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ABSTRACT

Electric power systems are changing. The current trend is to abandon fuel,
carbon and gas generators in pursuit of greener generators that are supplied by wind
or sun. Although this trend has many benefits, electric systems are not prepared
to receive much energy from these new sources as they are not fully controllable
because they depend on factors external to human control. Up to now electric grids
were controlled from generation side. As there is almost no electric storage in the
grids all the power being consumed at a given instant must me generated at the
same moment. In order to complete the transition to a greener system this control
paradigm must change and the demand side must play an important role in this
new control logic.

In this thesis we study the problem of a load aggregator that manages a set of
loads from its customers and exploit the flexibility of the loads to provide frequency
regulation to the grid. We study the problem from a macroscopic point of view
without entering into individual load details. We propose a set of ODE models to
predict the evolution of the power consumed by the cluster of loads and we design
controllers for this models in order to be able to follow external power references. We
finish by suggesting some possible algorithms in order to implement the control to
individual loads. Simulations show that this system could provide valuable services
to electric grids if sufficient communications infrastructure is available.

Key words: Frequency regulation; Demand response; Smart Grid; Optimal h2
control.
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Chapter 1

Introduction

1.1 BACKGROUND

1.1.1 Electric power systems

Electric power systems are one of the largest and more complex human creations.
Each electric grid is composed by thousands or millions of components that interact
with each other to move energy from generators to consumers.

From the point of view of the power grid, individual customers and their ap-
pliances are small, numerous, and hardly discernible as distinct loads. While con-
sumers typically think of their electricity usage in terms of a quantity of energy (in
kilowatt-hours) consumed over the course of a billing period, the quantity of interest
to system operators and planners is the power (in kilowatts or megawatts, measur-
ing the instantaneous rate of energy flow) demanded at any given time. The term
demand thus refers to a physical quantity of power, not energy. Serving that instan-
taneous demand under diverse circumstances is the central challenge in designing
and operating power systems, and the one that calls for the majority of investment
and effort [1].

Electric systems have the particularity that they have almost no electric stor-
age capacity. This does not mean that there is no energy storage to feed the grid,
there is energy stored in fossil fuels, carbon, water, etc. The lack of storage in the
grid itself means that the consumed electric energy in a given moment must also be
generated at the same instant. Generation must be controlled to keep the system
at its nominal working point; this means that the energy generated should be the
one demanded by all the loads connected to the system under nominal conditions
(230V and 50Hz in Uruguay) plus the losses in transmission. If there are imbal-
ances between generation and nominal demand this would impact the equilibrium
of the system moving voltage, frequency, temperatures, etc, out of their nominal
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parameters with the associated risk to the system.

It is interesting to reflect upon the historical service philosophy that considers
demand as the independent variable that is to be met by supply at any costs. The
assumption embedded in both the hardware design and the operating culture of
electric power systems is that customers freely determine how much power they
want, and that it is the job of power system designers and operators to bend over
backwards if necessary to accommodate this demand [1].

Matching the generation to demand is a complex task that involves several actors
and time scales. Going from the longer term to the shorter term we have: infras-
tructure planning, long term contracts, day ahead planning, intraday planning and
real-time balancing. Infrastructure planning includes mainly predicting how demand
will evolve along the years and having always enough generation and transportation
capacity to meet peak demands.

Having the necessary infrastructure, the daily routine of system operators (SOs)
starts the day before dispatching by scheduling the generators to meet the predicted
demand. The task of scheduling the generators depends on the structure of the
market and the physical limitations of the system. In vertically integrated companies
the decision is based mainly in efficiency while in deregulated markets prices play
an important role, in any case the physical limitations of the system must be taken
into account. This day ahead planning sets a baseline for the operation in real time
but is not strictly fulfilled, as predictions are not exact as demand varies freely in
most cases. In order to match generation and demand new predictions are done
hours or minutes before dispatching and the base scheduling is modified. However
at the moment of dispatching there will still be differences between generation and
demand, and some generators with reserved power capacity, will be responsible of
correcting these small differences by continuously modifying their output. This task
is commonly known as frequency regulation because these imbalances are indirectly
calculated by measuring the deviations of the frequency of its nominal value (50Hz or
60Hz depending on the system). If frequency exceeds its nominal value it means that
there is over generation and generators receive the order of decreasing their output,
and vice versa. To perform this task efficiently SOs must know in advance how
frequency changes as a function of the imbalance between generation and demand,
f(∆P ), for the particular setup of the grid. Using the inverse of this function the
SO can calculate the needed change in generation by measuring the deviation of the
frequency from its nominal value.

Frequency regulation did not become simpler through the years; especially in the
last decades there were some circumstances that required new solutions. We will
make reference to two of them that are directly related to our thesis. One is related
to the growth of the grids due to interconnections and the market deregulation
that followed it [1]. Small grids where regulated by a single generator; with the
continuous growth of grids it reached a point where this task had to be shared by
more than one generator. In vertically integrated power companies the decision of
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which generators would regulate frequency and how it would be done depended on
one actor and it could be done as optimally as possible. As vertically integrated
companies were fragmented and markets were deregulated, frequency regulation and
other ancillary services become a product traded in particular markets and the price
become the decisive factor, not always leading to the best solution. At this point,
system operators, responsible of maintaining the system and providing the service
to final users, had to design methods to coordinate all actors participating in the
system and controlling that they provide the promised service. For the specific
case of frequency regulation most of SOs work in the same way. The day before
dispatching the SO calculates the power it must reserve for frequency regulation in
order to assure a proper operation for each hour. This quantity is measured in power
units (MW) and it refers to an amount of power that generating units commit to
reserve in order to be available when the SO asks for it. This power can be for up
or down regulation depending if the unit reserves capacity to increase or decrease
its output. Each generator willing to participate in the market makes an offer of
up or down regulation for a given quantity at a given price and the SO chooses the
smallest bids up to the needed quantity. At dispatch time the SO in a centralized
way measures the system frequency and generates a regulation signal in [-1,1] that
is sent to all generators providing regulation; each of them must modify its output
away from its nominal working point an amount proportional to the signal received
and the committed regulation. For example if a generator is producing 500MW and
has 100W of committed regulation, if it receives a regulation signal of −0.5 it must
modify its output to 450MW .

The second factor that complicates balancing tasks is the increasing number
of non-controllable generators in power systems. The last decades have seen an
exponential growth of renewable energies connected to the grids which have their
positive and negative effects. Most of us are aware of the positive side of renewable
energy but not of its effects on power systems. These generators vary their output
depending on external factors as wind or sun. Although these variables can be
predicted they are not controllable and hence they increase the need of frequency
regulation of the system. At the same time, as more and more energy comes from
theses sources, there is less coming from controllable generators and this implies
there are fewer generators available for providing balancing services. At this point
is where our contribution comes into place.

1.2 DEMAND CONTROL PARADIGM

If we project ourselves to the near future we could imagine electric power systems
with a very high percentage of the energy coming from renewable non-controllable
sources. In such a scenario the classical paradigm of generation following demand
is not longer feasible and we could expect opposite control logic where demand
adapts to the available power. As we previously commented there are still no grid-
scale storage technologies. If we could have enough storage we would not need to
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control demand, we would just produce enough energy, store it and consume it when
necessary. Even if this large scale storage does not exist, there is still some available
storage that we could exploit to better utilize energy from non controllable sources.
There is plenty of storage distributed in houses and industrial sites. In a normal
house we have water heaters, fridges, heating devices, AC’s, eventually electric cars
and other smaller storages in portable devices. Most of these appliances allow us
to decouple consumption of electric power from the use of the device; some of them
only minutes as ACs, other a couple of hours like water heaters or maybe days for
an electric car. Other devices do not have storage but their use can be deferred
in time without affecting user experience, the most classical examples are washing
machines or water pumps. The use of loads as part of the control of the grid is
known as “Demand Response” (DR), and will be our main subject of investigation.

The new control paradigm for the electric grids should exploit as much as pos-
sible this intrinsic flexibility of the loads. There are numerous ways to harness this
flexibility, from scheduling loads the day before their use to real-time control for
frequency regulation.

1.3 AGGREGATORS AND SMART GRID

In order to make possible this change in electric grids new infrastructure and
actors are needed. In regard to infrastructure a communication network will be
necessary that connects individual loads, directly or indirectly, with the SO in order
to coordinate generation and consumption. Individual loads will need to be modified
to communicate with the network and to be able to take actions depending on specific
variables to be defined. This infrastructure will enable to deploy algorithms over the
whole grid and coordinate all the actors involved. This change in the infrastructure
of electric grids is frequently referred to as “Smart Grid” and basically consists of
the use of information and communication technologies all over the grid. Demand
response is one of the potential uses of this smart grid, but it has plenty of other uses,
one of the most important being the security and reliability of the system. These
aspects are improving with the use of such technologies, as they enable continuous
monitoring of the whole grid and make it possible to take automated actions to solve
problems in distant places.

Going back to our main focus, DR, it is important to notice the scale of the
problem. Electric grids connect millions of users, each of them with several different
appliances, which means that a DR solution could potentially involve hundreds
of millions of loads. Nowadays SOs deal with hundreds or maybe thousands of
generators. These generators provide energy and ancillary services to the grid and
are coordinated by the SO. If loads will start providing ancillary services it would
mean going from thousands of actors to millions, and it may be impossible for a single
central operator to coordinate them all. At this point we imagine that a possible
solution would imply a hierarchical organization where intermediate agents between
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SO and final users will be in charge of managing a cluster of loads and provide
services to the grid in a simpler way. We will call these actors load aggregators or
simply aggregators. Our investigation will be focused from the aggregator’s point of
view. Our hypothesis is that the SO will continue managing the system in the same
way as today and aggregators will use loads to provide ancillary services (frequency
regulation in our case), competing against generators in the corresponding markets.

In this thesis we explore solutions for using deferrable and interruptible loads for
frequency regulation. Notice that in this category we can include all type of loads
with storage as they can also be seen as deferrable loads, where the deferability
capacity depends on the amount of storage.

1.4 PREVIOUS WORK

Before entering into our proposal we will briefly present a selection of related
work in this area. Demand Response has been a popular research area in the last
years; we will not focus in the infrastructure needed to implement DR, but on the
candidate loads and the algorithms needed for using them in an efficient way.

There are two categories of loads that are the most popular in this research
area, electric vehicles (EV’s) and thermostatically controlled loads (TCL’s). As we
explained before there are many other candidate loads for DR, but these two groups
are among the ones with highest potential. We will review some proposals using
this kind of loads and we will then comment some more ideas using generic loads.

TCL’s have been very popular in DR because of their intrinsic thermal storage.
Most TCL’s do not work in a specific temperature point but maintain temperatures
using a hysteretic ON-OFF control. The typical operation of a TCL, a refrigerator
for instance, that is set to maintain the temperature between 3◦C and 5◦C is the
following. The cooling device turns on until the temperature reaches 3◦C, and then
it remains off until the temperature reaches the upper limit, 5◦C, and turns on again
to take it to 3◦C. We could think of this process as a battery that is full when the
temperature is 3◦C and empty when it is at 5◦C. The operation of the fridge could
be modified to follow any other ON-OFF pattern as long as we keep the temperature
within the range. Most TCL’s work in a similar way and can be treated as batteries.
The size of this storage depends on the range of permitted temperatures, thermal
capacity and resistance of the storage.

In [2, 3, 4, 5] the focus is on TCLs for providing frequency regulation. In [2]
they use Markov chains to derive a linear time-invariant representation of an het-
erogeneous population of TCLs. They propose two methods for determining the
aggregated model parameters, either from the parameters of individual TCLs or by
observation of the temperature dynamics of some or all of the loads of the population.
They close by proposing a control method using model predictive control and ana-
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lyze the impact of incomplete TCL state information has on controller performance.
In [3] a collection of TCLs is characterized by an equivalent battery model and in
[4] the potential of this approach for providing frequency regulation is demonstrated
with practical data from California. [5] focuses on Commercial building HVAC sys-
tems to provide frequency regulation. Instead of aggregating small individual loads
it exploits the potential of big HVAC systems with its different components, fans,
coolers, thermal storages. In [6] a more general approach shows how generic TCL’s
as AC or fridges can be controlled in a decentralized way to follow a power reference.

Much research has been done in how to optimally charge EV’s. We could imagine
that in a near future most cars will be electric and this means millions of medium
size batteries that are most of the time unused (when cars are parked). These
batteries can be seen as small independent batteries and charge them independently
one from another or they can be viewed as a large distributed battery that can
smooth variation in generation and load. Of course coordinating all the batteries
must take into account several other variables as, users requirements (ex: battery
full before certain hour), distribution grid limitations, battery life cycles, mobility,
etc.

[7] studies how to charge a fleet of vehicles under an aggregator control to max-
imize the frequency regulation capacity while maximizing the profit for the aggre-
gator. By using dynamic programming, an optimal charging control is pursued for
each vehicle and the optimality of the results is verified by simulations. In [8] it
is shown how to estimate the frequency regulation capacity of a fleet of EVs while
being charged. They find the optimal value for the average charge rate and the
maximum allowed deviation from the average, while trying to maximize the value
of the regulation service that can be offered to the grid.

More relevant to this paper is another line of work [9, 10, 11] that exploits the
time deferability of generic loads, characterized by arrival times, deadlines, power
and energy requirements. In particular [9] investigates different options for schedul-
ing such deferrable loads, comparing classical approaches from processor scheduling
(earliest deadline first, least laxity first, see e.g. [12]) with a model predictive control
proposal tailored to the power setting. In [10] the authors attempt to characterize
the aggregate flexibility provided by such load arrival profile, again in terms of elec-
tricity storage. [11] uses generic deferrable loads to make the aggregate total power
consumption on the grid as smooth as possible with a decentralized control.

