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1. Introduction
The kinematic and dynamic aspects associated 
with the motion of remote-control model (or 
toy) cars and the electromagnetic aspects associ-
ated with the operation and the efficiency of their 
small built-in electric motor as well as with the 
transmission and reception of electromagnetic 
waves for controlling their motion deserve the 
attention of researchers and teachers of physics.

Wick and Ramsdell [1, 2] modelled the 
motion of toy cars rolling down an arbitrarily 
defined track. In their experiment, turning points 
were expressed in terms of height loss relative 
to a hypothetical frictionless situation based on 
the static friction coefficient between the car and 
the track. The authors provided a detailed analy-
sis of different track shapes and the effects of air 

friction but failed to account for the effects of roll-
ing. In addition, unlike the remote-control cars of 
our study, the cars used by Wick and Ramsdell 
were not driven by a built-in motor but rolled by 
the effect of gravity. In a later work, Wick and 
Ramsdell [3] studied the motion of an electric toy 
train. The analysis focused on aspects of friction, 
electrically induced torque and electromotive 
forces, and included other effective parameters 
needed to develop a model that could be solved 
numerically. Unlike the case with remote-control 
cars, the power input of a train can be changed 
arbitrarily by accurately adjusting the voltage 
delivered by an external regulated source of direct 
current.

Care must be taken by physics teachers 
to avoid misleading students into thinking that 
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Abstract
Simple experiments for which differential equations cannot be solved 
analytically can be addressed using an effective model that satisfactorily 
reproduces the experimental data. In this work, the 1D kinematics of a 
remote-control model (toy) car was studied experimentally and its dynamical 
equation modelled. In the experiment, maximum power was applied to 
the car, initially at rest, until it reached its terminal velocity. Digital video 
recording was used to obtain the relevant kinematic variables that enabled 
to plot trajectories in the phase space. A dynamical equation of motion was 
proposed in which the overall frictional force was modelled as an effective 
force proportional to the velocity raised to the power of a real number. Since 
such an equation could not be solved analytically, a dynamical model was 
developed, and the system parameters were calculated by non-linear fitting. 
Finally, the resulting values were substituted in the motion equation and the 
numerical results thus obtained were compared with the experimental data, 
corroborating the accuracy of the model.
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the behaviour of real systems can always be 
described from a purely theoretical perspective 
and expressed in terms of simple equations  that 
can be solved analytically. As an example, experi-
ments with remote-control cars can be carried out 
easily but cannot be easily modelled. The con-
cepts and tools necessary for developing a suit-
able model are described in this paper.

The motion of a remote-control car can be 
modelled by describing trajectories in the phase 
space, with the acceleration and the velocity as 
variables [4]. The kinematic variables can be 
obtained from the analysis of digital video record-
ing of the car in motion. In this work, use was 
made of the Tracker video analysis and modelling 
tool [5, 6] capable of determining the position of 
a moving object as a function of time and then 
using it in numerical derivation schemes to obtain 
other magnitudes, such as its velocity or accelera-
tion. Tracker was also used to develop a dynami-
cal model describing the kinematic behaviour of 
the car. Non-linear fitting to the trajectory in the 
phase space was used to determine approximate 
values of the parameters in the motion equation. 
Tracker also carried out numerical integration of 
the motion equation, the results of which were 
plotted and compared with the experimental plots.

The experimental analysis of the evolution 
of different physical phenomena based on digital 
video recordings has received attention in the lit-
erature in the past years ([7–11] among others). In 
contrast, the same does not hold true for the use of 
dynamical models to verify the predictive power 
of motion equations, the works by Wee [12, 13] 
being notable exceptions. Clearly, where motion 
equations can be solved analytically—as is usu-
ally the case with laboratory experiments—the 

numerical solution of models appears to lack 
didactic value. However, real systems can seldom 
be modelled from a purely theoretical perspective.

The dynamic behaviour of remote-control 
toy cars in the phase space cannot be described in 
terms of equations that can be solved  analytically. 
In this paper, a model based on a non-linear 
motion equation  was found to reproduce the 
system’s behaviour with a satisfactory degree of 
accuracy. The model was characterized based on 
the car’s trajectories in the phase space in terms of 
velocity and acceleration, created by Tracker. The 
predictive power of the model was finally veri-
fied by comparing the solution to the differential 
equation with the car’s position at different times.

