
Investigating the Antiproliferative Activity of High
Affinity DNA Aptamer on Cancer Cells
Harleen Kaur1, Jasmine J. Li1,2, Boon-Huat Bay2, Lin-Yue Lanry Yung1*

1 Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore, 2 Department of Anatomy,

Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore

Abstract

Vascular endothelial growth factor (VEGF) is an angiogenic mitogen involved in promoting tumor angiogenesis inside the
body. VEGF is a key protein required for progression of tumor from benign to malignant phenotype. In this study, we
investigated the binding affinity of a previously selected 26-mer DNA aptamer sequence (SL2-B) against heparin binding
domain (HBD) of VEGF165 protein. The SL2-B was first chemically modified by introduction of phosphorothioate linkages (PS-
linkages). Subsequently, surface plasmon resonance (SPR) spectroscopy and circular dichroism (CD) were used to determine
the binding affinity, specificity and to deduce the conformation of PS-modified SL2-B sequence. Finally, antiproliferative
activity of the modified SL2-B sequence on Hep G2 cancer cells was investigated. Our results demonstrate a marked
enhancement in the biostability of the SL2-B sequence after PS modification. The modified SL2-B sequence also exhibits
enhanced antiproliferative activity against Hep G2 cancer cells in hypoxia conditions. In addition, modified SL2-B sequence
inhibits the expression of Jagged-1 protein, which is one of the ligands to VEGF linked delta/jagged-notch signaling
pathway.
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Introduction

Cancer is one of the leading causes of death worldwide and

accounted for 7.6 million deaths in 2008 [1,2]. In the United

States alone, approximately 1 in 4 people die due to cancer [3].

Currently, monoclonal antibodies are one of the most advanced

therapeutic agents for cancer treatment in the market. Several

FDA approved monoclonal antibody drugs, such as bevacizumab

(trade name: Avastin) against vascular endothelial growth factor

(VEGF) in colorectal, lung, and kidney cancer treatment,

trastuzumab (trade name: Herceptin) against HER2/neu receptor

in breast cancer treatment, and cetuximab (trade name: Erbitux)

against epidermal growth factor receptor (EGFR) in metastatic

colorectal, head and neck cancers, have been developed and are

used either as a single agent or in combination with other drugs

and radiation for cancer therapy [4–12].

In 1990, an in vitro selection process called systematic evolution

of ligands by exponential enrichment (SELEX) was developed to

screen single stranded nucleic acid molecules from random pool of

library against the target ligand [13,14]. These classes of single

stranded molecules are referred as ‘‘aptamers’’. They possess high

binding affinity and specificity that are comparable to monoclonal

antibodies. In addition, the small size, non-immunogenicity and

ease of modification compared to conventional monoclonal

antibody makes aptamers attractive for therapeutic application

[15]. Based on the promising results in preclinical studies, two

cancer targeting aptamers, ACT-GRO-777 (or AS1411) - a G-rich

DNA aptamer targeting nucleolin for treatment of acute myeloid

leukemia (AML) and NOX-A12 L-RNA aptamer targeting

CXCL12 for treatment of multiple myeloma and lymphoma are

already in clinical trials [16,17].

One chief problem that arises in the therapeutic application of

aptamers is their instability under in vitro and in vivo conditions

[18]. They are susceptible to enzymatic nuclease attack in the

cellular and serum fluids. To circumvent this problem, several

chemical modification strategies have been employed to enhance

their resistance against nucleases and to prolong their circulation

half-life in the biological fluids. Such chemical modifications

include incorporation of phosphorothioate linkages (PS-linkages)

or locked nucleic acids (LNAs), addition of functional groups such

as amino (-NH2), fluoro (-F), O-methyl (-OCH3) in 29-position of

ribose sugar, and conjugation to high molecular mass polyethylene

glycol (PEG) or cholesterol [19–25]. Studies have demonstrated

that, compared to the unmodified version, the chemically modified

aptamers exhibit not only longer lifetime in the biological milieu

but sometimes also better binding affinity and specificity to their

targets [21,26].

