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RESUMEN

Los nodos cŕıticos juegan un rol fundamental en la conectividad de las redes.

Su identificación es importante para el diseño de estrategias eficientes para

prevenir que tanto un software malicioso como una epidemia se propaguen por

la red. En este contexto, el Stochastic Weighted Graph Fragmentation Problem

(SWGFP) es un problema de optimización combinatoria perteneciente a la

clase de problemas NP−Completos. El objetivo consiste en miniminizar

el impacto de un ataque aleatorio en un nodo de la red, seleccionando

adecuadamente nodos a inmunizar con un presupuesto acotado. En el SWGFP

se asume que el ataque sigue una ley de probabilidad conocida en los

nodos, y que afecta a toda la componente conexa del nodo seleccionado. En

esta tesis se desarrolla una solución GRASP enriquecida con Path-Relinking

para abordar el SWGFP. Se estudia el rendimiento de la propuesta ante

tres escenarios de ataque, en comparación con una variante de GRASP

anteriormente desarrollada de la literatura y una heuŕıstica aleatoria o

Random para el problema en la cual los nodos son elegidos al azar. Los

experimentos computacionales muestran que el algoritmo basado en Conjuntos

Independientes que se desarrolla en esta tesis, presenta un mejor desempeño

que los dos restantes, con valores inferiores del número esperado de pérdidas

y mayor robustez.

Palabras claves:

Optimización combinatoria, Nodos cŕıticos, GRASP, Path Relinking,

Complejidad computacional.
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ABSTRACT

Critical nodes play a major role in network connectivity. Identifying them

is important to design efficient strategies to prevent malware or epidemics

spread through a network. In this context, the Stochastic Weighted Graph

Fragmentation Problem (SWGFP) is a combinatorial optimization problem

that belongs to the NP −Complete class. Its objective consists in minimizing

the impact of a random attack on a singleton, choosing appropiately a set of

nodes to immunize given a restricted budget. In the SWGFP, it is assumed

that the attack follows a known probability law and that it affects the

whole connected component of the attacked node. In this thesis, a GRASP

enriched with Path Relinking algorithm is developed to solve the SWGFP.

Its performance is studied under three attack scenarios and compared with a

GRASP variant that was previously developed in literature and with a Random

heuristic for the problem that picks a set of nodes uniformly at random.

Computational experiments show that the algorithm based on Independent

Sets which is developed in this thesis, outperforms the other two, with lower

expected loss scores and higher robustness.

Keywords:

Combinatorial optimization, Critical nodes, GRASP, Path Relinking,

Computational complexity.
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Chapter 1

Introduction

1.1. Motivation and Context

Over the last decades, the comprehension of networks’ structure and

functioning has awaken great interest from researchers. Networks are present

everywhere and form part of our daily lives: communication networks like the

Internet or cellular systems have been developing at a fast pace and have a huge

impact on our society. Social networks have gained a lot of importance during

the past decade; improvements in transportation networks have allowed to

reach distant places more efficiently. Life itself depends on proper functioning

of biological, such as a neural networks, and ecological networks, such as food

webs. Diverse phenomena can be modeled using networks, where the items

are called nodes or vertices and the connections between them are the edges.

Nowadays, it is well-known that some nodes play a more important role than

others in some processes that occurr throughout the network, such as spreading

or cascading. The identification of these nodes is necessary for the design of

strategies that ensure the proper functioning of the network over time and

protect against disruptive events.

In this context, the Graph Fragmentation Problem (GFP) is a combinatorial

optimization problem that arised as a contribution from the doctoral

dissertation of Dr. Juan Piccini, supervised by Dr. Franco Robledo and Dr.

Pablo Romero (Piccini (2016)). The GFP seeks -by removing a set of B nodes-

to minimize the expected loss in a newtork after a singleton has been infected.

This problem is formally defined in the following manner:
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Given a population represented by a graph G = (V,E) and a budget contraint

B such that 0 ≤ B ≤ |V |. A set of B nodes is chosen to protected and cannot

be affected by the infection. The nature picks a node uniformly at random from

the resulting subgraph G′ and the disaster kills all the members from the same

connected component. The subgraph G′ has V ′ = n nodes and k connected

components with orders n1, n2, . . . , nk. The probability to choose component i

is ni/n. Therefore, the number of expected deaths is E(G′) =
∑k

i=1 nipi, with

pi = ni

n
. The goal of the GFP is to choose the node-immunization set U in

order to minimize the expected number of deaths:

min
U⊆V

k∑
i=1

pini

s.t.|U | = B

In that dissertation, the NP-Hardness for the GFP is also established and

a first GRASP is developed for the problem.

In Natalia Castro’s thesis, with external collaboration from Manuel Aprile, it

is proved the non-existence of an approximation algorithm with factor lower

than 5/3, unless P = NP . Optimal solutions for the GFP are presented for

acyclic graphs (Castro (2018); Aprile et al. (2017, 2018)).

Additionally, as a result of the doctoral dissertation of Dr. Graciela Ferreira, it

was developed a Mixed Integer Linear Programming (MILP) for the GFP and

efficient bounds for the optimal value of any instance of the problem (Ferreira

(2018)).

In Piccini et al. (2018) a GRASP for the GFP is introduced while in Aprile

et al. (2018) an analysis and a synthesis of the main up-to-date contributions

of the GFP are presented.

In this thesis, we will focus on the Stochastic Weighted Graph Fragmentation

Problem (SWGFP), a combinatorial optimization problem whose main goal is

to find a set of weighted nodes to immunize in order to stop an epidemic spread,

once a node is infected. It is a generalization of the Graph Fragmentation

Problem. Although this combinatorial optimization problem was originally

thought to be applied in an epidemiological context, it can also be used to

model other catastrophic events.

2



The main contributions of this thesis can be summarized in the following

items:

A generalization of the GFP, called Stochastic Weighted Graph

Fragmentation Problem, is here introduced.

An adaptation of the GRASP introduced by Piccini et al. (2018) is here

offered.

A novel GRASP heuristic, called GRASP-MIS, is here developed. It

exploits properties of maximal independent sets, and it is enriched with

Path-Relinking as a post-optimization stage.

