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Abstract 

During caries progression, an interaction between the dental pulp, the bacteria and their by-

products and the demineralized matrix components can lead to new dentin matrix 

deposition. The production of tertiary dentin requires a low level of inflammation that 

enhances the reparative response. There is evidence to suggest that low-grade oxidative 

stress could have similar results (Lee et al. 2006). It is also known that control of the 

infection is a prerequisite for vital pulp therapies to be successful. The aim of this project is 

therefore to explore the potential to use hydrogen peroxide in deep cavities to both eliminate 

infections and encourage regeneration. 

The potential biocidal effect of H2O2 to treat dentin infections was assessed by determining 

the Minimal Inhibitory Concentration (MIC) of H2O2 against E. faecalis, S. anginosus and S. 

mutans. The viability of dental pulp fibroblasts to these bactericidal concentrations was then 

studied using an MTT assay. Additionally, a suspension test was carried out to study the 

inactivation kinetics of the microorganisms when subjected to a clinically relevant exposure 

time of H2O2. Changes in the bacterial cell wall structure were also evaluated using 

Scanning Electron Microscopy (SEM) imaging. A validated ex vivo tooth slice model (Sloan 

et al. 1998) was also used to study the potential use of H2O2 in enhancing a regenerative 

response. Tooth slices were exposed to H2O2 and the dental pulp response was established 

by viable histological cell counts and immunohistochemistry for inflammatory (TNFα and IL-

1β) and regenerative markers (DSPP and PCNA). 

Results: MIC of H2O2 was 1,250ppm for E. faecalis, S. anginosus and S. mutans. Dental 

pulp fibroblast viability was reduced significantly when exposed to bactericidal 

concentrations of H2O2 for 60 seconds or 5 minutes. The bacterial count was not reduced 

after 5 minutes exposure to 1,000ppm H2O2 and no structural changes were observed 

using SEM. Tooth slices exposed to 1,000ppm or 300ppm H2O2 for 60 seconds or 5 minutes 

showed no significant reduction in cell counts. Immunohistochemistry showed the presence 

of inflammation in the vasculature and odontoblast layer, and the expression of dentin 

extracellular matrix protein DSPP in the odontoblast layer. 

In conclusion bactericidal concentrations of H2O2 are cytotoxic to dental pulp cells cultured in 

monolayer. Moreover, at clinically relevant time exposures to H2O2 for decontaminating 

cavity preparations, the bacterial count was not reduced. However, results from this study 

suggest there may be a potential use for H2O2 to induce dental pulp regenerative response.
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1.1 General Introduction  

The economic implication of dental emergency visits in the United States is reported to 

cost almost US$1 billion per year (Allareddy et al. 2014). Dental caries and 

periodontitis are the most prevalent diseases in the oral cavity (Frencken et al. 2017). If 

dental caries is left untreated this would ultimately affect the dental pulp causing 

inflammation first and then necrosis with further damage of the tooth supporting 

structures.  

 

Caries is a multi-etiological disease that involves the infection of the tooth calcified 

tissues causing demineralization. During the disease progression, an interaction 

between the dental pulp, the bacteria and their sub-products, and the demineralized 

matrix components could lead to new matrix deposition. This depends on the 

aggressiveness of the lesion and the type of inflammation that provokes (Cooper et al. 

2010). Understanding the molecular events during such processes are the basis for 

regenerative treatment approaches. Additionally, in order for this to be successful, the 

infection has to be controlled.  

 

This introduction will outline the dental tissues and how they respond to different 

stimuli, as well as the molecular basis of pulp inflammation. Moreover, it will describe 

the oral microbiology, some of the organisms responsible for tooth infection, and the 

current strategies for vital pulp treatment. Finally, the relation between the dentin-pulp 

complex and its behaviour with hydrogen peroxide will be discussed. 

 

1.2 Dental Tissues 

The tooth, as depicted in Figure 1.1, is composed of mineralized tissues, enamel, and 

dentin, with a core of soft connective tissue called the dental pulp. The supporting 

tissues, which consist of cement, the periodontal ligament and the alveolar bone, 

attach the teeth root to the mandible and the maxilla. These allow physiological 

movement of the teeth that helps to support the forces of mastication.  
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Figure 1.1. The tooth tissues: enamel, dentin and pulp, and the supporting structure: periodontal 

ligament (PDL), bone and cementum. (Nanci 2018) 

 

Teeth are ectodermal organs derived from a series of interactions between the oral 

epithelium and mesenchymal cells derived from the neural crest (Chai et al. 2000). 

Epithelial cells give rise to ameloblasts that are responsible for the enamel production 

whereas the mesenchymal cells differentiate into all the other terminally differentiated 

cells that form the tooth, odontoblasts, pulp and periodontal ligament. Tooth location 

within the dental arch, shape and size are regulated by a precise spatial and temporal 

expression of signalling molecules, homeobox genes and transcription factors (Thesleff 

and Sharpe 1997). The enamel covers the coronal part of the tooth, is the hardest 

matrix of the human body and is composed of 96% mineral, mostly hydroxyapatite and 

4% of organic material and water (Nanci 2018). It is inert and acellular since 

ameloblasts suffer a series of changes once the enamel is completely formed, finally 

disappearing during tooth eruption. Therefore, the enamel does not have regenerative 

capability (Nanci 2018). 
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1.2.1 The Dentin-Pulp Complex 

Dentin and pulp share the same embryological origin and once the tooth is completely 

formed, these two tissues interact closely with each other. Moreover, unlike enamel, 

dentin continues to be produced after the complete formation of the tooth. This is 

because, in post-natal dental pulp, a heterogeneous cell population exists that is 

capable of maintaining the pulp structure and secreting dentin matrix. Therefore, 

odontoblasts are responsible for dentin existence and the pulp is protected by the 

dentin and the enamel. Likewise, if the dentin is affected then the pulp will respond 

accordingly; and any disturbance within the pulp will affect the dentin produced 

(Hargreaves et al. 2016).  These are the main reasons why authors refer to these two 

tissues as the dentin-pulp complex (Cooper et al. 2010; Smith et al. 2016; Smith and 

Cooper 2017). 

 

DENTIN 

Underneath the enamel is the dentin. This is formed by odontoblasts and is a less 

mineralized tissue, which is composed of approximately 70% inorganic material, 20% 

organic material and 10% water (Nanci 2018). Its main characteristic is the presence of 

s-shaped dentinal tubules that contain the odontoblastic processes. These traverse the 

whole thickness of the dentin from the pulp chamber to the dentin-enamel junction, 

making the dentin highly permeable, allowing the diffusion of nutrients through its 

thickness, as well as enhancing the progression of dental caries and the pulpal 

response to restorative procedures (Nanci 2018). 

 

Odontoblasts secrete predentin, a layer of unmineralized matrix of 10 to 50 μm thick 

composed mostly of collagen. As it mineralizes, new matrix is secreted maintaining the 

thickness of predentine constant. The inorganic component of mature dentin consists 

of small plates of hydroxyapatite. The organic phase is 90% collagen and 10% of non-

collagenous proteins.  Most of the structural collagen is type I collagen fibrils, which 

behaves as a scaffold that holds the mineral, with a small fraction of type III and V 

collagen.  
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The non-collagenous matrix proteins of dentin are the phosphorylated proteins: dentin 

phosphoprotein (DPP), dentine sialoprotein (DSP), dentin glycoprotein (DGP), dentin 

matrix protein-1 (DMP1) and osteopontin that together form the family of Small 

Integrin-Binding Ligand N-linked Glycoproteins (SIBLINGs). SIBLINGs act in signalling 

as they include the RGD motif. Moreover, they play a crucial role in calcification of the 

predentin by regulating hydroxyapatite crystal formation (Cooper et al. 2010). DPP, 

DSP and DGP are expressed as a single molecule called dentin sialophosphoprotein 

(DSPP) that is cleaved immediately after translation (Nanci 2018). DSPP mutations are 

responsible for dentinal conditions in primary and permanent dentition such as 

dentinogenesis imperfecta (Schulte and Van Waes 2007). DSPP is synthesized 

exclusively by odontoblasts and dental papilla cells, and therefore it is widely used as a 

marker to identify odontoblast differentiation within the dental pulp (Butler et al. 1992; 

Babb et al. 2017). 

 

Other non-collagenous proteins present in dentin extracellular matrix (ECM) are the 

non-phosphorylated proteins: osteonectin (SPARC), osteocalcin and small leucine-rich 

proteoglycans (SLRPs), such as decorin and biglycan, that also play an important role 

in regulating mineralization. Additionally, bioactive growth factors are present in dentin 

ECM and are sequestered during the mineralization process. These are members of 

the transforming growth factor –β superfamily (TGF-β), insulin growth factor 1 and 2 

(IGF-1 and -2), fibroblast growth factor-2 (FGF-2) and some angiogenic growth factors 

(Cooper et al. 2010). Their liberation after demineralization of the dentin triggers the 

regenerative process. 

 

Classically three types of dentin are described in relation to the moment when it is 

formed. Primary dentin, which forms most of the tooth, is displayed contouring the pulp 

chamber. Once the tooth is completely formed, odontoblasts continue to secrete dentin 

through life along the dentin-pulp border. This type of dentin is called secondary dentin. 

Tertiary dentin is formed at specific sites in response to diverse stimuli, such as caries, 

attrition or dental procedures. Tertiary dentin can be formed by upregulation of pre-

existing primary odontoblasts stimulated by a mild injury, called reactionary dentin, or 

reparative dentin formed by odontoblast-like cells that differentiate from stem cells in 

response to an intense injury (Smith et al. 2012; Nanci 2018). 
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PULP                                                                                                                       

The dental pulp is the soft connective tissue that supports the dentin, which consists 

predominantly of odontoblasts, fibroblasts, undifferentiated ectomesenchymal cells, 

macrophages and other immune cells. From the periphery to the centre, the dental 

pulp has four distinctive zones: the odontoblastic zone, the free zone of Weil, a cell-rich 

zone and the pulp core with the major blood vessels and nerves. The pulp ECM 

consists mainly of type I and type II collagen and ground substance 

(glycosaminoglycans, glycoproteins and water) produced by pulp fibroblasts (Nanci 

2018). 

 

Odontoblasts are the most unique cells of the dental pulp and are situated forming a 

layer that lines the periphery of the pulp. Odontoblasts are terminally differentiated from 

dental papilla cells that are in contact with the basement membrane of the dental 

epithelium. Odontoblast differentiation implies leaving the cell cycle, they polarize and 

have transcriptional and translational changes. Finally, as specialized and terminally 

differentiated cells, they synthesise and secrete dentin matrix. Odontoblast 

differentiation is caused by a series of coordinated events regulated by transcription 

factors but ultimately induced by cell-ECM interactions as well as signalling events. 

The latter are mediated by molecules such as TGFs, FGFs and ILGF that are 

immobilized in the basement membrane (Ruch et al. 1995; Sloan and Smith 2007).  

 

Mesenchymal stem/progenitor cells have been isolated from the dental pulp, thus 

termed dental pulp stem cells (DPSCs), and have shown to have high proliferative 

behaviour, the capacity of self-renewal and multi-lineage differentiation capability 

(Gronthos et al. 2002). These cells have been shown to generate a dentin-pulp like 

complex when implanted in vivo in an “odonto”-conductive scaffold (Gronthos et al. 

2000). It is believed that DPSCs reside in perivascular niches (Shi and Gronthos 2003), 

and in order to differentiate into odontoblast-like cells, have to be recruited into the site 

of injury. 
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1.3 Pulpitis 

Pulpitis is the inflammation of the dental pulp and is classified as reversible, 

symptomatic or asymptomatic irreversible pulpitis (Glickman 2009). Although the 

diagnosis is established after pain history and clinical and radiographic examination, 

recent studies have found a correlation between the clinical diagnoses and the real 

histopathologic state of the pulp (Ricucci et al. 2014). Therefore, this could help to 

establish better therapeutic strategies. 

 

Pulp inflammation occurs in response to diverse stimuli, such as trauma, restorative 

procedures and exposure to dental caries. Dentin infection causes the release of 

bacterial by-products and dentin matrix components, released as a consequence of the 

acidic environment, that elicit an inflammatory and immune response. Odontoblasts 

first and then pulp fibroblasts, endothelial cells and stem cells, recognise antigens 

present in both gram-positive and gram-negative bacteria, this occurs via pattern 

recognition receptors (PRRs), such as the Toll-like receptor family (TLRs). These 

recognise pathogen-associated molecular patterns (PAMPS), such as lipoteichoic 

acids, lipopolysaccharides (LPSs), flagellin and bacterial DNA and RNA. Activated 

TLRs trigger the immune response via the NF-κB and p38 mitogen-activated protein 

(MAP) kinase intracellular pathways (Pevsner-Fischer et al. 2007; Hargreaves et al. 

2016). Finally, the cells produce cytokines that together with microorganism by-

products and the dentin matrix components, act as chemoattractants to immune cells.  

