of the segmentation step alone already exceed the tolerance
for stable control of the mobile robot, which should be in the order of 4 Hz for
the whole algorithm.

Finally, by comparing the execution times (Figures 4.8(a) and 4.8(b)) be-
tween the original and optimized versions of the Quick shift segmentation
algorithm running on GPU, it can be seen that with these optimizations a
speedup of approximately 5.6× is achieved.

4.9.4 Complete Algorithm Performance

The proposed algorithm can be decomposed into several steps. In this section,
the time consumed by each step is presented. In Figure 4.9 the computational
time of each step, relative to the total iteration, is presented. In Figure 4.10
the absolute computational time consumed by each step is shown. In both
cases, two series of timings were measured, corresponding to the segmentation
algorithm and parameters choice which maximize execution speed, for the two
computing platforms considered (Laptop and embedded GPU). These time
measurements correspond to the mean value of N = 66 repetitions over the
same input image. Standard deviation is presented on Figure 4.10 for each
step. The total mean time consumed by one iteration of the algorithm was
59.9841 ms (std. dev. 1.2011 ms) when executed on the Laptop, and 179.1447
ms (std. dev. 1.744 ms) when executed on the GPU.
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(a) Computation time of algorithm as
executed on the Core i5 processor
present on the Laptop
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(b) Computation time of algorithm as
executed on the GPU present on the
Mini-ITX embedded computer

Figure 4.9: Execution time for each step relative to the whole algorithm exe-
cuted on a Laptop ((a)) and the Mini-ITX GPU ((a)): rgb2hsv: conversion of
original image to HSV color-space, blur: median-blur applied to input image,
horizon: horizon detection, rgb2hsv2: conversion to HSV of smoothed image,
segment: image segmentation algorithm (Graph-based on CPU, Quick shift on
GPU), detect segments: construction of map of labeled pixels and computation
of mean and covariance for each segment, classify: ground model construction
and individual segment classification, contour: binary mask computation from
classified segments and road contour, control: control law extraction from road
middle-points
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4.10 Conclusions

In this Chapter we presented a novel autonomous navigation method for out-
door environments. This method allows a mobile robot, equipped only with a
monocular camera, to follow structured or semi-structured paths. It does not
require training phase, camera calibration or any a priori given knowledge or
map of the environment to maximize its adaptability. The core of the method
is based on segmenting images and classifying each segment to infer a contour
of navigable space. Middle points of this contour are extracted to define a tra-
jectory for the robot in the image. Finally, a simple yet stable control law sets
the linear and angular speeds in order to guide the robot through the middle
of the detected path. To achieve real-time response and reactive behaviour for
the robot, two image segmentation algorithms are tested: one implemented on
CPU and the other implemented on a low-power on-board embedded GPU.
The validity of our approach has been verified with an image dataset of various
outdoor paths as well as with the mobile robot ExaBot.

The presented method was tested only in outdoor environments, but it
could also be applied to indoor environments, for example to traverse corri-
dors. The method works under the assumption that the robot operates in an
environment characterized by a set of regions connected by a network of paths.
However, it does not address the problem of how to navigate in open areas
where there are no distinguishable paths or how to cross intersections of two
or more paths. For this purpose other method based on visual landmarks will
be presented in the next Chapter.
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Chapter 5

Landmark-based visual
navigation

This Chapter describes a landmark-based monocular navigation method and
its implementation for the ExaBot. This method uses the map-and-replay
paradigm for navigation in indoor and outdoor unstructured environments.

5.1 Introduction

As we saw in the previous Chapter, it is possible to get a navigation method
that does not require to build a map of the environment or localize the robot
on it. However, if there is no path, road or other bounded navigable area in the
environment to go through, we still have to specify the desired trajectory for
the robot somehow. One possibility is to specify the trajectory as a sequence
of waypoints in a known reference frame. This requires an external localization
system (such as a GPS) or a map of the environment. In turn, this map can be
given in advance (a priori) to the robot, or it can be simultaneously created
as the robot localizes itself on it (SLAM). Another possibility is to specify the
trajectory as a series of sensory measurements the robot perceives along the
desired path. Typical examples are the systems where the path is given as
a sequence of images. In this case, the problem of autonomous navigation is
divided into two phases, what is known as map-and-replay technique. With
this approach, the robot first traverses the desired path during a human-guided
training phase so it can build a representation of the environment, i.e. a map.
In the second phase, the robot can use this map to navigate autonomously
through the learned path. That is why this approach is also known as teach-
and-replay.

In this Chapter, we will present a landmark-based monocular navigation
method based on the one proposed by Tomáš Krajńık in [49] and later detailed
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in his PhD thesis [151]. It uses the map-and-replay technique. The built map
contains visual natural landmark information about the environment that is
then used during the autonomous navigation phase. The basic idea is to uti-
lize image features as visual landmarks to correct the robot’s heading, leaving
distance measurements to the odometry. The heading correction itself can sup-
press the odometric error and prevent the overall position error from diverging.
The presented method is robust and easy to implement and does not require
sensor calibration or structured environment, and its computational complex-
ity is independent of the environment size. The aforementioned properties of
the method allow even low-cost robots to effectively navigate in large indoor
and outdoor environments. Experiments with ExaBot show these benefits in
practice. The original method uses a digital compass sensor to measure the
robot turns. In the presented implementation only wheel shaft encoders are
used, thus the turns of the robot are only measured and performed by means
of odometry, which makes the method even simpler.

Furthermore, and most importantly, the original version of the method
uses SURF (Speeded Up Robust Features) as visual landmarks. As a re-
sult of a thorough evaluation of a variety of image feature detector-descriptor
schemes explained in the next Chapter, we propose to use STAR based on
CenSurE (Center Surround Extremas) to detect image features and BRIEF
(Binary Robust Independent Elementary Features) to describe them. Using
STAR/BRIEF instead of SURF results in a great improvement to the method.

The rest of the Chapter is organized as follows: Section 5.2 mentions some
related works, Section 5.3 describes the method in detail, Section 5.4 shows
the convergence of the method, Section 5.5 presents some results for indoor
and outdoor environments and finally Section 5.6 concludes this Chapter.

5.2 Related work

There are lots of works that use teach-and-replay technique to achieve au-
tonomous navigation. In the article [152], a monocular camera is carried
through an environment and a video is recorded. The recorded video is then
processed (in a matter of several minutes) and subsequently used to guide a
mobile robot along the same trajectory. More similar to the method described
in this chapter, authors of papers [153, 114] present an even simpler form of
navigation in a learned map. Their method utilizes a map consisting of salient
image features recorded during a teleoperated drive. The map is divided into
several conjoined segments, each one associated with a set of visual features
detected along it and a milestone image indicating the segment end. When
a robot navigates a segment, its steering commands are calculated from posi-
tions of the currently recognized features and also from the already mapped
features. The robot using this method moves forward with a constant speed
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and steers right or left with a constant velocity or does not turn at all. In
paper [153], the end of the segment was detected by means of comparing the
milestone image with the current view. An improved version [114] of the qual-
itative navigation uses a more sophisticated method to determine the segment
end. However, the authors mention difficulties to properly detect the segment
end.

5.3 The method in detail

5.3.1 Image features as visual landmarks

Since image features are considered as visual landmarks, the feature detector
and descriptor algorithms are a critical component of the navigation method.
Image features must provide enough information to steer the robot in a correct
direction. Furthermore, they should be robust to real world conditions, i.e.
changing illumination, scale, viewpoint and partial occlusions and of course
its performance must allow real-time operation.

In the original version of the method the author decided to use Speeded
Up Robust Features (SURF) to identify visual landmarks in the image. SURF
provides both a feature detector to extract salient points from the image called
keypoints (or interest points) and a feature descriptor to provide a numerical
representation of the keypoints. The SURF method is reported to perform
better than most SIFT implementations in terms of speed and robustness to
viewpoint and illumination change.

As part of this Thesis, further evaluation of a variety of image features
detector-descriptor schemes for visual navigation was performed (see Chap-
ter 6). SIFT, SURF, CenSurE, BRIEF, ORB and BRISK methods were tested
using a long-term robot navigation data set. The goal of these off-line ex-
periments was to determine which image feature detector-descriptor scheme
is the best choice for visual navigation in terms of performance, robustness
and repeatability. As a result of this analysis we concluded that the CenSurE
detector using STAR implementation and BRIEF as descriptor is the best con-
figuration to achieve the best detector-descriptor schema for robot navigation.
On the one hand, the STAR detector gives better results to detect landmarks
than SURF, because keypoints extracted with STAR are more salient and
thus, also more stable than keypoints extracted with SURF. On the other
hand, the BRIEF descriptor gives the shortest form to describe the landmarks
and also a faster way to compare them. Instead of using the Euclidean dis-
tance to compare descriptors, as it is done with SURF, BRIEF descriptors can
be compared using Hamming distance, which can be implemented extremely
fast on modern CPUs that provide a specific instruction to perform a XOR
or bit count operation, as is the case in the latest SSE instruction set. For
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further information see Chapter 6.

Typical images from indoor and outdoor environment with highlighted
STAR feature positions are shown in Figure 5.1.

(a) Typical indoor scene. (b) Typical outdoor scene.

Figure 5.1: Robot camera view with detected landmarks (red circles) using
STAR detector algorithm.

5.3.2 The map

The key component of the proposed navigation procedure is a map. The
method uses a topological map, i.e. it represents the environment as a directed
graph. Each map edge has its own local landmark map, consisting of salient
features detected in the image captured by the robot’s forward looking camera.
The edge description also contains its length and orientation. The map is
created during a teleoperated run, in which the robot operator guides the
robot in a turn-move manner. Immediately after mapping, the operator can
start the autonomous navigation.

The local segment landmark map does not contain information about real
spatial positions of the landmarks. Instead, it states in which part of the
segment the landmarks were visible and what their image coordinates were.
This information is sufficient to compute image coordinates of the landmarks
for particular robot positions.

As one can see from a particular example of the map on Table 5.1, each
segment is described by its length s, azimuth α and a set of detected landmarks
L. A landmark l ∈ L is described by a tuple (e, k,u,v, f, g), where e is its
BRIEF descriptor and k indicates the number of images, in which the feature
was detected. Vectors u and v denote positions of the feature in the captured
image at the moment of its first and last detection and f and g are distances
of the robot from the segment start at these moments.
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Table 5.1: Local map in a text file
Record value meaning

Initial turn and length: 2.13, 7.03, 0.785 α,s

Landmark 0:

First position: 760.74, 163.29 ul0

Last position: 894.58, 54.44 vl0

First and last visible distance: 0.00, 4.25 fl0 , gl0
Descriptor: 1110101101101010... el0

Landmark 1:

First position: 593.32, 381.17 ul1

Last position: 689.89, 377.23 vl1

First and last visible distance: 0.00, 6.73 fl1 , gl1
Descriptor: 0101010001010111... el1

Referring to the memory usage for the map, the main issue is storing each
descriptor for each landmark. Here is where using BRIEF descriptors becomes
a substantial improvement over the original navigation method. Standard
image feature detector and descriptor algorithms such as SIFT or SURF use
64 (or 128 in the extended version) double values to describe a keypoint (a
feature). This meas 512 bytes for each descriptor (or 1024 in the extended
version). Instead, BRIEF uses a string of bits that can be packed in 32 bytes
(see Chapter 6). If we multiply this difference by the number of features in
the map we can realise that hundreds of megabytes are saved for large-scale
maps, significantly reducing the storage requirement of the method and making
loading into memory faster when the robot has to use the map.

5.3.3 Learning Phase

In the learning phase, the robot is manually guided through the environment in
a turn-move manner and creates a map consisting of several straight segments.
The operator can either let the robot go forward or stop it and turn it in a
desired direction. During forward movement, the robot tracks the features in
the camera image and records their positions in a (local segment) landmark
map. When stopped, the robot saves the landmark map and waits until the
operator turns it in a desired direction and resumes forward movement to map
another segment.

The procedure which creates a map of one segment is described in Algo-
rithm 4. Before the robot starts to learn a segment, it resets its odometric
counters. After that the robot starts to move forwards, and continuously tracks
the detected features and puts them in the landmark map L until the oper-
ator requests to stop. The mapping algorithm can be described by means of
manipulation with three sets of landmarks: the currently detected landmarks
S , landmarks to be tracked T and map landmarks L. The set S changes each
time a new picture is processed. For each currently tracked landmark ti (from
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Algorithm 4 Learn one segment

Output: (α, s, L) – associated data to segment, where s is traveled
distance and L is set of landmarks, a landmark is tuple
(k, e, u, v, f, g), where e is a feature descriptor, k is counter
of feature detection, u and v is position of feature in the image
(at the moment of first, resp. last occurrence), f and g denotes
distance from segment start according to u, resp. v.