1.5 DOCUMENT OUTLINE

The thesis is organized as follows. In Chapter 2 we introduce our load aggregator
model and analyze its potential and limitations. Chapter 3 presents a modification
to the model that takes into account individual loads deadlines and analyzes how
this change affects the potential of the aggregate of loads. In Chapter 4 the focus is
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on optimizing the control of the system, an H2 optimal control is implemented. In
Chapter 5 we provide extensive simulations to validate our model in diverse situa-
tions and we test different algorithms that could be used in a real implementation.
We finish with conclusions and future research in Chapter 6. Appendices and bibli-
ography follows.
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Chapter 2

Load aggregator model

In this chapter we present a model for a load aggregator which will be the base
for the rest of our work. We start by modeling individual loads and then infer a
fluid model of an aggregate of loads. Using this model we will explore solutions for
reducing regulation needs of the aggregate of loads and furthermore using the loads
as frequency regulation providers.

2.1 DEFERRABLE LOADS

Electric loads can be classified between deferrable and non-deferrable. This clas-
sification is given by the ability of the load to decouple its consumption from the
time when it is activated. In the previous chapter we introduced some examples of
deferrable loads and some of its potential uses. This type of loads are the basis for
our model.

Non-deferrable loads are all of those that need to be used in the moment that
they are activated such as lights, TV, household devices, etc.

2.1.1 Individual load model

In this thesis we will work with a generic deferrable load model; although it does
not fit exactly every type of load, it is a reasonable approximation for most. The first
assumption we will make is that each load has a fixed rated power, that it consumes
while being on. There are some loads like washing machines that have different
stages during a cycle of use and consume a different amount of power in each stage;
these are only a small fraction of loads so we will neglect these special cases and
take their average power as their nominal power. The model for individual loads
is similar to the one used in [10]. Each load j is modeled as a task parameterized
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by its total service time needed τj, arrival time aj, departure time dj, and nominal
power pj. This means that at time aj the load requests to be serviced before time
dj for a total time τj at rate pj, or equivalently, the load needs to be serviced an
amount of energy Qj = τjpj.

Loads are also characterized by the possibility of being or not interrupted during
their service, and in the case of being able to be interrupted the number of times
they can be interrupted or the minimum time between interruptions. For the time
being we will not consider this restriction but we will examine it later in chapter 5.

2.2 FLUID MODEL OF LOAD DEFERRALS

Let us now consider a load aggregator that manages a large set of loads from
its customers. The aggregator exploits the flexibility of individual loads to reduce
the cost of supplying the demands. We could think of different uses depending on
the time scale; on the long term the aggregator could move consumption from times
of higher prices to lower prices and in the short term the flexibility can be used to
provide regulation. We will focus in the use of loads flexibility for providing and
reducing the need of frequency regulation.

To begin with, this agent should have a prediction of the aggregate power demand
profile for a time period (e.g. the following day), and will use the forecast to purchase
this average power in the day-ahead market. Regulation comes into play to deal with
real-time variations around these predicted values.

Assume first that none of the loads are deferrable: in that case the aggregator
has a randomly varying load profile that deviates from the forecast and so it be-
comes a consumer of regulation services, which must be obtained through the SO.
Suppose instead that a portion of the loads is deferrable in time; this flexibility
can be exploited to align as much as possible the consumed power to the forecast,
reducing the regulation power requirement. When load deferability is large the ag-
gregator could eliminate the need to purchase regulation, as long as the total energy
requirement has no bias. Furthermore, it could exploit the flexibility to become a
supplier of regulation services to others in the network.

2.2.1 Aggregator model

Our model for a load aggregator takes into account the loads that are under
control of this agent. Although each load has its own parameters as discussed
above, the model we propose only takes into account the average parameters.

Suppose demands arrive at the aggregator at constant rate λ, which is directly
associated with the power profile of the cluster of loads and can be estimated by
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the aggregator. In a real scenario the assumption of a constant arrival rate is only
valid for a relatively short period of time but we will not deal with this issue now.
Individual loads are modeled as explained in section 2.1.1, τ being the mean service
time. Instead of serving the loads at full power at their arrival the aggregator can
choose to serve loads at a fraction of the power, or alternatively, serve only a fraction
of the loads and defer the others. Our macroscopic model will be agnostic to these
details. Let n(t) denote the number of loads at disposal in the system to be serviced
and u(t) ∈ [0, 1] be the service fraction. A simple model for the evolution of the
number of loads in the system is the following ODE:

ṅ(t) = λ− 1
τ
n(t)u(t). (2.1)

Here, the number of dispatchable loads grows as new demands arrive, whereas
the second term accounts for service completions: n(t)u(t) is the number of active
loads, each completed at rate 1/τ , or alternatively we can think of n(t) active loads
being served at a fraction of their power u(t) which gives a completion rate of u(t)/τ .

We can also think of this model as the fluid-flow counterpart to the Markov
chain in Figure 2.1. Figure 2.1 represents a M/M/∞ queue with arrival rate λ and
individual service times exp(u

τ
).

N − 1 N N + 1

λ

1
τ
Nu

λ

1
τ
(N + 1)u

Figure 2.1. Markov state diagram with transition rates

Some remarks have to be made about this model; it is a fluid model of a discrete
system, being valid only if the number of loads is large enough. It is also not
trivial that the departure rate is always proportional to u(t) if this value changes
continuously. The error associated with changes in this parameter can be neglected
if u(t) stays close to its nominal working point and further if the loads’ service time is
distributed exponentially, because of the memory loss property of this distribution.

Equation 2.1 models the dynamics for the number of loads under the aggregator’s
control. What really interests us is the consumption of these loads so we should focus
on this value. If u represents the fraction of each load’s nominal power then the total
power consumed by the cluster is

P (t) = u(t)
N(t)∑
j=1

pj.

Alternatively if u is the fraction of loads being served, the total power would be

P (t) =
du(t)N(t)e∑

j=1
pf(j),
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where f(j) is some permutation of N(t) (depending on the scheduling algorithm).
In both cases if we take E [P (t)] = p(t) we get:

p(t) = p0n(t)u(t),

assuming that the power of the loads, pj, are independently distributed with mean
p0, and the scheduling algorithm is independent from the power of the loads.

The complete model is then:

ṅ(t) = λ− 1
τ
n(t)u(t), (2.2a)

p(t) = p0n(t)u(t). (2.2b)

In Appendix B further justification of the model is included. Here we validate
by simulations. We compare the prediction of model 2.2 with a discrete system
simulation which better represents the real system.

We considered a random profile of loads arriving at the aggregator as a Poisson
process, of rate λ = 10 jobs per minute, with (exponentially distributed) service
time request of mean τ = 1800s, and power p0 = 1kW when serviced. u∗ = 0.5 for
both scenarios.

The first simulation, Fig. 2.2 shows the case of constant u(t) ≡ u∗ with the
system starting from zero initial conditions. The second simulation, Fig. 2.3 is for
the case of varying u(t), in this particular case we choose a sinusoidal signal and we
simulated the system in steady state.
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Figure 2.2. Comparison between the ODE model and a discrete
loads simulation for constant u(t).
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Figure 2.3. Comparison between the ODE model and a discrete
loads simulation for u(t) = u∗ + 0.3 sin( 2π

3600s t).

In this analysis we left out one of the loads’ parameters, their deadline. As we
mentioned in section 2.1.1 loads have and arrival and departures time, aj and dj
respectively, which define a time window for the load to receive its service, τj. The
difference between the available time to service a load and the time needed by the
load will be called laxity and it is a measure of the flexibility of each load, Lj =
(dj−aj)−τj. We will define L as the mean laxity of the loads, which in turns defines
h the mean deadline of the loads, which can be calculated as h = E[dj−aj] = τ +L.

2.3 LINEAR ANALYSIS

To begin our analysis let us first look at the system with a fixed value of u(t) = u∗.
Imposing equilibrium in (2.2) we obtain:

n∗ = λτ

u∗
, p∗ = p0λτ = λQ0. (2.3)

In equilibrium, the amount of serviceable loads in the system is increased by the
deferral action u∗ ≤ 1. Note however that the average power consumed by the
system is independent of u∗, and equal to the average energy per request (Q0) times
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the frequency of requests. This amount of power is the predictable component of the
demand and can be purchased in advance for the time-period considered.

A second conclusion of (2.3) by applying Little’s Law is that the average time
spent by each request in the system is τ/u∗. We would like this to be below the
deadline h, which imposes a first condition on the choice of u∗:

u∗ >
τ

h
= Q0

p0h
=: η. (2.4)

Here η ∈ [0, 1] is a measure of deferability of the loads (more deferability for smaller
η).

We would like to analyze this system with input u(t) and output p(t), in order
to understand which class of signals can be tracked by using the power fraction as
a control input, while keeping with the deadline constraint. As we are working with
a non-linear system a first approach for this analysis will be done by linearizing
the system around the equilibrium point n∗, p∗, u∗. Denoting by δn, δp and δu the
deviation of variables from equilibrium, the linearized dynamics are:

˙δn = −1
τ
u∗δn− 1

τ
n∗δu, (2.5a)

δp = p0 (u∗δn+ n∗δu) . (2.5b)

The transfer functions associated with the above system in the Laplace domain can
be readily computed to yield:

Gun(s) := δ̂n

δ̂u
=
−n∗

τ

s+ u∗

τ

,

Gup(s) := δ̂p

δ̂u
= p0n

∗s

s+ u∗

τ

.

We can note that the transfer function from u to n is a low pass filter and from u to
p is a high pass filter, both having the same pole at the frequency of completion of
the loads u∗/τ . The effect of altering u(t) in the power is immediate as it fixes the
amount of active loads, whereas the effect on the number of loads is retarded as it
implies a longer time, around τ/u∗, to complete the service of each load.

One important aspect that this model still doesn’t reflect is that the arrival rate
is not constant as it depends on non-controllable factors, load users. Arrivals are
actually discretely distributed, λ being its average rate. Also departures happen in
a discrete way. We will now discuss how to incorporate randomness in the model.

2.4 RANDOMNESS IN LOADS ARRIVALS AND DEPARTURES

To study the impact of randomness in loads arrivals and departures we use the
aid of stochastic analysis tools that are out of the scope of this thesis. A summary
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can be found in appendix B. Although we will not go deeply into the justification of
the model for incorporating randomness, we will show later in this chapter numerical
analysis to validate it.

2.4.1 The impact of uncertainty on regulated power

The presence of noise at the input of our system means that the output power
will deviate from its intended value. To evaluate this impact we begin with the
situation of a fixed deferral policy u ≡ u∗, which in the absence of noise would
produce a constant consumption of power p ≡ p∗. In the presence of randomness,
the output variations in power are characterized by incorporating noise into (2.5):

˙δn = −1
τ
u∗δn+ v1 + v2︸ ︷︷ ︸

v

, (2.6a)

δp = p0u
∗δn; (2.6b)

where v1 and v2 are independent white noises of constant power spectral density λ,
corresponding to fluctuations in arrivals and departures. So v(t) is white noise of
power spectral density Sv(ω) ≡ 2λ. The transfer function from the noise input to
the output δp is given by

Gvp(s) = p0u
∗

s+ u∗

τ

. (2.7)

The noise variance at the output of this stable filter can be found (see e.g., [13])
from the corresponding H2 norm:

E
[
(δp)2

]
=
∫ ∞
−∞
|Gvp(jω)|2Sv(ω)dω2π

= ‖Gvp(s)‖2
H2

2λ

= (p0u
∗)2 τ

2u∗2λ = p∗p0u
∗. (2.8)

To validate this conclusion in Fig. 2.4 we can see 2 hours of a 24-hour simulation
with the same parameters as in section 2.2.1, and constant u∗ = 0.5. According to
Eq. 2.8 σ(p) =

√
p∗p0u∗ = 12.25kW , which is consistent with the empirical standard

deviation for this simulation which is 11.56kW .

A first conclusion of 2.8 is that choosing u∗ < 1 can reduce the variability of the
instantaneous power consumption p(t), with respect to the case of non-deferrable
loads. Here we see the favorable impact of the flexibility of deferring loads in smooth-
ing out the power profile, even if this deferral is chosen in a fixed, uncontrolled way.
It appears one should work with u∗ as small as possible, but of course this runs
against the deadline constraint expressed in mean value by u∗ > η; indeed, as
u∗ → η there will be increased probability of loads missing their deadlines.
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Figure 2.4. Power of the cluster of loads under fixed u(t) ≡ 0.5.

To further optimize the system to minimize this possibility, the scheduling of the
loads must be taken into account. Proposals such as earliest deadline first (EDF)
or least laxity first (LLF) [12] should be incorporated to cope with the deadlines.
Here we analyze three possibilities:

• Equal sharing: The load aggregator chooses to serve all present jobs with
power p0u

∗. While not all loads will allow this policy in practice, it serves as a
reference point for analysis. It corresponds to the Processor Sharing discipline
of queueing theory.

• Random: The load aggregator chooses a fraction u∗ of the available jobs at
random. This policy is very easy to implement in a decentralized environment,
by distributing the value of u∗ and the loads choose whether to become active
or not based on a local random variable.

• Least-Laxity-First (LLF): The load aggregator chooses a fraction u∗ of the
loads ordered by decreasing laxity, i.e. the remaining amount of time before
the job needs to become active in order to meet its deadline.

We simulated the system using these scheduling policies and different values
of u∗. In Fig. 2.5 we show confidence intervals (obtained through multiple runs)
for the standard deviation of the measured noise power, and compare them with
the theoretical value. We observe that power variability is oblivious to the exact
scheduling performed, and correctly captured by the analysis. In other words, the
main knob a load aggregator has to reduce variability in power consumption is
reducing the fraction of serviced loads u∗.
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Figure 2.6. Fraction of jobs completed after the deadline with
varying u∗, and different scheduling policies.