2. Experimental setup
The remote-control toy car was 17 cm in length, 
7.3 cm in width, 3.8 cm in height, and 0.1736 kg in 
mass (figure 1). The car can move along a straight 
line on an even, level surface.

In the experiment, applying maximum power 
by pulling the remote-control lever, the car started 
from rest and accelerated until it reached its ter-
minal velocity. The car in motion was filmed with 
a Kodak PlaySport video camera mounted on a 
tripod. To obtain the sharpest image possible, 
light spots were used to improve the lighting con-
ditions and reduce the shutter time of the camera. 
The recording was analysed using the Tracker 
video analysis and modelling tool. To deter-
mine the car’s position as a function of time, the 
autotracker tool was enabled. This tool can select 
a pattern within a frame and track it across the rest 
of the recording. Figure 2 shows a screenshot of 
the autotracker interface in use.

Figure 1. Remote-control model car used in the experiments.
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3. Experimental results and analysis  
of kinematic variables
The temporal evolution of the car’s position was 
created using the autotracker tool of Tracker. An 
example is shown in figure  3. The velocity and 
acceleration curves shown in figures 4 and 5 were 
obtained by numerical derivation performed by 
Tracker. These curves clearly show that the car 
approached its terminal velocity asymptotically, 
consistent with the expected behaviour. The posi-
tion curve is noticeably smooth, the velocity 
curve is slightly noisy, and the acceleration curve 
is markedly noisier.

In the experiments, the car, starting from 
rest, accelerated at maximum motor power until 
it reached its terminal velocity. In the direction of 
motion, the car was accelerated by the frictional 
force exerted on the car by the surface and was 
decelerated by resisting forces due to air friction. 
The order of magnitude of the forces acting on 
the car can be estimated from the analysis of the 
velocity and acceleration curves as a function of 
time. Irrespective of the model used to describe 
these forces, the system undergoes a transient 
state in which the acting forces change with the 
car’s velocity, so that the car, initially at rest, 
eventually reaches a terminal velocity. At the 
initial time, as the velocity-dependent frictional 
force was zero, the net force acting on the car was 
equal to the net driving force. Based on the ini-
tial acceleration and mass of the car, the net driv-
ing force was estimated to be of the order of 1.4  
m s−2. 0.17 kg ~ 0.2 N. This value is like that of 
the effective dissipative force determined when 
the car reached its terminal velocity.

Based on the estimation of the effective dis-
sipative force in the stationary state, it is also 
possible to estimate the relative contribution of 
the drag forces acting on the car with respect 
to other sources of dissipation. The air friction 
force is a complex function even for objects with 
very simple geometries like spheres or cylinders. 
Dimensional analysis suggests that the frictional 
force acting on an object of a given geometry, 
expressed as a function of the drag coefficient, 
can be related to the average velocity according to

Fd =
1
2
ρv2CdA, (1)

where ρ  is the air density, A is the car’s frontal 
surface area and Cd  is the drag coefficient [14], 
which in the case of sports cars is about 0.3 [15].

As the car’s terminal velocity was approxi-
mately 1.2 m s−1, the maximum drag force, based 
on the car’s dimensions, was of the order of 10−3 N,  
amounting to less than 1% of the maximum effec-
tive dissipative force. Based on these calcul ations, 
it was demonstrated that the effective dissipative 
force acting on a remote-control toy car originates 
mainly in its internal mechanisms.

4. System dynamics

4.1. Dynamical model in the phase space

To determine the motion equation for the car. One 
possible approach would be to characterize the 
car’s motor and to model the dissipative effects 
associated with internal friction forces within the 
car. Because of the numerous details that would 
need to be considered, this approach would be 

Figure 2. Tracker screenshot showing car’s position, previous marks (red romboids), axes (purple) and calibration 
tape (blue).
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excessively time consuming and could not be 
addressed in basic university settings. Stemming 
from the notion of phase space, a simpler alter-
native relies on, the determination of an effec-
tive dynamical equation that reproduces the main 
characteristics of the car’s behaviour. To develop 
the model, the force exerted by the surface was 
represented as the resultant of two forces: one 
associated with the motor drive, being constant 
in magnitude in the direction of motion, and 
the other acting in the opposite direction, being 

dependent on the velocity and encompassing all 
the dissipative effects associated with the motor 
and internal friction. Therefore, the motion equa-
tion for the car can be written as