 

First, a focal accumulation of polymorphonuclear leukocytes (PMNs) and monocytes 

occurs mediated by odontoblasts (the first cells to be in contact with foreign antigens), 

and dendritic cells. This first response is non-specific, PMNs phagocyte antigens and 

monocytes differentiate into macrophages. Macrophages act by endocytosis and 

phagocytosis, ingesting dead cells and foreign bodies and degrading them with 

lysosomal enzymes. Macrophages also act as antigen presenting cells (Yoshiba et al. 

2003) and releasing cytokines and growth factors that perpetuate the immune 

response (Hargreaves et al. 2016). As caries advances deep into the dentin, the 

inflammatory response increases as shown in a significant upregulation of the humoral 

response mediated by B cells and plasma cells (Izumi et al. 1995). Additionally, the 

release of angiogenic factors stimulates the new capillary vessels formation, together 

with nerve fibre co-aggregation with antigen-presenting dendritic cells (Yoshiba et al. 

2003). 
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Pulp innervation also plays an important role in the inflammatory response. Bacterial 

antigens stimulate sensory receptors and induce the afferent neurons to release 

neuropeptides. These recruit and activate immune cells. This event is termed neuronal 

inflammation. Interestingly, these neuropeptides could be involved in dentin 

regeneration by regulating angiogenesis or stimulating osteodentin deposition (El 

Karim et al. 2009).  

 

CYTOKINES 

Cytokines are proteins that mediate paracrine and autocrine signalling. These are pro-

inflammatory cytokines, including interleukins (IL-1β, IL-6, IL-8), anti-inflammatory 

cytokines (IL-10) that limit the immune response to antigens and promotes the 

development of Tregs, tumor necrosis factors (TNF-α) and interferons (IFN-γ).  

 

Advanced carious lesions stimulate pulp inflammation, which is characterized by a 

significant increase of cytokines and chemokines released by odontoblasts, fibroblasts, 

DPSCs and endothelial cells. (Cooper et al. 2010; Michel et al. 2015). The quantity and 

type of cytokines expressed in a healthy pulp or in reversible and irreversible pulpitis 

have been subject of research in several studies (Zehnder et al. 2003; Rechenberg et 

al. 2016; Zanini et al. 2017).  

 

Immune cells activated by bacterial by-products and matrix components secrete TNF-α 

and Il-1β. The latter is fundamental for pulpitis progression as it stimulates the further 

production of TNF-α by oral fibroblasts (Piesco et al. 1995). TNF-α induces chemotaxis 

and activation of leukocytes by influencing the dilatation and an increased permeability 

of blood vessels that causes the extravasation of these cells into the affected area. As 

shown in an in vivo study, the number of cells expressing TNF-α during pulpitis 

increases exponentially until the seventh day (Tani‐ Ishii et al. 1995). Thus, this 

cytokine may be a good marker to assess the progression of the inflammation (Tani‐

Ishii et al. 1995; Hirsch et al. 2017). Furthermore, primary dental pulp cells stimulated 

by Streptococcus mutans (S. mutans), TNF-α, IL-1β and LPSs showed an increased 

expression, as assessed by polymerase chain reaction (PCR) analysis, of NF-κB 

pathway components, TLRs and proinflammatory cytokines, after 4 hours of the 
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stimulation (Patel et al. 2009). Therefore suggesting, that in order to control the 

inflammation it is necessary to control the infection. 

 

Pulp inflammation causes tissue destruction and if left untreated leads to tissue 

necrosis and other adverse events. The recruitment of immune cells to the site of 

infection implies the release of proteolytic enzymes and the release of reactive oxygen 

species (ROS), such as superoxide anions, hydrogen peroxide (H2O2) and hydroxyl 

radicals that drive further tissue damage (Waddington et al. 2000; Moseley et al. 2002; 

Cooper et al. 2010).  

 

1.4 Dental Tissue Regeneration 

Regeneration within the dentin-pulp complex requires an environment free of microbes 

and low inflammation (Figure 1.2). Additionally, it is fundamental that there are 

adequate numbers of cells that secrete the dentin and pulp ECM. These are, either 

healthy odontoblast to deposit reactionary dentin or dental pulp stem cells with the 

potential to become odontoblast-like cells and produce reparative osteodentin. 

Ultimately, the production of tertiary dentin is only possible after a precise molecular 

signalling cascade that recapitulates tooth development and provides the adequate 

cell-cell signalling to upregulate the synthesis and secretion of new tissue (Smith et al. 

2012). This has to occur in a time and location controlled manner to avoid root canal 

obliteration (Smith and Lesot 2001).  

 

Several molecules are important for tertiary dentin deposition; these include the 

mineral phase, which is mainly hydroxyapatite, and the ECM, with collagenous and 

non-collagenous proteins. The latter have a crucial role in regulating the whole 

process, by regulating crystal deposition, a function attributed to SIBLINGs and SLRPs, 

and bioactive growth factors that stimulate odontoblast-like cell differentiation, and 

dentin production. Moreover, SIBLINGs and Matrix Metalloproteinases (MMPs) act 

synergistically in the regenerative process. SIBLINGs are related to the mineralization 

process once the inflammation has cleared, MMPs are related to the catalytic process 

helping in dentin regeneration by the cleavage of pro-collagen molecules to allow 

fibrillation. MMPs also play a role in the cleavage of DSPP into DSP and DPP and in 

the activation of growth factors (Michel et al. 2015).  
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Figure 1.2. The interplay between tertiary dentinogenesis and inflammation intensity. A mild 

stimulus that elicits a low-grade inflammation stimulates odontoblasts to synthesise and secrete 

reactionary dentine, and it also stimulates the progenitor cells recruitment, the odontoblast-like 

differentiation and the production of reparative dentine. Whereas a rapid or intense 

inflammatory response, generated as a result of intense stimuli, halts the regenerative response 

(Cooper et al. 2010). 

 

It has now become clear, that the molecular events during inflammation are crucial to 

the regenerative response (Goldberg et al. 2008). For instance, it has been shown that 

low levels of TNF-α can induce dental pulp stem cells to differentiate into odontoblast-

like cells via the p38 MAPK pathway (Paula-Silva et al. 2009). Furthermore, for DPSCs 

stimulated with low doses of TNF-α, the levels of alkaline phosphatase, Osteopontin, 

Osteocalcin, Osterix and Runx2 were up-regulated, suggesting a promotion of 

mineralization. On the contrary, when stimulated with high doses of TNF-α, DPSCs 

osteogenic differentiation was arrested (Qin et al. 2015). Moreover, in vitro studies 

showed the ability of IL-1β to stimulate osteoblasts to synthesise bone matrix. 

Interestingly, however, mesenchymal stem cells were unable to proliferate or 

differentiate when they were exposed to this pro-inflammatory cytokine (Lange et al. 

2010). This suggests that at early stages of inflammation, these cytokines kick start the 

regenerative process whilst with chronic inflammation or severe inflammation they 

have an inhibitory effect on regeneration (i.e. cell proliferation and differentiation) 

(Cooper et al. 2010).  
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Therefore, in its early stages, inflammation can be a desirable response. A low level of 

inflammation could be beneficial to fight the infection by the release of antimicrobial 

peptides and ROS. There is evidence to support the concept that low levels of 

oxidative stress can stimulate a regenerative response. A study by Lee et al. has 

shown that H2O2 applied at low concentrations enhanced the differentiation of a pre-

odontoblast cell line as assessed by the early differentiation marker alkaline 

phosphatase (ALP). Additionally, in order to test a late marker of differentiation, the 

extent of matrix mineralization was assessed by Alizarin red S staining, where the pre 

odontoblasts treated with H2O2 showed significantly higher mineralization when 

compared to the untreated controls (Lee et al. 2006).  

 

 

1.5 Oral Microbiology 

The oral cavity hosts an abundant and heterogeneous population of microorganisms 

that can coexist in the form of biofilms colonizing the surfaces of teeth, prostheses, 

gums and tongue. Biofilm formation is vital for many of these organisms as they 

depend on metabolic symbiosis. The oral flora is mostly composed of Streptococci and 

Actinomyces species (Jenkinson and Lamont 1997). Streptococci express surface 

protein adhesins that bind to multiple substrates, such as other bacteria, molecules 

present in saliva, host cells or ECM molecules. Most importantly, adhesins bind to the 

acquired pellicle of the tooth surface initiating the dental plaque formation. As the 

dental plaque matures, the flora becomes more diverse, comprising rods, cocci and 

filaments (Jenkinson and Lamont 2005). When fermentable carbohydrates enter the 

oral cavity, the bacteria from the dental plaque metabolize them, producing organic 

acids that when reaching a critical pH value, can demineralize the tooth surface 

(Featherstone 2000). If the dental plaque is removed, the hydroxyapatite crystals can 

capture ions from the dental pellicle remineralizing the enamel surface. If this does not 

occur, the demineralization progresses into dental caries, cavity formation and eventual 

exposure of the dentin. 
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1.5.1 Infection of the Dentin-Pulp Complex 

Once the dentin is exposed, bacteria from the oral cavity can colonize the dentinal 

tubules putting the dental pulp at risk of infection. Dentinal tubules are conical in shape, 

with the larger diameter next to the pulp chamber (mean diameter of 2.5μm) and the 

narrower diameter at the surface next to the enamel or the cementum (mean diameter 

of 0.9μm) (Garberoglio and Brännström 1976). Oral Streptococci have an average size 

of 1 to 2.0μm. It is easy to speculate that once the dentin is exposed to the oral cavity, 

the dentinal tubules provide a direct access to the dental pulp. This, however, is not the 

case as in vital pulp situations dentin permeability is significantly reduced as the 

dentinal tubules become obstructed by fluids, the odontoblastic processes, nerve fibres 

and collagen fibrils reducing its physiologic diameter to 5 to 10% of its anatomical value 

(Michelich et al. 1978). Moreover, fluid components such as antibodies (IgG) and 

components of the complementary system may halt bacterial invasion (Hahn and 

Overton 1997). Additionally, dentin permeability can decrease due to dentinal sclerosis, 

tertiary dentin deposition or smear layer that obstructs the tubule lumen (Michelich et 

al. 1978). 

 

The microflora of carious dentin varies depending on the depth of the cavity and the 

location within the tooth, whether coronal or root caries. In shallow cavities of the 

crown, the predominant species are facultative anaerobes, such as S. mutans. In 

contrast, microflora isolated from deep coronal cavities are dominated by obligate 

anaerobic organisms, such as Propionibacteium, Eubacterium and Bifidobacterium, 

and facultative species, such as Actinomyces and Lactobacillus (Love and Jenkinson 

2002). Root surface caries is characterized by the presence of Actinomyces species 

and S. mutans in shallow, middle and deep dentin, whereas Lactobacilli and Gram-

negative organisms are rarely isolated in these cavities. 

 

1.5.2 Periapical Infections  

As previously described, if left untreated, dentinal caries will continue the process of 

invasion deep into the tissue finally provoking pulp inflammation and necrosis and 

further periapical lesions, such as abscess or granuloma depending on the virulence of 

the bacteria invading the root canal system (Trowbridge and Stevens). Abscesses 

present a diverse range of organisms, in particular, the presence of members of the 



 13 

Streptococcus anginosus group (SAG) and other pyrogenic organisms have been 

found in clinical isolates (Fisher and Russell 1993). SAG bacteria comprise of S. 

anginosus, S. constellatus and S. intermedius, Gram-positive cocci, which are part of 

the normal human commensal flora. They are microaerophilic, but their growth 

increases in the presence of carbon dioxide (Facklam 2002). This group exhibit 

hyaluronidase and chondroitin sulphatase activity, which may be the reason behind 

their ability to invade tissues and behave as opportunistic pathogens (Whiley et al. 

1992).  

 

Enterococcus faecalis (E. faecalis) species, a Gram-positive facultative anaerobic 

coccus, which is also a member of the normal commensal flora, is a well-known 

opportunistic pathogen frequently related to nosocomial infection. E. faecalis is the 

most commonly isolated species in refractory apical periodontitis, i.e. endodontic failure 

(Love 2001; Barbosa-Ribeiro et al. 2016), as well as dental caries (Kouidhi et al. 2011) 

as it can invade the dentin tubules in variable depths and survive under different 

environmental conditions. These organisms adhere to collagen and hydroxyapatite by 

protein adhesins and lipoteichoic acids (Hubble et al. 2003; Kayaoglu and Ørstavik 

2004). Their ability to form biofilms protects them from the immune response and 

antimicrobials. Additionally, they have shown to obtain energy from hyaluronan and 

dentinal tubule fluids giving them the ability to survive under extreme conditions, 

making E. faecalis an interesting candidate to test biocides (Rosen et al. 2018).  