VEGF is a crucial angiogenic mitogen overexpressed in the

tumor cells and induces their migration, excessive proliferation,

invasion and metabolism inside the body. VEGF is considered to

be the hallmark protein for tumor angiogenesis and has been

associated with neoplastic transformation of cells inside the body

[27]. It is generally thought to be secreted by endothelial cells to

stimulate their proliferation and migration. Previous reports,

however, indicate that different carcinoma and malignant

mesothelioma cell lines also secrete this protein [28–31]. VEGF165
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is the pre-dominant isoform of VEGF-A protein, one of the

members of VEGF family, and primarily binds to its two tyrosine-

kinase receptors VEGFR-1/Flt-1 and VEGFR-2/KDR/Flk-1

with very high affinity and to specific co-receptor neuropilins

[27]. The mitogenic signaling and cell proliferation in tumor cells

is induced by expression of VEGFR-2 [32,33]. In contrast,

activation of VEGFR-1 results in cell invasion and cell migration

but not cell proliferation [34–36].

In our previous study, a 26-mer DNA aptamer against heparin

binding domain (HBD) of VEGF165 protein (referred to as SL2-B)

was obtained using stem-loop truncation strategy [37]. Compared

to the original untruncated aptamer, the SL2-B aptamer exhibited

more than 200-fold increase in the binding affinity to VEGF165

protein. Herein, we modified the SL2-B aptamer by incorporating

phosphorothioate (PS) linkages, tested its binding affinity, speci-

ficity, biostability, secondary structure and the potential feasibility

of the PS-modified SL2-B aptamer as antagonist on the

proliferation activity of cancer cells. We demonstrated that,

compared to unmodified SL2-B aptamer, the PS-modified SL2-B

aptamer is an improved sequence in terms of serum stability and

antiproliferative activity without sacrificing the binding affinity

and specificity for VEGF165 protein.

Materials and Methods

Materials
The HPLC purified oligonucleotide (both unmodified and PS-

modified) was purchased from Sigma-Aldrich. The recombinant

human carrier free VEGF165 (molecular weight of 38 kDa,

pI = 8.25) and VEGF121 (molecular weight of 28 kDa, pI = 6.4)

proteins were purchased from R & D systems. CM5 sensor chips

were purchased from GE Healthcare for protein immobilization.

1-ethyl-3- [3-dimethylaminopropyl] hydrochloride (EDC), N-

hydroxysuccinimide (NHS), and ethanolamine-HCl were pur-

chased from Sigma-Aldrich. Sodium acetate (anhydrous) was

purchased from Fluka. Tween-20 was purchased from USB

Corporation. Acrylamide/Bis-acrylamide (30%) and triton X-100

were purchased from BIO-RAD. Sodium dodecyl sulfate (SDS),

phosphate buffer saline (PBS), and sodium hydroxide (NaOH)

were purchased from 1st Base. Human hepatocellular carcinoma

(Hep G2) cell line was a gift from Dr. Tong Yen Wah’s lab, which

was purchased from ATCC. Human breast adenocarcinoma

(MCF-7) cell line and human colorectal carcinoma cell line (HCT-

116) were purchased from ATCC. The hypoxia chamber was

purchased from Billups-Rothenberg. Dulbecco’s modified eagle’s

media (DMEM) media, and fetal bovine serum (FBS) were

purchased from Caisson laboratories. Trypsin-EDTA and 1%

penicillin/streptomycin mixture were purchased from PAN

biotech. Thiazolyl blue tetrazolium bromide (MTT, 97.5%)

ammonium persulfate (APS), urea and N, N, N9, N9-methylene-

bis-acrylamide (TEMED, 99%), nadeoxycholate and tris buffer

were purchased from Sigma-Aldrich. Monoclonal anti-human

Jagged-1 fluorescein antibody was purchased from R & D systems.

Jagged-1 (28H8) rabbit monoclonal antibody was purchased from

cell signaling. Purified mouse anti-calnexin antibody was pur-

chased from BD transduction laboratories. The lysis and

extraction buffer RIPA (Radio-Immunoprecipitation Assay) buffer

for western blotting was prepared with the following reagents:

RIPA Buffer (50 ml), 50 mM Tris (pH 7.8), 150 mM NaCl, 0.1%

SDS (sodium dodecyl sulphate), 0.5% Nadeoxycholate, 1% Triton

X-100, 1 mM phenylmethylsulfonyl fluoride (PMSF). One tablet

of the protein inhibitor cocktail, complete mini tablet (Roche

Applied Science, Switzerland) was dissolved in 10 ml of the buffer

to complete the lysis buffer preparation. Polyvinyllidene difluoride

(PVDF) membrane, wet pico chemiluminescence substrate and

CL-exposure film were purchased from thermo scientific. The

FITC annexin V apoptosis detection kit was purchased from BD

Pharmingen, Germany. PMSF was purchased from CalBiochem.