M
dv
dt

= F − kvn, (2)

where M is the car’s mass, F is the driving force, 
assumed to be constant, and parameters k and n 
are real numbers that define the functional depend-
ence of the dissipative force on the velocity. 
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Figure 3. Temporal evolution of the car’s position obtained with Tracker.
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Figure 4. Velocity of the model car as a function of time.
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Figure 5. Acceleration of the model car as a function of time.
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Figure 6. Acceleration as a function of the velocity obtained with Tracker: points (experimental results)  
and non-linear fitting (red line).

Figure 7. Screenshot of the Tracker model builder.
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Equation  (2) shows that, as the dissipative force 
increases with the velocity, accelerating the car 
will eventually lead to a situation of dynamic equi-
librium. The car’s terminal velocity is given by

vlimit =
n

…
F
k

. (3)

To characterize the dynamic behaviour, it is 
necessary to determine F, k and n, assuming the 

mass of the car is known. However, equation (2) can 
be solved analytically only when n  =  1 or n  =  2.

The system dynamics was modelled based on 
the phase-space trajectory in terms of velocity and 
acceleration, created by Tracker. If the car’s motion 
can be suitably described by equation (2), the phase 
space curve was fitted to the following function

a = C − Dvn. (4)
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Figure 8. Experimental data (red) and numerical results (blue) for the position (top) and the velocity (bottom) as 
a function of time.

Figure 9. Tracker screenshot of the comparison between the experimental data and the numerical model.
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Figure 6 shows the fit of the data recorded 
in the a(v) phase space. Knowing the mass 
of the car, it is possible to fully character-
ize its motion equation. Combining equa-
tions (2) and (4) gives F = C · m = 0.338N and 
k = D · m = 0.418N

(m
s

)−n
. Finally, the car’s 

motion equation can be written as follows

0.1736 · a = 0.338 − 0.418 · v0.74. (5)

4.2. Dynamical model

The dynamical model tool of Tracker was used to 
verify the predictive power of the model. Figure 7 
shows a screenshot of the interface of the tool 
being used to create the model by entering the 
value of each of the parameters in the motion 
equation  and the initial conditions for the car’s 
motion. Detailed tutorials on how to create mod-
els can be found in [6, 13].

Tracker numerically solves the differ-
ential equation of motion using the fourth-order 
Runge–Kutta method. The values obtained in this 
way were compared with those obtained with 
the autotracker tool. Figure 8 shows the position 
as a function of time (top) and the velocity as a 
function of time (bottom), with the experimental 
data shown in red and numerical results in blue. 
A high degree of concordance was found between 
the two data sets. This is hardly surprising in this 
case, in view of the closed-loop nature of the 
method—i.e. the dynamical model was created 
by fitting the experimental a(v) data to a non-
linear function.

Using Tracker, it is possible to view a plot 
of numerical results in the same graphic interface 
as the experimental plots, allowing to compare 
the position measured experimentally with that 
obtained numerically at different times, as shown 
in figure 9.

5. Conclusions
The analysis of experimental systems whose 
differ ential equations of motion have no explicit 
analytical solution—an aspect seldom discussed 

in introductory courses—has great didactic value, 
for it is usually the case with real systems. In such 
situations, the formulation of models is a very 
powerful tool. It is worth mentioning that our 
numerical/practical approach provides an equa-
tion  that works fine without needing to grasp in 
the details of the internal resistive forces involved.

Trajectories in the phase space are abstract 
constructs whose interpretation can prove con-
ceptually very valuable as it allows students to 
qualitatively understand the temporal evolution 
of a system governed by a first-order differential 
equation, as would be the case of a falling object 
subjected to a velocity-dependent drag force or a 
variable-mass system.

Use of readily available computer tools like 
Tracker enables the analysis of experimental kin-
ematic data in a phase space and the development 
of a dynamical model based on the numerical 
solution to the system’s motion equation.

In a classroom setting, such tasks are found 
useful—as they aid in engaging students more 
actively—and encourage the learning process—
as they allow students create their own models 
and verify their predictions through experiment. 
In addition, the experiment is inexpensive and can 
be carried out outdoors.
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