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Abstract

In many applications like meteorology, atmospheric pollution studies, eolic
energy prospection, estimation of instantaneous velocity fields, etc., one faces
the problem of estimating a velocity field that is assumed to be incompressible.
Very often the available data contains just a few and sparse velocity measure-
ments and may be some boundary conditions imposed by solid boundaries. This
inverse problem is studied here, and a new method to provide a numerical solu-
tion is presented. It is based on the Fourier transform, and allows to include the
incompressibility constraint in a simple way, leading to an unconstrained least
squares formulation, usually ill-posed.

The Tikhonov regularization is applied to stabilize the solution, as well as to
provide some smoothness in the estimated flow. As a consequence, the numerical
solution will generally approximate the measurements up to a threshold given
by the size of the regularization parameter. Moreover, if the available velocity
measurements come from a smooth velocity field then the numerical solution
can be usually constructed using just a small number of Fourier terms.

The choice of the regularization parameter is done using the L curve method,
balancing the perturbation and regularization contributions to the error.

Perturbation bounds (i.e.), bounds for the condition number of the matrix
from the Least Squares formulation are included.

Numerical experiments with test problems and real data from the southern
part of Uruguay are carried out. In addition, the results are compared with
related work and the results are satisfactory.

Keywords: Incompressible flow, Mass consistent models, Inverse problems,
Ill-posed problems, Regularization methods.
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Chapter 1

Introduction

This Master thesis considers the problem of finding a suitable mass consistent
(i.e.), a divergence free velocity field given a finite number of measurements, and
possibly, some boundary conditions. This is a flow estimation problem, which
belongs to the family of Inverse problems, and in addition it is Ill-posed. To treat
this last feature, we use a regularization method widely known as the Tikhonov
regularization. In this introduction we try to clarify what we understand by
this concepts, as well as give a brief outline of the work.

1.1 Inverse problems

In practical applications, the interpretation of experimental data yields impor-
tant information. Some physical quantities do not render an easy way to be
measured, and their effect is what we can only see. Beside this, linking the
effect with the causes we usually have a mathematical model, which may be
derived from physical laws or other sources. We now recall what a direct prob-
lem means: given a total description of the causes find the effect. On the other
hand, finding the solution of an inverse problem involves determining unknown
causes based on observation of their effects.

One can intuitively understand what the solution of a common inverse prob-
lem in human vision involves. When we see, we derive the size, the shape, the
surface finish and the structure of an object from the scattering and absorption
of the light perceived by the eye. As simple as it may seem, it involves a com-
plex eye structure and the ability of the brain to process such information. This
ability improves during learning processes, and it is necessary to use it with the
information offered by the eyes to obtain good results.

There are different kind of Inverse problems. For example, some of them
seek initial conditions in a known dynamical system, given its evolution during
a certain period of time. A simple example is the cannon ball problem. The
cannon man has to determine the shooting angle in order to hit a given target at
a given position. Related to this are the boundary inverse problems, where we
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want to find some missing boundary condition given the evolution of a system,
possibly governed by a Partial Differential Equation (PDE). The inverse heat
equation problem is a famous example, where we want to determine the income
surface heat flux, given the evolution of the temperature profile inside a body.

Others are the classical parameter estimation, known as coefficient inverse
problem. Linked with this is the kind of problem we deal with in this work.
Given the observations, and a parametric model to explain them, the task is
to find the parameters in some optimal way. For more examples of engineering
applications from inverse problems see [1].

1.2 Ill-posed problems

Ill-posed problems appear frequently in science and engineering. Their theory
is well developed in the literature [20], and still very much alive among vari-

ous research groups. This sort of problems is usually related with three main
difficulties:

1. The condition number of the problem is large.

2. Solving a “nearby” well conditioned problem derived from the first does
not necessarily lead to an useful solution.

3. Care must be taken when imposing additional constraints.

The concept of ill-posedness goes back to Hadamard in the beginning of the
twentieth century [14]. Shortly, the definition says that a problem is ill-posed
if its solution is not unique or if it does not depend continuously on the data.
This means that a tiny perturbation in the data may lead to a large change
in the solution. It is widely known that nature offers a non ending source of
perturbations, so we can hardly expect to compute with reasonable accuracy the
solution of an ill-posed problem unless we add more information to determine
the solution. Hadamard believed that ill-posed problems were rare in nature,
somewhat artificial, but that is not the case. There is an enormous amount
of applications, ranging from integral equations, image processing, tomography
technology, astronomy, seismology, to atmospheric flow estimation.

For finite dimensional problems, the definition of ill-posedness becomes wider,
allowing highly sensitive problems; but with continuous dependence of the solu-
tion with respect to the data. The classical example, which is also related with
the subject of this thesis is the linear least squares problem

min||Az — b||2, A e R (1.1)

Here we can say that problem (1.1) is #ll-posed if the singular values of the
matrix A decay “gradually” to zero and the ratio between the largest and the
smallest singular value is large. The latter implies that the matrix A is ill
conditioned, which means that the solution is very sensitive to perturbations.
Typical examples of finite dimensional ill-posed problems are obtained from the
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discretization of infinite dimensional ill-posed problems like partial differential
equations and integral equations. We now remark what we said before about the
computability of the solution of an ill-posed problem. The fact that a problem is
ill-posed does not necessarily imply that we cannot compute an useful solution,
but that we must be careful when designing the numerical method to find it.

1.3 Regularization methods

The main difficulty we face when solving an ill-posed problem is that its solution
is essentially indeterminate. This indetermination happens in the subspace as-
sociated with small singular values, where any small perturbation, coming from
data errors or roundoff error during computations is highly amplified.

Numerical regularization theory pursues to provide efficient and numerically
stable methods for including proper side constraints, in order to achieve stabi-
lized and at the same time valuable solutions.

A classical tool in this area is the Tikhonov regularization [33]. Keeping in
mind the linear least squares problem (1.1), the Tikhonov regularization defines
the regularized solution as the optimum of the following weighted problem:

z(e) :argmin{HAx—b||§—|—e||Bx||§} (1.2)

where B is a linear operator. In addition, the null spaces of A and B intersect
trivially. Intuitively, one can see that the term ||Bz||2 introduces more informa-
tion into the problem. Its importance is weighted by a positive regularization
parameter €. The reader will realize that once we regularize with a strictly pos-
itive ¢ we lose the possibility of attaining |4z — b||z = 0. However, by doing
so we improve the stability of the problem. Typically, the operator B is the
identity, or some difference discretization of a derivative operator. The choice
of the B operator is motivated either by requiring small size in the solution or
a smooth solution. When B = I it is said that (1.2) is in standard form.
A large value of € will favour the regularization term in the minimization, offer-
ing a large residual and a small value of ||Bz||3. The opposite behaviour, with
small residual and large ||Bz||2 begins to dominate as we shrink the regulariza-
tion parameter. A good regularization will offer a sufficiently small residual, and
at the same time the obtained solution will be close to the solution of the unper-
turbed underlying problem. On the other hand, the regularization parameter
governs the sensitivity of the regularized solution. Shrinking the regularization
effect makes the problem more sensitive.

As the reader may have already guessed, the actual choice of the regulariza-
tion parameter plays an important role in this subject. There are many methods
for doing so, which will be discussed later on.

1.4 Flow estimation

In some applications like weather prediction, advection diffusion of pollutants in
the atmosphere, eolic energy prospections or instantaneous velocity field estima-
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tion, we face the problem of estimating a velocity field from given measurements.
In Uruguay, the problem of eolic energy prospection has been analyzed by many
people. As an example, the National Direction of Energy carried out site mea-
surements in several points of the country. Nevertheless, it is uneconomical
to do massive measurements all over the territory, so a common problem is to
“extend” a few number of measurements, usually coming from metereological
stations, in order to generate a flow approximation defined in all the territory.
This problem belongs to the so called inverse problems, which are usually chal-
lengly ill-posed, since in general the amount of available data is not enough to
determine a well defined solution. Therefore, it is important to incorporate as
much as possible of the physical information we have a priori, like boundary
conditions and when it is possible, the incompressibility property of the flow.

Flow estimation in the Uruguayan case has been already considered by Carlos
Lépez [35] following the work of Sherman [31] and Sasaki [30]. In that work the
estimated flow is obtained roughly by first interpolating the data and then mak-
ing a weighted L? projection of the interpolant onto a subspace of incompress-
ible flows. The projection is carried out using a dual problem whose solution
is under certain hypothesis the multiplier associated with the incompressibility
constraint. The numerical technique includes various kind of interpolation and
the solution of the stationary heat equation using finite elements.

In the present work we use a different formulation, based on the Fourier
transform, which allows to substitute the incompressibility constraint without
introducing a Dual Problem. The numerical technique is basically a Tikhonov
regularization implemented as an unconstrained least squares problem.

1.5 Outline of the thesis

As we said before, this thesis considers the problem of finding a suitable mass
consistent (i.e.), a divergence free velocity field, given a finite number of mea-
surements, and possibly, some boundary conditions. With respect to our work,
the approximate field that we propose is a linear combination of fields which
automatically satisfy the incompressibility relation u, 4+ vy = 0. The construc-
tion of such fields is based on the Fourier transform, which is able to handle the
incompressibility constraint in a simple way.

The mentioned superposition is computed to meet the data set and the
boundary conditions, which are enforced as equations to fulfill “inside” the
computational domain. That computational domain is chosen as a square con-
taining all the data locations, as sketched in Figure 1.1. Beside this, we impose
periodic boundary conditions in the boundary of the computational domain.
The data fitting problem is posed as an unconstrained linear least squares prob-
lem. We have chosen a Tikhonov regularization [33] to ensure some smoothness
in the approximation and at the same time to stabilize the problem. There-
fore, we are able to bound and control the matrix condition number of the
least squares problem, roughly in terms of a regularization parameter and the
dimension of the Fourier subspace where we seek the solution. Moreover, the
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regularized solution depends smoothly on the regularization parameter, and we
are able to make extrapolations. This unregularized limit will interpolate the
data whenever this is possible (i.e.) when we allow a sufficiently large number
of frequencies in the solution. However, when we allow data contaminated with
errors, there exist different criteria for choosing the regularization parameter.
Some of them, in particular the L curve method, are discussed in this work. It
relates the noise present in the data with the actual amount of regularization.

The number of Fourier components needed will depend in general on the
smoothness of the flow we want to represent. Thus, for smooth flows, the
numerical solution will contain just a few terms.

Here we have been working with two dimensional examples, but the tech-
nique can be extended to higher dimensions in a straightforward way. As an
example of a real 2D problem, in Figure 1.1 we show the data from six weather
stations in Uruguay, while computational results can be seen in Figure 1.2. To
compute the solutions of the different cases we have developed a Matlab [27]
code, which can handle both data points and slip boundary conditions, as well
as an analysis of the effect of the regularization parameters.

Computational Domain

v

Measurements

Boundary conditions
to enforce

Figure 1.1: Left: Data for one wind field case in the southern part of Uruguay
Right:The computational domain contains all the data point locations and the
boundaries where we want to impose slip boundary conditions. In addition,
periodic boundary conditions are imposed at the boundary of the computational
domain

The thesis work is organized as follows: First, in Chapter 2 we make a
short overview of related work on mass consistent flow estimation. The great
majority are based on extending the given data to the whole domain by a
suitable interpolation, and then fitting an incompressible flow to the interpolated
flow. However, care must be taken when imposing Boundary Conditions in the
formulation.

In addition, we comment some regularization techniques, introducing also
the singular value (SVD) decomposition and its generalization, the General-
ized Singular Value Decomposition (GSVD) [12] , which are basic tools for this
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purpose. The account of regularization techniques that we offer there follows
Hansen’s work. Sensitivity of the solution with respect to perturbations is an
important issue, and its analysis can be done with the aid of the mentioned
factorizations. For this reason, the condition number of the formulated problem
is analyzed in Appendix A, yielding perturbation bounds for the solution (i.e.),
bounds that link data perturbations with perturbations in the solution. These
are related the size of the regularization parameter. There is also a geometric
interpretation of a necessary condition for the regularization operator B in the
Tikhonov regularization. The proofs were done independently from Hansen [15],
since the author was not aware of that work. Here the arguments rely on the
SVD decomposition, whereas the bounds in [15] are based on the Generalized
Singular Value Decomposition [12].

By means of the sensitivity analysis one can see that in presence of perturbed
data there is no point in shrinking too much the regularization parameter. In
section 2.2.2. as well as in Appendix B, we consider the effect of the regular-
ization parameter, introducing also the use of the extrapolation with respect to
this parameter. This leads to an optimal value for the regularization parameter,
which is a standard problem in the area of numerical regularization. In Chapter
3 we offer the mathematical formulation and in Section 3.4 we present briefly
some implementation issues.

Then, we apply the method to some model problems, some of them with
known solution, as well as a real data case, coming from the wind field estima-
tion problem in the southern zone of Uruguay. The results of this last case is
compared with those offered by Lépez Vazquez [35], showing satisfactory levels
of agreement even with much less freedom degrees.
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Figure 1.2: A closer look to the example presented in Figure 1.1.
Left: Zoomed view of available data. Right: Computational results.

Figure 1.3: Another example of velocity field estimation. Now there exist also

boundary conditions.
Left: Available Data: There is only one velocity measurement, and the flow can-

not traspass the given ellipse. Right: Computational Results with the proposed
method.



Chapter 2

Background

2.1 Variational formulations on flow estimation

The purpose of this section is to comment shortly other works on mass consistent
velocity field estimation. Most of them follow Sasaki [30], and are based on
extending the available data

SD(PZ):QBM fO?“ ZZlNd

to the whole domain by a suitable interpolation, and then fitting an incom-
pressible flow to the extended flow by minimizing a weighted L? norm of their
difference.

