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Abstract. We present several results for the periods of periodic points of sup-norm non-
expansive maps. In particular, we show that the period of each periodic point of a
sup-norm non-expansive map f : M → M , where M ⊂ R

n, is at most maxk 2k
(

n
k

)
.

This upper bound is smaller than 3n and improves the previously known bounds.
Further, we consider a special class of sup-norm non-expansive maps, namely topical
functions. For topical functions f : R

n → R
n Gunawardena and Sparrow have conjectured

that the optimal upper bound for the periods of periodic points is
( n�n/2�

)
. We give a proof

of this conjecture. To obtain the results we use combinatorial and geometric arguments.
In particular, we analyse the cardinality of anti-chains in certain partially ordered sets.

1. Introduction
In this paper we are concerned with the dynamics of sup-norm non-expansive maps
f : M → M , where M ⊂ R

n. A characteristic property of the iterative behaviour of
sup-norm non-expansive maps is that every bounded orbit converges to a periodic orbit.
Moreover, there exists an upper bound for the possible periods of periodic points of sup-
norm non-expansive maps that only depends on the dimension of the ambient space. It is,
therefore, an interesting problem to determine the optimal upper bound for the periods of
periodic points of sup-norm non-expansive maps. This problem has been considered in
[4, 14–16, 18, 25], and Nussbaum [18] has conjectured that 2n is the optimal upper bound.
At present, however, the conjecture is proved only for n ≤ 3 (see [15]).

The main goal of the paper is to present two results concerning the periodic points
of sup-norm non-expansive maps. As a first result, we show that the period of each
periodic point of a sup-norm non-expansive map f : M → M , where M ⊂ R

n, is at
most maxk 2k

(
n
k

)
. This upper bound is smaller than 3n and is a considerable improvement

of the previously best-known estimate n!2n by Martus [16].
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It turns out that the ideas for proving our estimate can be used to analyse the periods
of periodic points of topical functions. Topical functions are maps f : R

n → R
n that

are order-preserving and additively homogeneous. They are sup-norm non-expansive by
a result of Crandall and Tartar [7], and they appear in a variety of applications, such
as the analysis of discrete event systems [3, 5, 9, 10], optimal control theory [2] and
nonlinear Perron–Frobenius theory [8, 19, 20]. As a second result, we prove a conjecture
of Gunawardena and Sparrow (see [9, §4.3] and [10, §2.1.3]), which asserts that the
optimal upper bound for the periods of periodic points of topical functions f : R

n → R
n

is
( n�n/2�

)
.

To obtain the results we analyse transitive actions of Abelian groups of sup-norm
isometries. As explained in the next section, this is a more general setting than is required.
In fact, in order to obtain an optimal upper bound for the periods of periodic points of
sup-norm non-expansive maps, one could consider transitive actions of cyclic groups of
sup-norm isometries. But, as yet, we do not know how to (or if it is necessary to) exploit
this additional assumption.

The dynamics of non-expansive maps has been studied for various norms on R
n.

In particular, it is known that if the unit ball of the norm is a polyhedron, then every
bounded orbit of a non-expansive map converges to a periodic orbit (see [18] or [26]).
This is an immediate consequence of the result for the sup-norm, because any finite-
dimensional polyhedrally normed space can be isometrically embedded into R

n with the
sup-norm, as long as n is sufficiently large. Another interesting polyhedral norm on R

n,
besides the sup-norm, is the �1-norm. There exist many detailed results for the possible
periods of periodic points of �1-norm non-expansive maps and we refer the reader to
[1, 12, 13, 17, 21–24] for further information.

In addition to the introduction the paper contains four sections. In §2 we collect several
definitions and results for sup-norm non-expansive maps. Furthermore, we formulate a
theorem from which it follows that the period of each periodic point of a sup-norm non-
expansive map f : M → M , where M ⊂ R

n, is at most maxk 2k
(

n
k

)
. Subsequently, we

prove this more general theorem in §3. Section 4 contains several definitions and results
concerning topical functions. In addition, we state a theorem that implies that the period
of each periodic point of a topical function f : R

n → R
n is at most

( n�n/2�
)
. Section 5 is

devoted to a proof of this theorem. We conclude §5 with several remarks. In particular, we
explain a consequence of our results for the dynamics of certain cone maps.