Surface Plasmon Resonance (SPR) Spectroscopy
The binding affinity and specificity of modified aptamer

sequence was investigated using surface plasmon resonance

(SPR) spectroscopy, where VEGF165 and VEGF121 acted as

ligands and were directly immobilized on the sensor chip. Briefly,

the carboxylic group on the sensor chip was activated by standard

amine coupling procedure using freshly prepared EDC/NHS.

VEGF165 or VEGF121 (25 mg/ml) in acetate buffer (pH 6.0) were

then injected into the sensor chip at flow rate 8 ml/min to reach

,200 RU immobilization level. The deactivation was done by

ethanolamine-HCl to block unreacted carboxyl groups. The

binding analysis was carried out with modified aptamers at

different concentrations (0.2 to 100 nM) using a BIAcore 2000

instrument (GE Healthcare). The running condition was set at

30 ml/min flow rate, 25uC, 3 min association time and 5 min

dissociation time. PBS and tween-20 solution mixture was used as

the running buffer, and 50 mM NaOH as the regeneration buffer.

All the buffers were filtered and degassed prior to each

experiment. Blank surfaces were used for background subtraction.

Upon injection of the aptamers, sensorgrams recording the

association/dissociation behavior of the VEGF-aptamer complex

were collected. By varying the aptamer concentration, a series of

sensorgrams (Figure 1) were obtained and subsequently analyzed

using the 1:1 Langmuir model provided in the BIAevaluation

software (version 4.1) to calculate the equilibrium dissociation

constant Kd. All SPR measurements were performed in triplicates.

Stability of SL2-B Aptamer Against Nucleases in Serum
Containing Medium

To test the stability of the unmodified and PS-modified SL2-B

aptamer against nucleases, 10 mM aptamer was incubated for

different time intervals in DMEM media supplemented with 10%

FBS at 37uC. 25 ml of sample was taken out at different time point

(0, 12, 24, 48, and 72 hours) and immediately stored at 280uC to

minimize unnecessary degradation. Samples were then subjected

to 12% denaturing polyacrylamide gel electrophoresis (PAGE).

The band density was quantitatively measured using gel densi-

tometry and analyzed using gene tools software from Syngene.

Circular Dichroism (CD) Spectroscopy
To deduce the structure of PS-modified SL2-B aptamer, 10 mM

of aptamer was dissolved in the PBS buffer for CD analysis. The

CD spectrum was recorded in wavelength range of 200–320 nm at

two different temperatures 25uC and 37uC and the data were the

average of 10 scans. The CD spectrum analysis was performed

using cuvette of 1-cm path length on a Jasco J-810 spectropolar-

imeter. The PBS buffer was used as blank for both the

temperatures and the spectral data for SL2-B aptamer was blank

corrected.

Antiproliferative Activity Assay
Hep G2 and MCF-7 cells were seeded at a density of 2000 cells/

ml and HCT-116 cells were seeded at a density of 3000 cells/ml in

96-well plate at day 0 in DMEM media supplemented with 10%

FBS and penicillin/streptomycin mixture. SL2-B aptamer (un-

modified/PS-modified) and scrambled aptamer were incubated

with cells at different concentrations and incubated for 3 days in

hypoxia conditions (5% CO2, 1% O2, and 94% N2) inside the

Antiproliferative Activity of Aptamer on Cancer
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hypoxia chamber. The cell medium was not changed for 3 days.

No cell transfecting or permeabilizing agent was added. The

antiproliferative effect of aptamer on the cells was determined by

measuring cell viability using colorimetric MTT assay. The optical

density reading was recorded using microplate reader (Tecan,

infinite M200) at 570 nm with background subtraction at 620 nm.

The experiment was performed in triplicates.