L← ∅
T ← ∅
repeat

d← current traveled distance from the start.
S ← extracted features (u, e) ∈ S, u position, e descriptor.
for all ti = (ei, ki, ui, vi, fi, gi) ∈ T do

(ua, ea)← argmin{||(ei, e(s))||, s ∈ S}
(ub, eb)← argmin{||(ei, e(s))||, s ∈ S − {(ua, ea)}}
if ||(ei, ea)|| < 0.8× ||(ei, eb)|| then

ti ← (ei, ki + 1, ui, ua, fi, d)
S ← S − {(ua, ea)}

end if
end for
for all (u, e) ∈ S do

T ← T ∪ {(e, 1, u, u, d, d)}
end for

until operator terminates learning mode
s← d
L← L ∪ T

78



the set of tracked landmarks T ), the two best matching features (measured
by their descriptors’ Hamming distance) from the set S are found. If one of
the pairs is significantly more similar than the other, the tracked landmark
ti description (values k, v, g) are updated and the best matching feature is
removed from S . If not, the landmark ti is moved from the set T to the set L.
The remaining features in the set S are added to the set of tracked landmarks
T , their values of f ,g are set to the current value of the traveled distance from
the segment start and their counter of feature detections k is set to one. At
the end of the segment, its description is saved and the operator can turn the
robot to another direction and initiate mapping of another segment. A part
of the file with segment description is shown in Table 5.1.

5.3.4 Autonomous Navigation Phase

The basic idea of the autonomous navigation phase is to retrieve a set of
relevant landmarks from the map and to estimate their position in the current
camera image. These landmarks are paired with the currently detected ones
and the differences between the estimated and real positions are calculated.
The mode of these differences is then used to correct robot heading.

To start the autonomous navigation the robot is placed at the start of the
first segment, it loads the description of the first segment, resets its odome-
try, turns itself in the direction of the segment’s direction, and starts moving
forward. The navigation procedure is described in Algorithm 5.

Each time a new image is processed, the robot reads its odometric counter
d and checks which landmarks in the set L have been seen at the same distance
from the segment start, i.e. which landmarks have lower first detected distance
f and higher last detected distance g than the value of the odometric counter
d. The supposed position of these landmarks in the camera image is then com-
puted from their u, v,f , g and d values by means of linear interpolation and
they are put in the set of tracked landmarks T . Then, the pairing between
the sets T and S is established similarly as in the mapping phase. A dif-
ference in horizontal image coordinates of the features is computed for each
such pair. The mode of those differences is estimated by a histogram voting
method. The mode is converted to a correction value of movement direction,
which is reported to the robot motion control module. After the robot travels
a distance equal to the length of a given segment, the next segment descrip-
tion is loaded and the procedure is repeated. During navigation, the robot
displays current detected landmarks, estimated landmarks from the map, cor-
respondences between them and the histogram of horizontal differences, see
Figure 5.2.
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Algorithm 5 Traverse one segment

Input: (α, s, L) associated data to segment, where α is initial angle of
robot orientation at segment start, s is traveled distance and L
is set of landmarks, a landmark is tuple (e, k, u, v, f, g), where
e is a descriptor, k is counter of feature detections, u and v is
position of feature in the image (at the moment of first, resp.
last occurrence), f and g denotes distance from segment start
according to u, resp. v.

Output: c steering gain parameter

turn(α)
d← current traveled distance from the start.
while d < s do

T ← ∅
H ← ∅
d← current traveled distance from the start.
S ← extracted features, (u, e) ∈ S, u position, e feature descriptor.
for all li = (ei, ki, ui, vi, fi, gi) ∈ L do

(ua, ea)← argmin{||(ei, e(s))||, s ∈ S}
if gi ≥ d ≥ fi then

T ← T ∪ {ti}
end if

end for
while |T | > 0 do

(ei, ki, ui, vi, fi, gi)← argmax
t∈T k(t)

p← d−fi
gi−fi

(vi − ui) + ui

(ub, eb)← argmin{||ei, e(s)|| |s ∈ S \ {(ua, ea)}}
if ||(ei, ea)|| < 0.8× ||(ei, eb)|| then H ← H ∪ {px − uax}
end if
T ← T \ {(ei, ki, ui, vi, fi, gi)}

end while
ω ← c×mode(H)
setSteering(ω)

end while
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Figure 5.2: Robot view during autonomous navigation.

5.3.5 Histogram voting for steering correction

A key computation in the navigation algorithm is the estimation of the mode
of the difference between the horizontal image coordinates of the mapped and
recognized features. Since the differences are computed with a subpixel preci-
sion, we use a histogram voting method to find the mode. The histogram H
has 31 bins, each bin represents an interval of 20 pixels. At the start of the
autonomous navigation procedure 5, all bins of H are set to zero. Each time a
difference is computed, the value of the corresponding bin is increased. Once
the histogram is built, the mean value of all differences closer than 30 pixels
to the center of the highest bin is computed and is considered to be the mode.
Note that the histogram is built iteratively and that the mode computation is
possible even when the main loop of the algorithm 5 is interrupted before all
of the landmarks in T are processed. This property is important when real
time constraints need to be satisfied.

Moreover, the histogram does not contain only the information about the
mode, but also the congruence level of the observed and mapped landmarks.
Simply put, in cases where the histogram maximum is clearly distinguishable,
the computed steering value ω is likely to be correct. On the contrary, a flat
histogram indicates a high number of incorrect correspondences and a danger
that the steering value ω is wrong.
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5.4 Stability

In this section, an insight into the stability of the method is shown. First, let’s
define a set of assumptions this method is based on:

• the robot moves in a plane,

• the map already exists in a form of a sequence of conjoined linear seg-
ments with landmark descriptions,

• the robot is able to recognize and associate a nonempty subset of mapped
landmarks and to determine their bearing,

• the robot can (imprecisely) measure the traveled distance using odome-
try,

• the camera has a limited field of view and is aimed at the direction of
the robot movement.

Let the path P be a sequence of linear segments pi. The robot moves on a
plane, i.e. its state vector is (x, y, ϕ). The robot we consider has a differential,
nonholonomic drive and therefore ẋ = cos(ϕ) and ẏ = sin(ϕ). For each seg-
ment pi, there exists a nonempty subset of landmarks for its traversal and a
mapping between the robot position within the segment and expected bearing
of each landmark is established. At the start of each segment, the robot resets
its odometry counter and turns approximately towards the segment end to
sense at least one of the segment landmarks. It establishes correspondences of
seen and mapped landmarks and computes differences in expected and recog-
nized landmark bearings. The robot steers in a direction that reduces those
differences while moving forward until its odometry indicates that the current
segment has been traversed.

Definition 1 (closed path navigation property). Assume a robot navi-
gates a closed path several times using an environment map only for heading
corrections, while measuring the distance by odometry. The path for which the
robot position uncertainty at any point is bound has a closed path navigation
property.

Theorem 1. A path consisting of several conjoined non collinear segments
retains the closed path navigation property if the conditions listed above are
satisfied.

Suppose that the given path is a square and the robot has to traverse it
repeatedly. The robot is placed at a random (2D Gaussian distribution with
zero mean) position near the first segment start, see Figure 5.3. The initial

82



position uncertainty can therefore be displayed as a circle, in which the robot
is found with some probability. The navigation method is switched on and the
robot starts to move along the first segment. Because it senses landmarks along
the segment and corrects its heading, its lateral position deviation is decreased.
However, due to the odometric error, the longitudinal position error increases.
At the end of the segment, the circle denoting position uncertainty therefore
becomes an ellipse with the shorter axis perpendicular to the segment. The
effect of heading corrections is dependent on the lateral deviation, the greater
the deviation, the stronger the effect of heading corrections and therefore the
lateral error decreases by a factor h for every traversed segment. The odometry
error is independent of the current position deviation and is influenced only
by the length of the traversed segment and odometry multiplicative error. In
our case, each segment has the same length and we can model the odometry
error by an additive constant o.

Figure 5.3: Position uncertainty evolution in a simple symmetric case.

After the segment is traversed, the robot turns 90◦ and starts to move
along the second segment. The uncertainty changes again, but because of
the direction change, the longer ellipse axis shrinks and the shorter one is
elongated due to odometry error. As this repeats for every traversed segment,
the size of the uncertainty ellipse might converge to a finite value. Since this
particular trajectory is symmetric, we can easily compute each dimension of
the ellipse and see if these values stabilize. We depict the longer and shorter
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semiaxis of the ith ellipse as ai and bi respectively, and establish the equations

ai+1 = bi + o
bi+1 = aih,

(5.1)

where h is a coefficient of lateral error reduction and o is the odometric error
(o = 1, h = 0.25 in Figure 5.3). The equation (5.1) represents the influence of
heading correction, which reduces the lateral uncertainty by the factor h and
odometry measurement, which increases the longitudal error additively by o.
Rewriting equations 5.1, we get

ai+2 = aih+ o
bi+2 = h(bi + o).

(5.2)

If the factor of lateral position uncertainty decrease h is lower than one,
the a∞=limi→∞ ai and b∞=limi→∞ bi exist and are obtainable by

a∞ = o/ (1− h)
b∞ = ho/ (1− h) .

(5.3)

This means that, as the robot travels the aforementioned path repeatedly,
the dimensions of the ellipse characterizing its position uncertainty converge
to a∞ and b∞. Note, that the a∞ and b∞ do not depend on the initial position
uncertainty and existence of a finite solution of equation (5.2) does not depend
on the particular value of the odometry error o. Though useful, this particular
symmetric case gives us only a basic insight into the problem. A formal math-
ematical model of the navigation method for other nonsymmetrical paths as
well and proof of convergence can be found in [49].

5.5 Experiments

To test the presented method, both indoor and outdoor experiments were
performed. Also a convergence experiment was done to show the stability of
the method described in 5.4

5.5.1 Indoor experiment

For the indoor experiment we performed a tour on the second floor of the Pa-
bellón 1 building of Ciudad Universitaria, Buenos Aires. A path with a length
of 32m, comprising three corridors and a hall, was first mapped in a guided
way. After the path was mapped, the robot was placed in the same starting
point of the learning phase and was requested to traverse it autonomously. It
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took approximately five minutes for the robot to traverse the learned path.
The final position of the replay phase was 0.45m away from the final position
of the learning phase, which represents around 1.4% error. Finally, the au-
tonomous navigation was conducted again but stating 0.3 m away from the
beginning of the path to the right. In this case, the final position of the replay
phase was 0.93m away from final position of the learning phase, which repre-
sents around 2.9% error. In Figure 5.4 the path of the robot in the building
and some snapshots of the autonomous navigation phase can be seen.

(a) (b)

(c) 2nd floor plan of Pabellón 1, Ciudad Universitaria.

(d) (e)

Figure 5.4: 5.4(a), 5.4(b), 5.4(d) and 5.4(e): snapshots (one for each path seg-
ment) extracted from autonomous navigation phase. 5.4(c): the path around
offices corridors and hall in the 2nd floor of Pabellón 1, Ciudad Universitaria.

5.5.2 Oudoor experiment

The method’s performance for outdoor environments was evaluated in the
university campus. The experiment was performed at the rear entrance of
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the Pabellón 1 building. The robot was taught a 54m long path which went
through a variable non-flat terrain with asphalt road and open regions. The
approximate path is drawn on the map of the Pabellón 1 (see Figure 5.5).

After the path had been mapped, the robot was placed at the beginning
of the path and requested to traverse it autonomously. It took approximately
teen minutes for the robot to traverse the learned path. Some pedestrians
showed up and either entered the robot’s field of view or crossed its path.
Nevertheless, the robot was able to complete the learned path. The robot
traversed the path autonomously with an accuracy of 0.57 m, which represents
around 1.05% error.

(a) (b)

(c) Satellite image of Pabellón 1, Ciudad Universitaria.

(d) (e)

Figure 5.5: 5.5(a), 5.5(b), 5.5(d) and 5.5(e): snapshots (one for each path seg-
ment) extracted from autonomous navigation phase. 5.5(c): the path around
the rear entrance of the Pabellón 1 building.
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5.5.3 Convergence experiment

The convergence experiment consists of doing the symmetrical case to test the
stability of the method in practice (see Figure 5.3). The robot was guided
around a square with a 5m side in a indoor environment. After the square
path was mapped, the robot was placed 1m to the right of the starting spot
and requested to traverse it autonomously. After three iterations the robot
reached a place less than 0.05m from the starting spot. Figure 5.6 shows the
three iteration final spots. The origin of coordinates coincides with the starting
point of the learning phase.

Figure 5.6: Position error evolution in a simple symmetric case.

5.6 Conclusions

In this Chapter, a landmark-based monocular navigation method and its im-
plementation for the ExaBot were described. This method was based on the
proposal of Tomas Krajnik [49]. It uses the map-and-replay technique. A
topological map is built during learning phase which contains visual natural
landmarks information about the environment. This landmarks are then used
during the autonomous navigation phase. The basic idea is to utilize image
features as visual landmarks to correct the robot’s heading, leaving relative
distance measurements to the odometry. The heading correction itself can sup-
press the odometric error and prevent the overall position error from diverging.
The original version of the method uses a digital compass that was demon-
strated to be unnecessary, since the turns of the robot can be estimated by
odometry. Moreover, and more importantly instead of using SURF (Speeded
Up Robust Features) as visual landmarks, we propose to use STAR based on
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CenSurE (Center Surround Extremas) to detect image features and BRIEF
(Binary Robust Independent Elementary Features) to describe them. In this
way a significant improvement to the known method was proposed. Experi-
ments with ExaBot were performed to test this method in both indoor and
outdoor environment. Finally, a convergence experiment was also conducted
to see the stability of the method in practice.