2. Preliminaries
Let R

n be equipped with the sup-norm, given by ‖x‖∞ = maxi |xi | for x = (x1, . . . , xn)

in R
n. A map f : M → M , where M ⊂ R

n, is called sup-norm non-expansive if
‖f (x) − f (y)‖∞ ≤ ‖x − y‖∞ for all x, y ∈ M . It is said to be a sup-norm isometry
if equality holds for all x, y ∈ M . A group � of sup-norm isometries g : X → X, where
X ⊂ R

n, is said to act transitively on X if for each x, y ∈ X there exists g ∈ � such that
g(x) = y.

A point x ∈ M is called a periodic point of f : M → M if there exists an integer
p ≥ 1 such that f p(x) = x. The minimal such p ≥ 1 is called the period of
x under f . Transitive actions of groups of isometries are intimately connected with
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periodic points of non-expansive maps, as we shall explain now. Let x ∈ M be a
periodic point of f : M → M with period p and let X be the orbit of x under f ; so,
X = {f k(x) | 0 ≤ k < p}. If f is sup-norm non-expansive, then the restriction of
f to X is a sup-norm isometry that maps X onto itself. Moreover, if we put g = f|X ,
then {gk : X → X | 0 ≤ k < p} is a cyclic group of sup-norm isometries that acts
transitively on X. Thus, to prove that the period of each periodic point of a sup-norm
non-expansive map f : M → M , where M ⊂ R

n is at most maxk 2k
(

n
k

)
, it suffices to

show that each finite set X in R
n, with a transitive Abelian group of sup-norm isometries,

has at most maxk 2k
(

n
k

)
elements. In the paper we take this approach. In fact, to estimate

the periods of periodic points of sup-norm non-expansive maps, we prove the following
theorem in §3.

THEOREM 2.1. If X is a finite set in R
n on which an Abelian group of sup-norm isometries

acts transitively, then |X| ≤ maxk 2k
(

n
k

)
.

Let us first discuss some preliminary results. We would like to mention that several of
these results can be found in [15, §2]. For the reader’s convenience we prove them here
once more.

Actions of Abelian groups of isometries enjoy the following useful property (compare
[15, Lemma 2.3]).

LEMMA 2.2. If X is a set in R
n on which an Abelian group � of sup-norm isometries acts

transitively, then for each f ∈ � there exists a constant d(f ) such that ‖x − f (x)‖∞ =
d(f ) for all x ∈ X.

Proof. Since � is an Abelian group of sup-norm isometries we have that

‖x − f (x)‖∞ = ‖g(x) − g(f (x))‖∞ = ‖g(x) − f (g(x))‖∞ for all g ∈ �.

As � acts transitively on X, it follows that ‖x − f (x)‖∞ is the same for all x ∈ X, which
completes the proof. �

A sequence of points x1, x2, . . . , xm in R
n is called an additive chain if

‖x1 − xm‖∞ =
m−1∑
k=1

‖xk − xk+1‖∞.

We say that it has length m if it consists of m distinct points. Lemma 2.2 has the following
corollary for additive chains (compare [15, Proposition 2.1]).

COROLLARY 2.3. Suppose that X is a finite set in R
n on which an Abelian group � of

sup-norm isometries acts transitively. If x1, x2, . . . , xm is an additive chain in X of length
m ≥ 2, and for 1 ≤ k < m the map fk ∈ � maps xk to xk+1, then for each permutation π

on {1, . . . ,m − 1} and for each x ∈ X the sequence

x, fπ(1)(x), . . . , fπ(m−1) ◦ · · · ◦ fπ(1)(x)

is an additive chain of length m.
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Proof. Put f = fm−1 ◦ · · · ◦ f2 ◦ f1 and observe that, as � is Abelian, f = fπ(m−1) ◦ · · · ◦
fπ(2) ◦ fπ(1). For simplicity, we write zk = fπ(k−1) ◦ · · · ◦ fπ(1)(x) for 2 ≤ k ≤ m and
z1 = x. Using Lemma 2.2 we obtain the equalities

‖z1 − zm‖∞ = d(f ) = ‖x1 − xm‖∞ =
m−1∑
k=1

‖xk+1 − xk‖∞ =
m−1∑
k=1

d(fk)

=
m−1∑
k=1

d(fπ(k)) =
m−1∑
k=1

‖zk+1 − zk‖∞.