Let ¢ : D C RY — R? be a flow obtained by (e.g.) interpolation of the
data, and ¢ the desired approximate flow. Sasaki [30] proposed to take ¢ as the
solution of

minJ(p) = [5 3lle(y — ¢)ll3dx
s.t. (2.1)
Vep=0, inD

In the above, a denotes a scaling diagonal matrix with strictly positive weights.
A Lagrangian relaxation of the incompressibility constraint

V=0 (2.2)
gives the relaxed subproblem

#0) =mindi() = [ (Gllate = PIE+AT ) ds

where A : D, — R is a dual function. The corresponding dual problem can be
then defined as

11
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meXCI)(/\)

Since problem (2.1) is strictly convex, it can be assured that once we find the
optimal Lagrange multiplier associated with the incompressibility constraint A*
the estimated flow can be obtained from the solution of

p = argmin /- (¥)

Actually, one may also want the approximate flow ¢ to satisfy boundary
conditions, such as a slip boundary condition at a solid wall, on a certain subset
of dD. That can be expressed as

(¢,n) =0, on 0Dy C dD (2.3)

where (.,.) : RY x RY — R is the usual inner product in R4 Then, both
constraints (2.2) and (2.3) are relaxed to find the Euler-Lagrange equation. This
is done by introducing the multipliers A for (2.2) and p for (2.3) respectively.
Thus, the functional for the relaxed problem is

Iute) = [ (Gllote =@+ 250) dot [ g ni

The first variation for this functional yields

/D (a*(p — @) — VA h) dx—l—/

Ak, n)ds + / (+ A)(h,n)ds =10

oD

where h : D — R? denotes a perturbation to the original flow and 8Dy, 0D,
is a disjoint partition of the boundary dD. Therefore, since h is arbitrary we
obtain the conditions

a(p—¢)—VA=0,0on D
A+pu=0, on dD; (Solid Wall)
A=0, on dD; (Free Boundary)

In other approaches (see for example [13], [25], [26], [31], [34] and [35]), a

boundary condition for the Lagrange multiplier A

oA

= (VA,n)=0, on 9D (2.4)
is introduced as a way to enforce the slip constraint (¢, n) = 0 (2.3). The reader
will realize that (2.4) is not a natural boundary condition for the minimization

of the functional, since it implies

(@*(p — ¢)yn) = (VA,n) =0, on 8Dy (2.5)
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which clearly does not guarantee (2.3) in general, unless all the diagonal elements
of « are equal (which is not the case in those approaches) and the interpolant
flow ¢ fulfills (¢,n) = 0. Tt is our impression that the use of such boundary
condition may introduce spurious solutions (i.e.), A obtained in this way will
not be the desired Lagrange multiplier.

Using boundary condition (2.4), they first solve the problem

—V.¢p =V.(@"2V), on D
A=0, on 9D, (2.6)
% =0, on 0D,

for the incompressibility multiplier A and after that obtain an approximation
for the flow ¢ in terms of A and the interpolated flow ¢

p=¢+a VA (2.7)

Observe that problem (2.6) can be seen as a stationary heat equation,with A
playing the role of the temperature field. This fact makes the approach followed
in [35] easy to implement, since for the heat equation there exist software that
handles even complicated geometry.

In order to avoid the undesired boundary condition in (2.6) and find the
right one for A, it is enough to use (2.7), yielding

0= (p,n) = (@,n)+ (@”2VA,n), on 9D

which gives («=2V A, n) = —($,n), on D1, as the boundary condition to be
applied in (2.6).

In our proposal this boundary condition problem does not appear, since we
are able to substitute directly the incompressibility constraints obtaining an
unconstrained formulation, which does not need the auxiliary problem for A .

There are other formulations inspired in the work of Sasaki [30], but based
on an integrated version of the continuity equation along the vertical axis, like
those presented in [5],[8],[9]. The variables are mean values of the horizontal
velocities within some mixing zone, and the vertical velocity at the top of the
top boundary. Therefore, the continuity equation reads

he + (htu)g + (hv)y +w =10 (2.8)

where

h = h(x,y,t) is the inversion height of the inversion base above topography,
u = u(xz,y,t) and v = v(x,y,t) are horizontal components of the mean velocity
within the mixing zone, and w = w(x, y, 1) is a vertical outflow velocity through
the top boundary.

U hu
If we denote ¢ = | V' | = | hv | then the corresponding relaxed functional
w w

to be minimized for every time 7 is
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. 1 R
#0:t) = mini(¢) = [ (Gllate = QB+ A+ U+, + ) ) da
D

where A : D. — R is a dual function. After carrying out the first variation we
arrive to the Euler Lagrange equations

U—-U=\/al,
V_V:Ay/a%a

w— 1= \ad,

Applying the above relations together with (2.8) yields the following partial
differential equation for A

1
V-<§V/\>+/\/a§+ht+v-¢:0
1

with identical boundary conditions as in (2.6). Although the Euler Lagrange
equations may look similar to those derived before in (2.6) such formulations
do not exhibit problems with slip boundary conditions. However, this averaged
formulation is not capable to compute three dimensional effects of the flow.

Another method, due to Liu and Goodin[23] is based on a linear iterative
procedure. In that algorithm the measured wind values are held fixed while
adjacent values are adjusted in order to reduce the divergence at every point.
Once converged, the velocity field will satisfy a discretized version of

(ht)y + (hv)y =0 (2.9)

If we let A be a constant value, then the simplest version of this procedure,
which contains the key idea of the method, can be described as follows: Let
U™, V™ denote vectors containing the mesh values of the estimated velocities at
the nth iteration. Thus, a discretized divergence at every interior mesh point is
computed by

D" = (Baggir oy Ba) v
- 2Ax 2Ay vn
where Faz, Fay denote the classical shift operators in x and y directions. After
that, the velocity components are updated as shown below

pynti _ U n Fag D — U n Fag (EAz—EZi EAy_EZ;) U
yntl yn Fay vn Fay 2Aw 24y vr
where Faz, Fiay are constant diagonal matrices. If one value comes from a mea-
surement point then it is kept fixed along the iterations, and its corresponding

entry in the ¥ matrix will be zero. For the remaining values, the entries of these
matrices are chosen by consistency considerations.
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A study of the convergence with respect to the number of iterations is in-
cluded. However, since the only physical equation considered is (2.9) and no
regularization has been done the numerical results, apart from being sensitive
with respect to the initial iteration field are also very sensitive to perturbations,
looking wiggly and unnecessarily complex.

On the other hand, our formulation is motivated by the alternative problem:

minfDC Jr ()

s.t.

V=0, onD (2.10)
Y= §5|observed points

(p,n) =0, on 0Dy

where the functional J, (¢) to minimize will assure uniqueness and some smooth-
ness of our approximation. However, the interpolation formulation (2.10) is not
useful in presence of data errors, since it is very sensitive. Therefore, we keep it
in mind as the underlying unperturbed problem, solving a regularized version
of it.

In accordance with regular practice in inverse problems, this is just one
way of choosing one solution from the set of those which satisfy the natural
constraints of the problem, and its quality will be studied in what follows. The
intuitive idea behind, is to strongly respect the original data, and at the same
time to obtain a smooth incompressible flow.

2.2 Regularization

2.2.1 Singular Value Decomposition

Before we enter into the description of the different regularization approaches we
quote the celebrated singular value decomposition ([12], Theorem 2.5.1, page71).
This decomposition can be used to solve the least squares problem, as well as
to analyze the sensitivity of its solution.

Theorem 1 Let A € R™*™ be a real rectangular matriz then there exist or-
thogonal matrices

U=u,...,un] ER™™ and V =[v1,...,v,] ER"*"
such that
UTAV = X = diag (04, . .. ,0,) € R™X™ with ¢ = min(m, n)
and o1 >09>...>20,>0

O
In the present work, we deal with least squares formulations where we have
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m > n. The numbers o; are called the singular values of the matrix A, while
the vectors u;, v; are known as the left and right singular vectors respectively.
The matrix A can be expanded in a neat way using the SVD decomposition as
follows:

A=UB VT =Y 0w of
i=1

where the number r < ¢ denotes the rank of A (i.e.), o #0, 0,41 =0.

In the case of discrete ill posed problems, there is a characteristic feature
in the set of singular values: they decay gradually to zero. As we increase the
dimension of the problem, the smallest singular value becomes closer to zero,
and the number of relatively small singular values increase.

The SVD gives very useful information about the ill conditioning of the
matrix A. In fact, the 2-norm condition number can be computed as

Ra(4) = 7 = [|Alll| "]
o,
where A! denotes the pseudo inverse of the matrix A. For more information
about the definition of the pseudo inverse see [12], page 243. When we multiply
A times a vector & the components of & associated with small singular values,
often associated with high frequency, are dampened out by o; as follows:

.
Az = Zai (vZTx)uZ
i=1

Conversely, when we face the problem of reconstructing = from the vector
b = Az it is intuitive to expect that small perturbations in & may lead to great
changes in z if they happen in the subspace associated with small singular
values. The fact that usually the errors in the data appear as high frequency
linked with small singular values tells us that unless we prevent it, those errors
will be magnified in z.

In the next paragraph, we assume that there are no exactly zero singular
values (i.e.), that A is full column rank. With this assumption, the solution is
unique, and we are able to carry out a perturbation analysis without introduc-
ing further information. This assumption is natural in regular practice, since
roundoff or other sources of error makes hard to obtain exactly zero singular
values. Using the SVD it is easy to show that the solution of the linear least
squares problem (1.1) reads

n

ul'b
TrsQ = Z v (2.11)

o
i=1 ¢

which clearly shows the amplification effect of the small singular values on the
solution z7s5g. Moreover, we can see by direct perturbation of the data vector
b how the worst case associated with the condition number of A appears:

Let us choose b = oju;. Since (2.11) holds and from the fact that the
matrix V' is orthogonal we obtain # = v;. On the other hand, if we perturb



CHAPTER 2. BACKGROUND 17

b with b = o,u, the corresponding perturbation in the solution is dz = v,.
Thus, the quotient of the relative perturbations of solution and data is

[EEIE
z||2 01

el = = ka(4) (2.12)
Mol "

More generally, when perturbations in the matrix A are allowed, a stan-
dard perturbation bound for the full rank least squares problem (1.1) (see [2],
Theorem 5.5) is given by

. ra(4) [16A] [18]] 16A[l Irll
e — 21 < (Ul + 1w BBy 29
e i EINE]
where the condition number £2(A) still amplifies the perturbations in the
data. In the above, r = Ax — b, ||| = |||l and [|A7]|[l04]] = ro(4) Al < 1.

Observe that when the residual r is nonzero there is also a perturbation which
is amplified by x%(A). This makes things much more sensitive for ill-posed
problems.

Since the Fourier coefficients of the right hand side u! b do not shrink to zero
but keep above some threshold due to the presence of errors in b the solution
is dominated by small singular values, usually looking completely random. At
this point, regularization problems can be stated as eliminating, or filtering
out the undesired contributions corresponding to small singular values. What
really matters for the filtering to work is to have a sufficiently fast decay in the
Fourier coefficients of the unperturbed right hand side. To illustrate the need
for this, let us consider the singular value decomposition of a compact operator
K(s,t) = 32, oiui(s)vi(t) and the problem inf;ez2 ||Kf — g||z2, where the
right hand side g can be written as g(s) = Y.~ Bjui(s). Then, if we want f to
be square integrable the necessary and sufficient condition is

oQ

) <(UUT—g)>2 < oo, 07> 0 (2.14)

i=1

Therefore, the quotient (uig) must decay sufficiently fast to zero for a square in-
tegrable solution to exist. The above condition is known as the Picard Condition
[17]. The discrete version of this, due to P. C. Hansen[17], can be expressed by
means of the Generalized Singular Value Decomposition, as will be seen below.

2.2.2 Generalized Singular Value Decomposition

The Generalized Singular Value Decomposition (GSVD) of the matrix pair
(A, B) is a generalization of the SVD decomposition of the matrix A. Tt is
used here to analyze the dependence of the regularized solution with respect to
the regularization parameter, as well as to provide sensitivity bounds for the
solution.
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Theorem 2 Let A € R™*" B € RP*™ with m > n > p. Moreover, assume
that rank <[g]> = n and denote ¢ = rank(B) < p. Then, the GSVD is a
decomposition of the form

A:UG): IO >X—1, B=V (M,0) X~ (2.15)
n—q

where U € R™*" and V € R9%4 have orthogonal columns (i.e), UTU = I,, and
vy = 1,. The matriz X € R™*™ is non singular, and ¥ and M are ¢ X ¢
diagonal matrices: © = diag(o1,...,04), M = diag(p1,. .., pug). Furthermore,
the diagonal entries of X and M can be ordered in the following way

0<o <. <oy <1, 1> >.

and normalized such that
ol +ui=1, fori=1...q
Furthermore, the singular values of the matriz X' equal the singular values
A
B
The generalized singular values v; of the matriz pair (A, B) are defined as
the quotients

of the matriz

Vi :O-i//'tia fO?“i: 17 y 4
and they appear in non-decreasing order.

O
For a proof see Bjorck [3], theorem 4.2.2, page 157.
Observe that the above decomposition can be written as

_ q T n T
A=3T0wioiy; + D WY

B =Y7_ vyl

(2.16)

1 ifi=j
0 otherwise
It is easy to see from (2.16) that the last n — ¢ columns of the matrix X
are basis vectors of the null space of B. On the other hand, if rank(4) < n
then o; = 0 for 1 < ¢ < dim(ker(A4)) and the corresponding columns of X
make a basis of the null space of A. Therefore, the columns of the matrix X
contain enough information to characterize the null spaces of both A and B.
This tells us that if the angle between the subspaces ker(A4) and ker(B) is small,
the matrix X will be near singular and its condition number large.
Here is worth to realize that by an abuse of notation, the matrices U, V, 2
have the same name as those appearing in the SVD of A (theorem 1), but in

where the vectors yI denote the rows of X~ (i.e.), yl x; = {
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general they are not the same. In particular, when B = I, the generalized
singular values coincide, up to a permutation, with the usual singular values, as
well as U, V are identical to the U, V from the SVD up to a column permutation.
In general, the Singular Values will not coincide with their corresponding gen-
eralized Singular Values, but when the matrix ||B!||z is small they are closely
related, being of the same order of magnitude [16].