Although this method has shown to be robust and applicable to indoor/out-
door environments, it has some drawbacks. The main disadvantage is that the
robot workspace is limited to only the regions visited during the training step.
The user has to guide the robot all around the entire environment before per-
forming autonomous navigation, which may represent a very tedious process,
specially in large environments. In Chapter 7 we will propose a hybrid ap-
proach to take advantage of the segmentation-based navigation in the regions
of the environment that can be traversed by the robot with a reactive control,
i.e. without map. In this way, the only regions that need to be learned during
the operator guide are those that can not be traversed without a map.
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Chapter 6

Performace of local image
features for long-term visual
navigation

In this Chapter we evaluate a variety of image features for long-term visual nav-
igation. The goal of this Chapter is to conclude which image feature detector-
descriptor scheme is best for visual navigation.

6.1 Introduction

An open problem in mobile robotics is long-term autonomy in naturally chang-
ing environments. In this Chapter, we consider a scenario, in which a mobile
robot running a map-and-replay method like the one described in Chapter 5
has to navigate a certain path over an extended -i.e. months- period of time.
In long term, the perceived scene is not affected only by lighting conditions,
but also by naturally occurring seasonal variations. A critical question is which
kind of image feature detector-descriptor scheme would be the most robust to
changes caused by lighting and seasonal variations. To address this question,
we have used a dataset of sixty images covering an entire year of seasonal vari-
ations of an urban park to evaluate efficiency of state of the art image feature
extractors.

Since we have shown that a crucial factor for mobile robot navigation is
robot heading, we focus on estimation of the robot relative rotation among a
set of images at a particular location. Therefore, we calculate relative rotation
of each image pair from the same location and compare the results with a
ground truth. A secondary measure of the feature extractor is its speed. To
establish the speed, we have used the average time to extract a given number
of features.
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We start this Chapter with an overview of existing feature detector-descriptor
methods. After that, we describe the dataset we have used for benchmarking
and we propose two methods for image registration. Then we discuss results
and reach a conclusion on about which type of the feature detector-descriptor
scheme is best for long-term mobile robot navigation.

6.2 SIFT (Scale Invariant Feature Transform)

Scale-invariant feature transform (or SIFT) is the best known algorithm in
computer vision to detect and describe local features in images. The algorithm
was published by David Lowe in 1999 [154].

6.2.1 Keypoint detection

The first stage of keypoint detection is to identify locations and scales that
can be repeatably assigned under differing views of the same object. Detecting
locations that are invariant to scale changes of the image can be accomplished
by searching for stable features across all possible scales, using a continuous
function of scales known as scale space.

It has been shown by Lindeberg [155] that under some rather reasonable as-
sumptions the only possible scale-space kernel is the Gaussian function. There-
fore, the scale space of an image is defined as a function L(x, y, σ) that is the
convolution of a variable-scale Gaussian function G(x, y, σ) with an input im-
age I(x, y)

L(x, y, σ) = G(x, y, σ) ∗ I(x, y), (6.1)

where ∗ is the convolution operation in x and y, and

G(x, y, σ) =
1

2πσ2
e

−(x2+y2)

2σ2 (6.2)

To detect stable keypoint locations in scale space, Lowe has proposed to use
scale-space extrema in the difference-of-Gaussian (DoG) function convolved
with the image, D(x, y, σ), which can be computed from the difference of two
scales up to a constant multiplicative factor k:

D(x, y, σ) = (G(x, y, kσ)−G(x, y, σ)) ∗ I(x, y) (6.3)

= L(x, y, kσ)− L(x, y, σ) (6.4)
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For scale-space extrema detection in the SIFT algorithm, the image is first
convolved with a Gaussian function at different scales. The convolved images
are grouped by octaves. An octave correspondes to doubling the value of
σ. The factors ki are selected to obtain a fixed number of convolved images
per octave. Then the difference-of-Gaussians (DoG) images are taken from
Gaussian convolved images at adjacent scales in each octave. In Figure 6.1
the schema of how to compute DoG images is shown.

Figure 6.1: DoG images, extracted from [156]. For each octave of the scale
space, the initial image is repeatedly convolved with Gaussians to produce the
set of scale space images shown on the left. Adjacent Gaussian images are
subtracted to produce the difference-of-Gaussian images on the right. After
each octave, the Gaussian image is down-sampled by a factor of 2, and the
process is repeated.

In order to detect the local maxima and minima of D(x, y, σ), each pixel
is compared to its eight neighbors in the current DoG image and nine neigh-
bors in the scale above and below. If the pixel value is the maximum or
minimum among all compared pixels, it is selected as a candidate keypoint.
This scale-space extrema detection produces too many keypoint candidates,
some of which are unstable. The next step is to perform a detailed fit to the
nearby data for accurate location, scale and ratio of principal curvature. This
information allows points that have low contrast (and are therefore sensitive
to noise) or are poorly localized along an edge to be rejected. To do that, the
interpolated location of the extremum is calculated using the quadratic Tay-
lor expansion of the DoG scale-space function D(x, y, σ), with the candidate
keypoint as the origin. This Taylor expansion is given by:
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D(x) = D +
∂DT

∂x
x+

1

2
xT ∂

2D

∂x2
x (6.5)

where D and its derivatives are evaluated at the candidate keypoint x0 and
x = (x, y, σ) is the offset from this point.

The location of the extremum x̂ is determined by taking the derivative of
this function with respect to x and setting it to zero. If the offset x̂ is larger
than 0.5 in any dimension, it is an indication that the extremun lies closer to
another candidate keypoint. In this case, the candidate keypoint is changed
and the interpolation is performed about that point instead. The final offset
x̂ is added to its candidate keypoint to get the interpolated estimate for the
location of the extremum.

To discard the keypoints with low contrast, the value of the second-order
Taylor expansion D(x) is computed at the final x̂. If this value is less than 0.03
the candidate keypoint is discarded. Otherwise it is kept, with final location
x0 + x, where x0 is the original location of the candidate keypoint, and the
scale σ.

The DoG function will have strong responses along edges, even if the can-
didate keypoint is not robust to small amounts of noise. Therefore, in order
to increase stability, we need to eliminate the keypoints that have poorly de-
termined locations but have high edge responses. For poorly defined peaks
in the DoG function, the principal curvature across the edge would be much
larger than the principal curvature along it. The principal curvatures can be
computed from a 2×2 Hessian matrix, H, calcutaled at the location and scale
of the keypoint:

H =

(
Dxx Dxy

Dxy Dyy

)

where Dxx denotes second partial derivative of DoG function ∂2D
∂x2 (and the

same for Dyy and Dxy).

The eigenvalues of H are proportional to the principal curvatures of D. It
turns out that the ratio of the two eigenvalues, if α is the larger one, and β
the smaller one, is r = α/β. The trace of H, given by Dxx + Dyy is equal
to the sum of the two eigenvalues, while its determinant, given by DxxDyy −
D2

xy is equal to their product. Thus, the ratio of the trace squared and the
determinant can be easily shown to be equal to (r + 1)2/r, which depends
only on the ratio of the eigenvalues rather than their individual values. This
quantity is at a minimum when the eigenvalues are equal to each other and
it increases with r. Therefore the higher the absolute difference between the
two eigenvalues, which is equivalent to a higher absolute difference between
the two principal curvatures of D, the higher the value of the ratio of the trace
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and the determinant. Then, to check if the ratio of principal curvatures of a
given keypoint is below some threshold, r, we only need to check if:

trace(H)2

det(H)
<

(r + 1)2

r

When this condition is satisfied, it means that the keypoint is poorly lo-
calized and hence rejected. The experiments performed by Lowe use a value
of r = 10, which eliminates keypoints that have a ratio between the principal
curvatures greater than 10.

6.2.2 Keypoint orientation

Each keypoint is assigned one or more orientations based on local image gra-
dient directions. This is the key step in achieving invariance to rotation as the
descriptor can be represented relative to this orientation. First, the scale of
the keypoint is used to select the Gaussian convolved image, with the closest
scale, so that all computations are performed in a scale-invariant manner. For
each image sample L(x, y), at this scale, the gradient magnitude m(x, y) and
orientation θ(x, y) are precomputed using pixel differences:

m(x, y) =
√

((L(x+ 1, y)− L(x− 1, y))2 + ((L(x, y + 1)− L(x, y − 1))2

θ(x, y) = tan−1(L(x, y + 1)− L(x, y − 1)/L(x+ 1, y)− L(x− 1, y))

Note thatm and θ do not depend on σ because this parameter is fixed to the
closest scale of the keypoint. The magnitude and direction calculations for the
gradient are done for every pixel in a neighboring region around the keypoint
in the Gaussian convolved image L. An orientation histogram with 36 bins is
formed, with each bin covering 10 degrees. Each sample in the neighboring
window added to a histogram bin is weighted by its gradient magnitude and
by a Gaussian-weighted circular window with a new σ that is 1.5 times that of
the scale of the keypoint. The peaks in this histogram correspond to dominant
orientations. Once the histogram is filled, the orientations corresponding to
the highest peak and local peaks that are within 80% of the highest peaks are
assigned to the keypoint. In the case of multiple orientations being assigned,
an additional keypoint is created having the same location and scale as the
original keypoint for each additional orientation.

6.2.3 Keypoint descriptor

Previous steps found keypoint locations at particular scales and assigned orien-
tations to them. This ensured invariance to image location, scale and rotation.
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Now we want to compute a descriptor vector for each keypoint such that the
descriptor is highly distinctive and partially invariant to the remaining vari-
ations such as illumination, viewpoints, etc. This step is performed on the
Gaussian convolved image closest in scale to the keypoint’s scale.

To build the descriptor a patch around the keypoint is considered. In order
to achieve orientation invariance, first the coordinates of this patch and the
gradient orientations inside it are rotated relative to the keypoint orientation.
Then, a set of orientation histograms are created on 4 × 4 subregions of the
path. Each subregion has a 16 × 16 sample matrix and each histogram has
8 bins for directions. These histograms are computed from magnitude and
orientation values of the samples. The magnitudes are further weighted by
a Gaussian function with σ equal to one half the width of the descriptor
window. These weighted magnitudes are then accumulated into the 8 bins of
the corresponding histogram. The descriptor then becomes a vector of all the
values of these histograms. Since there are 4× 4 = 16 histograms each with 8
bins the vector has 128 elements (see Figure 6.2).

Figure 6.2: SIFT descriptor, extracted from [156]. It is built using 4× 4 = 16
histograms and each histogram has 8 bins, then the descriptor vector has 128
elements.

Finally, the feature vector is modified to reduce the effects of illumination
change. First, the vector is normalized. A change in image contrast in which
each pixel value is multiplied by a constant will multiply gradients by the
same constant, so this contrast change will be canceled by vector normaliza-
tion. A brightness change in which a constant is added to each image pixel
will not affect the gradient values, as they are computed from pixel differences.
Therefore, the resulting descriptor is invariant to affine changes in illumina-
tion. However, non-linear illumination changes can also occur due to camera
saturation or due to illumination changes that affect 3D surfaces with differing
orientations by different amounts. These effects can cause a large change in
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relative magnitudes for some gradients, but are less likely to affect the gradient
orientations. The influence of large gradient magnitudes is reduced by thresh-
olding the values in the unit feature vector using a 0.2 threshold, and then
renormalizing the vector. This means that matching the magnitudes for large
gradients is no longer as important, and that the distribution of orientations
has greater emphasis. The value of 0.2 was determined experimentally using
images containing different illuminations for the same 3D objects.

6.3 SURF (Speeded Up Robust Feature)

SURF (Speeded Up Robust Features) is a robust local feature detector and
descriptor, first presented by Herbert Bay in 2006 [157]. It is inspired by the
SIFT descriptor. The standard version of SURF is several times faster than
SIFT and claimed by its authors to be more robust against different image
transformations than SIFT. One contribution of SURF algorithm is the use of
integral images, which allows to speed-up the image processing.

6.3.1 Integral images

Integral images are used by all parts of SURFmethod to significantly accelerate
their speed. The intregal image IΣ is calculated from a luminance component
of the original image I using the equation:

IΣ(x, y) =
x∑

i=1

y
∑

j=1

I(i, j)

Using the integral image, only four memory read accesses are necessary
to calculate the square integral of the original image, regardless of the area
size. For example, the integral over the gray area S in Figure 6.3 is equal to
Σ(S) = IΣ(A) + IΣ(D)− IΣ(C)− IΣ(B).