A faithful comparison shows that the novel GRASP-MIS heuristic

outperforms the previous proposals.

A curious interplay is here discovered: the GFP is equivalent to

the Critical Node Problem or CNP, which was originally conceived

for its connectivity importance (Arulselvan et al. (2007)). Therefore,

the problem was independently studied by different researchers, under

different motivations and scenarios.

It is worth to remark that the CNP has an extensive record in the scientific

literature. As a corollary, this thesis promotes the interplay between different

research teams, that where incidentally working in the same problem.

1.2. Manuscript organization

This thesis is organized in the following manner: Chapter 1 reviews some

basic concepts on Graph Theory and Computational Complexity theories

which provide the foundations for the development of our work.

Chapter 2 deals with the Critical Node Problem, which is connectivity-driven

but completely equivalent to the GFP as a combinatorial problem.

Chapter 3 outlines the main features of the SIR epidemic model and the

Node Immunization Problem (NIP). It is worth to remark that the NIP is

the cornerstone of the problem under study since it represents a generalization

of the Graph Fragmentation Problem. The Graph Fragmentation Problem is

thoroughly explained in this chapter and the equivalence between the GFP

and the CNP is formally proved. Finally, a generalization of the GFP is here

3



introduced: the Stochastic Weighted Graph Fragmentation Problem.

Chapter 4 reviews the heuristics that have been developed in literature

for the Graph Fragmentation Problem and the Stochastic Weighted Graph

Fragmentation Problem.

The main contributions of this thesis are presented in Chapters 5 and 6.

Specifically, Chapter 5 presents an adaptation of the GRASP originally

conceived for the GFP and introduces a new hybrid GRASP with Path

Relinking (GRASP-MIS) to solve the SWGFP. Chapter 6 presents a faithful

comparison with state-of-the-art heuristics. Finally, Chapter 7 presents

concluding remarks and trends for future work.

1.3. Graph Theory

Graph theory is considered as a branch of mathematics. Euler is often called

the “father of the graph theory” since the 18th century, when he proposed the

“Konigsberg Bridge Problem”. Given two islands linked between themselves

and linked to the banks of a river by seven bridges, the problem consisted in

walking across each bridge only once and returning to the starting point. Euler

represented each land area with a point and each bridge with a line joining the

corresponding points, generating a graph (Harary (1969)). After Euler, several

renowned scientific characters started working with graphs. This is how graph

theory started gaining more and more importance.

A graph G consists of two elements:

Vertices, also called nodes or points, denoted by V (G)

Edges: the lines connecting two vertices, denoted by E(G)

This graph is usually referred as G = (V,E). Vertices x and y are said to be

adjacent or neighbors if there is an edge e = {x, y}. Also, the edge e is said to

be incident on x and y. The degree of a vertex v, usually denoted as deg(v) or

d(v), is the number of edges that are incident on v. A directed graph consists

of a set V of vertices and a set A of ordered pairs of distinct vertices called

directed edges or arcs. On the other hand, an undirected graph G = (V,E)

consists of a set of nodes V and unordered pairs of elements E called edges.

A walk is an alternated sequence of vertices and edges v1, e1, v2, . . . , en−1, vn

where each edge ej connects the vertices vj and vj+1. It is closed if v1 = vn and

4



is open otherwise. It is a trail if all the edges are distinct, and a path if all the

vertices (and therefore all the lines) are distinct. The set of vertices that can

be reached from a vertex v by any path in the graph determines a connected

component. A non-empty graph G is connected if any two of its vertices are

linked by a path in G.

Given a graph G = (V,E), a graph G′ = (V ′, E ′) is called a subgraph of G

if the vertices and edges of G′ are contained in G: V ′ ⊆ V and E ′ ⊆ E. If

G′ ⊆ G and G′ contains all the edges xy ∈ E with x, y ∈ V ′, G′ is an induced

subgraph of G.

Finally, we will present two definitions that are crucial for developing our work.

Definition 1. Given an undirected graph G = (V,E), a vertex cover of G

is a subset V ′ of V such that if edge {x, y} is an edge of G then either x or y

(or both) belongs to V ′. That is, if e is an edge of G then at least one of its

endpoints lies in V ′.

Definition 2. A set of vertices S is an independent set if there are no edges

{x, y} such that both x and y are in S. That is, there are no two adjacent

vertices in the independent set. S is a Maximal Independent Set(MIS)

if it is an independent set that is not a proper subset of any other independent

set. No vertex can be added to S without violating independence.

1.4. Complexity Theory

Complexity theory is a field of Computer Science that aims to study

the computational resources which are necessary to solve a computational

problem. A problem is defined as the question to be answered that possess

parameters that are left unspecified. An instance of the problem consists of

a set of particular values specified for the parameters. An algorithm consists

of a sequence of instructions intended to solve these problems: when it is

applied to any instance of the problem, the algorithm produces a solution

for that instance. Finding the fastest algorithm to solve a problem is of

great concern among researchers. The time required by an algorithm will

determine whether it is useful for solving problems. The time requirements

are expressed in terms of the input size of an instance. The input in

combinatorial optimization problems is a combinatorial object that must be

encoded representing it as a sequence of symbols. The length of this sequence is
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the size of the input (Papadimitriou and Steiglitz (1998)). The time complexity

function for an algorithm is determined by finding the largest amount of

time needed to solve a problem instance of a certain size, for all possible

input lengths (Garey (1979)). Computer scientists defined two categories in

order to classify algorithms according to their execution time: polynomial

time and exponential time algorithms (Papadimitriou and Steiglitz (1998)).

A polynomial-time algorithm has a complexity function O(p(n)), where p(n)

is a polynomial function and n represents the input length. Algorithms for

which time complexity function cannot be bounded by a polynomial are said

to be exponential time algorithms. A problem is considered intractable if no

polynomial algorithm can solve it. Intractability was first mentioned by Alan

Turing, when he proved that certain problems are “undecidable”. It was not

until early 1970’s that it was shown that there exists intractable but decidable

problems (Garey (1979)).