Microscopy Imaging
The antiproliferative effect of PS-modified SL2-B aptamer on

Hep G2 cells was assessed using optical microscopic imaging.

Same conditions were maintained as for the antiproliferative

activity assay and cells were imaged after 72 hours of aptamer

treatment. Photomicrographs were taken on an Eclipse T5000

(Nikon, Japan) light microscope with Tame2u acquisition software.

Apoptosis Assay
Annexin V apoptosis assay was performed to investigate the cell

death mechanism in Hep G2 cells according to manufacturer’s

protocol. Cells were harvested by trypsinization and washed twice

with cold PBS (1X) and subsequently stained with FITC Annexin

V and propidium iodide. Analysis was performed on the Beckman-

Couter CyAnTM ADP flow cytometer by counting 15000 events.

Flow Cytometry Analysis
Flow cytometry was used to study the effect of PS-modified SL2-

B aptamer on Jagged-1 protein expression in Hep G2 cells. Hep

G2 cells were seeded at a density of 80,000 cells/ml in 6-well plate

at day 0 in DMEM media supplemented with 10% FBS and

penicillin/streptomycin mixture. Following day after seeding, the

cells were treated with modified SL2-B aptamer and scrambled

Figure 1. Typical SPR sensorgrams demonstrating interaction of aptamer with immobilized VEGF165 protein at different
concentration (bottom to top, 0.2 to 100 nM). Point A to B corresponds to association phase and point B to C corresponds to the dissociation
phase in all the sensorgrams. Shown here is PS-modified SL2-B aptamer (Kd = 0.5660.44 nM).
doi:10.1371/journal.pone.0050964.g001

Table 1. Unmodified and PS-modified SL2-B aptamer sequences along with their equilibrium dissociation constant (Kd) values
determined using surface plasmon resonance (SPR) spectroscopy.

Sequences of original and PS-modified aptamer (59–39) Kd

Unmodified SL2-B aptamer CAATTGGGCCCGTCCGTATGGTGGGT 0.5060.32 nM

PS-modified SL2-B aptamer C*AATTGGGCCCGTCCGTATGGTGGG*T 0.5660.44 nM

‘‘*’’ indicates the position of phosphorothioate (PS) modification.
doi:10.1371/journal.pone.0050964.t001
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aptamer sequence at 15 mM aptamer concentration. Same

hypoxia conditions were maintained as for the antiproliferative

activity assay. After 3 days of aptamer treatment, the cells were

trypsinized, incubated with anti-human Jagged-1 fluorescein

antibody for 1 hour, re-suspended in PBS buffer and analyzed

immediately using a Beckman-Couter CyAn ADP flow cytometer

by analyzing 15,000 events and relative fluorescence was

determined using SUMMIT V 4.3.02 software.

Western Blot Analysis
The sequence specific effect of PS-modified SL2-B aptamer on

Jagged-1 protein expression in Hep G2 cells was analyzed using

western blotting. Same experimental conditions were maintained

as for the flow cytometry. After 3 days of aptamer treatment, the

cell medium was removed and the cells were washed once in cold

16PBS. 500 ml of the complete lysis buffer was added to each 6-

well and the cells were scrapped with a cell scrapper and collected

into microcentrifuge tubes. The extracted proteins were resolved

on an SDS-PAGE gel and transferred onto a PVDF membrane via

wet transfer. Membranes were blocked in 5% non-fat milk and

washed in tris-buffered saline with 1% tween. Subsequently,

membranes were incubated with primary antibody (Jagged-1

rabbit monoclonal and purified mouse anti-calnexin antibody) and

then with corresponding secondary antibody (goat anti-rabbit and

anti-mouse IgG secondary antibody conjugated to horseradish

peroxidase (HRP)) with 3 washing steps in between. The protein

bands were developed with west pico chemiluminescence substrate

and visualized on XPress CL blue ray film. Optical densities of

bands were measured on a GS800 densitometer and band

intensities were analyzed with Quantity One image analysis

software (Biorad, USA).

Statistical Analysis
Data are presented as mean 6 SD. A p-value ,0.05 was

considered statistically significant using student’s t-test.

