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Abstract

The study of variability in software development has become increasingly important in recent years. The
research areas in which this is involved range from software specialization to product lines. A common
mechanism to represent the variability in a product line is by means of feature models. However, the relationship
between these models and UML design models is not straightforward. UML statecharts are extended introducing
variability in their main components, so that the behavior of product lines can be specified. The contribution of
this work is the proposal of a rule-based approach that defines a transformation strategy from extended
statecharts to concrete UML statecharts. This is accomplished via the use of feature models, in order to describe
the common and variant components, in such a way that, starting from different feature configurations and
applying the rule-based method, concrete state machines corresponding to different products of a line can be
obtained.

1. Introduction

A product line (PL), also called system family, is a set of software systems sharing a common,
managed set of features that satisfy the specific needs of a particular market segment or mission and
that are developed from a common set of core assets in a prescribed way [1,2,3].

To develop a system family as opposed to developing a set of isolated systems has important
advantages. One of these is the possibility of building a kernel that includes common features, from
which desired products can be easily built as extensions. By adding distinguishing characteristics
(variability) to such a kernel, different products can be obtained [3,4,5,6,7,8]. For example, today we
observe in the market a significant number of different types of mobile phones (MPs) that share a core
of basic features and differ in other more specific characteristics: availability of a digital camera,
internet access, mp3 player, among others.

The UML language [9] provides a graphical notation and has become the standard for modeling
different aspects of software systems. Statecharts and interaction diagrams are part of the set of tools
that UML provide so that the system behavior can be specified, which are specially suitable for the
software design phase. Statecharts are used to specify the behavior of the instances of a class (intra-
component behaviour), and therefore constitute an appropriate mechanism for describing the behavior
of certain problems by means of a graphical representation. In the latest version of UML 2.0, the
statecharts do not offer operators and/or sublanguages for specifying system family.

In this paper we propose an extension of UML statecharts for modeling PLs. We used feature
models so that both common and variant functionality of a system family can be described [10,8], and
we incorporate variability in the essential components of the statecharts, in such a way that, starting
from different configurations of a feature model, concrete statecharts corresponding to different
products of a PL can be generated applying a rule-based method. The approach defines the
transformation strategy from extended statecharts to concrete UML statecharts.

The rest of the work is organized as follows. In section 2 and 3 we briefly introduce statecharts and
feature models, respectively. Section 4 presents an extension of statecharts with variant elements,
which together with the use of feature models allow specifying PLs. In section 5 we detail the
mechanisms for obtaining products of a PL from distinct configurations of a feature model, via the use
of rules and a transformation strategy. Related works are discussed in section 6 and finally, we
conclude and discuss possible further works in section 7. We exemplify the proposed work by
developing part of a case study based on mobile phone technology. A preliminary version of this work
is [11]. As opposed to [11], this paper presents a rule-based approach. We define an application
strategy for the rules in a proper manner, in such a way that inconsistencies are avoided in the
statechart obtained. The rules are organized in a sequence of rule sets, in which each rule set can be



considered as a layer. Within a rule set, the rules may be applied in a non-deterministic order [12]. We
also formalized and added rules that in [11] are omitted or only described informally.

2. Statecharts

UML StateCharts (SCs) constitute a well-known specification language for modeling the dynamic
system behavior. SCs were introduced by D. Harel [13] and later incorporated in different versions of
the UML with some variations. In this section, we present definitions of SCs based on [14]. For
additional details, the reader is referred to [11,14].

SCs consist essentially of states and transitions between states. The main feature of SCs is that
states can be refined, defining in this way a state hierarchy. A state decomposition can be sequential or
parallel. In the first case, a state is decomposed into an automata (Or-state). The second case is
supported by a complex statechart composed of several active sub-statecharts (And-state), running
simultaneously. In figure 1, Or-state sO is the highest state in the hierarchy, which is composed of four
states, namely: s1, s2, s3 and s8. On the other hand, state s3 is composed of the parallel combination of
s4 and s7. A SC configuration represents the state of the system at a given instant in time, which is
characterized by the set of active states.