As mentioned in the previous subsection, there exist a discrete version of the
Picard condition that is needed to obtain useful results from regularization[17].
Basically, it says that if the Fourier coefficients |u b| of the unperturbed right
hand side decay faster than the generalized singular values v; then the regu-
larized solution z(e) approximately exhibits the same properties as the exact
solution of the unperturbed problem. The decay in the Fourier coefficients need
not be monotonic as long as, on the average, is faster than ;. This, if ||Bf]|,
is relatively small, can also be written in terms of the usual singular values of
the matrix A. On the other hand, it is not needed to check the discrete Picard
condition for all the generalized singular values. Instead, it is only needed to so
if they are numerically nonzero (i.e.), above a threshold related with the error
level in A. This of course is of no practical use as long as we need the unper-
turbed right hand side to verify the property. However, as Hansen points out, if
the underlying problem satisfies the Picard condition then one can often make
the regularized perturbed version to satisfy the Picard condition.

As a direct application of this decomposition to perturbation analysis in the
Tikhonov regularization (1.2) we include a result from [15].

Theorem 3 Let A and 6b denote perturbations of A and b respectively, and
let &(€) denote the perturbed regularized solution of

min |[(A +JA)& — (b4 6b)||3 + ¢||Bz]|3
Then, if 0 < e <1 and the inlersection of the null spaces of A and B is trivial

(i.e.), [\/?B] is full column rank

. Ke [16A] [168]] 16 A]] [I7ell
llz(€) = 2(e)l < ——ar <(1+52(X))—||l‘(6)||+ + e
1 - rclid 4]l 4]l Al 1Al
where ke = [|A[||X]l/ e
Moreover, if ¢ = n and the matriz B is nonsingular the following sharper bound

holds

r\e) —xrle < — 1+K? B - ||Ll€ + +K§E

where now k., = ||A||||B_1||/\/E
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Using the GSVD decomposition, the Tikhonov regularized solution can be
written as:

-1 q 2 T n
z(e) =X <(22 + €M2> > 0 > UTy = Z W bxi + Z (uZTb)a:Z

2 ,
0 In—g i=1 )i +e o i=g+1
(2.17)

where #;,7 = 1,...,n denote the columns of the matrix X. This expansion
looks similar as what we did with the SVD in the full rank case. Nevertheless,

here we can observe the dampening effect of the so called “filter factors”

2
fi= 2%
Vi e

that “filters out” the contributions to z(€) corresponding to small v; (i.e.), less

than /€.

In addition, it can be checked that

||Bx<e>||§=i< e “ZTZ’)Z 2.18)

2 ,
ol \Yi e o

PO =4z — b= Y ( u?b)+||r<o>||% (2.19)

€

2
{i:1<i<q,vi>0} vte
where 7(0) is that component of the right hand side b which is outside the range
of A. Its norm is sometimes called incompatibility measure.

2.2.3 The L curve

The L curve method is a classic graphical tool to analyze regularization prob-
lems. Tt was first introduced by Lawson and Hanson [22] and Miller [28]. The
name refers to its shape, and it is used to choose the value of the regularization
parameter. In double logarithmic scale, the norm of the regularization term
[|Bx(€)||z is plotted against the residual ||[Az(e) — b|z as shown in Figure 2.1.
The vertical part of the curve corresponds to small values of the regularization
parameter, where ||[Bz(¢)||z is very sensitive with respect to the regularization
parameter. On the other hand, the horizontal part of the curve corresponds to
large values of the regularization parameter, where the residual ||Az(e) — b||2 is
the sensitive term.

The following theorem from [19] yields the monotonicity property of the L
curve, as well as another characterization of its points.
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Theorem 4 Let z(¢) denote the solution of min||Az — b||3 + ¢||Bz||*>. Then
[|Bx(€)||z is monotonically decreasing function of ||Ax(e)||2 and any point (41, d2)
on the curve (||Ax(e) — b||, ||Bxz(€)|]) is a solution of the following two inequality
constrained least squares problems:

d1 = min ||Az — b||3 subject to ||Bz|lz < dz, 0< 33 <||Bz(0)]2 (2.20)

dy = min||Bz||z subject to ||Ax —bll2 < d1  |[r(0)]| < d1 < |r(o0)||z (2.21)

O

To see the solution dependence more carefully, let  denote the exact solution
to the unregularized problem with the exact right hand side b. Then, let e be
a perturbation in the right hand side and denote by Z(€) the solution of the
regularized problem corresponding to the perturbed right hand side b="b+e.
Direct application of (2.17) yields

R El ule " T El ul'p
Ele)—x = Zﬁ ;_' x; + Z (uj e)w; | + Z(fl -1 oZ'» x; (2.22)
i=1 ' i=g+1 i=1 !

perturbation error regularization error

2
where f; = WZ;_E are the Tikhonov’s filter factors. Now, we will motivate the

dependence of the solution with respect to € specially for small singular values,
that is v; << 1.

For large values of € (i.e.), € >> vZ we have

T 2, T )
i€ iue L

ul'e 2w
i = R~ =——F
o; ¥ 4e o; € oy VE €

which means that the contribution corresponding to small generalized singular

values in the perturbation error is filtered up to O (ﬁ)

241 ule (2.23)

At the same time, the contribution to the regularization error is large,

(fi — l)uin R~ —uin =0 <i>

T; T; Yi

On the other hand, when we consider small values of the regularization
parameter (i.e.), € << v? the total error is made of a large perturbation error
and a small regularization one, as can be seen in the next equations

T T
G . u;je uie 1
Contribution to Perturbation error: f;—/—— ~ —— =0 <—>
g g Yi
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T
u; b

Contribution to Regularization error: ‘(fl -1)

T; T;

Equation (2.23) is related with theorem 3 since it shows that as the regulariza-
tion parameter shrinks to zero perturbations corresponding to small generalized
singular values are amplified by (’)(ﬁ) For values of € ranging in between, there
is a small region where the perturbation error and the regularization one balance
to give a minimum total error contribution. That corresponds to the vicinity
of the corner of the L curve. In [19] a characterization is given to provide con-
ditions for using the L curve. If the b Fourier components u! b associated with
small singular values decay sufficiently fast and the perturbation in the right
hand side is not large then the L curve can be used to determine a sensible reg-
ularized solution. That solution corresponds to the corner of the L curve, which
also determines the choice of €. The corner of the L curve is defined as the point
with maximum curvature. Since we only have a finite number of points in the
L curve, a spline interpolation is recommended to define the corner numerically
[19].

If b has a non negligible contribution in the subspace of small singular values
then it is very difficult to find the corresponding z, since the amplified harmful
perturbations in such subspace cannot be separated from the desired solution.

log(|[Bxly

little regularization

\

*~, largeregularization

log(llAx-bl| )

Figure 2.1: The L curve.

The L curve can be used for Tikhonov regularizations, where the regular-
ization parameter varies continuously, but also with discrete regularization pa-
rameter, like in the Truncated SVD method and others.
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2.2.4 Regularization methods

Regularization methods can be classified in terms of the numerical method that
is used to obtain the solution. Following this line, there exist direct and iterative
regularization methods. Our aim is not to give an extensive enumeration of all
such methods, but to describe some basic techniques. This description will
hopefully give a framework where the Tikhonov regularization applied in this
work will fit. This is a direct regularization method, defined by the least squares

problem as mentioned in (1.2).
A (b
NG R\

The regularized solution is unique whenever the null spaces of A and B
intersect trivially. That will be one of our basic assumptions throughout the
work. Its numerical solution can be computed in many ways, like direct solution
of the sparse normal equations

min ||Az — b||3 + €||Bz||3 = min

2

(ATA+ BT B)a(e) = ATb

or using the QR factorization of <\/jB> Since both of these methods require

to redo all computations every time require a computation with a different value
of € they are not very attractive.

Another possibility is to compute the GSVD of the matrix pair (A,B) once
and then compute Tikhonov’s filter factors every time that e changes, obtaining
z(e) from equation (2.17).

Finally, there is a method proposed by L. Eldén [7] that begins by trans-
forming the problem into standard form obtaining

min || Az — bl[3 +e|zl|3 = || Az — bl|3 + €| B[ 3

where ||7]|3 = || Bz||3 and |[|AZ — b[3 = || Az —b|3. _ _
After this, applying orthogonal transformations U/ and V' to the matrix A

arrives to an upper bidiagonal matrix <f(1)b> = VAUT. Therefore,

) A (b . AN_ (b _
min \/EB X 0 , — min \/EI x 0 , =
- 2.24
Ab C1 Ab 1 ( )
min 0 Jy—|ec = |le2|[3 + min, <\/g[>y_ <0>
Vel 0/, 2

where y = VTz, <cl> =UTb.

C2
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Now there exist two possibilities: either we use Givens rotations to annihilate
Vel using A, by means of Eldén’s algorithm [7] or we recognize that y in (2.24)
is the solution of the linear system

<A5Tid il}id> <2> = <001 > (2.25)

which can be transformed into a symmetric tridiagonal and indefinite system by
a suitable symmetric reordering columns and rows [10]. Although both possi-
bilities can be computed with approximately 20n flops for every new value of €
Eldén’s transform is more robust since it is based in orthogonal transformations.

At the end, the desired solution  is obtained by transforming back to the
original formulation.

Another direct method is the least squares with a quadratic constraint. Its
formulation is fairly close to the Tikhonov regularization, as mentioned before
in theorem 4. There are two versions

min [|Az — b||2  subject to || Bx||z <y

min || Bz||2 subject to ||Ax — b||2 < &2 (2.26)

where §; and d, are suitable positive parameters that play the same role as the
regularization parameter in the Tikhonov regularization.

To solve the first problem, first the unconstrained least squares solution z7.s¢g
is found. Then, if ||Bzrsgl||2 < 01 it is accepted as the solution. Otherwise, the
solution solves the equality constrained problem

min [|Az — b||z  subject to ||Bx||z = 61 (2.27)

A suitable method to solve (2.27) is based on a Lagrangian relaxation of the
equality constraint ||Bz||2 = d%. This yields a smooth one dimensional dual
problem with an unconstrained LSQ as subproblem.

Two regularization methods with discrete regularization parameter are the
Truncated SVD (TSVD) method [18] and the Modified Truncated SVD (MTSVD)

[21]. Basically, they regularize by annihilation of the contribution coming from
small singular values. The original ill conditioned matrix

-

_ T

A= E i U v;
i=1

is replaced in the TSVD method by a truncated rank deficient matrix

k
Ak = E g; Ug UZ»T
i=1
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Moreover, Ay is the closest matrix to A among those of rank % ([12],theorem

2.5.2, page 73) (i.e.),
Ort1 = ||A — Ag||2 = min {||A — By||z : rank(By) = k} (2.28)

This choice yields the solution

kT
'y
o= Afb=Y "

i=1 ¢

that is less sensitive to data perturbations than the unregularized solution. Its
condition number is g—i which is smaller than the original one introduced in equa-
tion (2.12). This is similar to a Tikhonov regularization with B = I. The differ-
1, forl1<i<k
0, Otherwise,
offering a sudden “cutoft” at k while in Tikhonov’s they decay gradually with
fi = UZ—L Beside this, if /¢ &2 o then the sensitivity of the Tikhonov solution
and the TSVD solution will be similar.

The replacement of the matrix A by Ay is motivated by the fact that those
components of the solution associated with large singular values are untouched,
while those related with small ones do not appear. In addition, the truncated
approximation Ay is much better conditioned than the original matrix A. It is
clear that in order to define the method completely, we have to give a choice of
the “numerical rank” k. The notion of numerical §-rank reflects the error level
in the data and depends on a tolerance. We say that a matrix has é-rank equal

to k if

ence lies on the filter factors. Here they are chosen by f; = {

k = min{rank(B) : ||A — B||2 <J}, where d > 0is a given constant
From (2.28) we can see that A has J-rank k if
1> ... >0 >8>0 > >0y

The definition is satisfactory whenever the spectrum of singular values has clear
gap. In that case it is fairly straightforward how to proceed, since the numerical
rank can be defined as the number of singular values above the gap. Unfortu-
nately, that is not the usual case with inverse problems, and is a clear sign of
ill-conditioning. Usually we have a “continuously” decaying diagram, and the
choice is far from straightforward. A “rule of thumb” is given in [2](page 511).
If we assume that |e;;| < e then it is suggested to take § = (mn)l/2 - e However,
it is advisable to use it only when the norms of the columns of A are of the same
order.

There is another way to characterize the regularized solution of the TSVD
method. It is the solution the following constrained LS(Q problem

min [|z]]2  subject to min||Arz — b||2 (2.29)
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Based on the same kind of ideas, the modified TSVD (MTSVD)[21] intro-

duces the need for minimizing ||Bz||z leading to
min ||Bz||2  subject to  min||Agz — b||2 (2.30)

Observe that (2.30) is closely related with the constrained least squares formu-
lation of Tikhonov regularization (2.26). Since the condition min||Azz — b||2
still holds the solution of (2.30) is obtained by adding a correction in the null
space of Ay to xy, the solution of the TSVD method (2.29), as follows:

gk = 2 +Jdxp, where

n

drg = Z ziv; = Viy12 € ker(A)
i=k+1

The correction is then chosen to minimize
|Bz||2 = ||Bzx + Béxpllz = ||Bar + BViy12||2

yielding

TRk = T — Vi1 (BVig1) x

All these formulations with truncated matrices can also be generalized using
the GSVD to give the Truncated Generalized Singular Value Decomposition
(TGSVD)[16]. A truncation is done in the generalized singular values, and the
corresponding solution is given by

B = Xq: b S Wl
Bk = = l‘z'i‘Z(Uz )i

i=g—k+1 i=q+1

spectrum of singular values
T

20 30 40 20 30 40
The size of the LSQ matrix is 220 x 52 The size of the LSQ matrix is 796 x 52

Figure 2.2: Two singular values diagrams. On the left, we see a case with a
distinct gap and well defined numerical rank, coming from an example with real
data from the Uruguayan case. On the right, another example from a model
problem where the definition of the numerical rank is less clear.
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Again, this implies a sudden cutoff in the GSV spectrum.

