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años, él y Andrés me han contagiado su entusiasmo por la investigación teórica en
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RESUMEN

En las redes peer-to-peer (P2P) hay dos grandes problemas: la eficiencia en el
uso del ancho de banda que contribuye cada peer, y los incentivos que la asignación
global de recursos alcanzada provee a cada uno de ellos. Estos incentivos deben
promover la cooperación de los usuarios, de manera de que estos contribuyan ancho
de banda a la red, lo cual es la clave de la escalabilidad de la arquitectura. Existen
algunas soluciones ad-hoc a estos problemas, como el popular protocolo BitTorrent,
el cual constituye una primera aproximación al problema. En la tesis se estudia,
primero desde un punto de vista teórico, las diferentes posibilidades de asignación de
recursos en estas redes, y los incentivos que las mismas proveen a los peers. Luego,
se realiza el diseño de un algoritmo que alcanza la asignación deseada manteniendo
los incentivos para los peers a contribuir.

Analizando los incentivos aparece un compromiso entre eficiencia y justicia en
la red. Se argumenta que una asignación proporcional es la más adecuada a estas
redes y se analizan diferentes alternativas para alcanzarla. Sin embargo, las alterna-
tivas existentes presentan varios problemas a la hora de la implementación en redes
actuales.

Se procede entonces a diseñar un algoritmo descentralizado de “selección de
vecinos” (donde se elige con quién compartir contenido de manera de alcanzar un
óptimo global). El algoritmo se basa en el uso de Cadenas de Markov de tiempo
continuo que aparecen en el estudio de la mecánica estad́ıstica, en particular las
distribuciones de Gibbs. El algoritmo consiste en un Gibbs Sampler, que alcanza la
asignación deseada manteniendo sencillez en la implementación.

En la última parte de la tesis se extienden las propuestas al contexto de redes
inalámbricas ad-hoc, en las cuales el compromiso de eficiencia y justicia cambia
radicalmente debido a que la eficiencia de la red está asociada a qué vecinos podemos
elegir para comunicar, ya que en las redes inalámbricas las restricciones de capacidad
se vuelven par a par, en lugar de una única restricción de subida por peer. Las
interferencias entre enlaces debido la comunicación inalámbrica complican aun más
el problema. De todos modos, se propone una extensión al algoritmo que logra
los objetivos deseados también en este tipo de redes, y que permite modular el
compromiso entre eficiencia y justicia satisfactoriamente.

Palabras clave: Redes peer-to-peer; asignación de recursos; muestreo de Gibbs.
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ABSTRACT

In peer-to-peer networks there are two main issues: the efficiency in the use of
the upload bandwidth of the peers; and the incentives that the resource allocation
provides to the peers, which should promote the upload of content which is key to
its scalability. There are some ad-hoc solutions to these issues such as the popular
BitTorrent protocol. In this thesis we pretend to study, first from a theoretical
standpoint, the different choices for the resource allocation and their incentives for
the peers. Then, we intend to design an algorithm that achieves a desired allocation
that provides the proper incentives for the peers to contribute to the network.

Analyzing the incentives we note that there is a tradeoff between efficiency and
fairness in the network and although a max-min allocation would impose minimal
incentives, we argue that a “proportional allocation” is better suited for these net-
works. With that in mind, we propose a decentralized neighbor selection algorithm,
based on a Gibbs sampler, which achieves the desired allocation while being easy to
implement. Lastly, we turn our attention to ad-hoc wireless networks and analyze
the choices for the resource allocation in this setting, which are no longer just the
superposition of the allocation of every peer, as the interferences given by the shared
channel complicate the analysis. Furthermore, we propose a new decentralized al-
gorithm that achieves a proportional allocation for this type of networks.

Key words: Peer-to-peer networks; resource allocation; Gibbs sampler.
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Chapter 1

Introduction

In this chapter we begin by introducing some concepts about peer-to-peer net-
works and the peculiarities of content distribution. Then, we present the problem
of resource allocation in this kind of networks and give an outline of the thesis.

1.1 PEER-TO-PEER NETWORKS

Traditionally, in order to distribute a file over the Internet one would have mul-
tiple servers which had the file, and the interested users would connect to them as
clients to download it. In this case we have two distinct type of nodes in the network:
servers and clients, and the information only flows from servers to clients (Figure
1.1(a)). The main drawback of this kind of network is that it does not scale with
the number of interested clients, because if the number of servers remains fixed, the
load on the servers increases with the number of clients.

Figure 1.1. Different network configurations for the distribution of content.

To address this scalability problem in content distribution, a new kind of network
arose, the peer-to-peer (P2P) network. In these networks, each node (peer) has the
ability to download content from other peers and the responsibility of uploading
content to others as well. There are two types of P2P networks: hybrid and pure
(Figure 1.1(b,c))). The pure P2P networks are completely self organized and do not
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rely in any centralized node or algorithm. On the other hand, in the hybrid networks
there are still central servers that carry certain tasks, such as keeping track of the
location of all peers with a determined file and sharing that information with new
peers. We will focus our attention on hybrid P2P networks where the only task of
the servers is to keep track of the peers, in order to provide this information to the
new peers, all the actual file sharing in between peers.

1.1.1 Mechanisms to distribute content

In order to distribute a file throughout the network efficiently, it is divided into
small pieces (or chunks) that are sent from peers who have them to others who do
not. This enables peers to download different pieces from different peers at the same
time, making a better use of network bandwidth, which is usually the scarce resource.
The peers that are still downloading the file are called leechers, and the ones that
already have the whole file are called seeders. Seeders play the role of servers, that
have the whole file and can upload it to other peers. However, in order to have true
scalability, the leechers also need to contribute to the network, uploading content
to other leechers. As a result, it is essential that any protocol establishes incentives
for the leechers to contribute in order to avoid free-riders, because if many peers
decide not to upload content to the network, the burden of uploading the content
to everyone will fall on the seeders and this will defeat the purpose of using P2P
networks.

In every P2P system, there should be a mechanism that helps peers connect to
each other. For example, in the BitTorrent protocol [1], there are centralized entities
called trackers that have the location of all peers which have or are downloading a
particular file. When a new peer arrives to the network, a tracker provides a random
subset of peers that are interested in the same content. This builds a neighbor overlay
graph for each peer which will impact the final resource allocation in the network
by establishing who can connect to whom.

When a peer is finally connected to other interested peers, it starts making
requests for desired pieces of the file to the connected peers. In order to decide
which piece to request, one could easily start asking for the pieces in order, but this
is far from efficient (each peer could only get new pieces from peers who downloaded
more content than them). If we are downloading a file, the order of the pieces that
we download is irrelevant, and we can choose to download them in any order that
we see fit. For example, the popular BitTorrent protocol uses the rarest first rule,
in which the peer asks for the piece that sees as the least popular. This maximizes
the minimum amount of users that have a piece, promoting diversity and preventing
the missing piece syndrome (a phenomenon studied in [2]).

Lastly, when a peer is being asked to upload pieces to several leechers, it has to
decide to which peers to upload to (which peers to unchoke). This part is handled
by the neighbor selection algorithm, and it is the main responsible for determining
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the resource allocation in the network and imposing incentives to contribute.

1.1.2 Resource allocation problem

The main purpose of using P2P networks, as we said before, is its scalability,
which depends heavily on the cooperation of other leechers that are downloading
the same file. In order to ensure this, any protocol must set the proper incentives in
place which can only be done effectively through the neighbor selection algorithm.
This algorithm should be simple enough for implementation and must perform two
tasks at the same time:

1. Provide incentives to other peers to upload content to others.

2. Discover new peering options.

For example, BitTorrent peers open a maximum amount of connections to other
peers (usually four). Using TCP (Transport Control Protocol) connections, there is
no control over the rates between the peers, but instead they depend on the RTTs
(Round Trip Times) between them and on the bottlenecks of the network. Under
normal circumstances (bottleneck in the upload and uniform RTTs) this leads to a
uniform split of the upload bandwidths. For the sake of simplicity, we will suppose
that we obtain a uniform split of the bandwidth between the selected neighbors.
That being said, BitTorrent’s neighbor selection algorithm has essentially two parts:

• The tit-for-tat part: in which each peer, every 10s, decides to upload to the
three peers from which it downloaded the most in the last 20s.

• The optimistic unchoke: in which each peer, every 30s, opens a connection to
a random peer for 30s.

The result is that every peer is at any time only connected to 4 peers at most, 3 of
them that are chosen based on a ranking of the received bandwidths and the other
one at random. This tit-for-tat reciprocity gives some incentive to the leechers to
contribute to the network in order to increase the chance of getting pieces from other
peers, but still has room for free riders.

The tit-for-tat part of the BitTorrent’s neighbor selection algorithm tries to
achieve the first objective but it falls short. In game theory, the name “tit-for-
tat” usually means “equivalent retaliation” and it is a very effective strategy for the
game of the repeated prisoner’s dilemma. In the case in which all peers have the
same upload capacity then they would all be equal in the game and this scheme
would be appropriate. However, in the realistic scenario in which every peer has a
different upload capacity, the players have different power in the game and instead
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of trying to find another peer that just cooperates, the players want to find the peers
that give them more. In this setting the game is similar to an auction, in which each
player has a certain buying power (its upload capacity) and wants to obtain upload
bandwidth from other peers in return, as seen in [3]. In an auction you do not have
an incentive to contribute more, just to outbid the others, and if you cannot outbid
them then you do not have any incentive to bid at all. This is one of the problems
with BitTorrent’s neighbor selection algorithm, as one should always have incentives
to contribute more.

The other part of the algorithm is the optimistic unchoke, which uploads content
to other peer at random. This is very easy to implement and performs the second
task (discovering new peering options) impeccably. However, this part of the al-
gorithm goes against the incentives that the tit-for-tat part was trying to achieve.
When selecting a peer at random regardless of any other measure or situation, we
are giving away a fraction of the upload capacity of the network without asking
for anything in return. This enables free-riders in the network that can choose to
upload nothing and still get a fraction of the upload capacity for free. This is the
other problem of the BitTorrent’s neighbor selection algorithm.

One of the limitations of this tit-for-tat scheme (or any reciprocity based scheme)
is that the new peers with zero pieces cannot contribute to the network yet, and will
not be selected for upload by the algorithm. In order to avoid this pitfall, there is
a mechanism called bootstrapping that assigns a higher probability to the new peers
for being selected at random until they have enough pieces to start contributing.

1.2 OUTLINE OF THE THESIS

The objective of this thesis is to analyze the resource allocation problem in P2P
overlays and then propose simple decentralized algorithms that achieve a desired
allocation of resources, first for a wired network and then for an ad-hoc wireless
network.

Here is a brief outline of this thesis: In Chapter 2, we will present a fluid model
for the leecher and seeder populations for a P2P overlay over a wired network and
analyze the possible resource allocation choices, taking into account the average
download time of the files and the incentives. A first contribution is showing that
the resource allocation that minimizes the average download time and provides min-
imum incentives is the max-min allocation. However, we argue that a proportional
allocation is better suited for this kind of networks as it provides stronger incentives.
In Chapter 3 we present preliminary results and theory on a matrix renormalization
algorithm, as a means to achieve proportionality. Then, in Chapter 4 we will develop
a new decentralized neighbor selection algorithm that achieves the desired alloca-
tion of resources over a wired network, and it is shown to perform better than other
alternatives through simulations. Finally, in Chapter 5 we focus on P2P overlays
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over an ad-hoc wireless network and we develop a decentralized neighbor selection
algorithm specially designed for this kind of networks.

Furthermore, in Appendices A and B we formalize and extend the results pre-
sented in Chapter 2. Lastly, in Appendices C and D we give some background on
Markov chains and on graph theory respectively.

12



Chapter 2

Resource allocation in wired P2P
networks

Consider a scenario where we have a set of peers with upload capacities µi, i =
1, . . . N ; assume there are no other bottlenecks in the network, and enough diversity
of pieces so that the total bandwidth ∑

i
µi can be used for download; how should it

be distributed among the same peers, now seen as clients?

This question has been addressed by many researchers; often, the discussion
is combined with efforts to characterize the behavior of prevailing P2P protocols
such as BitTorrent. In this chapter we are going to present a fluid model for the
leecher and seeder population for a general bandwidth allocation. Then we will
analyze the properties of the equilibrium looking for the allocation that minimizes
the average download time, first with no restrictions and then imposing incentives
in the allocation, finding the one that minimizes the average download time while
maintaining proper incentives for the peers. Lastly we show that a proportional
allocation provides stronger incentives to contribute and we argue that it is the best
candidate for the resource allocation.

For further discussion of incentives, including resistance to attacks, we refer to
[3]. See also [4, 5] for related game-theoretic studies.

2.1 FLUID MODEL

We present a fluid model of the population dynamics for a wired P2P network.
First, we introduce some notation.

• µ1 > µ2 > · · · > µn > 0 are the possible upload rates for the peers.
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• d1 > d2 > · · · > dn > 0 are the download capacities for the peers.

• xi(t) and yi(t) are the amount of leechers and seeders in the system at time t
with upload rate µi.

• λi is the intensity of arrivals of peers with upload rate µi.

• 1
γi

is the mean time that a seeder with upload capacity µi stays in the system,
hence yi(t)γi is the rate which seeders with upload rate µi leave the system at
time t.

• ri(x(t), y(t)) is the download rate that a peer of upload capacity µi receives,
with x(t) = (x1(t), . . . , xn(t)), y(t) = (y1(t), . . . , yn(t)).

We will assume that the size of the file is equal to 1 and that all the leechers
that finish downloading, stay as seeders for some time.

Using the aforementioned notation, we define the dynamics of the seeders and
leechers

ẋi(t) = λi − ri(x(t), y(t))xi(t) ∀i (2.1)
ẏi(t) = ri(x(t), y(t))xi(t)− γiyi(t) ∀i (2.2)

with the “conservation of mass” restriction
n∑
i=1

ri(x(t), y(t))xi(t) ≤
n∑
i=1

µi [xi(t) + yi(t)] (2.3)

which states that the total download throughput of the network must be less than
or equal to the total upload capacity of the network. We will assume that there is
strict inequality only when the system is saturated by the download capacities di.
We want to characterize the equilibria of these dynamics.

Proposition 2.1.1. If ri are continuous with respect to x, bounded by above by the
download capacity di and uniformly bounded by below by ε > 0, then the previous
dynamics defined by 2.1 and 2.2 have equilibria in x∗, y∗ such that

y∗i = λi
γi

and x∗ are fixed points of the equations

x∗i ri(x∗, y∗) = λi

Proof. In the equilibrium, the derivatives with respect to time must be all zero

0 = λi − ri(x∗, y∗)x∗i (t)
0 = ri(x∗, y∗)x∗ − γiy∗i

14



Then for the seeders we have that

λi = γiy
∗
i

Then
y∗i = λi

γi

For the leechers, the equilibria (if they exist) have to satisfy

λi = ri(x∗, y∗)x∗i

or equivalently
x∗i = λi

ri(x∗, y∗)
In order to prove the existence of the equilibria, consider the function

F : I → I/F (x)i = λi
ri(x, y∗)

where I is the convex compact set
n∏
i=1

[
0, λi

ε

]
. Note that F is continuous because the

ri are continuous and that it is well defined due to the fact that ri(x, y) ≥ ε ∀i and
thus λi

ri(x,y) ≤
λi
ε

. As a result, F is a continuous function over a convex compact set
onto itself, and hence by the Brouwer fixed point theorem, it has at least one fixed
point.

From now on, we will focus on analyzing the equilibrium for these dynamics for
different rate functions ri.

2.2 ANALYSIS OF RESOURCE ALLOCATION CHOICES

Now we turn our attention to the design problem of selecting the proper rate
functions ri. At this point, we are going to suppose that there is a centralized entity
that takes all the upload rate and redirects it according to a desired allocation. The
problem of implementing the allocation in a decentralized manner will be postponed.

A first objective could be to minimize the average download time of a leecher
regardless of the resulting incentives for the peers. Then we introduce the proper
incentives and we find the resource allocation that minimizes the download time
with these constraints. This part generalizes the work in [6], adding seeders and
an analysis of the incentives of the resource allocations. In Appendix B we give a
further generalization for the case where the upload capacities can take any positive
value instead of just a finite set.
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2.2.1 Minimizing the download time

In equilibrium, the average download time of a peer in the network with upload
capacity µi would be

T̄i = 1
r∗i

where r∗i = ri(x∗, y∗), as the file has size 1 and all the peers with upload capacity µi
download at rate r∗i . Using the fact that the fraction of leechers that arrive to the
network with upload capacity µi is λi

Λ (where Λ = ∑
i λi), we get that the average

download time of a generic leecher is

T̄ =
n∑
i=1

λi
Λ

1
r∗i

Using the value of x∗i in equilibrium, we can rewrite the average download time as

T̄ = 1
Λ

n∑
i=1

x∗i

which is essentially Little’s law [7], a result of queueing theory which states that the
average time that a customer stays in the system multiplied by the average rate of
arrivals is equal to the average number of customers in the system. As a result, we
can minimize the total number of leechers in equilibrium in order to minimize the
average download time. The first constraint that we have is the one given by the
“conservation of mass” (Equation (2.3)), which in equilibrium is equivalent to

n∑
i=1

µix
∗
i +

n∑
i=1

µi
λi
γi
≥ Λ

This means that the total upload capacity of the leechers plus the upload capacity
of the seeders (all measured in files per second) must be greater or equal to the total
incoming leecher rate Λ. Let

Cy =
n∑
i=1

µi
λi
γi

be the total upload capacity of the seeders. Then, the previous restriction can be
rewritten as

n∑
i=1

µix
∗
i ≥ Λ− Cy

The last constraint that we will impose is that a peer with upload capacity µi has
a maximum download capacity di, where d1 > d2 > · · · > dn. That is

ri(x, y) ≤ di ∀i (2.4)

We can translate this into a restriction in x∗

x∗i ≥
λi
di
∀i

Using equation (2.4) in equilibrium, we can now write the optimization problem
of minimizing the average download time as
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Problem 1

inf
n∑
i=1

x∗i

s.t.
n∑
i=1

µix
∗
i ≥ Λ− Cy (2.5)

x∗i ≥
λi
di
∀i (2.6)

Note that this is a linear programming problem whose constraints determine a
polytope and thus its solution will be in the vertex of the polytope that is closest to
the origin in the 1-norm. For different sets of parameters, we will have different sets
of active restrictions, and this will actually have an interpretation form the network’s
viewpoint. The solution of this problem will depend on the rate of incoming leechers
Λ and on the total upload capacity of the population of seeders in equilibrium Cy.