Figure 1. Graphical representation of a SC.

Let S, TR, I1 and A (11 < A) be countable sets of state names, transition names, events and actions
of a SC, respectively. Also, let us define s € S as either a basic term of the form s = /n/ (Simple-state),
as a term Or of the form s = [n, (s;,..., si), [, T] (Or-state), or as a term And of the form s = [n, (s;,...,
si)] (And-state), where name(s) = n is the name of the state s. Here s; ,..., sy are the subterms
(substates) of s, also denoted by sub_state(s) = (s;,..., sy). Likewise, initial(s) = s, is the initial state of
s, T < TR is the set of internal transitions of s, and / the active state index of s. A transition 1is
represented as a tuple ¢ = (7, s, e, ¢, a, s, ht), where name(t) = t is the transition name, source(f) = s,
and target(t) = s, are called source and target of t, respectively, ev(?) = e the trigger event, cond(t) = ¢
the trigger condition, and acc(f) = [ is the sequence of actions that are carried out when a transition is
triggered. In addition, Ais#(f) = ht is the history type of the target state of 7 [14]. The graphical notation
used in the transitions is 7 - e,c/f.

3. Feature Models

Feature Models (FMs) are used to describe properties or functionalities of a domain. A functionality is
a distinctive characteristic of a product or object, and depending of the context it may refer to, it is a
requirement or component inside an architecture, and even code pieces, among others. FMs allow us
to describe both commonalities and differences of all products of a PL and to establish relationships
between common and variant features of the line. There are multiple notations for describing FMs. In
this work we will use the proposal of Czarnecki [10].

A tree structure instance is a F'M configuration (FMConf) that describes the model and that respects
the semantics of their relations. That is, a FM allows one to identify common and variant features
between products of a PL, while a FM configuration characterizes the functionalities of a specific
product. Formally, the concepts of FMs are defined as follows:

Definition 1. A FM is defined as a tree structure represented by a tuple (Funcs, f,, Mand, Opt, Alt,
Or-rel), where Funcs is a set of functionalities of a domain (nodes of the tree), fye Funcs is the root
functionality of the tree and, Mand, Opt, Alt, Or-rel < Funcs x (@ (Funcs)-{J}) the mandatory,
optional, alternative and disjunct relations of the model, respectively. If (f, sf)e Mand U Opt , #sf = 1.



Definition 2. A FM configuration corresponding to a FM (Funcs, f;, Mand, Opt, Alt, Or-rel) is a
tree (F, R) where F is the set of nodes and R the set of edges; F' < Funcs and R < {(f,sf) e Fx( o (F)-
{@}) | Asf'e p (Funcs): sfcst' A (f, sfyeMand © Opt U Alt U Or-rel}. Moreover, the following
conditions must be fulfilled by (F, R): (1) fyeF, (2) for every (f, sf)e Mand: if feF then (f, sf)eR;
(3) if (f, sf)eAlt A feF then 3! sf'e p (F): sfcsf A (£, sf)eR A #sf'=1; (4) if (f, sf)eOr-rel A feF then
st e o (F): sfcst A (f, sf)eR A #sf>1.

Definition 3. The kernel N of a FM (Funcs, f;,, Mand, Opt, Alt, Or-rel) is the set of functionalities,
which are present in all configurations, inductively characterized by the following rules: (1) fyeN;
2)if fieN A (f1, {f>})eMand then f,eN.

4. SCs with Variabilities

In this section we extend the SCs with optional (variant) elements and later on we establish the
binding between these elements with functionalities of a FM, in order to model the behavior of a PL.
We will call our proposed extended machines StateCharts* (SCs*).

4.1 Graphical Representation of a SC*

The representation of the optional elements that extend the system kernel in a SC* are depicted in
figure 2. We use dashed lines to graphically denote both optional states as well as transitions.