Scheduling does have an impact, however, in meeting the load deadline require-
ments. In Fig. 2.6, we plot the fraction of loads that finish with expired deadlines
for the different scheduling policies. The equal sharing and random policies behave
in the same way, with a smooth decrease of expired jobs as a function of u∗. In the
case of LLF, which takes deadlines explicitly into account, there is a sharp decrease
in expired jobs after u∗ > η. This means that, provided the system can implement
a suitable scheduling policy, the value of u∗ can be reduced towards the minimum
η, thereby reducing regulation requirements while meeting deadlines.
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2.4.2 Optimizing regulation requirements through feedback

In our analysis of system noise so far we only considered a fixed, static choice
of the load deferral fraction, captured by the parameter u∗. However, further im-
provements could be sought by controlling the variable u(t) in feedback, in this case
using as natural measurement the state n(t).

We now analyze such a scenario. Consider again the linearized system from (2.5)
restoring the input δu and adding the noise v, with output δp:

˙δn = −1
τ
u∗δn− 1

τ
n∗δu+ v, (2.9a)

δp = p0 (u∗δn+ n∗δu) ; (2.9b)

here again v(t) is white noise of power spectrum 2λ.

Since we are working with stochastic noise and signal variances for performance,
a natural feedback design strategy is H2-optimal control, seeking to minimize for
instance

J := E[(δp)2 + β(p∗)2(δu)2], (2.10)

weighted sum of the regulation error variance with a penalty on control effort. The
latter penalization is natural to induce the control input to stay within its saturation
limits 1.

Noting that we are in a state-feedback situation, the optimal H2 control (see
Appendix C) will have the form of a static state feedback δu = −Kδn; in this scalar
case we can work directly with the gain K, more conveniently written as

K = u∗

n∗
a (2.11)

with the parameter 0 6 a < 1.

Substituting the feedback law in the linearized state-space model (2.9), we arrive
at the closed loop:

˙δn = −u
∗

τ
(1− a)δn+ v, (2.12a)

δp = p0u
∗(1− a)δn, (2.12b)

δu = −u
∗

n∗
aδn. (2.12c)

The closed loop transfer function from noise to state is

Ga
vn(s) = 1

s+ u∗

τ
(1− a) , (2.13)

1Other control designs that explicitly incorporate L∞ bounds on u would be more precise, we
choose this version for simplicity. β is dimensionless.

24



from where we compute the stationary state variance

E
[
(δn)2

]
= ‖Ga

vn(s)‖2
H2

2λ = τλ

u∗(1− a) = n∗

1− a.

Expressions for the variances in (2.10) follow from (2.12):

E[(δp)2] = (p0u
∗(1− a))2 n∗

1− a = (p∗)2

n∗
(1− a), (2.14)

E[(δu)2] = (u∗)2a2

n∗(1− a) . (2.15)

Therefore our cost from (2.10) becomes

J = (p∗)2

n∗

[
(1− a) + β(u∗)2 a2

1− a

]
.

The above expression clearly expresses the tradeoff between regulation and control
effort as a function of the gain parameter a ∈ [0, 1). If a = 0 there is no feedback
control and we are back in the situation of Section 2.4.1, with the same perfor-
mance. Setting a → 1 would eliminate noise from the regulated power output, but
make the control signal variance explode beyond its constraints. Intermediate values
could potentially reduce the regulation variance while still keeping control within
its admitted bound.

We now simulate the system with this fixed value of u∗ = 0.5 against a system
that continuously updates u to the deviations in δn following equation (2.12c). For
this simulation we choose a = 0.8, which is a compromise between noise reduction
and deviations in the control signal that may move the system far away from the
nominal values.

In Fig. 2.7 we plot the results, showing the value of the control signal u(t)
(above) and the output power p(t) (below). We can see that the state feedback is
able to achieve an important reduction in the power variability, while the control
signal u(t) stays near the nominal value u∗.

As an additional remark, simulations with different scheduling policies show that,
again in this case, the results are agnostic to the exact job scheduling policy.
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Figure 2.7. Noise rejection via state feedback.

2.5 PROVIDING REGULATION

Up to now we focused in reducing the regulation needs of a cluster of loads. Now
we will replace the objective of keeping a constant power with a more ambitious
one: controlling the aggregate of deferrable loads to follow a power reference signal
provided exogenously by the SO. 2

Specifically, a provider of this ancillary service must commit to varying its power
consumption up to a fraction θ of its nominal power p∗, in response to a real-time
signal ρ(t) ∈ [−1, 1] that it receives every few seconds from the SO. Upon receiving
this signal the load should ideally become

p(t) = p∗(1 + θρ(t)) = p∗ + θp∗ρ(t)︸ ︷︷ ︸
r(t)

. (2.16)

2.5.1 Maximum offered regulation

A frequency regulator provider gets rewarded by the maximum deviation θp∗ it
is able to offer, thus it is to our convenience to make θ as large as possible. The
maximum theoretical value is θ = 1, which would imply varying the power in the
range [0, 2p∗]. Our system could potentially offer this maximum value of regulation
but in order to achieve this objective the value of u∗ should be carefully chosen. The
lower bound for the consumed power of the aggregate of loads is 0 because we can

2In control parlance, this is a tracking rather than a regulation problem. The section title uses
the power systems terminology.
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Figure 2.8. Controller design for tracking the regulation signal

always set u(t) = 0 momentarily. The higher bound is not fixed as it depends on
the state of the system n(t), being the maximum achievable power p(t) = n(t)p0, by
setting u(t) = 1. We can get an estimate of this bound by applying the equilibrium
values:

p(t) ≤ p0n
∗ = p∗

u∗
.

This means that in order to offer a value of θ = 1 we should choose u∗ < 0.5.

2.5.2 Tracking a reference signal

A first proposal to achieve the desired tracking is through a feedforward con-
troller, as depicted in Fig. 2.8. Observe that by choosing C(s) as:

C(s) = 1
Gup(s)

=
s+ u∗

τ

p0n∗s
= 1
p0n∗

(
1 + u∗

τs

)
, (2.17)

the linearized system should be able to match deviations in the regulation signal r.

Noting that p0n
∗ = p0λτ/u

∗ = p∗/u∗, the above proportional-integral law can be
expressed in the time domain as follows:

δu(t) = u∗

p∗

[
r(t) + u∗

τ

∫ t

0
r(w) dw

]
.

Now replacing with (2.16) and noting τ = ηh leads to

δu(t) = u∗θ

[
ρ(t) + u∗

ηh

∫ t

0
ρ(w) dw

]
. (2.18)

Of course, the control input is subject to the saturation constraint u(t) ∈ [0, 1].
Consequently, the above expression indirectly constrains the class of regulation sig-
nals ρ(t) that our system can track; in particular ρ(t) must have mean-value zero,
otherwise the integral term will necessarily lead to saturation; in fact ρ(t) should
not have a persistent sign for too long, in relation to the mean deadline h.

To illustrate the behavior of the proposed controller, we simulated the system
driven by a real-life regulation signal ρ(t) taken from [14]. We considered a random
profile of loads arriving at the aggregator as a Poisson process, of rate λ = 4 jobs per
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Figure 2.9. Tracking of a power regulation signal via service
deferrals.

minute, with (exponentially distributed) service time of mean τ = 1800s, and power
p0 = 2kW when serviced. The fraction of serviced loads u(t) is driven by (2.18),
the output of the linear controller around a fixed equilibrium value of u∗ = 0.5
and includes the effect of the saturation constraint u(t) ∈ [0, 1]. Of the possible
scheduling policies based on u(t) (described in more detail in Section 2.4.1) we
chose here the equal sharing algorithm; however this choice has minimal impact.

Simulation results are shown in Fig. 2.9, corresponding to θ = 0.5; we see that
the aggregator output closely matches the regulation request. Thus the aggregator
can offer 50% regulation around the average power p∗ = 240 kW.

We do notice, however, some tracking errors which are attributed to the ran-
domness in the system, for this particular setting the RMS value of the error is
16.37kW . Depending on their entity, such errors may result in practice in penalties
for not following the correct profile [15]. An effort should be made to try to minimize
tracking errors.

C(s) Gup(s)
r δu δp

δn

Figure 2.10. Controller design for tracking the regulation signal

We pursue this issue using again the linearized model around the nominal oper-
ating point. The open loop model coincides with (2.9), but now we must consider
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in addition an external reference r(t) which the power output must track, so the
performance specification will involve the tracking error e(t) := δp(t) − r(t). The
controller, see Fig. 2.10, should have access to measurements of the state variable
δn(t), and also to the external reference r(t), producing an action δu(t) on the plant
(2.9) so as to minimize the error variance, while keeping a check on control effort.
This could be framed as a joint H2-optimal control design with cost

J ′ := E[e2 + β(p∗)2(δu)2] (2.19)

which generalizes (2.10). A complete design of this kind would require a charac-
terization of the class of reference signals to be tracked, for instance through a
frequency weighting function. At this point we will opt for the simpler strategy of
combining the feedback and feedforward components from the earlier sections, using
a controller of the form

δu(t) = −Kδn+ ũ(t),
where K has the form (2.11) and ũ is a function of the reference input. Substitution
into (2.9) gives:

˙δn = −1
τ
u∗(1− a)δn− 1

τ
n∗ũ+ v, (2.20a)

δp = p0[u∗(1− a)δn+ n∗ũ], . (2.20b)

which leads in the Laplace transform domain to

δp(s) = Ga
ũp(s)ũ(s) +Ga

vp(s)v(s),

with

Ga
ũp(s) = p0n

∗s

s+ u∗

τ
(1− a) , Ga

vp(s) = p0u
∗(1− a)

s+ u∗

τ
(1− a) .

This suggests choosing the feedforward component ũ as

ũ(s) = 1
Ga
ũp(s)

δr(s) = 1
p0n∗

(
1 + u∗(1− a)

τs

)
δr(s),

which results in the following closed loop transfer function from noise to tracking
error:

e(s) = δp(s)− δr(s) = Ga
vp(s)v(s); (2.21)

therefore the noise penalty on performance will be exactly the one computed in
(2.14). The control effort will also have the noise term of (2.15), but in addition
there is the impact of the reference signal analogous to (2.18).

To end this chapter we show a simulation of the complete system. We use the
same signal and parameters of Fig. 2.9 adding the feedback for noise reduction.
Again we choose a = 0.8. We can see in Fig. 2.11 that the tracking is clearly
improved, the RMS value of the error decreased to 11.09kW .
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Figure 2.11. Tracking a reference signal for the system with
noise rejection.

2.6 SUMMARY

In this chapter, we analyzed a model for a load demand aggregator that manages
a large number of consumer deferrable loads and is capable of adjusting the number
of active jobs to control their aggregated power. The proposed macroscopic model
is oblivious to the exact management of the loads and captures the essential behav-
ior of the system through the service fraction the aggregator provides. Using this
model, we were able to analyze the impact of variability in the demands, and design
tracking and noise rejection controllers. These simple mechanisms enable a load ag-
gregator to reduce its need for regulation services, and even offer regulation services
to others. The results were evaluated through fine-grained simulation, illustrating
the performance of the designed mechanisms.

Several problems still remain unsolved. One of them is guaranteeing each indi-
vidual load deadline. We will study this problem more in detail in the next section.
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Chapter 3

Coping with deadlines

In the previous chapter we presented a macroscopic fluid model of load aggre-
gation. One of the results that we found from analyzing this model is that in order
to cope with individual load deadlines, specific scheduling policies must be used
which require detailed information of every load state. This type of scheduling goes
against our objective of keeping the load aggregation model and scheduling algo-
rithms as simple as possible. In this chapter we will present an alternative solution
by modifying the model to take into account the deadline issue.

3.1 SEPARATING THE CRITICAL POPULATION

Loads enter the system with a needed service time and a dealine before which
they must be served. Loads not being served consume their laxity, and may reach a
point when meeting the deadline requires turning on the load immediately. After an
interval of time dt, a load served at power up0 will have reduced its required service
time by udt, but also will have consumed dt − udt = (1 − u)dt of its spare time.
Figure 3.1 shows the trajectory in (service-time/laxity) space when u is constant.

A trajectory reaching the vertical axis completes service and leaves the system.
If, instead, the horizontal axis is reached first, laxity expires and to keep its deadline
the load can no longer be deferred. We will denote by n(t) the population of loads
that at time t still have remaining laxity, and thus are served at level u; the remainder
of loads m(t) with expired laxity must be turned on immediately and served at full
power in order to meet their deadline. We propose this course of action, which can
be implemented in a decentralized fashion (e.g. a thermal load which decides to start
consuming power since the temperature has become too low). Setting L = h − τ
the mean laxity, a dynamic model for this new system is:
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Figure 3.1. Service-laxity trajectory under service level u

ṅ(t) = λ− 1
τ
n(t)u(t)− 1

L
n(t)(1− u(t)), (3.1a)

ṁ(t) = 1
L
n(t)(1− u(t))− 1

τ
m(t), (3.1b)

p(t) = p0(n(t)u(t) +m(t)). (3.1c)

Now u(t) represents the fraction of loads with positive laxity that are being
served. Loads can exit the first queue in two ways: a fraction of the loads, repre-
sented by the term 1

τ
n(t)u(t) get completely served before their deadline; the rest,

represented by 1
L
n(t)(1−u(t)), are automatically turned on when they run out of lax-

ity and move from n to m. The departure rate from the second queue is represented
by 1

τ
m(t), as they are always on.

Model 3.1 is consistent with the original model 2.2 under the scheduling policy
described above; all the loads with expired laxity are turned on and served at full
power. Model 2.2 resembles model 3.1 when L → ∞. A more detailed stochastic
analysis of this model is provided in Appendix B.3.

To analyze this new model we will proceed as in the previous section by first
studying the system in equilibrium and linearizing to analyze the power variability
and design suitable controllers.