1.4.1. Complexity Classes

We will now focus on decision problems: problems that accept a YES/NO

answer for every instance. A complexity class is a set of problems that can be

solved using a certain amount of some computational resource. The complexity

class P contains all decision problems that can be solved by a deterministic

algorithm within polynomial time. It is said that they are “efficiently solvable”

in polynomial time. The complexity class NP refers to decision problems

whose solution can be verified in polynomial time. If a problem can be solved

in polynomial time, it is clear that can also be verified in polynomial time,

so P ⊆ NP . The question about whether P = NP has attracted much

attention from computer scientists. This would imply that any problem that

can be verified in polynomial time could also be solved in polynomial time.

A reduction is a conversion from one problem to another so that a solution

to the second problem can be used to solve the first problem (Karp (1972)). A

reduction from problem A to problem B is a polynomial-time algorithm f that

transforms any instance I of A into an instance of B, f(I). Any solution S of

f(I) is transformed back into a solution of I, by a polynomial-time algorithm.

If there is no solution for f(I), then there is no solution for I (Dasgupta et al.

(2008)).

The class of NP-complete problems consists in those problems P that can
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be verified in polynomial time and that any other problem Q can be reduced

to one of this in polynomial time. The NP-complete class has two important

properties (Papadimitriou and Steiglitz (1998)):

(i) No NP-complete problem can be solved by any known polynomial

algorithm

(ii) If there is a polynomial algorithm for any NP-complete problem, then

there are polynomial algorithms for all NP-complete problems

Finally, the NP-Hard class comprises all problems that are “at least as hard”

as every problem in NP . Formally, a problem A is NP-hard, if all problems in

NP can be reduced to A in polynomial time. These kind of problems are not

necessarily in NP , nor are decision problems. It also includes search problems

and optimization problems (Sipser (1996)).
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Chapter 2

Background

The scientific literature offers a vast number of works in the field of

node criticality and network vulnerability analysis under random and targeted

attacks. The goal of this chapter is to have a better understanding of node

criticality and its potential applications.

This chapter is organized in the following manner. Section 2.1 presents the

concept of critical nodes and its importance in different branches of knowledge.

Specific centrality measures are covered in Section 2.2. The Critical Node

Detection Problem (CNDP) is formally defined in Section 2.3. They key is

to find a set of nodes whose removal degrades network connectivity. We also

provide comments on a variation, called Critical Node Problem (CNP), and

its main properties.

2.1. Node Criticality

Critical nodes are nodes whose removal results in a degradation of network

functionality due to the disruption of network connectivity. The drop of

the performance of the network when a node or set of nodes is removed

will determine their importance (Latora and Marchiori (2004); Zhao et al.

(2005); Restrepo et al. (2006); Arulselvan et al. (2009)). Since critical nodes

play a key role in preserving network connectivity and robustness, identifying

them is crucial either if the main goal is to delete them to stop the spread

of undesirable events or to protect them in order to promote the difussion of

desirable ones. The issue of identifying the most critical nodes in a network has

long been addressed, in particular, for nodes that are important for network

connectivity (Chen et al. (2012); Wei et al. (2013); Lalou et al. (2018)).

8



2.1.1. Importance of Critical Nodes

Identification of critical nodes is a fundamental problem that has several

applications in different areas (Barabási and Bonabeau (2003); Crucitti et al.

(2004); Chen et al. (2013); Malliaros et al. (2016)).

In social network analysis, it might help to understand many properties

of social interactions represented by networks and the role of certain actors

in that graph (Kempe et al. (2005); Borgatti (2005, 2006)). The study of

these properties could also help to assess the robustness and connectivity

of communication networks and therefore better deal with communication

breakdowns in human and telecommunication networks (Arulselvan et al.

(2009); Dinh et al. (2010); Addis et al. (2016)).

Finding the critical nodes in a network might contribute to protect a

communication or transportation network against disruptive events such as

terrorist attacks. A terrorist network can also be modelled as a graph

whose critical nodes represent the terrorists that should be identified in

order to produce a breakdown in communication between individuals in the

network (Arulselvan et al. (2009)).

Another area where finding key nodes has important applications is

in the field of transportation engineering and planification of emergency

evacuations, where it must be ensured an effective transportation of people

and goods (Crucitti et al. (2004); Guimera et al. (2005); Arulselvan et al.

(2007)).

In Boginski and Commander (2009) the problem is presented in the context

of computational biology, in particular protein-protein interaction. Identifying

the proteins whose removal might help to stop proliferation of harmful

organisms such as virus or bacteria, can be useful in drug design. Moreover,

finding essential nodes in this kind of biological network can contribute to

locate optimum drug targets and avoiding other targets which could be

lethal (Billur Engin et al. (2014)). Also, in the biological field, network theory

has been applied to the study of brain networks in order to find influential

nodes that allows to better understand brain structure, properties and

functionality (Joyce et al. (2010); Power et al. (2013)). Additionally, another

application arises in the healthcare domain, more precisely, in the design of

immunization strategies for preventing a pandemic disease spread (Ventresca

and Aleman (2013); Gupta et al. (2015); Malliaros et al. (2016)). The critical

9



nodes can be seen as individuals who are “most likely to be influential spreaders

and maximally permit information spread through the network” (Ventresca

and Aleman (2015)). Accurately identifying these individuals, in order to

vaccinate them, is crucial to reduce the spread and impact of a disease

throughout a network, since immunized individuals cannot propagate the

disease (Arulselvan et al. (2009)). In this thesis, we are focused on the concept

of critical nodes applied to the design of efficient immunization strategies to

control an epidemic outbreak.

