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ABSTRACT
In this paper, we analyze the performance of the EDF schedul-
ing policy for charging electrical vehicles when the exact
deadlines are not known by the scheduler. Instead, they are
declared by users. We quantify the effect of this uncertainty
in a mean field regime, and show that incentives appear for
users to under-report their sojourn time. We characterize
the average gain for a given uncertainty model and devise a
policy to curtail strategic users.
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1. INTRODUCTION
In recent years, the development of Electrical Vehicles

(EVs) has brought up the problem of deploying a charg-
ing infrastructure. A typical scenario [2] is of a parking lot
at a certain corporate or school site, where EVs stay for a
considerable time and may thus be conveniently recharged.
In this setting, individual chargers may be provided across
the facility, but power provisioning need not cover the peak
load due to its expense, so not all chargers may be active
at the same time. Therefore, the system behaves as a many
server queue where we can use the time flexibility of users
to schedule the sharing of this limited capacity [3].

In a previous paper [5], we analyzed the performance
of several deadline-based scheduling policies resorting to a
mean field analysis. Among others, the Earliest-Deadline-
First (EDF) policy was considered, which fills the capacity
with EVs closest to their departure.

One of the problems with such deadline-based policies is
that they require advance knowledge of the exact sojourn
time of customers. In practice, these may not be known ex-
actly or may be incorrectly reported by users. Furthermore,
smart users may game the system by under-reporting their
departure time in order to achieve priority. This situation
leaves the EDF policy working with uncertain deadlines.

In this paper, we extend the framework of [5] to take into
account the uncertainty, and analyze how the performance is
affected in such situation. We also provide a simple variant
of the policy that provides incentives to users to truthfully
reveal their deadlines. These results based on mean field
assumptions are validated through simulations.

Mathematical performance Modeling and Analysis Workshop 2021 Beijing,
China, June 14, 2021
Copyright is held by author/owner(s).

2. SYSTEM MODEL
Consider a system where EVs arrive as a Poisson pro-

cess of intensity λ. Each EV has three main characteristics:
its service time S (or requested energy, normalized by the
charger nominal power), its sojourn time T and its declared
sojourn time T ′. We assume that these magnitudes are ran-
dom and independent for each vehicle, and that S 6 T , i.e.
the vehicle demand is feasible. The parking lot can activate
at most C chargers simultaneously.

We assume that the system is unaware of the real sojourn
time, and serves the EVs following the EDF algorithm using
the declared deadline (but vehicles depart according to their
true deadlines). If an EV is still in the system, it can still be
charged after their declared deadline has expired. The load
of the system is ρ := λE[S] and we would like to understand
the performance of the system in overload, i.e. ρ > C.

We first recall briefly the mean field analysis of EDF from
[5]. A typical charging profile is as follows: the EV begins
receiving service when its remaining sojourn time τ satisfies
τ < τ∗0 . The threshold value τ∗0 is fixed in the mean field
limit. As a consequence, the total service time is bounded
by τ∗0 and the attained service S0

a is:

S0
a = min{S, τ∗0 }. (1)

The threshold τ∗0 follows from the capacity condition:

λE[S0
a] = λE[min{S, τ∗0 }] = C. (2)

We now analyze the case where EDF has to cope with
the perturbed sojourn time T ′. Let τ ′ denote the remaining
declared sojourn time of the vehicle. In the mean field limit,
a threshold τ∗ emerges and the vehicle becomes prioritized
whenever τ ′ < τ∗, i.e. at time t + T ′ − τ∗ since arrival.
Its service ends whenever it reaches full charge or departs
at time t + T . Therefore in this case its service time is
min{S, T−T ′+τ∗}, as depicted in Fig. 1. If T−T ′+τ∗ < 0
it departs before getting any service. We have the following:

Proposition 1. Consider an EDF charging system work-
ing under deadline uncertainty. Assume that the system is
in overload, i.e. ρ > C. Then in the mean field limit the
attained service of a given vehicle satisfies:

Sa = min{S, (T − T ′ + τ∗)+}, (3)

where the threshold τ∗ satisfies the fixed point equation:

λE[min{S, (T − T ′ + τ∗)+}] = C. (4)

Note that eq. (4) always has a unique solution when ρ >
C since E[min{S, (T − T ′ + τ∗)+}] → E[S] monotonically
whenever τ∗ ↑ ∞.
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Figure 1: Charging profiles for EDF under uncertain
deadlines.