Fixing u(t) = u∗ and imposing equilibrium in (3.1) gives the following values for
n and m:

n∗ = λ
u∗

τ
+ (1−u∗)

L

, m∗ =
λτ (1−u∗)

L
u∗

τ
+ (1−u∗)

L

. (3.2)

Analyzing now the relationship between the number of loads and the service level
is a bit trickier. First of all it’s important to remark that u∗ does not reflect the
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percentage of active loads as in (2.2). If we denote as ur the fraction of active loads,
then

u∗r = u∗n∗ +m∗

n∗ +m∗
.

When u∗ = 1 then also u∗r = 1 because all the loads are on and m∗ = 0 as loads are
serviced immediately, n∗ = λτ . If on the other hand u = 0 then

u∗r = m∗

n∗ +m∗
= τ

τ + L
= η,

which turns out to be the minimum percentage of active loads admitted by this
system and is consistent with (2.4), as we do not allow any load to be serviced after
its deadline. With regard to the number of loads, n∗ is strictly increasing/decreasing
with u∗ depending if τ < L or τ > L respectively. m∗ is always decreasing with u∗

as it would be expected because as more loads are served early, fewer get their laxity
expired. The number of active loads is u∗n∗ + m∗ = λτ which does not depend on
u∗ and is proportional to the mean power p∗ = p0λτ as in our 1-state model, and
the total number of loads can be inferred from (3.1) n∗ +m∗ = u∗n∗+m∗

u∗
r

= λτ
u∗

r
.

We end this section by validating the model through simulations as in section
2.2.1, with the same parameters. The value of u∗ is not the same as we want u∗r = 0.5
to have the same effective service level. We can calculate u∗ from eq. 3.1 which gives
u∗ = 1/3, for this particular setting. Figure 3.2 shows the evolution of the number of
loads for both models under the same process of arrival and using the equal sharing
algorithm. The simulation is consistent with the new model and the mean number
of loads in the system is the same for both models, 600 for this setting.
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Figure 3.2. Number of loads for both models under the same
arrival process.
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If we look at the service level in Fig. 3.3 we can see that although we are working
with a fixed u the effective service level is not constant. This variability comes from
the imposition of serving at full power all loads with no laxity, which in turn depends
on load service time and laxity. In the next section we will see that this restriction
that guarantees that loads are served on time introduces more variability in the
output power.
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Figure 3.3. Comparison between u∗r and ur(t) when imposing
deadlines.

The last figure, Fig. 3.4 compares the consumed power for both models. Al-
though both simulations are done with the exact same loads the difference in the
scheduling strategies makes the consumed power to by slightly different. We can
still see form the figure that they are qualitatively very similar.
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Figure 3.4. Comparison between the power consumed for both
models, with and without enforcing deadlines.

3.2 MODELING RANDOMNESS IN LOAD ARRIVALS AND DEPARTURES

Analyzing consumed power variability in this model is somewhat more compli-
cated. We will again linearize the model and add the noise sources with the same
assumptions as in (2.6). The linear model is the following:

˙δn = −
[
u∗

τ
+ 1− u∗

L

]
δn+

[
n∗

L
− n∗

τ

]
δu+ v1 − v2 − v3, (3.3a)

˙δm = 1− u∗
L

δn− 1
τ
δm− n∗

L
δu+ v3 − v4, (3.3b)

δp = p0(u∗δn+ δm) + p0n
∗δu. (3.3c)

Now v1 stands for the arrival noise in n, v2 and v3 for the two departure noises. v3
is also the arrival noise for m, and v4 the departure noise for m.

To calculate the variability in the consumed power we will resort to the state
space representation of the system:

ẋ︷ ︸︸ ︷[ ˙δn
˙δm

]
=

A︷ ︸︸ ︷[
−u∗

τ
− 1−u∗

L
0

1−u∗

L
− 1
τ

] x︷ ︸︸ ︷[
δn
δm

]
+B1

w︷ ︸︸ ︷
w1
w2
w3
w4

+

B2︷ ︸︸ ︷[
−n∗

τ
+ n∗

L

−n∗

L

]
δu; (3.4a)

δp =

C︷ ︸︸ ︷[
p0u

∗ p0
] [ δn
δm

]
+

D2︷ ︸︸ ︷
p0n

∗ δu, (3.4b)

35



where

B1 =
√λ −√αλ −√(1− α)λ 0

0 0
√

(1− α)λ −
√

(1− α)λ

 .
and α is the probability that a job is completeky served before its laxity expires (see
Appendix B.4 for further explanation). To calculate α explicitly we compute the
probability that the job is served (at level u∗) before the laxity expires:

α = P
[
τk
u∗
≤ Lk

1− u∗
]

=
u∗

τ
u∗

τ
+ 1−u∗

L

,

where we invoked the exponential distribution of τk, Lk with respective means τ , L.

We have now a stable state-space system driven by vector valued white noise.
In steady-state, the covariance matrix Q of the state is (see e.g. [16]) the solution
to the Lyapunov equation

AQ+QAT +BBT = 0, (3.5)

and the resulting variance of the output p is E [(δp)2] = CQCT . The value of Q can
be directly calculated from the linear equation 3.5, resulting in:

Q = λ
u∗

τ
+ 1−u∗

L

[
1 0
0 τ

L
(1− u∗)

]
.

Which allow us to calculate the variance of consumed power:

E
[
(δp)2

]
= p∗p0

[
1− 1

1
1−u∗ + τ

Lu∗

]
. (3.6)

This model behaves in a different way to the one in Chapter 2: only the deferrable
portion of the load population is within the scope of the service level u∗, hence this
parameter can take any value in [0, 1], without violating job deadlines. In fact we find
from (3.6) that both extremes 0 or 1 have the same effect on the output variance,
which becomes E [(δp)2] = p∗p0. This makes sense because the only difference
between both cases is that for u∗ = 1 loads are turned on when they arrive, whereas
for u∗ = 0 they do after their laxity expires, but in any case the time in service is
the same, hence the steady-state output variability is the same.

Choosing an intermediate value of u∗ allows us to lower the variance but with a
lower bound, which is the price to pay for keeping all deadlines. The optimal value
of u∗ that minimizes the variance can be calculated to be:

u∗opt =
√
τ√

L+
√
τ
. (3.7)

We show in Fig. 3.5 the power variability of the loads predicted by the model for
the case η = 1/3 , and simulation results for the equal sharing algorithm.
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Figure 3.5. Variability of power output as a function of u∗ for
model (3.1).

The main conclusion of this analysis is that, with a simpler mechanism that does
not resort to scheduling, we can nevertheless reduce the regulation requirements. By
comparing the results of Figs. 2.5 and 3.5, we can see that although we cannot reduce
the power variability as much as in the one state model with u∗ = η, by carefully
choosing the service level u∗ of the second system, we can still achieve a significant
reduction in the power variability, but now with deadlines automatically attained.

3.3 PROVIDING REGULATION BY ADAPTING DEFERABILITY

As with the previous model our objective is still to reduce regulation needs
and offer frequency regulation to the system. Here we will proceed using similar
techniques to the ones already applied in Chapter 2 and in Chapter 4 we will focus
more in detail in the controller design.

3.3.1 Maximum offered regulation

As in section 2.5.1 we want to find the maximum θ achievable by out system.
The maximum theoretical value is θ = 1, which would imply varying the power in
the range [0, 2p∗].

In our system of deferrable loads this value is not achievable, because consumed
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power must lie within the bounds

p0m(t) ≤ p(t) ≤ p0[n(t) +m(t)];

in particular the lower bound is always positive since we have chosen not to defer
the loads m with expired laxity. Also the upper bound is constrained by the loads
n(t) present at any given time. Both bounds are intrinsically time-varying, but we
can get an estimate of the achievable margin by applying the equilibrium values:

p0m
∗ ≤ p(t) ≤ p0[n∗ +m∗].

Writing the lower bound as p∗(1− θ) and recalling p∗ = p0(n∗u + m∗) we arrive at
the bound

θ ≤ n∗u∗

n∗u∗ +m∗
= Lu∗

Lu∗ + τ(1− u∗) .

Similarly, the upper bound in power gives

θ ≤ n∗(1− u∗)
n∗u∗ +m∗

= L(1− u∗)
Lu∗ + τ(1− u∗) .

The above bounds are, respectively, increasing and decreasing in u∗, and they be-
come equal in u∗ = 1

2 ; therefore this choice is the value that provides the maximum
(symmetric) regulation capability, namely θmax = L

L+τ . We will use this choice of u∗
in what follows, despite the fact that it need not coincide with the value from (3.7)
providing minimal open-loop power variability.

3.3.2 Controller design

To finish this chapter we present a first simple approach to a controller for
providing regulation. We will resemble the controller used in Chapter 2, adapting
it to the new model.

The transfer function of the linearized version of the plant (3.1) is:

Gup(s) := δ̂p

δ̂u
= p0n

∗s

s+ u∗

τ
+ 1−u∗

L

. (3.8)

As a first solution to our tracking requirement we used the inverse of this plant
as a feedforward controller. Again we tested the tracking capability of the loads
with this controller simulating the response of the system to a real life regulation
signal taken from the PJM Interconnection [14]. We compare the reference signal
against the prediction of model (3.1) and a discrete system simulation which better
represents the real system. In the latter loads arrive at random times and we schedule
them using the equal sharing algorithm according to the signal u, until they are
served or they run out of laxity and are turned on automatically. The setting for
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Figure 3.6. Tracking a real life reference signal.

the simulation are the same as the ones used in chapter 2. The results of this
simulation in Fig. 3.6 show that the system is able to set the consumed power very
close to the reference, the RMS value of the error is 19.20kW .

Still, there are some differences between the reference and the output, which
may not be tolerable if we want to be regulation providers. To improve tracking we
consider adding feedback to the design, to compensate for the deviations introduced
by randomness in arrivals and departures. In Fig. 3.7 we depict such a controller,
using state feedback of the variables δn and δm.

C(s) Gup(s)
r δu δp

−
δn, δm

Figure 3.7. Controller design for tracking the regulation signal

Now the controller is the sum of two terms, one that tracks r(t), plus a noise
reducing term with inputs n(t) and m(t). The final form of the controller is, in
Laplace transform notation:

δu =
s+

(
u∗

τ
+ 1−u∗

L

)
(1− a)

p0n∗s
r − u∗

n∗
a

(
δn+ δm

u∗

)
. (3.9)
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Figure 3.8. Tracking a reference signal for the system with noise
rejection.

The parameter a fixes the feedback term for noise reduction, being 0 for no
feedback. Setting a = 1 would make the system internally unstable, so we choose a
strictly less than 1. In our simulation experiments we used a = 0.7.

The last simulation of this chapter, shown in Fig. 3.8, illustrates how the system
is capable of tracking the same signal we used before. We see there is a notorious
improvement in tracking after we add the noise reducing feedback, the RMS value
of the error decreased to 11.77kW . Still we can see that is slightly worse than in the
case we do not take into account deadlines, which is reasonable as we do not control
all loads.

3.4 SUMMARY

In this chapter we focused on the problem of coping with individual loads dead-
lines. We tackle this issue by proposing that each load will turn on automatically
when it runs out of laxity in order to meet its deadline. This lead to a new model
which is consistent with the one presented in chapter 2 with the difference of the
distributed control to prevent loads from expiring. Noise disturbance and simple
control strategies where analyzed for this solution. With this new model we propose
studying more in depth better control strategies which we will present in the next
chapter.
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Chapter 4

Optimal H2 control

In the previous chapter we proposed and analyzed a second model for a load
aggregator with the main difference from the one in chapter 2 that it took into
account loads deadlines. We will now explore more in detail how to control this
system in order to accomplish our two objectives: minimize the need for regulation
and provide frequency regulation.

4.1 CONTROLLABILITY

A first observation in regard to control is that our state-space system is not fully
controllable from the input δu. We can see this through the change of coordinates

x̃ =
[
u∗ 1
1
L
− 1
τ

+ 1
L

] [
δn
δm

]
, (4.1)

which leads to the state-space system

˙̃x = Ãx̃+ B̃1w + B̃2δu,

δp = C̃x̃+D2δu,

where  Ã B̃2
C̃ D2

 =

 −
u∗

τ
− 1−u∗

L
1− u∗ −λ

0 − 1
τ

0
p0 0 p0n

∗

 . (4.2)

In this realization we find that the second state variable 1
L
δn + ( 1

L
− 1

τ
)δm is un-

controllable1. As a consequence, the transfer function from δu to δp will be of first
order. Since the uncontrollable state is also stable, one is tempted to ignore it for

1In fact, it can be verified that even in the nonlinear dynamics (3.1) the same linear combination
of the states is uncontrollable.
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feedback design. Note however that the uncontrollable state is excited by noise, and
observable, so its effect must be considered when designing a control strategy to
reduce power variance.

4.2 H2-CONTROL FOR REDUCING POWER VARIANCE

We will start by studying the problem of reducing the power variance which
means needing less regulation service. We’ll pose this problem as optimalH2-control
regulation problem. This consists of a state-feedback controller that minimizes a
compromise between output variance and control effort, expressed by the weighted
objective

J := E[(k1δp)2 + (δu)2], (4.3)

Note the importance of penalizing the variations δu to avoid non-linear effects and
most importantly saturation, since we recall that u(t) is confined to the interval
[0, 1].

It could be argued that an H∞-control would better adjust to this type of prob-
lem. This could be true for the problem of reducing regulation needs because fre-
quency regulation providers are paid for their committed capacity more than for
the energy they use for regulation. On the other hand if we look at the criterion
used by SO, PJM for instance, to evaluate regulation providers (see apendix A) an
H2-control may seem appropriate. We chose to use H2-control as it better adapts
to the tracking problem and its construction is simpler.