Results and Discussion

Binding Analysis of PS-modified SL2-B Aptamer and VEGF
Complex by Surface Plasmon Resonance (SPR)

As reported previously in our study, the unmodified SL2-B

aptamer displayed a Kd = 0.5 nM to heparin binding domain

(HBD) of VEGF165 protein determined via SPR technique

(Table 1) [37]. The unmodified aptamer, however, exhibited low

structural stability in the cellular conditions. This is due to the

presence of exonucleases and endonucleases in biological fluids

which degrade the aptamers by hydrolyzing the phosphate ester

bond in the backbone [19]. To alleviate this problem, in this study,

the SL2-B aptamer was chemically modified with phosphorothio-

ate (PS) linkages at 59 and 39- terminus (Table 1) to protect the

SL2-B aptamer from exonucleolytic digestion. The PS-modifica-

tion involves the substitution of unbridged phosphoryl oxygen in

Figure 2. SPR sensorgrams demonstrating interaction of PS-modified SL2-B aptamer with immobilized VEGF165 and VEGF121

protein at same concentration. Point A to B corresponds to association phase and point B to C corresponds to the dissociation phase in both the
sensorgrams. Shown here is PS-modified SL2-B aptamer binding with VEGF165 protein (Kd = 0.5660.44 nM) and VEGF121 protein (Kd = 1761.24 mM) at
80 nM aptamer concentration.
doi:10.1371/journal.pone.0050964.g002
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phosphodiester linkage by sulfur atom. Since the excess incorpo-

ration of PS-linkages leads to non-specific binding and can perturb

the aptamer conformation and its interaction with the target, the

modification was introduced only at aptamer termini [38].

The Kd value for PS-modified SL2-B aptamer was determined

using SPR technique at different aptamer concentrations (Figure 1

and Table 1). The Kd value for the PS-modified SL2-B was found

to be 0.56 nM, which is similar to the Kd for unmodified SL2-B.

Introducing PS-modification does not appear to affect the binding

affinity of the SL2-B aptamer. Moreover, the affinity of PS-

modified SL2-B is similar to the FDA approved humanized anti-

VEGF monoclonal antibody ‘‘bevacizumab’’ (Kd , 0.5 nM) used

for cancer treatment [4].

Specificity of PS-modified SL2-B Aptamer Sequence
VEGF165 as well as other VEGF isoforms, such as VEGF189

and VEGF206, are generated from splicing of a single VEGF gene

that shares a carboxyl-terminal heparin-binding domain (HBD) of

50-residues and binds to heparin with different binding affinities

[27,39,40]. HBD is responsible for enhancing the interaction of

VEGF with its receptors (VEGFR-1/Flt-1 and VEGFR-2/KDR/

Flk-1) and the specific co-receptor neuropilins to trigger the

angiogenic response in malignant cells [41].

VEGF121, however, does not share the HBD as other VEGF

isoforms and can be used as a control for HBD binding specificity

study. The SPR sensorgram in Figure 2 shows that compared to

VEGF165 protein at same aptamer concentration (80 nM), the

response signal of PS-modified SL2-B binding to VEGF121 protein

was weak and displayed a high Kd value of 17 mM. This indicates

that PS modification does not reduce the binding specificity of

SL2-B aptamer towards HBD significantly (Kd = 17 mM for PS-

modified SL2-B towards VEGF121, Kd = 10 mM for unmodified

SL2-B towards VEGF121). Compared to the ‘‘bevacizumab’’

monoclonal antibody that binds to all isoforms of VEGF, the

PS-modified SL2-B is specific to HBD of VEGF165 protein [4].

Since VEGF-A is involved in normal physiological processes, such

as formation of new blood vessels and wound healing process, the

complete inhibition of VEGF protein can affect the maintenance

of the normal vascular system inside the body [42,43]. Therefore,

inhibition of specific VEGF protein (for example, VEGF165 in this

case) may be a better therapeutic approach.