Case sustained by seeders

Note that if Cy ≥ Λ, i.e. when the total number of peers that arrive per second
is less or equal to the total upload capacity of the seeders (all measured in files
per second) then the first restriction in the optimization (Equation (2.5)) is trivial,
which means that the upload capacity of the leechers is not necessary and the system
can be sustained by the seeders. As a result, the minimum is achieved when we have
equality in (2.6)

x∗i = λi
di
∀i

which is the case of ri = di ∀i. This is the minimum amount of leechers that we can
possible have in the network, as everyone is saturated by their download capacity
and stays the minimum amount of time possible.

Remark 2.2.1. If we forget about the restrictions on the download capacity in
this case, then the minimum would be achieved when x∗i = 0 ∀i, which is not a
reasonable equilibrium as it would mean that r∗i = +∞.

Case sustained by seeders + leechers

Now we analyze the case in which a population of leechers that contribute to the
network is actually needed in order to reach an equilibrium, because Cy < Λ.

Using equation (2.6), we have that
n∑
i=1

µix
∗
i ≥

n∑
i=1

µiλi
di

=: D
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When D ≥ Λ − Cy, restriction (2.5) always hold and then the system is still satu-
rated by the download capacity. As a result, we achieve the same minimum for the
optimization problem as in the previous case. This is summarized in the following
proposition.

Proposition 2.2.1. If the average arrival rate of leechers is less than or equal to the
upload capacity of the population of seeders plus the upload capacity of the minimum
amount of leechers that we could have, i.e.

Λ ≤ D + Cy

then the solution of the Problem 1 is achieved when all peers are saturated by down-
load capacity, i.e.

x∗i = λi
di
∀i

Although we have the same result, now the upload capacity of the leechers is
actually needed in order to cope with the arrival rate Λ. In both cases, the average
download time for the leechers is minimum:

T̄ =
n∑
i=1

λi
Λ

1
di

In order to see more clearly how the constraints interact, it is convenient to
consider the case in which we have only two upload capacities, where we can see
the result looking at the feasible set in R2 as in Figure 2.1. The region defined by
constraints on the download capacity (2.6) is completely contained in the half-plane
that defines the conservation of mass (2.5), and that is why the minimum is achieved
when we have equality in (2.6).

x∗1

x∗2

x∗2 ≥ λ2
d2

x∗1 ≥ λ1
d1

x∗1µ1 + x∗2µ2 ≥ Λ− Cy

Figure 2.1. Feasible region for the optimization problem with two variables when
the conservation of mass restriction is not active.
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Network not saturated by download capacity

The most interesting case is when not all the peers are saturated by download
capacity, in which the two dimensional case yields a feasible region as in Figure
2.2. Now the region defined by the constraints on the download capacity (2.6) is no
longer contained in the half-plane that defines the conservation of mass (2.5) and
the minimum is achieved elsewhere.

x∗1

x∗2

x∗2 ≥ λ2
d2

x∗1 ≥ λ1
d1

x∗1µ1 + x∗2µ2 ≥ Λ− Cy

Figure 2.2. Feasible region for the optimization problem with two variables when
the conservation of mass restriction is active.

In this case it is convenient to make the change of variables

x̃i = x∗i −
λi
di

where the x̃i represents the amount of leechers that there are over the minimum
imposed by the download capacity restriction. Then we rewrite our optimization
problem in x̃ as

Problem 2

inf
n∑
i=1

x̃i

s.t.
n∑
i=1

µix̃i ≥ Λ− Cy −D (2.7)

x̃i ≥ 0 ∀i (2.8)

Now, we are trying to find a positive vector such that the sum of its components
is minimum while verifying the inequality of equation (2.7). For example, if we have
only two upload capacities, the feasible region would be as in Figure 2.3. Clearly,
the solution lies in the vertex closest to the origin, which for an arbitrary number
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of upload capacities µ1 > µ2 > · · · > µn > 0 is

x̃1 = Λ− Cy −D
µ1

x̃i = 0 ∀i > 1

x̃1

x̃2

Λ−Cy−D
µ2

Λ−Cy−D
µ1

Figure 2.3. Feasible region for the optimization problem with two variables after
the variable change.

This result means that the fast peers are accumulated in order to increase the
total capacity of the network, thus minimizing the amount of peers in the network.
The solution of the optimization problem in this case is summarized in the following
proposition.

Proposition 2.2.2. If the average arrival rate of leechers is greater than the upload
capacity of the population of seeders plus the upload capacity of the minimum amount
of leechers that we could have, i.e.

Λ > D + Cy

then the solution of Problem 1 is achieved when all peers are saturated by download
capacity except for the fastest ones, i.e.

x∗1 =
Λ− Cy −D + µ1λ1

d1

µ1

x∗i = λi
di
∀i > 1

In this case the resource allocation is

r∗1 = λ1µ1

Λ− Cy −D + µ1λ1
d1

r∗i = di ∀i > 1

and average download time is

T̄ = 1
Λ

(
Λ− Cy −D

µ1
+

n∑
i=1

λi
di

)
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When Λ > D+Cy, this will be the minimum average download time for the leechers.
Any other allocation will have a longer one. The allocation profile in this case is
depicted in Figure 2.4.

µi

r∗i

µ1µ2µ3· · ·µn−1µn

Minimum time allocation

Download restriction

Figure 2.4. Resulting resource allocation when minimizing the average download
time of a file.

2.3 INTRODUCING INCENTIVES

The previous resource allocation indeed minimizes the average download time
of the peers, but it comes at the expense of the peers that contribute more to the
network, as can be seen in Figure 2.4. In fact, the fastest peers may not be the
ones with the highest download rate, since the allocation defined by r∗i may not be
increasing with the upload rate. This happens if

d2 >
λ1µ1

Λ− Cy −
n∑
i=2

µiλi
di

In that case there is no gain in being one of the peers that contribute the most to
the network. This condition is equivalent to the fact that if we lower the download
capacity d1 and make it equal to d1, the network would still not be saturated by
download capacity. As most P2P networks are far from being saturated by download
capacity, this condition holds in most practical cases and thus this allocation does
not provide proper incentives to the fastest peers.

In most of the BitTorrent clients, the user has the ability to change its upload
rate at will (always upper bounded by their actual download capacity). If we gave
this power to the peers under the previous bandwidth allocation, then no peer
would choose to upload at the maximum rate µ1, but instead they would choose the
second largest rate (or the closest one). Intuitively, this would lead to a situation in
which everyone would end up lowering its upload rate to a minimum. In order to
prevent this undesirable scenario, it is enough to impose that the allocation should
be increasing as the effective upload rate of the peers increases.
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In appendix A we formalize this intuition by modeling this problem as a non-
cooperative non-atomic game for the leechers.

2.3.1 Imposing an increasing resource allocation

First of all, we will consider only the case where Λ > D + Cy, as in the other
case the only efficient rate allocation is r∗i = di ∀i. In that case, we can include the
increasing nature of the download rates as a new restriction Problem 1, but now
it is convenient to present it as an optimization problem directly in the download
rates r∗i :

Problem 3

inf
n∑
i=1

λi
r∗i

s.t.
n∑
i=1

µi
λi
r∗i
≥ Λ− Cy

r∗i ≤ di ∀i
r∗i > r∗i+1 ∀i

Now, we can find a resource allocation vector r∗ that minimizes the download
times but that is non-increasing in i (non-decreasing with the upload rate). This
would be the infimum of our problem, not the minimum as it is not strictly increasing
with the upload rate. The solution is the max-min allocation depicted in Figure 2.5,
in which the slowest peers will receive r∗i = di and then from some index i∗ forward
they will all receive a constant rate R. The rate R is obtained from the conservation
of mass equation

i∗∑
i=1

µi
λi
R

+
n∑

i=i∗+1
µi
λi
di

= Λ− Cy

which yields

R =

i∗∑
j=1

λjµj

Λ− Cy −
n∑

j=i∗+1

λjµj
dj

The index i∗ is the maximum index that produces an increasing allocation, which
is greater than 0 because the network is not saturated by download capacity, but
could take any value up to n, in which case we obtain a constant allocation. As a
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result, the general bandwidth allocation will be

r∗i =

i∗∑
j=1

λjµj

Λ− Cy −
n∑

j=i∗+1

λjµj
dj

if i = 1, . . . , i∗ (2.9)

= di if i = i∗ + 1, . . . , n (2.10)

µi

r∗i

µ1µ2µ3· · ·µn−1µn

Max-min allocation

Download restriction

Figure 2.5. Resulting resource allocation with max-min fairness.

Note that for slower peers it is equivalent to the allocation that results in minimiz-
ing the average download times (Figure 2.4), but then it is nondecreasing. Typically
the network is far from being saturated by download capacity, so we would get an
allocation in which most of the peers get the same download rate.

Remark 2.3.1. We have a critical value of d∗n for which we have i∗ = n if dn ≥ d∗n.
This is

d∗n =

n∑
i=1

µiλi

Λ− Cy
In that case the resource allocation is constant. The resulting resource allocation
profile will be as in Figure 2.6.

In theory one could try to achieve max-min in order to provide incentives and
minimize the average download time. This could be done in practice by connecting
to other peers at random, as this would yield an uniform allocation for all peers
(or saturate the download capacity). However, we argue that max-min is not really
enough, because we need a strictly increasing allocation. In this regard, a natural,
simple and fair resource allocation rule would be: you should get at least as much
as you give.
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µi

r∗i

µ1µ2µ3· · ·µn

Max-min allocation (critical)

Download restriction

Figure 2.6. Constant max-min resource allocation.

2.4 PROPORTIONAL FAIRNESS

As we said before, a more appropriate resource allocation is obtained by imposing
a notion of fairness, the proportional fairness. This allocation provides stronger
incentives to peers to use their maximum upload rate, as their download rate will
increase proportionally. With this notion of fairness, if the download capacities are
high enough, each peer will have a download rate

r∗i = αµi ∀i

Using the conservation of mass (Equation (2.5)), we get that
n∑
i=1

λi
α
≥ Λ− Cy

then if Λ > Cy (i.e., if it is not sustained by seeders)

α = Λ
Λ− Cy

and as a result we have the resource allocation

r∗i = µi
Λ

Λ− Cy

The average time to download will be of course greater than in the previous case

T̄ =
n∑
i=1

λi
Λ

(
Λ− Cy
µiΛ

)

Note that if di = Kµi then we will have only two possible situations: all peers are
saturated by download capacity or none of them are. In fact, they will be saturated
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µi

r∗i

µ1µ2µ3· · ·µn−1µn

Proportional allocation

Download restriction

Figure 2.7. Resulting resource allocation when when imposing proportional fairness.

by download capacity when K ≤ Λ
λ−Cy . When it is not saturated by download

capacity, a profile of the download rates is depicted in Figure 2.7.

This proportionally fair allocation provides direct, transparent incentives for
peers to contribute and it is the one that we should aim to impose in practice.

The case in which the leechers produce a proportional allocation and in which the
seeders produce a max-min allocation (which would also be incentive compatible)
was studied in [8].

2.5 CONCLUSIONS

In this chapter we first presented a fluid model for the population dynamics of
a wired P2P network for general resource allocation functions. Then we presented
the resource allocation that minimizes the average download time and showed than
in most cases it does not provide the proper incentives for the peers. Then we found
that the max-min allocation is the best in terms of average download time that
provides minimal incentives, but the stronger incentives of a proportional allocation
are better suited for these networks.

A formalization of the incentives from a game theoretic point of view is given
in Appendix A. Furthermore, a generalization of this analysis for when the upload
capacities can take any positive value is given in Appendix B.
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Chapter 3

Proportional reciprocity and the
Sinkhorn iteration

In the previous chapter we concluded that a proportional allocation is a desirable
choice for the resource allocation in a wired P2P network. However, we assumed
that we could distribute the upload capacity of the peers at will, regardless of the
network connectivity or any other restrictions (such as the fact that a peer cannot
use its own upload capacity). Its practical feasibility is not at all obvious.

The feasibility of a proportional fair allocation can be studied by writing the
mutual peer exchange bandwidths in matrix form: the question reduces to a prob-
lem of matrix row and column renormalization. Indeed, the natural iteration of
renormalizing rows and columns leads to a reciprocity algorithm that can achieve
the desired allocation, whenever feasible.

3.1 RESOURCE ALLOCATION MODEL

We begin by defining some notation. A set of N peers shares information through
a connectivity graph G: two peers are neighbors in this graph if they can exchange
information. Let A = (aij) be the adjacency matrix of the graph, assumed sym-
metric. Note that in BitTorrent parlance, in this chapter we are only modeling the
behavior of leechers, who are both uploading and downloading content. We note
that aii = 0 ∀i.

We model the bandwidth sharing by a matrix Z ∈ RN×N
+ in which the entry zij

corresponds to the throughput of the connection from peer i to peer j. The matrix
Z has the following properties:

zij = 0 if aij = 0,
∑
j

zij = µi ∀i, (3.1)
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where µi is the total upload rate of peer i.

On the other hand, the received bandwidth per peer is obtained through the
column sums

rj(Z) =
∑
i

zij ∀j.

We consider as target allocation the situation where each peer receives the same
bandwidth that it gives to the network, that is rj = µj ∀j, which we will call a
proportional allocation. This property was called global proportional fairness by De
Veciana in [9]. In Chapter 2 we saw that his rule provides strong incentives for the
peers to contribute to the network.

At this point there are two questions to be asked. The first question is whether a
matrix Z exists satisfying rj(Z) = µj, i.e. with prescribed row and column sums; we
will call this a feasible allocation. This problem is different from most graph-based
resource allocation problems, as the bottlenecks are in the nodes instead of in the
edges. The second question is whether the above allocation admits a decentralized
implementation, i.e. a set of mutual exchange rules peers can follow to achieve it,
without the intervention of a central authority.

In order to find such an allocation a natural discrete algorithm would be to
upload to each other peer with a rate proportional to the download rate obtained
from that peer in each step, which is called the proportional response dynamics
and was first proposed in [10]. This is a decentralized algorithm that only uses
local information about the current resource allocation of the network and can be
expressed in mathematical terms (using the matrix representation of allocations) as

zk+1
ij =

zkji∑
k
zkki
µi ∀i, j

In order to study the convergence of this algorithm and whether the limit has the
desired properties, we are going to review a very similar matrix scaling algorithm
first developed by Sinkhorn in the 1960’s.

3.2 ORIGINAL SINKHORN APPROACH

The algorithm developed by Sinkhorn was trying to solve a broader matrix prob-
lem:

Let B be a m × n nonnegative matrix and f ∈ Rm
+ , c ∈ Rn

+ two fixed vectors.
Find, if it exists, a m×n nonnegative matrix Z such that zij = 0 if bij = 0 and such
that the row sums are f and the column sums are c.
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Our problem is exactly the case in which the matrix B is the initial resource
allocation of the network and the two vectors are equal to the upload capacity
vector, i.e. f = c = µ.

Initially the algorithm to solve this problem was introduced for doubly stochastic
matrices (f = c = (1, . . . , 1)) in [11, 12, 13] and then refined for arbitrary nonneg-
ative matrices and vectors (See [14] and references therein). We will focus on the
latter version.

Definition 3.2.1 (Sinkhorn scaling algorithm). Given a nonnegative m×n matrix
B, and specified vectors of the row sums (f ∈ Rm

+ ) and column sums (c ∈ Rn
+), we

iterate the following algorithm with initial values B0
ij = Bij. In the odd steps we

normalize the rows to meet the desired row sums, and in the even steps we normalize
the columns to meet their prescribed sums, yielding the two step algorithm

bk+1
ij =

bkij
n∑
l=1

bkil

fi

bk+2
ij =

bk+1
ij

m∑
l=1

bk+1
lj

cj

This algorithm can be seen as a discrete dynamical system in which the state
alternates between a matrix in the set of matrices with desired column sum and a
matrix in the set of matrices with desired row sum, always with the same zeros as
the initial condition. Note that in the limit there could be more zeros.

Ideally, this renormalization of rows and columns will converge to a matrix which
has the prescribed row and column sums. Although this is a two step algorithm,
we analyze the sequence of matrices B(n) after each step in the space of all m × n
matrices. As with any sequence, we want to obtain the conditions under which this
algorithm converges to a unique limit, and a characterization of this limit. These
will depend mostly on zeros of the initial condition B(0) and on the row and column
sum vectors f and c. Furthermore, even if the sequence has no limit, we can analyze
the even and odd subsequences and find the limit for them.

Example 3.2.1. Suppose that we have the initial matrix

B(0) =

 0 1 1
1 0 1
1 1 0


and row and column sum vectors f = c = (2, 3, 4). Then the iteration converges to
the matrix

B(∞) =

 0 1
2

3
2

1
2 0 5

2
3
2

5
2 0
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Note that in this case the limit has the prescribed row and column sums and the
zero structure is the same as the initial matrix. If we change the row and column
sum vectors to f = c = (1, 2, 3), the algorithm still converges but to the matrix

B(∞) =

 0 0 1
0 0 2
1 2 0


In this second case, the limit matrix still has the desired row and column sums, but
there are more zeros in the limit than in the original matrix. Note that in order for
the third column to have sum equal to 3, all the “mass” from the first and second
rows has to be concentrated in the third column. Lastly, if we take f = c = (1, 2, 4)
the algorithm does not converge but it oscillates between the matrices

B1 =

 0 0 1
0 0 2
4
3

8
3 0


and

B2 =

 0 0 4
3

0 0 8
3

1 2 0


Note that in this case a matrix with the desired sums does not exist, as even in the
case of allocating all the “mass” of columns one and two in the third column, we
cannot reach a column sum equal to four. This limitation comes from the vectors
f and c and from the zeros of the initial matrix B(0). For instance, if the diagonal
entries could be non zero, then we could have any row and column sum when f = c.