6.3.2 Keypoint detection

SURF bases the keypoint detection on the Hessian matrix because of its good
performance in computation speed and accuracy. The Hessian matrix can be
used to detect blob-like structures at locations where its determinant is ex-
tremun. The value of the determinant is used to classify the maxima and
minima of the function by the second order derivative test. Since the determi-
nant is the product of eigenvalues of the Hessian, the locations can be classified
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Figure 6.3: Integral image: it takes only four operations to calculate the gray
area S of a rectangular region of any size.

based on the sign of the result. If the determinant is negative then the eigen-
values have different signs and hence the location is not a local extremum; if it
is positive then either both eigenvalues are positive or both are negative and
in either case the location is classified as an extremum.

Hence a method to calculate the second order partial derivatives of the
image is required. This can be done by convolution with an appropriate kernel.
In the case of SURF the second order scale normalized Gaussian is the chosen
filter as it allows for analysis over scales as well as space. Kernels for the
Gaussian derivatives in x, y and combined xy direction can be constructed
such that we calculate the four entries of the Hessian matrix. The use of
the Gaussian derivaties allows to vary the amount of smoothing during the
convolution stage so that the determinant is calculated at different scales.
Furthermore, since the Gaussian is an isotropic (i.e. circularly symmetric)
function, convolution with the kernel allows for rotation invariance. Therefore,
the Hessian matrix H can be calculated as a function of both space and scale
x = (x, y, σ):

H(x, σ) =

(
Lxx(x) Lxy(x)
Lxy(x) Lyy(x)

)

(6.6)

Here Lxx(x) refers to the convolution of the second order Gaussian deriva-

tive ∂2G(x)
∂x2 with the image I at the point x and similarly for Lxx and Lxy.

These derivatives are known as Laplacian of Gaussians (LoG). In order to use
the integral image for convolution, and given Lowe’s success with LoG approx-
imations, the authors of SURF proposed to approximate Gaussian derivatives
by box filters with integer coefficients. This approximation combined with the
use of an integral image represents the biggest performance optimization in the
SURF algorithm. The approximation is illustrated in Figure 6.4. The upper
line contains representations of the discretized and cropped convolution of the
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second order derivatives of Gaussian kernels Lxx, Lyy, Lxy, respectively. The
lower line is their representation by simple box filters Fxx, Fyy, Fxy. Black
squares in the representation of Fxx and Fyy mean weighting of each image
pixel by coefficient -2. Black squares in representation of Fxy mean weighting
of each image pixel by -1. On the other hand, white squares mean weighting
coefficient of 1 and gray 0.

Figure 6.4: Top, left to right: discretized and cropped second order Gaussian
derivatives in x (Lxx), y (Lyy) and xy-direction (Lxy), respectively. Down, left
to right 2-D filter approximations Fxx, Fyy and Fxy. Extracted from [158].

The 9 × 9 pixel box filters are closest approximation of a Gaussian with
σ = 1.2 and in the case of SURF represent the smallest scale to calculate the
Hessian. This approximation presents a noticeable distortion to calculate the
Hessian’s determinant. Then, a relative weight w of the filter responses is used
to balance the expression for the Hessian’s determinant. This yields:

det(H) = (LxxLyy)− (LxyLyx) (6.7)

det(Haprox) = FxxFyy − (wFxy)
2 (6.8)

It seeks to conserve energy between the Gaussian kernels and the approximated
Gaussian kernels, then:

w =
|Lxy(x, y, 1.2)|F |Fyy(x, y, 9)|F
|Lyy(x, y, 1.2)|F |Fxy(x, y, 9)|F

= 0.912 ≃ 0.9 (6.9)

where | · |
F
is the Frobenius norm. Notice that for theoretical correctness, the

weighting changes depending on the scale. In practice, w is constant, as this
does not have a significant impact on the results.
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6.3.3 Scale space construction

Because the SURF algorithm uses only simple box filters to build a detection
response map, it is much more computationally efficient to scale box filters
instead of the image (see Figure 6.5).

Figure 6.5: Scale space: instead of iteratively reducing the image size (left)
as in SIFT, the use of integral images allows the up-scaling of the filter at
constant cost in SURF (right). Extracted from [158].

Box filter scaling with the use of integral image keeps the calculation time
constant for all filter sizes. This approach is mathematically equivalent to
scaling in image pyramid and calculating the response map afterward. The
smallest filter size is 9 × 9 pixels and, as mentioned before, corresponds to
a Gaussian kernel with σ = 1.2. This level is denoted as a ‘base scale’. To
preserve symmetry, the box filter areas must increase evenly and symmetri-
cally. This means that we have to add at least 6 pixels to a filter edge during
each step in a scale space creation. As in SIFT, the scale space is divided
into octaves. An octave represents a series of filter response maps obtained by
convolution using increasing filter sizes. In total, an octave covers a scaling
factor of 2 (which implies that the filter size has to be more than doubled).
Each octave is subdivided into a constant number of scale levels (called in-
tervals). To cover the scale space efficiently the sampling step and filter size
increase step doubles between subsequent octaves. For two successive levels,
we must increase the size of the filter by a minimum of 2 pixels (1 pixel on
every side) in order to keep the size uneven and thus ensure the presence of
the central pixel. This yields in a total increase of the mask size by 6 pixels
(see Figure 6.6).
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Figure 6.6: Filters Fyy (top) and Fxy (bottom) fo three successive scale levels:
9× 9, 15× 15 and 21× 21. Extracted from [158].

6.3.4 Keypoint location

At this point the Hessian values in the desired octaves and intervals are cal-
culated filling a scale space. In SURF, keypoint location is composed of three
steps. Determinants are first compared with a required lower threshold value.
This value controls the overall sensitivity of the detector. Determinants which
surpass the threshold are subjected to local non-maximum suppression during
which the candidate determinant is compared with all of its 26 neighbors in
scale space, like in SIFT. Because the candidate determinant must surpass all
of its neighbors, interest points can be located only in scale intervals with both
neighbor scale levels.

The last step in the keypoint localization is a sub-pixel position interpola-
tion of the Hessian function local maximum. The 2nd. order Taylor approxi-
mation of the Hessian function in scale space is used:

H(x) = H +
∂HT

∂x
x+

1

2
xT ∂

2H

∂x2
x (6.10)

As in SIFT, the location of the extremum x̂ is determined by taking the
derivative of this function with respect to x and setting it to zero. If the
resulting location of an interpolated local maximum has all its absolute values
of coordinates smaller than 0.5, the candidate determinant position is fixed
(after proper scaling) with interpolation result and accepted as a keypoint
location. If some of the local maximum coordinates is bigger than 0.5, then
the candidate determinant position is updated and the interpolation procedure
is repeated. This procedure is applied until either the criterion is satisfied or
the maximal number of interpolation steps is reached.
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6.3.5 Keypoint orientation

The rotation invariance mechanism in SURF uses dominant luminance gra-
dient orientation in the neighborhood of the keypoint. The keypoint circular
neighborhood with radius 6s (with s the scale at which the keypoint was de-
tected) is sampled using 4s-sized Haar wavelets in s sized steps. Once the
wavelet responses are calculated and weighted with a Gaussian function with
σ = 2s centered at the keypoint, they are represented as points in a 2-D space
with the horizontal response strength along the abscissa and the vertical re-
sponse strength along the ordinate. The vectors from the origin to all points in
a sliding orientation window of size π/3 are summed to form a dominant ori-
entation vector for a given window. The sliding orientation window is shifted
in π/18 steps. The orientation of the biggest summed vector is selected as a
reproducible keypoint orientation (see Figure 6.7.

Figure 6.7: Orientation assignment: a sliding orientation window of size π/3
detects the dominant orientation of the Gaussian weighted Haar wavelet re-
sponses at every sample point within a circular neighborhood around the key-
point. Extracted from [158].

Note that for some applications, such as ground robot navigation in a flat
terrain, rotation invariance is not necessary, thus they do not use this step.
This alternative is called U-SURF (Upright version of SURF).

6.3.6 Keypoint descriptors

The descriptor is calculated from a square area surrounding the keypoint with
edge size 20s (s the scale of the keypoint). If rotation invariance is required,
the square area has to be rotated by the dominant orientation angle of the
keypoint. This area is split up regularly into 4× 4 square sub-regions. These
sub-regions are regularly sampled using Haar wavelet responses with sampling
step s, producing 5×5 = 25 samples per sub-region. If the rotation invariance
is required, the responses should be calculated from a rotated image, however
due to the usage of integral images to achieve higher computational efficiency,
the responses are calculated from the original image and afterward rotated by
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the dominant orientation angle. Wavelet responses in the Figure 6.8 represent
already rotated horizontal and vertical responses. The response rotated along
the dominant orientation angle is denoted dx and the response perpendicular
in a positive sense dy. To increase descriptor robustness against geometric
deformations and localization errors, the wavelet responses are weighted by
a Gaussian with σ = 3.3s centered at the keypoint. Each of the 16 sub-
regions is afterward described by a four-dimensional vector defined as v =
(
∑

dx,
∑

dy,
∑ |dy|,∑ |dx|). The resulting SURF descriptor is obtained by

putting all 4× 4× 4 = 64 values into one vector and normalizing it.

Figure 6.8: To build the descriptor, an oriented quadric grid with 4× 4 square
sub-region is laid over the keypoint (left). For each square, the wavlet re-
sponses are computed from 5×5 (for illustrative purposes, we show only 2×2
su-divisions). For each sub-division, dx, |dx|, dy and |dy| are computed rela-
tively to the orientation of the grid (right). Extracted from [158].

6.4 CenSurE (Center Surround Extrema)

Center Surround Extrema (or CenSurE) has been proposed by Motilal Agrawal
et. al. in 2008 [159]. It is developed to be used in real time applications. The
CenSurE features are computed at the extrema of the center-surround filters
over multiple scales.

6.4.1 Bi-level Filters

Scale invariant detectors based on image pyramid are known to loose precision
in the higher levels of the pyramid due to sub-sampling. SIFT, SURF and other
algorithms which use sub-sampling try to recover this precision by calculating
the keypoint location with sub-pixel interpolation. CenSurE detection method
abandons this approach and searches for keypoints on all scales using the
same precision. Keypoints are detected as extrema of the Laplacian in scale-
space, or more generally, extrema of the center-surround response. While Lowe
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approximated the Laplacian with the difference of Gaussians, CenSurE seeks
even simpler approximations, using center-surround filters that are bi-level,
that is, they multiply the image value by either 1 or −1. Figure 6.9 shows a
progression of bi-level filters with varying degrees of symmetry. The circular
filter is the most faithful to the Laplacian, but hardest to compute. The other
filters can be computed rapidly with integral images, with decreasing cost from
octagon to hexagon to box filter.

Figure 6.9: Progression of Center-Surround bi-level filters. (a) circular sym-
metric BLoG (Bilevel LoG) filter. Successive filters: (b) octagon (c) hexagon,
(d) box have less symmetry. Extracted from [159]

The two endpoints are analyzed: octagons for good performance, and boxes
for good computation.

CenSurE-DOB

The idea is to replace the two circles in the circular BLoG with squares to
form the CenSurE-DOB (CenSurE difference of Boxes). This results in a
basic center-surround Haar wavelet. Figure 6.9(d) shows the generic center-
surround wavelet of block size n. The inner box is of size (2n+ 1)× (2n+ 1)
and the outer box is of size (4n+ 1)× (4n+ 1) (see Figure 6.9(d)).

CenSurE-Oct

Difference of Boxes are obviously not rotationally invariant kernels. In partic-
ular, DOBs will perform poorly for 45 degrees in-plane rotation. Octagons, on
the other hand are closer to circles and approximate LoG better than DOB. An
octagon can be represented by the height of the vertical side (m) and height
of the slanted side (n) (see Figure 6.9(b)).
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STAR

STAR is derived from CenSurE detector. While CenSurE uses polygons, STAR
mimics the circle with 2 overlapping squares: one upright and other 45-degree
rotated. These polygons are also bi-level. They can be seen as polygons with
thick borders. The borders and the enclosed area have weights of opposing
signs. STAR is the most popular implementation of CenSurE detector schema.

Filter Computation

The key of CenSurE is the possibility to compute the bi-level filters efficiently
at all sizes. The box filter can be implemented using the integral image.
Modified versions of integral images can be exploited to compute the other
polygonal filters rather than rectangular areas. The idea here is that any
trapezoidal area can be computed in constant time using a combination of
two different slanted integral images, where the sum at a pixel represents an
angled area sum. The degree of slant is controlled by a parameter α:

IΣα
(x, y) =

y
∑

i=1

x+α(y−i)
∑

j=1

I(i, j)

When α = 0, this is just the standard rectangular integral image. For
α < 0, the summed area slants to the left; for α > 0, it slants to the right.
Slanted integral images can be computed in the same time as rectangular ones,
using incremental techniques. Adding two areas together with the same slant
determines one end of a trapezoid with parallel horizontal sides; the other
end is done similarly, using a different slant. Each trapezoid requires three
additions, just as in the rectangular case. Finally, the polygonal filters can be
decomposed into 1 (box), 2 (hexagon), and 3 (octagon) trapezoids, which is
the relative cost of computing these filters.