 

1.6 Current Treatments. 

The main goal of the current strategies to treat the infected dentin is to maintain pulp 

vitality. The pulp provides the tooth with innervation, nutrition and immunological 

defence. Moreover, the tooth with its pulp intact has better mechanical resistance than 

a non-vital tooth (Iglesias et al. 2003) and thus, devitalizing the tooth could reduce its 

likelihood of long-term survival. The use of vital pulp therapies would, therefore, be 

more desirable than endodontic treatments where the inflamed pulp is completely 

eliminated and the root canal filled with thermoplastic materials to prevent further 

infection in the periapical tissues.  
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Vital pulp therapies include indirect pulp capping, stepwise caries excavation, direct 

pulp capping and pulp chamber pulpotomy. In these treatments the aim is to maintain 

pulp vitality by controlling inflammation, eliminating the infection and promoting a 

tertiary dentin deposition (Cohenca et al. 2013). For this purpose different materials are 

used, for example, calcium hydroxide is used as capping material since the early 

twentieth century (Zander 1939). This material is highly alkaline which creates a 

bactericidal effect whilst generating a low-grade inflammation that enhances the 

regenerative response from the dental pulp. It has several drawbacks, however, as its 

inability to adhere to dentin, which prevents the creation of a long-term seal against 

micro-leakage (Cohenca et al. 2013). Other materials have been used more recently, 

that promote better outcomes, such as mineral trioxide aggregate (MTA) and bioactive 

capping materials. Unfortunately, these materials have not drastically improved vital 

pulp therapy success rates and therefore clinicians often prefer endodontic procedures 

to treat pulpitis (Zanini et al. 2017).  

 

Several studies have explored the possibility of liberating bioactive growth factors from 

the calcified dentin using different acidic solutions to enhance the natural repair 

response (Smith et al. 2001; Sloan and Lynch 2012; Sadaghiani et al. 2016). There is, 

however, still a need in these situations to find a strategy to disinfect the dentin from 

organisms whilst stimulating the pulp to produce tertiary dentin. 

 

1.7 Hydrogen Peroxide 

Reactive oxygen species (ROS) are metabolic intermediates produced by eukaryotic 

cells, primarily in the mitochondria, as a defence mechanism against invading 

microorganisms. ROS include superoxide anion (O2
−), H2O2, hydroxyl radical (.OH) and 

molecular oxygen (O2). These molecules can cause damage to lipids, proteins and 

DNA. Both mammalian cells and microorganisms naturally produce enzymatic and 

non-enzymatic antioxidants as a defence mechanism against ROS (Radi 2018). When 

ROS production overcomes the antioxidant capacity, damage to the cells occurs in a 

situation termed oxidative stress, which is considered to be the cause of several 

diseases such as cancer and atherosclerosis (Thannickal and Fanburg 2000). 

Interestingly, ROS are implicated in cell signalling (Finkel 1998). The difference 

between having a toxic effect or a physiologic has been hypothesised to be 

concentration related. 
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H2O2 bactericidal effects have been harnessed in endodontic procedures as an irrigant 

in concentrations ranging from 3 to 5 %. However, it is in disuse due to its low tissue-

dissolving capacity and because its bactericidal effect is less effective than other 

irrigants. Moreover, by using H2O2 as an intracanal irrigant there is a risk of provoking a 

periapical embolism, thereby causing pain and probably tissue damage (Hargreaves 

and Cohen 2011). 

 

However, research of the effects of H2O2 in the dental pulp cells has been increasing in 

the last decade because it is the main component of tooth bleaching agents 

(Fukuyama et al. 2008; Soares et al. 2015; Benetti et al. 2017). There is evidence that 

suggests that H2O2 molecules can penetrate through the enamel and reach the dentin-

pulp complex (Camargo et al. 2007). As previously stated, low concentrations of H2O2 

stimulated the differentiation of a pre odontoblast cell line showing how physiological 

levels of oxidative stress may enhance a reparative response from the dental pulp (Lee 

et al. 2006). A recent in vivo study, showed how the pulp response was concentration-

dependent when bleaching agents were applied to the enamel surface, where high 

concentrations caused pulp necrosis whilst lower concentration induced a regenerative 

response (Benetti et al. 2017). 

 

It can, therefore, be speculated that the use of H2O2 at low concentrations could 

potentially stimulate tertiary dentin deposition when applied in deep cavities, whilst 

preventing the perseverance of dentin infections. 
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1.8 The ex vivo Tooth Slice Model 

The use of ex vivo models to study biological behaviour in pre-clinical studies offers 

several advantages over in vitro or in vivo models.  Firstly, ex vivo models allow to 

study the cells whilst maintaining the tissue architecture and therefore provide the 

mean to assess the cell-matrix interactions.  This is of special importance in the study 

of dentinogenesis in the dentin-pulp complex, where odontoblasts have to be cultured 

in contact with the dentin matrix in order to maintain their phenotype and function 

(Munksgaard et al. 1978). Moreover, the dental pulp ECM provides support and 

nutrition to allow the survival of the cells for longer periods (Sloan et al. 1998). 

Secondly, although in vivo models provide the means to evaluate tertiary 

dentinogenesis in a precise timescale of the biological events (Smith et al. 1995; Babb 

et al. 2017), other systemic events may influence on the results.    

 

A validated ex vivo rodent tooth slice model, capable of maintaining tissue architecture 

and cell viability for up to 14 days in semi-solid agar medium, has been developed 20 

years ago (Sloan et al. 1998). This model provided the platform to assess tertiary 

dentine production after the influence of growth factors (Sloan and Smith 1999; Sloan 

et al. 2000), or the influence of fluoride on dentin mineralization (Moseley et al. 2003). 

Recently, the culture conditions of the ex vivo tooth slice model were modified in order 

to develop a co-culture model with S. anginosus group (Roberts et al. 2013). 

Additionally, the model was used to create a mixed species pulpal infection ex vivo 

model, which can be used to study microorganisms colonization mechanisms and to 

assess the antimicrobial and anti-inflammatory efficacy to treat pulp infection (Nishio 

Ayre et al. 2018). 
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1.9 Aims and Objectives 

The production of tertiary dentin requires a low level of inflammation that enhances a 

reparative response. There is evidence to suggest that low-grade oxidative stress 

could have similar results. It is also known that control of the infection is a prerequisite 

for vital pulp therapies to be successful. 

 

The aim of this project is therefore to explore the potential to use hydrogen peroxide in 

deep cavities situations to both eliminate infections and encourage regeneration. 

 

In order to achieve this aim, first, the role of hydrogen peroxide as a biocide will be 

assessed, by testing the susceptibility of microorganisms that are related to the dentin-

pulp complex infections. Next, the cytotoxicity of primary pulp cells, when treated at 

bacteriostatic and bactericidal concentrations, will be evaluated. Additionally, in order 

to accurately assess the pulp response to different concentrations of H2O2, a validated 

ex vivo tooth slice model (Sloan et al. 1998) will be used.  

 

Ultimately, the aim of this project is to better understand the dentin-pulp complex 

response to hydrogen peroxide at the cellular and molecular level, as well as its effect 

on microorganisms associated with tooth infections.
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2. Methods 
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2.1 Preparation of Bacterial Stocks 

 

S. anginosus, E. faecalis and S. mutans (DSM20523) were obtained from frozen stock 

from the culture collection of the Oral Microbiology Unit, at Cardiff University Dental 

Hospital. S. anginosus and E. faecalis were clinical isolates and their identity was 

previously validated (Nishio Ayre et al. 2018). The three strains were streaked and 

cultured on Tryptone Soya Agar (TSA) (Oxoid Ltd., Basingstoke, UK) to obtain single 

colonies. Bacterial suspensions were obtained using Brain Heart Infusion Broth (BHI) 

(Oxoid Ltd., Basingstoke, UK) and cultured overnight in an incubator at 37°C and 5% 

CO2. 

 

 

2.2 Gram Stain 

 

Using a sterile loop, an inoculum of bacteria was taken from an overnight bacterial 

suspension in BHI and spread over a slide in an area of approximately 1 cm2. After 

allowing the smear to air dry, the slide was passed through the flame of a Bunsen 

burner two or three times to fix the bacteria. Then the sample was stained by first 

flooding with crystal violet for 30 seconds, then rinsing with water and subsequently 

flooding with Iodine for 30 seconds and rinsing with water again. To decolorize, 

acetone was poured drop-by-drop for 5 to 10 seconds and the sample rinsed with 

water immediately. Finally, in order to counter-stain the sample, the sample was 

flooded with fuchsine for 30 seconds and rinsed with tap water. The sample was left to 

air dry and viewed with an X100 oil immersion lens in an upright microscope (Nikon 

Eclipse 50i). 
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2.3 Minimum Inhibitory Concentrations (MICs) 

Chlorhexidine digluconate (CHX) is the most widely used cavity disinfectant (van 

Rijkom et al. 1996). Therefore, CHX was used as a control for the experimental 

procedures in this study.  

 

Overnight cultures of S. anginosus, E. faecalis and S. mutans were prepared in BHI 

broth and diluted to 108 CFU/mL (absorbance at 600nm 0.08 to 0.1). The inoculum was 

further diluted in double strength broth in order to obtain a final concentration of 106 

CFU/mL. 

 

Serial dilutions in distilled water of the biocides were prepared in 96 well plates 

(Sarstedt) as follows: 

 

a) Serial dilutions of CHX 

CHX 20% w/v (Sigma) was diluted in sterile distilled water to a final concentration of 

32μg/mL. Serial dilutions of CHX in sterile distilled water were prepared in a 96 well 

plate (Sarstedt) with concentrations ranging from 16 μg/mL to 0.5 μg/ml of CHX, with a 

volume of 50μl in each well.  

 

b) Serial dilutions of H2O2 

H2O2 30% w/w (Sigma Aldrich) was diluted in sterile distilled water to a final 

concentration of 20,000 ppm. Serial dilutions were prepared in a 96 well plate 

(Starstedt) with concentrations ranging from 10,000ppm to 312ppm of H2O2, with a 

volume of 50μL in each well.  

 

Then, 50μl of the bacterial inoculum in double strength broth was added to the biocide 

solutions, with each well having a total volume of 100μL and a total of six different 

concentrations of biocide (starting at 8 μg/mL of CHX or 5,000ppm of H2O2); and a final 

concentration of 5 x 105 CFU/mL of bacteria per well. Single strength sterile broth was 

used as a negative control, and bacterial suspensions of each strain at a concentration 

of 5 x 105 CFU/mL were used as positive controls. 
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Absorbance was measured at 600nm with a FLUOstar Optima Microplate reader (BMG 

Labtech LTD, Aylesbury, UK) after incubation for 24 hours at 37°C and 5% CO2. The 

MIC was determined for each microorganism, as the lowest concentration of 

antimicrobial agent that inhibits its growth (Hasselmann 2003). The well giving the 

absorption nearly equal to blank with more than 90% difference in OD value as 

compared to the growth control was considered the MIC90. 

 

2.4 Minimum Bactericidal Concentration (MBC) of 
H2O2 

For each strain studied, TSA plates were divided into quarters representing different 

concentrations of serial dilutions of H2O2. To determine the MBC one loop of inoculum 

was taken from the well of the MIC plate that showed growth with the higher 

concentration of H2O2, and then three subsequent higher concentrations. These were 

spread onto the TSA plate and incubated for a further 24 hours at 37oC and 5% CO2 

under aerobic conditions. 

 

The MBC was determined as the lowest concentration of H2O2 for which no growth was 

detected after visual inspection of the MBC assay plate. This procedure was performed 

for each replicate of the MIC experiment. 

 

2.5 Cell Culture 

Rat Dental Pulp Fibroblasts (rDPFs) were obtained from a frozen stock at the Cardiff 

University Dental Hospital. Cryopreserved cells were thawed and cultured, with a 

seeding density of 5,000 cells/mm2 in Alpha Modified Essential Medium (αMEM), 

containing ribonucleosides and deoxyribonucleosides and phenol (Gibco, Thermo 

Fisher Scientific, USA). The medium was supplemented with 10% foetal bovine serum 

(FBS) (Invitrogen, UK), 100 units/mL of penicillin, 0.1μg/mL of streptomycin and 

0.25μg/mL of amphotericin B (Antibiotic/Antimycotic, Sigma-Aldrich). Cells were 

maintained at 37 °C and 5% CO2 in a humidified incubator and media was changed 

every 3 to 5 days. 
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When confluence was reached, rDPFs were subcultured at a seeding density of 5,000 

cells/mm2 in vented T75 plastic culture flasks. In order to do so, first media was 

removed and cells washed with 10ml of PBS to reduce the protein content.  Then, to 

allow detachment of the cells, 2 to 4 mL of accutase was added and incubated at 37 °C 

for 4 minutes. Cell detachment from the plastic was confirmed by observation under a 

light microscope (Nikon Eclipse TS100). To stop the accutase enzymatic activity and 

prevent cell damage, 5ml of media was added to the flask. Next, the flask content was 

transferred to a universal tube and centrifuged at 1500 g for 5 minutes to obtain a pellet 

of cells. This was then re-suspended in 5ml of media. To count the cells, 10μL of the 

cell suspension was mixed with 10μL of 0.4% Trypan blue solution (Sigma, UK) and 

10μL was placed into a cytometer to count the viable cells under a microscope. The 

average cell count of the four corners of the cytometer was multiplied by 10,000 (to 

convert the volume to mL) and by 2 (to account for the dilution factor of the trypan blue) 

and the number of cells per ml was obtained. Then the volume to take from that 

suspension was calculated in order to seed 5,000 cells/cm2 whether to maintain the 

stock to use in experimental procedures.  

 

Before starting the experiments, rDPFs were tested negative for mycoplasma infection. 