We now introduce some definitions in order to state the convergence theorem for
the Sinkhorn algorithm which will explain the results of the previous example.
Definition 3.2.2 (Zero minor). Let B be a m × n matrix. Given the subsets of
indices Z ⊂ {1, . . . ,m} and L ⊂ {1, . . . , n}, the sub matrix BZL which results from
discarding rows indexed in ZC and columns in LC is called a minor of B, and in
particular it is a zero minor if BZL = 0.
Definition 3.2.3 (Almost and exactly scalable matrices). A nonnegative matrix B
is almost scalable to row and column sums f ∈ Rm

+ and c ∈ Rn
+, with

n∑
j=1

cj =
m∑
i=1

fi,
if for every zero minor BZL of B, ∑

i∈Zc
fi ≥

∑
j∈L

cj (3.2)

Furthermore, if equality holds only if BZcLc is a zero minor as well, then the matrix
is exactly scalable.

Note that in Example 3.2.1, the first case is exactly scalable, the second one
is almost scalable and the last one is neither. The following theorem states the
convergence conditions of the Sinkhorn algorithm which formalizes the ideas drawn
from the example.
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Theorem 3.2.1 (Balakrishnan et al. [14]). Consider a m × n nonnegative matrix
B, and the desired row sums f ∈ Rm

+ and column sums c ∈ Rn
+ with

n∑
j=1

cj =
m∑
i=1

fi.

• There exists a m×n matrix Z which satisfies these prescribed row and column
sums, where Z = D1BD2 for some D1 ∈ Mm×m(R) and D2 ∈ Mn×n(R), both
diagonal and positive definite ⇔ B is exactly scalable.

• If the above is true, the Sinkhorn scaling of B will converge to such a matrix
Z.

• If B is almost scalable but not exactly scalable, the algorithm will converge to
a unique limit of the form lim

n→∞
D

(n)
1 BD

(n)
2 which satisfies the row and column

constraints. However, the individual matrix sequences D(n)
1 and D

(n)
2 will not

converge.

This theorem gives us necessary and sufficient conditions for the convergence
of the Sinkhorn algorithm to a unique limit. This limit of course has the desired
row and column sums and depends strongly on the initial condition. Note that the
convergence of the algorithm depends only on the zero structure of the initial matrix
B and on the vectors f and c. We can now state a corollary on the zero structure
of the limit matrix Z.

Corollary 3.2.1. If the initial matrix B is almost scalable, then the Sinkhorn algo-
rithm converges to Z such that if bij = 0 ⇒ zij = 0 (but there might be more zeros
in Z than in B). If furthermore the initial matrix B is exactly scalable, then Z has
exactly the same zero structure of B. That is zij = 0⇔ bij = 0.

3.2.1 Sinkhorn scaling as an optimization problem

We now give a different approach to the convergence and to the characterization
of the limit of the Sinkhorn algorithm. The main result follows.

Theorem 3.2.2. Given an almost scalable matrix B ∈Mm×n(R+) for f ∈ Rm
+ and

c ∈ Rn
+, then the limit given by the Sinkhorn algorithm Z results in the minimum of

the following optimization problem

min
zij :bij 6=0

∑
i,j:bij 6=0

zij log
(
zij
bij

)

s.t.
n∑
j=1

zij = fi ∀i = 1, . . . ,m

m∑
i=1

zij = cj ∀j = 1, . . . , n

zij ≥ 0 ∀i, j
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Corollary 3.2.2. If f = c and the initial matrix B is symmetric, then the limit
matrix Z of the Sinkhorn iteration is symmetric.

Proof. Let Zopt be the optimal matrix in Theorem (3.2.2). Since B symmetric, the
cost is a symmetric function of Z and so are the constraints, therefore ZT

opt is also
optimal. But the objective function is strictly convex and thus it has a unique
minimum, therefore Zopt = ZT

opt.

3.3 APPLICATIONS TO RESOURCE ALLOCATION IN P2P NETWORKS

Recall that the proportional response dynamics, intended as a decentralized al-
gorithm to achieve a proportional resource allocation, was defined by

zk+1
ij =

zkji∑
k
zkki
µi ∀i, j

In the language of matrix scaling, this means to transpose the matrix and renor-
malize rows to have sum µ. In this sense, except for the transpose operation, this
iteration amounts to the Sinkhorn’s iterative row and column renormalization. This
connection makes it possible to obtain results for the proportional response iteration
from the extensive literature that studied the Sinkhorn renormalization which was
reviewed in this chapter. The main result follows.

Theorem 3.3.1 (Proportional response dynamics convergence). Let A be the ad-
jacency matrix of the connectivity graph of a P2P network, and let µ ∈ RN

+ be the
vector of upload capacities. If A is almost scalable for f = c = µ, then for any ini-
tial resource allocation Z0 in which every possible connection is active (i.e. zij > 0
if aij > 0), the even and odd subsequences of the proportional response dynamics
converge to a proportional resource allocation Z and its transpose. If furthermore
Z0 = ZT

0 , then the the limit is a unique symmetric resource allocation Z. In any
case, the two step average of the resource allocations converge to a symmetric re-
source allocation.

Remark 3.3.1. Note that even if our objective was to achieve an allocation in
which the total upload rate of a peer µi was equal to the total download rate ri,
the proportional response dynamics goes one step further and produces symmetric
allocations, which have a peerwise balance of bandwidth (zij = zji ∀i, j).

One of the key conditions for this theorem is that the adjacency matrix A has
to be almost scalable, which is a condition on its zero minors and on the upload
capacity vector µ. If we consider a special case of interest where the network is full
mesh, then the adjacency matrix A is almost scalable if

µi ≤
∑
k 6=i

µk ∀i
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This can be interpreted as if each node in the network can get as much bandwidth
as it gives, which enables the kind of reciprocity that we are looking for. This
condition is very easy to achieve in a P2P network, as they generally have a large
amount of peers and it is very difficult that one can contribute more than the rest
of the network combined. As a result, it is safe to assume that this condition always
holds in practice.

The other key condition is that the initial condition has to have all possible con-
nections active in order to ensure that Z0 is also almost scalable. This one is harder
to achieve in a P2P network, as usually the peers will only have a small amount of
connections active in order to reduce overheads. Furthermore, in a dynamic network
when new peers arrive, initially they will have no active connections, which would
render this algorithm useless. In [3] they propose an algorithm that devotes 80%
of the upload bandwidth to the proportional reciprocity scheme and the remaining
20% to an optimistic connection as the one used by BitTorrent’s neighbor selection
algorithm. This solves the problem of opening new connections but still has the
complications of maintaining a large amount of connections active and fine tuning
the actual throughput of those connections, which would make more difficult the
use of transport layer protocols like TCP. Besides, the use of 20% of the bandwidth
for an optimistic connection goes against the proportional allocation that the other
part is trying to achieve.

Taking everything into account, we note that the proportional response dynamics
is an excellent algorithm to achieve proportional allocations in a network, but it has
several implementation issues which where only partially solved. In the next chapter
we are going to design a neighbor selection algorithm which takes into account the
implementation restrictions that a neighbor selection algorithm should have.
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Chapter 4

Neighbor selection for wired P2P
networks

In this chapter we follow the route of progressively imposing the design con-
straints of practical systems for the proportional allocation and developing a decen-
tralized algorithm that achieves it. The new proposal is analyzed mathematically
and tested in simulations. Most of this chapter was already published in [15].

The ideal reciprocity scheme of the previous chapter is not easily taken to prac-
tice. We consider two important implementation restrictions:

(i) For overhead reasons, peers must maintain simultaneous connection with only
a small amount of peers.

(ii) Due to the underlying TCP protocol, these connections will receive an amount
of bandwidth that depends on the RTTs, which we will assume equal. This
yields a uniform split of the peer’s upload bandwidth.

To study these limitations we introduce an energy function which is zero under ideal
reciprocity, and which a practical scheme should try to reduce. Although optimizing
energy under constraints (i)-(ii) has combinatoric complexity, we identify cases where
zero energy is indeed achievable; more generally, we characterize the algorithm in
which each peer tries to myopically reduce its portion of the energy: a tit-for-tat
structure similar to BitTorrent’s comes out naturally from this procedure.

The final step in the implementation road is to introduce some randomness in
peer selection, which avoids one of the pitfalls that appear in a deterministic myopic
algorithm by exploring the set of peers, which will in practice vary in time. For this
task we turn to a Gibbs’ sampler, designing a Markov process guided by a potential
defined in terms of our energy function. In this regard, we note that recent papers
[16, 17] have introduced this technique in the study of P2P systems from a network
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utility maximization perspective. As we will explain, there are differences between
the two proposals, reflected in the potential functions used.

The resulting neighbor selection algorithm was tested in simulation and com-
pared to other existing protocols, performing well against the alternatives in terms
of reciprocity and fairness.

4.1 IMPLEMENTATION RESTRICTIONS: DISCRETE CONNECTIONS

The proportional response dynamics reviewed in Chapter 3 is a decentralized
algorithm that achieves the desired allocation in a P2P network when possible.
However, problems arise if we wish to implement such algorithm in practice. First
of all, it needs a constant connection with each neighbor peer in the network; this
is impractical as there would be too many active connections, which leads to more
overhead than is desired. Secondly, each connection would have to be fine-tuned to
a desired rate. This is difficult to achieve, specially if you are planning on using
TCP as underlying protocol. Finally, this is a completely deterministic algorithm
and as such lacks the necessary randomness to explore the different peering options
as the network evolves.

The BitTorrent algorithm, although practical and easy to implement, yields an
allocation which is not proportional in most cases and has some issues that we
explained in Section 1.1. There is thus room left for exploring alternatives to the
BitTorrent neighbor selection, that will more closely reflect our design objective of
proportional allocation, within the practical constraints that have been identified. In
this chapter we will address two of these constraints, which stem from the discrete
nature of connections and reliance of transport protocols that impose bandwidth
sharing:

1. Each peer can only open a maximum amount of N0 connections.

2. The upload capacity of each peer is equally distributed between all outbound
connections.

In the following, N will denote the number of peers, with their upload capacities
in decreasing order: µ1 ≥ µ2 ≥ · · · ≥ µN . Again, it is assumed there are no other
bottlenecks in the network.

4.2 ENERGY DRIVEN ALLOCATIONS

As a means to study the impact of the discrete constraints on the desired reci-
procity, we will introduce an energy function E ′(Z), sum of squares of the peerwise
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discrepancies in exchange rates, as follows:

E ′(Z) = 1
2
∑
i,j

(zij − zji)2.

This function is defined over the set of allocation matrices

M =

Z : zij = 0 if aij = 0,
∑
j

zij = µi ∀i, zij ≥ 0 ∀i, j


for a given vector of upload capacities µ and a given adjacency matrix A, assumed
symmetric.

Proposition 4.2.1. If the row and column scaling problem with adjacency matrix
A and capacities µ is feasible, then the allocations of minimal energy E ′(Z) = 0 are
precisely the symmetric allocations

M∗ =
{
Z ∈M : Z = ZT

}
6= ∅.

The above follows from the theory reviewed in Chapter 3. The set M∗ is con-
vex and is the set of average allocations that can by obtained by the proportional
response dynamics, which make this a proper energy for our purposes.

We now begin to incorporate the discrete restrictions imposed by the number
N0 of peer connections, and the equal bandwidth between them. At this point it
is convenient to factor out the peer bandwidths and introduce a matrix X with
coefficients in {0, 1

N0
} that stores the neighboring configurations in terms of the

fractions xij of its own bandwidth that peer i allocates to each peer j. From it, the
rate allocation can be obtained as

Z = diag (µi)X.

Based on this, we can redefine the energy as a function of the neighboring configu-
rations X

E(X) = 1
2
∑
i,j

(µixij − µjxji)2. (4.1)

We would like to minimize the energy E(X) with the incorporated restrictions. The
minimization now is over the subset of stochastic matrices

ΛS =
{
X ∈

{
0, 1

N0

}N×N
: xij = 0 if aij = 0; ∑

j∈S
xij = 1

}

Although the minimization of the energy without the discrete restrictions yields
symmetric matrices, the configuration that minimizes the energy (4.1) need not be
symmetric.
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Example 4.2.1. Suppose that we have five peers (N = 5) that can open two
connections at a time (N0 = 2) in a full mesh network. Furthermore, suppose that
µ1 = µ2 = µ3 = 10 and µ4 = µ5 = 1. Then the configuration that minimizes the
energy (Figure 4.1) is not symmetric:

X∗ =


0 1

2
1
2 0 0

1
2 0 1

2 0 0
1
2

1
2 0 0 0

0 0 1
2 0 1

2
1
2 0 0 1

2 0


and the energy in this case is E(X∗) = 1

2 .

2

1

3

5

4

Figure 4.1. Example non symmetrical configuration of minimum energy. We have
fast peers (black) and slow peers (white). Between them there are
reciprocated links (green) and unreciprocated links (red).

The minimization of the energy is a very large combinatoric problem, so an
exact solution is very hard to obtain. However, in certain cases we can obtain a
configuration that minimizes the energy.

Proposition 4.2.2. In a full mesh network, suppose that N0 is even and that we
have k groups of peers with the same upload bandwidth µi for each member of group
i. Besides, each group has Ni > N0 peers ⇒ There exists a configuration X∗ such
that E(X∗) = 0.

Proof. As we have groups of peers with the same bandwidth, we want to form sets
of peers with the same bandwidth connected to each other, but disconnected from
the rest, thus obtaining a configuration X∗ with E(X∗) = 0. Equivalently, for each
group of peers we have to find a N0-regular graph with Ni vertices. Fortunately
Theorem D.1.1 stated in Appendix D gives us the existence of such graphs because
N0 is even. As a result, every group of N0 regular graphs would make the energy
equal to 0.

Example 4.2.2. For example, given a set of peers distributed in three groups of
sizes N1 = 7, N2 = 11 and N3 = 5 and upload capacities µ1, µ2 and µ3; if we take
N0 = 4, we can build Cayley graphs (defined in Appendix D) and achieve minimum
energy (Figure 4.2). Even though this graph is not connected, this is just an example
of a configuration of minimum energy. The randomness that will be incorporated
later will ensure that every link will have positive probability of being used.

36



µ1 µ2 µ3

Figure 4.2. Example of minimum energy configuration

Even if the peers have not exactly the same upload bandwidth, but are close, we
can find an upper bound for the minimum achievable energy.

Proposition 4.2.3. Suppose that the network is full mesh and N0 is even. Divide
the set of peers into k groups, where the bandwidths {µi} for peers in each group
occupy an interval of length δ. If every group has Ni > N0 peers, there exists at least
one configuration X∗ such that E(X∗) ≤ δ2 N

2N0
.

Proof. Consider the same X∗ constructed in the previous proposition. Write the
total energy as E(X∗) = ∑

k Ei(X∗), adding the energy contributions of each discon-
nected group. For group i we have NiN0 mutual connections, each with energy

1
2(µixij − µjxji)2 ≤ δ2

2N2
0
.

Therefore Ei(X∗) ≤ δ2 Ni
2N0

and the result follows from ∑
iNi = N .

This suggests that grouping peers in subsets of similar bandwidth, of any size
greater than N0, is a good strategy to approximate the goal of proportional reci-
procity. The size of the classes will be a function of the existing set of µi’s.

Example 4.2.3. In the same situation as in Example 4.2.2, but now with just similar
upload bandwidths, the same Cayley graph is a bound for the energy (Figure 4.3).

E1 ≤ δ2N1
2N0

E2 ≤ δ2N2
2N0

E3 ≤ δ2N3
2N0

Figure 4.3. Example of minimum energy configuration

Note that this is fundamentally different to the formation of cliques that the Bit-
Torrent tit-for-tat mechanism produces (as noted in [6]). The formation of cliques
only depends on the ranking of the peer by it’s upload capacity and not on the ca-
pacity itself. This could lead to severe unfairness in the resulting resource allocation
as portrayed in the following example.
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Example 4.2.4. Suppose that N0 = 4 and that we have seven peers with upload
capacity µ1 = 10 and eight peers with upload capacity µ2 = 1. Then BitTorrent
would form cliques as in Figure 4.4, yielding an unfair allocation.

ri = µi = 10 µi = 10→ ri = 3.25
µi = 1→ ri = 5.5

ri = µi = 1

Figure 4.4. Formation of cliques with BitTorrent’s neighbor selection algorithm.

This suggests that grouping peers in subsets of similar bandwidth, of any size
greater than N0, is a good strategy to approximate the goal of proportional reci-
procity. The size of the classes will be a function of the existing set of µi’s; the
flexibility of going beyond cliques of size N0 + 1 can lead to significant improve-
ments.

4.3 DETERMINISTIC APPROACH

The question to ask at this point is: can the energy by minimized by a decen-
tralized algorithm? Given the combinatoric nature of the problem we do not expect
the global optimum to be computable, but a reasonable heuristic is to have each
peer i choose its outgoing connections seeking to myopically reduce its own portion
of the energy

Ei(X) :=
∑
j

(µixij − µjxji)2

In this minimization we assume as given the rates µjxji received by peer i, and we
introduce the notation J in = {j : xji 6= 0} for the set of peers from which peer i is
currently receiving data. Let N in be the cardinality of this set, and note that there
are no a priori constraints on it, in principle 0 ≤ N in ≤ N − 1.

Since peer i will divide its bandwidth uniformly among its N0 outgoing con-
nections, the myopic optimization is just to choose the set Jout = {j : xij 6= 0},
of cardinality N0, to minimize the energy portion Ei(X). The following proposition
characterizes the optimal configuration.

Proposition 4.3.1. Given a set J in of peers uploading to i, a configuration X∗

minimizes the local energy Ei if and only if it solves

max
Jout

∑
Jin∩Jout

µj (4.2)
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Proof. For convenience we will denote by µ̃j := µj
N0

, the fraction of bandwidth allo-
cated in a single connection from peer j. The local energy of a given configuration
X can then be expressed as follows:

Ei(X) =
∑

j∈Jin∩Jout
(µ̃i − µ̃j)2 +

∑
j∈Jin\Jout

µ̃2
j +

∑
j∈Jout\Jin

µ̃2
i

Expanding the square (µ̃i − µ̃j)2 = µ̃2
i + µ̃2

j − 2µ̃iµ̃j and rearranging terms leads to
the equivalent expression

Ei(X) =
∑
j∈Jin

µ̃2
j +

∑
j∈Jout

µ̃2
i − 2

∑
j∈Jin∩Jout

µ̃iµ̃j

The first term above is given, and the second is fixed at N0µ̃
2
i for all allowable

configurations, so only the third term can be minimized by choice of Jout; noting
that µ̃i is fixed, and µj = N0µ̃j, we arrive at the equivalent maximization (4.2).