6.4.2 Keypoint detection

First, seven filter responses at each pixel in the image are computed. Then, a
non-maximal suppression over the scale space is performed. Briefly, a response
is suppressed if there is a response greater (maxima case) or a response less
than (minima case) its neighbors, in a local neighborhood over the location
and scales. Pixels that are either maxima or minima in this neighborhood are
the keypoint locations. A 3 × 3 × 3 neighborhood is used for non-maximal
suppression. The magnitude of the filter response gives an indication of the
strength of the feature. The greater the strength, the more likely it is to be
repeatable. Weak responses are likely to be unstable. Therefore, a threshold
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can be applied to filter out the weak responses. Since all responses are com-
puted on the original image without sub-sampling, all keypoint are localized
correctly so subpixel interpolation is not needed.

After searching for local extrema in scale space the line suppression mech-
anism is applied. It is based on the scale-adapted Harris measure computed
from the box filter responses. The Harris measure is more expensive to com-
pute than the Hessian matrix used by SIFT. However, this measure needs to
be computed for only a small number of keypoints that are scale-space max-
ima and whose response is above a threshold and hence does not represent a
computational bottleneck.

6.4.3 Keypoint descriptor

The CenSurE descriptor is an improvement of the SURF descriptor. The
SURF descriptor weighs the Haar wavelet responses. This may cause boundary
effects in which the descriptor abruptly changes, yielding poor results. To
account for these boundary conditions, each boundary in CenSurE descriptor
has a padding of 2s, thereby increasing the region size for the descriptor from
20s to 24s, being s the scale of the keypoint. The Haar wavelet responses in
the horizontal (dx) and vertical (dy) directions are computed for each 24× 24
point in the region with filter size 2s by first creating a summed image, where
each pixel is the sum of a region of size s. The Haar wavelet output results in
four fixed-size dx,dy, |dx|,|dy| images that have the dimensions 24× 24 pixels
irrespective of the scale.

Each dx,dy, |dx|,|dy| image is then split into 4 × 4 square overlapping
subregions of size 9 × 9 pixels with an overlap of 2 pixels with each of the
neighbors. Figure 6.10 shows these regions and subregions. For each subregion
the values are then weighted with a precomputed Gaussian function (with
σ = 2.5) centered on the subregion center and summed into the usual SURF
descriptor vector for each subregion: v = (

∑
dx,

∑
dy,

∑ |dx|,∑ |dy|). Each
subregion vector is then weighted using another Gaussian function (with σ =
1.5) defined on a mask of size 4 × 4 and centered on the feature point. Like
the original SURF descriptor, this vector is then normalized. The achieved
overlap allows each subregion to work on a larger area so samples that get
shifted around are more likely to still leave a signature in the correct subregion
vectors. Likewise, the subregion Gaussian weighting means that samples near
borders that get shifted out of a subregion have less impact on the subregion
descriptor vector.
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Figure 6.10: Regions and subregions for the CenSurE descriptor. Each subre-
gion (in blue) is 9× 9 with an overlap of 2 pixels at each boundary. All sizes
are relative to the scale of the keypoint s.

6.5 BRIEF (Binary Robust Independent Ele-

mentary Features)

BRIEF (Binary Robust Independent Elementary Features) is a keypoint de-
scriptor algorithm, presented by Michael Calonder in 2010 [160]. The key
advantage of BRIEF is to use binary strings as an efficient feature point de-
scriptor.

6.5.1 Keypoint descriptor

The BRIEF approach is based on the idea that image patches can be effectively
classified by a relatively small number of pairwise intensity comparisons. To
do this, a test τ on a patch p of size S × S is defined as:

τ(p,x,y) =

{
1 if p(x) < p(y)
0 otherwise

(6.11)

where p(x) is the pixel intensity in a smoothed version of p at location x =
(u, v)T . Choosing a set of n (x,y)-locations pairs uniquely defines a set of
binary tests. Then, BRIEF descriptor is built as n-dimensional bitstring

fn(p) =
i=n∑

i=1

2i−1τ(p,xi,yi). (6.12)

In [160], the authors consider n = 128, 256 and 512 referred as BRIEF-k
where k = n/8 represents the number of bytes required to store the descriptor.
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Generating a n−bit long vector leaves many options or strategies for select-
ing the n test locations (xi,yi) of Equation 6.11 in a patch of size S × S. The
authors of BRIEF experimented with five sampling geometries depicted by
Figure 6.11 Assuming the origin of the patch coordinate system to be located
at the patch center, they can be described as follows:

1. (X,Y) ∼ i.i.d. (independent and identically distributed) Uniform (−S
2
, S
2
):

The (xi,yi) locations are evenly distributed over the patch tests can lie
close to the path border.

2. (X,Y) ∼ i.i.d. Gaussian (0, 1
25
S2): The tests are sampled from an

isotropic Gaussian distribution. Experimentally S
2
= 5

2
σ ↔ σ2 = 1

25
S2

to give best results in terms of recognition rate.

3. X ∼ i.i.d. Gaussian (0, 1
25
S2) and Y ∼ i.i.d. Gaussian (xi,

1
100

S2). The
first location xi is sampled from a Gaussian distribution centered around
the origin while the second location is sampled from another Gaussian
centered on xi . This forces the tests to be more local. Test locations
outside the patch are clamped to the edge of the patch. Again, σ2 =
1

100
S2 is setted experimentally.

4. (xi,yi) are randomly sampled from discrete locations of a coarse polar
grid introducing a spatial quantization.

5. xi = (0, 0)T and yi takes all possible values on a coarse polar grid con-
taining n points.

For each of these test geometries, recognition rates were computed and
authors concluded that (X,Y) ∼ i.i.d. Gaussian (0, 1

25
S2) has the best results

so this strategy is used for BRIEF.

The main advantage of describing the keypoints with strings of bits (called
binary descriptors) is that its similarity can be measured by the Hamming
distance. This distance can be computed extremely fast on modern CPUs that
often provide a specific instruction to perform a XOR or bit count operation,
as is the case in the latest SSE instruction set. This means that BRIEF easily
outperforms other fast descriptors such as SIFT or SURF.

106



(a) (b) (c)

(d) (e)

Figure 6.11: Different approaches to choosing the test locations. All except
the righmost one are selected by random sampling. Showing 128 tests in every
image. Extracted from [160].

6.6 BRISK (Binary Robust Invariant Scalable

Keypoints)

BRISK (Binary Robust Invariant Scalable Keypoints) is another image fea-
tures detector-descriptor schema, proposed by Stefan Leutenegger et. al. [161]
in 2011. The authors claim that BRISK can be used for tasks with hard real-
time constraints or limited computation power and, at the same time, reach
precision similar to SIFT or SURF. The key to speed lies in the application
of a novel scale-space FAST-based detector in combination with the assembly
of a bit-string descriptor from intensity comparisons retrieved by dedicated
sampling of each keypoint neighborhood.

6.6.1 Keypoint detection

With the focus on efficiency of computation, the BRISK detector is inspired
by the AGAST detector [162]. In turn, AGAST is essentially an extension
for accelerated performance of the now popular FAST detector [163], proven
to be a very efficient basis for feature extraction. With the aim of achieving
invariance to scale, which is crucial for high-quality keypoints, BRISK goes
one step further by searching for maxima not only in the image plane, but

107



also in scale-space using the FAST score as a measure for saliency. Despite
discretizing the scale axis at coarser intervals like SURF, the BRISK detector
estimates the true scale of each keypoint in the continuous scale-space. A
keypoint is identified at octave by analyzing the 8 neighboring saliency scores in
that octave as well as in the corresponding scores-patches in the immediately-
neighboring layers above and below. In all three layers of interest, the local
saliency maximum is sub-pixel refined before a 1D parabola is fitted along the
scale-axis to determine the true scale of the keypoint. The location of the
keypoint is then also re-interpolated between the patch maxima closest to the
determined scale (see Figure 6.12).

Figure 6.12: Scale-space interest point detection: in all three layers of interest,
the local saliency maximum is sub-pixel refined before a 1D parabola is fitted
along the scale-axis to determine the true scale of the keypoint. Extracted
from [161].

6.6.2 Keypoint descriptor

Given a set of keypoints (consisting of sub-pixel refined image locations and
associated floating-point scale values), the BRISK descriptor is composed as
a binary string by concatenating the results of simple brightness comparison
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tests. The idea is the same as in BRIEF, however here it is employed in a more
qualitative manner. In BRISK, the characteristic direction of each keypoint
is identified to allow for orientation-normalized descriptors and hence achieve
rotation invariance which is key to general robustness. Also, the brightness
comparisons are carefully selected with the focus on maximizing descriptive-
ness.

Figure 6.13: The BRISK sampling pattern with N = 60 points: the small
blue circles denote the sampling locations; the bigger, red dashed circles are
drawn at a radius σ corresponding to the standard deviation of the Gaussian
kernel used to smooth the intensity values at the sampling points. Extracted
from [161].

The BRISK descriptor uses pattern for sampling the neighborhood of the
keypoint. The pattern, illustrated in Figure 6.13, defines N locations equally
spaced on circles concentric with the keypoint. In order to avoid aliasing effects
when sampling the image intensity of a point pi in the pattern, a Gaussian
smoothing function with standard deviation σi proportional to the distance
between the points on the respective circle is applied. Positioning and scaling
the pattern accordingly for a particular keypoint k in the image, let us consider
one of the N(N − 1)/2 sampling-point pairs (pi, pj). The smoothed intensity
values at these points which are I(pi, σi) and I(pj, σj) respectively, are used
to estimate the local gradient g(pi, pj) by

g(pi, pj) = (pj − pi)
I(pj, σj)− I(pi, σi)

‖pj − pi‖2
.

Considering the set A of all sampling point pairs:

A = {(pi, pj) ∈ R
2 × R

2 | i < N ∧ j < i ∧ i, j ∈ N}
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two subset are defined, one of short pairings S and another subset of L long-
distance pairings:

S = {(pi, pj) ∈ A | ‖pj − pi‖ < δmax} ⊆ A

L = {(pi, pj) ∈ A | ‖pj − pi‖ > δmin} ⊆ A

where δmax and δmin are distances thresholds. Iterating through the point pairs
in L, overall characteristic pattern direction of the keypoint k is estimated as:

g = (gx, gy)
⊤ =

1

L

∑

(pi,pj)∈L

g(pi, pj)

The long-distance pairs are used for this computation, based on the as-
sumption that local gradients annihilate each other and are thus not necessary
in the global gradient determination. For the formation of the rotation- and
scale-normalized descriptor, BRISK applies the sampling pattern rotated by
α = arctan2(gy, gx) around the keypoint k. The bit-vector descriptor dk is
assembled by performing all the short distance intensity comparisons of point
pairs (pαi , p

α
j ) ∈ S (i.e. in the rotated pattern), such that each bit b corresponds

to:

b =

{
1 if I(pαj , σj) > I(pαi , σi)
0 otherwise

∀(pαi , pαj ) ∈ S (6.13)

Finally, matching two BRISK descriptors is a simple computation of their
Hamming distance as done in BRIEF.

6.7 ORB

ORB is a detector-descriptor schema based on the FAST detector and the
BRIEF descriptor. It has been presented by Ethan Rublee et. al. [164] in
2011. The main properties of ORB are rotation invariant and noise resistance.

6.7.1 Keypoint detection

First FAST-9 (circular radius of 9) detector is used for keypoints detection.
As FAST does not produce a measure of cornerness, it has large responses
along edges. Thus, Harris corner measure [165] is employed to sort the FAST
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keypoints. In order to measure corner orientation, the intensity centroid [166]
is used. The use of the intensity is based on the assumption that a corner’s
intensity is offset from its center, and this vector may be used to compute an
orientation. Thus, the moments of a patch are defined as:

mpq =
∑

x,y

xpyqI(x, y), (6.14)

and with these moments, the centroid can be found:

C =

(
m10

m00

,
m01

m00

)

(6.15)

Then, the vector from the corner center O to the centroid C can be defined
and the orientation of the patch is simply:

θ = atan2(m01,m10) (6.16)

where atan2 is the quadrant-aware version of arctangent.