2.2. Centrality-based Approaches

Several centrality measures have been proposed to analyze the influence of

nodes on a network (Freeman (1978); Newman (2005); Borgatti and Everett

(2006)). Although centrality measures were first applied in the context of

human communication (Bavelas (1948, 1950)), they soon began to be applied

in other fields (Freeman (1978); Borgatti (2005); Estrada and Bodin (2008);

Borgatti and Everett (2006); Iyer et al. (2013)). Among these fields, we can

find epidemiology (Chen et al. (2012); Piraveenan et al. (2013); Shams and

Khansari (2014)), where the design of targeted vaccination strategies based

on centrality measures has attracted much attention from researchers. Even

though there exist many centrality measures, the four best-known are:

(i) Degree Centrality

(ii) Betweenness Centrality

(iii) Closeness Centrality

(iv) Eigenvector Centrality

Degree centrality counts the number of edges incident on a specific node. It is

thought that nodes with higher degree centrality, have higher influence on the

network (Piraveenan et al. (2013)).

Betweenness centrality is defined as the fraction of shortest paths between node

pairs that pass through the node under study. Formally, it is defined:

B(v) =
∑

s 6=v 6=t∈V

σst(v)

σst
,

10



where σst is the number of shortest paths between nodes s and t and σst(v)

is the number of shortest paths between nodes s and t that pass through node

v. This measure represents the “influence of a node over the information spread

through the network” (Chen et al. (2012)).

Closeness centrality is the average geodesic distance from a node to the rest

of the nodes in the graph. Formally, it is defined:

C(v) =
1∑

i 6=v dG(v, i)
,

where dG(v, i) is the shortest path distance between nodes v and i in the graph

G. The node closest to the rest of the nodes will have the highest measure of

closeness centrality (Piraveenan et al. (2013)). Closeness represents how long

information will be spread from a given node to other reachable nodes in the

network (Chen et al. (2012)).

Eigenvector centrality is given by:

xi =
1

λ

n∑
j=1

Aijxj,

where xi denotes the centrality of vertex i. This equation can be rewritten in

its matricial form:

λx = Ax,

where x is the vector of centralities x = (x1, x2, . . . ) and A is the adjacency

matrix of graph G whose largest eigenvalue is λ. This measure assumes that

connections to people who are influential will confer a person more influence

than connections to less influential people (Newman (2016)).

Centrality measures are useful to describe nodes’ importance. However,

they fail to accurately assess nodes impact on network connectivity and

fragmentation (Arulselvan et al. (2009)). A node’s influence depends not

only on its individual topological characteristics but also on the structure

of the whole network. Therefore, its influence should not be assessed

isolatedly without analyzing the rest of the network. There is evidence that

methods based on centrality measures perform poorly when compared to other

stratagies to evaluate overall network vulnerability (Grubesic et al. (2008);

Dinh et al. (2012)).
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2.3. Critical Node Detection Problem

The Critical Node Detection Problem (CNDP) addresses the issue of

finding critical nodes in order to disconnect a network. The CNDP aims to

“identify a set of nodes within a graph whose deletion minimizes or maximizes

a predefined connectivity metric on the remaining graph”. Although the

main goal is to disrupt graph connectivity through node deletion, the solution

will depend on the chosen connectivity metric. Some connectivity metrics

to be satisfied are: maximization of number of components, minimization

of component size, maximization of the number of smallest components,

minimization of the number of largest components, minimization of pair-wise

connectivity. Different variants of the CNDP are described in Lalou et al.

(2018). Such variants differ in the considered connectivity metric. The main

variants which are reviewed by the authors are:

MaxNum: maximizes the number of connected components

CC-CNP: limits the maximal component size to a given bound

MinMaxC: minimizes the largest component size

β-vertex-disruptors-problem: bounds pairwise connectivity to a given

threshold by deleting the minimal set of nodes

CNP: minimizes pairwise connectivity by deleting k nodes

All the variants have received significant research attention and several

works were done to analyze their computational complexity. Some of

the algorithms that have been proposed for each one of the variants

of the CNDP were: Greedy heuristic (Arulselvan et al. (2009, 2011)),

Genetic Algorithm (Aringhieri et al. (2016a); Soria et al. (2017)), Variable

Neighborhood Search (Aringhieri et al. (2016b)), GRASP with Path

Relinking (Purevsuren et al. (2016)), Dynamic Programming (Shen and Smith

(2012); Di Summa et al. (2011)), Iterated Local Search (Aringhieri et al.

(2016b); Zhou and Hao (2017)), Simulateed Annealing (Soria et al. (2017)).

The CNP (also known as Critical Node Problem) is the CNDP variant that

has attracted more attention concerning the development of new algorithms.

However, as stated by Lalou et al. (2018) few studies have been made on

critical nodes in weighted graphs, with nodes having different weights.
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2.3.1. Critical Node Problem

The Critical Node Problem (CNP) was introduced by Arulselvan et al.

(2007). Given a graph and an integer k, the objective is to find a set of k

nodes whose deletion results in the maximum network fragmentation. The

formal definition of CNP is:

Definition 3. INPUT: Undirected graph G = (V,E) and an integer k.

OUTPUT: A = argmin {
∑

i,j∈V \A uij(G(V \ A)) : |A| ≤ k}, where

uij =

1, if i and j are in the same component of G(V \ A)

0, otherwise

According to the authors, the CNP objective function can be rewritten as:

f(A) =
∑
h∈M

σh(σh − 1)

2
,

where M is the set of all maximal connected components and σh is the size of

the hth component. The objective of the CNP is to find the subset of nodes A ⊆
V , such that |A| ≤ k , whose deletion minimizes the pairwise connectivity of the

nodes in the induced subgraph G(V \ A). Minimizing pair-wise connectivity

simultaneously maximizes the number of connected components and minimizes

cardinality variance among components in G(V \A)(Arulselvan et al. (2009)).

An explanation for the choice of the objective function for the CNP is given

by Arulselvan et al. (2007): “for a fixed number of components the variance in

the sizes of the components is the sum of the squares of deviation of sizes of

the components from the mean size of a component, which is constant. Thus

minimizing the variance of the size of the components reduces to minimizing

the sum of squares of the sizes of the components, which is the objective

function. Also, when the sizes of the components are equal the objective

function is the minimum when the number of components is the maximum”.