3. THE EFFECT OF UNCERTAINTY
In order to quantify the effect of having random uncer-

tainty in the deadlines, we now solve this fixed point equa-
tion under some distributional assumptions on S, T, T ′. As-
sume that the charging time S ∼ exp(µ), T = S + L where
L is a positive random variable representing the laxity the
user has on arrival. Finally, assume that:

T ′ = T + U where U ∼ Uniform[−θ, θ].

Here θ acts as an uncertainty parameter.
A useful Lemma is stated first:

Lemma 1. If S is an exponential random variable with
parameter µ and x > 0 then:

E[min{S, x}] =

∫ x

0

e−µxdx =
1

µ
(1− e−µx).

Let X = (T − T ′ + τ∗) ∼ Uniform[τ∗−θ, τ∗+θ]. Assum-
ing τ∗ ≥ θ so X ≥ 0 a.s1, we can compute:

E[min{S, (T − T ′ + τ∗)+}] = E[E[min{S,X} | X]] =

= E

[
1

µ
(1− e−µX)

]
=

1

µ

(
1− e−µτ

∗ sinh(µθ)

µθ

)
.

With the above formula at hand, we can compute the thresh-
old for a given λ,C by solving (4) to yield:

τ∗ = − 1

µ
log

(
µθ

sinh(µθ)

(
1− C

ρ

))
. (5)

As θ → 0, the uncertainty disappears, µθ
sinh(µθ)

→ 1 and

we have the expression τ∗0 = − 1
µ

log
(

1− C
ρ

)
for the EDF

threshold studied in [5].
To better understand the effect of the uncertainty, we fo-

cus on individual EV performance and compute:

E[Sa | U ] = E[min{S, (T − T ′ + τ∗)+} | U ],

the expected service attained by vehicles that misreport
their deadline by U . Since T − T ′ = −U and τ∗ is fixed,
the second random variable in the min is measurable with
respect to U , so we can resort to Lemma 1 to obtain:

Proposition 2. In an EDF system in overload, working
with uncertain deadlines and exponential service times, the

1The alternate case τ∗ < θ can be handled by a corrected
calculation.

Figure 2: Attained energy difference between the
uncertain and perfect information case.

attained service for a given deadline uncertainty satisfies:

E[Sa | U ] =
1− e−µ(τ

∗−U)+

µ
, (6)

where τ∗ satisfies the fixed point equation (4).

Going back now to our specific parametric model and un-
der the assumption τ∗ ≥ θ, we can combine (6) with the
threshold in (5) to quantify the uncertainty impact in that
case. Specifically, we compute the gain in attained service
for a given uncertainty level with respect to the perfect in-
formation case, normalized by mean service demanded:

E[Sa − S0
a | U ]

E[S]
=
E[Sa | U ]− E[S0

a]

E[S]
.

From eq. (2) we know that E[S0
a] = C/λ in the mean field

limit, and E[Sa | U ] follows from eq. (6). For the uniform
uncertainty case, we solve this explicitly to yield:

E[Sa − S0
a | U ]

E[S]
=

(
1− C

ρ

)(
1− µθ

sinh(µθ)
eµU

)
. (7)

In Fig. 2, we show the results of a simulation experiment
performed using the Julia library EVQueues.jl [1]. The pa-
rameters are λ = 30, C = 40, µ = 0.5 and θ = 1. The
normalized attained energy difference is plotted for each ve-
hicle as a function of U = T ′ − T . Note there are multiple
points in the 0 level. In solid lines, the average gain is esti-
mated via the Nadaraya-Watson kernel regression estimator
for the conditional expectation [4], and compared with the
theoretical mean field expression in (7), showing good fit.