 

2.6 Cell Viability after Treatment with H2O2 or CHX 

In order to assess the dental pulp cell response to H2O2 or CHX, an MTT assay was 

carried out as follows: one 96 well plate (Sarstedt) was set up for each time point (5 

min or 60 seconds treatments), rDPFs passage numbers 5 to 7 were seeded at a 

seeding density of 5000 cells/cm2, avoiding the outer wells. The 96 well plates were 

then incubated for 24 hours at 37oC and 5% CO2 to allow the cells adhere to the plastic 

surface. 

 

Treatment duration of 5 minutes or 60 seconds was tested as it was considered as a 

clinically relevant exposure time to the biocide. 

 

Biocide solutions were prepared at the test concentrations in non-supplemented αMEM 

to avoid protein precipitation by the CHX. All solutions that were to be applied to the 
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rDPFs in this experiment including MTT, PBS, treatment solutions and Triton X were 

filtered through 0.2μm pore syringe filters. 

 

After 24 hours the medium was removed, and 100μL of medium containing the test 

concentrations for each treatment (Table 2.1) were added to each well for 5 minutes or 

60 seconds. Cells without treatment applied were used as a negative control and 

treatment with 1% Triton X was used as a positive control. After each time point, the 

treatment was removed, followed by a wash with phosphate buffer solution (PBS), 

which consisted of adding 100μL of PBS to each well, gently pipetting back and forth 

and removing it. Finally, each well was filled with 100μL of phenol free αMEM (Gibco, 

Thermo Fisher Scientific, USA) supplemented with 10% FBS and 20μL of Thiazolyl 

Blue Tetrazolium Bromide solution (MTT) (5mg/mL; Sigma) and incubated for four 

hours at 37oC and 5% CO2.  Next, the medium containing the MTT solution was 

removed carefully to prevent clearing away the formazan crystals, which were 

dissolved by means of adding 100μL of Dimethyl Sulfoxide (DMSO) to each well and 

incubating it for 30 minutes at 37oC and 5% CO2. 

 

Finally, the absorbance was measured at 570nm in FLUOstar Optima Microplate 

reader (BMG Labtech LTD. Aylesbury, UK). Averages of the replicates were calculated 

before the statistical analysis. 

 

Table 2.1. Treatment concentrations applied to rDPFs in MTT assay.  

Chlorhexidine (μg/ml) Hydrogen peroxide (ppm) 

32 19,000 

16 9,500 

8 4,750 

4 2,350 

2 1,188 
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2.7 Suspension Test 

 

A suspension test was carried out to investigate if non-bactericidal and potentially 

biocompatible H2O2 concentrations reduced the load of planktonic E. faecalis, S. 

anginosus and S. mutans. One colony of each strain was inoculated into approximately 

10mL of BHI broth and cultured overnight at 37oC in aerobic conditions. These were 

then centrifuged 3 times at 4000g for 10 minutes and re-suspended in buffer solution 

(PBS) to reach a concentration of 108 CFU/mL (absorbance at 600nm 0.08 to 0.1). 

 

100μL of the inoculum was added to an Eppendorf tube containing 900μL of H2O2 

solution of either 1,000ppm or 500ppm (Sigma Aldrich diluted in sterile distilled water) 

and cultured in the incubator at 37oC. After a contact time of 5 minutes, an aliquot of 

100μL was neutralized in 900μL of a solution containing 20g/L of sodium thiosulphate 

and 500U/mL of catalase from bovine liver (Sigma, Dorset UK) at room temperature (~ 

20oC) for 5 minutes. Four further serial dilutions were made (1:10) in PBS in order to 

count the residual viability. The drop counting method was used by plating three drops 

of 10μL of each of the last four dilutions into TSA and incubating them for 24 to 48 

hours at 37oC in aerobic conditions (Fraud et al. 2001). An untreated suspension was 

serially diluted and counted in a similar way as a control. The microbiocidal effect was 

expressed as log10 reduction (mean of three experiments), determined by log10 of the 

control minus log10 of the treated solution expressed in CFU/mL (Fraud et al. 2001).  

 

The neutralizer used was controlled to verify it did not have a biocidal effect. In this 

case, 100μL of test suspensions were added to 900μL of neutralizer without using 

biocide. Then serial dilutions were made and the drop counting method was used to 

verify there was not a log reduction in this case.  
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2.8 Scanning Electron Microscopy (SEM) 
Investigation 

SEM was used to investigate any structural damage to the microorganisms tested (E. 

faecalis, S. anginosus and S. mutans) after treatment with 1,000ppm H2O2 for 5 

minutes. 

 

Suspensions of the three strains investigated were prepared in a buffer solution as 

described in the previous section. A 1mL aliquot of each was added to 900mL of 1,000 

ppm H2O2 for 5 minutes. Then the samples were fixed by diluting the treated 

suspension 1:10 in 2% glutaraldehyde solution in 0.1 M of sodium cacodylate buffer 

(pH7.4). After 2 hours of incubation, the suspension was transferred to a 0.2μm 

polycarbonate filter membrane using a vacuum/pump filtration system. Then the 

excess glutaraldehyde was washed by transferring the membranes into 0.1 M sodium 

cacodylate buffer (pH7.4) for 3 minutes.  The samples were then dehydrated by 

passing them through a series of ascending concentrations of ethanol (50, 70, 80, 95, 

100 and 100% v/v) during 3 minutes each. After the final ethanol step, the membranes 

were immersed in the drying agent hexamethyldisilazane (HMDS) for 5 minutes. Next, 

the membranes were transferred to individual petri dishes and left overnight in a bell jar 

to allow the HMDS to evaporate.  Finally, the membranes were cut into small squares 

and mounted on stainless steel stubs using adhesive discs. Samples were coated with 

a 10nm Au:Pd film using a Quorum Q150TS sputter coater prior to analysis. 

Microscopy was performed on a Tescan Maia3 field emission gun scanning electron 

microscope (FEG-SEM) fitted with an Oxford Instruments XMAXN 80 energy dispersive 

X-ray detector (EDX). Images were acquired using the secondary electron and 

backscattered electron detectors. Samples were dispersed as a powder onto 300 mesh 

copper grids coated with holey carbon film. 
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2.9 Ex vivo Tooth Slice Treatment with H2O2 

28-day-old male Wistar rats were collected freshly sacrificed (under schedule 1 of the 

UK Animals Scientific Procedures Act, 1986) from the Joint Biological Services Unit, 

Cardiff University. In a period no longer than half an hour incisors were carefully 

extracted. Teeth were then cut into thick transverse sections of approximately 2mm 

using a bone saw (TAAB, Berkshire, UK) with a segmented diamond edged blade 

using PBS as a coolant. Next, the slices were put into a 24 well plate with DMEM 

supplemented with 10% v/v FBS and 1% v/v Antibiotic/Antimycotic solution, and 

incubated at 37°C and 5% CO2 for 24 hours in order to allow the recovery of the tissue 

after dissection and cutting. 

 

After 24 hours, media was removed from each well, and 500µL of treatment with 

concentrations of 1,000ppm or 300 ppm of H2O2 solution in DMEM was added for each 

time point: 5 minutes or 60 seconds (Table 2.2). Tooth slices without exposure to H2O2 

were used as a negative control. Finally, the samples were incubated for a further 24 

hours in a humidified incubator at 37°C and 5% CO2 before histological processing. 

  

2.10 Histological Tissue Processing 

Media was removed and tooth slices were fixed in 10% w/v neutral buffered formalin at 

room temperature for 24 hours. Next, formalin was removed and 2 mL of 10% w/v 

formic acid was added to each well for 48-72 hours, changing it at 24 hours to avoid 

saturation and to allow total demineralization of the samples. The demineralization 

process was performed under constant agitation in a rocker.  

 

Once demineralized, the samples were transferred into individual biopsy cassettes. 

Then the tooth slices were dehydrated through a series of ascending concentrations of 

ethanol, then xylene and two steps of molten wax, in an automatic tissue processor 

(Leica ASP300s, Nussloch, Germany). Finally, the slices were embedded in paraffin 

wax oriented in such way that the coronal-apical length was placed at an angle of 90° 

to the cutting surface, therefore the histologic sections could hold a transversal cut of 

the root showing dentin and the root canal with the dental pulp inside. These samples 

were then used to perform cell counting and immunohistochemistry. 
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2.11 Histological Cell Counting 

Wax blocks with the treated and control samples were cut into sections of 4μm 

thickness using a microtome (Shandon Finesse, Thermo Electron Co., Cheshire, UK). 

Sections were mounted on polystyrene slides (Fischer Scientific, UK) and placed in an 

incubator at 60°C to improve adhesion of the tissue sections to the slide. The slides 

were then placed on an automated tissue stainer (Model Linistainer 

GLX, Thermo Shandon). There, they were washed with xylene, alcohol and water 

before being stained with haematoxylin and eosin (H&E). They were then immersed 

through alcohol and xylene. Finally, a coverslip was placed using DPX mounting 

medium (Cellpath, Powys, UK). 

 

Slices images were captured at x20 magnification using a light microscope (Olympus 

AX70) and a 5.0MP digital camera (Paxcam 5+, IL, USA), connected to Pax-it imaging 

software (Pax-it, IL, USA). Images were merged using ImageJ software (National 

Institutes of Health, Maryland, UK). Four samples of each treatment (Table 2.2) were 

then analysed to count the number of cells using a macro: blue and green fields were 

extracted from the images and the moments threshold method was applied to separate 

the pulp cells. Adjacent cell nuclei were isolated running the watershed function and 

particles ranging from 3 to 100μm2 in size were counted.  The data was normalised to 

the pulp area to yield the mean number of cells/mm2 ± standard error.  

 

Table 2.2 Treatments applied to tooth slices. 

H2O2 concentration (ppm) Time of exposure 

1,000 5 minutes 

1,000 60 seconds 

300 5 minutes 

300 60 seconds 

Negative control: no treatment. 
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2.12 DAB-Immunohistochemistry TNF-α, IL-1β, 

DSP and PCNA 

Treated and control tooth slices (Table 2.2) were fixed, decalcified, dehydrated and 

embedded in paraffin wax as previously described in section 3.10. Embedded samples 

were cut into 5μm sections, mounted onto poly-L-Lysine coated slides and incubated at 

65°C for 45 minutes to allow the samples to adhere to the slide. The samples were 

then washed in xylene 3 times for 5 minutes to remove the paraffin wax and then 

rehydrated through a series of 5-minute washes in ethanol: 3 times 100 % v/v, 2 times 

70% v/v and 1 time 50% v/v. Endogenous peroxidase activity within the tissues was 

quenched by pouring a drop hydrogen peroxide 3% v/v in Tris-buffered saline (TBS) 

over the sample during 15 minutes; and then washed three times for 3 minutes each 

with TBS (pH 7.4, 9g/L sodium chloride, 1.2g/L Tris buffer in distilled water). To prevent 

non-specific binding, a drop of blocking solution of 3% v/v normal horse serum 

(NHS)(Vector Laboratories, Burlingame, CA) in TBS was poured for thirty minutes. No 

antigen retrieval was performed. 

 

Primary antibodies for TNF-α, IL-1β, DSPP and PCNA (Table 2.3) (Santa Cruz 

Biotechnology, Heidelberg, Germany) were diluted 1:50 in TBS containing 5% v/v 

NHS. Sections were incubated with the primary antibody solution during one hour and 

then washed 3 times for 5 minutes in TBS. Immunoreactivity was then performed using 

Vectastain® Universal Quick Kit (Catalog No. PK-8800, Vector Laboratories, 

Burlingame, CA). The negative control was primary antibody exclusion. Positive 

controls were rat lung for TNF-α, IL-1β and rat skin for PCNA. Samples stained for 

TNF-α, DSPP and IL-1β were counterstained for with Haematoxylin for 30 seconds and 

washed in tap water for 5 minutes. Samples stained to localise PCNA were 

counterstained with fast green FCF (Sigma Aldrich) for 5 minutes. Finally, the samples 

were dehydrated with 100% ethanol and xylene and mounted with DPX. Images were 

analysed with an upright microscope (Nikon 50i) and captured with a digital camera 

and StCamSWare v3.10 imaging software. 
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Table 2.3 List of primary antibodies used for Immunohistochemistry 

Antibody Type Code 

TNF-α Monoclonal IgG1 SC-52746 

IL- 1β Polyclonal IgG SC_7884 

DSPP Monoclonal IgG2b SC_73632 

PCNA Polyclonal IgG SC_7907 

 

 

2.13 Primer Design and Validation for RNA gene 
expression analysis of PCNA and DSPP genes 

Primers to quantify the gene expression of PCNA and DSPP for Rattus norvegicus 

were designed using the National Center for Biotechnology (NCBI). Three pairs of 

primers (listed in Table 2.4) were selected for each gene. The selection criteria were 

that the amplified product had to span an exon exon junction, the percentage of CG 

nucleotides had to be between 50% and 60% and there had to be low self-

complementary (<5).  