Instead of directly annihilation of the small singular values, there exist the
possibility to damp their effect, but with filter factors different from those ap-
pearing in Tikhonov’s regularization.

That is carried out by the damped SVD method [6], which regularizes the

) T ifB=1
solution by means of the filter factors: f; = U’i'l\/ﬁ

e U B#FI
observed that the decay of the filter factors is slower than in Tikhonov’s regu-
larization, therefore the damped GSVD offers less regularization.
When both the coefficient matrix A and the right hand side b are contam-
inated with errors an appropriate formulation is the total least squares method

(TLS) ([12], page 576):

It can be

min ||(4, ) — (A, Z))HF subject to b= Ax
Abx

In this case, Tikhonov regularization can be applied following [10]:
min ||(4,6) — (A, b)||r  subject to b= Ax, ||Bx|lz < (2.31)
Abx

where ¢ is a positive constant. As observed in [10] the solution of (2.31) is
closely related to the solution of (1.2) since it solves the equation

(ATA4+ A1, + \g BT B)x = AT

where the parameters A\ < 0, Ap > 0 satisfy

a2
A T
Ap = p(1+||=]3)
/\B(S% = bT(b — Al‘) + Ar

Here 4 is the Lagrange multiplier associated with the norm constraint in (2.31).

On the other hand, iterative regularization methods are devised for large
structured problems, and an efficient implementation must take care of the spar-
sity of the matrices involved in the problem. As an example of such methods,
the conjugate gradient method is a classical method for minimizing a quadratic
form with positive definite matrix coefficient, or equivalently, to solve a linear
system of equations whose coefficient matrix is symmetric and positive definite.
In this setting, it is applied to the unregularized normal equations. The reg-
ularization comes from the known fact that as the iterations proceed, the low
frequency components converge first, offering a smooth solution that becomes
more and more wiggly as the iterations proceed. Therefore, is the number of
iterations which plays the role of regularization parameter.
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2.2.5 Choice of the regularization parameter.

The goal of a sensible choice of the regularization parameter is to compensate
the contributions of the perturbation error, which is due to errors in the data of
the problem, and the regularization error in the regularized solution.

As P.C. Hansen points out, the strategies can be classified in those which
make use of ||e||2, the error level present in the data, and those which do not,
making the choice based on a posteriori information.

Among the first class is the discrepancy principle. If the ill-posed problem is
consistent (i.e.), has zero incompatibility measure, it says that it does not pay
to fit the data with a residual which is less than the data error. The regularized
solution z,.4 then solves

[Azreq = bllo = [le]]2

Naturally, this method relies on a good estimate of data errors, and when
that happens, its solution is close to the one offered by the L curve method.

Finally, the L curve method is the most used method among those which
do not make use of an a priori estimate of the data errors. This method has
already been described in 2.2.3.
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Formulation

As we said before, our task is to provide an incompressible velocity field that
fulfills a finite number of data measurements up to a certain regularization
threshold and possibly, some slip boundary conditions.

The construction of such estimated flow is based on a finite superposition of
incompressible velocity fields.

Let (u;, v;) be the velocity measurements at the station points

Py = (z;,y;) € D, with 1 <i< Ny

where D denotes the physical domain. In order to make easier the presen-
tation of the equations and without any lose of generality, we assume that
D C [0,27)%2 = D.. The notation D. stands for the computational domain,
where we embed our solution.

Now consider a finite dimensional vector subspace in the space of complex
valued and square integrable functions L[20727T]2, spanned by a basis

{¢777§(x’ y)}lnlsnmazvlglsgmaz7 Wlth ¢777§ : DC C RZ = C
With this notation, we propose to take the estimated flow as
p(z,y) = Uz, y) V(e y)] =Y Coe byele,v),
7€
(3.1)

where C), ¢ = {ﬁn,ﬁ an} arises for a vector of complex coefficients.

Some of the equations that will determine the coefficients C), ; come from
the desired interpolation property ¢(F;) = ¢(P;), yielding

> Coetnelwiyi) = (uiyvi), for 1<i< Ny (3.2)
7,8

29



CHAPTER 3. FORMULATION 30

In this context, a natural choice is to try to fulfill (3.2) using least squares
as follows

2

min fo(C) = NL ST Cretnelmiy) — (uivv)| (3-3)

1<V || ne )

where C is the complex valued vector made of the blocks

Cne = {Un,s v ,5}

It is useful to observe that after reordering the variables we can think of C as
made of two blocks C = [ﬂ \Af} each of them containing the coefficients for the

ansatz of U(x,y) and V(xz,y) respectively.

There are also boundary conditions (B.C.) that we may want to impose to
our approximation. In order to introduce them in the formulation we first dis-
cretize the boundary 0D into a finite set of points distributed by the arclength:

Py = (xn,yn)s for 1< h <N

After that, the B.C. at the discretized boundary are considered as extra equa-
tions to fulfill. We treat one basic linear boundary condition, which mod-
els the in viscid flow at a solid wall (i.e.) (n(P),¥(P))|solid wan = 0 where
n(P) = [ng(P) ny(P)] is the inwards normal direction to the boundary.

Using the basis functions ¢, ¢ we can rewrite the slip condition, arriving to

(n(@hs yn)s > Coe Snelwn,yn)) =

7,8
= (@ ), Crre) bnel@n,yn) =
7,8
= (na(zn, yn) Upe + nyl(@n, yn) Vie) dne(ons un) =0, (3.4)
7,8

Jor 1 <h < Ny, (zh,yn) € 0Dy

As we did with (3.2), we treat (3.4) in least squares sense. The contribution of
the boundary conditions is called f,(C) and reads

[s(C) =~y X ‘Zn,g(cn,évn(ﬂﬁhvyh))%,s(ﬂ@hvyh)r = (3.5)
g Jop, [(n(P(9)), 9(P(s)) )P ds + O(F;)

This is a natural choice, since the boundary data is as useful as the flow data,
and sometimes contains less error.

A Tikhonov’s regularization term ¢, f.(C) is added to ensure a unique solu-
tion to the Linear Least Squares (LSQ) problem. Tt stabilizes the problem and
works as a low pass filter, smoothing the solution. That smoothing is obtained
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by penalizing higher frequencies with larger terms. The regularization term can
be expressed as

£ (C) = /2 37 (100 + Voel?) (Il + ) =
7§

= &/2 (1B OB + 1B V3) = e./2 1BC3

We have introduced the notation El = diag(+/|n]?? + |£]?") and

B:El 0

0 B

After choosing our basis functions the parameter p will control the smoothness
degree in the solution.
Finally, the optimal weights (),  are found as the solution of

min £4(C) + £5(C) + €. f,(C) (3.6)

3.1 Basis functions

Until now, we have based our construction on the fact that a family of diver-
gence free flows was available. Here we offer explicit details about how such
construction can be accomplished. A practical approach would require that
¢n,e(2,y) should be easy to construct. Furthermore, we would like to have good
convergence properties when we increase Nmae and &40, in the L2 norm sense
for example. So we begin our construction with the well known Fourier basis for
L?. Assuming that we work on the computational domain D = [0,27]? , then
our choice for ¢, ¢(x,y) is ¢n.¢(2,y) = €7e®Y where the wavenumbers 7, £ are
integers. The flow representation will be

e, y) = [u(z, ), v(z, y)]

ula,y) = Uy e

o(a,y) = ) Vi €7
Our task is then to find the subspace of fields that fulfill , +v, = 0. Now is
when the fact that ¢, ¢(z,y) = (3i77x<3i53/77 ¢er are eigenvectors of any derivative

operator becomes extremely useful, because the incompressibility condition can
be expressed as:

nU, e+ ff/f =0, forall n,¢ (3.7)

which is a linear constraint involving Fourier coefficients of the same wavenum-
ber on different flow components. Since (3.7) has such a simple structure we
can make direct substitution arriving to an unconstrained formulation, that fits
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nicely into the Tikhonov’s regularization framework. Thus, whenever £ # 0 we
may think of [77775 as independent variables and write ‘77775 = —n/¢ [77775, EZ£0.
When ¢ = 0 we keep ‘A/mo as free variables and get also that Un,o =0, 5#£0.
For the same reason, it is easy to see that [7070 is another free variable. So far,
we are able to span a vector subspace of divergence free flows, based on the
Fourier basis of the whole space. Furthermore, since we want to consider just
real valued flows, there are other constraints to be imposed:

ﬁ‘ﬂﬁﬁ = ﬁmﬁv V0l < tmaws [€] < émao (3.8)
where the bar denotes the complex conjugate, and
V‘Uv‘ﬁ = ‘77775 v |77| < NDmass |€| <mas (39)

Observe that (3.8) and (3.9) are linear constraints if written in terms of the
real and imaginary parts of the coefficients separately.
Summing up, when we express all the equations in terms of the real and imag-
inary parts of the desired quantities, (3.6) becomes a linearly constrained least
squares problem.

ming f4(C) + fo(C) + € f,(C)

subject to

nUpe+ Ve =0,V 11l < Mmazs [€] < Emas

Re (U—m—ﬁ) = Re (Umﬁ) » Vol < Mimaas €] < man

Im (U—n,—ﬁ) =—Im (ﬁmg) » Vol < imaas €] < man

By Parseval’s identity, the regularization term can be written for integer values
of p as

oPu\’ Pu\’ v\’ oo’
61+ (C) = e/2 /D{<@> +<W> +<a?> +<W> }dx

which says that we are looking into the space of functions with square integrable
pth derivative. That makes the connection to Sobolev spaces and explains how
the smoothness of the approximate flow depends on p [11]. Although due to
numerical reasons p must be kept relatively small, it has to be large enough
to assure the continuity of the solution flow when we allow infinitely many
frequencies to appear in the solution (i.e.), Pmar = Emar = +00. The minimum
value for p depends on the number of dimensions of the space that contains the
data which in this case is 2. Observe that without continuity in the solution,
pointwise interpolation conditions (3.2) that we want to impose do not make
any sense.

(3.10)

3.2 Number of variables involved

This section is devoted to offer an estimate of how many freedom degrees are
really present in the solution after imposing the incompressibility constraint.
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That will give us an idea of for example how many interpolation conditions
can be imposed given once we fix the number of frequencies in the solution.
Initially, with no constraints we have 2(2nm40 + 1)(2&maz + 1) complex variables

(ﬁn,ﬁv an) in the problem. The (2mas + 1)(28maz + 1) — 1 incompressibility

constraints (3.7) approximately halve the degrees of freedom. Notice that the
incompressibility condition for n = ¢ = 0 gives just a trivial identity 0 = 0.
Beside this, observe that if the free variables are chosen to generate a real flow,
then (3.7) will automatically keep that constraint for the dependent variables.
This means that we only have to ensure (3.8) and (3.9) just on our free variables.
That leaves 2(20marmar + Dmaz + Emas + 1) free real variables in our system.
The last result is obtained by considering the real and imaginary part of each
“free” component as independent. A special case occurs again for n = £ = 0,
where just the real part is nonzero. Suppose now that we have N; data points
and Np points in the solid wall boundary (denoted by dD;), and we want to
know how many Fourier modes we need in the solution in order to be able
to interpolate them. The number of Fourier modes present in the solution is
Nf = (277max+1)(2€max+1)7 and there are N = 2(277max€max +Nmaz +€max +1)
degrees of freedom so we need to have

Nd + Nb/2 S 277max€max + Nmaz + fmax +1

For the particular case that we take n; = ez = &mar We have
Na+ No/2 < (nf +1)* +n} < 2(njp +1)°

so it is enough to take ny; > max(0, N‘H—fm — 1) to be able to interpolate
all the data points. In general, we shall not take n; large enough to ensure

interpolation, since small residuals can be achieved with smaller values.

3.3 Size of the computational domain

We shall now consider how large the computational domain should be compared
to the physical one. On one hand, one would like to have it as large as possible,
to diminish the effect of the “unnatural” periodic boundary conditions. To offer
a crude example of such requirement, suppose that the physical domain is a
square, with different prescribed velocities on 2 opposite sides. If the computa-
tional domain is just a bit larger than the physical one the periodic extension
will be seen as “almost” discontinuous. This will imply that the solution may
exhibit the oscillatory behaviour known as Gibb’s phenomenon ([32], page 272)
and furthermore, contain a lot of high frequency, which is undesirable if one
wants low values of 7m4r, Emae to be able to represent the solution. On the
other hand, it is not advisable for the computational domain to be very large
because the data will contain only relatively high modes since all the varia-
tions are contained in relatively little space. That also implies large values of
NDmazs Emazr t0 be able to represent the solution. Therefore, we have a trade
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off. Here we have taken the size of the computational domain to be twice of the
size of the physical one. From the computational results, it seems to be enough.
Numerical experiments related with this fact can be observed in section 4.3.