We observe that EVs under-reporting deadlines tend to
receive more service. This is true regardless of the uncer-
tainty model because the expression (6) is decreasing in U .

4. ENFORCING INCENTIVES
Given the preceding observation, strategic users may get

an advantage from the previous policy by under-reporting
their deadlines. In order to to provide incentive compati-
bility, a simple variant of the policy is: serve EVs only up
to departure or declared departure time, whichever happens
first. We now analyze this alternative.

A representative trajectory is depicted in Fig. 3. A vehicle
arriving at time t will receive service up to min{t+T, t+T ′},



t

S

T

T ′

t+ Tt+ T ′

↙
Curtailed EDF profile

t+ T ′ − τ∗

τ∗
Sa = τ∗

Figure 3: Charging profiles under a curtailed EDF
policy.

and its service time will be either S or:

min{t+ T, t+ T ′} − (t+ T ′ − τ∗)− t =

= min{T, T ′} − T ′ + τ∗ = (T − T ′)1{T<T ′} + τ∗,

provided that the above term is positive. Otherwise it will
not receive service. We call this the curtailed EDF policy,
which is characterized in the following:

Proposition 3. Consider an EDF charging system work-
ing under deadline uncertainty and curtailing users when
their declared deadline expires. In the mean field limit with
the system in overload (ρ > C) the attained service of a
given vehicle satisfies:

Sa = min{S, ((T − T ′)1{T<T ′} + τ∗)+}, (8)

where the threshold comes from the fixed point equation:

λE[min{S, ((T − T ′)1{T<T ′} + τ∗)+}] = C. (9)

Note that the indicator term in (8) only becomes active when
an EV over-reports its deadline.

We now solve the above equations for the parametric case
we have been considering, i.e. uniform deadline uncertainty.
The attained work can be written as (for τ∗ > θ):

Sa = min{S, τ∗ − U1{U>0}}.

Invoking again Lemma 1 we arrive at:

E[Sa] = E[E[Sa | U ]] =

∫ θ

−θ

1− e−µ(τ
∗−u1{u>0})

µ

1

2θ
du

=
1

µ

[
1− e−µτ

∗
(

1

2
+
eµθ − 1

2µθ

)]
,

and we can solve for the threshold in the same way as before:

τ∗ = − 1

µ
log

[(
1

2
+
eµθ − 1

2µθ

)−1(
1− C

ρ

)]
. (10)

Analogous to Proposition 2, we find an expression for the
conditional expectation of attained service with respect to
the misreport in deadline, for exponential service times:

Proposition 4. In a curtailed EDF system in overload,
working with uncertain deadlines and exponential service
times, the attained service for a given uncertainty satisfies:

E[Sa | U ] =
1− e−µ(τ

∗−U1{U>0})
+

µ
, (11)

where τ∗ satisfies the fixed point equation (9).

Figure 4: Attained energy difference between the
uncertain and perfect information case.

The expression in (11) is again non-increasing in U , but it
is now constant whenever U < 0, i.e. T ′ < T . This curbs
the incentive to under-report the deadline since no gain is
obtained on average with respect to T ′ = T .

For the parametric model of U under consideration, we
obtain from (10) a formula for the conditional gain in service:

E[Sa − S0
a | U ]

E[S]
=

(
1− C

ρ

)(
1− eµU1{U>0}

1
2

+ eµθ−1
2µθ

)
. (12)

In Fig. 4, we show the results of a simulation experiment
under the same setting than the previous Section but with
the new curtailed policy in use. We can see that the average
gain for a given uncertainty level is curbed whenever U < 0,
and coincides with the theoretical expression in (12).

5. CONCLUSIONS
We analyzed the performance of the EDF scheduling pol-

icy for charging electrical vehicles when deadlines are uncer-
tain, quantifying the effect of this uncertainty, and provided
a policy to curtail users that under-report their deadlines
with provable performance.
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