 

Table 2.4 Primer sequences designed for qPCR analysis 

 
Gene 

 
Primer sequence (5’->3’) 

Product 
length 
(Bp) 

Melting 
temperature 

(°C) 

GC- 
content 

(%) 

NCBI 
reference 
sequence 

PCNA 

(1) 

Forward –ACC TCA CCA GCA TGT CCA AAA 

Reverse – CTA CGC AGC TGT ACT CCT GTT 
198 

57.9 

59.8 

47.6 

52.4 
NM_022381.3 

PCNA 

(2) 

Forward – TTG GAA TCC CAG AAC AGG AGT 

Reverse – GTC CCG GCA TAT ACG TGC AA 
74 

57.9 

59.4 

47.6 

55 
NM_022381.3 

PCNA 

(3) 

Forward – GCA TGG ATT CGT CTC ACG TC 

Reverse – TTG GAC ATG CTG GTG AGG TTC 
115 

59.4 

59.8 

55 

52.4 
NM_022381.3 

DSPP 

(1) 

Forward  - GCA GAG CCA AAA TCA GGG ATT A 

Reverse – ATG GTG TCC GTT GCT GTC TT 
112 

58.4 

57.3 

45.5 

50 
NM_012790.2 

DSPP 

(2) 

Forward  - GCC ATT CCG GTC CCT CAG TT 

Reverse  - CTC ATT CTG TGC TGC GGT TC 
102 

61.4 

59.4 

60 

55 
NM_012790.2 

DSPP 

(3) 

Forward  - AAA ATC TGC CGA CGT ACC CT 

Reverse  - CAA CTC ATT CTG TGC TGC GGT 
58 

57.3 

59.8 

50 

52.4 
NM_012790.2 
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Primers (Eurofins Genomics, Ebersberg, Germany) were diluted in nuclease-free water 

(Promega, Southampton, UK) to a stock concentration of 100pmol/μL (1μM). 

 

In order to determine the efficiency of the designed primers, total rat RNA was 

converted to complementary DNA (cDNA) using a G-storm™ GS1 Thermal Cycler 

(Genetic Research Instrumentation, Braintree, UK). First, RNA concentration was 

determined using a NanoVue Spectrophotometer (GE Healthcare Life Sciences, 

Buckinghamshire, UK). RNA sample purity was determined by the ratio of absorbance 

at 260/280nm and considered pure if the value was above 1.7.  

 

cDNA was then synthesised by reverse transcription polymerase chain reaction (RT-

PCR) as follows:  1μg of total rat RNA was added to 1μl of random primers and the 

volume adjusted to 15μl with RNAse-free water. This solution was then incubated at 

70°C for 5 minutes to allow annealing of the random primers to the RNA. The product 

of this reaction was added to a master mix that contained: 5μL of MMLV reaction 

buffer, 1.25μL of dNTPSs (deoxynucleotide triphosphates, from a 10mM stock solution 

of comprising dATP, dCTP, dGTP and dTTP), 0.6 μL of RNase inhibitor, 1μl of M-MLV 

reverse transcriptase and 2.15μL of nuclease-free distilled water (all reagents used 

were sourced from Promega, Southampton, UK). This mix had a final volume of 25μL. 

Next, this solution was incubated for 1 hour at 37°C allowing the reverse transcriptase 

to extend the random primers at the expense of the dNTPSs, and therefore synthesise 

the double-stranded cDNA. 

 

Following RT-PCR, the newly synthesised cDNA was serially diluted 1:5 in nuclease-

free water (starting with 30ng of cDNA) in qPCR plates (Primerdesign, Chandler’s Ford, 

UK). Each well contained 5μL of cDNA solution and was combined with 10μL of FAST 

2x qPCR SYBR® Green MasterMix  (Primerdesign, Chandler’s Ford, UK), 2μL of 

forward and 2μL of reverse primers and 1μL of nuclease-free water. The negative 

control involved the substitution of cDNA with nuclease-free water. The plates were 

first heated to 95°C for 20 seconds; then the PCR stage consisted of 40 cycles of 95°C 

for 1 second and 55°C for 20 seconds.  Finally the melt curve analysis stage consisted 

of increasing the temperature to 95°C for 15 seconds, then decreasing it to 60°C for 60 

seconds and heating it up to 95°C for 15 seconds. The reaction was carried out in a 

QuantStudio™ 6Flex Real-Time PCR system with QuantStudio™ Real-Time PCR 

Software v1.2 (ThermoFischer Scientific, Loughborough, UK). Primer efficiency was 
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calculated using the formula below, using the slope of the dilution curve plotted against 

cycle number and had to be en the range of 90% to 110% and a melting curve showing 

a single peak. 

 

 

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (%) = (10
−1

𝑠𝑙𝑜𝑝𝑒 − 1) × 100 

 

 

 

2.14 Statistical Analysis. 

 

The data generated was expressed as mean values ± standard deviation (SD) or 

standard error of the mean (SE) and analysed using SPSS (IBM SPSS Statistics 2015 

for Windows, Version 23.0. Armonk, IBM Corp.). The Kolmogorov-Smirnov test was 

used to determine normal distribution and Levene’s test was used to test for 

homogeneity of variances. A one-way analysis of variance (ANOVA) was performed to 

determine the relative significance of the differences between the means when data 

were normally distributed and variances were not different. If these requirements were 

unmet, a Kruskal-Wallis test was used and the Mann Whitney U test to study 

differences within groups. Confidence intervals were set at 95% and a p-value less 

than or equal to 0.05 was considered significant. 
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3. Results 
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3.1 Gram stain 

 

As shown in Figure 3.1 after staining, the three strains under study, E. faecalis, S. 

anginosus and S. mutans appear as chains of gram-positive cocci with a diameter 

between 1 and 2µm.  

 

a      b     c  

Figure 3.1.  Images showing gram stain results for a) E. faecalis, b) S. anginosus and c) S. 

mutans. (Scale bar = 10 µm) 

 

 

3.2 MICs  

 

The MIC was determined for each microorganism, as the lowest concentration of 

antimicrobial agent that inhibits its growth (average of n=3 with 3 internal replicates). 

This was represented by an OD value similar to the blank control (broth alone). 

Following incubation during 24 hours at 37 °C and 5% CO2 in the presence of various 

H2O2 dilutions in distilled water, E. faecalis, S. anginosus and S. mutans growth was 

inhibited at 1,250ppm H2O2. Moreover, this value can be described as the MIC90 as 

the OD is reduced by approximately 90% when compared to the growth control. 

 

After incubation in serial dilutions of CHX, the MICs showed different results within the 

three strains. E. faecalis growth was inhibited at 8μg/mL, S. anginosus at 2μg/mL and 

S. mutans at 1μg/mL. 
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Control wells containing bacterial suspensions in BHI broth showed no inhibition of 

bacterial growth and blank control wells containing broth alone did not show any 

growth. 

 

 

3.3 MBCs  

 

After 24 hours incubation at 37°C and 5% CO2, the minimum concentration in which E. 

faecalis growth was undetectable was 2,500ppm (double the MIC value) of H2O2, 

whereas for S. anginosus and S. mutans this was 1,250ppm (equal to the MIC value). 

 

 

3.4 Evaluation of Cell Viability after Treatment with 
H2O2 and CHX 

 

To investigate the effects of H2O2 and CHX on rDPFs, an MTT assay was performed 

as described in section 2.2.6.  Data was normalized to the untreated control before the 

statistical analysis was performed. Gaussian distribution of data was not confirmed 

(p<0.05), and so a Kruskal-Wallis test was used to analyse differences between the 

ranks of the groups.  The Mann Whitney U test was used to explore the differences 

between the groups. 

 

H2O2 treatment for 5 minutes 

As shown in Figure 3.2, all the treated groups showed a significant difference when 

compared to the untreated group (p<0.001), the cells exposed to the least 

concentrated H2O2 (1,188ppm) had a 2-fold decrease in percentage viability compared 

to the untreated sample (p<0.001). Moreover, the three higher concentrations 

(19,000ppm, 9,500ppm and 4,750ppm) showed no significant difference (p=1) to the 

cells treated with Triton X 1% v/v (positive control). Thereby, rDPFs were significantly 

affected by the treatment for 5 minutes with H2O2 at all the concentrations tested. 
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Figure 3.2. rDPFs were treated with different concentrations of H2O2 for 5 minutes. Then the cell 

viability was assessed by means of an MTT assay. Data was normalized to the untreated 

control before statistical analysis. Data show the mean values ±SD (n=12 per treatment, *p < 

0.001) 

 

 

CHX treatments for 5 minutes 

The data after normalization to the negative control (untreated) deviated from normality 

(p<0.05), thus a Kruskal-Wallis test was used showing enough evidence that there was 

a statistical difference between the groups (p<0.001). As shown in Figure 3.3, the three 

lower concentrations used (8μg/mL, 4μg/mL and 2μg/mL) showed no significant 

difference when compared to the untreated cells (p= 1, 0.88 and 1 respectively). At the 

2 higher concentrations (32μg/mL and 16μg/mL) there was a 2-fold decrease in the 

percentage cell viability (p<0.001). Thus, rDPFs were unaffected when exposed to 

concentrations lower than 8μg/mL. 
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Figure 3.3. rDPFs treated with different concentrations of CHX for 5 minutes. Bars represent the 

mean value for the percentage cell viability ±SD. (n=10 per treatment, *p<0.001). 

 

 

H2O2 treatment for 60 seconds 

The percentage viability of rDPFs treated with H2O2 during 60 seconds was 

significantly different from the percentage viability of the untreated cells (p<0.001). The 

graph in Figure 3.4 shows that the three higher concentrations (19,000ppm, 9,500ppm 

and 4,750ppm) affected the cell viability in an equal way as the positive control (p=1). 

Despite the percentage of viable rDPFs treated with the lower concentration of H2O2 

used (1,188ppm) was 3-fold higher than the positive control (p<0.001); they were 

significantly affected when compared to the untreated fibroblasts (2,2-fold, p<0.001). 

Therefore, although the trend suggests a significantly higher percentage of cell viability 

at low concentrations, all the concentrations tested affected the rDPFs viability. 
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Figure 3.4. rDPFs were treated with different concentrations of H2O2 for 60 seconds. Data 

shows the mean values ±SD (n=10 per treatment). Cells were significantly affected by all the 

treatment concentrations tested (*p<0.001). 

 

 

 

CHX treatment for 60 seconds 

Figure 3.5 shows that cells treated with CHX at the four lower concentrations 

(16μg/mL, 8μg/mL, 4μg/mL and 2μg/mL) for 60 seconds. The results show no 

significant difference in percentage viability when compared to the untreated samples 

(p>0.05). 
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Figure 3.5. rDPFs treated with different concentrations of CHX for 60 seconds. Bars represent 

the mean value for the percentage cell viability ±SD (n=10 per treatment, *p < 0.001). 

 

 

3.5 Effect of H2O2 on Microorganism Viability 

 

As shown in Table 2.1, after 5 minutes of treatment, H2O2 had no bactericidal effect at 

either of the concentrations assessed. The neutralizer used (20g/L of sodium 

thiosulphate and 500U/mL of catalase from bovine liver) also had no bactericidal effect. 

 
Table 2.1. Effect of H2O2 on planktonic microorganisms using a quantitative suspension test. 

 

 
Mean log reduction (SD) in CFU/mL for each strain 

 
5 minutes contact time 

 
Concentration (ppm) E. faecalis S .anginosus S. mutans 

    
1000 (pH4.6) 1.63 (0.1) 1.07 (0.27) 1.40 (0.16) 

500  (pH5.8) 1.80 (0.09) 1.34 (0.19) 1.06 (0.2) 
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3.6 SEM Imaging after Treatment with H2O2 

 

E. faecalis, S. anginosus and S. mutans treated for 5 minutes with H2O2 at 1,000ppm 

and the untreated control were fixed as described in section 2.2.8. Representative 

images taken with SEM are shown in Figures 3.6, 3.7 and 3.8. The number of cells 

was equal in the treated and untreated samples in the three strains investigated. 

 

 

                         

      

          

Figure 3.6. SEM images of untreated and treated (with H2O2 for 5 minutes) E. faecalis. The 

upper images were taken with a magnification of 74.1kx and the lower with a higher 

magnification of 148kx. No changes in the morphology and structure of the cell were observed 

between the treated and untreated samples.  

 

Untreated Treated 
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Figure 3.7. SEM images of untreated and treated (with H2O2 for 5 minutes) S. anginosus. The 

upper images were taken with a magnification of 74.1kx and the lower with a higher 

magnification of 304kx. A discrete increased roughness was observed in the treated samples, 

however no differences were seen in terms of size and morphology. 

 

 

 

 

 

 

 

 

 

Untreated Treated 
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Figure 3.8. SEM images of untreated and treated (with H2O2 for 5 minutes) S. mutans. The 

upper images were taken with a magnification of 74.1kx and the lower with a higher 

magnification of 148kx. A discrete increased roughness is appreciated in the treated samples, 

however no difference is seen in terms of size and morphology. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Untreated Treated 
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3.6 Dental Pulp Cells Quantification 

 

As shown in Figure 3.9, after treatment of the tooth slices with 1,000ppm or 300ppm of 

H2O2 for 5 minutes or 60 seconds, no significant differences were demonstrated in 

viable cells between the treatment and control groups. 