Cptional State Cptional Transition

Figure 2. Optional state and Optional transition.

4.2 Abstract Syntax of a SC*

Let §* TR* IT* A* be set of states, transitions, events and actions of a SC*, respectively. Now the
terms that define a state have an additional component s,, € {optional, non_optional} that we will call
StateType(s), which indicates whether the state s is optional or not. Similarly, we add component #,, €
{optional, non_optional} to the transitions, and we denote it by TransType(t). We also define the
following sets of SC*s optional elements: SOp < S* TOp < TR* and VarElem = SOp T Op.

We will refer to states directly by their names, when these are unique for every state in all the SC*;
otherwise, we will use the dot (.) as separator between state and substate names. A transition name is
built by the trigger event name followed by source and target state names, respectively.

4.3 Case study: MPs

We considered here a family of MPs which share some functionalities, such as, for example, the
capacity of reproducing monophonic sounds and vibration. Optionally, we could incorporate into the
kernel of functionalities the capacity to make calls by means of quick-marked, to write text messages,
to administer multimedia contents, and combinations of these, such as messages with multimedia
content (images, polyphonic sounds and videos).

In order to exhibit an example in the development of this article, we formulate in figure 4 a FM,
using the notation proposed by Czarnecki, that relates the involved functionalities in the partially
described MP of figure 3.

4.4 Relation between FMs and SCs*

FMs and SCs* are complementary. Both model different aspects of a system and in our proposal, will
not be treated independently, since SC* elements model behaviors of present functionalities in the FM.
In general, a functionality is described by more than one SC* element. Due to this, we must introduce
a relation that binds FM elements with SC* elements.

We define then a function /mp, which represents the association between the SC* variant elements
and the functionalities of the FM. This way we establish what variant elements of the SC* implement



the characteristics of the system described in the FM. Given a FM (Funcs, f;, Mand, Opt, Alt, Or-rel)
and a SC* (S* TR* [IT* A%*), the type of the function /mp is as follows: Imp: Funcs — g (VarElem),
where VarElem is the set SOpUTOp, SOp < S* and TOp < TR*. Sets of variant elements into /mp not
necessarily must be disjuncts, considering that a state or transition can be part of the implementation
of one or more functionalities.
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Figure 3. SC* of MPs.
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Figure 4. FM of SC* of figure 3.

Taking into account that the mandatory functionalities are always present in all products of the line,
it is not necessary to define the SC* syntactic elements that these implement. However, it is necessary
to do it for those functionalities that cannot belong to FM configuration. /mp will be then a partial
function defined on FM elements which do not belong to the kernel. Therefore, the behavior of a PL is
defined by a FM, a SC*, and a function of implementation that binds them.

Example 1. Taking the FM of figure 4 and the SC* of case study of figure 3, we define SC* elements
that implements functionalities of MP as follows:

Imp(Polyphonic Sounds) = {SelectPolSound, TRightMultimediaType-SelectPolSound, ToChoosePolSound,
TRightSoundType, ToChoosePolSound, TLeftToChoosePolSound-SoundType, TRightToChoosePolSound-
Phone Funcionality, ...}; /mp(Multimedia) = {Multimedia, AdmMultimedia, TRightrMultimedia.Selecct-

SelectContact}  Imp(Images)  Imp(Polyphonic Sounds) U Imp(Videos); Imp(MessagesAdm) =
{MessagesCenter, TMessage-MainDisplay-IncomingMess, TMessage-MainDisplay-MessagesCenter, TLeft-
MessagesCenter-MainDisplay, TRight-OptionsMenu-MessagesCenter} U Imp(Alarm  New Messages);
Imp(Alarm New Messages) = {MessagesState, TMessageMainDisplay-IncomingMess}.