Figure 3. Nuclease-resistance stability of unmodified and modified SL2-B aptamer sequence in 10% FBS. Aptamers were incubated
with 10% FBS dissolved in DMEM media at 37uC for different time points and percentage of intact aptamer was determined by measuring the band
density after running denaturing PAGE. Filled columns are PS-modified SL2-B, while open columns are unmodified SL2-B.
doi:10.1371/journal.pone.0050964.g003

Antiproliferative Activity of Aptamer on Cancer

PLOS ONE | www.plosone.org 5 January 2013 | Volume 8 | Issue 1 | e50964



Figure 4. CD spectra of 10 mM PS-modified SL2-B aptamer in phosphate buffer saline (PBS) buffer, pH-7.2. Spectra were measured
at 256C (solid line) and 376C (dotted line).
doi:10.1371/journal.pone.0050964.g004

Figure 5. Relative % proliferation of Hep G2 cells (compared to control) after treating with unmodified and PS-modified SL2-B
aptamers at different concentrations in hypoxia conditions. The sequence specificity was determined using scrambled sequence for PS-
modified SL2-B for each data point at same concentration to the modified SL2-B. Solid line is PS-modified SL2-B, dashed line is unmodified SL2-B, and
dotted line is scrambled sequence.
doi:10.1371/journal.pone.0050964.g005
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Stability of SL2-B Aptamer Against Nucleases in Serum
Containing Medium

To test the biostability of the unmodified and PS-modified SL2-

B aptamer against nucleases present in the biological fluids, both

aptamers were incubated with 10% FBS for different time periods.

Based on the results, the unmodified SL2-B degraded by 50%

within 24 hours of incubation in serum (Figure 3). On the other

hand, the PS-modified SL2-B displayed good stability, with more

than 90% aptamer intact after 72 hours of incubation in the

serum. The data demonstrates the importance of PS-linkages in

the SL2-B sequence termini, which protects the aptamer sequence

from exonuclease attack.

Structural Analysis by Circular Dichroism (CD)
Spectroscopy

Structural studies have shown the impact of the conformation

on the binding affinity and specificity of the aptamer for its target

[44]. If the conformation changes with temperature, then the

binding affinity results obtained from SPR spectroscopy (conduct-

ed at 25uC) may not be representative in in vitro assays (conducted

at 37uC). Thus, the secondary conformation of the PS-modified

SL2-B aptamer was investigated. Positive maxima peaks were

observed at 260 nm and 220 nm as well as a negative minima

peak at 240 nm and additional small shoulder peak at 290 nm

(Figure 4). Based on the previous reports, such spectra reflect a

typical hairpin stem-loop conformation [45]. Since no change in

the spectra was observed between 25uC and 37uC, this confirms

the preservation of the secondary conformation at the SPR

conditions (25uC) where the Kd of the aptamer was determined

and at physiological conditions (37uC). However, the CD

spectroscopy does not provide the complete and validated

information on the structure. Advanced techniques such as

nuclear magnetic resonance (NMR) and X-ray crystallography

are required for further in-depth structural analysis.

Antiproliferative Activity Assay
The antiproliferative property of SL2-B aptamer was studied

using Hep G2 cancer cells in hypoxia conditions. Previous studies

have demonstrated that the expression of VEGF protein is

potentiated in Hep G2 cells under hypoxia conditions [46]. Since

no significant effect on cell proliferation was observed at 24 and 48

hours, both the unmodified and PS-modified SL2-B aptamers were

tested for 72 hours duration. As shown in Figure 5, lower cell

proliferation was observed at 15 mM modified SL2-B concentra-

tion after 72 hours of aptamer treatment (5262.1%). However, no

decrease in the cell proliferation was observed on further

increasing aptamer concentration to 20 mM. A possible explana-

tion for decrease in the cell proliferation could be that either the

excess binding of modified SL2-B sequence to VEGF165 protein

ultimately prevents the interaction of the protein to the VEGFR-2

(or KDR/Flk-1) receptor, which affects the cellular proliferation.