3.4 Some implementation issues

3.4.1 Formulation of the problem in real arithmetic

As seen before in section 3, the problem (3.10) was formulated in the complex
space. Now we want to perform our computations with real numbers, so we
proceed in the usual way (see [4]). If we have a linear system of equations with
complex numbers, M f = ¢ then it is equivalent to

Mp —M;| |fr| _ |9r

M; Mg | |f1 g1
where the subindex .p denotes the real part and the subindex .; denotes the
imaginary part of each quantity. Therefore, from now on we shall work only

with real variables and express all the equations in terms of them. The vector
C = [Ij \7] will be then treated by blocks as

l‘:[CR C]]:[ﬁR ﬂ[ VR V[]

3.4.2 Treatment of the constraints

The real valued version of problem (3.10) defined in section 3 reformulated in
terms of real variables as seen in section 3.4.1 can be expressed as a linearly
constrained Least Squares problem with the following structure:

2

. A ] [b] 5 5
min, [«] - = [|[Az = b[|; + & || B3

t [ﬁB 0] |, (3.11)
S.t.
Hz =0

where H denotes the matrix for the homogeneous linear constraints (3.7), (3.8)
and (3.9). As observed before in 3.1 the structure of the matrix H is so simple
that allows us to perform direct substitution of the variables in order to obtain
an unconstrained problem with less variables. To state this in a more direct
way, let us write our constraints Hx = 0 in block notation as

[Hp Hp] [;g] = [0] (3.12)

where Hp is an invertible sub matrix of H. That implies
rp = —HBl HF rp

Therefore, we can span the set of feasible solutions using just zp with

)Lt
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Now we substitute this into the initial formulation (3.11) obtaining

2

min =
TF

2

o] o] 1 [

2

. Ap —ADHﬁlHF b
Bk [\/a (Br — BDHﬁlHF)] o] - [O] 2 (3:13)

Observe that Hp is diagonal, and Hp is very sparse. In fact, it has only one

. . 1
nonzero value on each row, so the same happens with the matrix 21 .
—H, "Hp

Renaming ¥ = zp, A= Ap — ADHngF and B = Bp — BDHngF in
(3.13) we get the unconstrained formulation

IR

Since often the matrix A obtained by the substitution procedure may still
be ill conditioned the Tikhonov regularization term /€, B plays an important
role. In Appendix B all the results are formulated in terms of (3.14), with the
" dropped. The sparsity of the matrices involved for 7,40 = &mnee = 3 can be
observed in Figure 3.1. There we show from left to right a row permuted version

. A 1 . A 1
of the matrices [\/673] , [_HBlHF] and their product [\/673] [_HBlHF] =

A
V& B
The problem was solved in Matlab [27] using methods described in 2.2.4
and the differences encountered in the solutions were consistent with the error
estimates given in theorem 3 and those included in Corollary 2 from Appendix

A.

: A
min ~
T € B

2
= min || A% — b3 + || BE3 (3.14)
2
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oF g e —
20} 1
40} 1 sol |
op 60f 1
sof 8ol i
100} 1
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100} 1
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120} 1
200 ] 1500 i
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nz = 2520
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0 50 0 50
nz=170 nz = 684

Figure 3.1: Uruguayan case with 6 station points. Sparse structure for the ma-
trices of the LSQ with 7,40 = &ner = 3 and no imposed boundary conditions.
Then number nz counts the nonzero elements in each matrix.



Chapter 4

Numerical examples

Here we include computational experiments in order to gain insight into the
proposed method, as well as to motivate some way of choosing parameters,
like for example the values of p and N = &par = Wmae- First we perform
computations with model problems, trying to see the behaviour of the method
in different situations, and also to compare the numerical solution with the
exact one when it is available. Beside this, we include a comparison with the
method used by Lépez Vazquez [35], involving real data from the southern zone
of Uruguay.

In all the cases, we make use of these notation:
Ajx —by: residual corresponding to data point conditions, ||[A1z —b1||3 = f4(C).
Asz: residual corresponding to homogeneous slip boundary conditions,
1 Aza]]2 = ,(C).
Az — b: residual corresponding to both data point conditions and slip boundary
conditions, that is

|4z = b]13 = [| A1z — b 13 + [|A22]13 = fa(C) + f+(C) =
Ny
1 R N,
N—dZHSD(Pj)—SD(Pj)H% 3 Lny (n(P), V(P3))®
j=1

Bz: regularization term

1Ball} = £(C) = 3 (10.el* + Va.el®) (Il + Jg[)
7§

Ny : amount of wavenumbers present in the numerical solution,
Nf = (2€max + 1)(277771(117 + 1)
In some graphics we will use the names N, IV, instead of &maz, Mmac

We study the sensitivity by means of three experiments, where we vary one
of the parameters while keeping the others fixed (i.e),

37
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1. Sensitivity with respect to €,. This experiment corresponds to the points
in the L-curve introduced in section 2.2.3.

2. Sensitivity with respect to N. This is meant to find a suitable amount of
wavenumbers in order to achieve small residuals.

3. Sensitivity with respect to p. As commented in section 3.1, p determines
the smoothness degree of the solution and it must be greater than one for
two dimensional problems. Nevertheless, it cannot be taken too large, as
will be seen in the examples.

Numerical results of the evolution of the condition number x2(M (¢, )) of the
least squares problem to be solved, as well as the effect on the spectrum of
singular values are shown in the Figures to check theoretical predictions.

The results included in Chapter 2 and Appendix A justify that the condition
number behaves like an approximate linear function of the inverse of the square
root of the regularization parameter. The effect of the maximum wavenumber
N or the smoothness parameter p on this condition number is less straigth-
forward altough some motivation can be given through the experiments. The
reader will be also able to inspect directly the effect of the parameters in the
computed velocity field, as well as the changes in |U, ¢| and |V}, ¢| which are
shown under the title “ Spectral energy distribution”. There one can check that
the approximate flows can be constructed with a small number of terms.

4.1 Model problems

4.1.1 2D flow around a circular tube

This example has only one point with known velocity, and there is a solid
boundary given by a tube wall, where the slip boundary condition holds:

(n(P), ¢(P))|solid wann = 0

All these can be seen in Figure 4.1. For the computations we have discretized
the circle wall on N, = 100 uniformly distributed points. The resulting flow can
also be seen in Figure 4.1 and it corresponds to the following parameters:

p=15 Ny,=100 ¢ =le—14

Since our method defines an approximation on every point of the computational
domain it will also define it inside of the tube. This will be of no importance
since the tube wall acts as a streamline.

Sensitivity Results

1. Sensitivity with respect to €.. In Figures 4.3 and 4.4 we see that in this
case the residual can be diminished to small values without almost no
increase in the regularization term, and we are able to use Richardson
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extrapolation to compute a smooth solution which interpolates the data.
The results of the L curve experiment are shown in Figure 4.2.

2. Sensitivity with respect to N, shown in Figures 4.5 and 4.6.

In Figure 4.5 we see that x(M (¢, )) increases with the maximum wavenum-
ber N. That can be explained by means of the bound (A.9) that indicates
a growth with v/6y/1+ 3N (2N + 1).

We also observe that IV > 2 is enough to provide small residuals.

The effect of NV in the singular values can be seen by first looking at the
operator B used for the regularization. When NV increases, so does the
number of freedom degrees in the problem, yielding new larger singular
values in B, that behave like /|n|?P + |£|?P, while keeping all the old sin-
gular values approximately constant. This explains why the small singular
values corresponding to the regularization looks essentially the same for
different values of NV (see Figure 4.5).

3. Sensitivity with respect to p, as shown in Figures 4.7 and 4.8. Let us see
the dependence of k(M (e,)) shown in Figure 4.7. As p increases the diago-
nal matrix B increases its entries, which means that the singular values of
M (e,; p) increase. This, depending on the relative size of €, will make the
condition shrink or increase. The first happens when ¢, is relatively small,
such that the singular values introduced by the regularization are much
smaller than those originally present in the problem. In this case the max-
imum singular value of M (¢,; p) will be basically unchanged, whereas the
smallest increases. On the other hand, we can observe that the condition
number increases with p when some of the singular values introduced by
the regularization are of the same order as those originally present. Then
the maximum singular value of M(e,;p) can increase with enough speed
to make the condition number larger. Beside this, p affects the spectrum
of singular values, changing the “power” profile, as seen in Figure 4.7.

As predicted before, ||Az — b|| decreases with N or as ¢, decreases. The
dependence with respect to the smoothness parameter p is less simple, as can
be seen in Figure 4.7. Recall that in section 3 it was pointed out that the
value of p should be greater than 1 to have a well posed problem when we let
N — oo. If that is not the case, even for small values of N, the solution will
fit the measurements but vanish quickly away from them. That effect can be
seen on the first plot in Figure 4.8. However, computational experience shows
that the residuals increase when p is increased above some threshold level, and
moreover, the solution may look wild as depicted on the rightmost of Figure
4.8, so it seems to be an optimal value of smoothness. In the present work we
have taken p = 1.5.

With respect to the boundary condition at the solid wall, a question arises
respect to the choice of the number of points in the discretized boundary. It
seems tempting to try to add as much as possible points to improve the ac-
curacy. However, the size of the problem will increase and we will face more
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Nx =3, Ny = 3, epsr = 1e-4, p=1.5

Figure 4.1: Numerical experiments with the tube problem.Left: Data for the
problem. The circle wall has been discretized in N, = 100 points and there
exist only one flow measurement, shown in red. Right: Computed solution for
N = gmax = mazx — 37
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Figure 4.2: Numerical experiments with the tube problem. Left: Dependence of
the spectrum of singular values w.r.t. Ny, the number of points in the discretized
boundary. Right: L-curve plot of the residual and the regularization term.
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Figure 4.3: Numerical experiments with the tube problem. Dependence of the
solution w.r.t. €,.
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Figure 4.4: Numerical experiments with the tube problem. Dependence of the
solution w.r.t. €.. Top:Flow results. Bottom:Spectral energy distribution
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Figure 4.5: Numerical experiments with the tube problem. Dependence of the
solution w.r.t. V.
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Figure 4.6: Numerical experiments with the tube problem. Dependence of the
solution w.r.t. N. Top:Flow results. Bottom:Spectral energy distribution
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Figure 4.7: Numerical experiments with the tube problem. Dependence of the
solution w.r.t. p.
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computational effort Moreover, adding more points to the boundary discretiza-
tion does not necessary imply a practical improvement in the accuracy in the
numerical solution. Recall that

min{Nb,Nf}

1 1
Ag|ly = ———— 2d —)= 3 ofe?
|| 2$||2 length([)Dl) /g?Dl(SD’ n) 5+ ¢ <N > T3 (UZ l‘)

b i=1

where Ay € RVoXNs | Observe that both its singular values o; and right singular
vectors v; depend on Ng.
As N increases below N;, the spectrum corresponding to large singular val-

ues are within O (N%)) of the spectrum that corresponds to the non discretized

operator, while new small strictly positive singular values appear. Those are
associated with ill-posedness, and do not provide any useful information.

Beside this, the error coming from the discretization of the boundary is just
one of many, and it is not advisable trying to reduce it without keeping in mind
that the others are still present and are possibly larger. Numerical results can
be seen in Figure 4.2, where we show the computed singular values of matrix A
for different number of points in the discretized boundary. There it can be seen
that approximately 35 singular values are important. By important we mean
above the regularization threshold, which is O(,/e;).

In this particular example, there is almost no change in these singular values
when we use 200 points or 100 in the discretization and the corresponding
numerical result is practically the same.
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4.1.2 2D flow over a ramp

In this example we have an incompressible flow with linear velocity profile over
a ramp. We shall again see the effect of boundary conditions, and furthermore,
how approximate is the numerical solution to the exact solution of the problem,
which is available.

We have discretized the boundary wall by means of 100 uniformly distributed
points and included 100 data points along the line segment

0<2<0.5,y=0

as shown in Figure 4.9. The computational domain is D, = [0,1]? and the
parameters have been set to p = 1.5 and ¢, = le — 4. In Figure 4.9 we can see a
typical numerical result, and in Figure 4.10 we show the residual components,
both for the velocity conditions at the data points and the slip boundary con-
dition. On the left we show the error in x and y velocity components (i.e.), the
components of the vector (¢ — @)(P;) for j =1...Ny.

On the rightmost graphic we show the value (¢(Pr), n(Py)) for h =1...N,.

As in the tube flow example, all three sensitivity experiments have been
carried out and the same sort of comments apply. However, this solution is less
sensitive than the numerical solution of the tube problem, since there is more
data available in this case.

1. Sensitivity with respect to €,. See Figures 4.11 and 4.12 for detailed results
and Figure 4.17 for the L-curve experiment.

2. Sensitivity with respect to N, shown in Figures 4.13 and 4.14.

3. Sensitivity with respect to p, as shown in Figures 4.15 and 4.16.

Nx =3, Ny =3, epsr = fe-4, p=1.5

//
4

20000

A aninli pmmeeetar AL

Figure 4.9: 2D flow over a ramp. Left: Boundary and data points. Right:
Numerical solution
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Figure 4.10: 2D flow over a ramp. Left: Ayx — by, residual at the data points

Right: Asx, residual of slip boundary condition at boundary points




47

CHAPTER 4. NUMERICAL EXAMPLES
N=5p=15 Singular values dependence w.r.t.c,
10" 10°
*
10° * . e=1
_ « 10
§ 10°
~
\ 10°
10 ¢=1e-16
r
10° 107°
10710 10°° 10° 0 50 100 150
sart(e,)
10
¢ =1e-16
r
0 *
=N1o % "
x x
a 5 e=le-16
10°
=1 %
102 e=1
10° 10° 107° 10°
1A, x-b, I, Al

Figure 4.11

: Dependence of the solution w.r.t. ¢,.
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Figure 4.12: Dependence of the solution w.r.t.
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Figure 4.13: Dependence of the solution w.r.t. N.