 

 

Figure 3.9. Viable cells counted per mm2. Tooth slices were treated with 1,000ppm or 300ppm 

H2O2 for 5 minutes or 60 seconds. No significant reduction was accounted for the treated 

samples when compared to the negative control (p>0.05). Bars show mean values ± SE 
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3.7 Localization of TNF-α, IL-1β, PCNA and DSPP by 
Immunohistochemistry 

 

In order to assess the inflammatory response to the treatments with H2O2 (Table 2.2), 

the samples were subjected to immunohistochemical detection of TNF-α and IL-1β, as 

these are representative cytokines of dental pulp inflammation. Additionally, detection 

of DSPP was performed to identify odontoblasts, whether primary or newly 

differentiated ones; and PCNA to identify proliferative activity in the dental pulp cells.   

 

As shown in Figure 3.10, the inflammatory cytokines assessed were differentially 

expressed. TNF-α was highly expressed in the odontoblast layer and in the 

perivascular area of the treated samples, showing a similar staining to the rat lung 

positive control (Figure 3.12).  The untreated samples did not show immunopositivity 

for TNF-α. IL-1β had negative staining in all the samples. Primary antibody exclusion 

was also negative for staining. 

 

Immunohistochemical detection of PCNA showed no proliferation in the dental pulp in 

the untreated samples or in the treated ones (Figure 3.11). DSPP 

immunohistochemical localization showed staining in the odontoblast layer in untreated 

and treated samples. 

Staining was negative when the primary antibody was omitted showing the absence of 

nonspecific binding of the secondary antibody (Figure 3.10). Positive controls were Rat 

lung for TNF-α and IL-1β, and skin was used as a control of PCNA. All positive controls 

demonstrate positive staining (Figure 3.12). 
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Figure 3.10. Cytokine expression. A) Negative control, B) 5 minutes/1,000ppm, C) 60 

seconds/1,000ppm, and D) 60 seconds/300ppm. Control samples showed no expression of 

TNF-α, while staining was positive for all the samples treated with H2O2. None of the samples 

showed immunopositivity for IL-1β. Primary antibody exclusion controls were negative for 

staining. Black arrows highlight positive staining for TNF-α. 

 

 TNF-α IL-1β 1ary Ab Exclusion 
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 PCNA DSPP 

 

 

 

A 

  

 

 

 

B 

  

 

 

 

C 

  

 

 

 

D 

  

 

Figure 3.11. Immunohistochemistry for PCNA and DSPP: A) control samples, B) 

5minutes/1,000ppm, C) 60 seconds/1,000ppm, and D) 60 seconds/300ppm. Black arrows 

highlight positive staining of DSPP. 
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 Rat Lung – TNF-α Rat Lung IL-1β Rat Skin PCNA 

 

 

 

 

 

A 
   

 

 

 

 

 

B 
   

Figure 3.12. IHC controls. A) Positive controls: rat lung for TNF-α and IL-1β, and rat skin for PCNA. 

All showing positive staining (black arrows highlight cell nuclei in rat skin). B) Same tissues with 

primary antibody exclusion.  

 

 

3.8 Primer validation for RT-qPCR analysis 

 

Melt curves resulting from the designed primer validation are illustrated in Tables 3.2. 

And standard curves are shown in Table 3.3. DSPP (2) was the only pair of primers 

that showed acceptable efficiency (90%), and a single peak in the melting curve. 

Moreover, it has a linear standard curve (r2= 0.991) providing a high correlation between 

Cq and the target copy number. 
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Table 3.2. Melt curves 

 
 

PCNA (1) DSPP (1) 

  

PCNA (2) DSPP (2) 

  

PCNA (3) DSPP (3) 
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Table 3.3. Standard curves. Eff: percentage efficiency, r2: linear correlation and slope for 

each pair of primers tested.  

 

PCNA (1) eff=125%, r2=0.907 

Y = -2.839x + 29,636 

 

DSPP(1) eff=363%, r2=0.919 

Y= -1.501x + 30,538 

 

PCNA (2) eff=175%, r2=0.989 

Y= -2.277x + 29,029 

 

DSPP(2) eff=90.150%, r2=0.991 

Y= -3.583x + 29,982 

 

PCNA (3) eff=205%, r2=0.968 

Y= -2.063x + 30,778 

 

DSPP(1) eff=280%, r2=0.963 

Y= -1.722x + 28,789 
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4. Discussion 
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4.1 General discussion. 

 

The present study was designed to explore the potential to use H2O2 in deep carious 

cavities to both eliminate dentin-pulp complex infections and encourage regeneration. 

The development of strategies to treat dental caries is of interest because caries is a 

major public health problem, affecting the vast majority of adults (Petersen 2008) and 

generating a considerable economic burden (Allareddy et al. 2014).  

 

Current treatments of dental cavities involve removing the affected tissues and 

decontaminating the residual dentin prior to restoring the anatomy and function of the 

tooth. Despite the continuous optimization of dental materials, there is still a high rate 

of failure in current treatments (Lucarotti et al. 2005). One of the main causes affecting 

the success in dental restoration is the persistence of bacterial remnants in the cavity 

walls that may lead to recurrent caries and pulpal inflammation (Nedeljkovic et al. 

2015).  

 

In dental caries progression, the dental pulp is able to secrete tertiary dentin stimulated 

by a mild inflammatory response. This can be reactionary dentin when it is secreted by 

primary odontoblasts or reparative dentin when it is produced by newly differentiated 

odontoblast-like cells (Cooper et al. 2010). The capacity of dentin to regenerate has 

been the subject of research for several decades and is clinically exploited by the use 

of materials that promote the natural response.  However, these strategies have not yet 

succeeded in decreasing the failure rates in caries treatments (Zanini et al. 2017).  

 

Hydrogen peroxide effect on dental pulp cells is gaining interest because it is the major 

component of tooth bleaching agents.  It has been shown in in vitro studies, that dental 

pulp cells may be stimulated by low doses of ROS to express dentinogenic markers; 

thus reacting in a comparable way to low-grade inflammation (Lee et al. 2006; Soares 

et al. 2015).  However, much uncertainty still exists between the relationship between 

H2O2, oxidative stress and dental pulp regeneration, and what is less clear is its 

potential use in deep cavities to induce the production of tertiary dentin. 
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4.2 The potential use of H2O2 as a biocide  

 

The first question in this study sought to determine the justification of using H2O2 as a 

cavity disinfectant. Therefore, it was crucial to find the concentration that inhibited the 

growth of the microorganisms found in dentin-pulp complex infections.  Once this range 

was established, dental pulp cell viability was determined when treated to these 

concentrations at clinically relevant exposure times. The results of this study have 

shown that concentrations greater than 1,250 ppm of H2O2 are required to inhibit the 

growth of the three strains evaluated and that at those concentrations there is a 

significant loss of viability of the rDPFs. 

 

The MICs of CHX found for E. faecalis and S. mutans in this study was similar to the 

one found in previously published investigations (Jarvinen et al. 1993; Kitagawa et al. 

2016). Additionally, rDPFs viability was not affected at bactericidal concentration, 

confirming that it is biocompatible and safe to use as a cavity disinfectant. 

 

The results from the suspension test showed that H2O2 had no antibacterial activity 

against planktonic cells of S. mutans, S. anginosus and E. faecalis. Where 

concentrations as high as 1,000ppm showed no log10 reduction within 5 minutes. SEM 

images obtained after applying the same conditions showed in a general scan of the 

treated samples that the microorganisms were not significantly reduced in quantity 

when compared to the untreated sample.  

 

The microorganisms tested here are unable to produce catalase enzyme, therefore 

their capacity to cope with oxidative stress in such high concentration of molecular 

H2O2 might be due to other mechanisms (Flahaut et al. 1998).  This is of particular 

concern because surviving microorganisms at sub-MIC concentrations could generate 

tolerance to the biocide (Maillard 2007). In particular, E. faecalis mechanisms to adapt 

to oxidative stress was previously studied and it was shown that this microbe 

resistance could be related to new protein synthesis (Flahaut et al. 1998). Furthermore, 

by this acquired mechanism, E. faecalis could increase its virulence, allowing it to 

become an opportunistic pathogen (Riboulet et al. 2007). This is important because 

leaving microorganisms attached to the dentin walls could lead to recurrent caries 

lesion and further dental pulp damage. But also, using sub-MIC concentrations could 
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lead to the development of an intrinsic resistant microorganism with decreased 

susceptibility to other biocide applications (Maillard 2007).  

 

These findings, while preliminary, suggest that at biocidal concentrations, H2O2 is 

highly cytotoxic to dental pulp cells and that at a clinically relevant time exposure at 

those concentrations does not inactivate the bacteria. Therefore, its clinical use in deep 

cavities at these concentrations is discouraged. 

 

4.3 Hydrogen peroxide and its potential regenerative 
effect 

 

The second objective of this project was to identify a relation between H2O2 and tertiary 

dentin production. As previously discussed in the introduction (section 1.7), in vitro 

studies showed that pre-odontoblastic cells (MDPC-23) exposed low concentrations of 

H2O2 showed an enhanced regenerative response, and maintain an odontoblast 

phenotype (Lee et al. 2006; Soares et al. 2016). Other studies that used primary 

human dental pulp cells exposed to low concentrations of H2O2 showed the ability to 

form mineralized tissues (Matsui et al. 2009) and to overexpress DSPP (Min et al. 

2008). 

 

These studies used monolayer cell-cultures to assess the response to oxidative stress, 

but the presence of the ECM may affect the diffusion of the H2O2 and reduce its 

cytotoxic effect (Wataha 2012). Moreover, cell-ECM interactions are crucial to study a 

regenerative response because the matrix contains bioactive molecules responsible for 

mediating the cellular behaviour (Smith et al. 2016). Therefore, the rat ex vivo tooth 

slice model can help in assessing the dentin-pulp complex response to H2O2 in a way 

that more closely mimics the in vivo situation. 

 

Firstly, the dental pulp cells viability was assessed after treating the tooth slices with 

two different concentrations of H2O2. An interesting finding in this study was that the 

number of cells/mm2 was not reduced after all the treatments tested. On the contrary, 

the same conditions resulted toxic to rDPFs cultured in monolayer. This finding further 

supports the importance of the use of ex vivo models, showing how the presence of the 
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ECM and the cells being held in their natural structural environment can affect their 

response to drug testing. But most important, it implies that H2O2 might have potential 

use as a cavity disinfectant because in a clinical situation the cells are protected by the 

ECM and the dentin remnant and higher concentrations of the biocide could be used. 

 

Immunohistochemistry results in this project are in line with those of previous studies, 

showing that the samples treated with H2O2 expressed high levels of TNF-α. Thus, 

suggesting an inflammatory response to oxidative stress. In this case, TNF-α was 

expressed mostly in the odontoblast layer. This is interesting because, as previously 

demonstrated, TNF-α can potentiate the effect of TGF-β to induce an upregulation of 

the p38-MAPKinase (Simon et al. 2010); and therefore could be implicated in tertiary 

dentin secretion on behalf of primary odontoblasts. Moreover, TNF-α can induce dental 

pulp cells to express mineralization associated proteins and to differentiate into 

odontoblast-like cells (Paula-Silva et al. 2009). 

 

Interestingly, Il-1β showed negative staining in all the samples suggesting the absence 

of expression of this inflammatory marker. However, it could be argued that this 

negative result might be due to the lack of optimization of the immunohistochemistry 

technique. In this study, tissues were fixed in formalin and no antigen retrieval step was 

used, therefore the absence of staining could also be caused by the inability of the 

primary antibody to bind to the cytokine. A previous study that showed by 

immunohistochemistry that IL-1β is highly expressed in inflamed human dental pulps, 

showed as a histological finding that this cytokine was highly expressed in the 

odontoblast layer of healthy pulps as well (Alessandra Cecília Oliveira et al. 2009). To 

overcome these inconsistencies, cytokine expression at a gene level could be 

quantified by RT-qPCR. To implement such an experiment, tooth slices would have to 

be cut into thicker sections in order to have more tissue mass for the RNA extraction.  

 

Immunohistochemical detection of DSPP, showed staining in the odontoblast layer in 

the negative control and treated samples, thus suggesting that 24 hours after 

treatment, primary odontoblasts were unaffected by any concentration of H2O2 or 

duration of the exposure applied (Table 3.1). However, DSPP was absent in other 

areas of the pulp, suggesting that treatment with H2O2 did not propitiate an 

odontoblast-like differentiation. Moreover, PCNA expression was not detected in either 

of the treatments; it is possible therefore that the treatment did not enhance a 
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proliferative response from the DPSCs, or that incubation of the samples for 24 hours 

after the treatment was not enough to allow such behaviour.  

 

These results agree with a recently published study, that used a controlled molar-

damage in vivo model to study the timescale of reparative dentinogenesis, where 

PCNA was overexpressed 3 days after damage and that DSPP expression by newly 

formed odontoblasts was shown 5 days after damage as assessed by 

immunohistochemistry and in situ hybridisation respectively (Babb et al. 2017). Sloan 

et al. (1999) used the ex vivo tooth slice model to assess the dentin-pulp complex 

response to TGF-β, showing a significant increase in the predentin thickness assessed 

by histological examination after 7 days of culture. Thus, although there was no evident 

proliferative activity nor differentiation from the pulp cells in this study, this negative 

result could be caused because the post-treatment incubation time was insufficient to 

evaluate a reparative response and not due to a negative response to the H2O2 

treatment. 