Thus, z1, z2, . . . , zm is an additive chain of length m, and this proves the corollary. �

A useful idea in this exposition is the notion of an extreme pair. A pair of distinct points
{x, y} in X is said to be an extreme pair in X if there exists no z ∈ X such that z, x, y or
x, y, z is an additive chain of length 3. Extreme pairs have the following property.

LEMMA 2.4. Suppose that X is a finite set in R
n on which an Abelian group � of sup-

norm isometries acts transitively. Then {x, y} is an extreme pair in X if and only if there
exists no z ∈ X such that x, y, z is an additive chain of length 3.

Proof. It is clear from the definition that if {x, y} is an extreme pair in X, then there exists
no z ∈ X such that x, y, z is an additive chain of length 3. To prove the other implication,
we assume that {x, y} is not an extreme pair in X. Then, there exists z ∈ X such that
z, x, y or x, y, z is an additive chain of length 3. If x, y, z is an additive chain of length 3,
we are done. On the other hand, if z, x, y is an additive chain of length 3, then we can use
Corollary 2.3 to see that x, y, f (y) is an additive chain of length 3, where f ∈ � is such
that f (z) = x. This proves the lemma. �

Further, we need to define a partial ordering � on {0, 1, 2}n by

a � b if ai = bi for all i for which bi ∈ {0, 1}.
It is easy to verify that � is reflexive, anti-symmetric and transitive. A subset A of
the partially ordered set ({0, 1, 2}n,�) is called an anti-chain if there exist no distinct
a, b ∈ A with a � b. Using a standard method in extremal set theory, called the LYM
technique [6, Ch. 7], we obtain the following upper bound for the cardinality of anti-chains
in ({0, 1, 2}n,�).

PROPOSITION 2.5. If A is an anti-chain in ({0, 1, 2}n,�), then

|A| ≤ max
k

2k

(
n

k

)
.

Proof. Consider chains a0 � a1 � · · · � an in ({0, 1, 2}n,�) consisting of n + 1 distinct
elements. There are 2nn! such chains. Indeed, to obtain such a chain one has to select
a point a0 with no coordinates equal to 2. There are 2n possibilities. Subsequently, one
changes one by one the coordinates of a0 to 2. There are n! ways to do this. Thus, in total
we have 2nn! such chains.

Now, consider an element a in A with k coordinates equal to 2, and we ask ourselves
how many of the chains a0 � a1 � · · · � an contain a. Clearly, there are 2kk! chains
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a0 � · · · � ak−1 � a, with k + 1 distinct elements, and each of these can be extended in
(n − k)! ways. Thus, there are 2kk!(n − k)! such chains.

To finish the argument, let mk be the number of elements in A with k coordinates
equal to 2. Obviously, |A| = ∑n

k=0 mk . As A is an anti-chain, each of the chains
a0 � a1 � · · · � an contains at most one element of A. Therefore,

n∑
k=0

mk2kk!(n − k)! ≤ 2nn!,

so that
n∑

k=0

mk2k−n

(
n

k

)−1

≤ 1.

From this, we deduce that

|A| =
n∑

k=0

mk ≤ max
k

2n−k

(
n

k

)
= max

k
2k

(
n

k

)
. �

The upper bound in Proposition 2.5 is sharp. Indeed, the collection of points in
({0, 1, 2}n,�) with n − k coordinates equal to 2 is an anti-chain that contains 2k

(
n

n−k

) =
2k

(
n
k

)
elements. From this remark, it follows directly that maxk 2k

(
n
k

)
< 3n. In fact, one

can use Stirling’s formula and some analysis to show that

max
k

2k

(
n

k

)
= γ (n)3n/

√
n, where 0 < δ1 ≤ γ (n) ≤ δ2 < ∞ for all n.