Or aptamer after binding with VEGF protein binds with VEGFR-

2, undergoes cellular internalization and interferes with the

Figure 6. Effect of PS-modified SL2–B aptamer sequence compared to the scrambled sequence on Hep G2 cells. Low magnification
view of (A) modified sequence treatment, (B) scrambled sequence treatment on Hep G2 cells after 72 hours under hypoxia condition. Scale
bar = 200 mm. Close up views of (C) modified sequence treatment, (D) scrambled sequence treatment on Hep G2 cells after 72 hours under hypoxia
condition. Cellular morphology differs upon the different treatments; modified sequence treatment produces cells which are thinner with more
cellular projections while the scrambled sequence treatment shows cells which appear closer to the untreated Hep G2 cells. Scale bar = 50 mm.
doi:10.1371/journal.pone.0050964.g006
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Figure 7. Annexin V assay of Hep G2 cells treated with modified sequence and scrambled sequence. (A) The scatterplot depicting the
distribution of cells with annexin V staining along the x-axis and those stained with propidium iodide (PI) along the y-axis. Region R10 denotes the
viable population (double negative for annexin V and PI), R9 the non-viable cells (double positive for annexin V and PI), R11 shows the annexin V
positive (PI negative) population while R8 are the damaged cells (PI positive but annexin-V negative). (B) % Histogram of the R9 quadrant data. The
analysis of the triplicate samples for showed a significantly higher amount of dead cells (p-value ,0.05) in the modified sequence treatment
compared to the scrambled sequence control. (C) % Histogram of R11 quadrant data. The results show no significant difference for early apoptosis.
Error bars = SEM.
doi:10.1371/journal.pone.0050964.g007

Figure 8. Flow cytometry histogram of Jagged-1 protein expression in Hep G2 cells using anti-human Jagged-1 antibody and
quantitative analysis of flow cytometry result. Each histogram curve represents the expression of Jagged-1 obtained with (gray line) and
without (black line, negative control) treatment with PS-modified SL2-B aptamer at 15 mM concentration. *Significant difference from the negative
control sample at p-value ,0.05.
doi:10.1371/journal.pone.0050964.g008

Antiproliferative Activity of Aptamer on Cancer
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downstream VEGF linked intracellular signaling pathways. The

result also indicates that VEGF protein may be involved in the

proliferation of investigated Hep G2 cancer cells under hypoxia

conditions. On the contrary, the unmodified SL2-B aptamer

sequence did not exhibit significant inhibitory activity on the

cellular proliferation. This could be due to the degradation of the

unmodified sequence by nuclease enzymes in the media before

pronouncing its effect on the cancer cells.

To demonstrate that the antiproliferative effect of PS-modified

SL2-B aptamer is sequence specific, a scrambled sequence was

added to the Hep G2 cells at the same concentration as PS-

modified SL2-B (Figure 5). The results showed minimal decrease

on the cell proliferation with the scrambled sequence, confirming

that the inhibitory effect on VEGF165 protein activity by PS-

modified SL2-B was sequence specific in Hep G2 cells. The

sequence specific inhibition was also confirmed by the cell count

and morphological differences presented in photomicrographs

(Figure 6). As shown in Figure 6A and 6B, the cells treated with

modified sequence have noticeably fewer cells as compared with

the scrambled sequence where there appears to be more cells per

view and packed closely to one another. Furthermore, under the

same magnification, the morphology of the cells treated with the

modified sequence appears longer and thinner with many side

projections as compared with the scrambled sequence, which are

more angular and more defined in shape (Figure 6C and 6D).

These findings indicate the potential of the PS-modified SL2-B

aptamer sequence in inhibiting the Hep G2 cancer cells

proliferation strongly and specifically.

To determine the cell death mechanism in Hep G2 cells,

annexin V apoptosis assay was performed and analyzed using flow

cytometry. In Figure 7A, the R9 and R11 quadrant cells in flow

cytometry scatterplot were counted and expressed as percentage of

cells in late and early apoptosis phase respectively. Early apoptotic

cells include cell population that is annexin V positive only (R11),

and late apoptotic cells include cell population that is both annexin

V and PI positive (R9). The apoptosis assay showed increased

percentage of cell death with modified sequence compared with

the scrambled sequence treatment in late apoptosis phase

(Figure 7B, p-value ,0.05). However, the percentage of cells

undergoing late apoptosis was not very high and no significant

difference in cell count was observed between modified and

scrambled sequence in early apoptosis phase (Figure 7C). This

result indicates that besides apoptosis, other non-apoptotic cell

death mechanism such as senescence may be involved in induction

of cell death in the Hep G2 cells.