Nx=1,Ny =1, epsr = 1e-8, p=1.5

Nx=3, Ny =3, epsr = 1o-8, p=1.5

Nx=5, Ny =5, epsr = 1o-8, p=1.5

opsr = 10-8,p=1.5

opsr= 10-8,p=1.5

opsr = 10-8,p=1.5

Nx=sNy=s

Figure 4.14: Dependence

of the solution w.r.t.

tom:Spectral energy distribution

N. Top:Flow results.

Bot-

48



CHAPTER 4. NUMERICAL EXAMPLES 49
s £ =0.0001,N=5 . Singular values dependence w.r.t. p
10 10
10° p=3
10
=
10°
p=1
10° 107
1 15 25 3 0 50 100 150
102 10'
:N =N
8 1¢° p=3 8 1° p=3
p=d
Cp=t
107 107 107 107
1A x-b,I, 1Al

Figure 4.15: Dependence of the solution w.r.t. p.
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Figure 4.16: Dependence of the solution w.r.t.
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Figure 4.17: L curve for the ramp case.
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4.1.3 Comparison with exact solution

As we said before, the exact solution is available in this example. Both the slip
boundary condition and the data measurements are satisfied by the potential
flow

P = [y, 7]

Now we compare this flow with the numerical solution, using a grid of points
that is uniformly distributed on the region of interest:

{(x,y)E]RZ:xZO,ny,J;S()ﬁ}

That grid can be seen in Figure 4.18, and the error function for N = 2 and
N = 3 can be seen in Figure 4.19. There we see that N = 2 is enough for our
purposes, since there is no gain in accuracy when using N = 3. To increase the
accuracy one needs to use more data points, preferably away from the boundary
where we have already imposed velocity data.

The same conclusion can be derived from Table 4.1 we show different norms
of the error function on the grid of Figure 4.18, for values of N = {42 = Dmax
ranging from 1 to 6.

0.5
0.451 o 4
0.4 o o <4
0.35 <] o o <
0.3 <] o [} o <
0.25 [e] o [e] o o <4
0.2 o <] o <] [} o <
0.15 o o <] o <] [} o <
0.1 o e} o o e} o o o 4
0.05 o [e] o o [e] o o o o <4
o & & & & & & & & &
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Figure 4.18: Grid of points used to measure the difference between the the exact
solution and the numerical solution.
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N | e =2llez | lle = &lloo
T | 0.2863 0.0721
2 | 0.0577 0.0182
3 | 0.0854 0.0213
4 | 0.0546 0.0110
5 | 0.0545 0.0117
6 | 0.0550 0.0114

Table 4.1: Error norm on the grid of Figure 4.1
as a function of the maximum wavenumber.

Errorin U Errorin V. Errorin U Errorin V.

Figure 4.19: The mesh plot interpolates the values obtained at the grid from
Figure 4.18. Left: Results for N = 2. Right: Results for N = 3.
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4.1.4 2D Rankine vortex inside a tube

This example shows an application of the method to a confined flow. There exist
36 points with known velocity, and there is a solid boundary given by a tube
wall, where the slip boundary condition holds. The velocity profile corresponds
to a Rankine vortex, that is,

P(x,0)=(0,V(z)), —R<z<R

102 if || <0.25

All these can be seen in Figure 4.20. For the computations we have dis-
cretized the circle wall on N, = 100 uniformly distributed points. The resulting
flow can also be seen in Figure 4.20 and it corresponds to the following param-
eters:

i .
where R = .5; and V(l‘) — { 8r lf |l‘| > 0.25

p=15, N=5 ¢ =1le—14

Since our method defines an approximation on every point of the computational
domain it will also define it outside of the tube. This will be of no importance
since the tube wall acts as a streamline.

Sensitivity Results

Since most of the comments regarding sensitivity do apply in this example we
do not repeat them, and content ourselves with a brief outline of the numerical
results.

1. Sensitivity with respect to €,. In Figures 4.22 we see that in this case the
residual remains in the order of 6 % of the velocity measurements. This
slow convergence is due to the non-smoothness of the Rankine vortex.
However, observe that the slip boundary condition is accurately fulfilled.
The results of the L curve experiment are shown in Figure 4.21 and it
justifies the approximate choice €, = 0.0001.

2. Sensitivity with respect to NV, shown in Figures 4.22, 4.24 and 4.23 We
observe that the difference between the measurements and the numerical
solution decreases as /N increases, and that its maximum is clearly related
with the radius 0,25 where the Rankine vortex is non smooth.

3. Sensitivity with respect to p, as shown in Figure 4.25. Let us see the
dependence of k(M (e,)) shown in Figure 4.25. This, depending on the
relative size of ¢, will make the condition shrink or increase.
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Nx=5, Ny =5, epsr = e-4, p=1.5

02 04 06 08 1 12 14 16 18 2

02 04 06 08 1 12 14 16 18 2

Figure 4.20: Numerical experiments with the Rankine vortex problem.Left:
Data for the problem. The circle wall has been discretized in N, = 100 points
and there exist 36 flow measurements, shown in red. Right: Computed solution

for N = gmax = NMmaxr = 57

L-curve

t=10-16 g=1g=08

e=1

L
o
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Figure 4.21: Numerical experiments with the Rankine vortex problem: L-curve
plot of the residual and the regularization term.
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Figure 4.22: Numerical experiments with the Rankine vortex problem.

Top:Dependence of the solution w.r.t. e,.

tion w.r.t. V.
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Figure 4.23: Residual plots in the Rankine vortex example. Above: Results

with N = 5 Bottom: Results with NV =8
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Nx=5, Ny =5, epsr = 1e~4, p=1.5 Nx=8, Ny =8, epsr = 1e~4, p=1.5

Energy of U component Energy of U component

Nx=8,Ny=8

Figure 4.24: Numerical experiments with the Rankine vortex problem. De-
pendence of the solution w.r.t. N. Top:Flow results. Bottom:Spectral energy
distribution.
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Figure 4.25: Numerical experiments with the Rankine vortex problem. Depen-
dence of the solution w.r.t. p.
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4.2 Wind field in the southern zone of Uruguay

Now we consider a problem with real data from the Southern zone of Uruguay.
The same approximation problem was first studied by Lépez Vézquez in his
Master Thesis [35], where also a statistical analysis of time dependent measure-
ments is done following the work of Ludwig [24] and Richman [29]. Precisely
that Principal Components analysis is the data source for our example. Since
we do not give the details of the statistical procedure the reader can directly
refer to Lopez Vazquez [35].

However, we sketch the result to provide an rough link between crude data
measurements and the application of the numerical procedure described in this
work. The original version of the problem can be stated as follows: given 6
velocity field measurements in an hourly basis, find an incompressible approx-
imation for each time point. Instead of solving an approximation problem for
each sample in time, an Principal Components expansion for the measurements
is first computed.

o(t, P1) Pm (P1) Pr(P1)
: = : + ) ak(t) : (4.1)

@1, ‘PNd) Pm (}’Nd) F Pr (iDNd)

In this case, the contribution of the weights aj(¢) decreases with % in such
a way that with only a few (say in this case 3) terms, we have an acceptable
approximation. This truncation procedure works as a low pass filter in time.
Thus, we solve then the approximation problem for just each of the terms of the
above expansion, and in this way, via 2 steps of approximation, the first in time
and the second in space, we get (¢, P) extended to all the time-space domain

ot P) = om(P) + Y ax(t) pi(P).

This of course involves less computational effort than trying to solve for each
time the incompressible approximation problem. Our model problem uses the
data from the first principal component, (i.e.) & = 1. This data and a numerical
solution can be seen in Figure 4.26. The remainder numerical results can be
found in Appendix D.

1. Sensitivity with respect to €,. In Figures 4.27 and 4.28 we can see that the
residual of the velocity measurements shrinks to zero when we reduce the
regularization parameter. One very important feature of this example is
the distinct gap in the singular values spectrum, which makes it easier to
handle. Either we can use the Modified Truncated Singular Decomposition
method directly or compute the solution using Richardson extrapolation.
When an estimate of the error level present in the data is available, the
bounds (A.9) devised in Appendix A can be used in the following way:
Assume that we look for the unperturbed unregularized solution z(0) If
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we instead compute z(e.) the error will be approximately z'(0)e,. In
general, since the data is contaminated with error we obtain #(e,) and an
application of the bounds from the appendix yields

[2(0) —z(e)ll:  CN+1DVEA+3p)E | [l2"(0)]]2
[[2(0)]]2 Ver 2]z "

where the number E represents the relative error in the data measure-
ments. In this case the quotient in the second term is of the order of %2

where =; is the smallest non zero generalized singular value, which is (’)(1)1.
This yields the choice ¢* = (2N + 1)¥/3(6 + 18p)*/3E?/3. Therefore, the
optimal error will be of order (2N + 1)'/3E2/3,

Yet another possibility is to use the discrepancy principle described in
Chapter 2.

2. Sensitivity with respect to NV, shown in Figures 4.29 and 4.30. We observe
that the difference between the measurements and the numerical solution
can be made negligible for N > 2, something directly related with the
amount of data.

3. Sensitivity with respect to p, shown in Figures 4.31 and 4.32.

S e
D
e T T T e
= =z zz =<5

== 4

Figure 4.26: First Principal component example: Left: Available data. Right:
Computational results.
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Figure 4.29: Dependence of the solution w.r.t. N.
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Figure 4.30: Dependence of the solution w.r.t.
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Figure 4.31:

Dependence of the solution w.r.t. p.
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4.2.1 Comparison with the results from [35]

As mentioned before, Lépez Vazquez [35] closely follows Sasaki [30] and Sher-
man [31] solving the dual problem 2.6 for the Lagrange multiplier A. This Par-
tial differential equation has homogeneous Dirichlet boundary conditions when
there exist free flow through the boundary, whereas the homogeneous Neumann
boundary condition is used at solid walls, that is D;. We have seen in section 2
that this last B.C. introduces spurious solutions when « is not a multiple of the
identity at the boundary dD;. Unfortunately, this is the case in [35] since the
scaling matrix « is chosen to be constant on the whole domain, and its diagonal
coefficients are different.

The initial flow ¢ is generated by means of interpolation, which can be car-
ried out in many possible ways.

On the other hand, since the approximation problem is posed in terms of
the interpolated flow, that is

min [la(p — ¢)|| >

the data measurements will be treated in the same way as any other point in
the domain, once the interpolant is generated.

Taking this last fact into account, a proposal due to Guo [13] is used. It
involves adjusting a single constant ¢ to minimize the residual at the data points,
that is

Ny
¢ =arg mcin Z llee(P;) — @(PJ)Hg
=1

This correction cannot guarantee to what extent ¢*¢ will approximate the data
measurements, specially when the scaling matrix « is constant. This property is
relevant for at least the mean value and the first principal component, since the
incoming data has been already filtered by the principal components method,
and those two components explain much of the variation of the measurements in
time. As can be seen in Figure 4.33, the deviation from the data is particularly
large at the stations of Punta del Este, while smaller deviations can be seen
at the station of Melo and Carrasco. This does not happen with the proposed
method, which is able to approximate the 6 data measurements up to a given
tolerance taking N > 2. In addition, our method offers the flexibility to choose
the regularization parameter either by an a priori knowledge of the error level or
by an a posteriori procedure like the L. curve method, adjusting the smoothing
level in every case. That is relevant in the Principal component analysis, since
the relative error level increases with the component number. In Figure 4.34
we show two numerical results, one with large regularization ¢, = 0.1 which
is very similar to the one depicted in Figure 4.33 and has deviations up to 15
% from the data measurements. That links the method presented in [35] with
large values of regularization. In the same Figure we show a computation that
has a negligible residual (of order le-4), and at the same time gives a smooth
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flow. Furthermore, the fact that we can find a small residual with N = 2 means
that we are able to represent the solution in space in a compact way, (i.e.) with
just a few terms, which is in some sense complementary to the compression in
time carried out by the Principal components method.

n [35], the Poisson equation for A is solved by means of a Finite Element
method with isoparametric functions, for elements with 8 nodes. The same
method is applied for all the principal components, with no changes in the
parameters.

Here the numerical procedure consists on solving an unconstrained least
squares problem, and the amount of regularization can be adjusted to the
amount of error present in each Principal Component.

?we;.: W Tres
- o e
B NS

[xivgl
= S e

Rio de la Plata

Figure 4.33: Results from [35], first principal component
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Nx =3, Ny =3, epsr = 1e-4, p=1.5
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Figure 4.34: Results from the proposed method, first principal component
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4.3 Effect of the parameters

Now, we summarize some features about the behaviour of numerical solutions
with respect to various parameters used in the formulation.

Effect of 7,4, and &40

As observed in the experiments, increasing the values of 1,4, and &4, yields
a smaller residual and eventually, the unregularized problem can exhibit a null
residual. That is the case in the Uruguayan example. On the other hand, the
condition number x(M (¢, )) increases mildly with the maximum wavenumber
N, so is advisable to use as few wavenumbers as possible. Therefore, there is
a tradeoff between small residuals and small condition number to consider in
each case.

Effect of the size of the computational domain

In order to provide computational grounds for the relative choice of the Com-
putational Domain, we have changed its size with respect to the physical one
in the Uruguayan case. The column D¢ in the next table shows the value of
the magnification of the length side, and the residual at the data points. The
values for the rest of the parameters are fixed to gy = Emaz = 4, p = 1.5,
€, = le — 8. There are no important changes in the approximation, although
the residuals at the data points increase when we magnify the computational
domain. This is explained by the fact that the data will correspond to increas-
ingly higher wave numbers in the larger domains, precisely those which with
high penalization for its use. That effect can be observed in table 4.2. On the
other hand, the computational domain has to be sufficiently large (so to avoid
artificial discontinuities in the periodic boundary). This, if not treated with
care, will cause the solution to be non smooth.

D¢ | absolute ||.||z2 | absolute ||.||oo |
1 1.0740e-08 7.0188e-09
2 2.8212e-07 1.4813e-07
4 1.3199e-05 5.8180e-06

Table 4.2: L? norm of the residual at the data points when increasing the size
of the computational domain

Effect of ¢,

The dependence of the solution with respect to €, has been analized throughout
this work and the L curve method has been described and applied to provide an a
posteriori choice for €,.. In some cases where the perturbed problem also satisfies
the discrete Picard condition an a priori estimate of the error level present in the
data is needed to determine a sensible value for ¢.. An approximate value for
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¢, can be obtained from €, ~ ||E||§/3(2N + 1)2/3, where ||F||z is an estimate of

the relative error level in the data. This choice corresponds to an approximate
minimization of the relative error in the solution (i.e.),
12" (0)]]2
min Mer + k2(e)|| 2
e |2 (0)]l2
Here we also exemplify the use of Richardson extrapolation to verify the
results predicted in Appendices A and B.
The extrapolated value can be computed as:

z*(ep/n) — x*(er)

n—1

x:xtrp = l‘* (67‘/77') + (42)
The parameters were set to n = 10, €, = le — 4 All the other parameters are
fixed to p = 1.5, Bmae = Emaz = 2.