3. Proof of the first main result
Proof of Theorem 2.1. Let X be a finite set in R

n on which an Abelian group � of sup-norm
isometries acts transitively. Define c : X → {0, 1, 2}n by

c(x)i =




0 if there exists y ∈ X with {x, y} an extreme pair in X

and ‖x − y‖∞ = yi − xi ,

1 if there exists y ∈ X with {x, y} an extreme pair in X

and ‖x − y‖∞ = xi − yi ,

2 otherwise,

for all 1 ≤ i ≤ n and x ∈ X.
We remark that c(x) is well defined, because c(x)i = 0 and c(x)i = 1 implies that there

exist y, z ∈ X such that {x, y} and {x, z} are extreme pairs in X with ‖x − y‖∞ = yi − xi

and ‖x − z‖∞ = xi − zi . This implies that

‖y − z‖∞ ≤ ‖y − x‖∞ + ‖x − z‖∞ = yi − xi + xi − zi = yi − zi ≤ ‖y − z‖∞,

so that z, x, y is an additive chain of length 3. This, however, contradicts the fact that {x, y}
is an extreme pair in X.

By Proposition 2.5, it suffices to show that c(y) �� c(x) for all x �= y in X. To see this,
let F be the collection of all additive chains z1, z2, . . . , zr in X such that z1 = x and z2 = y.
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Now, consider an additive chain z1, z2, . . . , zm of maximal length m in F . We claim that
{z1, zm} is an extreme pair in X. Indeed, there exists no u ∈ X such that z1, zm, u is an
additive chain of length 3, as m is maximal. Therefore, it follows from Lemma 2.4 that
{z1, zm} is an extreme pair in X.

We observe that there exists 1 ≤ i ≤ n such that either ‖z1 − zm‖∞ = zm
i − z1

i or
‖z1 − zm‖∞ = z1

i − zm
i . In the first case, c(x)i = 0 by definition, and we now show that

c(y)i �= 0. If c(y)i = 0, then there exists u ∈ X such that {y, u} is an extreme pair in X

with ‖y−u‖∞ = ui −yi . As z1, z2, . . . , zm is an additive chain and ‖z1−zm‖∞ = zm
i −z1

i ,
we have that

‖z1 − zm‖∞ = zm
i − z1

i =
m−1∑
k=1

zk+1
i − zk

i ≤
m−1∑
k=1

‖zk+1 − zk‖∞ = ‖z1 − zm‖∞.

This implies that ‖zk+1 −zk‖∞ = zk+1
i −zk

i for all 1 ≤ k < m, so that ‖x−y‖∞ = yi −xi .
Hence, x, y, u is an additive chain of length 3, which contradicts the fact that {y, u} is an
extreme pair in X. Thus, we conclude that c(y)i �= 0 and hence c(y) �� c(x).

Similarly, if ‖z1 − zm‖∞ = z1
i − zm

i , then by definition c(x)i = 1, but c(y)i �= 1.
Indeed, if c(y)i = 1, then there exists v ∈ X such that {y, v} is an extreme pair
in X and ‖y − v‖∞ = yi − vi . Again, as z1, z2, . . . , zm is an additive chain and
‖z1 − zm‖∞ = z1

i − zm
i , it follows that ‖x − y‖∞ = xi − yi . This implies that x, y, v is an

additive chain of length 3, which contradicts the fact that {y, v} is an extreme pair. Thus,
c(y)i �= 1 in this case and hence c(y) �� c(x). This completes the proof of the theorem. �

4. Topical functions
Before we give the definition of a topical function we introduce some notation. On R

n we
let ≤ be a partial ordering, given by x ≤ y if xi ≤ yi for all 1 ≤ i ≤ n. Two elements x

and y in R
n are said to be comparable if x ≤ y or y ≤ x. A map f : R

n → R
n is called

order-preserving if for each x, y ∈ R
n with x ≤ y we have that f (x) ≤ f (y). It is said

to be additively homogeneous if f (x + λ1) = f (x) + λ1 for all x ∈ R
n and λ ∈ R.

(Here 1 denotes the vector with all coordinates unity.) A topical function is a map
f : R

n → R
n that is order-preserving and additively homogeneous.

Crandall and Tartar [7] have proved that every topical function is sup-norm non-
expansive. One can deduce this result from a useful observation of Gunawardena
and Keane [11]. To formulate the observation we first need to introduce the function
t : R

n → R, given by t (x) = maxi xi for all x ∈ R
n.

PROPOSITION 4.1. A map f : R
n → R

n is a topical function if and only if

t (f (x) − f (y)) ≤ t (x − y) for all x, y ∈ R
n.