To interpret the max-weight type condition (4.2), we distinguish two cases:

(i) N in ≤ N0. In this case it is clearly optimal in (4.2) to cover the entire set J in
with Jout, assigning any extra elements arbitrarily.

(i) N in > N0. In this case only a portion of the µj can be included. The maximum
weight is achieved by assigning Jout to the largest N0 values of {µj, j ∈ J in}.

So we see that the local reciprocity energy is minimized by picking N0 peers
that are currently giving the most bandwidth to peer i, and assigning any extra
slots arbitrarily. Interestingly, this corresponds exactly to the tit-for-tat part of
the BitTorrent algorithm. Therefore, the myopic optimization of our energy cost is
consistent with this widespread reciprocity mechanism.

What happens if we iterate on the above deterministic algorithm, each peer suc-
cessively updating its configuration based on the tit-for-tat like reciprocity scheme?
In general, it is difficult to characterize the behavior of such dynamics over a discrete
set of configurations. The trajectory will depend on initial conditions, and there is
no reason to expect the global energy-minimizing configuration will be found.

For example, the initial file-exchange may break the graph into components, leav-
ing some peers disconnected from their optimal neighbors; these will never be dis-
covered by the above deterministic reciprocity. This suggests that a certain amount
of random exploration is required. BitTorrent addresses this issue through the op-
timistic unchoke portion; however this egalitarian file-sharing implies an important
deviation from proportionality. An alternative is studied in the following section.
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4.4 INTRODUCING RANDOMNESS

In this section we want to develop a neighbor selection algorithm for the peers
in which each peer will update its connections periodically, taking into account
the download rates from other peers and introducing some randomness in order to
explore the peering options. The idea is not to use an optimistic connection chosen
at random, but instead to introduce a more directed randomness. In order to do
this, we will present a probability distribution over the set of all configurations and
construct a Markov chain whose invariant distribution is that one, with transitions
that can be made in a decentralized fashion. In the end, the algorithm executed by
the peers will be the one that produces the designed Markov chain and thus will
present the desired invariant distribution, which will be concentrated around the
symmetric allocations.

4.4.1 Choosing the invariant distribution

A good choice for the invariant distribution of our Markov chain is the so called
Gibbs distribution for the energy function E :

πT (X) =
exp

(
− 1
T
E(X)

)
CT

=
exp

(
− 1

2T
∑
i,j∈S

(µixij − µjxji)2
)

∑
X′∈ΛS

exp
(
− 1

2T
∑
i,j∈S

(µix′ij − µjx′ji)2

)

where T > 0 is a parameter which is called the temperature of the distribution.
The idea behind this type of distributions comes from the field of statistical me-
chanics, which studies physical systems (usually of particles) and their interactions.
Those systems usually tend to be in the state of minimum energy. However, this
minimum energy state can be altered by thermal energy that introduces randomness.
In this case, we are still close to the minimum energy state if the “temperature” is
low enough as is shown in the following proposition.

Proposition 4.4.1. lim
T→0+

πT =
K∑
i=1

1
K
δX∗i , where {X∗1 , . . . , X∗K} = arg min

X∈ΛS
{E(X)}.

Proof. We have that

πT (X) =
exp

(
− 1
T
E(X)

)
∑
X′

exp
(
− 1
T
E(X ′)

)
When T goes to 0+, the sum in the denominator is equivalent to the sum of the
biggest terms, i.e. the terms with minimum energy. Suppose that there are K
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configurations with minimum energy (there is at least one because the sum is finite),
then

πT (X) ≈
exp

(
− 1
T
E(X)

)
K∑
i=1

exp
(
− 1
T
E(X∗i )

)
When T goes to 0+, the right hand side goes to 0 if the numerator does not corre-
sponds to a configuration of minimum energy and goes to 1 if it does.

With this proposition we see that the Gibbs distribution πT is a thermodynamic
approximation of a distribution that is concentrated around the configurations of
minimum energy (Figure 4.5). Actually, as seen in [18], the Gibbs distribution with
parameter T > 0 is the solution of the following optimization problem

min
p

∑
X∈ΛS

pXE(X) + T
∑
X∈ΛS

pX log(pX)

s.t.
∑
X∈ΛS

pX = 1

pX ≥ 0 ∀X

The function that we are minimizing is the previous energy plus an entropy term,
which has greater impact over the minimum as T increases. Note that the minimum
in the entropy term is achieved when the probability distribution is uniform.

lim
T→0+

πT (X)

X
X∗

πT (X)

X
X∗

⇒

Figure 4.5. Thermodynamic approximation of the optimization problem.

Until now we showed that πT is an appropriate probability distribution for the
configurations since when the temperature T is close to zero, it is concentrated
around the configurations of minimum energy, which are the symmetric allocations.
At this point we set up to construct a Markov chain with invariant distribution πT
but with transitions that can be done in a decentralized fashion.

Remark 4.4.1. A Markov chain with a decentralized implementation exists due
to the fact that the energy E can be decomposed as a sum of local energies that
only depend on local information. This type of energies are said to come from
nearest neighbors Gibbs potentials in the literature of Gibbs distributions. See [19]
for further reading on this subject.

We remark at this point that in recent work by [17, 16], it was proposed to
use this kind of approach for a P2P network utility maximization problem, and it
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was argued that this “reverse engineered” BitTorrent. In this regard, we make the
following remarks:

• The energy function used in the approach of [17, 16] is defined in terms of a
network utility, aimed more at performance than at fairness. This would have
impact in a situation where the rate of upload of peer i is not equivalent for
all peers j, due to other network bottlenecks.

• The dynamics proposed in these references implies choking one of the current
peers and replacing by a new one; the peer most likely to be choked is the
one with lowest current rate to it in the upload sense. Such a rule is in fact
consistent with the algorithm for seeders in the BitTorrent protocol (peers who
already own the file). It is different, however, to a reciprocity scheme based
on download rates received from other peers, as in the tit-for-tat mechanism
used by leechers. The latter is the focus of our work, and so our proposal will
be complementary to these references.

4.4.2 Building the Markov chain

Now that we have a desired invariant distribution for the space of the config-
urations, we want to build a decentralized algorithm on the nodes that yields this
distribution, i.e. an algorithm for the peers to follow which will yield a symmetric
allocation (approximately) in the network. For this purpose we build a continuous
time Markov chain that has the desired distribution and that can be implemented
in a decentralized way.

The only transitions that are admissible in the chain are between configurations
X and X ′ that only differ in one row, i.e., in the connections of one peer. In
particular, if they differ in row i, the transition rates are

qTX,X′ =
exp

(
− 1
T

∑
j∈S

(µix′ij − µjxji)2
)

∑
X′′∈ΛSi (X)

exp
(
− 1
T

∑
j∈S

(µix′′ij − µjxji)2

) (4.3)

where ΛS
i (X) = {X ′′ ∈ ΛS : x′′ij = xij,∀i 6= i, ∀j} is the set of all possible configura-

tions that can be reached from X changing only row i.

Proposition 4.4.2. The Markov chain defined by 4.3 is reversible and the invariant
distribution is πT .

Proof. We prove that the invariant distribution and the transition rates verify the
detailed balance equations

qTX,X′πT (X) = qTX′,XπT (X ′)
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qTX,X′πT (X) =
exp

(
− 1
T

∑
j∈S

(µi0x′i0j − µjxji0)2
)

exp
(
− 1

2T
∑
i,j∈S

(µixij − µjxji)2
)

∑
X′′∈ΛSi0 (X)

exp
(
− 1
T

∑
j∈S

(µi0x′′i0j − µjxji0)2

)
CT

=
exp

(
− 1

2T

(
2
∑
j∈S

(µi0x
′
i0j
−µjxji0 )2+2

∑
j∈S

(µi0xi0j−µjxji0 )2+
∑
i6=i0

∑
j 6=i0

(µixij−µjxji)2

))
∑

X′′∈ΛS
i0

(X)

exp
(
− 1
T

∑
j∈S

(µi0x
′′
i0j
−µjxji0 )2

)
CT

=
exp

(
− 1

2T

(
2
∑
j∈S

(µi0x
′
i0j
−µjx′ji0 )2+2

∑
j∈S

(µi0xi0j−µjx
′
ji0

)2+
∑
i6=i0

∑
j 6=i0

(µix′ij−µjx
′
ji)

2

))
∑

X′′∈ΛS
i0

(X)

exp
(
− 1
T

∑
j∈S

(µi0x
′′
i0j
−µjx′ji0 )2

)
CT

=
exp

(
− 1

2T
∑
j∈S

(µi0xi0j − µjx′ji0)2
)

exp
(
− 1

2T
∑
i,j∈S

(µix′ij − µjx′ji)2
)

∑
X′′∈ΛSi0 (X)

exp
(
− 1
T

∑
j∈S

(µi0x′′i0j − µjx′ji0)2

)
CT

= qTX′,XπT (X ′)

Furthermore, we have the following proposition.

Proposition 4.4.3. The rows of the configurations are updated uniformly at ran-
dom.

Proof. We want to know the rate at which we make the transition X → X ′ ∈ ΛS
i (X),

that is, that site i is updated. As all the times are exponential, the distribution of
the time of the updates at site i is another exponential whose parameter is simply
the sum of all transition rates qTX,X′

qTi =
∑

X′∈ΛSi (X)
qTX,X′ =

∑
X′∈ΛSi (X)

exp
(
− 1
T

∑
j∈S

(µix′ij − µjxji)2
)

∑
X′′∈ΛSi (X)

exp
(
− 1
T

∑
j∈S

(µix′′ij − µjxji)2

) = 1

so every site has the same rate of updates and it is independent from the state X.
This is equivalent to selecting a random site to update.

Remark 4.4.2. Note that the transition rates (4.3) only depend on local infor-
mation available to the peer that changes its connections. Besides, as the times
between updates for all nodes are independent of the node which is updated and
is independent of the configuration, the algorithm can be executed in a completely
decentralized way. This type of Markov chains are also called Gibbs samplers, as
they are used to draw samples from Gibbs distributions.
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Note that this Gibbs sampler, which was constructed with the invariant distri-
bution as a starting point, has transitions that are a thermodynamic approximation
of the myopic policy considered in the previous section.

Proposition 4.4.4. lim
T→0+

qTX,X′ =
K∑
k=1

1
K
δX∗

k
, where {X∗1 , . . . , X∗K} = arg min

X′∈ΛSi (X)
{Ei(X) =∑

j∈S
(µix′ij − µjxji)2}.

Proof. It is analog to Proposition 4.4.1.

This shows that when the temperature goes to zero, the transitions go to the
deterministic myopic policy of minimizing the local energy. However, for every
positive value of T , there is still some randomness involved that makes it work as
expected. Eventually, as it has finite state space and is irreducible, the Markov
chain will converge to the invariant distribution πT .

Now we present the neighbor selection algorithm based on the previous Gibbs
sampler. If every peer executes this algorithm, then the network as a whole will
behave as the Markov chain and as a result we will achieve a symmetric resource
allocation (approximately).

Gibbs neighbor selection algorithm 1

Suppose that we have a P2P network with N nodes and connectivity graph G.
Then repeat the following:

• Step 1: Draw an exponential random time with mean 10 seconds (or any fixed
amount of time) and wait that amount of time.

• Step 2: While waiting, measure the average throughputs of all incoming con-
nections {zj : j is a neighbor}.

• Step 3: After the time expires, unchoke a set of N0 neighbors (represented
as the 0-1 vector Xi = (xij : j is a neighbor)) according to the probability
distribution

p(Xi) =
exp

(
− 1
T

∑
j

(
µi
N0
xij − zj

)2
)

CT

where µi is the upload capacity of the peer and CT is a normalizing constant.

Note that every peer is choosing its N0 neighbors to unchoke based on the local
energy, and as a result the neighbors that have higher throughput connections have
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higher probability of being unchoked. Besides, as T > 0 there is a positive prob-
ability that a peer chooses to connect to a peer which was not connected before.
However, the advantage of this approach is that if a peer is in a state of very low
energy, it has a very high probability of not changing connections; but if it is in a
state of high energy, it has a higher probability of exploring other peering options.
This directed randomness is what will make it perform better than the alternatives.

4.4.3 Deterministic update times

In practice, the times between updates may not be an exponential random time
but a deterministic one. For example, in BitTorrent’s neighbor selection algorithm,
each peer updates its connections every 10 seconds. If we substitute the exponential
times between updates by deterministic ones in the previous algorithm, the resulting
stochastic process defined over the configurations is no longer a Markov chain. How-
ever, we can still analyze the outcome of such algorithm by a discrete time Markov
chain whose transitions involve the connections of all the peers at the same time,
after the sequential update of all the peers. This representation is appropriate as
the time needed to update all peers is deterministic, and thus we can chose it as our
time unit.

The transition matrix PT = (pTX,X′) for our new discrete time Markov chain is
obtained by multiplying the transition probabilities of each peer as the sequence
goes along

pTX,X′ =
N∏
i=1

e−
1
T
Ei(X,X′)

ZT
i

,

where
Ei(X,X ′) =

i−1∑
j=1

(µix′ij − µjx′ji)2 +
N∑
j=i

(µix′ij − µjxji)2,

and ZT
i are appropriate normalizing constants. Ei(X,X ′) reflects the local energy of

the i-th intermediate configuration when transiting between X and X ′, which now
can be any pair of configurations. This process is also called systematic sweep Gibbs
sampler and it is a standard variation of the previous Gibbs sampler (see [19] for
further reading on Gibbs samplers).

The Markov chain defined before has a finite state space and is irreducible and
aperiodic, thus it eventually converges to its invariant distribution, which can be
shown to be equal to πT . Furthermore, in this case we can bound the speed of
convergence.
Proposition 4.4.5. Let η be the initial distribution and P = (pX,X′) be the transi-
tion matrix of the discrete-time Markov chain. Denote by dV (·, ·) the total variation
distance between two probability distributions. If the network is full mesh, then

dV (ηP n, πT ) ≤ 1
2dV (η, πT )

(
1− exp

(
−
∑
i

2µiµmax

TN0

))n
.
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Proof. Using theorem 7.2 of chapter 6 in [19], we have

dV (ηP n, πT ) ≤ 1
2dV (η, πT )δ(P )n

where δ(P ) is the Dobrushin’s ergodic coefficient

δ(P ) = 1
2 max
X,X′

{∑
X′′
|pX,X′′ − pX′,X′′|

}

= max
X,X′

{
1−

∑
X′′

min{pX,X′′ , pX′,X′′}
}

= 1−min
X,X′

{∑
X′′

min {pX,X′′ , pX′,X′′}
}

Now, lets define ΛS
i (X,X ′) as the set of all configurations X ′′ ∈ ΛS such that the

row j of X ′′, denoted X ′′j satisfies X ′′j = X ′j if j < i and X ′′j = Xj if j > i. That is,
ΛS
i (X,X ′) is the set of all possible configurations that can be reached in step i in

the partial transition between X and X ′. Let

mi(X,X ′) = min
X′′∈ΛSi (X,X′)

{Ei(X,X ′′)}

and
Mi(X,X ′) = max

X′′∈ΛSi (X,X′)
{Ei(X,X ′′)}

be the minimum and maximum local energy at step i when making the transition
from X to X ′. Then the transition probabilities of step i can be expressed as

piX,X′ =
exp

(
− 1
T

(Ei(X,X ′)−mi(X,X ′))
)

∑
X′′∈ΛSi (X,X′)

exp
(
− 1
T

(Ei(X,X ′′)−Mi(X,X ′))
)

We can bound from above each term of the sum in the denominator by 1 and thus
the sum by the number of terms that is #Λ. Furthermore, we can bound from below
the numerator by

exp
(
− 1
T

(Mi(X,X ′)−mi(X,X ′))
)

To find an appropriate bound, we need to find the maximum possible difference
Mi(X,X ′) − mi(X,X ′). When there are no peers connecting to peer i, the local
energy does not change choosing different peers to upload content and this difference
would be zero. As a result, the biggest difference occurs when at least N0 peers are
connected to i. In this case, e have that Mi(X,X ′)−mi(X,X ′) is

1
N2

0

 N0∑
k=1

µ2
i +

N in∑
k=1

µ2
jk
−

N0∑
k=1

(µi − µjk)2 −
N in∑

k=N0+1
µ2
jk
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and doing some algebra we obtain

Mi(X,X ′)−mi(X,X ′) = 1
N2

0

N0∑
k=1

2µiµjk

≤ 1
N2

0

N0∑
k=1

2µiµmax

= 2µiµmax
N0

This results in the following uniform bound

piX,X′ ≥
exp

(
−2µiµmax

TN0

)
#Λ

Then, the minimum element in the matrix P is

min
X,X′∈ΛS

{pX,X′} = min
X,X′∈ΛS

{
N∏
i=1

piX,X′

}

≥
n∏
i=1

exp
(
−2µiµmax

TN0

)
#Λ

≥
exp

(
−

N∑
i=1

2µiµmax
TN0

)
(#Λ)N

and with this we obtain the following expression

δ(P ) = 1− (#Λ)N
exp

(
−

N∑
i=1

2µiµmax
TN0

)
(#Λ)N

= 1− exp
(
−

N∑
i=1

2µiµmax
TN0

)

which concludes the proof.

Remark 4.4.3. Note that when T is closer to 0, the speed of convergence bounded
by Proposition 4.4.5 gets slower but the invariant distribution πT is more concen-
trated on the configurations of minimum energy (Proposition 4.4.1). On the other
hand, when T goes to infinity, the speed of convergence also goes to infinity, but the
invariant distribution becomes independent from the energy (uniform). This is the
fundamental tradeoff that we have in this system.

Finally, we can present the second version of the neighbor selection algorithm
with deterministic updates times, which is essentially systematic sweep Gibbs sam-
pler. This is the one that will be implemented.
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Gibbs neighbor selection algorithm 2

Suppose that we have a P2P network with N nodes and connectivity graph G.
Then repeat the following:

• Step 1: Wait 10s (or any fixed amount of time).