5. Instantiation of StateCharts with Variabilities

A FM configuration defines a product or concrete system given a set of selected characteristics. Given
a FM configuration and the SC* corresponding to the FM (linked via a function imp), we define an
instantiation function that returns a SC, which specifies the defined product behavior, Inst: SC* x
FMConf — SC.

We eliminate of the SC* both states and transitions which implement functionalities not present in
FM configuration, via the use of the function /mp defined in the previous section. The direct
elimination of states as well as transitions of the SC* is not trivial. The suppression of SC*
components without establishing a control can return inconsistent results, such as, for example,
unreachable states or transitions without target. A control and rebuild mechanism of SCs starting from
a SC* is defined in such a way that a concrete product is obtained.

In section 5.1 we present the cases and rules of rebuilding that constitute the base of the
instantiation method which we included in section 5.2. Later, in section 5.3 we analyze our case study:
MPs.

5.1 Cases and Rebuilding Rules
Case 1. When a state is deleted
Case 1.1. When a simple state is deleted

If a simple state s = [E] is deleted, then their entry and exit optional transitions are deleted, while the
mandatory transitions are composed using the following rebuilding method.

Let £€SOp be the state to eliminate, 4,,..., A, predecessor states of £ (i.e., states from which there
are non-optional transitions with target £ (tag 1. tag ), and S; ,..., S, successor states of E (i.e.,
target states of non-optional transitions with source E (tgs 1, tes m)). When the variant state E is
deleted, all entry and exit transitions linked to E are deleted. Simultaneously, new transitions are
generated by the composition of the non-optional entry transitions (tag 1. tag n) With the non-optional
exit transitions (tgs 1. tes m)-
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Figure 5. Resulting SC* after the deletion of the optional state.

The composition of two transitions t; = (t;, so1, €1, 1, 01, sdi, ht;, non_optional) and t, = (t,, s0,, €2,
Cy, 0y, Sd,, hty, non_optional) define a new transition as follows: comp(t;, ty) = (ti2, S0, €131 €, CIACy,

oy:: ap, sdy, hty, non_optional), where :: is the sequential composition of events and actions, and A the
conjunction of conditions. Both operations must be associative in order to make the instantiation
method deterministic.

Let sc = (S*, TR*,IT *, A*) be SC* (in future, we will omit the components IT* and A*), we define
the set of entry and exit non-optional transitions pairs of a state E of sc as follows:

T. (E) = {(t, t)eTR*xTR* | target(t.)=E A source(t;)=E A TransType(t.)=TransType(t;)=
non_optional}.

The result of eliminating an optional Or-state E of sc corresponds to the following SC*:

Delete_simple_state (E, (S*, TR*)) = (S*~ {E}, TR* U { comp(t,ty) | (t., t,) €T, (E) } - { teTR* |
teDomain(T, (E)) v teRange(T, (E)) } - { teTR* | TransType(t)=optional A (source(t)=E v
target(t)=E ) })

We call this rule Delete_simple_state(E, (S*, TR*)). Figure 5 shows the result of their application.

Case 1.2. When a Or-state is deleted

If an Or-state s = [E, (s;,..., s¢), I, T] is deleted, then their entry and exit optional transitions are
deleted, while the mandatory transitions are composed using the following rebuilding method.

The proposal consists in applying the previous transition composition method of case 1.1 on E,
considering certain conditions and affectations to SC*. Let sc* = (S* TR*) be a SC*, we previously
define the set of all the entry and exit non-optional transition pairs of a Or-state E of sc* as follows:

T, (E) = {(t.t;) e TR*}TR* | target(t.) esub_states(E) A source(t;)esub_states(E) A TransType(t,)=
TransType(t)=non_optional}.