6.7.2 Keypoint descriptor

The ORB descriptor is based on BRIEF. To achieve rotational invariance the
idea is to steer the BRIEF descriptor according to the orientation of the key-
point. For each keypoint, a set of n binary tests at location (xi,yi) define a
2× n matrix:

S =

(
x1 · · · xn

y1 · · · yn

)

(6.17)

Using the patch orientation θ and the corresponding rotation matrix Rθ, a
“steered” version Sθ of S can be constructed:

Sθ = RθS, (6.18)

and then the steered BRIEF descriptor of equation (6.12) becomes:

gn(p, θ) = fn(p)|(xi,yi) ∈ Sθ (6.19)

The angle is discretized into increments of 2π/30 (12 degrees), and a lookup
table of precomputed BRIEF patterns is constructed. As long at the keypoint
orientation θ is consistent across views, the correct set of points Sθ will be
used to compute its descriptor.
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6.8 The dataset

The testing data set was created by Tomas Krajnik over the period of one year
in a large outdoor environment, Stromovka park in Prague, Czech Republic,
under variety of light conditions. Each month, the robot was driven by means
of teleoperation through a 50 meter long path consisting of five straight seg-
ments while capturing images by its onboard camera. The dataset comprises
images taken at the start of each segment, i.e. it contains 60 images from five
distinct locations - we denote a picture from nth month and mth location as
Imn . Although the path started and ended on exactly the same place, a slight
variation of the path has been introduced every time for testing purposes.
Therefore, the first set of images I11 , I12 . . . I112 is taken from exactly the same
location, while the locations of others vary about ±1 m. Captured images con-
tain several environment changes caused by seasonal factors, moving objects,
weather etc. Figure 6.14 shows views from the robot camera at the second
location for each month of the year.

(a) November

(b) February

(c) May

(d) August

(e) December

(f) March

(g) June

(h) September

(i) January

(j) April

(k) July

(l) October

Figure 6.14: Views from the robot camera at the second location taken once
a month through one year.

The intrinsic parameters of the camera were found using the MATLAB cal-
ibration toolbox and radial distortion of the images was removed by the same
tool [167]. The resulting images had their bottom half removed, because the
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bottom part contains only ground, which is not relevant for image matching.

6.9 Feature evaluation

Since we have shown that a crucial factor for mobile robot navigation is the
robot heading, we focus on the estimation of the robot relative rotation among
a set of images at a particular location. Therefore, we calculate the relative
rotation of each image pair from the same location and compare the results
against a ground truth. If the established rotation differs from the ground
truth by less than 2 degrees, we consider the rotation correct. The ratio of
correct estimations to a total number of comparisons is considered a success
rate, which we consider a measure of the feature utility for long-term mobile
robot navigation. Since the dataset contains 12 images from each location,
we obtain 660 comparisons for each evaluation, which allows to establish the
success rate with sufficient granularity.

(a) January, location 5 (b) Overlapped, location 5 (c) February, location 5

Figure 6.15: Imperfect alignment of the user superposed images.

The ground truth was obtained by means of a software, which allows to
superimpose two images. Six persons were asked to align the images so that
the same objects in both images would overlap and save the relative image
coordinates. The saved values were checked for outliers and the coordinates
for the individual image pairs were averaged. The robot relative heading cal-
culated as the average of translations in image coordinates is considered a
ground truth. Although the locations where the images were taken were not
exactly identical and therefore it was impossible to align the images precisely
(see Figure 6.15), the values given by the six users varied only by a few pixels
and only two outliers were detected.

6.10 Rotation calculation

To calculate the relative rotation of the images, we have chosen two different
methods. The first method closely follows a classical approach presented from
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Hartley’s book Multiple View Geometry in Computer Vision [168]. First,
the tentative correspondences between the features from the image pair are
generated. Then, a Random Sampling Consensus (RANSAC) [169] is applied
to find the fundamental matrix, which defines the epipolar geometry. The
fundamental matrix and camera intrinsic parameters are used to calculate
the essential matrix. The essential matrix is decomposed to obtain rotation
matrix and translation vector. Finally, the Euler angles are calculated from
the rotation matrix.

In [49] Krajnik proposes a simplistic approach for mobile robot heading
estimation. The author assume that the average distance of perceived objects
is higher than the image baseline (the distance of the two places, where images
were captured). Moreover, the terrain is considered locally planar, so that the
robot pitch or roll is similar for both images. Under these assumptions, it is
possible to calculate robot heading simply by finding a modus of horizontal
displacements of the tentative correspondences. This approach can be used
for landmark-based navigation as we explained in Chapter 5.

6.10.1 Feature matching

This step precedes both methods for rotation estimation. Keypoints from a
pair of images corresponding from two views of the same robot position are
detected by SIFT, SURF, STAR, BRISK and ORB methods. Descriptors of
the vicinity of these keypoints are then calculated by SIFT, SURF, BRIEF,
BRISK and ORB descriptors. Since BRIEF is only a descriptor, we combine
it with the STAR and SURF detectors, as suggested by the original paper of
BRIEF. However, we found BRIEF using STAR detector to be much more
robust than using the SURF detector. Thus, in the rest of the Chapter we will
refer to BRIEF as the BRIEF-STAR scheme.

Euclidean (in the case of SIFT and SURF floating point descriptors) or
Hamming (BRIEF, ORB and BRISK binary descriptors) distances between
the two sets of the descriptors are calculated. The two best matching (i.e.
lowest distance between descriptors) are determined. If the distance of the
closest pair is lower than 0.8 times the distance of the second closest pair, the
closest image features are considered a tentative correspondence, this means
that these keypoints are probably a projection of the same point in the world
to the two different images.

6.10.2 Epipolar geometry based approach

This approach follows closely Hartley’s book on Multiple View Geometry in
Computer Vision [168]. Image keypoints are represented by homogeneous
3-vectors x and x′ on the left and the right images, respectively. The corre-
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spondence between them is noted x′ ↔ x. This pair of keypoints is interpreted
as the projections, in the two image planes, of the same point in the word.
World points (keypoints in the world) are represented by homogeneous 4 vec-
tors X. The camera matrix P is represented by a 3× 4 matrix indicating the
image projection x = PX up to a scale factor. A camera matrix with a finite
projection center can be factored into P = K[R|t], where K is a 3× 3 upper
triangular calibration matrix holding the intrinsic parameters, R is a rotation
matrix and t is a translation vector, which relate the camera orientation and
position to a world coordinate system. They are called the external parameters
of the camera.

If the origin of the world coordinate system is set on the center of one
camera, then the camera matrices for the two views can be factored into P =
K[I|~0] and P ′ = K ′[R|t], where ~0 is the null vector and (R, t) are the rotation
matrix and translation vector between first camera center C (origin of the
world coordinate system) and second camera center C ′. This is called canonical
form for a pair of camera matrices, describing the epipolar geometry of the
Figure 6.16.

Figure 6.16: Epipolar geometry.

The fundamental matrix F can be defined as the unique 3 × 3 rank 2
homogeneous matrix which satisfies the epipolar constraint:

x′⊤Fx = 0 for all correspondences x′ ↔ x. (6.20)

For any point x in the first image, the corresponding epipolar line is defined
as l′ = Fx. l′ contais the epipole e′, thus e′⊤Fx = 0 for all x (see Figure 6.16).

Equation (6.20) allows to calcutale the fundamental matrix F using the
RANSAC algorithm [169]. At least 8 correspondences are required to apply
RANSAC. Once F is obtained, the essential matrix can be computed using:
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E = K ′TFK (6.21)

where K and K ′ are the the intrinsic calibration matrices of the two images
involved. In our case, because both images were taken with the same camera,
we know that K = K ′.

Now, rotation matrix R and translation vector t can be recovered from the
essential matrix E on the basis of the following theorem:

Theorem 1. Let us consider two views of the same scene taken with the same
camera, let P and P ′ be the two associated camera matrices, then if the origin
of the world coordinate system is set on the center of the first camera, i.e.
P = K[I|~0], and the singular value decomposition of the essential matrix is
E = UDV ⊤, there are four possible solutions for the second camera matrix
P ′: P ′

1 = K[R1|t], P ′
2 = K[R1| − t], P ′

3 = K[R2|t] and P ′
4 = K[R2| − t] where

R1 = UDV ⊤ and R2 = UD⊤V ⊤.

A 3 × 3 matrix is an essential matrix E if and only if two of its singular
values (from its SVD decomposition) are equal, and the third one is zero. We
know that

E = [t]×R = SR, (6.22)

where t = [t1t2t3]
⊤, R is a rotation matrix and S is a skew-symmetric matrix

given by

S = [t]× =





0 −t3 t2
t3 0 −t1
−t2 t1 0



 (6.23)

Let us now define the orthogonal matrix W and the skew-symmetric matrix
Z as

W =





0 −1 0
1 0 0
0 0 1



 (6.24)

and

Z =





0 1 0
−1 0 0
0 0 0



 (6.25)

It can be proved that, as S is a skew-symmetric matrix, it can be decom-
posed as S = kUZU t, where k is a real constant, and the matrix

u =





u1 u2 u3

u4 u5 u6

u7 u8 u9



 (6.26)

is orthogonal [170]. It can be verified that Z = diag(1, 1, 0)W , up to sign.
Then, we have that, up to a scalar, it is true that S = Udiag(1, 1, 0)WU⊤,
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then the essential matrix can be written as:

E = SR = Udiag(1, 1, 0)WU⊤R
︸ ︷︷ ︸

V ⊤

(6.27)

which is an SVD decomposition with two equal singular values and a third
null value.
Now, let us suppose that the first camera is P = [I | 0] and that the second
camera is P ′ = [R | t]. The SVD decomposition of the essential matrix E is
given by equation (6.27), then there are two possible factorizations of E: one
with R = UWV ⊤ and the other with R = UW⊤V ⊤. On the other hand, as
S = UZU⊤ and the rotation matrix can be written as R = UXV ⊤, where X
is also a rotation matrix, then

E = SR = (UZU⊤)(UXV ⊤) = U(ZX)V ⊤. (6.28)

Then, by 6.27 and 6.28, it can be seen that ZX = diag(1, 1, 0), from which it
can be inferred that X = W or X = W⊤. So, the two only possible rotation
matrices are R = UWV ⊤ and R = UW⊤V ⊤. The t part of the camera P ′ can
be obtained, up to a scale factor, from S = [t]×. As the Frobenius norm of
S = UZU⊤ is

√
2, then if S = [t]× including scale, then ‖t‖ = 1. As St = 0

then it must be that

t = U





0
0
1



 = u3 (6.29)

where u3 is the third column of matrix U , as

St = UZU tU





0
0
1



 = U





0 −1 0
1 0 0
0 0 0









0
0
1



 = 0. (6.30)

But the sign of the essential matrix E cannot be determined, and so the same
thing happens to the sign of t. Then, there are four possible matrices for the
P ′ camera:

P ′ =
[
UWV t | u3

]
or

[
UWV t | −u3

]
or

[
UW tV t | u3

]
or

[
UW tV t | −u3

]

Then, there are the following four possible solutions for the second camera
matrix P ′: P ′

1 = K[R1|t], P ′
2 = K[R1|− t], P ′

3 = K[R2|t] and P ′
4 = K[R2|− t].

One of the four choices corresponds to the true configuration. Another one
corresponds to the twisted pair which is obtained by rotating one of the views
180 degrees around the baseline. The remaining two correspond to reflections
of the true configuration and the twisted pair.

In order to determine which choice corresponds to the true configuration,
the cheirality constraint is imposed. This constraint means that the scene
points should be in front of the cameras. One point is sufficient to resolve
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the ambiguity. The point is triangulated using the view camera pairs (P =
K[I|~0], P ′ = P ′

i ) with i = 1...4 to yield the world point X and cheirality
is tested. If X3X4 > 0 and (P ′

iX)3X4 > 0, then (P = K[I|~0], P ′ = P ′
i )

correspond to the true configuration. Finally, the obtained rotation matrix R
is decomposed into the Euler angles.

6.10.3 Histogram voting approach

This method first calculates differences in horizontal positions di of the ten-
tative correspondences. After that, n histograms (denote them Hi, where
i ∈ {0 . . . n − 1}) of bin width n are calculated from values di + i. A his-
togram with the highest maximal bin (hmax) is selected and a second highest
bin value (hsec) of this histogram is found. The values are compared and if
hmax > hsec + e, the horizontal positions di corresponding to the highest bin
are averaged. The result, which represents the displacement of the two images
in pixels is then converted to robot rotation.

(a) Matched images (correct matches are green)
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(b) Histogram voting

Figure 6.17: Detected correspondences and histogram voting illustration.
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The method reports failure in the case of hmax ≤ hsec + e. Experimental
results have shown, that for e = 2, the number of false positives is below 1%.
Figure 6.17 shows the detected correspondences and the resulting histogram
voting.

6.11 Results

As we have noted before, our primary measure of the feature extractor effi-
ciency for long-term mobile robot navigation is its success rate in estimating a
correct relative rotation between the dataset images. First, we want to estab-
lish a suitable number of features for correct image registration. After that,
we have evaluated the success rate of the features for individual places.

We have used OpenCV (Open Source Computer Vision) [171] version 2.4.2
for programming image feature detector and keypoint descriptor functions.

6.11.1 Number of features

In the first test, we estimate the influence of the number of extracted features
to the matching success rate. To extract the desired number of features, the
sensitivity thresholds for the individual feature detectors has to be established.

Then, the images of the dataset are processed with the particular threshold
and the obtained features are used to calculate the rotations by both of the
aforementioned methods. The rotations are then compared to the ground
truth and the average success rate over all five locations has been calculated.
The dependence of the success rate on the number of extracted features is
given on Figure 6.18.