 

Therefore, the present study suggests that H2O2 might elicit a regenerative response 

from the primary odontoblasts to secrete reactionary dentine. These maintain their 

phenotype and express TNF-α, which could potentiate the stimulation to produce 

matrix by growth factors present in the ECM. Moreover, although a reparative response 

was not evident in other areas of the pulp, the cell viability was not reduced and 

therefore it will be worth further investigating that potential. 

 

4.4 Study limitations and future work 

 

One of the drawbacks of using an ex vivo model to study the inflammatory response, is 

the lack of circulatory system making the model a static system. However, the model 

provides the means to study specific dentinogenic events without systemic variations. 

The major limitation of this project was the time constraint, which led to the inability to 

assess the reparative response in longer culture periods and to quantify the cytokine 

and regenerative markers at a gene level. For this purpose, a first attempt to validate 

primers for PCNA and DSPP was performed as shown in sections 2.13 and 3.9 

resulting in the validation of a pair of primers for DSPP.  
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Future work will address these questions, focusing on following a reasonable 

dentinogenesis timescale that could be assessed with the ex vivo rat tooth model. 

Moreover, in future investigations, it might be useful to work with a range of lower H2O2 

concentrations, but with longer periods of exposure, in an attempt to mimic the natural 

occurring oxidative stress, and thus, to be able to study the molecular mechanisms 

underlying a potential dentinogenic response. The use of an ex vivo model in this 

situation can be justified by the fact that dental pulp stem cells are a heterogeneous 

population, which have high variability in the proliferative and differentiation capabilities 

(Alraies et al. 2017). Ex vivo models for oxidative stress have already been designed in 

other tissues. For example, a porcine ex vivo retina culture model for oxidative stress 

was developed, but in this case with the purpose of understanding eye disorders 

caused by ROS (Schnichels et al. 2016).  

 

 

4.5 Conclusions 

 

The aim of the present research was to examine the dentin-pulp complex response to 

hydrogen peroxide at the cellular and molecular level, as well as its effect on 

microorganisms associated with tooth infections. 

 

The most obvious finding to emerge from this study is that, whilst biocidal 

concentrations of H2O2 decreased significantly the cell viability of dental pulp cells 

cultured in monolayer, did not affect the viability of dental pulp cells in the ex vivo tooth 

model. This finding highlights the importance of the ECM in influencing drug diffusion 

through the tissue architecture. But most important, it suggests a potential use of H2O2 

in cavity disinfectant formulations. However, this would require further investigation on 

the inactivation kinetics of the microorganisms involved in dentin infection. 

 

The short incubation time after the treatment of the tooth slices might have limited the 

possibility of the proteins involved in tertiary dentin production to be expressed. Future 

work will address these limitations and intend to add data of expression at the gene 

level.  
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In spite of these limitations, this study suggests that after treatment with H2O2, primary 

odontoblasts maintain their viability and phenotype, while expressing TNF-α, a cytokine 

that could stimulate the secretory production of such cells. And thus, suggesting an 

autocrine regulation of the odontoblast layer in response to oxidative stress. Therefore, 

these results suggest a potential of hydrogen peroxide as a mediator in the 

regenerative processes and a possible clinical use for that purpose. In conclusion, the 

results from this study support to pursue the research of the effect of oxidative stress 

on the dentin-pulp complex. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 57 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. References 

 

 

 

 

 

 

 

 

 

 



 58 

Alessandra Cecília Oliveira, S. et al. 2009. Interleukin-1 beta and interleukin-8 in healthy and 
inflamed dental pulps. Journal of Applied Oral Science 17(5), pp. 527-532. doi: 10.1590/S1678-
77572009000500031 

 

Allareddy, V. et al. 2014. Hospital-based emergency department visits involving dental 
conditions: Profile and predictors of poor outcomes and resource utilization: Profile and 
predictors of poor outcomes and resource utilization. The Journal of the American Dental 
Association 145(4), pp. 331-337. doi: 10.14219/jada.2014.7 

 

Alraies, A. et al. 2017. Variation in human dental pulp stem cell ageing profiles reflect 
contrasting proliferative and regenerative capabilities. BMC Cell Biol. 18(1),  doi: 
10.1186/s12860-017-0128-x 

 

Babb, R. et al. 2017. Axin2-expressing cells differentiate into reparative odontoblasts via 
autocrine Wnt/β-catenin signaling in response to tooth damage. Sci Rep 7(1), pp. 3102-3102. 
doi: 10.1038/s41598-017-03145-6 

 

Barbosa-Ribeiro, M. et al. 2016. Antimicrobial Susceptibility and Characterization of Virulence 
Genes of Enterococcus faecalis Isolates from Teeth with Failure of the Endodontic Treatment. 
Journal of Endodontics 42(7), pp. 1022-1028. doi: 10.1016/j.joen.2016.03.015 

 

Benetti, F. et al. 2017. Hydrogen peroxide induces cell proliferation and apoptosis in pulp of rats 
after dental bleaching in vivo: Effects of the dental bleaching in pulp. Archives of Oral Biology 

81, pp. 103-109. doi: https://doi.org/10.1016/j.archoralbio.2017.04.013 

 

Butler, W. et al. 1992. ISOLATION, CHARACTERIZATION AND IMMUNOLOCALIZATION OF 
A 53-KDAL DENTIN SIALOPROTEIN (DSP). Matrix 12(5), pp. 343-351. doi: 10.1016/S0934-
8832(11)80030-2 

 

Camargo, S. E. A. et al. 2007. Penetration of 38% Hydrogen Peroxide into the Pulp Chamber in 
Bovine and Human Teeth Submitted to Office Bleach Technique. Journal of Endodontics 33(9), 
pp. 1074-1077. doi: 10.1016/j.joen.2007.04.014 

 

Chai, Y. et al. 2000. Fate of the mammalian cranial neural crest during tooth and mandibular 
morphogenesis. Development 127(8), pp. 1671-1679.  

 

Cohenca, N. et al. 2013. Vital Pulp Therapy. Dental Clinics of North America 57(1), pp. 59-73. 
doi: 10.1016/j.cden.2012.09.004 

 

Cooper, P. R. et al. 2010. Inflammation–regeneration interplay in the dentine–pulp complex. 

Journal of Dentistry 38(9), pp. 687-697. doi: https://doi.org/10.1016/j.jdent.2010.05.016 

 

El Karim, I. A. et al. 2009. Neuropeptides Regulate Expression of Angiogenic Growth Factors in 
Human Dental Pulp Fibroblasts. Journal of Endodontics 35(6), pp. 829-833. doi: 
10.1016/j.joen.2009.03.005 

 

https://doi.org/10.1016/j.archoralbio.2017.04.013
https://doi.org/10.1016/j.jdent.2010.05.016


 59 

Facklam, R. 2002. What Happened to the Streptococci: Overview of Taxonomic and 
Nomenclature Changes. Clinical Microbiology Reviews 15(4), p. 613. doi: 
10.1128/CMR.15.4.613-630.2002 

 

Featherstone, J. D. B. 2000. THE SCIENCE AND PRACTICE OF CARIES PREVENTION. The 
Journal of the American Dental Association 131(7), pp. 887-899. doi: 
10.14219/jada.archive.2000.0307 

 

Finkel, T. 1998. Oxygen radicals and signaling. Current Opinion in Cell Biology 10(2), pp. 248-
253. doi: 10.1016/S0955-0674(98)80147-6 

 

Fisher, L. E. and Russell, R. R. B. 1993. The Isolation and Characterization of Milleri Group 
Streptococci from Dental Periapical Abscesses. Journal of Dental Research 72(8), pp. 1191-
1193. doi: 10.1177/00220345930720080501 

 

Flahaut et al. 1998. The oxidative stress response in Enterococcus faecalis : relationship 
between H 2 O 2 tolerance and H 2 O 2 stress proteins. Letters in Applied Microbiology 26(4), 
pp. 259-264. doi: 10.1046/j.1472-765X.1998.00325.x 

 

Fraud, S. et al. 2001. Comparison of the mycobactericidal activity of ortho- phthalaldehyde, 
glutaraldehyde and other dialdehydes by a quantitative suspension test. Journal of Hospital 
Infection 48(3), pp. 214-221. doi: 10.1053/jhin.2001.1009 

 

Frencken, J. E. et al. 2017. Global epidemiology of dental caries and severe periodontitis – a 
comprehensive review. Journal of Clinical Periodontology 44(S18), pp. S94-S105. doi: 
10.1111/jcpe.12677 

 

Fukuyama, Y. et al. 2008. Hydrogen peroxide induces expression and activation of AMP‐

activated protein kinase in a dental pulp cell line. International Endodontic Journal 41(3), pp. 
197-203. doi: 10.1111/j.1365-2591.2007.01337.x 

 

Garberoglio, R. and Brännström, M. 1976. Scanning electron microscopic investigation of 
human dentinal tubules. Archives of Oral Biology 21(6), pp. 355-362. doi: 10.1016/S0003-
9969(76)80003-9 

 

Glickman, G. N. 2009. AAE Consensus Conference on Diagnostic Terminology: Background 
and Perspectives. 

 

Goldberg, M. et al. 2008. Inflammatory and immunological aspects of dental pulp repair. 
Pharmacological Research 58(2), pp. 137-147. doi: 10.1016/j.phrs.2008.05.013 

 

Gronthos, S. et al. 2002. Stem Cell Properties of Human Dental Pulp Stem Cells. Journal of 
Dental Research 81(8), pp. 531-535. doi: 10.1177/154405910208100806 

 

Gronthos, S. et al. 2000. Postnatal human dental pulp stem cells (DPSCs) in vitro and invivo. 
Proceedings of the National Academy of Sciences of the United States of America 97(25), p. 
13625. doi: 10.1073/pnas.240309797 



 60 

 

Hahn, C.-L. and Overton, B. 1997. The effects of immunoglobulins on the convective 
permeability of human dentine in vitro. Archives of Oral Biology 42(12), pp. 835-843. doi: 
10.1016/S0003-9969(97)00080-0 

 

Hargreaves, K. M. et al. 2016. Cohen's pathways of the pulp. 11th edition. ed. Saint Louis, 
Missouri : Elsevier. 

 

Hargreaves, K. M. and Cohen, S. 2011. Cohen's pathways of the pulp. 10th ed. ed. St. Louis: 
St. Louis : Mosby Elsevier. 

 

Hasselmann, C. 2003. Determination of minimum inhibitory concentrations (MICs) of 
antibacterial agents by broth dilution. Clin. Microbiol. Infect. 9(8),   

 

Hirsch, V. et al. 2017. Inflammatory cytokines in normal and irreversibly inflamed pulps: A 
systematic review. Archives of Oral Biology 82, pp. 38-46. doi: 
10.1016/j.archoralbio.2017.05.008 

 

Hubble, T. S. et al. 2003. Influence of Enterococcus faecalis proteases and the collagen‐

binding protein, Ace, on adhesion to dentin. Oral Microbiology and Immunology 18(2), pp. 121-
126. doi: 10.1034/j.1399-302X.2003.00059.x 

 

Iglesias, K. et al. 2003. Reduction in tooth stiffness as a result of endodontic access and loss of 
different dental crown surfaces. J. Dent. Res. 82, pp. 134-134.  

 

Izumi, T. et al. 1995. Immunohistochemical study on the immunocompetent cells of the pulp in 
human non-carious and carious teeth. Archives of Oral Biology 40(7), pp. 609-614. doi: 
10.1016/0003-9969(95)00024-J 

 

Jarvinen, H. et al. 1993. In vitro susceptibility of Streptococcus mutans to chlorhexidine and six 
other antimicrobial agents. Antimicrobial Agents and Chemotherapy 37(5), p. 1158. doi: 
10.1128/AAC.37.5.1158 

 

Jenkinson, H. and Lamont, R. 1997. Streptococcal adhesion and colonization. Crit. Rev. Oral 
Biol. Med. 

 

Jenkinson, H. F. and Lamont, R. J. 2005. Oral microbial communities in sickness and in health. 
Trends in Microbiology 13(12), pp. 589-595. doi: 10.1016/j.tim.2005.09.006 

 

Kayaoglu, G. and Ørstavik, D. 2004. Virulence Factors ofEnterococcus faecalis: Relationship to 
Endodontic Disease. Critical Reviews in Oral Biology & Medicine 15(5), pp. 308-320. doi: 
10.1177/154411130401500506 

 

Kitagawa, H. et al. 2016. Evolution of resistance to cationic biocides in Streptococcus mutans 
and Enterococcus faecalis. Journal of Dentistry 47, pp. 18-22. doi: 10.1016/j.jdent.2016.02.008 

 



 61 

Kouidhi, B. et al. 2011. Antibiotic resistance and adhesion properties of oral Enterococci 
associated to dental caries. BMC Microbiol. 11,  doi: 10.1186/1471-2180-11-155 

 

Lange, J. et al. 2010. Action of IL-1 beta during Fracture Healing. J. Orthop. Res. 28(6), pp. 
778-784. doi: 10.1002/jor.21061 

 

Lee, D. et al. 2006. Effects of hydrogen peroxide (H 2 O 2 ) on alkaline phosphatase activity and 
matrix mineralization of odontoblast and osteoblast cell lines. Cell Biology and Toxicology 22(1), 
pp. 39-46. doi: 10.1007/s10565-006-0018-z 

 

Love, R. M. 2001. Enterococcus faecalis – a mechanism for its role in endodontic failure. 
International Endodontic Journal 34(5), pp. 399-405. doi: 10.1046/j.1365-2591.2001.00437.x 

 

Love, R. M. and Jenkinson, H. 2002. Invasion of dentinal tubules by oral bacteria. Crit. Rev. 
Oral Biol. Med. 