Again we show the behaviour of the residuals at the data points.

€ absolute ||.||zz | absolute ||.||co
le-4 3.9571e-05 2.3657e-05
le-5 3.9578e-06 2.3661e-06
extrp. | 8.9491e-10 4.3473e-10

Effect of p

The larger the value of p, the smoother the solution will be. That is obtained by
imposing the pth derivative of the velocity field to belong to L?. On the other
hand, not any posivite value of p yields useful solutions. In section 3 it was
pointed out that the value of p should be greater than 1 to have a well posed
problem when we let N — oco. In other words, if we want to impose point values
to the solution, the functional subspace where we minimize must contain only
sufficiently smooth functions. If that is not the case, even for small values of IV,
the solution will fit the measurements but vanish quickly away from them. The
importance of this effect will be greater for examples with only few data points.

However, computational experience shows that the residuals increase when
p is increased above some threshold level, and moreover, the solution may look
a bit wild, so it seems to be an optimal value of smoothness. In the present
work we have taken p = 1.5.

Intuitively, for small values of ¢, there is no much difference between small
values of p > 1, in the sense that the smoothing term only imposes an “order”
between the frequencies, which is not altered by the different choices of p. Nev-
ertheless, for this to hold they have to be small enough so the regularization
term does not overrun the original data of the problem (i.e.), \/&, N? << 1. In
this work we take the value of p = 1.5
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4.3.1 Experiments with noise in the data

In 2.2.2 and in Appendix A we predict that the data perturbations will be
increasingly amplified as we shrink the regularization parameter. It is then the
purpose of the following numerical experiments to show how this appears in
practice, as well as how the regularization procedure can filter out the noise
contribution.

The first experiment consists on adding uncorrelated and normally dis-
tributed noise to the velocity data, and then applying the method to filter
out this contribution.

We perturbed all the data measurements randomly and observed the effect
in the computed solution. The perturbations are independent, have normal
distribution and their standard deviation is 0.1 of the velocity modulus at every
measurement point. In other words

Upert (Pj) = u(P;) + eu; * 0.1 % \/u?(P;) + v3(P;), for j=1...Ny
Vpert (Pj) = v(P;) + evj * 0.1 % \/u?(F;) +v3(P;), for j=1...Ny

where euj, eu; ~ N(0,1), for j=1...N4z. On the other hand, the boundary
data has been kept unperturbed. As we can see in the following plots, the
algorithm works well and the filtering procedure is successful, even with the
small values of regularization parameter used here. A possible explanation of
this behaviour is based on the fact that NV, the maximum wavenumber has also
a regularization effect. Its value bounds the highest frequency present in the
numerical solution, therefore it precludes the unbiased uncorrelated error made
of high frequency. Numerical results for both the ramp case and the Rankine
vortex are shown in Figures 4.35 and 4.36 respectively.

The second experiment consists on shrinking the regularization parameter
while keeping fixed the noise level. By means of this procedure, we are able to
see how the numerical solution becomes more wiggly as it tries to approximate
better noisy data. Our actual example is based on the Uruguayan example, since
it is the example with least amount of data and that makes it more sensitive
to perturbations. The noise has been generated in the same way as in the first
experiment, and the results can be seen in Figure 4.37.
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2D flow over a ramp with perturbed data

Nx =5, Ny = 5, epsr = 1e-4, p=1.5
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Figure 4.35: 2D flow over a ramp with random perturbations.Top: Numerical
solution. Bottom: De-noising effect. Observe that the difference between the
data and the numerical solution is made of scaled white noise, and that cor-
responds to the random perturbation that we introduced. On the other hand,
there is no difficulty on handling the boundary condition, since it does not
contain any perturbations.
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2D Rankine vortex with perturbed data
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Figure 4.36: 2D Rankine vortex with random perturbations. Top: Numerical
solution. Bottom: De-noising effect.Again, the difference between the data and
the numerical solution is made of scaled white noise, and that corresponds to
the random perturbation that we introduced. On the other hand, there is no
difficulty on handling the boundary condition, since it does not contain any

perturbations.
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Uruguayan case with perturbed data and variable regularization
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Figure 4.37: Numerical experiment with fixed noise level and different values of
the regularization parameter. Decreasing the value of the €, parameter amplifies
the error in the data and yields a wiggler solution. In addition, the pointwise
residuals also shrink with €,.. Since the L-curve criterion is not useful in this
case, an a priori knowledge of the error is needed to provide a numerical solution



Chapter 5

Conclusions

Let us summarize the ideas that have been discussed throughout. When solving
a flow estimation problem we often have a small number of data measurements,
so additional information has to be included in order to find an useful solution.
That sort of information can be the incompressibility condition, slip boundary
conditions and some qualitative knowledge of the smoothness of the flow. The
method presented in this work can handle all these conditions, and in addition,
it can take into account the amount of noise present in the data, either in a
posteriori way, like in the L curve method or with a priori information, mini-
mizing an error bound of the solution. For that reason, it is useful to derive
perturbation bounds relating the size of the regularization parameter and the
error in the data with the corresponding perturbation in the solution.

Since we are able to substitute the incompressibility constraint, finding a
numerical solution just involves an unconstrained linear least squares system,
usually of small size.

Here Tikhonov regularization has been applied, but other methods men-
tioned in section 2 can be also applied. For example, when there is a distinct
gap in the singular values spectrum, the MTSVD method (2.30) is very simple
to use. An empirical choice of the smothness parameter p has been done, but
a lower bound has been provided to guarantee that point conditions can be
succesfully imposed.

The properties of convergence with respect to the number of data measure-
ments common to spectral methods are present here, in the sense that the rate
of convergence will be enhanced by the smoothness of the original flow. This
means that in some cases, with very few components we are able to represent
the numerical solution. as seen in our numerical experiments, both with model
problems and real data.

Beside this, numerical results from this method have been compared with
others from Lépez Vazquez [35] in the Uruguayan case, yielding an interpreta-
tion of an equivalent regularization level used in that work. In other words, we
can almost reproduce those results by choosing a large value of the regularization
parameter and with just a small number of Fourier modes.
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Requiring smoothness of the original flow seems to be a key limitation of the
work, unless we are willing to face a large dimension least squares problem. For
example, that is the case with boundary layers. However, one could “zoom in”
into that zone of rapid variation, to obtain a local approximation that could be
overlapped with the outer smooth solution. That implies an adaptive procedure
which falls outside the scope of this thesis and can be the subject of future work.

Finally, a possible application which offers anoother view point of the algo-
rithm is to use it to validate measurements. For example, With the help of a
laser beam one can obtain a lot of velocity measurements in a planar section. A
three dimensional version of this method could be used as a part of a statistical
tool to reject poor quality measurements.



Appendix A

Singular values estimates

The purpose of this section is to provide bounds on the condition number of
the matrix associated with Tikhonov regularization. First, we do the analysis
in a general setting, with arbitrary A and B and then we restrict the results
to the velocity field approximation problem discussed throughout the work.
This as already seen in Chapter 2 is a vital issue to guarantee the stability of
our computations. It is worth to mention that these results are close to those
included in [15], but the proofs have been done independently and based on
the Singular Value Decomposition instead of the Generalized Singular Value
Decomposition.

As we shall see, we are able to control the condition number of the matrix
from the least squares problem by choosing the value of €.. The condition
number will be then O (1/,/¢;).

In the following property we state the effect of €, on the singular values of a
matrix associated with Tikhonov regularization, assuming that the regulariza-
tion operator B is non singular.

Theorem 5 (Bounds of singular values) Let the real valued matriz A €

R™X" hauve rank r, with singular values o, 1 <i < r and define

e[ 2

where B € R™ ™ {s an invertible matriz with singular values o
Then the singular values of M (e,) satisfy

B

i -

oile)) =0l 4+ 0(e,), forall < i<r
oi(e) = O(er), forall r4+1<4

Proof:

We use the fact that o2 are the eigenvalues of the symmetric matrix M7 (¢, ) M (e, ).
Then, recalling the definition of the singular value decomposition of the matrix
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A we have A = USVT where U and V are orthogonal matrices and ¥ is a
diagonal matrix.
Therefore,

Y% = diag((0)?) = VT AT AV, (A1)

Now, let o;(e,) denote the singular values of M(e.). Observe that the re-
lation o;(e,) is well defined since the eigenvalues of a matrix are continuous
functions of the matrix entries, which in this case are continuous functions of
the regularization parameter e,.

Applying the same similarity transformation as in (A.1) to the matrix prod-
uct M7 (e,)M (e,) we arrive to

VIMT (e M(e,)V =X + ¢,V BT BV

Then, Gerschgorin theorem (see [12], theorem 7.2.1, page 341) with suitable
numbering of the singular values o;(e,) yields

[(0)? —of(e)| < mi e, (A.2)
where m; = ||[VI BT BV ¢;||1. This implies that lim,_ _,00i(¢,) = o and as a
byproduct it yields
A m; €p
4 o6 < —m— A3
|o-z o (6 )| = O_ZA +0'i(€r) ( )

Now, since M (e, ) is constructed by appending extra rows to the matrix A we
have o;(e,) > o, for all 1 < i < n. This fact is a consequence of [2],theorem
3.5, page 476.

Recall that the rank of A is . Thus, if i < r then the singular value o# is

K3

strictly positive, and we get the bound

m; €p
20';4

ot — ai(er)] <

, which is the first part of the theorem. (A.4)

To prove the other statement, let i > r. Then o = 0, and (A.2) yields

oiler) < /my €, Yi>r

The strategy to obtain a lower bound on the singular values is to use the
non singularity of B, working with its smallest singular value.

Tmin(€;) = min || Az||3 + ¢ ||Be|l3 > ¢ min |[Be|l3 = e (o7:,)°
7ll2=1 ll#ll2=1

(Il
Now, since oZ(e,) > 02, (€.), for all i from (A.2) we obtain

min

V&roB. < ai(e,) < /mi ¢, which implies the second part of the theorem.O
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In Figure A.1 we can see a numerical experiment showing the dependence
of the singular values spectrum of M (e,) with ¢,. The matrix A € JR40%20 J g
rank equal to 7 and the regularization operator is B = diag(1,2%% ... 2015).
The bound provided by theorem 5 is clearly identified in the graph, since the
modified spectrum corresponding to the null space of A is just scaled by /e,.
In addition, observe that those perturbed singular values corresponding to non
zero singular values of A remain almost constant. In the experiment, we have
used
e, =le—4,1le—5,...,1le—8.

) Effect of Tikhonov reglarization on singular values
10 T T T T T T

Figure A.1: Numerical example of the dependence of singular values of M (e,)
with respect to e,

Using the last theorem we can now give a first estimate on the condition
number of the regularized unconstrained LSQ problem.

Corollary 1 With the same hypotheses as in theorem 5 we have
A [[All2l1B"]]>
(el ) T v

Proof:
It is just a matter of bounding the maximal and the minimal singular values of
M (e,). The first singular value satisfies the inequalities:

ai(er) < Il + & IBIIS < [14ll2 + [ Bll2

And as seen in the proof of the last theorem,

1Bl
NG

[ar(e)]l, <
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The next property allows us to bound the condition of the matrix of the
LSQ problem seen in 3.4.2. In that section we allow the diagonal matrix B
from the regularization term to be singular, but keeping the assumption that
the intersection of the null spaces ker(A) and ker(B) is trivial. For the velocity
field problem this assumption of trivial intersection has been proved in corollary
4.

The next step is to allow a singular regularization operator B, but keeping
the assumption of no intersection of null spaces.

A a direct consequence of [16],theorem 2.3. yields

I T
A 1Bl 1
< max y 7 Ab
H <1/€7«B> y - ( v €r inf (APker(B)) ( )

where Pyer(p) is the orthogonal projection onto the null space of B and

inf (APker(B)) denotes the minimum non zero singular value of APyer(p)-
To be able to offer a geometric interpretation of the results, we first need to
recall the notion of the angle between subspaces, and after that prove a simple

bound.

Definition 1 The angle 0% between two subspaces V- and W is defined by

cos(0) = max T
llzll2 = [lyll2 = 1,
reV, yeWw

Lemma 1 Let 0* be the angle between ker(A) and ker(B). Then

sin(6*)

inf (APker(B)) = - ||14I||2

= min
||z]]2=1, Bz

A

1 Az]ly > sin(0%) (o)
:0

Proof:
Let « € ker(B) with [|x||2 = 1 and define the vector y as the orthogonal projec-
tion of # onto the Range of A”.

y = Pgar)x
Observe that the angle 6 between z and ker(A) satisfies the relation
[lyll3 = sin®(0)

On the other hand, since by the above construction x — y belongs to the
null space of A we have Az = Ay. Using the last relation and the inequality
sin?(0) > sin?(0*) ,which comes directly from the definition of %, we arrive to

[[Az][3 = || Ay|[ = sin® (0)]| Au|[3 > sin®(6) (o], )?

rA
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The last assertion holds since u = singw € Range(AT), |jullz =1. D
Now let

k
A = Zaiuiv?, with 1 < k <rank(A)
i=1
be a truncated SVD expansion of A. Define ), as the angle between ker(B) and
ker(Ay). Since
inf (APker(B)) > inf (AkPker(B)) , for 1< k<rank(A)

then by means of lemma 1 we arrive to

. sin(6y)
f (AP >
inf (APer(r)) 2 1Sk2«3§k<A>{ AL }

We remark that both sin(f) and ||A£||2 do not decrease as k increases. Thus,
sin(fy)
ALl

it is reasonable to expect that the maximum of { } will occur at an inter-

mediate value 1 < k* < rank(A).
The next corollary is just the generalization of 1 for B singular.