Proof. Let f : R
n → R

n be a topical function and x, y ∈ R
n. Obviously, x ≤ y+t (x−y)1,

so that f (x) ≤ f (y) + t (x − y)1. This implies that t (f (x) − f (y)) ≤ t (x − y). To see
the other implication, assume that x ≤ y. Then t (x − y) ≤ 0, so that t (f (x) − f (y)) ≤ 0
and hence f (x) ≤ f (y). To show that f is additively homogeneous, put y = x + λ1.
Clearly, t (y − x) = λ and t (x − y) = −λ, which gives t (f (y) − f (x)) ≤ λ and
t (f (x) − f (y)) ≤ −λ. Thus, λ1 ≤ f (y) − f (x) ≤ λ1, and this completes the proof. �
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As ‖x‖∞ = max{t (x), t (−x)}, Proposition 4.1 immediately implies that every topical
function is sup-norm non-expansive.

The function t is not a norm; it is, for instance, not symmetric. Nevertheless, we say
that f : M → M , where M ⊂ R

n, is t-non-expansive if t (f (x) − f (y)) ≤ t (x − y) for
all x, y ∈ M . Further, we call f : M → M a t-isometry if equality holds for all x, y ∈ M .
We observe that if x ∈ R

n is a periodic point of a topical function f : R
n → R

n with
period p, then the orbit of x, given by X = {f k(x) : 0 ≤ k < p}, contains no comparable
elements, as f is order-preserving. Moreover, it follows from Proposition 4.1 that on X a
cyclic group of t-isometries acts transitively.

It has been conjectured by Gunawardena and Sparrow (see [9, §4.3]) that the optimal
upper bound for the periods of periodic points of topical functions f : R

n → R
n is

( n�n/2�
)
.

To see that the upper bound cannot be sharper they constructed the following example
(compare [10, §2.1.3]). Put m = ( n�n/2�

)
and let U be the collection of m points u ∈ {0, 1}n

with
∑

i ui = �n/2�. Label the points in U by u1, u2, . . . , um and put um+1 = u1. Now,
define a map f : R

n → R
n by

f (x)i = max
k : uk+1

i =1

(
min

j : uk
j =1

{xj }
)

for 1 ≤ i ≤ n and x ∈ R
n.

It is easy to verify that f is a topical function and that f (uk) = uk+1 for all 1 ≤ k ≤ m.
In order to prove the conjecture of Gunawardena and Sparrow we show the following

theorem in §5.

THEOREM 4.2. If X is a finite set of incomparable elements in R
n on which an Abelian

group of t-isometries acts transitively, then |X| ≤ ( n�n/2�
)
.

To establish this theorem, we apply similar ideas to the ones used in the proof of
Theorem 2.1. In particular, we use the notion of a t-additive chain. A sequence of points
x1, x2, . . . , xm in R

n is called a t-additive chain if

t (x1 − xm) =
m−1∑
k=1

t (xk − xk+1).

The length of a t-additive chain is the number of distinct points in it. Note that if
a1, a2, . . . , am is a t-additive chain, then am, am−1, . . . , a1 need not be a t-additive chain,
because t (x) �= t (−x) in general.

We now collect several preliminary results for the proof of Theorem 4.2, beginning with
two simple observations concerning t-additive chains.

LEMMA 4.3. If t (x − y) = xi − yi and t (y − z) = yi − zi , then t (x − z) = xi − zi and
x, y, z is a t-additive chain.

Proof. Note that

xi − zi ≤ t (x − z) ≤ t (x − y) + t (y − z) = xi − yi + yi − zi = xi − zi,

so that t (x − z) = xi − zi and t (x − z) = t (x − y) + t (y − z). �

LEMMA 4.4. If x1, x2, . . . , xm is a t-additive chain and t (x1 − xm) = x1
i − xm

i , then
t (xk − xk+1) = xk

i − xk+1
i for all 1 ≤ k < m.
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Proof. We have that

t (x1 − xm) =
m−1∑
k=1

t (xk − xk+1) ≥
m−1∑
k=1

xk
i − xk+1

i = x1
i − xm

i = t (x1 − xm).

This implies that t (xk − xk+1) = xk
i − xk+1

i for all 1 ≤ k < m. �

Completely analogous to Lemma 2.2 one can show that transitive actions of Abelian
groups of t-isometries satisfy the following property.