 

Lucarotti, P. S. K. et al. 2005. Outcome of direct restorations placed within the general dental 
services in England and Wales (Part 1): Variation by type of restoration and re-intervention. 
Journal of Dentistry 33(10), pp. 805-815. doi: 10.1016/j.jdent.2005.03.008 

 

Maillard, J. Y. 2007. Bacterial resistance to biocides in the healthcare environment: should it be 
of genuine concern? ,   

 

Matsui, S. et al. 2009. Stimulatory Effects of Low-concentration Reactive Oxygen Species on 
Calcification Ability of Human Dental Pulp Cells. Journal of Endodontics 35(1), pp. 67-72. doi: 
10.1016/j.joen.2008.08.034 

 

Michel, G. et al. 2015. Is Pulp Inflammation a Prerequisite for Pulp Healing and Regeneration? 
Mediators of Inflammation 2015(2015),  doi: 10.1155/2015/347649 

 

Michelich, V. et al. 1978. Dentin Permeability: A Comparison of Functional Versus Anatomical 
Tubular Radii. Journal of Dental Research 57(11-12), pp. 1019-1024. doi: 
10.1177/00220345780570110301 

 

Min, K.-S. et al. 2008. Hydrogen Peroxide Induces Heme Oxygenase–1 and Dentin 
Sialophosphoprotein mRNA in Human Pulp Cells. Journal of Endodontics 34(8), pp. 983-989. 

doi: https://doi.org/10.1016/j.joen.2008.05.012 

 

Moseley, R. et al. 2002. Comparison of the antioxidant properties of HYAFF ®-11p75, 
AQUACEL ® and hyaluronan towards reactive oxygen species in vitro. Biomaterials 23(10), pp. 
2255-2264. doi: 10.1016/S0142-9612(01)00360-X 

 

Moseley, R. et al. 2003. The Influence of Fluoride Exposure on Dentin Mineralization Using an 
in Vitro Organ Culture Model. Calcified Tissue International 73(5), pp. 470-475. doi: 
10.1007/s00223-003-0022-8 

 

https://doi.org/10.1016/j.joen.2008.05.012


 62 

Munksgaard, E. C. et al. 1978. Biosynthesis of phosphoprotein by rat incisor odontoblasts in in-
vitro culture. Archives of Oral Biology 23(7), pp. 583-585. doi: 10.1016/0003-9969(78)90275-3 

 

Nanci, A. 2018. Ten Cate's oral histology : development, structure, and function. 9th edition. ed. 
St. Louis, Missouri : Elsevier. 

 

Nedeljkovic, I. et al. 2015. Is secondary caries with composites a material-based problem? 
Dental Materials 31(11), pp. e247-e277. doi: 10.1016/j.dental.2015.09.001 

 

Nishio Ayre, W. et al. 2018. Enterococcus faecalis demonstrates pathogenicity through 
increased attachment in an ex vivo polymicrobial pulpal infection.   

 

Patel, M. et al. 2009. Phenotype and behaviour of dental pulp cells during expansion culture.   

 

Paula-Silva, F. et al. 2009. TNF-alpha Promotes an Odontoblastic Phenotype in Dental Pulp 
Cells. J. Dent. Res. 88(4), pp. 339-344. doi: 10.1177/0022034509334070 

 

Petersen, P. E. 2008. World Health Organization global policy for improvement of oral health ‐ 

World Health Assembly 2007. International Dental Journal 58(3), pp. 115-121. doi: 
10.1111/j.1875-595X.2008.tb00185.x 

 

Pevsner-Fischer, M. et al. 2007. Toll-like receptors and their ligands control mesenchymal stem 
cell functions. Blood 109(4), pp. 1422-1432. doi: 10.1182/blood-2006-06-028704 

 

Piesco, N. et al. 1995. REGULATION OF CYTOKINE EXPRESSION IN PULP FIBROBLASTS. 
J. Dent. Res. 74, pp. 545-545.  

 

Qin, Z. et al. 2015. High dose of TNF-α suppressed osteogenic differentiation of human dental 
pulp stem cells by activating the Wnt/β-catenin signaling. Journal of Molecular Histology 46(4), 
pp. 409-420. doi: 10.1007/s10735-015-9630-7 

 

Radi, R. 2018. Oxygen radicals, nitric oxide, and peroxynitrite: Redox pathways in molecular 
medicine. Proceedings of the National Academy of Sciences of the United States of America 
115(23), pp. 5839-5848. doi: 10.1073/pnas.1804932115 

 

Rechenberg, D. et al. 2016. Biological Markers for Pulpal Inflammation: A Systematic Review. 
PLoS One. 

 

Riboulet, E. et al. 2007. Relationships between Oxidative Stress Response and Virulence in 
Enterococcus faecalis. Journal of Molecular Microbiology and Biotechnology 13(1-3), pp. 140-
146. doi: 10.1159/000103605 

 

Ricucci, D. et al. 2014. Correlation between Clinical and Histologic Pulp Diagnoses. Journal of 
Endodontics 40(12), pp. 1932-1939. doi: 10.1016/j.joen.2014.08.010 

 



 63 

Roberts, J. L. et al. 2013. Development of an Ex Vivo Coculture System to Model Pulpal 
Infection by Streptococcus anginosus Group Bacteria. Journal of Endodontics 39(1), pp. 49-56. 
doi: 10.1016/j.joen.2012.09.005 

 

Rosen, E. et al. 2018. Challenges in the Eradication of Enterococcus faecalis and its 
Implications on Health. Current Oral Health Reports 5(1), pp. 70-77. doi: 10.1007/s40496-018-
0172-4 

 

Ruch, J. V. et al. 1995. Odontoblast differentiation. International Journal of Developmental 
Biology 39(1), pp. 51-68. doi: 10.1387/ijdb.7626422 

 

Sadaghiani, L. et al. 2016. Growth Factor Liberation and DPSC Response Following Dentine 
Conditioning. Journal of Dental Research 95(11), pp. 1298-1307. doi: 
10.1177/0022034516653568 

 

Schnichels, S. et al. 2016. A novel ex-vivo retina model for oxidative stress - chances for the 
replacement of animal experiments. Invest. Ophthalmol. Vis. Sci. 57(12),   

 

Schulte, J. M. and Van Waes, H. 2007. Dentinogenesis imperfecta. Dentinogenesis imperfecta 
19(4), pp. 418-421. doi: 10.1007/s11825-007-0048-9 

 

Shi, S. and Gronthos, S. 2003. Perivascular Niche of Postnatal Mesenchymal Stem Cells in 
Human Bone Marrow and Dental Pulp. Journal of Bone and Mineral Research 18(4), pp. 696-
704. doi: 10.1359/jbmr.2003.18.4.696 

 

Simon, S. et al. 2010. The MAP Kinase Pathway Is Involved in Odontoblast Stimulation via p38 
Phosphorylation. Journal of Endodontics 36(2), pp. 256-259. doi: 10.1016/j.joen.2009.09.019 

 

Sloan, A. and Smith, A. 2007. Stem cells and the dental pulp: potential roles in dentine 
regeneration and repair. Oxford, UK. 

 

Sloan, A. J. and Lynch, C. D. 2012. Dental tissue repair: Novel models for tissue regeneration 
strategies. Open Dentistry Journal 6(1), pp. 214-219. doi: 10.2174/1874210601206010214 

 

Sloan, A. J. et al. 2000. Stimulation of the rat dentine–pulp complex by bone morphogenetic 
protein-7 in vitro. Archives of Oral Biology 45(2), pp. 173-177. doi: 10.1016/S0003-
9969(99)00131-4 

 

Sloan, A. J. et al. 1998. An in vitro approach for the study of dentinogenesis by organ culture of 
the dentine–pulp complex from rat incisor teeth. Archives of Oral Biology 43(6), pp. 421-430. 
doi: 10.1016/S0003-9969(98)00029-6 

 

Sloan, A. J. and Smith, A. J. 1999. Stimulation of the dentine–pulp complex of rat incisor teeth 
by transforming growth factor- β isoforms 1–3 in vitro. Archives of Oral Biology 44(2), pp. 149-
156. doi: 10.1016/S0003-9969(98)00106-X 

 



 64 

Smith, A. and Lesot, H. 2001. Induction and regulation of crown dentinogenesis: Embryonic 
events as a template for dental tissue repair? Crit. Rev. Oral Biol. Med. 

 

Smith, A. J. et al. 1995. Reactionary dentinogenesis. International Journal of Developmental 
Biology 39(1), pp. 273-280. doi: 10.1387/ijdb.7626417 

 

Smith, A. J. and Cooper, P. R. 2017. Regenerative Endodontics: Burning Questions. Journal of 
Endodontics 43(9), pp. S1-S6. doi: 10.1016/j.joen.2017.06.002 

 

Smith, A. J. et al. 2016. Exploiting the Bioactive Properties of the Dentin-Pulp Complex in 
Regenerative Endodontics. Journal of Endodontics 42(1), pp. 47-56. doi: 
10.1016/j.joen.2015.10.019 

 

Smith, A. J. et al. 2001. Trans-dentinal Stimulation of Tertiary Dentinogenesis. Advances in 
Dental Research 15(1), pp. 51-54. doi: 10.1177/08959374010150011301 

 

Smith, A. J. et al. 2012. Harnessing the Natural Regenerative Potential of the Dental Pulp. 
Dental Clinics of North America 56(3), pp. 589-601. doi: 10.1016/j.cden.2012.05.011 

 

Soares, D. G. et al. 2015. Effect of hydrogen-peroxide-mediated oxidative stress on human 
dental pulp cells. Journal of Dentistry 43(6), pp. 750-756. doi: 10.1016/j.jdent.2014.12.006 

 

Soares, D. G. et al. 2016. Indirect cytocompatibility of a low‐concentration hydrogen peroxide 

bleaching gel to odontoblast‐like cells. International Endodontic Journal 49(1), pp. 26-36. doi: 

10.1111/iej.12426 

 

Tani‐Ishii, N. et al. 1995. Immunolocalization of bone‐resorptive cytokines in rat pulp and 

periapical lesions following surgical pulp exposure. Oral Microbiology and Immunology 10(4), 
pp. 213-219. doi: 10.1111/j.1399-302X.1995.tb00145.x 

 

Thannickal, V. and Fanburg, B. 2000. Reactive oxygen species in cell signaling. Am. J. Physiol.-
Lung Cell. Mol. Physiol. 

 

Thesleff, I. and Sharpe, P. 1997. Signalling networks regulating dental development. 
Mechanisms of Development 67(2), pp. 111-123. doi: 10.1016/S0925-4773(97)00115-9 

 

Trowbridge, H. O. and Stevens, B. H. Microbiologic and pathologic aspects of pulpal and 
periapical disease. (1046-0764 (Print)),   

 

van Rijkom, H. M. et al. 1996. A Meta-analysis of Clinical Studies on the Caries-inhibiting Effect 
of Chlorhexidine Treatment. Journal of Dental Research 75(2), pp. 790-795. doi: 
10.1177/00220345960750020901 

 

Waddington, R. J. et al. 2000. Periodontal disease mechanisms - Reactive oxygen species: a 
potential role in the pathogenesis of periodontal diseases.   



 65 

 

Wataha, J. C. 2012. Predicting clinical biological responses to dental materials. Dental Materials 
28(1), pp. 23-40. doi: 10.1016/j.dental.2011.08.595 

 

Whiley, R. A. et al. 1992. Streptococcus intermedius, Streptococcus constellatus, and 
Streptococcus anginosus (the Streptococcus milleri group): Association with different body sites 
and clinical infections. Journal of Clinical Microbiology 30(1), pp. 243-244.  

 

Yoshiba, K. et al. 2003. Class II Antigen-presenting Dendritic Cell and Nerve Fiber Responses 
to Cavities, Caries, or Caries Treatment in Human Teeth. Journal of Dental Research 82(6), pp. 
422-427. doi: 10.1177/154405910308200604 

 

Zander, H. A. 1939. Reaction of the Pulp to Calcium Hydroxide. Journal of Dental Research 
18(4), pp. 373-379. doi: 10.1177/00220345390180040601 

 

Zanini, M. et al. 2017. Pulp Inflammation Diagnosis from Clinical to Inflammatory Mediators: A 
Systematic Review. Journal of endodontics. 43(7), pp. 1033-1051. doi: 
10.1016/j.joen.2017.02.009 

 

Zehnder, M. et al. 2003. Cytokine gene expression—part of host defence in pulpitis. Cytokine 
22(3), pp. 84-88. doi: 10.1016/S1043-4666(03)00116-9 

 

 