Corollary 2 With the same hypotheses as above,

" <[¢é3]> =

All2|| BT
max <w + Verka(B),

. ra(A) | [AGlII B2
1<k <rank(A) { sin (6 ) te sin(0) (4.6)

O

From corollary 2 we see that if the minimum of {Sin(ek)

AT,
then it makes sense to apply the Tikhonov regularizatiOIlll. 'kIl‘lhis has the following
geometric interpretation: the subspace associated with relatively small singular
values of A should be near orthogonal to the null space of B.

The above can be seen as a condition for the choice of the regularization operator
B, since A generally given from the physical model. We can think of the above
statement as the numerical counterpart of the requirement ker(A4) Nker(B) =

{0}. If that happens the condition number will be approximately controlled by
[LAl=|1B |2

} is small enough

—=. To find satisfactory results we also need the right hand side b to
satisfy the discrete Picard condition commented in section 2.2.2.

As remarked in the numerical examples, the angle between the null spaces of
A and B may shrink when the number of wave numbers present in the solution
increases, so it may be useful to also add a small penalization to the mean
value components in the solution to make B invertible and keep the result from
theorem 5.

In what follows, we particularize the sensitivity results to the case of the
velocity field estimation. For that reason, recall the quantities Np., (number
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of dependent variables) and Ny,.. (number of dependent variables) defined in
section 3.4.2.

The next property gives a bound in the “substitution” matrix used in section
3.4.2 to achieve an unconstrained formulation. It shows that the substitution
matrix is indeed very well conditioned.

It uses the fact that Np.,/Nypree < 3, which can be easily verified by the
reader.

Property 1 Recall the definition of the matrices Hp and Hp given in (3.12).
Then the following bound on the condition number of the substitution matriz

holds:

<V1+3p (A7)

2

I
ts H [—HalHF]

where p < max(Mmag, Emaz ). Moreover, there exists a choice of the set of free
variables such that p < 3 This is accomplished by looking at constraint 3.7 and
choosing as independent the variables

Upe iflnl < |€l, and |¢] >0

Ve o ifml > I (A.8)
Upe and Ve ifn=E¢=0

Proof: Just consider the definition of the 2-norm:

2

_ 2
= max ||z||3+ ||HD1HF$||2
2 lell=1

I
~Hy'Hp

Now let p be the maximum absolute value of the entries in the rectangu-
lar matrix HBlHF. Beside this, recall that HBlHF has at most one nonzero
element per row and that for every independent variable there are at most 3
dependent variables

Therefore, we arrive to

I 2
| S
To conclude observe that p < max{&mnazs Ymaz } for any choice of independent
variables and that if (A.8) holds p < 1
O

In what follows, we provide a bound on the first singular value of the matrix
A that contains information about both the station points and the slip boundary
conditions. For that reason, let A; be the matrix associated with condition (3.2)
via the least squares formulation (3.3). In a similar way, let A3 be associated
with the slip boundary condition in 9D as explained in (3.4) and (3.5).
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Ay .
Property 2 Let A= N with Ay and As as above and let
2
Nf = (2€max + 1)(277771(117 + 1)

Then || 443 < 2y, || A2} < 4N, and

[A[]2 < /6Ny

Finally, by means of the preceding properties, we are able to give a bound
for the condition number of the matrix for the constrained problem discussed
in 3.4.2. In order to emphasize the important terms in the bound, we have used
the O notation.

Property 3 Let

wr= [ )Lt
Then

r2(M(er)) <

V14 3p max( ALY + O(Ver), min 2 (Ar) + (’)(er)) (A.9)

N 1<k<rank(4) sin(0)
O
Since the regularization operator B is diagonal with entries 1/7?P + £2P its kernel
is spanned by constant flows, and 0'7,BB = 1. That simplifies the bounds in

property 3. If we also add a small penalization J in the entries that correspond
to 7 = & = 0 we are able to preclude any “closeness” between the null spaces
represented by a small value of sin(0*) in (A.9).

Now, keeping the same notation as in property 3 and applying (2.13)we have
the following perturbation bound in the Euclidean norm:

[lz(er) = &(er)[] <

e (e + 100 4 e Al )

1 — o (M (e, ) L (1A 1Al Al (Al




Appendix B

Convergence as ¢ — 07

The goal of this section is to analyze what happens when we let ¢, — 0T,
assuming exact arithmetic and no errors in the data.

We now introduce some notation that will be used on what follows. Let
A be a m x n matrix, with rank(4) = r < n. Let Z be a basis for ker(4),
represented as a n X (m — r) matrix. Analogously, let N be a n x r matrix
such that its columns make a basis of Ker(4)* = Range(AT). Observe that
NTZ = 0 and AZ = 0. Then, any arbitrary 2 can be written uniquely as
z = Zzyg + Nzy. We shall also make use of the following notations: By = BZ,
By = BN, Ay = AN.

The following property gives useful results about the dependence of the
solution of a rank deficient linear least squares problem, showing that there exist
a limit value 2(0), and that only the null space component of 2(0) depends on

B.

Property 4 Consider the Linear Least Squares Problem from Tikhonov regu-
larization:

z(€) = argmin, ||Az — b||3 + ¢||Bz||3 (B.1)

where the matriz A is m X n, rank(A) = r < n. Let 7 be a basis for ker(A),
and assume that BZ has rank n — r. Then

lim o(e) = {N =7 (B}B.) " By By } (akAy) ™ 4%t

e—0+

To prove this property we shall use the optimality conditions for (B.1) which
are widely known as the normal equations, and work with the components in
ker(A) and its orthogonal subspace Range(AT). Beside this, we also use that
the matrix A%AN is invertible.
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Proof:
First observe that Bz has full column rank, so BgBZ is non singular, and the
same happens with the inverse of A%AN. Beside this, the minimizer of (B.1) is
the solution of

(AT A+ eBTB)z(e) = ATb (B.2)
Now decompose the vector z(¢) into null space and the range of AT:
2(6) = Zo () + Nol(e)
Therefore, from (B.2) we arrive to
eBTBZJ:Z(e) + (ATA + GBTB)Nl‘N(G) = ATy
Multiplying the last equation from the left by Z7 yields:
BYBgzrz(e)+ B, Byzy(e) =0 (B.3)

and multiplying from the left by N7 we get

eBYBzrz(e) + [ALAN + eBY Bylen(e) = ALb (B.4)
From (B.3) and (B.4) we easily conclude that
lime_o+an(e) = (AL AN)T1ALD

and
lim_o+ez(e) = —(BL Bz) "B} By (AL An) "t AR

which finishes the proof. O
The vector #(0) can be expressed by means of the GSVD of the matrix pair
(A, B) taking the limit in expression (2.17)

xt 0 T ~ ul'b o7
z(0) :X< 0 In_q> U b:Z - x; + Z (u; bya;

i=1 i=g+1

This corresponds to a particular choice of the matrices NV and Z described above.

If we are interested to enforce as much as possible the interpolation condi-
tions it is useful to reduce the effect of the regularization term, (i.e) compute
2(0). That is numerically easier if one knows a priori that an extrapolation on
the vanishing parameter can be done. In this case, Richardson extrapolation [4]
can be applied.

Corollary 3 Richardson extrapolation can be used to compute z(0)
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Proof:
It is enough to observe that the solution can be expanded as a power series for
sufficiently small values of € :

z(e) = 2(0) + are + axe® + ...

To conclude we use the following result (see [12] lemma 2.2.3, page 59):

if ||H|| < 1 for some operator norm, then
(I-H)y'=I+H+H*+H>+ ..,
Keeping this in mind, is sufficient to take
H=e(ALAN)"'BL(I — Bz(BLBz)"'BL)By
with e < eg = |[(ALAn) " BL(I — Bz (BLBz)='BL)By||~! in (B.4). O

The result of the extrapolation can be also expressed by means of the GSVD.
For example

xextrap(f) = l‘(E) + (l’(G) — l‘(2€)) =

Fex ra 0 extra u?b n
S AT L e v IV (RS S BN

where Feptrap = diag(ffmrap) and the filter factors from Richardson extrapola-
tion are given by

1 1435 1+35

ewtrap  \ _ Vi _ fTikh ai Tikh
= s e T s

which shows that the extrapolated solution has less regularization.

Let us now discuss the behaviour of the filter factors from the extrapolation.
For small values of W% << 1 we have that

f;xtrap(e) =1-0 ( (%)2 )
which basically implies that there is almost no regularization error in compo-
nents associated with large generalized singular values.
Conversely, for large values of W% >> 1 corresponding to relatively small ; we
have )
ffmrap (€) ~ %fiT”“h =0 ( L ) which implies a bit less regularization than
Tikhonov’s.

In Figure B.1 we plot the filter factors coming from Tikhonov regularization
and those from the described extrapolation as a function of <.

Another implication of property 4 is that the there exist a limit value for the

solution of the velocity problem (3.10) as we shrink the regularization parameter.



APPENDIX B. CONVERGENCE AS eg — 0t 85

Tikhonov filter factors and Extrapolation filter factors
1 T T T T T T T T T

o
=
T
1

Filter factors

Extrapolated fi

o
[
T

02k Tikhonov. 1‘i i

0.1 1 1 1 1 1 1 1 1 1
0 0.5 1 1.5 2 25 3 3.5 4 4.5 5

e/yi2

Figure B.1: Filter factors of Tikhonov regularization and its extrapolation. The
extrapolation offers larger filter factors, leading to less regularization.
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Corollary 4 The solution of (3.10) has a well defined limit as e — 0F.

Proof:
We use property 4. Observe that problem (3.10) can be written with the struc-
ture (3.11) once reformulated in real arithmetic. In this particular case, the term
ér fr(C) is equal to €, ||Bz||? from property 4. This means that the only hypoth-
esis to check is that Bz is full column rank (i.e.) rank(A) N rank(B) = {0}
Recall that associated to each x real vector there exists a unique C complex
valued vector containing the Fourier components. If Bx = 0 then f.(C) = 0
and then all Cy ¢ = 0, 5 # 0, & # 0 which is equivalent to say that the only

non zero Fourier components are those from the mean value: Uy o and Vj o.

Therefore, ||Az||2 = 0 implies

Nid ; (Uo,o)2 + (V070)2 =0
and
1 & ) ,
Fb (Uo,onx(Ph) + V070ny(Ph)) -0

i=1

yielding U070 = %70 = 0, what we wanted to prove. O

The next property is the analogous of the characterization of the MTSVD
solution defined in (2.30) and can be used to prove that with ez, Emar suf-
ficiently large the approximate solution obtained from the limit process will
interpolate the data.

Property 5 With the same hypothesis of property 4 let x(0) = lim._ o+ z(e).
Then

z(0) = argmin||Bz||2
s.t. (B.5)
min ||Az — b||2

Proof:
To prove the desired result, we pose the optimality conditions for (B.5) which
is equivalent to

min, 1/2||Bz||3
s.t.

AT Az = ATb

Its optimality conditions are

i =L
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Using the same notation as before, we write x = Zzz + Nz and multiply the
last equation from the left by the nonsingular matrix

VAN
0 NT
obtaining

(Bng)l‘Z + BgBNl‘N =0
AL Anvzn = ALD

which is the set of equations that uniquely determine #(0) as seen in property
4. 0O

If we do not take the limit of x(¢) (i.e), fix € > 0 and moreover b € Range(A)
then we have ||b — Az(€)||2 = O(e). The last assert can also be seen directly
from relation (2.18).



Appendix C

Reduction to the 2D case
for flat topology

The flow has 3 components (u, v, w) which depend on (x,y, z). Then, assuming
flat topology and either constant geostrophic wind or potential law extrapola-
tion in z direction, the 3D problem of estimating the flow is reduced to a 2D
subproblem on a certain layer at 10 meters height.

The only physical boundary conditions to satisfy are at z = 0 (null veloc-
ity) and z = H where we can choose between the geostrophic wind (when-
ever it is available) and a potential law extrapolation. If we assume flat topol-
ogy, and neglect the effect of the third component from the wind flow we get
olz,y,2) = (u(x,y,2), v(z,y,2), 0) and the incompressibility relation simpli-
fies to ue(x,y, 2) + vy(z,y, z) = 0. Moreover, if we use an extrapolation law in
the vertical direction of the form

u(z,y,2) = ulz,y, 20)(z/20)"
v(e,y,z) = v(x,y, 20)(2/20)" (C.1)

it is enough to ensure that u,(z, y, 20) + vy (2, y, 20) = 0 to get an incompressible
approximation. Thus, our velocity problem is reduced to 2 dimensions, and we
have to solve it in the layer where the measurements have been taken.

On the other hand, if we use the geostrophic wind as a boundary condition
at z = H = z¢ then our approximation will be

log(z) — log(z0)

log(2c) — log(z0)’
log(z) — log(zo)
log(zg) — log(zo)

U(l‘, Y, Z) = U(l‘, Y, ZO) + (UG($7 y) - U(l‘, Y, ZO)) Vz S [207 ZG]

v(z,y,z) = v(x,y, 20) + (va(z,y) — v(z,y, 20)) Vz € [20, 26¢]C.2)
and the potential law (C.1) for z € [0, z]. If the geostrophic is assumed to be 2D
divergence free (a constant geostrophic is a particular case of this hypothesis)
then wuq (2, y, 20) + vy (2, y, z0) = 0 is enough to ensure the incompressibility of

the 3 dimensional flow.
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Appendix D

Other results in the
Uruguayan case

D.0.2 Flow results

In this section we present the results for the mean value and the first two
principal components of the wind field in the Southern part of Uruguay. At the
same time, we reproduce (with permission) the results from [35].

Figure D.1: Results from the proposed method, mean value component
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Figure D.2: Results from [35], mean value component
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Figure D.3: Results from the proposed method, first principal component
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Figure D.4: Results from [35], first principal component
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Figure D.5: Smoothed results from the proposed method, second principal com-
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Figure D.6: Results from [35], second principal component
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