LEMMA 4.5. If X is a set in R
n on which an Abelian group � of t-isometries acts

transitively, then for each f ∈ � there exists a constant d(f ) such that t (x−f (x)) = d(f )

for all x ∈ X.

In the same fashion as Corollary 2.3 we deduce the following consequence.

COROLLARY 4.6. Let X be a set in R
n on which an Abelian group � of t-isometries acts

transitively. If x, y, z is a t-additive chain in X and f ∈ � is such that f (x) = y, then
y, z, f (z) is a t-additive chain in X.

Proof. Let g ∈ � be such that g(y) = z. Using Lemma 4.5 and the fact that � is Abelian,
we find that

t (y − f (z)) = t (y − g(f (y))) = t (x − g(f (x)))

= t (x − y) + t (y − z) = t (z − f (z)) + t (y − z). �

Next, we introduce the notion of t-extreme pair. An ordered pair (x, y) in X × X,
with x �= y, is called t-extreme in X if there exists no z ∈ X such that x, y, z or z, x, y

is a t-additive chain of length 3. Note that (x, y) is a t-extreme pair need not imply that
(y, x) is a t-extreme pair. Therefore, we consider ordered pairs instead of unordered pairs.
By using Corollary 4.6 we can prove the following lemma for t-extreme pairs. This lemma
resembles Lemma 2.4 and the proofs are quite similar.

LEMMA 4.7. If X is a finite set of incomparable elements in R
n on which an Abelian

group � of t-isometries acts transitively, then (x, y) in X × X with x �= y is t-extreme in
X if and only if there exists no z ∈ X such that x, y, z is a t-additive chain of length 3.

Proof. It follows from the definition that if (x, y) is t-extreme, then there exists no z ∈ X

such that x, y, z is a t-additive chain of length 3. For the other implication, we assume that
(x, y) is not t-extreme. Hence, there exists z ∈ X such that either x, y, z or z, x, y is a
t-additive chain of length 3. In the first case, we are done. In the second case, it follows
from Corollary 4.6 that x, y, f (y) is a t-additive chain, where f ∈ � is such that f (z) = x.
To see that it has length 3 we remark that t (u − v) > 0 for all u �= v in X, as no two
elements in X are comparable. Thus, t (y − f (y)) = t (z − x) > 0, because x �= z, and
t (x − f (y)) = t (z − y) > 0, as y �= z. This completes the proof. �
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5. Proof of the second main result
By using the same type of arguments as in the proof of Theorem 2.1 we now prove
Theorem 4.2. An important ingredient in the proof is a classic result in combinatorics,
namely Sperner’s theorem, which asserts the following (compare [6, Ch. 7]).

THEOREM 5.1. (Sperner) If A is a collection of subsets of {1, . . . , n} such that there are
no distinct A,B ∈ A with A ⊂ B, then |A| ≤ ( n�n/2�

)
.

More precisely, we use the following equivalent formulation: if A is an anti-chain in
the partially ordered set ({0, 1}n,≤), then |A| ≤ ( n�n/2�

)
.

Proof of Theorem 4.2. Let X be a finite set of incomparable points in R
n on which an

Abelian group � of t-isometries acts transitively. Define a map c : X → {0, 1}n by

c(x)i =




1 if there exists y ∈ X such that (x, y) is t-extreme in X

and t (x − y) = xi − yi ,

0 otherwise,

for 1 ≤ i ≤ n and x ∈ X. By Sperner’s theorem it suffices to show that c(x) and c(y)

are incomparable for all x �= y in X. So, suppose that x �= y in X. Let z1, z2, . . . , zm

be a t-additive chain in X consisting of m distinct elements, where z1 = x, z2 = y, and
m is maximal. We claim that (z1, zm) is t-extreme in X. Indeed, if we suppose, by way
of contradiction, that (z1, zm) is not t-extreme, then by Lemma 4.7 there exists u ∈ X

such that z1, zm, u is a t-additive chain of length 3. This implies that z1, z2, . . . , zm, u is a
t-additive chain. To see that it consists of m + 1 distinct elements we use the fact that X

contains no comparable elements. If u = zk , then k �= m, and moreover

t (z1 − u) = t (z1 − zk) + t (zk − zm) + t (zm − u) = t (z1 − u) + t (u − zm) + t (zm − u).