• Step 2: While waiting, measure the average throughputs of all incoming con-
nections {zj : j is a neighbor}.

• Step 3: After the time expires, unchoke a set of N0 neighbors (represented
as the 0-1 vector Xi = (xij : j is a neighbor)) according to the probability
distribution

p(Xi) =
exp

(
− 1
T

∑
j

(
µi
N0
xij − zj

)2
)

CT

where µi is the upload capacity of the peer and CT is a normalizing constant.

4.5 SIMULATIONS

We now evaluate the devised Gibbs neighbor selection algorithm 2 as a means
to achieve reciprocity and fairness. We implemented the algorithm in Matlab, and
in order to perform comparisons, we also implemented idealized versions of the
BitTorrent unchoking mechanism, as well as the ideal proportional reciprocity based
on the Sinkhorn iteration discussed, the PropShare unchoking algorithm of [3] and
the Markov approximation approach devised in [16].

Let us begin by briefly recalling the different algorithms. The standard BitTor-
rent unchoking mechanism maintains for each peer N0 = 4 outgoing connections.
Three of these connections are used to reciprocate other peers, and the remaining
connection is an optimistic unchoke, designed to explore new peers. The latter is
kept for several iterations in order to allow time for the optimistically unchoked peer
to reciprocate. This algorithm has low overhead and enables peers to find appropri-
ate partners [6], but it has two main disadvantages: the unchokes are based only on
the ranking of better contributors, and not in the bandwidth they provided, which
has incentives problems [3]. It also constantly searches for new peers, allocating a
substantial proportion of the uplink bandwidth to this end, and possibly drifting
away from good configurations.

The Sinkhorn algorithm, on the other hand, focuses on reciprocating only, by
allocating proportional shares to each connected peer. To this end, it is the best one
can do and achieves a fast convergence time. A pure proportional response however,
has two main drawbacks from a practical perspective: it requires to keep a large
amount of connections with several peers, as well as controlling exactly the amount
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of bandwidth allocated to each unchoked peer, which may be difficult to implement
in practice. More importantly, it can get stuck in bad configurations if the initial
connectivity of peers is sparse.

The PropShare algorithm is based on the Sinkhorn iteration, and was devised
to correct this last problem, among other optimizations. This algorithm allocates
proportionally to the received contributions 80% of the uplink bandwidth of a given
peer. It uses the remaining 20% to explore new peers through optimistic unchokes,
much like BitTorrent. This exploration mechanism enables the algorithm to increase
the number of connected peers. While this may achieve a higher level of fairness,
the bandwidth committed to the optimistic search can make the algorithm drift
away from good configurations. This algorithm still suffers from the burden of
maintaining many connections and controlling the amount of bandwidth given to
each. In our simulations we implemented an idealized version of PropShare based
on these features, not taking into account these problems, and thus we expect our
results to provide an upper bound on real life PropShare performance.

Finally, the Markov approximation algorithm of [16] has points in common with
our proposal. However, the main emphasis is on achieving optimal throughput
allocation by discovering the best neighbors to upload to. Reciprocity is not taken
into account and therefore it suffers on the fairness side, as we will show.

To evaluate the algorithms, we simulated a scenario with N = 100 peers, which
belong to two categories: half of the peers have a fast uplink connection, and the
other half are 5 times slower. Ideally, all peers should get as much bandwidth as
they give to achieve proportional fairness. All peers can potentially connect to
each other, and in the case of our algorithm and BitTorrent, dividing bandwidth
equally between all outgoing connections. All algorithms start from the same initial
connectivity condition with N0 = 4 outgoing connections per peer.

Figure 4.6. Gibbs energy evolution for the different algorithms.

As a measure of the achieved reciprocity and fairness, we evaluate two metrics:
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the Gibbs energy E(X), which is intended to be minimized by our neighbor selec-
tion algorithm, and also the Kullback-Leibler (KL) divergence D(µ‖r) between the
offered bandwidths µ = {µi} and the rates received by each peer r = {ri}, which is
defined by

DKL(µ‖r) =
∑
i

ri log
(
ri
µi

)
Note that the KL divergence takes its minimum only when r = µ, in which case
DKL(µ‖r) = 0.

In order to correctly assess the performance of each algorithm, we simulate sev-
eral replications of each one of them starting from a random initial condition, and
plot the average results for each metric. In Figure 4.6, we plot the evolution of the
Gibbs energy E(x) for the different algorithms in log scale.

Our neighbor selection algorithm (with N0 = 4 in this case for comparison) is
designed to find a minimum of the energy and it does so in a competitive number
of iterations, at the expense of a convergence time somewhat slower than the re-
maining algorithms. The Markov approximation algorithm is not good at achieving
reciprocity, remaining with a high energy. The (ideal) Sinkhorn iteration is theoret-
ically the best, but when facing random initial conditions with sparse connectivity
the algorithm cannot fully renormalize the allocation, and thus it does not reach
minimum energy. The BitTorrent algorithm is assigning too many optimistic un-
chokes, and this reflects on the energy achieved. Finally, PropShare is the best
alternative, at the expense of having a greater number of simultaneous connections
for each peer, and controlling bandwidth on each one of them. Our neighbor se-
lection algorithm achieves a better reciprocity while at the same time having only
N0 = 4 open connections per peer sharing the uplink rate equally.

Figure 4.7. Evolution of the Kullback-Leibler divergence between uplink and re-
ceived rate.

As for the fairness in the resulting allocation, in Figure 4.7 we plot the afore-
mentioned KL divergence for each algorithm. In this case we omit the Markov
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approximation algorithm since it does not pursue proportional fairness. Note that
also for this metric the best algorithms are the proposed neighbor selection algorithm
and the PropShare algorithm, with the proposed one achieving better results.

4.6 CONCLUSIONS

In this chapter we proposed a decentralized neighbor selection algorithm based
on a Markov chain that approximates the proportional allocation while being easier
to implement than the proportional response dynamics, reaching a middle ground
between the simplicity of BitTorrent and the fairness and incentives of the propor-
tional response dynamics. Moreover, we explored through simulations how the new
algorithm compares to several alternatives in an heterogeneous P2P environment,
showing good results.

51



Chapter 5

Extension to wireless P2P
networks

In this chapter we will work with a P2P overlay over an ad-hoc wireless network,
conceived as a system of nodes that establish transmission links based on proximity
and communicate with each other only in single-hop fashion. The shared nature of
the wireless medium accounts for the need of contention mechanisms by which nodes
control their transmission attempts. We will focus on the rate allocations in this
type of networks and specially in three deeply linked properties of these allocations:

• The efficiency in the use of the wireless channel measured as the total through-
put of the network.

• The incentives for the peers to contribute to the network.

• The connection diversity of the peers.

To begin with, we present the wireless network setting and find all the feasible rate
allocations in the network, showing that in this case we can always find reciprocated
allocations (i.e. allocations in which each peers receives as much as it gives). Then
we propose a decentralized algorithm, based on a continuous time backoff processes
similar to that of CSMA in the 802.11 standard, that yields a symmetric rate allo-
cation and whose efficiency-diversity tradeoff can be tuned by a single parameter.
The idea of using continuous time backoff processes was previously used in [20] but
with a different purpose.

One mechanism from 802.11 that we will take full advantage of, is its solution
for the exposed/hidden node problem: RTS/CTS messages. The idea is that when
a node wants to transmit to another one, it transmits a Request To Send (RTS)
message to the other. If the latter can receive the message, it responds with a Clear
To Send (CTS) message and the transmission begins. When another node listens to
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a CTS message, it knows that the medium is occupied for a certain amount of time,
and it will not participate in any other transmission during that time.

The problem of rate allocation for P2P content distribution over an ad-hoc wire-
less network has caught the attention of numerous researchers lately. In [21] the
authors develop a token-passing based multi-point relays scheme that presents an
efficient scheduling approach to disseminate content. Furthermore, in [22] they
present a synchronous P2P wireless network architecture that focuses on finding the
optimal allocation in terms of bandwidth efficiency. Lastly, in [23] the authors focus
on the actual fairness of the rate allocations.

5.1 NETWORK SETTING

We will focus in the setting where peers are spatially distributed and want to
share information or content through a wireless channel. The exchange of content
is based in the interchange of pieces of the file, whose availability also plays a role
in determining the connectivity graph. We will assume that there is a unique file
to be downloaded, whose size is very large and is split in small pieces. As a result,
we have a long download time and a very large amount of pieces. Furthermore, we
assume that the peers use the “rarest first” approach when requesting pieces from
other peers. This, combined with the large amount of pieces, gives us the possibility
of ignoring the piece by piece exchange and focus on the rate allocation. Lastly, we
assume that we can make a separation of time scales in which the change in the
network parameters (such as the arrival or departure of peers) is much slower than
the proposed exchange dynamics.

The constraints in this problem are quite different from the wired case. In the
former, each peer has only to decide how to allocate its own upload bandwidth by
choosing its neighbors and the resulting allocation is independent of the decision
of other peers, because they do not compete with each other. Besides, the total
upload capacity of the network is just the sum of the upload capacities of every
peer (which is fixed) for the same reason. Now in the wireless case, the peers are
sharing a common medium (the RF channel) and their decisions affect the other
peers. Furthermore, the total upload capacity of the network is no longer fixed,
but depends on the decisions of all the peers due to the interference between them.
Lastly, now the bandwidth restrictions are in the links instead of in the nodes, as
each pair of source-destination will have its own link capacity.

If we have spatially distributed nodes, we could build the connectivity graph G
by connecting every pair of peers which can transmit directly to each other. Finally,
the maximum possible transmission rate from peer i to peer j, which we denote by
µij, will depend on the transmission power, distance and fading in the channel. Note
that the transmissions rates need not be symmetric. In general, we will assume the
following hypotheses for the wireless network:
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• Fixed number of wireless peers N .

• Fixed topology defined by an undirected connectivity graph G with adjacency
matrix A.

• Single hop connectivity (each peer connects only to the ones within range).

• General bandwidth N×N matrix µ = (µij), where µij is the maximum possible
transmission rate from peer i to peer j (it can be non symmetric due to different
transmission powers).

• Use of RTS/CTS messages.

Note that the connectivity graph is undirected due to the use of RTS/CTS messages,
which makes it necessary for both to be in range of each other. In this general
network setting, we want to find all the possible rate allocations Z. In order to do
this, be begin by defining the interference graph.

5.1.1 Interference graph

Interference plays a fundamental role in any wireless network. We will use an
interference model based on proximity (e.g., a peer interferes another if they are
within range of transmission). All the interference information under this model
can be condensed in an interference graph.

Let i, j be a pair of nodes and N (i),N (j) their respective neighbors under the
connectivity graph G, i.e. N (i),N (j) are all the peers that are within range of i
and j respectively. Suppose that they are neighbors, i.e. i ∈ N (j) and j ∈ N (i).
Then when the link ij is active (node i is transmitting to node j), nodes k, l, o ∈
N (i)∪N (j) cannot be transmitters nor receivers at that time (as in figure 5.1). That
means that the link ij interferes with the links xy and yx for all x ∈ N (i) ∪ N (j)
and y ∈ N (x). This is a little more restrictive that it needs to be, because the node
o could be a receiver of a connection from peer m because m is not a neighbor of j
(they will not interfere with each other). This is the interference pattern that arises
when one uses RTS/CTS. Peer o will not send a CTS signal to m because it heard
that node j sent a CTS signal.

Given the connectivity graph G and the aforementioned interference rules, we
can build the interference graph GI in which each node its a link, and two nodes
are connected if the links interfere with each other (Figure 5.2). First of all, note
that this is an undirected graph because the interference works both ways, if link
ij interferes the link kl then link kl interferes with link ij due to the RTS/CTS
messages.

An interesting fact about the interference in this wireless network is that when
link ij is active, it interferes with exactly the same links as when link ji is active. We
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Figure 5.1. Interference diagram of link ij. Nodes in red cannot participate in other
transmissions but nodes in green can be a transmitter or a receiver with
other nodes.
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Figure 5.2. The connectivity graph (left) and the interference graph (right).

call this symmetric interference, which is a result of using the RTS/CTS messages.
Using this fact, we could build a collapsed interference graph in which each pair of
links between two peers is now a node, maintaining the same links between them
(Figure 5.3). This is actually the resulting graph of deleting half of the nodes in the
original interference graph and it is a much simpler representation of the interference
between links. In this representation it is clearly seen that the only independent set
(i.e. a set of peers that are not connected between them) with more than one link
active is {(lm), (ik)}.

ij

ikjk

jl

lm

Figure 5.3. The collapsed interference graph.

5.2 RATE ALLOCATIONS

In the wired case, the possible resource allocations were easily given by the union
of the allocations of each peer. With a wireless medium, we have to take into account
the interference between the links in order to determine which rate allocations are
feasible in the network. Note that in the wireless case the total upload rate (resource)
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of the network is not fixed, and thus the term “rate allocation” is more appropriate
than “resource allocation” as the amount of resources to be allocated is not fixed.

Firstly, we define a configuration of the network as a matrix X ∈ {0, 1}N×N such
that the set of entries that are 1 define an independent set in GI . Note that this
means that xij = 0 if i 6∈ N (j). These represent the possible active links than can
coexist without interfering. Furthermore, we define a rate allocation in the network
as a N × N matrix Z such that zij ≥ 0 and for which the entry zij represents the
average throughput of link ij. Then, a feasible rate allocation is an allocation that
can be achieved by the network, e.g. all the allocations such that Z = µ ◦X where
X is a configuration and ◦ denotes the Hadamard product of matrices (i.e. the
entry wise product). These would be the rate allocations that are a result of a static
network with a fixed set of active links.

However, if we consider a dynamic network, we can achieve a greater span of rate
allocations. We can consider the stochastic process that represents the dynamics of
the network which state space is the set of configurations. If we have a probability
pk of finding the network in the state Xk, then the average rate allocation of the
network is

Z̄ =
∑
k

pk(µ ◦Xk)

As a result, the feasible allocations are the convex hull of the extremal rate alloca-
tions Zk = µ ◦Xk.

5.2.1 Desired rate allocations

Given the set of all feasible rate allocations, a natural question to be asked is
which properties should they have. Our objective remains the same as before, to
have reciprocated allocations such that the total upload rate of a peer is the same
as the total download rate of that peer, i.e.∑

n

zni =
∑
n

zin ∀i

The difference is that now the total upload rate of a peer, given by ∑
n
zin for peer i,

is no longer fixed. In this case, two elements in the set of all feasible reciprocated
allocations not only differ in the individual rates zij but also they may differ in the
total upload rate of the network

η =
∑
i,j

zij

In this setting it is convenient to introduce the notion of efficiency for a rate alloca-
tion as a measure of how close is that allocation of the maximum η possible. This
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would be the solution of

max
Z

∑
i,j

zij

s.t. Z =
∑
k

pk(µ ◦Xk)∑
k

pk = 1

Xk is an independent set of GI ∀k

Note that there could be many allocations Z that maximize the efficiency, but they
would all be convex combinations of independent sets with maximum weights.

The last desirable property that we will ask from a rate allocation is that it has
to have diversity of connections, i.e. that the peers are not always connected to the
same peers, to promote the diversity of pieces.

Existence of reciprocated allocations

First of all, we prove the existence of reciprocated allocations through the exis-
tence of symmetric ones in the following proposition.

Proposition 5.2.1. For every rate matrix µ and connectivity graph G, there exists
a symmetric resource allocation matrix Z that satisfies the network constraints.

Proof. We begin with the case of a single link between two peers with rates µ12 and
µ21. If Zij is the allocation in which only link ij is active, then we can take the
convex combination

Z = µ12

µ12 + µ21
Z21 + µ21

µ12 + µ21
Z12

in which each link is active for a certain proportion of time and yields an allocation
in which each peer has an average throughput of

µ12µ21

µ12 + µ21

For general networks we can take convex combinations of this example and build a
symmetric resource allocation Z.

From this proposition it is clear that finding a symmetric allocation is quite easy.

Example 5.2.1. Suppose that we have a 3 node network with the connectivity
graph given by Figure 5.4. In the wired case, if every node had upload capacity 1,

2 31
Figure 5.4. Three node network topology.
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then it could not be possible to find a symmetric resource allocation as the center
peer always receives 2 and cannot give more than 1 (its upload capacity) without
introducing idle time. If we consider the wireless network with the same topology
in which each directional link has capacity 1, we would have that every node has
a maximum effective upload capacity of 1 (just like in the wired case). However,
in this case we could let the center node transmit two times more than the others
giving us the possibility of a symmetric resource allocation like this 0 1

4 0
1
4 0 1

4
0 1

4 0


This example shows that despite the fact that the wireless case seems to have more
complicated constraints, the shared RF channel helps us achieve symmetric resource
allocations in any case without introducing idle time.

Efficiency of reciprocated allocations

Although finding a symmetric allocation is always possible, these allocations
could be less efficient than just a reciprocated allocation and at the same time the
reciprocated allocations might not achieve the maximum efficiency possible. After
all, we would be maximizing the efficiency η over smaller sets of matrices.

Proposition 5.2.2. In the case of symmetric rate matrices (µ = µT ), there is no
loss in efficiency if we consider only symmetric allocations.

Proof. Suppose that Z∗ an allocation that achieves the maximum efficiency. Then
Z∗T is also an allocation that achieves the maximum efficiency because µ = µT and
the interference is symmetric. Then Z∗+Z∗T

2 is a symmetric allocation that achieves
the maximum efficiency.

However, if µ 6= µT we could have a loss in efficiency even by considering recipro-
cated allocations. For example, in the simple case of only two peers with asymmet-
rical rates, the unique configuration of maximum throughput is the one where only
the fastest one transmits (which is clearly not a reciprocated allocation). Further-
more, there can be a further loss in efficiency by considering symmetric allocations
as can be seen in the following example.