Setting up the problem in the standard form for H2-control (see apendix C), we
have a generalized plant

G(s) =

 A B1 B2
C1 0 D12
I 0 0

 , (4.4)

where A,B1, B2 are the same as in (3.4a), and we introduce

C1 = 1
k2

[
k1C

0

]
= 1
k2

[
k1p0u

∗ k1p0
0 0

]
,

D12 = 1
k2

[
k1D

1

]
= 1
k2

[
k1p0n

∗

1

]
.

The penalized output corresponds to the cost in (2.10), except for the constant
k2 = (1 + (k1p0n

∗)2) 1
2 which is included to satisfy the normalization D∗12D12 = 1,

and simplifies the expressions to follow.

We assume that the state (n,m) is available for feedback, i.e. the aggregator
keeps track of the number of loads in each of the categories. Under these conditions
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Figure 4.1. One day simulation for the system with k1 = 10
p0n∗ .

it is shown in [13] that the H2-optimal control law is the static state feedback

δu = −Fx = −(B∗2X +D∗12C1)
[
δn
δm

]
(4.5)

where X is the stabilizing solution to the Algebraic Riccati Equation
(A∗ − C∗1D12B

∗
2)X +X(A∗ −B2D

∗
12C1)−XB2B

∗
2X + C∗1(I −D12D

∗
12)C1 = 0.

(4.6)
Obtaining a parametric solution of this equation would be cumbersome so we choose
to analyze it numerically. The parameters we will use are λ = 0.2 loads/s, τ = 1800s,
L = 3600s, p0 = 2kW . For u∗ we choose the optimal value from (3.7) in the
uncontrolled case, which yields u∗ = 0.41. It follows that n∗ = 511, m∗ = 151 and
p∗ = 720kW .

To evaluate the correct choice of k1 we note the following. Since our real objective
is reducing power variance, we would like to increase this weight as much as possible
in relation to control effort, the only limitation being that if δu(t) becomes too large
nonlinear effects come into play, in particular saturation. For instance, in Fig. 4.1
we show the time trajectory u(t) for the case k1 = 10

p0n∗ , which exhibits saturation,2

2Indeed, there is actuator “windup” and the system never leaves saturation.
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Figure 4.2. One day simulation for the system with k1 = 5
p0n∗ .

and consequently a deterioration of performance. We thus carried out a linear search
for k1, simulating the nonlinear dynamics and computing the RMS value of δp and
δu; results are shown in Fig. 4.3. From this evaluation, a good choice for the weight
appears to be k1 = 5

p0n∗ , which makes the optimal feedback matrix

F = [0.735u∗
n∗

0.838
n∗

]

and gives δp ≈ 9.89kW , δu ≈ 0.0471 and J ≈ 0.0046. If we look at these values
in relative terms compared to the uncontrolled case we find that the variance of the
consumed power decreased 67.8% from 30.76kW to 9.89kW . And in Fig. 4.2 we
see that the resulting trajectory for u(t) contains moderate variations around its
nominal value.
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Figure 4.3. Consumed power variability and control effort for
H2-optimal controlled system for different values of
objective function.

4.3 PROVIDING FREQUENCY REGULATION

We will now apply the same theory for our final objective of controlling the
aggregate of deferrable loads to follow a power reference signal provided exogenously
by the system operator (SO). As we have already mentioned in section 2.5 the
consumed power of the cluster of loads should be

p(t) = p∗(1 + θρ(t)) = p∗ + θp∗ρ(t)︸ ︷︷ ︸
r(t)

, (4.7)

where θ is the amount of regulation offered and we calculated its maximum value in
section 3.3.1, and ρ is the dimensionless signal sent by the SO and takes values in
the range [0,1].

The problem we are facing now is, in control parlance, a tracking rather than
a regulation problem. The input of the system will be r(t) the reference we want
to track and the output is the error in tracking, r(t) − δp(t), which we want to
minimize. An H2-optimal control seeks to minimize the H2-norm of the desired
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transfer function, in order for this solution to be optimal the power spectral density
of the input should be constant (see apendix C). This is not the case for regulation
signals which are band-limited and their spectral density depends on the electric
system characteristics and the control implemented by the SO. One way to tackle
this issue is to model regulation signals as filtered white noises, which have constant
power spectral density, and modify our system by incorporating the filter and taking
the noise as the input. At the moment of implementing the system we ignore this
filter and use directly the regulation signal.

4.3.1 Regulation signal characterization

For this purpose we turn again to the particular family of real-life regulation
signals ρ(t) taken from the PJM interconnection [14]. We performed a spectral
density estimation based on these PJM signals using MATLAB’s signal identification
toolbox. A first observation is that they have band limited energy, with cutoff
frequency ωr ≈ 1.65 × 10−2 rad/s, after which they present a roll-off of 40 db/dec,
indicating a second-order filtering. A closer inspection shows a resonance in the
cutoff frequency with a damping factor of ζ ≈ 0.4. We therefore approximated the
practical signals as generated by white noise through the frequency weighting filter

Wρ(s) = κrω
2
r

s2 + s2ζωr + ω2
r

, (4.8)

where κr ≈ 3 was chosen to match the mean signal power.

In Fig. 4.4 we can see a 2 hour simulation of filtered white noise along with a real
regulation signal, with a qualitatively similar behavior. The artificial signal stays
in [−1, 1], which of course need not always happen with a linear model; in fact the
real signal in Fig. 4.4 features such a saturation around T = 1.4h. If such events
are infrequent they can be ignored for the purpose of control design.

4.3.2 H2-optimal control

We now set-up our H2-optimal control problem through the generalized plant
model in Fig. 4.5. Here, the input weight isWr := θp∗Wρ withWρ in (4.8), consistent
with r(t) in (4.7), and is driven by a white noise signal wr(t), independent of the
previously considered noise signals for the loads. The tracking error signal is:

e(t) = r(t)− δp(t) = p∗(1 + θρ(t))− p(t); (4.9)

the penalized variables for H2 control correspond to the cost function

J2 := E[(k1e)2 + (δu)2]. (4.10)
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Figure 4.5. Controller design for tracking the regulation signal

47



We now augment our state-space realization (4.4) to incorporate the reference
signal weight Wr, as follows:

Gr(s) =

 Ar Br
1 Br

2
Cr

1 0 Dr
12

I 0 0

 . (4.11)

The state vector is now x = [δn, δm, r, ṙ]T , the last two variables corresponding to
the frequency weight, and the augmented matrices are:

Ar =
[
A 0
0 Ar22

]
, Br

1 =
[
B1 0
0 Br

12

]
, Br

2 =
[
B2
0

]
,

with Ar22 =
[

0 1
−ω2

r −2ζωr

]
, Br

12 =
[

0
3ω2

r

]
;

Cr
1 = k1

k2

[
−p0u

∗ −p0 θp∗ 0
0 0 0 0

]
, Dr

12 = 1
k2

[
−k1p0n

∗

1

]
.

We are assuming again that the state is available for feedback. In addition to the
load quantities (n,m), the aggregator must have the regulation signal r, which is
received from the SO, and also its derivative ṙ. While the latter is typically not
directly available, we note the following: in practical systems, r(t) is communicated
very frequently, e.g. every Ts = 4 seconds, i.e. a sampling rate of 0.25Hz. On the
other hand the bandwidth of r is much lower, in the previously fit model we have
fr ≈ 2.6.10−3Hz. This implies that a simple estimate ṙ(t) ≈ r(t)−r(t−Ts)

Ts
has high

accuracy for control purposes, so it is not justified to employ a more sophisticated
method (e.g. the corresponding Kalman filter) solely for tracking this state variable.

The resulting H2-optimal control law is

δu = −F rx = −(Br
2
∗Xr +Dr

12
∗Cr

1)


δn
δm
r
ṙ

 , (4.12)

where Xr is the solution to the corresponding Algebraic Riccati Equation.

As in the first case the solution depends on the parameter k1 which sets the
relative weight between the tracking error and the control effort. Once again, we
can fix this parameter with the aid of simulations to find the value that minimizes the
error and keeps u(t) from saturating. The same load parameters as in the previous
section were used, for an offered regulation of θ = θmax = 0.66.

We will also consider for the choice of k1 a performance score used by PJM to
rank regulation resources [17]. This score is calculated comparing the reference signal
with the actual response from the system and is the average of three components:
correlation, delay and precision; all of them measured in a scale from 0 to 1. We
note in this regard that a value of 0.75 is required for participation in the market,
and that values above 0.9 are considered excellent (more details in appendix A).
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Figure 4.6. Performance of H2-optimal controlled system for
different values of objective function .

In Fig. 4.6 we plot the RMS values of e and δu, along with the PJM regulation
performance score, as a function of k1. We see that up to a certain point the
error goes down and the score improves, but towards the higher values performance
degrades due to saturation of the signal u, which makes our model invalid. The
optimum value for this particular case its around k1 = 6

p0n∗ .

In figure 4.7 we show a simulation of the system tracking the refernce signal. The
setting for the simulation is the same as the one used in chapters 2 and 3. In this
case the RMS value of the error is 10.18kw, which is better than in the 2 previous
scenarios.
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Figure 4.7. Tracking a real life signal under H2-optimal control.

4.4 SUMMARY

In this Chapter we focused in optimizing the controller for the load aggregator
model we proposed in Chapter 3. Using optimal H2-control tools we added the con-
trol signal information to the controller and we were able to tune the importance of
the control effort in relation to the output error. The results showed an improvement
in relation to the simple controller used in the previous chapters.

This chapter closes the first part of this thesis, the design af a complete controller
to provide frequency regulation to electric systems using deferrable loads. In the
next chapter we will present a more empirical investigation on how to adapt this
controllers to different scenarios.
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Chapter 5

Implementations and simulations

We arrive now at the final part of this investigation, exploring how to adapt the
controllers we design in the previous chapters to different scenarios. This chapter has
a more empirical approach than the previous ones and the objective is to explore the
application range of our proposal. For this purpose we developed a MATLAB based
simulator (see apendix D) in order to study the effects of the different parameters
of the system and explore different scheduling algorithms. Along the chapter we
will get into more specific details of the implementation to show the real utility of
our design. We will assume that a secure communication infrastructure exists in
order for the aggregator to communicate with the individual loads and to receive
the regulation signal from the SO. Anyway we will focus in developing algorithms
that are the least intensive in communications as possible and as decentralized as
possible. We will also emphasize keeping the control logic as simple as possible.

Most of the simulations will be done with a constant arrival rate which means
that the average power of the system will be the same the whole simulation. This
could be a realistic situation for short time periods, up to a couple of hours, although
not for a whole day. At the end of this chapter we will show some more complete
simulations using real power profiles with their corresponding arrival rates.

5.1 DATA USED FOR SIMULATIONS

In order to do a good validation of our design we should test it in a environment
as close as possible to the real world. This has some difficulties as there is part of the
data we need that is not easily available. This data includes statistics on individ-
ual loads deferability, measurement of individual loads activation time, correlation
between service time and laxity, etc. Other datasets are more easily available such
as real regulation signals or hourly energy consumption [14], and were used in the
simulations.
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As for the data we did not obtain we took the strategy of testing in many varied
possible scenarios so as to validate the robustness of the techniques. These data
includes service times, laxity, nominal power and arrival times. We will clarify in
each case how these parameters were generated.

Our main objective are individual loads as household devices, water heaters,
AC’s, cars batteries, etc. These loads are in the range of few kW in power and
service time up to a few hours. The distribution of these parameters within the
cluster of loads may vary depending the specific system or the time of the day. We
will explicit in each case which distribution we are using.

Laxity is a more complicated parameter as it is not as objective as power or
service time. As this is one of the most important parameters and there is not much
information on how it is distributed, we will make special emphasis on it and test
several different scenarios.

Another parameter of the loads that we did not consider up to now is the number
of interruptions loads can suffer during a service interval. Most TCL’s or batteries
can be interrupted continuously without affecting the quality of the service, but
there are another loads that cannot be freely interrupted. In any case interrupting
service always has at least a negative effect on the life-span of the loads. We will try
to take into account this issue at the time of designing the scheduling algorithms in
order to minimize the number of interruptions.

5.2 SCHEDULING ALGORITHMS

We will start by analyzing possible scheduling algorithms. In all cases we will
use the same parameters and metrics in order to do a comparison as unbiased as
possible.

The performance criteria will be the ones we have been using: tracking error,
control effort and PJM score, and we will add the mean number of interruptions of
the loads.

As for the settings for the simulations we will use a Poisson arrival process
of intensity 1 load/s, the service time will be distributed exponentially with mean
1800s, the laxity will also be exponentially distributed, independently of the service
time, with mean 3600s and the nominal power of the loads will follow a uniform
distribution in the range [1kw, 3kw] independent of all other parameters. We will use
this particular setup for testing the algorithms although later we will use different
setups for testing the robustness of the control system. The justification for these
particular parameters is quite simple. The arrival rate depends mainly on the size
of the aggregator and the amount of customers it has. We chose 1 load/s which
means an average of around 3600 active loads (depends on the choice of u∗), which
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is not large for a real system but enough for a proof of concept. If the number
of loads controlled by the aggregator in real life is larger the system will probably
work better because of the law of large numbers as most decisions are taken in
a decentralized manner by the loads. The service time and laxity were chosen to
be exponentially distributed as it represents the worst case for this parameters to
be distributed; being the exponential distribution the one with largest differential
entropy among all continuous probability distributions. Anyway we will test against
other distributions. The nominal power was chosen in the range of the typical
appliances named before.

One last key parameter is k1 which sets the feedback matrix of the H2-optimal
controller. For the particular settings of these first simulations the optimum value
is the one calculated in section 4.3.2, k1 = 6

p0n∗ . As we change the setting for other
simulations we should recalculate the optimum value of k1 in order to always work
with the best possible controller.

5.2.1 Algorithm 1: Broadcasting u

This first proposal is the simplest and it could be said that it follows naturally
from the model. The aggregator receives the regulation signal from the SO, cal-
culates the control signal u and broadcasts it to all loads. When loads receive the
signal they chose to turn on or off, each of them independently from the others, with
probability u.