We establish that each entry transition to £ is composed with one exit transition if the source state
of the exit transition is reached from the target state of the entry transition. We define Reachable(E, A)
as the set of reachable substates of £ from the substate 4. Formally, we define TComp, (E) = {(t.,
t)€Te (E) | source(t;) e Reachable(E, target(t,))} as the set of transition pairs that must be composed
by means of case 1.1, previous modification of these transitions as is indicated as follows. For each
entry transition 7, eDomain(TComp, ((E)) its target state is now E, i.e., target(t,)=E. Also, for each exit
transition ¢, eRange(TComp, ((E)), source(t,)=E. The result of eliminating the optional Or-state E of
sc* corresponds to the SC* following:

Delete_Or state (E, (S* TR*)) = (S*~ ({E}sub_states(E)), TR* { comp(change_target(t,E),
change_source(t, ,E)) | (t., t)eTComp, (E) } - { teTR* | source(t) e({E} sub_states(E)) v
target(t) e({E} sub_states(E)) })

change target(t,E) change the target of transition ¢, such that target(t)=E. Likewise,
change source(t, E) change the source of transition ¢, such that source(?)=E.



Figura 6. Deletion of an Or-state optional state.
We call this rule Delete Or state(E, (S* TR*)).

Case 1.3. When an And-state is deleted

If an optional And-state £ is deleted, then their entry and exit optional transitions are deleted, while
the mandatory transitions are composed using a similar rebuilding method to case 1.2.

Two possible relations of dependency or synchronization between parallel states exist. One of them
refers to the occurrence of an event that produces the trigger of two or more transitions belonging to
each one of the parallel substates. The second relation corresponds to using conditions of type “in E”
(see case 3). The latter forces to redefine the concept of reachability, since it is not valid to apply the
previous definition of reachability in a way independent in each one of the orthogonal states.

Let E be an And-state with » orthogonal states. We define now Reachable(E, (E), ..., E,)) as the
set of n-tuples of reachable states from (£, ..., E,). In this way, maintaining the definition of 7, ,(e) of
the previous case and redefining TComp, ((E), it is possible to solve the method of transition
elimination and composition (Delete And state) in an analogous form to case 1.2 (see figure 7).
TComp, s (E) = { (t., t,) € T, (E) | (3 n-tuple_init, n-tuple_end € (S* x ... x S*), | n-tuple_end e
Reachable(E, n-tuple_init) A (3i,j 1<i,j<n | n-tuple_end[i] = source(ty) A n-tuple_init[j] = target(t,) A
cond(t,))) }, being n the amount of orthogonal states in E.

Figure 7. Deletion of an optional And-state.

Note in figure 7 that the condition [in C] in the transition e8 is eliminated (see case 2.2).
We call to this rule Delete_And state (E, (S*, TR*)).

Case 2. Consequences of the elimination of a state

Some situations can appear as a consequence of applying the described cases previously, which must
be considered in order to reestablish the SC. These situations are analyzed in the following cases.

Case 2.1. When an initial state is deleted

If an initial state of a state £ = [s, (s;,..., si), , T] is eliminated, then anyone of their successors that
belongs to £ becomes the new initial substate, i.e. if 37, 1=(tyame, S1, €, €, A, Spew initiat, 1) €T | Spew initial €
(S2,..., sg) then initial (E)= Syew initial

We call this rule Delete Initial state(E, (S* TR*)).

Case 2.2. When some substate in a parallel decomposition is deleted

The conditions of transitions in a parallel decomposition of type “in E” are deleted when the state E is
eliminated via some FM configuration, i.e. if £ is deleted and ¢ = (tname, s, e, ¢, a, s, ht) € TR | “in
E” € ¢, then t’ = (tname, s,, e, delete_expresion_in_condition(“in E”,c), where the function delete
expresion_in_condition(expr, c) eliminates the logic subexpression of c.

We call this rule Delete condition(E, (S*, TR*)).



Case 2.3. When all the substates are deleted

If all substates of a superstate E disappear, then £ also disappears, being applied the case 1. The
substates can disappear by being involved in implementations of different functionalities.

That is to say, for all Or-state £ = [s, (), [, T] € S*, we apply the rule Delete _simple_state(E, (S*,
TR*)).

We call this rule Delete Or-state_empty (E, (S* TR*)).