Example 5.2.2. Consider the case in which we have three nodes, all connected
and with link capacities as in Figure 5.5. Then if each link in the blue clockwise
loop is used one third of the time, the resulting allocation would be the most effi-
cient and would be reciprocated as well, as each peer would have the same upload
and download rates. However, a symmetric allocation would use the slower coun-
terclockwise loop, which would yield a much less efficient allocation. The problem
with the allocation which only uses the clockwise loop is that the peers have no
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Figure 5.5. A three node network with an efficient loop.

incentive to operate at their full capacity, as they could be almost ten times slower
and still have the same download rate as before. This problem comes from the fact
that in a reciprocated allocation, the peer that uploads content to another may not
know if the other is contributing back to the network. As a consequence, the only
way for a peer to know without doubt that it is uploading content to a peer that is
contributing back to the network, is having a symmetric allocation.

Taking everything into account, we are going to focus on symmetric allocations
and their efficiency and connection diversity, as they are the ones that provide the
proper incentives for the peers. In the following sections we are going to develop a
decentralized algorithm, first focusing on efficiency and then on producing symmetric
allocations.

5.3 MAXIMIZING EFFICIENCY

In this section we will develop a decentralized algorithm that focuses on effi-
ciency for a P2P overlay over an ad-hoc wireless network. The main idea is to keep
a continuous time backoff process for each outgoing connection, and regulate the
backoff aggressiveness in order to obtain the desired rate allocation.

5.3.1 Markov chain algorithm

Suppose that each peer has knowledge of their local neighbors and of its rates
to those peers. With this information, if peer i can transmit (i.e. no peer that
interferes with the peer is transmitting), it draws an exponential random variable
for each possible outgoing connection with parameter

Rij = W0 exp
(
µij
T

)
where W0 is a common aggressiveness factor and T is a parameter that will regulate
the efficiency of the resulting allocation. The peer waits for the minimum time
drawn and, if no interference link is activated, it starts transmitting through that
link. When a link is active, it stays active for a random exponential time of mean
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1. During this time, it transmits an exponential amount of data of mean µij (where
ij is an activated link). We propose that everyone transmits for the same amount
of time (in average) because in a wireless setting this ensures that the overheads do
not have a stronger impact on faster peers (see [24] and references therein).

We can translate this algorithm into a continuous time Markov chain with state
space

E = {X ∈ {0, 1}N×N : X defines an independent set in GI}

and transition rates

q(X,X + eij) = W0 exp
(
µij
T

)
1{X+eij∈E} (5.1)

q(X,X − eij) = 1{X−eij∈E} (5.2)

Proposition 5.3.1. The continuous time Markov chain defined by (5.1) and (5.2)
is time reversible and has invariant distribution

πT (X) =
exp

(∑
ij
xij

(
µij
T

+ log (W0)
))

CT

where CT is a normalizing constant.

Proof. We just have to show that πT verifies the detailed balance equations

πT (X)q(X,X + eij) = πT (X + eij)q(X + eij, X)

or equivalently

πT (X + eij)
πT (X) = exp

(
µij
T

+ log (W0)
)

= q(X,X + eij)
q(X + eij, X)

5.3.2 Efficiency vs. diversity of connections

Note that as T approaches zero, the invariant distribution can be approximated
by a Gibbs distribution with respect to the energy

E(X) = −
∑
ij

xijµij

as the constant log (W0) becomes negligible. In this case, the configurations of
minimum energy would be the independent sets with maximum throughput. As
a consequence, when the parameter T goes to zero, the invariant distribution is
concentrated in those configurations. Because we are dealing with a P2P content
distribution network, in which it is important to connect to different peers, it may
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not be a good idea to set T very close to zero, as the network would remain static
most of the time and thus it will be disconnected. As a result, if we increase the
efficiency we will experience a loss in connection diversity.

On the other hand, if we let T go to infinity, then every link will have the
same access rate W0. This will lower the efficiency significantly, but at the same
time it promotes diversity of connections by giving each link the same transmission
aggressiveness. Consequently, we can use the parameter T as a design knob to
determine the working point between efficiency and connection diversity.

5.3.3 Reducing idle time

One of the determining factors of the efficiency, as we saw before, is the through-
puts of the connections that are active at any given time. The other determining
factor is the amount of idle time between those connections. Note that there is idle
time when the independent set of links that is active is not maximal. With the
following example, we show that for a fixed T the idle time can be reduced to an ar-
bitrarily small amount of time by increasing the common aggressiveness parameter
W0.

Example 5.3.1. Consider the case in which we have two nodes with link rates µ12
and µ21 not necessarily equal. Then the network alternates between two states:
a state where one of the links is active (which has an exponentially distributed
duration of parameter 1), and a state where none of them are. The latter has an
exponentially distributed duration of parameter

W0

(
exp

(
µ12

T

)
+ exp

(
µ21

T

))
= W0β

which is the result of the minimum of the exponential backoffs of both links. Then
the average proportion of idle time is

1
W0β

1 + 1
W0β

= 1
1 +W0β

So we can make the idle time arbitrarily small by increasing the common aggres-
siveness parameter W0. Essentially, this jointly reduces the mean time of all backoff
processes (this would be equivalent to reducing the window size in the slotted backoff
process of CSMA/CA of the 802.11 standard).

5.3.4 The case of µ = µT

In the particular case where the rate matrix µ is symmetric, we showed in Propo-
sition 5.2.2 that there is no loss of efficiency by considering a symmetric allocation,
and in fact this algorithm gives a symmetric allocation in that case.
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Proposition 5.3.2. If the rate matrix µ is symmetric, then the resulting allocation
is symmetric for every value of T and W0 and for every connectivity graph.

Proof. First of all, note that for every configuration X, there is a complementary
configuration XT such that if link ij is active in X then link ji is active in XT , due
to the symmetric nature of the interference. Then it is enough to prove that each of
those pairs of configurations have the same probability. That is, is enough to prove
that

πT (X)
πT (XT ) = 1

for all configurations X.

πT (X)
πT (XT ) =

W0 exp
( ∑
ij:xij=1

µij
T

)

W0 exp
( ∑
ij:xij=1

µji
T

)

and this is equal to one because µ = µT .

We can conclude that this algorithm yields rate allocations that can be made
extremely efficient or more diverse by tuning the parameter T . Furthermore, when
the rate matrix µ is symmetric it yields a symmetric allocation independently of
any other network parameter. However, when µ 6= µT we obtain non symmetric
allocations. This will be resolved in the following section by taking the peerwise
imbalances into account.

5.4 DECENTRALIZED ALGORITHM FOR RECIPROCITY

In order to obtain symmetric allocations even in the case of asymmetric rate ma-
trices, each peer will keep track of the imbalance between itself and all its neighbors
through the variables

dij(t) =
t∫

0

zij(u)− zji(u)du

Globally, we obtain a skew-symmetric matrix D(t) with the differences between the
total uploaded and downloaded bytes for each link. In practice, every peer only has
the information of the column (and row) in which is involved. For the algorithm to
be decentralized, it can only use that local information.

With this information, if peer i can transmit, it has to decide which neighbor
to serve. Intuitively, when the peer has received less from a peer than it has given,
it should decrease the probability of unchoking that peer next, to encourage it to
upload more content. Alternatively, when the peer has received more from a peer
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than it has given, it should increase the probability of unchoking that peer next,
in order to restore the balance and to increase the probability of being unchoked
again. Although this last part is not essential to introduce the proper incentives, it
conveys the idea of cooperation between peers.

Remark 5.4.1. A way of interpreting the variables that keep track of imbalances
is as a closed network of fluid queues in which the total amount of “fluid” is zero,
and we can have positive and negative amounts in each queue. In this sense the
scheduling that we are looking for is similar to a max-weight scheduling [25], in
which we should serve the queue with the most amount of fluid (imbalance) with
the highest probability.

Markovian exponential backoff algorithm

Using the same idea of an exponential backoff process as before, the transition
rate to activate the link ij should increase when dij(t) decreases and go to zero when
dij(t) increases. With this in mind, we define the time dependent link transmission
aggressiveness as

Rij(t) = W0 exp
(
µij
T
− αdij(t)

)
where W0 and T are the same as before and α is a parameter that regulates how
forgiving is a peer of current peerwise imbalance.

We could model this as a Markov process augmenting the state to include the
imbalance matrix D. Unfortunately this model is not very tractable. Instead we
will use an argument of separation of time scales in order to study the long run
behaviour of the system.

Dynamics with separation of time scales

Consider the stochastic closed loop defined by Figure 5.6. The transition rates
of the Markov chain are regulated by the closed loop that has the integrator, which
yields stochastic dynamics in X(t), Z(t) and D(t).

In order to analyze the resulting dynamics, we make the assumption that we have
two separate time scales. That is, we assume that the convergence of the Markov
chain is much faster than the dynamics of the closed loop with the integrator. In
that case, we can analyze the Markov chain for a fixed D which has transition rates

q(X,X + eij) = W0 exp
(
µij
T
− αdij

)
1{X+eij∈M}

q(X,X − eij) = 1{X−eij∈M}
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Markov chain

µ

t∫
0

Z(u)− Z(u)Tdu

X(t)

Z(t)

D(t)

Figure 5.6. Stochastic closed loop for the imbalances.

Again we have that this is a time reversible Markov chain with invariant distri-
bution

π(X) =
exp

(∑
ij
xij

(
µij
T
− αdij + log (W0)

))
CT

where CT is a normalizing constant. The proof is analog to the one of Proposition
5.3.1.

Using the separation of time scales, we can take the average over the stochastic
part (which is the same as the expected value in this case, because the chain is
ergodic) and redefine dij as

dij(t) =
t∫

0

E[zij(u)− zji(u)]du

and we can analyze the equilibrium and convergence of the dynamics of D(t) =
(dij(t)) given by the closed loop of Figure 5.7.

Steady state Markov chain

µ

t∫
0

E[Z(u)− Z(u)T ]du

E[X(t)]

E[Z(t)]

D(t)

Figure 5.7. Closed loop for the imbalances after the separation of time scales.
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Taking the derivative with respect to time, we get

ḋij(t) = E[zij(t)− zji(t)]
=
∑
X∈E

(µijxij − µjixji)π(x)

=
∑
X∈E

(µijxij − µjixji)
exp

(∑
mn
xmn

(
µmn
T
− αdmn(t) + log (W0)

))
CT (D(t))

Although the dynamics of D are highly non linear, we can prove that there is a
unique globally stable equilibrium.

Theorem 5.4.1. The dynamics for D(t) = (dij(t)) have a unique equilibrium in

d∗ij = 1
2α

[
µij − µji

T
+ log

(
µij
µji

)]

Proof. In the equilibrium, we must have that ḋij(t) = 0. Then

0 =
∑
X

(µijxij − µjixji)
exp

(∑
mn
xmn

(
µmn
T
− αd∗mn + log (W0)

))
CT (D∗)

we can keep only the terms in the sum that have either xij = 1 or xji = 1

0 =
∑

X:xij=1
µij

exp
(∑
mn
xmn

(
µmn
T
− αd∗mn + log (W0)

))
CT (D∗)

−
∑

X:xji=1
µji

exp
(∑
mn
xmn

(
µmn
T
− αd∗mn + log (W0)

))
CT (D∗)

=µijW0 exp
(
µij
T
− αd∗ij

) ∑
X:xij=1

exp
( ∑
mn 6=ij

xmn(µmnT −αd∗mn+log(W0))
)

CT (D∗)

−µjiW0 exp
(
µji
T
− αd∗ji

) ∑
X:xji=1

exp
( ∑
mn 6=ji

xmn(µmnT −αd∗mn+log(W0))
)

CT (D∗)

The sums in both terms are equal due to the symmetric interference, because for
each configuration X such that xij = 1, there exists a configuration X ′ such that
xji = 1 and the rest of the values are equal. Thus we can take the aforementioned
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sum as a common factor and obtain

0 =
[
µij exp

(
µij
T
− αd∗ij

)
− µji exp

(
µji
T
− αd∗ji

)]
W0

∑
X:xij=1

exp
( ∑
mn6=ij

xmn
(
µmn
T
− αd∗mn + log (W0)

))
CT (D∗)

and as a consequence of the exponentials being always non zero we get that the first
factor must be zero

0 = µij exp
(
µij
T
− αd∗ij

)
− µji exp

(
µji
T
− αd∗ji

)
and using that dij = −dji we can derive the equilibrium

d∗ij = 1
2α

[
µij − µji

T
+ log

(
µij
µji

)]

This proves the uniqueness of the equilibrium. The existence is given by the fact
that D∗ satisfies the equilibrium condition of making all derivatives zero.

Before going forward with the stability, we prove the following lemma.

Lemma 5.4.1. In the dynamics defined by the closed loop in Figure 5.7 we have
that

(dij(t)− d∗ij)E[zij(t)− zji(t)] ≤ 0 (5.3)

Proof. In equilibrium
E[z∗ij] = E[z∗ji] ∀ij

Furthermore for a fixed link ij we have that

E[zij(t)] = βµijRij(t) = βµijW0 exp
(
µij
T
− αdij(t)

)
where the constant β depends on the interference from other links and it is always
non zero. Due to the symmetric interference generated by the RTS/CTS messages,
the proportionality constant for the link ij is the same that for the link ji at all
times. Then in equilibrium

E[z∗ij] = βµijW0 exp
(
µij
T
− αd∗ij

)
= βµjiW0 exp

(
µji
T
− αd∗ji

)
= E[z∗ji]

If we have at some point the inequality dij(t) > d∗ij, then the access rate of link
ij is smaller than in equilibrium and the access rate of link ji is larger than in
equilibrium. As a result

E[zij(t)] < E[zji(t)]
independently of the state of the rest of the system. The case where dij(t) < d∗ij is
analog.
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Intuitively, this means that if the imbalance of a link is positive, then it will be
less aggressive than its counterpart and as a result we will get a higher throughput
from its neighbor. With this we prove the stability of the equilibrium.

Theorem 5.4.2. The equilibrium of the dynamics for D(t) = (dij(t)) is globally
asymptotically stable.

Proof. Lets introduce the straightforward Lyapunov function

V (D(t)) = 1
2
∑
ij

(
dij(t)− d∗ij

)2
> 0 ∀D(t) 6= D∗

It is clear that is strictly positive in every point but the equilibrium and that is
radially unbounded. Taking the derivative with respect to time we obtain

V̇ (D(t)) =
∑
ij

(
dij(t)− d∗ij

)
E[zij(t)− zij(t)] < 0 ∀D(t) 6= D∗

where the last inequality is due to Lemma 5.4.1. Then by Lyapunov stability theory
[26], the equilibrium is globally asymptotically stable.

Now that we know the dynamics of the imbalance measures, we can derive what
happens to the throughputs themselves. Note that in equilibrium, the access rate
of link ij is

R∗ij = W0 exp
(
µij
T
− αd∗ij

)
= W0

√
µji
µij

exp
(
µij + µji

2T

)

In the exponent, the term µij+µji
2T accounts for the fact that we put emphasis on

throughput efficiency, so the pair of links with higher access rates will be more
aggressive. On the other hand, the factor

√
µji
µij

is the one that takes care of the
reciprocity.

If we make the parameter T go to infinity, then the aggressiveness of link ij is
just

Rij = W0

√
µji
µij

which is enough to yield a symmetric allocation.

Corollary 5.4.1. For the dynamics defined in Figure 5.7, we have that

E[Z(t)]→ Z∗

where Z∗ is a symmetric matrix such that

z∗ij =
∑
x

µijxij

exp
(∑
mn
xmn

(
µmn+µnm

2T + 1
2 log

(
µnm
µmn

)
+ log(W0)

))
∑
x′

exp
(∑
mn
x′mn

(
µmn+µnm

2T + 1
2 log

(
µnm
µmn

)
+ log(W0)

))
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This means that the proposed algorithm converges to a symmetric allocation
independently of the chosen parameters α, T and W0.

Remark 5.4.2. In the closed loop given by figure 5.7, it is clear that we need the
input of the integrator to be zero, but that does not mean that the output will be
zero. From the network perspective, it means that the actual number of bytes sent
in a direction need not be equal to the number of bytes sent in the other direction.
On the contrary, the imbalance between the total number of bytes sent is necessary
to reach an equilibrium.

If we start with D(0) = D∗, we no longer have dynamics in D and as a result we
get again a reversible continuous time Markov chain with invariant distribution

π∗(X) =
exp

(∑
ij
xij

(
µij+µji

2T + 1
2 log

(
µji
µij

)
+ log(W0)

))
CT

(5.4)

Remark 5.4.3. Note that we could try to approximate the distribution given by
(5.4) by the Gibbs distribution with respect to the energy

E(X) =
∑
ij

xij
µij + µji

2

when T goes to zero. In the limit, the distribution would be concentrated on the
configurations

X∗ = arg max
X

∑
ij

xij
µij + µji

2
which are actually symmetric. As a consequence, if the rate matrix µ is not symmet-
ric, we would get a non symmetric allocation Z. The problem with this reasoning
is that when we bring down the parameter T , the convergence of the Markov chain
is slower. As a result, our hypothesis of separation of time scales can not be made
and thus this result is not valid.

Example 5.4.1. Suppose that the connectivity graph is full mesh. In that case,
the only possible configurations are the ones that activate one link at a time. Let
Xij be the configuration in where only link ij is active. Then, when the dynamics
of the imbalances D are in equilibrium, we get the invariant distribution

π(Xij) =
W0 exp

(
µij+µji

2T + 1
2 log

(
µji
µij

))
∑
mn
W0 exp

(
µmn+µnm

2T + 1
2 log

(
µnm
µmn

))
from this we get

E[zij] = µij
exp

(
µij+µji

2T + 1
2 log

(
µji
µij

))
∑
mn

exp
(
µmn+µnm

2T + 1
2 log

(
µnm
µmn

))

= µij

√
µji
µij

exp
(
µij+µji

2T

)
∑
mn

√
µnm
µmn

exp
(
µmn+µnm

2T

)
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If we make T go to infinity, we obtain

E[zij] = µij

√
µji
µij∑

mn

√
µnm
µmn

and the relation between the throughput of two links would be

E[zij]
E[zkl]

=
√
µijµji√
µklµlk

With this we can conclude that in a network with full connectivity, if we make T
go to infinity, the average throughput of a bidirectional link in a full mesh will be
proportional to the geometric mean of the unidirectional link capacities. In this case
we get good connection diversity while sacrificing the efficiency.