In the same work, the authors prove that CNP is NP-complete, showing a

reduction from the Independent Set Problem (ISP). The ISP is known to be

NP-complete (Garey (1979)).
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Chapter 3

Stochastic Weighted Graph

Fragmentation Problem

In this chapter, we begin with the definition of one of the milestones

in mathematical modeling: the SIR epidemic modeling (Section 3.1). In

Sections 3.2 and 3.3 we describe the Node Immunization Problem and the

Graph Fragmentation Problem respectively. The equivalence between CNP

and GFP is proved. The NIP and GFP are combinatorial optimization

problems that provide the theoretical foundations for the Stochastic Weighted

Graph Fragmentation Problem addressed in this tesis and described in

Section 3.4. In Subsections 3.3.1 and 3.3.2 we present further details about

the formulation and the computational complexity of the Graph Fragmentation

Problem.

3.1. SIR Epidemic Model

The SIR model is one of the simplest models of contagion of directly-

transmitted diseases. It was initially proposed by Kermark and Mckendrick

(1927). Given a fixed population, it is partitioned into three classes:

Susceptible (S), Infected (I) and Recovered (or Removed) (R). According to

this model, the Susceptible class includes individuals that have never been

infected and therefore can acquire the disease. The Infected class includes those

individuals that have acquired the disease and can transmit it to susceptible

individuals. The Recovered class referrs to individuals that have already been

infected but became immune for life.
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The transitions between each class are governed by a system of three differential

equations:

dS(t)

dt
= −βS(t)I(t)

dI(t)

dt
= βS(t)I(t)− γI(t)

dR(t)

dt
= γI(t),

where S(t),I(t) and R(t) represent the number of susceptible, infected and

recovered individuals at time t; β > 0 is the disease transmission rate and

γ > 0 is the recovery rate.

The SIR model makes the following assumptions:

Population is large enough to consider the size of each class as a continous

variable

Population size (S+I+R = N) is constant and the population is closed:

there is no migration

There are no natural births or deaths

The outbreak is short-lived

There is no latency period: an individual that leaves the Susceptible

class enters inmediately into the Infected class

Recovery implies lifetime immunity

Homogenous mixing: individuals interact with equal probability with

everyone else

The SIR model (as well as other epidemic models) were developed with

the objective of a better understanding of disease dynamics that could result

in efficient disease management measures. However, similarities have been

found between the behaviour of biological epidemics and the behaviour of

computer malware (Kephart et al. (1993); Lloyd and May (2001); Data and

Wang (2005)). For this reason (as reviewed in del Rey (2015)), much effort

was put into the study of malware propagation using epidemic models.
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3.2. Node Immunization Problem

The Node Immunization Problem (NIP) described in Piccini et al. (2018)

is a combinatorial optimization problem where the goal is to minimize the

impact of an outbreak by means of node-immunization. We describe the NIP

in the following paragraph.

The population is represented by a simple graph G = (V,E) where nodes

represent individuals and links the relations between them. Time is slotted in

the natural domain T = N, and at t = 0 we have:

Set V ∗ ⊂ V is removed. An epidemic process takes place in the subgraph

G′ induced by V ′ = V − V ∗.

A singleton x0 ∈ V ′ is chosen uniformly at random.

The remaining nodes in V ′ − {x0} are susceptible.

Each infected node v ∈ V disseminates the disease to every susceptible

neighbor w at time t, with a probability ruled by a profile p(t, µ, v, w). The

profile p depends on the carrier v, the susceptible node w, the time t and a

level of virulence µ as well. It is assumed that the probability profile tends to

the unit when µ tends to infinity, this is:

lim
µ→∞

p(t, µ, v, w) = 1. (3.1)

Once a susceptible node v becomes infected, it remains infected for a random

time governed by a random variable Xv with finite mean and variance. Then,

it becomes susceptible again. Let {It}t∈N be the stochastic process that counts

the number of infected individuals. The node-immunization problem is the

following combinatorial optimization problem:

Definition 4. Given a simple graph G = (V,E), probability profile p and

random vector (Xv)v∈V , the goal of the General Node Immunization Problem

(GNIP) is to choose a node-immunization set V ∗ that minimizes the peak for

the process {It}t∈N, subject to a budget constraint B:

min
V ∗

max
t∈N

E(It)

s.t. |V ∗| ≤ B.
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In this thesis, we will focus on the Node Immunization Problem under

highly virulent scenarios: µ is infinitely large and the probability profile p = 1

so all contacts surely disseminate the disease.

3.3. Graph Fragmentation Problem

The Graph Fragmentation Problem (GFP) was first introduced in Piccini

et al. (2015). The GFP can be defined as an extremal case of the NIP when the

virulence rate tends to infinity(µ is infinitely large and the probability profile

is p = 1). The GFP focuses in finding nodes to be targeted for vaccination

in order to minimize the contagion propagation through the network. An

accurate identification of these nodes will lead to an optimal fragmentation

of the graph while minimizing the expected loss. Although the GFP was

originally thought in an epidemiological context it can be noted that it models

other catastrophic events, such as fire-fighting and electric shocks. In GFP,

we are given a graph G = (V,E) and a budget B. We pick B nodes for

immunization. A non-immunized singleton v ∈ V is randomly affected by

nature and general probabilistic rules or profiles determine the propagation

in a discrete-time fashion. Finally, a stochastic process counts the number

of affected individuals. But in highly virulent scenarios, as considered, the

connected component that includes v is completely affected, and the notion of

fragmentation is essential.

3.3.1. Mathematical Formulation

We are given a population represented by a graph G = (V,E) , and a

budget constraint B, where B is a natural number such that 0 ≤ B ≤ |V |. We

can choose B nodes and immunize them: we delete the nodes from G obtaining

a subgraph G′, so that the chosen nodes cannot be affected by the disaster.

Nature picks a node v uniformly at random from G′. The disaster kills all the

nodes of the connected component to which v belongs.

The goal is to minimize the expected number of deaths. Mathematically,

if the subgraph G′ has |V ′| = n nodes and k connected components with

orders n1, . . . , nk, the probability to choose component i is ni/n. Therefore, the

expected number of deaths is E(G′) =
∑k

i=1 nipi, with pi = ni/n. The goal of
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the Graph Fragmentation Problem (GFP) is to choose the node-immunization

set in order to minimize the expected number of deaths:

min
U⊆V

k∑
i=1

n2
i

n

s.t.|U | = B.