In order for this algorithm to work the aggregator must keep track of n and m,
this task can be accomplished with very little communication. Loads must send at
the most 3 messages during their life span, when they arrive, when they run out of
laxity and when they complete their service. With this information the aggregator
can keep track of n and m.

This algorithm has one big drawback because it does not take into account the
number of interruptions of the loads that can be extremely high if loads are deciding
every few seconds to turn on or off.

In Fig. 5.1 and 5.2 we can see 1 hour of two 24-hour simulations using this
algorithm. Fig. 5.1 is with a constant power reference and in Fig. 5.2 the loads are
following a regulation signal. In the frequency regulation case the offered regulation
is θ = 0.66, the maximum calculated in section 3.3.1. As we could expect the
system performed well but the number of interruptions is too high. In the constant
power case the RMS value of δp was 27kw which represents a 0.75% of the nominal
power and a improvement of 56% compared to the best performance with constant
u. The RMS value of δu is 0.019. In the case in which we offer frequency regulation
we got a score of 0.976 using the PJM metric, 54kW the RMS value of the error
which represents a 1.5% of the nominal power and a control effort of 0.18. As for
the interruptions we find that the average was 150 in the first case and 130 in the
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Figure 5.1. 1-hour simulation of deferrable loads tracking a con-
stant power reference using algorithm 1.

second, both far from acceptable.

5.2.2 Algorithm 2: Zero-interruptions

This second proposal is an attempt to deal with the interruptions problem. We
will move to an extreme opposite where loads cannot be interrupted at all and adapt
our control system to this scenery. The basic idea is that loads receive only one order
from the aggregator once they arrive to the system. The aggregator may chose to
turn them on immediately as they arrive or to postpone their service till they run
out of laxity, which will happen automatically.

In order for the aggregator to decide whether to turn a load on or not when it
arrives, the aggregator must keep track not only of n and m, but also the active
loads in n, na. With this information it computes the real fraction ua = na

n
of active

loads in n. When a new load arrives it notifies the aggregator, and the latter sends
the order to start now or to delay the service depending on the value of ua and u.
If ua > u the service will be delayed and ua decreases, in the case ua < u the load
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Figure 5.2. 1-hour simulation of deferrable loads tracking a reg-
ulation signal using algorithm 1.

receives the order to start the service immediately and ua increases. In the case
loads are delayed they will be served automatically when they run out of laxity as
before. The loads only need to notify the aggregator when they arrive, run out of
laxity and get served in order for the aggregator to maintain the state variables and
ua.

In the case of keeping a constant power reference this algorithm performs quite
well because the changes needed in u are slow and its enough with the arriving loads
as we can see in Fig. 5.3. The RMS value of δp was 39kw slightly larger than with
algorithm 1, but with the advantage of not interrupting loads.

The results are not as good when we try to provide regulation using this algo-
rithm. In Fig. 5.4 we show 1 hour of a day-long simulation of the aggregated power
tracking the reference signal along with the control variable u and the percentage
of active loads ua. The amount of regulation offered θ = 0.66 was the same as in
the previous algorithm. We see that in this case our system is unable to track the
reference.
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Figure 5.3. Non-interruptible loads tracking a constant refer-
ence.

To understand this problem, we see from Fig. 5.4 that there is a maximum and
minimum slope that the output of the system can achieve. These values are given
by the arrival and departure rates. In the case ua < u all the loads that enter the
system are immediately turned on and this makes the power increase at rate λp0,
while there are active loads that are getting fulfilled at a rate ≈ u∗n

τ
and represent

a decrease in the consumed power of ≈ p0
u∗n
τ

, so the maximum rate at which the
power can increase is ≈ λp0(1 − u∗n

τλ
). In the case ua > u the loads that enter the

system are delayed and the decrease in power is given by the active loads that exit
n, ≈ p0

u∗n
τ

. As the changes in ua are slow, and all the loads in m are always on, the
dynamics in m can be neglected for this approximation.

We ask the question of whether the system could not provide a more modest reg-
ulation target, i.e. offer a smaller value of θ. The choice of u∗ can help by equalizing
the upward and downward slopes, in particular choosing u∗ = τ

τ+L , which follows
from matching the increase and decrease rates at steady state. After experiment-
ing we found that up to a value θ ≈ 0.08 the system is able to reach an acceptable
performance score in PJM terms. Fig. 5.5, shows the system with these parameters.
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Figure 5.4. Non-interruptible loads failing to track the regula-
tion signal.

So we find that, although the system is much slower than the interruptible case
it can still provide some regulation.

5.2.3 Algorithm 3: Limited interruptions

The two algorithms already presented have each of them some problems, the first
one has an excellent performance but interrupts the loads too much and the second
one does not interrupt loads but has poor performance. This third algorithm takes
some ideas form the previous two and combines them in a solution that limits the
number of interruptions per load while still achieving a good performance.

As in the first algorithm the aggregator will broadcast a control signal to all
loads, coordinated with the regulation signal, and each of them individually will
decide their action, turning on or off, based on this signal. The difference is that
now the signal will not be directly u, instead the aggregator will send a signal,
uc = f(u− ua) (with ua as defined in algorithm 2), that takes values in [−1, 1] and
represents the probability of a load changing its status. The function f : [−1, 1]→
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Figure 5.5. Non-interruptible loads tracking the regulation sig-
nal.

[−1, 1], is monotonically increasing and satisfies f(0) = 0. There exists several
candidate functions that can affect the response time and precision of the system.
We choose to use f(x) = sat0.5−0.5(2x) after trying various options, however there is
place for improvement in this function. If uc < 0 means that ua > u and more
loads should turn off and vice versa. Only loads that will contribute to the needed
change will react to the signal. In addition loads will have as restriction a maximum
number of permitted interruptions or a minimum continuous service interval each
time they are activated. In the case the restriction comes as a maximum number
of interruptions it will be treated as a minimum service interval, which can be
calculated as: τj/(#maxint + 1).

We will show an example to clarify. A load arrives at the system asking for a
service of 2000s with a laxity of 1000s, it consumes 1kw and can stand a maximum
of 3 interruptions. Upon arrival the load is off and receives uc, if uc is negative
there is not action for the load to take because ua > u and the system needs for
loads to turn off. When ua drops below u then uc will become positive and each
time the load receives uc > 0 it choses with probability uc whether to turn on or
not. Once the loads decides to turn on it must remain in this status for at least
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2000s/(3 + 1) = 500s, to meet the interruptions constraint. After this lapse the
load will start responding to uc again, but only if the value of uc < 0 which means
that loads that are on should start turning off again. Once the load turns off it must
remain in this status for 1000s/(3 + 1) = 250s, applying the same logic as when it
is on. This process ends when the load runs out of laxity or completes its service.

Now there is a new variable that will affect the performance of the system, the
maximum number of interruptions of each load, which can take different values
and distributions. There are plenty of loads that cannot be interrupted once they
started, such us washing machines, and others that can be interrupted quite often,
for instance resistive loads like water heaters. There might be also some correlation
between the service time and the maximum number of interruptions, loads that need
only some minutes of service will probably not tolerate many interruptions, whereas
a battery or heating system that needs hours of service can be interrupted plenty
of times during their service interval. In this first instance of comparison between
algorithms we will assume no correlation between the parameters and we will test
against two different distributions for the number of interruptions, geometric and
uniform.

The constant reference case is not very interesting to test as we have already
shown in the previous algorithm that even with no interruptions the system is able to
track a constant reference. Anyhow the simulations results showed an improvement
from the no-interruptions case. We tested the system using both distributions,
geometric and uniform, with a mean #maxint = 5. The results were very similar, the
RMS value of δp was 27kw, as with algorithm 1, but this time without interrupting
loads at all.

The frequency regulation case presents more interesting results. We simulated
the system using the same parameters as in the previous algorithms with a mean
number of maximum interruptions of 5, using two distributions, geometric and uni-
form. In Fig. 5.6 we show the simulation results for the geometric case (the uniform
case is almost identical). The first remark is that although the mean #maxint = 5,
in practice the loads were interrupted on average 1.5 and 1.7 times in the geometric
and uniform cases respectively. The PJM score was 0.84 and 0.85, both of them
more than acceptable. These results shows that there exists reasonable ways of
scheduling the loads while respecting the interruption and deadline limitations.

Looking at the simulation more into detail we can see that the system responds
rapidly to changes and is able to keep close to the reference while it is around
the working point (3600kw in this case). The problems appear when there are
long ramps, up or down, because there are always some loads that cannot change
state because of the interruptions limitation. Once most of the loads that were
available to change to the desired status did change, then the consumed power
keeps approaching the reference at a slower pace. Each time a load finishes the
minimum time restriction it starts responding to the control signal again and it will
eventually change to the desired status.
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Figure 5.6. 1-hour simulation of deferrable loads tracking a reg-
ulation signal using algorithm 3. Mean #maxint = 5

The quality of the response will clearly improve if the mean #maxint increases. In
Fig. 5.7 we show the same system but with a higher number of allowed interruptions,
20 in this case. It is clear the improvement of the performance compared to the
previous case. We will study the effect of this parameter more in detail further in
the chapter.

From the analysis of these 3 algorithms it follows that an implementation that
takes into account deadlines and interruptions could be possible using this model
and control logic. Algorithm 3 appears to be the closest to a feasible implementation
and all the simulations from now on will be based on this algorithm.

60



0 0.2 0.4 0.6 0.8 1
1000

2000

3000

4000

5000

6000

P
ow

er
(k

w
)

Time(h)

 

 

Reference signal
Simulated system

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

C
on

tr
ol

 s
ig

na
l

Time(h)

 

 

u
u

r

Figure 5.7. 1-hour simulation of deferrable loads tracking a reg-
ulation signal using algorithm 3. Mean #maxint =
20

5.3 EFFECT OF NUMBER OF INTERRUPTIONS

The algorithm designed for scheduling loads strongly depends on how many
loads allow interruptions, this implies the mean #maxint and how it is distributed.
If #maxint → 0 it resembles algorithm 2 and if #maxint → ∞ then it is almost as
algorithm 1. We will now explore by means of simulations the compromise between
performance and load interruptions in order to find reasonable working points for
this algorithm. We could imagine that a load aggregator that manages a portfolio of
loads can chose from the available loads to group them in packages in order to sell
their flexibility to the SO. The way in which aggregators will put together loads will
depend on their individual parameters in order to arrive at the desired performance
level.

In Figs. 5.8 and 5.9 we can see the effect of the mean #maxint in both the
cases it is distributed uniformly and geometrically.The first observation, as it could
be expected, is that the performance of the system increases monotonically with
#maxint. The most interesting result that follows form this simulation is the relation
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of the real number of interruptions with the #maxint. We can see that the algorithm
does not exploit all the possible interruptions, moreover, it seems that it has an
upper limit in the number of interruptions, being for this particular setting around
2.3. This is a positive result as it means that loads are being interrupted much less
than expected, which is a desired operation. Another possible conclusion is that if
we would like to improve the performance of the the system we could overestimate
the #maxint of the loads as in practice the system do not exploit all the available
interruptions. This observation however is a bit trickier as we are not looking at
individual loads, some of which reach their #maxint.
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(a) #maxint distributed geometrically.
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(b) #maxintdistributed uniformly.

Figure 5.8. Performance of the system as a function of the mean
#maxint.

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

Max num of int

M
ea

n 
lo

ad
 in

te
rr

up
tio

ns

(a) #maxint when it is distributed geometrically.
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(b) #maxint distributed uniformly.

Figure 5.9. Mean number of interruptions as a function of the
mean #maxint.

Another interesting setup would be a group of loads were only a fraction of them
allow to be interrupted. Figure 5.10 shows the results for a system where only a
fraction of the loads allow to be interrupted unlimited times. As it can be expected
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the performance improves with the fraction of interruptible loads. It also shows
that only with around 20% on interruptible loads the system is able to provide an
acceptable service under these settings.
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(a) Performance of the system as a function of the
fraction of the loads that allow interruptions.
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(b) Mean number of interruptions as a function of the
fraction of the loads that allow interruptions.

Figure 5.10

5.4 EFFECT OF OFFERED REGULATION

As we mentioned in section 3.3.1 the load aggregator will look to maximize the
offered regulation, in order to maximize its profit, while staying above the minimum
score allowed. The theoretical bound that we found was θmax = L

L+τ , but not
necessarily it will always be possible to reach this value in practice. On the other
hand it could also be possible to commit more regulation than this value, although
we know in advance that we will not be able to reach the needed power in every
moment, we could still have an acceptable performance.

In Fig. 5.11a we show the performance for the basic setup with different values
of offered regulation. We can see that although the absolute error increases with θ,
the system still performs well even with θ ≥ θmax. This can be explained because
the error only accounts for 1/3 of the score (see appendix A), and it is averaged
with precision and delay, in which the system performs very well.

SO’s are interested in acquiring regulation of the best quality as possible and
hence they develop metrics as the one we explained previously. In the case of PJM
the payout to regulation providers depends not only in the amount of regulation but
also in the score the provider reaches. Figure 5.12 shows the product of θ times the
obtained score as a measure of the payout for the services. This indicates that the
aggregator should try to compromise as much regulation as possible.
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(a) Performance metrics for different values of offered
regulation.
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(b) Mean number of interruptions for different values
of offered regulation.

Figure 5.11
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Figure 5.12. Performance score times θ for different values of

offered regulation.

5.5 EFFECT OF LAXITY

The laxity of the loads is one of the key parameters of this system. The more
flexible loads are, the more regulation they will be capable of offering. The laxity
of the aggregate of loads is defined by the deferability factor η = τ

τ+L , as defined in
2.4. But this value does not give us complete information on the laxity of individual
loads, how it is distributed among loads and the correlation with service time and
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power is missing. In this section we will try to briefly study the effect of laxity on
the system performance.