Although a higher number of extracted features means higher success rate,
increasing this number beyond 1000 does not bring a substantial benefit. For
this reason, in the rest of the tests we have chosen to set the detector threshold
sensitivities to extract 1000 features on average.

6.11.2 Success rate for individual locations

Using the aforementioned settings, we have calculated the robot relative rota-
tions for all the 5 locations. The locations differ in the number of vegetation
and buildings in the robot field of view, (see Figure 6.19).

This time, we are considering three possible outcomes of the heading esti-
mation method. By the term “Correct”, we mean that the calculated heading
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(a) Epipolar geometry based approach
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(b) Histogram voting approach

Figure 6.18: Dependence of the success rate on the number of extracted fea-
tures.

conforms with the ground truth. The term “Incorrect” means that the calcu-
lated heading contradicts the ground truth. The term “Failure” means that
the algorithm has indicated, that the heading could not be established, e.g.
due to low number of matches, or that the certainty about the heading value
is low. The Tables 6.2 and 6.1 summarize the results of the epipolar geometry
and the histogram voting approaches for the individual locations.

In terms of success rate, the BRIEF extractor outperforms the other algo-
rithms. The performance of the STAR, SIFT, SURF and BRISK methods is
pretty similar and ORB performance is the worst.
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(a) Location I (b) Location II (c) Location III

(d) Location IV (e) Location V

Figure 6.19: View from the robot camera at different locations.

Table 6.1: Matching results for the epipolar geometry based approach.

Location Outcome sift surf star brief brisk orb
Correct 30.3 19.6 9.8 41.6 19.6 16.6

I Incorrect 6.8 8.3 52.2 20.4 4.5 10.6
Failure 62.8 71.9 37.8 37.8 75.7 72.7
Correct 13.6 11.3 5.3 29.5 9.0 8.3

II Incorrect 4.5 1.5 41.6 21.9 0.0 0.7
Failure 81.8 87.1 53.0 48.4 90.9 90.9
Correct 24.2 17.4 9.8 31.8 9.8 13.6

III Incorrect 9.0 6. 21.9 22.7 3.0 4.5
Failure 66.6 76.5 68.1 45.4 87.1 81.8
Correct 31.0 22.7 13.6 51.5 13.6 18.1

IV Incorrect 17.4 14.3 18.9 33.3 4.5 15.9
Failure 51.5 62.8 67.4 15.1 81.8 65.9
Correct 39.3 28.0 21.2 64.3 16.6 20.4

V Incorrect 9.8 11.3 22.7 28.0 3.0 8.3
Failure 50.7 60.6 56.0 7.5 80.3 71.2
Correct 27.6 19.8 11.9 43.7 13.7 15.4

Σ Incorrect 9.5 8.2 31.4 25.2 3.0 8.0
Failure 62.6 71.7 56.4 30.8 83.1 76.5

6.11.3 Feature extractor speed

A secondary measure of the feature extractor is its speed. To establish the
speed, we have used the average time to extract a given number of features.
Figure 6.20 shows feature extraction time depending on the number of detected
features and on the detector-descriptor method used.
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Table 6.2: Matching results for the histogram voting method.

Location Outcome sift surf star brief brisk orb
Correct 47.7 34.8 12.8 57.5 40.9 40.9

I Incorrect 0.0 0.7 0.7 0.0 0.0 0.0
Failure 52.2 64.3 86.3 42.4 59.0 59.0
Correct 24.2 16.6 10.6 46.9 16.6 16.6

II Incorrect 0.0 0.0 0.7 0.0 0.0 0.0
Failure 75.7 83.3 88.6 53.0 83.3 83.3
Correct 38.6 27.2 15.9 57.5 25.7 29.5

III Incorrect 0.0 0.0 0.0 0.0 0.0 0.0
Failure 61.3 72.7 84.0 42.4 74.2 70.4
Correct 56.8 45.4 25.0 84.8 37.1 46.2

IV Incorrect 0.7 0.7 1.5 5.3 0.0 2.2
Failure 42.4 53.7 73.4 9.8 62.8 51.5
Correct 59.8 51.5 36.3 96.9 37.8 38.6

V Incorrect 0.0 0.0 0.0 0.0 0.0 0.0
Failure 40.1 48.4 63.6 3.0 62.1 61.3
Correct 45.4 35.1 20.1 68.7 31.6 34.3

Σ Incorrect 0.1 0.2 0.5 1.0 0.0 0.4
Failure 54.3 64.4 79.1 30.1 68.2 65.1

As it can be seen, SURF and SIFT are slower, while the other extractors
exhibit a higher speed. This is not surprising since SURF and SIFT are quite
outdated in comparison to nowadays feature extractor methods. A surprising
fact is that the SIFT seems to be faster SURF. We assume, that it is an
implementation issue of the OpenCV library version 2.4.2, which we use for
the image feature extraction. It is known that in this version of the library,
the SIFT implementation has been optimized from the original version, so it
ends up being faster than SURF.
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Figure 6.20: Feature extraction time

6.11.4 Conclusion

In this Chapter we evaluated a variety of image features detector-descriptor
schemes for long-term visual navigation. We considered a scenario in which
a mobile robot, running the aforementioned map-and-replay method, has to
navigate a certain path over an extended (i.e. months) period of time. In the
long term, the perceived scene is affected not only by lighting conditions, but
also by naturally occurring seasonal variations. One of the critical questions is
which kind of image preprocessing method would be most robust to changes
caused by lighting and by seasonal changes. To answer this question, we use a
dataset of sixty images covering an entire year of seasonal changes of a urban
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park, and used this dataset to evaluate efficiency of state of the art image fea-
ture extractors. The chosen performance measure is the success rate of correct
robot heading estimation. As a result of this evaluation, we conclude that
a mixed approach that uses STAR based on CenSurE (Center Surround Ex-
tremas) to detect image features and BRIEF (Binary Robust Independent El-
ementary Features) to built the descriptor of the feature outperform the other
detector/descriptor schemes. Moreover, the histogram voting method outper-
forms the epipolar geometry based approach in the rate of correct heading
establishment and the rate of false heading.
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Chapter 7

Hybrid segmentation and
landmark based visual
navigation

This chapter proposes a hybrid visual navigation method for mobile robots in
indoor/outdoor environments. The method enables the use of both segmenta-
tion based and landmark-based navigation as elementary movement primitives
to deal with different kinds of environments.

7.1 Introduction

The teach-and-replay landmark-based method presented in Chapter 5 has been
successfully tested in both indoor and outdoor environments. However, this
method presents some drawbacks. The robot workspace is limited only to
the regions visited during the training step. The user has to guide the robot
all around the entire environment before performing autonomous navigation,
which may represent a very tedious process, specially in large outdoor envi-
ronments. In addition, several training steps have to be performed to deal
with variable environment appearance caused by varying illumination or sea-
sonal changes. The training process requires human intervention every time
any path the robot has to traverse suffers some change. Moreover, systems
based on the teach-and-replay paradigm assume that the environment does
not change very much between the learning and the running phase, but in the
case of using visual landmarks they can vary or vanish between both phases,
representing an additional problem. Finally, stability of the method presented
in Chapter 5 is guaranteed for navigation trajectories that can be divided in
a number straight conjoined segments. The method needs the robot to turn
after certain time period in order to correct the heading. If the trajectory
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includes a very long segment without turns, the accumulated odometry error
can overgrow and spoil the navigation.

The motivation of the hybrid approach is to overcome the aforementioned
drawbacks by merging the teach-and-replay landmark-based method with the
segmentation-based approach for following paths. To do that, a topological
map of the environment is defined that can be thought as a graph, where the
edges are navigable path and the nodes are open areas. Using this schema,
the robot can use segmentation-based navigation to traverse paths (edges of
the graph), as we saw in Chapter 4, and can use landmark-based navigation to
traverse open areas (nodes of the graph) where a map is needed, as described
in Chapter 5.

The main advantages of this approach can be summarized as follows:

• It is not necessary to map all the environment, only the open areas
where there is no naturally delimited paths. This significantly reduces
the learning phase, specially in large outdoors environments.

• As the segmentation-based method is reactive and adaptive, it can deal
with environmental changes (illumination, seasons, etc.). Thus, the
problem of changes in the ambient is bounded to open areas (nodes
of the map), where the landmarks-based method is used. By using the
STAR/BRIEF schema for detecting and describing image feature in the
landmarks-based method we reduce this problem, as was shown in Chap-
ter 6.

• The convergence of the landmark-based approach needs the robot to turn
periodically. If the trajectory includes a very long segment without turns,
the accumulated odometry error can overgrow and spoil the navigation.
However, if the robot used the segmentation-based approach to traverse
this long segment using the following path method, the convergence is
maintained.

• The topological map used for the hybrid approach does not need to store
image features during the traversable path. As segments generally occu-
pies most of the map, the hybrid approach needs a much more smaller
map of the environment than the landmarks-based approach.

7.2 Method overview

The method begins with a mapping/learning phase where the user has to
build the map by controlling the robot which will move semi-autonomously.
The map of the hybrid method can be considered to be a scripted sequence of
either the feature-based navigation method or the landmark-based navigation
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method. To start the process, the user initiates mapping with one of the
two methods, which are movement primitives for the entire system. For the
case of the feature-based method, the mapping phase is completed as for the
case in which this method is used standalone. Otherwise, if the user selects
the landmark-based method, the robot will start to execute the path following
algorithm until commanded by the user, at which point the estimated distance
traveled (computed by odometry) is recorded. It is important to note that,
if the length of the path is known in advance, it can be incorporated into
the map and thus, there is no need to traverse this path during the learning
phase. After mapping a portion of the environment, the user may select the
other method for mapping until the complete map is finished.

Afterwards, for the navigation phase, the hybrid method starts executing
in sequence either one of the two movement primitives available. For the case
of the feature-based method, the navigation stops when the map of this sub-
portion of the complete map is completely traversed. When executing the
segmentation-based method, the robot will follow the navigable path until the
estimated traveled distance is the same as the one recorded for this portion of
the map.

7.3 Stability

It is possible to analyze the convergence of the hybrid navigation method as we
have already done for the landmark-based navigation method. In this case, the
desired path corresponds to the trained path in the case of the landmark-based
method and, for the case of the segmentation-based method, to a path followed
by the reactive control. Given the previous analysis of the convergence of the
individual methods, it is possible to give a basic insight of the convergence
of the hybrid method itself. We take the same assumptions as in Chapter 5.
Now, consider that the given path is square and that the robot has to traverse
it repeatedly. This square has two conjoined sides that are mapped and the
other two conjoined sides that correspond to naturally delimited areas. In this
case, the hybrid approach can be applied as follows.

At the beginning, the robot is placed at a random position (2D Gaussian
distribution with zero mean) near the first side. The initial position uncer-
tainty can therefore be displayed as a circle, in which the robot is found with
some probability. As the first side is not naturally delimited, the landmark-
based navigation method is used as the first movement primitive of the system.
Because the robot senses landmarks along the segment and corrects its head-
ing, its lateral position deviation is decreased. At the end of the segment,
the uncertainty ellipse therefore becomes narrower. However, due to the odo-
metric error, the longitudinal position error increases and therefore the ellipse
is longer. The second side is traversed in the same way. When the robot
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reaches the third side, the movement primitive of the system changes into
the segmentation-based navigation method, since this region is naturally de-
limited. The path following algorithm guides the robot to the center of the
path, therefore the lateral position uncertainty of the robot decreases even
further. The only error in this case is the one produced by the odometry. In
the last segment the robot uses the same navigation method, which therefore
commands the robot to the middle of the path and the lateral position uncer-
tainty is reduced further. Figure 7.1 shows the position uncertainty evolution
in this simple symmetric case for the hybrid method.

Figure 7.1: Position uncertainty evolution in a simple symmetric case.

The only difference with the stability discussed in Chapter 5 is that the
path following method reduces faster the lateral error than the map-and-replay
method. However, both methods have the same longitudinal error because
both measure the distances by odometry. Therefore, the mathematical proof
is the same as the one presented in Chapter 5.

7.4 Indoor/Outdoor experiment

The system performance for the hybrid approach has been evaluated in a in-
door/outdoor environment. The experiment was performed outside and inside
of the Pabellón 1 building, Ciudad Universitaria, Buenos Aires, Argentina.
The robot has been taught an open area around the entrance of the build-
ing and a square path inside the hall during the training phase. In the au-
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tonomous navigation phase, the change between the segmentation-based and
the landmark-based method is done by odometry estimation. The approxi-
mate path is drawn in Figure 7.3 and it measures 68m. Circles indicate stat-
ing point, change point and end point respectively. The robot has been placed
0.6 m away from the starting point and requested to traverse it repeatedly 3
times. The errors for the whole path were: 12cm, 7,5cm and 3cm for each
iteration, respectively. Figure 7.4 shows the results for the position errors of
the experiment.

Figure 7.2: Position errors of the indoor/outdoor experiment with the hybrid
method.
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Figure 7.3: The indoor/outdoor experiment. The robot traversed 68m outside
and inside Pabellón 1 building.
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Figure 7.4: Screenshots extracted from the robot: 7.4(a), 7.4(b) and 7.4(i)
during the segmentation-based navigation and 7.4(c), 7.4(d), 7.4(e), 7.4(f),
7.4(g) and 7.4(h) during the landmark-based navigation.