Case 3. When a transition is deleted

If a transition ¢ of a SC* disappears, it does not produce alterations in the SC*, except when some
state, or possibly a complete subpart of SC*, is unreachable from the initial state of the system. In this
last case, the unreachable substatechart should be eliminated.

We call this rule Delete transition(t, (S*, TR*)).

Case 4. Changing the optional elements to non_optional elements

This rule will be used in the reduction strategy, in order to make part of the final product all optional
elements remainders. That is to say, Vse SOp* StateType(s’) = non optional. In a same way,
vt eTR*, TransType(t’) = non_optional.

We call this rule Changing optional to non_optional(S* TR*).

5.2 Instantiation Method

Given a FM and its configuration, we will name NSF to the set of non-selected functionalities of the
model as consequence of the configuration. Formally, for the FM fin = (Funcs, f;,, Mand, Opt, Alt, Or-
rel) and a configuration confy, = (F, R) of fin, NSF = Funcs - F. We define also the set of non-selected
components (NSC) by the configuration conf;, of SC* sc, which will not be part of the resulting SC, as
follows: NSC(conf;, sc) = { xeVarElem | 3 f; € NSF: xelmp (f) A =3 f: € F: fi#fi Axelmp (fi) },
with VarElem e Imp defined for sc according to section 4.4. This is, the states and transitions that do
not implement selected functionalities by a configuration will be excluded, through the rules, from the
behavior of resulting SC.

The rules should be executed in a certain order, so that be deterministic the obtained SC. We will
assume that rules are organized in rule sets, which are then organized in a sequence of rule sets in
which each rule set can be considered as a layer [12]. Within a rule set, rules maybe applied in a non-
deterministic order. Syntactically we express layers of rule sets as follows: assuming three rules pl,
p2, and p3, ({pl, p2}, p3{) specifies two layers. The first one containing pl, p2, and the second
containing p3. This means that first any rule in the first layer is applied, and then the one in the second
layer. The symbol p{ denotes that the rule p is iterated until it cannot be applied anymore.

The order of application of the rules will determine the order of selection of the elements in
NSC(conf},, sc). Let sceSC*, fmceFMConf, and E,teNSC(fmc, sc). We establish the following
application order of rules:

( {Delete_Initial_state(E, sc), Delete_condition(E, sc)}\, Delete_simple_state(E, sc) ¥; {Delete
Or state(E, sc), Delete_And state(E, sc)\\; {Delete Or-state_empty(E, sc), Delete transition(t,
sc), Changing optional to_non_optional(sc)} )

It is important to consider that the application of a rule produces the elimination of the elements in
NSC(fme, sc). The strategy is completed when NSC(finc, sc)=&.

The method is deterministic with respect to the resulting SC, and avoid inconsistencies that could
arise if the compound states are removed before that the simple states. Note that the implementation of
the first two rules not eliminate states, but only change initial states and deleting conditions like "in E".
Later the affected states will be eliminated by the successor rules. The rule Changing optional
to_non_optional(sc) convert optional elements, which remain in sc, to non_optional elements.



Termination and Deterministic Implementation

It is important to realize that termination and confluence problems can occur whenever a rule-based
approach is used. As termination and confluence are fundamental for the correctness of a model
transformation, systematically validating these properties is a main prerequisite for successful practical
applications, such as transformations in the MDA context, for example.

In our context, the property of termination is clear, given that rules are applied on elements of
NSC(fimc, sc), and this are eliminated in each application until NSC(fimc, sc)=&) The determinism is
analyzed below.

The rol of the first two rules is to avoid ill-formed statecharts. The main rule is
Delete _simple state(E, sc), since Delete Or state(E, sc) and Delete And state(E, sc) are based on
this. Note that Delete simple state(E, sc) not produce ill-formed statecharts (see case 1.1).