We will start by taking the basic setup and test it with different values of η. It
will be logic to expect that more laxity (smaller η) will imply better performance.
In order to do a meaningful simulation we also have to test the system with different
values of the performance weight, k1, as each particular setting will have a different
optimal value for the controller’s constant, see Section 4.2.

Figures 5.13 and 5.14 show the simulations results for the system providing a
regulation of θ = 0.5. We can see the performance metrics for different values of η
and k1. The four metrics we are using clearly show the benefit of having a smaller
η, which means more laxity.

Fig. 5.13a shows how the performance score improves for smaller values of η
independently of k1. We can also see the different behavior the system presents
when varying the performance weight depending on the laxity. If loads do not have
much laxity there is a maximum k1 the system can tolerate before nonlinear effects
came into play, in particular saturation.

Fig. 5.13b supports the same conclusion showing how the error diminishes as
the laxity increases. In Fig. 5.14a we can see the effect of η on the control effort.
As loads are more flexible they respond better to control actions meaning that less
control effort is necessary. Larger control efforts means that the system will be
further away from the linear zone and more likely to saturate the control signal.
Fig. 5.14b shows a very interesting effect. As loads become more flexible they are
likely to be interrupted more often as they spend more time under the aggregator’s
control. This effect is up to a point (around η = 0.3 for these settings) where load
interruptions decrease.
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Figure 5.13. PJM performance score and RMS of tracking error
for different values of η and k1.

We would also like to explore the effect of the distribution of the laxity among
loads on the system performance. We performed the same simulation as before
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Figure 5.14. RMS of control effort and mean number of inter-
ruptions for different values of η and k1.
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Figure 5.15. PJM performance score and RMS of tracking error
for different values of η and k1. Laxity uniformly
distributed.

but instead of the laxity being distributed exponentially we tried with a uniform
distribution and with fixed laxity.

A first conclusion is that the system is quite oblivious to the exact distribution
of the laxity among the loads.
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Figure 5.16. RMS of control effort and mean number of inter-
ruptions for different values of η and k1. Laxity
uniformly distributed.
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Figure 5.17. PJM performance score and RMS of tracking error
for different values of η and k1. Fixed Laxity
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Figure 5.18. RMS of control effort and mean number of inter-
ruptions for different values of η and k1. Fixed
Laxity
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5.6 VARIABLE LAMBDA

We would now like to go one step further into a real system. We can not expect
that in real life the rate at which loads arrive into our system will be constant along
the whole day. Although this rate will not be constant, system operators, energy
retailers or aggregators will have an estimate of how this parameter varies along
the day, which is directly related to how power consumption varies along the day.
Using real data from PJM and assuming that the rest of loads mean parameters are
constant along the day we can infer the rate of arrival, λ(t), by using the ODE 3.1.
The data we have to calculate λ is p(t) and that we can assume u = 1 as there is
no control on loads. Under these settings n(t) is proportional to p(t), m(t) = 0 and
hence we can calculate λ(t).

The setup for this simulation is as follows:

• The aggregator estimates using classical methods the power it should buy in
the case loads are not under its control, pu=1(t).

• Using pu=1(t) and an estimate of loads mean parameters, p0 and τ , the aggre-
gator can infer the rate of arrival of loads, λ(t).

• The aggregator chooses u(t) for the whole day, taking into account the estimate
laxity of the loads and if it intends to sell regulation or not.

• With all the previous data (λ(t), u(t), p0, τ , L) and model 3.1, it will have the
information on how much power to buy for next day, p(t).

• The aggregator can now set the amount of regulation it is able to offer θ.

At operation time the aggregator will continue broadcasting the control signal
to all loads. The difference is that now the control loop parameters will not be
constant. As the variations in λ will be slow compared to the control loop, 4s, we
decided to refresh the value of the feedback constants every 10min, which seems to
be enough to compensate for the variations in λ and does not overload the system.

Figure 5.19 shows the system with variable lambda for a whole day. The reference
signal is the power purchased the day before (orange line) plus the regulation power.
In Fig. 5.20 we can see a zoom in to appreciate how the system is capable of
following the regulation signal. The PJM score for this case was 0.91 which is more
than acceptable.

68



0 5 10 15 20
1000

2000

3000

4000

5000

6000

P
ow

er
(k

w
)

Time(h)

 

 

Reference signal
Simulated system

0 5 10 15 20
0.2

0.4

0.6

0.8

1

C
on

tr
ol

 s
ig

na
l

Time(h)

 

 

u
u

r

Figure 5.19. 1-day simulation of the system with variable λ and
θ = 0.33.
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Figure 5.20. 1 hour of a 1-day simulation of the system with
variable λ and θ = 0.33.
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5.7 SUMMARY

In this section we focused on analyzing possible implementations for the control
techniques proposed in this thesis. Three different approaches were presented, being
one of them quite feasible for implementation, the “limited interruptions” algorithm.
Using this algorithms we explore the effects of the different parameters in the per-
formance of the system and simulated a scenario closer to a real implementation.
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Chapter 6

Conclusions and future work

In this thesis we analyzed the problem of a load aggregator which manages a
cluster of deferrable loads and uses their flexibility to provide frequency regulation to
the System Operator. By the use of simple ODE models we quantified the potential
of the loads and we design controllers for the proposed objective. Algorithms for
implementing the proposed controller were also analyzed showing the feasibility of
our proposals.

A first analysis on the deferment of loads service showed the potential of a sim-
ple fixed deferral action on the variability of the consumption in electric systems.
Further analysis showed that an active control on the service level that can be im-
plemented by simple algorithms exploits this flexibility to the point of not only
eliminating the need for frequency regulation but also being able to provide regula-
tion to the grid. The design of the controllers was based on optimal control theory
with the aid of simulations. What we leave is a tool for designing the controller
for frequency regulation with loads which depends on loads parameters and the
frequency spectrum of the regulation signals.

Several lines of work remain open. With respect to the model there are some
theoretical results that are not proved although extensive simulations validate them.
It would be also interesting to extend the model so it covers a wider range of scenarios
with respect to load parameters distributions and correlation between them. The
possibility of adding storage to the system and study the optimal way to manage
the loads combined with storage is also an open line.

With respect to algorithms and simulations there is plenty of work to do. We
presented an algorithm that is capable of implementing the desired control with
a high level of accuracy and low connectivity requirements. Still it remains open
the possibility of improving the algorithm and formalizing its performance. With
respect to simulations one of the setbacks we met was the lack of real data. In order
to have a more realistic outline of the potential of the loads, data from individual

72



loads uses should be gathered. Laxity, which is the key parameter to quantify the
potential of load flexibility, is not easily measured and would be important in order
to design a system like the one proposed. Other data such as service time, nominal
power, number of interruptions or the correlation between them are also important,
but can be more easily extracted from existing data.
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Appendix A

PJM performance score

One of the metrics that we used along the thesis to rate our proposals for fre-
quency regulation is the score used by PJM Interconnection, a Regional Transmission
Organization in the United States [14].

In order to rate the different resources that apply to provide frequency regulation
PJM uses it own score [17], from 0 to 1, which depends on the delay, the correlation
and the precision of the response compared to the reference signal. This score is used
in order for a resource to able to participate in the market, for which it must score
over 0.75, but also it determines the payout, which increases together with the score.
The calculations are done a posteriori as they are non-causal. The performance score
is the average of the 3 scores all of them normalized in a scale form 0 to 1:

Performance
Score

= 1
3

(
Delay
Score

+ Correlation
Score

+ Precision
Score

)
.

The score is calculated on hourly basis from samples taken every 10 seconds.
The 3 scores are calculated for each sample and then the final score is the average
over the hour.

Delay and Correlation scores are calculated together using the 5 minutes periods
of the reference signal and 10 minutes of the response. The correlation score is
calculated as the normalized cross-correlation of the 5 minutes reference signal and
the 5 minutes time-shifted response starting at the sample time plus the delay (δ).
The delay score is linear with the time-shift being 1 for zero delay and 0 for 5 minutes
delay. The delay (δ) is chosen as the one that maximizes the sum of both scores.
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Correlation
Score

= max
δ=0 to 5min

C (Signal (0 : 5min) , Response (δ : δ + 5min))

Delay
Score

=
∣∣∣∣∣δ − 5Minutes

5Minutes

∣∣∣∣∣
Precision score is calculated based on the relative error in the signal 1-norm,

where the reference is averaged over the 1 hour period:

Precision
Score

= 1− ‖error‖1

‖reference‖1
.

The minimum score for qualifying to participate in the regulation market is 0.75.
As a reference we have that the average score for steam generators is slightly above
0.75, hydro generators score slightly higher around 0.8, batteries are one of the best
resources scoring over 0.9, whereas other demand response resources score over all
the range from 0.7 upwards.
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Appendix B

Stochastic analysis

This appendix has the purpose of supporting some of the models we used in this
thesis based on stochastic analysis tools. Along this Appendix we assume all arrivals
follow a Poisson process and service times are distributed exponentially among loads
as well as laxity, independently of each other.

The Appendix is divided in four sections. First we analyze the model of Chapter
2 in two parts; we start by studying how the expected value of the number of loads
evolves and then we focus in the variations around this value. Then we repeat the
procedure with the model of Chapter 3.

B.1. AGGREGATOR MODEL

The first model we will analyze is:

ṅ(t) = λ− 1
τ
u∗n(t). (B.1)

As explained in Chapter 2 this equation models the dynamics of arrivals and depar-
tures of a cluster of loads for a fixed service rate.

Let A(t) be the arrival process of the loads; if we know that this process hap-
pens at mean rate λ, then E [A(t)] = λt. If loads are serviced at a fraction u∗ of
their nominal power, then each of them will leave the system τj/u

∗ after its arrival
generating a departure process D(t). The difference between the two processes will
be the number of loads in the system at a given time, N(t) = A(t)−D(t).

To model the exact dynamics of the system we should know the arrival process
and the service time of each load. As we aim to work without knowing the details
of every load we will start by considering the dynamics of the expected value of the
number of loads, E [N(t)] = n(t).
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In Fig. B.1 we show an example of load arrivals (up to time T ) and their
departures. The shaded area corresponds to the total service time requested by the
loads arriving before time T . Note that at time T not all the loads were totally
served, so part of the shaded area is to the right of this time. One way to calculate
this area is as the sum of all the service time requests until time T ,

ST =
A(T )∑
j=1

τj/u
∗.

We can also calculate the same area as the integral of N(t) from time 0 until the
last load exits the system (assuming no loads arrive after time T ) or equivalently we
can calculate this area as the integral of N(t) from 0 to T (this would be the shaded
area to the left of T ) plus the remaining service time of the loads still active at T ,∑N(T )
j=1 τ rj (T )/u∗ (the area to the right of T ), being τ rj (T ) the remaining service time

of load j at time T . So

ST =
A(T )∑
j=1

τj
u∗

=
∫ T

0
N(t)dt+

N(T )∑
j=1

τ rj (T )
u∗

.

If we now take expectation at both side of the equation, assuming E [τj] = τ , we
have

E [ST ] = E [A(T )] τ
u∗

= λT
τ

u∗
= E

[∫ T

0
N(t)dt

]
+E[N(T )] τ

u∗
=
∫ T

0
n(t)dt+n(T ) τ

u∗
,

where E
[
τ rj (T )

]
= τ because of the memory loss property of exponential tasks. Now

differentiating both sides of the equation with respect to T , we arrive at

λ
τ

u∗
= n(T ) + ṅ(T ) τ

u∗
.

Now if we multiply by u∗

τ
and reorder the terms we arrive at equation B.1, which

is our model for tracking the estimated number of loads at the system if they are
served at rate u∗:

ṅ(t) = λ− 1
τ
u∗n(t).
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Figure B.1. Loads arrival and departure process

B.2.

The next step is to study how the actual number of loads vary around the
expected value. The number of loads present in the system N(t) behaves as an
M/M/∞ queue [18] with arrival rate λ and service completion rate:

µ = u∗

τ
.

If the arrival rate λ is large, the random process N(t) can be well approximated
by a deterministic trajectory following the ODE (B.1); perturbations around the
equilibrium value can be approximated by a random noise input to (B.1).

In mathematical terms, let q a scaling factor, and Nq(t) represent the random
process with arrival rate qλ. Provided Nq(0)/q → n(0), the rescaled random process
satisfies:

N̄q(t) = Nq(t)
q
→q→∞ n(t)

uniformly over compact sets, where n(t) is the solution of (B.1) with initial condition
n(0) [18].

As for variability around equilibrium, a diffusion approximation can be per-
formed. If the initial condition satisfies Nq(0)/q = n∗, then n(t) = n∗ ∀ t and the
random process

δNq(t) = Nq(t)− qn∗√
q

converges in distribution [18] to the solution of the following stochastic differential
equation:

˙δn = −µδn+
√

2λv0(t),
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where v0(t) is stationary white noise of unit power spectral density1. The factor 2λ
in the net noise power spectrum comes from the two sources of variability, arrivals
and departures, each contributing a term λ, associated with the Poisson arrival and
departures. This type of variability analysis has been used before to track population
profiles in P2P network applications in [19, 20], which have the same type of fluid
model as our present system.

B.3. TWO-STATE MODEL

This section supports the model presented in Chapter 3. N(t) denotes the pop-
ulation of loads with remaining laxity which are served at level u, and M(t) are the
loads with no laxity which are served at full power. The behavior of the population
variables over time is described by the continuous-time Markov chain with transition
rates depicted in Figure B.2. This represents basically two M/M/∞ queues with a
partial transition between the two, as is now explained.

λ

(1−u)
L N

1
τM

1
τ uN

N

M

Figure B.2. Markov state diagram with transition rates

• (N,M) 7→ (N + 1,M) is a new Poisson(λ) arrival.