7.5 Conclusions

In this Chapter we propose a hybrid visual navigation method for mobile
robots in indoor/outdoor environments. The method enables to use both
segmentation-based and landmark-based navigation as elementary movement
primitives for the entire system. A topological map of the environment is
defined that can be thought as a graph, where the edges are navigable path
and the nodes are open areas.

As we already saw in Chapter 4 and 5, segmentation-based navigation fits
very well to path following (edges) and landmark-based navigation is suitable
for open areas (nodes). The presented method is robust and easy to imple-
ment and does not require sensor calibration or structured environment, and its
computational complexity is independent of the environment size. The afore-
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mentioned properties of the method allow even low-cost robots to effectively
act in large outdoor and indoor environments. Experiments with ExaBot show
these benefits in practice.
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Chapter 8

Conclusions and future work

As we said in Chapter 1, the overall aim of this Thesis is to develop a new
vision-based mobile robot system for monocular navigation in indoor/outdoor
environments. The system is supposed to deal with real world changing con-
ditions (illumination, seasons, etc.) and satisfy real time constraints with off
the shelf sensors and computational hardware. Moreover, it should be a com-
pletely autonomous system, without dependence on external positioning or
localization support or other infrastructure. To achieve the overall goal, we
have proposed to achieve a set of sub-goals:

• Review the State of the Art in Mobile Robotics

We have reviewed the current state of the art in Mobile Robotics. This
extensive review allows us to categorize the methods associated with the
main problems in Mobile Robotics. Chapter 2 addresses the Mapping,
Localization and Motion Planning methods. Advantages and disadvan-
tages of different approaches are described. This chapter also shows that
although the most popular solutions for autonomous navigation use ex-
pensive sensors, mobile robot navigation is also possible with standard
digital cameras.

• Develop a new low-cost mobile robot: the ExaBot

In Chapter 3 we present a new low-cost mobile robot: the ExaBot. This
robot was designed not for a particular task, but for a variety of research,
education and popularization of science activities. To achieve this goal
the robot has a novel reconfigurable hardware architecture. This archi-
tecture can be modified depending on the task at hand. It has a as-
sorted number of sensors that include shaft encoders, telemeters, sonar,
bumpers, line following and electronic compass. For motion control, a
Proportional-Integral-Derivative (PID) controller was implemented. The
Ziegler-Nichols method was used for tuning the PID loop and setting the
proportional, integral, and derivative term of the controller. The robot’s
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versatility makes it an ideal platform for experimentation. The presented
ExaBot was successfully as experimental platform in Chapters 4, 5 and
7 .

• Segmentation-based navigation for outdoor environment

In Chapter 4 a novel autonomous vision-based navigation method for
outdoor environments is presented. This method allows a mobile robot
equipped with a monocular camera to travel through different naturally
delimited outdoor paths. It does not require camera calibration or a
priori knowledge or a map of the environment. The core of the method
is based on segmenting images and classifying each segment to infer a
contour of navigable space. The contour shape is used to calculate the
trajectory, the linear and angular speed of the mobile robot. Regarding
the segmentation step, several algorithms were evaluated on different
platforms. For the case of a modern CPU, the Graph-based segmen-
tation method proved to be the fastest. For the case of an embedded
computer suited for small mobile robots, this method is not fast enough.
An embedded GPU allowed the implementation of the Quick shift algo-
rithm with execution times within required constraints and comparable
to execution times of modern CPUs.

When analyzing the path detection capability of the method, it proved
to be very robust handling difficult situations associated to unstructured
outdoor environments. By using an example area from which only a
subset of modes with enough coverage of the Region of Interest (RoI)
are used, outliers can be ignored without requiring precise placement of
this region. This also allows the usage of the camera as the sole sensor,
in contrast to using a laser scanner for precise path region detection.
Finally, a probabilistic classification algorithm is perform to merge the
segments that belong to the navigable path. For evaluation of the closed-
loop performance of the algorithm, a simple control motion law was
implemented which aims to maintain the robot in the middle of the
detected path. By positioning the robot in different initial orientations
with respect to the road, the correct behavior of the control law and the
method as a whole were assessed. The simplicity of this control law,
does not require the camera to be calibrated. All these features achieved
allow to use this method as part of a navigation system that includes
outdoor environments.

• Landmark-based navigation for indoor/outdoor environment

In Chapter 5, a known landmark-based monocular navigation method is
enhanced and implemented for the ExaBot. This method was proposed
by Tomas Krajnik in [49]. It uses the map-and-replay technique. A
topological map is built during the learning phase. This map contains
visual natural landmarks information about the environment that then
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is used during the autonomous navigation phase. The basic idea is to
utilize image features as visual landmarks to correct the robot’s heading,
leaving distance measurements to the odometry. The heading correction
itself can suppress the odometric error and prevent the overall position
error from diverging. Experiments with ExaBot were performed to test
this method in indoor and outdoor environment. The original version
of the method uses a digital compass that was demonstrated to be un-
necessary, since the turns of the robot can be estimated by odometry.
Moreover, and more important, instead of using SURF (Speeded Up Ro-
bust Features) as visual landmarks, we propose to use START based
on CenSurE (Center Surround Extremas) to detect image features and
BRIEF (Binary Robust Independent Elementary Features) to describe
them. In this way, a significant improvement to the known method was
proposed.

• Performace of local image features for long-term visual naviga-
tion

In Chapter 6 we deal with an open problem in mobile robotics which
is long-term autonomy in naturally changing environments. We con-
sider a scenario, in which a mobile robot running the aforementioned
map-and-replay method has to navigate a certain path over an extended
(i.e. months) period of time. In the long term, the perceived scene is
not affected only by lighting conditions, but also by naturally occuring
seasonal variations. One of the critical questions is which type of im-
age preprocessing method would be most robust to changes caused by
lighting and seasonal changes. To answer the question, we have used
a dataset of sixty images covering an entire year of seasonal changes
of a urban park and used this dataset to evaluate efficiency of state of
the art image feature extractors. The chosen performance measure is
a success rate of correct robot heading estimation. As a result of this
evaluation, we conclude that using START based on CenSurE (Center
Surround Extremas) to detect image features and BRIEF (Binary Ro-
bust Independent Elementary Features) to describe outperform the other
detector/descriptor schemes.

• Hybrid segmentation and landmark based visual navigation

Finally, in Chapter 7 we use the results of previous chapters to propose
a novel visual navigation method for mobile robots in large indoor/out-
door environments. The method enables to use both segmentation-based
and landmark-based navigation as elementary movement primitives for
the entire system. A topological map of the environment is defined that
can be thought as a graph, where the edges are navigable path and the
nodes are open areas. As we saw in Chapter 4 and 5 , segmentation-based
navigation fits very well for path following (edges) and landmark-based
navigation is suitable for open areas (nodes). The presented method is
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robust and easy to implement and does not require sensor calibration
or structured environment, and its computational complexity is inde-
pendent of the environment size. The aforementioned properties of the
method allow even low-cost robots to effectively navigate in indoor/out-
door environments. Experiments with ExaBot shows these benefits into
practice.

Future work

While the proposed method demonstrated to be robust and stable, there are
some aspects that could be improved and further analyzed. For example, the
proposed method has only been tested on terrestrial robots, but it could be
extended easily to use it in other platform such as drone aerial robots. These
robots usually have two built-in cameras, one facing forward and the other
looking down. Thus, it would be possible to detect the path with the second
camera and also detect visual landmarks with the first camera.

Other possibility to extend the results of this Thesis is to use the segmen-
tation based navigation method to replace the human operator during the
learning phase of the landmark-based navigation method. In this way, it may
be achieved a method to automatically explore and map demarcated navigable
areas and then use this map to replay the navigation path.

However, the most interesting issue is to extend the presented hybrid
method with a position uncertainty model. The model should cover not only
uncertainty of mobile robot position, but also the probability of navigation
system failure depending on the environment conditions. Based on the exten-
sion of the theoretical model of the mobile robot navigation, we could advance
towards real long-term mobile robot autonomy in large indoor/outdoor envi-
ronments.
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T. Hofmann, M. Krell, and T. Schmidt, Map learning and high-speed
navigation in RHINO. Cambridge, MA, USA: MIT Press, 1998, pp.
21–52.

[75] S. Thrun, J.-S. Gutmann, D. Fox, W. Burgard, and B. J. Kuipers, “In-
tegrating topological and metroc maps for mobile robot navigation: a
statistical approach,” in Proc. of the Fifteenth National/Tenth Conf. on
Artificial Intelligence/Innovative Applications of Artificial Intelligence,
ser. AAAI ’98/IAAI ’98. Menlo Park, CA, USA: American Association
for Artificial Intelligence, 1998, pp. 989–995.

[76] M. Bosse, P. M. Newman, J. J. Leonard, and S. Teller, “SLAM in
Large-scale Cyclic Environments using the Atlas Framework.” The In-
ternational Journal of Robotics Research, vol. 23, no. 12, pp. 1113–1139,
December 2004.

[77] G. M. Youngblood, L. B. Holder, and D. J. Cook, “A framework for
autonomous mobile robot exploration and map learning through the
use of place-centric occupancy grids,” in ICML Workshop on Machine
Learning of Spatial Knowledge, 2000.

[78] M. Nitsche, P. de Cristoforis, M. Kulich, and K. Kosnar, “Hybrid map-
ping for autonomous mobile robot exploration,” in Intelligent Data Ac-
quisition and Advanced Computing Systems (IDAACS), 2011 IEEE 6th
International Conference on, vol. 1. IEEE, 2011, pp. 299–304.

[79] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics. MIT Press,
2008.

[80] J. Guivant and E. Nebot, “Optimization of the simultaneous localization
and map-building algorithm for real-time implementation,” Robotics and
Automation, IEEE Transactions on, vol. 17, no. 3, pp. 242–257, 2001.

[81] L. M. Paz, J. D. Tardos, and J. Neira, “Divide and Conquer: EKF SLAM
in O(n),” IEEE Transactions on Robotics, vol. 24, no. 5, pp. 1107–1120,
OCT 2008.

[82] M. Montemerlo, S. Thrun, D. Koller, B. Wegbreit et al., “Fastslam 2.0:
An improved particle filtering algorithm for simultaneous localization
and mapping that provably converges,” in International Joint Confer-
ence on Artificial Intelligence, vol. 18, 2003, pp. 1151–1156.

[83] J. Nieto, J. Guivant, and E. Nebot, “Denseslam: Simultaneous local-
ization and dense mapping,” The International Journal of Robotics Re-
search, vol. 25, no. 8, pp. 711–744, 2006.

143



[84] D. Fox, S. Thrun, W. Burgard, and F. Dellaert, “Particle filters for
mobile robot localization,” Sequential Monte Carlo methods in practice,
pp. 499–516, 2001.

[85] L. Paz, P. Piniés, J. Tardós, and J. Neira, “Large-scale 6-dof slam with
stereo-in-hand,” Robotics, IEEE Transactions on, vol. 24, no. 5, pp.
946–957, 2008.

[86] A. Davison, I. Reid, N. Molton, and O. Stasse, “Monoslam: Real-time
single camera slam,” Pattern Analysis and Machine Intelligence, IEEE
Transactions on, vol. 29, no. 6, pp. 1052–1067, 2007.

[87] C. Estrada, J. Neira, and J. Tardós, “Hierarchical slam: Real-time accu-
rate mapping of large environments,” Robotics, IEEE Transactions on,
vol. 21, no. 4, pp. 588–596, 2005.

[88] L. Clemente, A. Davison, I. Reid, J. Neira, and J. Tardós, “Mapping
large loops with a single hand-held camera,” in Robotics: Science and
Systems, 2007.

[89] G. Klein and D. Murray, “Parallel tracking and mapping on a camera
phone,” in Mixed and Augmented Reality, 2009. ISMAR 2009. 8th IEEE
International Symposium on. IEEE, 2009, pp. 83–86.

[90] S. LaValle, Planning algorithms. Cambridge university press, 2006.

[91] P. Agarwal, B. Aronov, and M. Sharir, “Motion planning for a convex
polygon in a polygonal environment,” Discrete & Computational Geom-
etry, vol. 22, no. 2, pp. 201–221, 1999.

[92] Y. Koren and J. Borenstein, “Potential field methods and their inherent
limitations for mobile robot navigation,” in Robotics and Automation,
1991. Proceedings., 1991 IEEE International Conference on. IEEE,
1991, pp. 1398–1404.

[93] L. Huang, “Velocity planning for a mobile robot to track a moving target:
a potential field approach,” Robotics and Autonomous Systems, vol. 57,
no. 1, pp. 55–63, 2009.

[94] S. LaValle, “Rapidly-exploring random trees a new tool for path plan-
ning,” Technical Report, Computer Science Department, Iowa State Uni-
versity, 1998.
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