Curiously enough, the GFP and the CNP are completely equivalent

as combinatorial problems, since the globally optimum solutions of both

problems are identical for the same instances. However, both problems

were independently presented by different researchers, with apparently

distinguishable scenarios, either focused on connectivity or epidemic modeling.

As stated before, the CNP and the GFP are equivalent combinatorial

optimization problems. Two combinatorial optimization problems (COP) f

and g are equivalent if there exist a, b ∈ R such that g(S) = af(S) + b and

min
S
f(S) = min

S
g(S)

A formal proof of the equivalence between CNP and GFP is presented below.

Theorem 1. The Critical Node Problem and the Graph Fragmentation

Problem are equivalent combinatorial optimization problems.

Proof. Given an aribtrary graph G and budget constraint B. We must prove

that the globally optimum solution for both the CNP and the GFP is identical.

In particular, it is sufficient to prove that there exists an affine mapping

between objective values. Consider the following formulations of the respective

problems under study:

Consider the formulation of CNP:

min
V ∗⊆V

∑
k

nk(nk − 1)

2
= g(V ∗)

s.t |V ∗| = B
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Consider the formulation of GFP:

min
V ∗⊆V

=
∑
k

n2
k∑
nk

= f(V ∗)

s.t |V ∗| = B

Then, 2g(V ∗) + (
∑
nk) = f(V ∗)(

∑
nk)∑

nk = n−B

If we define a = (
∑

k nk)/2, we get that g(V ∗) = af(V ∗) − a, and the result

follows.

3.3.2. Computational Complexity

The computational complexity of the Graph Fragmentation Problem is

here established. In Piccini et al. (2016), it is proved that a large set of Node

Immunization Problems are at least as hard as the GFP. In Aprile et al. (2018),

the hardness of the GFP is proved in a more simple way.

The following problem will be used to characterize the computational

complexity of the GFP:

Definition 5 (Minimum Cardinality Vertex Cover).

Instance: simple graph G = (V,E) and positive integer k.

Does there exist a node-set U such that |U | ≤ k and every link is incident to

some node from U?

The Minimum Cardinality Vertex Cover belongs to Karp list of 21 NP-

Complete decision problems (Karp (1972)). If a vertex cover U is found, there

is only one dead in G′ = G−U for the GFP. This is clearly a globally optimum

solution. The optimality for the GFP is strictly related to the determination

of a vertex cover.

Theorem 2. The GFP belongs to the class of NP-Hard problems.

Proof. The graph G′ = G − U has isolated nodes if and only if U is a vertex

cover, where |U | ≤ B. Thus, the GFP is at least as hard as Minimum

Cardinality Vertex Cover.

In Aprile et al. (2018), it is proved that there is no approximation algorithm

for GFP with factor α < 5/3, unless NP = P .
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3.4. Stochastic Weighted Graph

Fragmentation Problem

The Stochastic Weighted Graph Fragmentation Problem (SWGFP) is a

generalization of the GFP. While the GFP considers an unweighted graph, or

a graph with nodes having the same weight, the SWGFP introduces weights to

every node. The weight w can either be a measure of importance of that node,

a measure of its influence on the network, the cost of losing it or any value

that is considered appropiate depending on the problem that is being modeled.

The SWGFP also assumes that the attack occurs with a certain probability

that depends on whether the target infected node is chosen at random or not

by the attacker.

3.4.1. Formulation

Given a graph G = (V,E) and a positive integer B called budget. Let

Gi = (Vi, Ei), i = 1, ..., k be the connected components where
∑k

i=1 |Vi| =

|V | = n. Let vij ∈ Vi be the jth node in Vi. Let wij be the weight of that node

and Wi =
∑ni

j=1wij the total weight of the connected component Vi, where

ni = |Vi|. Let pi be the probability that the infected component is Vi. the

score function to minimize is:

L(G) =
k∑
i=1

piWi

s.t. |U | = B,

where U ⊆ V is the subset of nodes that minimizes the function.

3.4.2. Probability of Infection

Three types of attack should be considered:

(i) Random Attack

(ii) Weighted Attack

(iii) Best Attack
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In the Random Attack, a node v is uniformly chosen at random. It assumes

that an attacker does not have any information about the targeted network.

Under this attack, the expected loss is:

L(G)R =
k∑
i=1

Wipi =
k∑
i=1

Wi
ni
n
,

where pi = ni

n
.

In the Weighted Attack, the model assumes that the attack is deliberate

and the attacker has partial information about the network. Under these

circumstances, it is reasonable to think that the highest weighted components

are more at risk of being attacked. Recalling that the weight is a measure of

importance, if the attack is not deliberate, the highest weighted components

are those that matter most to protect. Thus, if the attack depends on the

components weight, the expected losses after this attack are:

L(G)W =
k∑
i=1

Wipi =
k∑
i=1

W 2
i

W
,

where a node v ∈ Vi is attacked with probability p = Wi

W
, being W =

∑k
i=1Wi

the total weight of the graph.

In the Best Attack, the model assumes that a node is chosen from the

component with maximum weight. The attacker is supposed to have full

information about the network. The expected loss equals the weight of the

maximum weighted component:

L(G)B = Wmax
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Chapter 4

Heuristics

In this Chapter, we review the heuristics designed for the Graph

Fragmentation Problem and summarize the results of the comparison of these

heuristics (Section 4.1). In Section 4.2, Greedy algorithm for SWGFP is

explained.

4.1. Heuristics for GFP

In Piccini et al. (2018), three algorithms are presented: Balance, Greedy

and GRASP. For completeness, we include a succint description of them. The

reader can consult details in the corresponding paper.

4.1.1. Greedy for GFP

The best step is chosen whenever possible. Greedy tries to build the

global optimum by means of the best local steps. It iteratively picks the

best single node for protection, until the bound |V ∗| = B is met. Function

ChooseBestNode finds v such that v = argmin
w∈V

{Sc(G− w)}. A linear search

among all nodes w ∈ V is developed in order to find the best node protection

in Greedy.