• (N,M) 7→ (N,M − 1) represents a departure from the M queue. Service here
is at full power, so service times are exp( 1

τ
), invoking the memoryless property

of exponentials. The minimum of M such exponentials is exp(M
τ

), justifying
the transition rate M

τ
.

• (N,M) 7→ (N − 1,M) represents a load from the N queue completing service.
Since these are served at fractional power u, their individual service time is
exp(u

τ
), which yields the transition rate Nu

τ
.

1A more formal version is d(δn) = −µδndt+
√

2λdW , where W (t) is standard Brownian motion.
Such δn constitutes an Ornstein-Uhlenbeck process. For second order analysis, however, the above
description suffices.
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• (N,M) 7→ (N − 1,M + 1) represents the transition between the N and M
queues due to expiration of laxity. Since laxity is consumed at rate (1 − u),
the time for this occurrence in one load is distributed as exp(1−u

L
), which yields

the transition rate N(1−u)
L

.

In [21] some analysis was provided for the above Markov chain in the case of a
fixed u. However in this thesis we are interested in controlling u to achieve a desired
regulation objective; for this purpose a more tractable model involves replacing the
Markov chain by a differential equation.

The fluid-flow counterpart to the Markov chain in Figure B.2 is obtained by
interpreting N and M as continuous variables, and replacing the transition rates
with different contributions to their drift, giving place to the following model:

ṅ(t) = λ− 1
τ
n(t)u(t)− 1

L
n(t)(1− u(t)), (B.2a)

ṁ(t) = 1
L
n(t)(1− u(t))− 1

τ
m(t), (B.2b)

p(t) = p0(n(t)u(t) +m(t)). (B.2c)

The formal relationship between the two models is beyond the scope of this
thesis. We state briefly that the solution to the differential equation can be seen
as the limit of the scaled stochastic processes (1

q
Nq(t), 1

q
Mq(t)) as q → ∞, where

the (Nq,Mq) correspond to the Markov chain under scaled arrival parameter qλ,
and suitably scaled initial condition, as in the previous Section. For details on such
procedure we refer to [18].

B.4. RANDOMNESS IN TWO-STATE MODEL

To study the effect of noise in the system we will work with the linearized model
around the equilibrium point:

˙δn = −
[
u∗

τ
+ 1− u∗

L

]
δn+

[
n∗

L
− n∗

τ

]
δu; (B.3a)

˙δm = 1− u∗
L

δn− 1
τ
δm− n∗

L
δu; (B.3b)

δp = p0(u∗δn+ δm) + p0n
∗δu. (B.3c)

The preceding models are purely deterministic, having removed all randomness
from the original Markov chain. For a more accurate description around the operat-
ing point we will introduce random noise, that results from a diffusion approximation
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of the Markov chain dynamics. Formally, (see [18]) this noise process is the limit in
distribution of

√
q

(
Nq(t)
q
− n(t), Mq(t)

q
−m(t)

)
where (Nq,Mq) is the scaled process mentioned before, and (n,m) the fluid limit.
Again this is outside our scope, but we can motivate our noise model by reviewing
the case of a Poisson process a(t), such as the arrivals to our system. Its diffusion
approximation satisfies the stochastic differential equation da = λdt+

√
λdW , where

W (t) is Brownian motion. More informally we can write equation

ȧ = λ+
√
λ w(t),

where w(t) is unit white noise. In classical terms, the fluid model ȧ = λ for Poisson
arrivals is modified by additive white noise of power spectral density equal to the
arrival rate itself. What we are looking for is the analogous modification to the model
(B.3) to track the fluctuations of the process (n,m), locally around its equilibrium
(n∗,m∗).

First, the Poisson arrivals will introduce a noise term v1(t) =
√
λ w1(t) in (B.3a).

The two departure terms in (B.2a) will also introduce noise terms, with power
spectral density equal to the transition rate, evaluated at equilibrium:

v2 =
√
n∗u

τ
w2, v3 =

√
n∗(1− u)

L
w3;

here w2, w3 are independent unit white noises. With some algebra we can also
rewrite the above as

v2 =
√
αλ w2, v3 =

√
(1− α)λ w3, (B.4)

where α := u∗

τ
[
u∗

τ
+ 1−u∗

L

] = P
[
τk
u∗
≤ Lk

1− u∗
]

is the probability that a load finishes service before expiring its laxity. The inter-
pretation of (B.4) is that departures of the n queue are equivalent to two Poisson
processes, where the rate is “thinned” by the probability of, respectively, leaving the
system and joining the m queue. The term v3 will also appear as noise in arrivals
to the dynamics (B.3b) for m(t), and

v4 =
√
m∗

τ
w4 =

√
(1− α)λ w4

will represent noise in departures from this second queue. The resulting dynamics
with noise is thus

˙δn = −
[
u∗

τ
+ 1− u∗

L

]
δn+

[
n∗

L
− n∗

τ

]
δu+ v1 − v2 − v3, (B.5a)

˙δm = 1− u∗
L

δn− 1
τ
δm− n∗

L
δu+ v3 − v4, (B.5b)

δp = p0(u∗δn+ δm) + p0n
∗δu. (B.5c)
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Appendix C

H2-optimal control

In chapter 4 we proposed a solution for designing the controllers usingH2-optimal
control. The motive of this appendix is to present a small background of the theory
used for these solutions.

C.1. H2-NORM

We should start by defining the H2-norm of a MIMO system.

Definition C.1.1. Let G(s) be a stable and strictly proper transfer matrix of di-
mension p ×m. The set of stable and strictly proper transfer matrices is denoted
RHnyxnu

2 . For any transfer matrix G(s) ∈ RHnyxnu

2 , we define the H2-norm as:

‖G(s)‖2 =
(
Trace

( 1
2π

∫ ∞
−∞

G(jω)G∗(jω)dω
))1/2

,

or its equivalent in the time domain, by the use of Parseval’s relation:

‖G(s)‖2 =
(∫ ∞

0
g(t)gT (t)dt

)1/2
= ‖g(t)‖2,

where g(t) is the impulse response of the system, and the last equality is the L2-norm
of the function.

In the problems we are working our objective is to minimize the variance of the
output:

σ2(z) = E

[
lim
T→∞

1
T

∫ T

0
‖z(t)‖2dt

]
,

which can be also be expressed in terms of the power spectral density (PSD) matrix

σ2(z) = Trace
( 1

2π

∫ ∞
−∞

Szz(jω)dω
)
.
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The basic idea behind using H2-optimal control is that if we have a system which
its only input is a disturbance with constant PSD Sww(jω) = I, the case for white
noise, then the PSD of the output will be Szz(jω) = Tzw(jω)Sww(jω)T ∗zw(jω) =
Tzw(jω)T ∗zw(jω). Then if we minimize the H2-norm of Tzw(jω):

‖Tzw‖2
2 = Trace

( 1
2π

∫ ∞
−∞

Tzw(jω)T ∗zw(jω)dω
)

(C.1)

= Trace
( 1

2π

∫ ∞
−∞

Szz(jω)dω
)

(C.2)

= σ2(z), (C.3)

we are also minimizing the variance of the output. So if we define the output
as: the deviations from the nominal working point, the error at tracking, the con-
trol effort or any combination of them; by minimizing the H2-norm of the transfer
function we also minimize variance of the desired output.

C.2. STANDARD H2 PROBLEM

The system we will consider is the one shown in Fig. C.1. The Plant G is a LTI
system driven by white noise, w, and controlled in feedback by u. The H2 problem
is defined as follows:

Definition C.2.1. The H2 control problem is to find a proper, real-rational con-
troller K which stabilizes G internally and minimizes the H2-norm of the transfer
matrix Tzw from w to z.

We will not cover here the solution to the general H2 problem (for the complete
solution to this problem the reader can refer to [13]) but we will outline the solution

G

z

y

K

u

w

Figure C.1. Block diagram for the standard H2 problem
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for the particular set up we are using. The transfer matrix G we consider here has
the following form

G(s) =

 A B1 B2
C1 0 D12
C2 0 0

 . (C.4)

and we make the following assumptions:

1. (A,B2) is stabilizable and (C2, A) is detectable;

2. D12 has full column rank with D∗12D12 = I unitary;

3.
[
A− jωI B2
C1 D12

]
has full column rank for all ω.

Note that the noise only affects the state variables but the output and the vari-
ables for the feedback loop are measured without noise.

Under these hypotheses the optimal control strategy is constant gain state feed-
back:

u = −B∗2Xy,

where X ≥ 0 is the solution to the corresponding Ricatti equation:

(A∗ − C∗1D12B
∗
2)X +X(A∗ −B2D

∗
12C1)−XB2B

∗
2X + C∗1(I −D12D

∗
12)C1 = 0.

(C.5)

C.3. H2-OPTIMAL CONTROLLERS

In the specific case we are studying the plants, G, are the ones defined in chapter
4, (4.4) the one for constant power case and (4.11) for the frequency regulation
case. The first problem fits exactly in the H2 problem hypothesis because the only
external signals are the 4 white noises given by the uncertainties in the loads and
the outputs are the deviations from nominal power and the control signal. In the
frequency regulation case one of the inputs is the regulation signal. To adapt this
scenario to an H2 problem we modeled the regulation signal as filtered white noise,
as explained in section 4.3.1, and we defined as outputs the tracking error and the
control signal. After these modifications the problem fitted this hypothesis of the
H2 problem.
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Appendix D

Simulator

Along the research process we built a MATLAB based simulator which comes
together with this document. This appendix was added to briefly explain how the
simulator was done and how to use it.

The simulator is based on the model of Chapter 3 and was used to make the
simulations of that Chapter onwards. It is constructed as a discrete-event simulator
with the possibility of setting various scenarios and contrasting them.

D.1. SIMULATION ENGINE

The most important part of the simulator is the simulation engine of which their
are several versions for different scenarios. All of them are named “mginf2*.m”,
where “*” is replaced for the different version. The engine was constructed as a
discrete-event simulator. A discrete-event simulation models the operation of a sys-
tem as a discrete sequence of events in time. Each event occurs at a particular
instant in time and marks a change of state in the system, for instance load ar-
rivals and departures. Between consecutive events, changes in the system can be
calculated; thus the simulation can directly jump in time from one event to the next.

Each time an event happens the parameters of the aggregator and all the loads
are updated. The simulator handles 5 types of events:

• New load arrival: Each time a load arrives its parameters are chosen at random
depending on the mean value of the parameters and their distributions. The
load is added to the existing loads and the next arrival time is computed and
scheduled.

• Service completion of load with laxity: The load with no service remaining is
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removed from the array of current loads and the statistics from its service are
added to the array of completed jobs.

• Laxity expiration of loads with remaining service: The load with no laxity
remaining but with pending service is moved from the array of loads with
laxity to the array of loads with no laxity remaining.

• Service completion of load with no laxity: The load with no service remaining
is removed from the array of loads and the statistics from its service are added
to the array of completed jobs.

• New regulation signal value: Each time the SO sends a new regulation signal
value the aggregator refreshes the control loop and broadcasts the correspond-
ing signal depending on the algorithm used. Each load change its status or
not, also depending on the algorithm in use.

The simulation starts by generating the initial array of loads with random values
based on the chosen distribution and its parameters. Then the first arrival time is
drawn and scheduled and the simulation starts. Each time an events happens a time
stamp is created and all the state variables are updated. Then the next event is
calculated and the simulation jumps to this event. Also at each event time traces
are created for the relevant statistics, as explained below.

The time traces are used for the output of the simulation which includes:

• a time vector (T ) with the time stamp of each event,

• the number of loads with laxity remaining after each event (X),

• the number of loads with no laxity remaining after each event(Y ),

• the total consumed power after each event (P ),

• the value of u after each event (U),

• the value of ur after each event (U r),

• the value of r and ṙ after each event (R and R dot),

• two vectors with the length off all completed loads with the number of max-
imum interruptions allowed for each load and the effective interruptions that
each load suffered.

D.1.1 Main.m

The simulator runs from file “Main.m”. This is the only file which the user has
to interact with to run simulations. The user starts by setting “sim name” which
will be the name of the folder where the results of the simulation are saved.
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Four groups of parameters follow: global, loads, aggregator and simulation. Global
parametrs include the length of the simulation, “Tfinal”, and the time step, “Dt”.
In the loads parameters the service time (τ), laxity (L), power (p) and number of
interruptions (#maxint) are set. Each parameter is specified by setting its mean,
distribution and variance if needed. The only parameter that is not set directly is
laxity, which is indirectly set by the deferability factor (η). The third group are the
aggregator parameters, this include the arrival rate (λ), the nominal service level
(u∗), and the offered regulation (θ). In this section it is also possible to set the
regulation signal from 4 different options: constant, sinusoidal, real signal o square
wave. The amplitude of the signals was already fixed by θ. The last parameter to
be set is the type of control being able to choose between the PI controller from
Chapter 3 Eq. 3.9 or the H2-optimal control.

After setting the parameters 4 different types of simulations are offered.

• Time simulation: a single run of the aggregator is simulated under the param-
eters set. Output include ploting of power and control signal and a text file
with all the settings a results including performance metrics.

• Parameter simulation: this mode if for comparing the effect of a parameter
in the system. A range of values is chosen for a given parameter and several
simulations are ran for each value to compare. The parameters that can be
selected to analyze are: θ, k1, a, η, u∗ and #maxint. Output includes plotting of
the different performance metrics (error, control effort, PJM score and number
of interruptions) for each value fo the analyzed parameter. Also a text file with
the results of each individual run and settings of the simulations is created.

• Real simulation: this simulation is very similar to the time simulation with
the difference that the arrival rate λ is not constant. More details on this
simulation is provided on Chapter 5, section 5.6.

• 2-parameters simulation: this mode is similar to parameter simulation with
the difference that 2 different parameters can be compared at the same time.
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