This implies that t (u−zm)+ t (zm−u) = 0. But this contradicts the fact that t (u−zm) > 0
and t (zm − u) > 0, as u and zm are not comparable. Thus, z1, z2, . . . , zm, u is a t-additive
chain with m+1 distinct points, which contradicts the maximality of m. Therefore, (z1, zm)

is t-extreme in X.
Clearly, there exists 1 ≤ i ≤ n such that t (z1 − zm) = z1

i − zm
i , and hence the definition

of c : X → {0, 1}n gives c(x)i = 1. We claim that c(y)i �= 1. Indeed, if c(y)i = 1, there
exists v ∈ X such that (y, v) is t-extreme and t (y −v) = yi −vi . As t (z1 −zm) = z1

i −zm
i ,

it follows from Lemma 4.4 that t (x − y) = xi − yi . Using Lemma 4.3, we find that
x, y, v is a t-additive chain. This additive chain has length 3, because x = v implies
yi − xi = yi − vi = t (y − v) = t (y − x) > 0, which contradicts the fact that
xi − yi = t (x − y) > 0. But x, y, v cannot be a t-additive chain of length 3, as (y, v)

is t-extreme. Thus, c(y)i �= 1 and hence c(y)i = 0. By interchanging the roles of x and
y, we also find j such that c(y)j = 1 and c(x)j = 0. Therefore, c(x) and c(y) are not
comparable, and we are done. �

The result for the periods of periodic points of topical functions has consequences
for the dynamics of certain cone maps. Let R

n+ be the standard positive cone in R
n,

so, R
n+ = {x ∈ R

n | xi ≥ 0 for all 1 ≤ i ≤ n} and let int(Rn+) denote its interior.
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We observe that there exists a homeomorphism L : int(Rn+) → R
n given by L(x)i =

log(xi) for 1 ≤ i ≤ n and x ∈ int(Rn+). The inverse E : R
n → int(Rn+) of L is, of course,

given by E(x)i = exi for 1 ≤ i ≤ n and x ∈ R
n. As both z → log(z) and z → ez

are monotone functions, we have that if g : int(Rn+) → int(Rn+) is order-preserving, then
f : R

n → R
n, given by f (x) = L(g(E(x))) for x ∈ R

n, is also order-preserving.
Moreover, it is easy to see that if g : int(Rn+) → int(Rn+) is homogeneous, i.e. g(λx) =
λg(x) for all x ∈ int(Rn+) and λ > 0, then f is additively homogeneous. Conversely,
one can show that if f : R

n → R
n is a topical function, then g : int(Rn+) → int(Rn+),

given by g(x) = E(f (L(x))) for all x ∈ int(Rn+), is order-preserving and homogeneous.
Therefore, order-preserving homogeneous maps g : int(Rn+) → int(Rn+) have the same
dynamical behaviour as topical functions f : R

n → R
n. Consequently, the following

assertion is true.

THEOREM 5.2. The optimal upper bound for the periods of periodic points of maps
g : int(Rn+) → int(Rn+) that are order-preserving and homogeneous is

( n�n/2�
)
.

We conclude the paper by indicating a connection between the two main results.
To every sup-norm non-expansive map f : M → M , where M ⊂ R

n, a t-non-expansive
map g : M ′ → M ′, where M ′ ⊂ R

2n, can be associated such that g has the same dynamical
behaviour as f . Indeed, if we let τ : R

n → R
2n be given by τ (x) = (x,−x) for all x ∈ R

n,
then

t (τ (x) − τ (y)) = max
1≤i≤2n

{τ (x)i − τ (y)i} = max{t (x − y), t (y − x)} = ‖x − y‖∞.

This implies that if f is sup-norm non-expansive, then g = τ ◦ f ◦ τ−1 is t-non-
expansive. In particular, if � is an Abelian group of sup-norm isometries f : X → X

that acts transitively on X and Y = τ (X), then Y contains no comparable elements and
�′ = {τ ◦ f ◦ τ−1 : Y → Y | f ∈ �} is an Abelian group of t-isometries that acts
transitively on Y . By applying Theorem 4.2, we immediately deduce that each finite set
X in R

n, on which an Abelian group of sup-norm isometries acts transitively, has at most(
2n
n

)
elements. From Stirling’s formula it follows that

(
2n
n

) ∼ 4n/
√

πn, which is a worse
upper bound than the one in Theorem 2.1.
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