To confirm the antiproliferative ability of the PS-modified SL2-

B aptamer, we further investigated the effect with MCF-7 cells and

HCT-116 cells since existing literature has shown that they also

overexpress VEGF protein in hypoxia conditions [47,48]. A

15 mM modified SL2-B concentration was used in this study but

our results showed that both MCF-7 and HCT-116 cancer cells

displayed only 2363.2% and 961.8% decrease in cell prolifer-

ation was observed respectively. Based on these cell proliferation

results, the effect of PS-modified SL2-B sequence on cell

proliferation is believed to be cell type specific. Since antiprolif-

erative effect on MCF-7 and HCT-116 cancer cells were not very

substantial, they were not used for further studies below.

Additional antiproliferative studies on various cancer cell types

should be conducted to uncover the potential therapeutic targets

and to identify the factors responsible for cell specific antiprolif-

erative activity of this aptamer.

Flow Cytometry and Western Blot Analysis of Jagged-1
Protein Expression

Notch signaling is an evolutionary conserved signaling pathway

affecting many cellular processes such as cell-fate determination,

differentiation, proliferation, and survival. Five Notch ligands

(Jagged-1, Jagged-2, Delta-1, Delta-3, and Delta-4) and four Notch

receptors have been well established in mammals [49,50].

Evidence indicates the biochemical linkage between VEGF and

delta/jagged-notch pathways activation, and together both are

involved in promoting tumor progression [51,52]. In this linkage,

VEGF pathway is essential for the initiation of tumor angiogenesis

and acts as the upstream activating stimulus, whereas notch

signaling which acts on downstream of the VEGF pathway, helps

to respond to activating stimulus and shape the activation by

making cell fate decisions [49]. Due to the crosstalk between

VEGF and notch signaling pathways, the effect of PS-modified

SL2-B aptamer was tested on Jagged-1, which is one of the notch

ligands. Jagged-1 is overexpressed in various malignant tumors

and has been associated with cancer recurrence [53–55]. Here, we

examined the effect of PS-modified SL2-B aptamer on the

expression of Jagged-1 protein in Hep G2 cells via flow cytometry

technique. Compared to the untreated sample (only cells),

modified SL2-B treatment exhibited decrease in the fluorescent

signal (Figure 8). This shift in the peak indicates the downregu-

lation of the Jagged-1 expression due to the addition of PS-

modified SL2-B aptamer in Hep G2 cells (p-value ,0.05).

Besides flow cytometry, the effect of PS-modified SL2 aptamer

on Jagged-1 protein expression in Hep G2 cells was analyzed using

western blotting. The scrambled sequence of the modified aptamer

was used as control. The modified aptamer appears to induce a

lower expression of the Jagged-1 protein in Hep G2 cells as

compared to the scrambled sequence (Figure 9). This confirms the

sequence specific inhibition of the aptamer on Jagged-1 protein

expression in Hep G2 cells. Based on both flow cytometry and

western blotting results, it can be concluded that the binding of PS-

modified SL2-B aptamer to VEGF protein exhibits its antiprolif-

Figure 9. Western blot of whole cell lysates from Hep G2 cells
treated with the PS-modified SL2 aptamer and scrambled
sequence (control). The expression of Jagged-1 protein in Hep G2
cells was assessed. Calnexin protein was used as a loading control. Error
bar = SEM.
doi:10.1371/journal.pone.0050964.g009
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erative activity in Hep G2 cells not only by inhibiting VEGF

pathway but also the interconnected delta/jagged-notch signaling

pathway in Hep G2 cells. Further studies are warranted to

determine the effect of the modified aptamer on different notch

ligands and other VEGF linked signaling pathways.

Conclusions
To summarize, this work attempted to study the antiprolifer-

ative potential of SL2-B aptamer in cancer cells. From the data, we

conclude that post-modification, the PS-modified SL2-B aptamer

retained its binding affinity and specificity for the heparin-binding

domain (HBD) of VEGF165 protein. Furthermore, compared to

the unmodified aptamer, the modified SL2-B demonstrated good

biostability and exhibited its sequence specific antiproliferative

activity on Hep G2 cancer cells in hypoxia conditions. Thus, based

on the results of this work, it appears that chemical modification

can be a useful approach in prolonging the half-life of the SL2-B

aptamer in the in vitro conditions. This newly obtained SL2-B

aptamer sequence can potentially be useful in oligomer-based

cancer therapeutic applications, though further preclinical studies

are required for better understanding of the SL2-B aptamer

sequence and to evaluate its potential therapeutic value for cancer

treatment.
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