Algorithm 1 Gout = Greedy(G,B)

1: for i = 1 : B do
2: v ← ChooseBestNode(G)
3: G← G− v
4: end for
5: Gout ← G
6: return Gout
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4.1.2. Balance for GFP

An alternative algorithm called Balance always improves the score in each

step as well. Balance iteratively picks nodes at random from the largest

connected component. Since no score evaluation is required, its computational

effort is dominated by Greedy.

Algorithm 2 Gout = Balance(G,B)

1: for i = 1 : B do
2: Vmax ← LargestComponent(Gout)
3: v ← ChooseRandom(Vmax)
4: G← G− {v}
5: end for
6: Gout ← G
7: return Gout

4.1.3. GRASP for GFP

The main algorithm presented in Piccini et al. (2018) is inspired by GRASP

methodology. GRASP (Greedy Randomized Adaptive Search Procedure) is a

powerful multistart metaheuristic, where feasible solutions are produced in

a construction phase and neighbor solutions are explored in a second phase.

The key ingredient for diversification is randomization, which determines a

pool of different solutions as a result. GRASP involves only two parameters:

a parameter α ∈ [0, 1] in order to build a list of candidate solutions to

be included, and the number of iterations MaxIter. Then, the algorithm

SelectBest selects the best k solutions for a post-optimization Path-Relinking

process (Glover (1997)). The general GRASP template is throughly explained

in (Resende and Ribeiro (2016)). Lines 1-3 jointly combine GRASP, while

Lines 4-6 represents our Path-Relinking post-optimization phase. Specifically,

Line 2 is a single-run of GRASP,called Alg GRASP . This function receives

an instance (G,B) for the GFP and the level of randomization α ∈ [0, 1], and

produces a solution Gi = G−U for some node-set U with cardinality |U | = B.

Then, SelectBest is introduced, there only the k best solutions of the list

G1, . . . , GMaxIter are considered for the post-optimization process. This Pool

of solutions are processed by Path Relinking, and the output is called Poolout

(see Line 5). The best solution is selected (Line 6) and returned (Line 7). In

the following subsections Alg GRASP and Path Relinking are fully detailed.
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Algorithm 3 Gout = Main(G,B, α,MaxIter, k)

1: for i = 1 TO MaxIter do
2: Gi ← Alg GRASP (G,B, α)
3: end for
4: Pool← SelectBest(k,G1, . . . , GMaxIter)
5: Poolout ← Path Relinking(Pool)
6: Gout ← SelectBest(1, Pool)
7: return Gout

In this GRASP implementation, a construction phase is first applied (Lines

1-7) and then a Local Search phase takes place (Lines 8-10). The best idea

is to immunize exactly B nodes so the for loop has precisely B iterations.

During each for loop (Lines 1-7), a single node is picked and removed. The

lowest and highest feasible score reductions are found in Lines 2 and 3. A

Restricted Candidate List (RCL) is built in Line 4. Parameter α represents

the fraction of all feasible candidates for node-immunization. Since the highest

score reduction is desirable, α = 0 is Greedy strategy while α = 1 is a Random

strategy. In Line 5, a singleton {v} is chosen uniformly at random among

the nodes from the RCL. The node v is deleted from G in Line 6. Line 5

represents the randomization of the GRASP. Finally, the block of Lines 8-10

represents the local search phase. This phase is composed by an elementary

Swap operation (Line 9), until a local optima is met. Swap picks iteratively

a single (protected,non-protected) pair, and their roles are exchanged only if

the solution is better. The result is a local optima, which is returned in Line

11.

Algorithm 4 Gout = Alg GRASP (G,B, α)

1: for i = 1 TO B do
2: SCl ← LowestReduction(G)
3: SCh ← HighestReduction(G)
4: RCL← {v : Sc(G− v) ≤ SCl + α(SCh − SCl)}
5: v ← ChooseRandom(RCL)
6: G← G− {v}
7: end for
8: while Improve(G) = True do
9: (G,LocalImprove)← Swap(G)
10: end while
11: return Gout
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To perform a Path-Relinking post-optimization proccess, a neighborhood

structure was defined. Two solutions S1 and S2 are neighbors if their symmetric

difference is a singleton, i.e. S1 M S2 = {v} for some node v. The movement

from S1 to S2 is called a swap. They define V as the set of all feasible solutions

with identical cardinality |S| = n − B. The graph of feasible solutions with

minimum cardinality is G = (V , E), where the set E consists of all pairs of

solutions (S, T ) such that |S M T | = 1. The paths are built using lexicographic

order inherited by the natural order v1 < v2 < . . . < vn.

Algorithm 5 Pool = Path Relinking(S1, S2, . . . , Sk)

1: Pool← (S1, S2, . . . , Sk)
2: S ← ∅
3: for i = 1 TO k − 1 do
4: for j = i+ 1 TO k do
5: Path(i,j) ← Lexicographic(Si, Sj)
6: S(i,j) ← SelectBest(1, Path(i,j))
7: S ← S ∪ {S(i,j)}
8: end for
9: end for
10: Pool← SelectBest(k,S)
11: return Pool

Relinking receives a pool of k elite solutions and returns another pool of k

solutions with better score. New candidate solutions S(i,j) are found for every

pair of elite solutions Si and Sj. The best k solutions are returned.

4.1.4. Heuristics comparison

In Piccini et al. (2018) it was shown that the Main heuristic, based on

GRASP, outperformed both Greedy and Balance solutions for all feasible

budgets. Even though Balance had a reduced computational cost, its

performance presented a large gap with respect to Greedy heuristic.