Wireless neighbor selection algorithm

Now we give a step by step implementation of the designed neighbor selection
algorithm for ad-hoc wireless networks.

Suppose that we have a P2P overlay over an ad-hoc wireless network with con-
nectivity graph G. Then repeat the following algorithm:

• Step 1: For each possible outgoing link ij, draw an exponentially distributed
random time with parameter

Rij = W0 exp
(
µij
T
− αdij

)
and wait that time.

• Step 2: If another link transmits before one of the local links ij, update the
imbalances dij to reflect the amount of data received, draw the exponentially
distributed random times with the updated imbalances and wait again.

• Step 3: When the time of one of the links expires, transmit during an expo-
nentially distributed random time of mean one.

• Step 4: Update the imbalances dij with the neighbors to reflect the amount of
data transmitted.
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5.5 SIMULATIONS

5.5.1 Implementation and performance metrics

We now evaluate the devised wireless neighbor selection algorithm as a means
to achieve symmetric allocations and different levels of efficiency and connection
diversity. We implemented the algorithm in Matlab and in order to evaluate it, we
simulate two scenarios. Every simulation starts from the initial condition where no
one is transmitting.

As a measure of the reciprocity and efficiency, we evaluate three metrics:

1. The Kullback-Leibler divergence between the average upload rate and the
average download rate defined by

DKL(µ(Z)||r(Z)) =
∑
i

ri(Z) log
(
ri(Z)
µi(Z)

)

where µi(Z) = ∑
n
zin is the average upload rate of peer i and ri(Z) = ∑

n
zni is

the average download rate of peer i.

2. The Jain index of the quotients of the average upload and download rates
defined by

J(Z) =

(∑
i

µi(Z)
ri(Z)

)2

N
∑
i

(
µi(Z)
ri(Z)

)2

3. The ratio between the average throughput of the network and the maximum
possible throughput achievable defined by

Efficiency =

∑
ij
zij

max∑
ij
zij

5.5.2 Full mesh topology

The first scenario has a full mesh topology with 50 nodes and with a random
matrix of rates µ, where all the rates where drawn as a uniform random variable over
[0, 1]. This would correspond for example to a crowded classroom with 50 students
in it. In Figure 5.8 we can see that the Jain index is extremely close to one, achieving
an almost perfect reciprocity. The Kullback-Leibler divergence is also very small as
seen in figure 5.9. Furthermore, it can be seen in both figures that the temperature
has a small effect in the convergence speed, as lower temperatures yield somewhat
slower convergence rates.
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Figure 5.8. Jain index of the upload and download throughput of the peers in a
full mesh network with 50 nodes, W0 = 1 and α = 1 for different
temperatures.

Figure 5.9. Kullback-Leibler divergence between the upload and download through-
put of the peers in a full mesh network with 50 nodes, W0 = 1 and
α = 1 for different temperatures.

As a measure of connection diversity, we will use the minimum sum of the
throughputs of links that disconnect the connectivity graph, defined by

Min cut = min
L subset of links

∑
ij∈L

zij

s.t. GI\L is disconnected

In table 5.1 we can see the tradeoff between the efficiency and and the connection
diversity.
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Temperature Efficiency Min-cut
0.01 96% 0
0.02 93% 2.5× 10−5

0.05 88% 2.3× 10−4

0.1 66% 4.8× 10−3

1 41% 5.1× 10−3

10 37% 5.2× 10−3

Table 5.1. Efficiency and connection diversity in the case of a full mesh network.

5.5.3 Poisson network topology

In the second scenario we have the peers spatially distributed as a Poisson process
over the bounded set [0, 1]2, where in average we have 50 peers. Then two nodes are
connected if they are at a distance less than the radius R = 0.3. Furthermore, we
give each node a uniform random transmission power Pi in [0, 0.1], and define the
rate of each link as

µij = min
{

1, Pi
d(i, j)2

}
In Figure 5.11 we can see that the Jain index very close to one, achieving a very
good reciprocity. The Kullback-Leibler divergence is also small as seen in figure 5.10.
Furthermore, it can be seen in both figures that the temperature has some effect
on the convergence speed. However, the different temperatures produce a smaller
difference in the efficiency in this scenario as seen in table 5.2.

Figure 5.10. Kullback-Leibler divergence between the upload and download
throughput of the peers in a Poisson network topology with 50 nodes,
W0 = 10 and α = 10 for different temperatures.

Temperature Efficiency
0.01 88%
100 73%

Table 5.2. Efficiency for the Poisson network.
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Figure 5.11. Jain index of the upload and download throughput of the peers in a
Poisson network topology with 50 nodes, W0 = 10 and α = 10 for
different temperatures.

A visual representation of the network, with the throughput of each link is given
in Figure 5.12 for T = 100, in Figure 5.13 for T = 0.05 and in Figure 5.14 for
T = 0.001 . Note that when the parameter is higher, the throughputs of the links
are more homogeneous, whether for T = 0.05 there are links that are significantly
more active (darker gray) and others that are significantly less active (almost white).
Furthermore, when T = 0.001 there is a clear disconnection of the network as it
becomes too static. This shows that there is still a tradeoff in this case between the
efficiency that increases as T goes to zero, and the connection diversity, that gets
worse as T goes to zero.
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Figure 5.12. Connectivity graph and throughputs when T = 100.

Figure 5.13. Connectivity graph and throughputs when T = 0.05.
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Figure 5.14. Connectivity graph and throughputs when T = 0.001.

5.6 CONCLUSIONS

In this chapter we characterized the rate allocations in an ad-hoc wireless network
and showed that it is easy to find a symmetric allocation and as a result poses the
correct incentives to the peers. Furthermore, we can explore the design space of the
tradeoff between connection diversity and throughput efficiency, without sacrificing
the peerwise reciprocity of symmetric allocations at any time. This results in a
decentralized algorithm with a policy similar to the “backpressure” for queues, that
has the proper incentives for any network topology. This was validated through
simulations.
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Chapter 6

Conclusions and future work

In this thesis we analyzed the problem of the resource allocation in a peer-to-peer
system making emphasis on the incentives and fairness. Using a fluid model for the
population dynamics, we showed that the one that minimizes the average download
time does not provide the proper incentives and would not work if implemented in
practice. Introducing conditions for the correct incentives on the download rates,
we arrived at the conclusion that the max-min allocation is the most efficient while
presenting minimal incentives to the peers. However, we argued that a proportional
allocation provides stronger incentives and it is more appropriate for these networks.

Having a clear resource allocation in mind, we set up to design a decentralized
neighbor selection algorithm that achieves such allocation. In order to do this, first
we reviewed a matrix renormalization algorithm devised by Sinkhorn in the 1960’s
that achieves the desired allocations, but note that its practical implementation
would fail under a dynamic network and would need a fine control of the through-
puts that is hard to achieve. We proposed a solution based on a Gibbs sampler that
achieves an approximately proportional allocation and that is simple to implement.
Furthermore, we showed that there is a tradeoff between fairness and rate of con-
vergence and also showed through simulations that this algorithm performs better
than several alternatives.

Lastly, we turned our attention to P2P overlays over an ad-hoc wireless network.
In this challenging setting we observed that there are other metrics to take into
account: the efficiency and the connection diversity. We proposed a specialized
neighbor selection algorithm that imposes a proportional allocation as before and
can achieve different levels of efficiency and connection diversity.

There are several lines of work that can be pursued in the future. In the wired
case, a next logical step would be to implement and test the algorithms in a packet
level simulator or a real test bed, in order to validate the results obtained in the
Matlab simulations. On the other hand, another open line of work would be to
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analyze the performance of the algorithm in a dynamic network, when there are
arrivals and departure of peers.

In the wireless case, we observed that ultimately the improvement in efficiency
comes at the expense of reduced connection diversity, which seems to be a conse-
quence of the wireless nature of the network. Our algorithm for the wireless case
explores this tradeoff using a single parameter, but it is still an open question which
metric should be used to correctly measure connection diversity and in which point
should the network operate with respect to this tradeoff.
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Appendix A

Game theoretic approach to
incentives

In chapter 2 we presented three possible resource allocations in a wired P2P
network: the allocation for minimum download time, the max-min allocation and
the proportional allocation. In order to analyze the incentives provided by different
resource allocations, we are going to model the problem as a non-cooperative non-
atomic game. We use these type of games as they are a tractable approximation of
games with many users [27].

First of all, we introduce the three main components of any game: the players,
the strategies and the payoffs.

Players

The players are only the leechers (not the seeders), and they are non-atomic:
they can be represented as the points in a set with mass Λ. Besides, there are n
classes of leechers with different upload capacities µ1 > µ2 > · · · > µn which can be
represented as a vector λ = (λ1, λ2, . . . , λn) of masses such that

n∑
i=1

λi = Λ, i.e. the

sum of all is equal to the total mass Λ. This means that there is a fraction λi
Λ of the

peers that have upload capacity µi.

Strategies

If a leecher has upload capacity µk, then it can choose an upload rate u ∈ {µi :
µi ≤ µk}, i.e., any upload rate slower than its upload capacity. The strategies of all
players can be represented as the vector λ′ = (λ′1, λ′2, . . . , λ′n) such that

n∑
i=1

λ′i = Λ.
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This means that a fraction λ′i
Λ of peers chose the upload rate µi. Due to the restriction

in the upload rate that a peer can choose (slower or equal to its upload capacity),
then the possible strategies are the ones that satisfy the inequalities

λ′i ≤
i∑

j=1
λj ∀i

These restrictions say that the total amount of peers that select the upload capacity
µi are less than or equal to the amount of peers that have upload capacity higher
than or equal to µi.

Payoffs

Given the joint strategies of all players represented by λ′, the players that chose
the upload rate µi will have r∗i as their payoff, which is obtained as the one in the
equilibrium of the dynamics defined by (2.1) and (2.2) when the arrival rates are λ′,
but with the seeders fixed (as they do not participate in the game). Note that the
payoffs depend on the choice of all peers.

Of course the game only makes sense in the case in which the whole network is
not saturated by download capacity, so we will focus only on that case. We present
a definition that will be used throughout this appendix.

Definition A.0.1 (Nash equilibrium). A strategy λ′ is a Nash equilibrium for a
non-atomic game if for any other strategy λ′′ = (λ′1, . . . , λ′i − ε, . . . , λ′j + ε, . . . , λ′n),
the peers with upload capacity µj achieve a smaller payoff than the peers of upload
capacity µi under λ′.

The desirable situation is the one in which each peer selects its upload capacity
as its upload rate (i.e. λ′ = λ). We would like it to be a Nash equilibrium for the
game whose payoffs are defined by the resource allocation.

A.1. MINIMUM DOWNLOAD TIME GAME

First we turn our attention to the resulting resource allocation of minimizing the
average download time. The part of the game that needs explaining is the payoff,
as the players and strategies are the same as before. In a given strategy, suppose
that the maximum upload capacity selected by a set of peers of positive measure is
µk. Then we will have that λ′i = 0 ∀i < k. If we take λ′i as the arrival rates of our
system, then by proposition 2.2.2, the payoff will be the download rates di for all
peers who selected an upload capacity µi < µk and λ′kµk

Λ−Cy−
n∑

i=k+1

µiλ
′
i

di

for all peers who

selected the upload rate µk.
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Now, if we look at the desired strategy of selecting the highest possible upload
capacity in the game, we have the following result.

Proposition A.1.1. If
d2 >

λ1µ1

Λ− Cy −
n∑
i=2

µiλi
di

> 0

then setting the upload rate equal to the upload capacity (i.e. λ′ = λ) is not a Nash
equilibrium for the minimum download time game.

Proof. For the strategy λ′ = λ, the payoff of the peers in the first group is

λ1µ1

Λ− Cy −
n∑
i=2

µiλi
di

Now consider the strategy

λ′ = (λ1 − ε, λ2 + ε, λ3, . . . , λn)

where a set of peers decided to select an upload rate of µ2 instead of µ1. Then the
payoff of the peers that switched strategies is d2, which by hypothesis is larger than
before. As a result λ′ = λ is not a Nash equilibrium for this game.

This proposition shows us, in a game theoretic framework, that the resource allo-
cation does not provide the proper incentives and it will not work if it is implemented
in a network in which the users have a choice on their upload rate.

A.2. MAX-MIN ALLOCATION GAME

In Chapter 2, we intuitively reached the conclusion that the max-min allocation
is the one that minimizes the average download time while maintaining the proper
incentives. In the max-min allocation game, every peer chooses its upload rate as
before and then the payoffs are the max-min allocation rates

r∗i =

i∗∑
j=1

λjµj

Λ− Cy −
n∑

j=i∗+1

λjµj
dj

if i = 1, . . . , i∗

= di if i = i∗ + 1, . . . , n

For this game we have the following result.

Proposition A.2.1. Setting the upload rate equal to the upload capacity (i.e. λ′ =
λ) is a Nash equilibrium for the max-min allocation game.
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Proof. Suppose that a peer with upload capacity µi with i > i∗ chose an upload
rate µj < µi. Then its payoff will decrease from di to dj in the best case (because
di > dj ∀i < j), or to a lower level if the upload capacity of the network deteriorates
so much that the new cutoff index i′∗ is smaller than j.

If a peer with upload capacity µi with i ≤ i∗ chose an upload rate µj < µi with
j > i∗, then its payoff will decrease from r∗i to dj in the best case, or to a lower
level if the upload capacity of the network deteriorates so much that the new cutoff
index i′∗ is smaller than j. On the other hand, if it chose an upload rate µj < µi
with j ≤ i∗, then its payoff will go from

i∗∑
j=1

λjµj

Λ− Cy −
n∑

j=i∗+1

λjµj
dj

to
i′∗∑
j=1

λ′jµj

Λ− Cy −
n∑

j=i′∗+1

λ′jµj

dj

Suppose that i′∗ = i∗. In that case note that
i∗∑
j=1

λjµj >
i∗∑
j=1

λ′jµj and that

d

dx

(
x

Λ− Cy − x

)
= Λ− Cy

(Λ− Cy − x)2 > 0

As a result, its payoff will decrease by changing the upload rate. If i′∗ > i∗, then
the payoff will be less than di∗ which was also smaller.

Taking everything into account, we have that the payoff of any peer is always
larger under λ than under any other strategy λ′. Hence λ is a Nash equilibrium for
this game.

A.3. PROPORTIONAL FAIRNESS GAME

In the proportional fairness game, if a peer chooses the upload rate µi, the its
payoff will be

r∗i = µi
Λ

Λ− Cy
For this game, we have the following result:

Proposition A.3.1. Setting the upload rate equal to the upload capacity (i.e. λ′ =
λ) is Nash equilibrium for the proportional fairness game.
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Proof. Note that in this case, a peer that chose an upload rate µi will have a pay-
off r∗i = µi

Λ
Λ−Cy which is an increasing function of the upload rate µi and it is

independent of the decision of the other players. If we have a strategy

λ′ = (λ1, . . . , λi − ε, . . . , λj + ε, . . . , λn)

then the peers that chose a lower upload rate than their upload capacity will obtain
a smaller payoff. Consequently, deviating from the strategy λ only decreases the
payoffs of the peers, hence it is a Nash equilibrium.

Remark A.3.1. Note that for this choice of resource allocation, the payoff of a peer
is independent of the upload rates that chose the other players, which is a desirable
property. This is other reason why we should use the proportional allocation.
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Appendix B

Population dynamics with
arbitrary upload capacities

In Chapter 2 we introduced a fluid model for the dynamics of a population under
a general resource allocation r, with the restriction that there is only a finite set of
upload capacities. As the actual number of different upload capacities is also very
large, we can go one step further and consider a fluid model where that parameter
is also a fluid. In general, we will admit an arrival density λ(µ) over the continuum
of the upload capacities.

B.1. FLUID MODEL

We present a fluid model of the population dynamics for a wired P2P network.
First, we introduce some notation.

• Let E = [µmin, µmax] be the set of possible upload capacities.

• The functions x, y : E × [0,+∞) → [0,+∞) are such that x(µ, t) and y(µ, t)
are the densities of the number of leechers and seeders respectively in the
network at time t.

• λ : E → [0,+∞) is the density of the intensity of arrivals.

• γ : E → (0,+∞) is the exit rate of the seeders.

• r (µ, x(µ, t), y(µ, t)) is download rate of a peer with upload capacity µ for
densities x(µ, t) of leechers and y(µ, t) of seeders.

We will assume that the size of the file is equal to 1 and that the leechers
that finish downloading stay as seeders, as in Chapter 2. With this, we define the
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dynamics of the seeders and leechers

∂x(µ, t)
∂t

= λ(µ)− r (µ, x(µ, t), y(µ, t))x(µ, t)

∂y(µ, t)
∂t

= r (µ, x(µ, t), y(µ, t))x(µ, t)− γ(µ)y(µ, t)

with the “conservation of mass” restriction∫
E

r (µ, x(µ, t), y(µ, t))x(µ, t)dµ ≤
∫
E

µ[x(µ, t) + y(µ, t)]dµ

which is no more than the density based version of equation (2.3).

In order to find the equilibrium function x∗(µ), we have to solve the fixed point
equation

λ(µ) = r (µ, x∗(µ), y∗(µ))x∗(µ)
for which there is no analytic solution in general. However, in some cases we can
find an explicit formula for the equilibrium functions.