Let £1 and E2 € NSC(finc, sc) be the states to eliminate. We consider both independent if there is
no transition connecting both, in this case is clear that the elimination in any order produces the same
SC. Figure 8 shows the opposite case, which is discussed below.
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Figure 8. Deterministic elimination.

Let g = (fE], so;, a; ¢ oy E], htI, I’lOl’Z_Opl‘iOl’Zdl), 151752 = (I‘ELEQ, E], daj Cpa O, E]2, htjg,
non_optional) and tg; = (tg;, E2, ay, ¢y, oy, sd5, hty, non_optional) be the transitions as shown in figure
8.

We assume that the rule Delete simple state(El, sc) is applied before that the rule
Delete_simple state (E2, sc). According to the definition of Delete simple state(El, sc), are
composed all input non_optional transitions with output non optional transitions of £/. In particular,
tg; 1s composed with 7z go.

comp(tey, tgr g2) = ter (k1 g2 = (te1 (E1 B2 SO Q125 Ao, CpACpa, Qg 22 g, E2, Wity non_optional)
We apply now the rule Delete_simple_state(E2, sc) compose transitions fz; g; g2) With ,

comp(te; (g1 g2, te2) = e (el £2) B2 = (tg1 (E1 E2) B2 SO, (Ap:0 Qpz) 22 Gy (CrAC1) ACo, (00 aps) i
0y, sdy, ht,, non_optional)

On the other hand, if we assume now the inverse application of both rules, we can see that the
resulting composition has the same result as the previous case.

comp(tg;, comp(te; g, 1g2)) = g1 (g1 £2) B2 = (1 (E1 E2) B2 SO, a1 li (Qpa o2 ay), ciA(CipAcy), ap::
(01 :: ay), sd, hty, non_optional)

Given that the operators A and :: are associative, comp( comp(tp;, tg ) , tr) = comp(tg,
comp(tg; g 1g2)).

The rules Delete Or state and Delete And state, based on the rule Delete simple_state,
previously filters input and output transitions which will be composed in the same way as in
Delete_simple_state. Therefore we may consider to £7 and E2 of previous case, as compound states.

5.3 Instantiation of the Case study: MPs

The FM of figure 4 can be configured to characterize different MPs, according to the specification of
the case study of section 4.3. Next, we present a configuration of a MP of figure 4 and we proceed
towards obtaining the corresponding SC (the MP wanted), according to the application order of rules
defined in section 5.2.



A MP with neither the support for the management of polyphonic sounds nor the capacity of
alerting the user when new messages enter in the incoming mailbox, is defined by the configuration
confy, = (F, R) of the FM of figure 5, where:

F = {MP, Display, Contacts, MessagesAdm, Multimedia, Images, Videos, Quick-Marking,
Ringer_in_functions}, and

R = {(MP, {Multimedia}), (MP, {MessagesAdm}), (MP, {Quick-Marking}), (MP, {Display}),
(MP, {Contacts}), (MP, { Ringer in_functions}), (Multimedia, {Images}), (Multimedia, {Videos})}.

Taking the previous configuration and the function /mp described in example 1 of section 4.4, the
sets NSF and NSC(conf;,, sc) are defined as follows:

NSF = {Polyphonic Sounds, AlamrNewMessages}, and

NSC(conf;, sc) = {SelectPolSound, TRightMultimedia Type-SelectPolSound, ToChoosePolSound,
TRightSoundType-ToChoosePolSound, TLeftToChoosePolSound-SoundType, TRightToChoosePol
Sound-PhoneFuncionality, MessagesState, TMessage-MainDisplay-Incoming Mess).

None component of NSC(conf;, sc) is an initial state, so it is not possible to apply the rule
Delete Initial state. However, it is possible to apply the rule Delete condition (MessagesState, sc),
since that remove all type conditions "in MessagesState”, but does not eliminate the state
MessagesState. The case study shows the occurrence of the condition “in MessagesState" on the
transition 7Message. In accordance with the established order, in section 5.2, must apply the rules in
the following order:

Delete_condition (MessagesState, sc) 2
Delete_simple_state(SelectPolSound, sc) 2
Delete_simple_state(ToChoosePolSound, sc) 2
Delete_Or-state_empty(MessagesState, sc)
Delete_transition(TRightMultimedia Type-SelectPolSound , sc) 2
Delete transition(TRightSoundType-ToChoosePolSound, sc) =

Delete transition(TLeftToChoosePolSound-SoundType, sc) 2

Delete transition(TRightToChoosePolSound-PhoneFuncionality, sc) =
Delete transition(TMessage-MainDisplay-Incoming Mess, sc) =2
Changing optional to_non_optional(sc).

The resulting SC is observed in figure 9.
6. Related Works

A variety of existing approaches propose the incorporation of variability in software systems and in
particular on PLs. One of these is the one designed by Jacobson [15], whose weaknesses have been
analyzed by several authors.

Most recent solutions attempt to modify or to extend the used models. Different authors have
proposed to represent explicitly the variation points by adding annotations or by changing the bases of
Use Case Diagrams. For example, Von der Mallen [4] proposes the use of a graphical notation with
new relations. John and Muthig [16] suggest the application of use case templates, although they do
not distinguish between optional, alternative or obligatory variants. However, Halman and Pohl
propose in [17] to make use of UML 2 package merge, based on [6], as a tool for the variability
representation and configuration in PLs. As opposed to the mentioned proposals, our solution is
centered in one behavior specification model of a PL, as are the SCs, introducing a clearly defined
formal sustenance.

Also, to define PLs and to characterize their different products we use FMs, which admit a formal
definition and allow us to configure the functional characteristics of a line. An alternative approach to
this paper is developed in parallel by other members of the research project in which this work is
subsumed. In [18] the authors, in a formal framework, define functions that associate SCs (not
components of SCs, as in our case) to functionalities of a FM, and analyze forms of combination



between different SCs which specify possible variants of a PL. Whereas under our method the
behavior of a product into a PL is obtained basically by a selection process, in [18] the focus is

oriented towards a process of SC combinations.

Finally, a preliminary version of this work is [11]. As opposed to [11], this paper presents a rule-
based approach. We define an application strategy for the rules in a proper manner, in such a way that
inconsistencies are avoided in the statechart obtained. We also formalized and added rules that in [11]

are omitted or only described informally.
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Figure 9. SC for a MP without polyphonic sounds and without alert of new messages.

7. Conclusion and Further Works

Most of the techniques of Model Driven Development make use of UML. In particular, the SCs of
UML constitutes a mechanism for specifying systems behavior by means of a graphical representation.
In this work, we presented an extension of UML SCs by incorporating variability in their essential
components to specify PLs. The variability is introduced in the SCs distinguishing optional and non-
optional states as well as optional and non-optional transitions. A PL is specified with a SC*, a FM,



and a formal relation (an implementation function) that binds both models. Using FMs to describe the
common and variant functionalities and applying a rule-based instantiation method, concrete SCs
corresponding to different PLs can be obtained. The approach defines the transformation strategy from
extended SCs to standard UML SCs. We develop partial examples of a case study based on mobile
phone technology, whose full version is not included in this article due to space restrictions.

Given the fact that UML and SCs have become very successful languages for analysis and design
in the very short run, we are confident that the results of this work can be successfully applied to the
real problems of the software industry. It is a timely contribution to an authentic and actual problem.

As part of our plans for future work, we are interested in an extension of SCs which allows us to
completely cover the UML 2.0 SCs and analyze variabilities, not only the ones considered in this
paper, but in all of their components. Also, we will make an attempt to provide a formal semantics for
the extension. This semantics is an essential preliminary step towards both the automatic code
generation and the validation of complex software systems. Finally, we will try to compare formally
both proposed methods by members of the investigation project in which this work is subsumed, in
order to complement and enrich both lines of research.
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