Proposition B.1.1. If the rate function is of the form

r (µ, x(µ, t), y(µ, t)) = ρ(µ)
∫
E

µ[x(µ, t) + y(µ, t)]dµ

then the previous dynamics have a unique equilibrium in

x∗(µ) = λ(µ)
C∗ρ(µ)

y∗(µ) = λ(µ)
γ(µ)

where C∗ is the total capacity of the network in equilibrium

C∗ =
∫
E

µλ(µ)
2γ(µ) dµ+

√√√√√
∫
E

µλ(µ)
2γ(µ) dµ

2

+
∫
E

µλ(µ)
ρ(µ) dµ

Proof. In the equilibrium, the derivatives with respect to time must be all zero

0 = λ(µ)− r (µ, x∗(µ), y∗(µ))x∗(µ)
0 = r (µ, x∗(µ), y∗(µ))x∗(µ)− γ(µ)y∗(µ)

Then for the seeders we have that

λ(µ) = γ(µ)y∗(µ)

As γ is non zero, we have that

y∗(µ) = λ(µ)
γ(µ)
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Now for the leechers
λ(µ) = r (µ, x∗(µ), y∗(µ))x∗(µ)

Given that r (µ, x∗(µ), y∗(µ)) = C∗ρ(µ), we only have to find the total capacity of
the network in the equilibrium

C∗ =
∫
E

µ[x∗(µ) + y∗(µ)]dµ

substituting the equilibrium functions for the leechers and seeders we obtain

C∗ =
∫
E

µλ(µ)
C∗ρ(µ)dµ+

∫
E

µλ(µ)
γ(µ) dµ

From this we get a second order equation in C∗

C∗2 − C∗
∫
E

µλ(µ)
γ(µ) dµ−

∫
E

µλ(µ)
ρ(µ) dµ = 0

which yields

C∗ =
Cy +

√
C2
y + 4β

2
where Cy is the total upload capacity of the seeders

Cy =
∫
E

µλ(µ)
γ(µ) dµ

and
β =

∫
E

µλ(µ)
ρ(µ) dµ

B.2. ANALYSIS OF RESOURCE ALLOCATIONS

We will try to minimize the total number of leechers in the network in equilib-
rium, that is minimize

X∗ =
∫
E

x∗(µ)dµ =
∫
E

λ(µ)
r (µ, x∗(µ), y∗(µ))dµ

The first constraint that we have is the one given by the “conservation of mass”,
which in equilibrium is equivalent to∫

E

µx∗(µ)dµ+
∫
E

λ(µ)µ
γ(µ) dµ ≥ Λ
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Let
Cy =

∫
E

λ(µ)µ
γ(µ) dµ

be the total upload capacity of the seeders. Then, the previous restriction can be
rewritten as ∫

E

µx∗(µ)dµ ≥ Λ− Cy

The last restriction that we will impose is that a peer with upload capacity µ has a
maximum download capacity d(µ), where the function d is strictly increasing. That
is

r(µ, x(µ, t), y(µ, t)) ≤ d(µ) ∀µ
We can translate this into a restriction in the function x∗(µ)

x∗(µ) ≥ λ(µ)
d(µ)

Now we can write the optimization problem as

inf X∗ =
∫
E

x∗(µ)dµ

s.t.
∫
E

µx∗(µ)dµ ≥ Λ− Cy

x∗(µ) ≥ λ(µ)
d(µ)

Case sustained by seeders

When Cy > Λ, we have again that the restriction of the conservation of mass is
not active and thus the minimum is achieved when we have equality in the download
capacity restrictions. That is

x∗(µ) = λ(µ)
d(µ)

Case sustained by leechers

For Cy < Λ, we do the same reasoning as in Chapter 4. We plug the second
restriction of the optimization problem into the first one, we get that∫

E

µx∗(µ)dµ ≥
∫
E

µλ(µ)
d(µ) dµ =: D

So when D ≥ Λ − Cy, the system is saturated by the download capacity and as a
result we achieve the same minimum for the optimization problem

x∗(µ) = λ(µ)
d(µ)
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Now when the population of leechers has to be big enough to cope with the
download demand of new leechers, we can make the variable change

x̃(µ) = x∗(µ)− λ(µ)
d(µ)

where x̃ is a new function that gives the density for the amount of leechers that
there are over the minimum imposed by the download capacity restriction. The
optimization problem in x̃ is

inf
∫
E

x̃(µ)dµ

s.t.
∫
E

µx̃(µ)dµ ≥ Λ− Cy −D

x̃(µ) ≥ 0 ∀µ

Now, we are trying to find a positive function such that
∫
E
x̃(µ)dµ is minimum

while verifying the first inequality. Clearly the minimum is achieved not by a func-
tion, but by the distribution

x̃(µ) = Cδµmax(µ)

In that case, the first restriction gives us that

Cµmax ≥ Λ− Cy −D

and as we were trying to find the “smallest” function (or distribution in this case)
in some sense, the minimum will be achieved for

x̃(µ) = Λ− Cy −D
µmax

δµmax(µ)

Remark B.2.1. Note that even though the minimum is only achieved by a distri-
bution, we can build a function r∗(µ) = r(µ, x∗(µ), y∗(µ)) that is arbitrarily close to
that minimum as in Figure B.1.

µ

r∗(µ)

µmaxµmin
Figure B.1. Approximation for the resource allocation with minimum time.
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Introducing incentives

The problem with the previous allocation is that it does not give the proper
incentives to the peers. The allocation purposely gives less resources to the ones that
contribute the most to the network, this is reflected in the fact that the function r is
not an increasing function. We can put this as a new restriction in our optimization
problem, but as it is not easy to translate into a restriction for the function x∗(µ), we
will state our optimization problem directly as the variational problem in r∗(µ) =
r(µ, x∗(µ), y∗(µ)).

inf
∫
E

λ(µ)
r∗(µ)dµ

s.t.
∫
E

µλ(µ)
r∗(µ) dµ ≥ Λ− Cy

r∗(µ) ≤ d(µ) ∀µ
r∗(µ) is an increasing function

We will assume that we are working again under the hypothesis that D ≤ Λ−Cy,
so the network is not entirely saturated by its download capacity. Now, we can find
a resource allocation function r that minimizes the download times but is only non
decreasing

r∗(µ) = d(µ)1{µ<µ∗} + d(µ∗)1{µ≥µ∗}
where µ∗ is the one that verifies the “conservation of mass” equation

µ∗∫
µmin

µλ(µ)
d(µ) dµ+

µmax∫
µ∗

µλ(µ)
d(µ∗) dµ = Λ− Cy

This analogous to the case with finite number of upload capacities, and the allocation
profile is also very similar (Figure B.2).

Remark B.2.2. We have a critical value of d(µmin) for which we have µ∗ = µmin.
This value is

d(µmin) = 1
Λ− Cy

∫
E

µλ(µ)dµ

In this case, the allocation is just constant.

B.2.1 Case with uniform arrivals and seed departures

Lets analyze with further detail the cases when the arrival rate is uniform over
the possible upload capacities

λ(µ) = Λ
µmax − µmin

∀µ
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µ

r∗(µ)

µmaxµ∗µmin

Max-min allocation

Download restriction

Figure B.2. Profile of a resource allocation with max-min fairness.

Also, we take the rate of departures of seeders also constant

γ(µ) = γ ∀µ

Lastly, we take the download capacity function to be

d(µ) = Kµ

with K ≥ 1.

We want to compare the average downloading times for the peers in different
scenarios, which by Little’s law is

T̄ = 1
Λ

∫
E

λ(µ)
r(µ)dµ

Saturated by download capacity

In this case, the resource allocation function is r(µ) = Kµ. Then the average
download time is

T̄ = 1
µmax − µmin

µmax∫
µmin

1
Kµ

dµ =
log

(
µmax
µmin

)
(µmax − µmin)K

which is the minimum that can be achieved by the network at any time.

92



Sustained by leechers

If we use the resource allocation policy that has no regard for incentives, we get
the average download time is

T̄ >
log

(
µmax
µmin

)
(µmax − µmin)K +

Λ
(
1− 1

K

)
− Cy

Λµmax

Note that we get the same base download time plus a term that comes from the
added time from the fast peers.

Recall that when we introduced incentives, the download rate should be

r∗(µ) = d(µ)1{µ<µ∗} + d(µ∗)1{µ≥µ∗}

In this case, if µmin > 0, we have a critical value of K for which we have µ∗ = µmin.
This value is

Kc = γ(µmax + µmin)
2µmin [γ − p(µmax + µmin)]

and
µ∗ = b+

√
b2 − µ2

max

where
b = µmin +K

[
µmax − µmin −

p

2γ
(
µ2
max − µ2

min

)]

We have two distinct cases for the average download time. When K ≤ Kc

T̄ = 1
K(µmax − µmin)

[
log

(
µ∗

µmin

)
+ µmax

µ∗
− 1

]

and when K > Kc we have that

r∗(µ) = Kcµmin

then

T̄ = 1
Kcµmin

= 2 [γ − p(µmax + µmin)]
γ(µmax + µmin)

In any case, note that this corresponds to a notion of max-min fairness in the
download rates.
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Appendix C

Markov chains

A Markov chain is a stochastic process named after the Russian mathematician
Andrey Markov, who published the first results on these processes in 1906. After
that, Kolmogorov generalized his results for countably infinite state spaces. It one
of the simplest stochastic processes and their applications are everywhere, from
Engineering to Biology. Here we will present some basic definitions and properties.
An introduction to this subject can be found in [28].

Definition C.0.1 (Markov process). A family of random variables {X(t)}t≥0 with
values over a measurable state space (E,A) is a Markov process if

P (X(tn+1) ∈ An+1|X(tn) ∈ An, . . . , X(t0) ∈ A0) = P (X(tn+1) ∈ An+1|X(tn) ∈ An)
(C.1)

for all measurable sets Ak and for all increasing sequences t0 < · · · < tn < tn+1.

This property gives the memoryless nature to the Markov processes, as the con-
ditional probabilities only depend on the last known state of the process. In some
sense, the process “forgets” what happened earlier.

It is worth specializing the above to discrete and continuous time cases.

C.1. DISCRETE TIME

Definition C.1.1 (Discrete time Markov chain (DTMC)). A DTMC is a Markov
process X(k) with k ∈ N and countable state space E. Furthermore, the process is
said to be homogeneous if

pij(k) = P (X(k + 1) = j|X(k) = i)

does not depend on k.

94



As the state space is countable, verifying this condition on the points of the state
space is enough, as they generate the whole σ-algebra of measurable sets.

The transitions of a homogeneous chain is completely determined by the transi-
tion matrix (or transition kernel) P = (pij).

In order to determine the trajectory, apart from the matrix P , we need the initial
condition. In this case, it is a probability distribution over the state space E, which
is represented by a row vector π0 such that

π0(i) = P (X(0) = i)

Although the actual trajectory of the process is random, we can define a discrete
dynamical system that perfectly describes the probability distribution for the process
at time n as:

πn = π0P
n

where πn(i) = P (X(n) = i).

Definition C.1.2 (Invariant distribution). A probability distribution π over E is
invariant for the DTMC with transition matrix P if πP = π.

If the initial condition is invariant with respect to P , then it is clear that

lim
n→∞

πP n = π

which means that the limit distribution of the chain starting with distribution π is
π. It is also clear to see that any limit distribution must be an invariant distribution.
Furthermore, under some conditions on the transition matrix P it can be proved
that there exists a unique invariant distribution for the chain, and that the dynamics
converge to it regardless of the initial condition π0.

Definition C.1.3 (Irreducible chain). A DTMC with transition matrix P is said
to be irreducible if for every i, j ∈ E, there exists a positive integer nij such that
p

(n)
ij > 0, where p(n)

ij is the ij entry of the matrix P n.

Definition C.1.4 (Aperiodic chain). Let Tmini be the minimum return time to state
i starting from state i. A DTMC is said to be aperiodic if gcd{Tmini : i ∈ E} = 1.

Definition C.1.5 (Recurrence). Let Ti be the random variable of the return time
to state i starting from state i. A DTMC is said to be recurrent P (Ti < +∞) = 1
∀i ∈ E. Furthermore it is said to be positive recurrent if E[Ti] < +∞ ∀i ∈ E.

Theorem C.1.1. Let X(k) be a homogeneous DTMC with transition matrix P
which is irreducible, aperiodic and positive recurrent ⇒ There exists a unique in-
variant distribution π for P and

π = lim
n→∞

π0P
n

for all initial conditions π0. In that case, it is said to be ergodic.
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Definition C.1.6 (Reversibility). A homogeneous DTMC with transition matrix
P is said to be reversible if there exists an invariant distribution π such that verifies
the so called detailed balance equations:

pijπ(i) = pjiπ(j) ∀i, j ∈ E (C.2)

A reversible Markov chain is statistically indistinguishable from the process ob-
tained by reversing the time. But what makes them specially appealing is that is it
much easier to find an invariant distribution for them using (C.2), instead of using
that πP = π.

C.2. CONTINUOUS TIME

Definition C.2.1 (Continuous time Markov chain (CTMC)). A CTMC is a Markov
process X(t) with t ∈ [0,+∞) and countable state space E. Furthermore, the
process is said to be homogeneous if

pij(t, s) = P (X(t+ s) = j|X(t) = i)

does not depend on t.

Definition C.2.2 (Transition semigroup). The transitions of a homogeneous chain
is completely determined by the transition semigroup P (t) = (pij(t)).

By the Chapman-Kolmogorov equation

P (s+ t) = P (s)P (t)

it is seen that P (t) is actually a semigroup with P (0) = Id. Then, if we assume
that P (t) is differentiable at t = 0, we get that

P ′(t) = ∂P (s+ t)
∂s

∣∣∣∣∣
s=0

= ∂P (s)P (t)
∂s

∣∣∣∣∣
s=0

= P ′(0).P (t)

equivalently we get that

P ′(t) = ∂P (s+ t)
∂s

∣∣∣∣∣
s=0

= ∂P (t)P (s)
∂s

∣∣∣∣∣
s=0

= P (t).P ′(0)

These are known as backward and forward Kolmogorov equations respectively.

We can find an expression for P (t) as a function of time solving the differential
equations

P ′(t) = Q.P (t)
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where Q = P ′(0) and it has initial condition P (0) = Id. Solving this matrix
differential equation yields

P (t) = eQt

when eQ is well defined.

An equivalent definition in this case is that the time that the chain stays in state
i is an exponential random variable with parameter −qii. Furthermore, given that
it leaves state i, it jumps to state j with probability − qij

qii
. As a result, the dynamics

of the CTMC is completely determined by the matrix Q.

Now given the initial condition π0, the distribution at time t is

π(t) = π0P (t)

then
π(t) = π0e

Qt

Remark C.2.1. The matrix Q is called the transition rates matrix and it has the
following structure:

• −∞ < qii < 0

• −qii = ∑
j∈E,j 6=i

qij

As a result, ∑
j∈E

qij = 0 ∀i and thus Q has 0 as an eigenvalue.

Definition C.2.3 (Invariant distribution). A probability distribution π over E is
invariant for the CTMC with transition rates matrix Q if πQ = 0.

Effectively, if π = πeQt, taking the derivative with respect to time we obtain
0 = πQeQt for all t. As a result it must be πQ = 0.

The definitions of irreducibility and recurrence are analogous as in the discrete
time case, but the notion of periodicity does not make sense in continuous time, as
the probability of returning to a state in a fixed time (or a multiple of it) is zero.
We then have the following ergodic theorem.

Theorem C.2.1 (Ergodic theorem). Let X(t) be a homogeneous CTMC with tran-
sition rates matrix Q which is irreducible and positive recurrent ⇒ There exists a
unique invariant distribution π for Q and

π = lim
t→∞

π0P (t)

for all initial conditions π0.
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As in the discrete time case, we also have a notion of reversibility for CTMC.

Definition C.2.4 (Reversibility). A homogeneous CTMC with transition rates ma-
trix Q is said to be reversible if there exists an invariant distribution π such that

qijπ(i) = qjiπ(j) ∀i, j ∈ E
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Appendix D

Graph theory

In this appendix we will present some basic definitions and some important
examples of graphs, which are used throughout this thesis. An introduction can be
found in [29].

D.1. DEFINITIONS

There are several definitions of graph depending on the context and intended
applications. Here we will give the definition that better suits our needs.

Definition D.1.1 (Graph). A graph G consists of a vertex set V and an edge set E,
where an edge is a pair of different vertices of G. Note that there can be either zero
or one edge between two vertices in a graph and there cannot be an edge between a
vertex and itself.

If ij is an edge, then we say that i and j are adjacent or that i is a neighbor of j,
and denote this by writing i ∼ j. Also a vertex is said to be incident with an edge
if it is one of the two vertices of the edge.

We will focus in finite graphs, in which the number of vertices is finite. Fur-
thermore, if the edges are an ordered pair of vertices, then the graph is said to be
directed. In other case it is said to be undirected.

Definition D.1.2 (Subgraph). Given a graph G = (V,E) and a subset of vertices
U ⊂ V , the subgraph of G generated by U is the graph H = (U, F ), where F ⊂ E
is the set of edges which are determined by a pair of vertices in U .

Now we define two important cases of subgraphs.
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Definition D.1.3 (Independent set). Given a graph G = (V,E), an independent
set is a subset of the vertices S ⊂ V such that it has no edges as a subgraph.

As there are no edges in an independent set, we use the term independent set
when we are referring to the set of vertices and when we are referring to the induced
subgraph.

Definition D.1.4 (Clique). Given a graph G = (V,E), a clique is a subgraph of G
such that all vertices are joined by an edge.

When the whole graph is a clique, the graph is called complete or full mesh.

The degree of a vertex is the number of neighbor that it has. For instance, the
degree of every vertex in the subgraph generated by an independent set is zero.

Definition D.1.5 (Regular graph). A graph G = (V,E) is said to be regular or
k-regular if the degree of all vertex is equal to k.

An independent set, a clique and a complete graph are examples of regular
graphs.

Now we state a theorem for the existence of regular graphs for a fixed finite
amount of vertices.

Theorem D.1.1 (Erdős and Gallai [30]). A m-regular graph of N vertices exists
⇔ m.N is even and N > m.

Despite the abstract nature of the definition of a graph, it can be fully charac-
terized by a 0− 1 matrix.

Definition D.1.6 (Adjacency matrix). The adjacency matrix A = (aij) of a graph
G = (V,E) is the 0 − 1 matrix with rows and columns indexed by V , such that
aij = 1 if and only if ij ∈ E.

Note that in a undirected graph the adjacency matrix is symmetric, as the edges
are undirected and thus if ij ∈ E then ji ∈ E. Conveniently the adjacency matrix
of a subgraph is just the submatrix of the adjacency matrix of the original graph.

D.2. CAYLEY GRAPH

There is an example of a graph that deserves particular attention.
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Definition D.2.1 (Cayley graph). Consider the algebraic group Zn and a subset
B ⊂ Zn such that 0 /∈ B and B is closed under opposites. Then the Cayley graph
C(Zn, B) is the graph with the elements of Zn as vertices such that i ∼ j if and only
if i− j ∈ B.

Note that the Cayley graphs are always 2k-regular for some k (every vertex has
the same even degree).
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