4.2. Greedy Heuristic for SWGFP

Here, we present a Greedy algorithm that has been developed to solve the

SWGFP. This heuristic choose the best local improvement in each step with

the objective of finding good overall solutions. In SWGFP, a Greedy Heuristic

was presented for every type of attack.
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a. Greedy under Best Attack

Under this attack, a node is chosen from the component with the highest

weight. Given the components of the graph C1,...,Ck and their weights

such as W1 ≥ ... ≥ Wk, the expected loss is W1. So the Greedy heuristic

picks a node from V1. If the remaining weight W1 − w exceeds W2, a

node from V1 is picked. On the other hand, if the remaining weight W2

exceeds W1 − w, the best strategy picks a node from V2. The expected

loss is L(Gv)
B = max{W1 − w,W2}.

b. Greedy under Random Attack

If a node v is uniformly chosen at random with probability pi = ni

n
, where

ni is the component size v belongs to and n is the order of the graph,

and assuming v ∈ V1, the expected loss is:

L(Gv)
R = (

n

n− 1
p1 −

1

n− 1
)(W1 − w) +

k∑
i=2

n

n− 1
piWi

=
n

n− 1
L(G)R − 1

n− 1
(W1 + w(n1 − 1))

Knowing that the Greedy heuristic iteratively chooses the best node,

under the Random Attack, in each step j, vj is chosen from the remaining

graph G(j) until the budget is met:

vj = arg maxu∈G(j) = {Wi + (ni − 1)w(u)}
This is, the chosen node is the one with maximum weight who belongs

to the component whose contribution in terms of weight and size is

maximized.

c. Greedy under Weighted Attack

Under this attack, some node is infected with probability pi = Wi

W
.

Assuming that v ∈ V1, the expected loss in Gv is:

L(Gv)
W =

1

W − w
(W1 − w)2 +

k∑
i=2

W 2
i

W − w
,

where W =
∑k

i=1Wi.

In each iteration, the protected node is the one with the maximum weight

from the component with the largest weight.
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Chapter 5

Methodological contributions

In this chapter, we present two GRASP algorithms for solving SWGFP.

We begin by describing the generalities of the GRASP procedures (Section

5.1). The Path-Relinking process as a post-optimization strategy is described

in Section 5.2. The first GRASP is described in Section 5.3. The GRASP

based on Independent Sets (GRASP-MIS) is described in Section 5.4.

5.1. GRASP

Greedy randomized adaptive search procedures, also known as GRASP,

were introduced by Feo and Resende (1989). GRASP is a multi-start

metaheuristic for finding approximate solution to diverse combinatorial

optimization problems Festa and Resende (2009b). GRASP is based on

a construction phase performed in a greedy randomized fashion. The

construction phase is also iterative and adaptive, since it builds the solution

choosing one element at each iteration and each newly chosen element

depends on the previously chosen. Usually, the construction phase is followed

by a local improvement phase, where a local optimum is found in the

neighbourhood of the incumbent solutions (Feo and Resende (1995); Festa

and Resende (2009a,b)). Local search procedures take a feasible solution and

improve it by successive modifications until the solution cannot be further

improved (Resende and Ribeiro (2016)).
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5.2. Path Relinking

Path relinking is an enhancement to the GRASP procedure, leading

to significant improvements in solution quality. Path relinking was first

introduced in the context of tabu search by Glover and Laguna in 1997 (Glover

(1997)). It was suggested as an approach to integrate intensification and

diversification in the search for solutions. In the context of GRASP, path

relinking was first introduced by Laguna and Mart́ı(1999) (Laguna and Marti

(1999)). This approach generates new solution by exploring trajectories

between high-quality solutions: it starts from one of these solutions, called

the initiating solution and generates a path in the neighbourhood space that

leads towards other solutions, the guiding solutions. The path is created

by selecting moves that incorporate attributes of the guiding solution into

the initial solution. At each step, the best move (which is the one that

best improves or least deteriorates the initial solution), is chosen among the

restricted set of moves Aiex et al. (2005). When integrating path relinking to

GRASP, two basic strategies are used (Resende and Ribeiro (2005)):

path relinking is used as a post-optimization step, being applied to all

pairs of k solutions in an elite set and,

path-relinking is applied as an intensification strategy to each local

optimum obtained after the local search phase

In this work, we implemented two GRASP consisting of a construction

phase followed by a local search and a path relinking procedure applied as a

post-optimization strategy.

5.3. GRASP for SWGFP

The first GRASP for solving the SWGFP is based on the GRASP algorithm

designed for GFP and introduced in Piccini et al. (2018). The GRASP

algorithm for GFP was adapted to solve the SWGFP: nodes weight was

incorporated and the score function were replaced with the corresponding

SWGFP function, depending on the type of attack being considered. As

previously described, in lines 1-3 GRASP (Alg GRASP ) is executed MaxIter

times and Lines 4-6 represent the Path-Relinking phase.
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The function Alg GRASP receives an instance (G,B) the level of

randomization α ∈ [0, 1], the weights of each node (w), and produces a solution

Gi = G−U for some node-set U with cardinality |U | = B. Then, the function

SelectBest builds a Pool with the k best solutions of the list G1, . . . , GMaxIter

for the post-optimization process with Path Relinking. The output is called

Poolout (see Line 5). The best solution is selected (Line 6) and returned (Line

7) (Figure 6). In the following subsections Alg GRASP and Path Relinking

are fully detailed.

Algorithm 6 Gout = Main(G,B, α,MaxIter, k, w)

1: for i = 1 TO MaxIter do
2: Gi ← Alg GRASP (G,B, α, w)
3: end for
4: Pool← SelectBest(k,G1, . . . , GMaxIter)
5: Poolout ← Path Relinking(Pool)
6: Gout ← SelectBest(1, Pool)
7: return Gout

In GRASP, a construction phase is first applied (Lines 1-7) and then a

Local Search phase takes place (Lines 8-10). The for loop has B iterations.

During each for loop (Lines 1-7), a single node is picked and removed. The

lowest and highest score reductions are determined in Lines 2 and 3. In Line 4 a

Restricted Candidate List (RCL) is built. Parameter α = 0 is Greedy strategy

while α = 1 is a Random strategy. In Line 5, a node v in chosen uniformly

at random among the nodes from the RCL. The node v is deleted from G in

Line 6. The Lines 8-10 represent the local search phase. This local search is

composed by a Swap operation (Line 9), until a local optima is met. Swap

picks iteratively a single (protected,non-protected) pair, and their roles are

exchanged only if the solution is better. The result is a local optima, which is

returned in Line 11 (Figure 7).
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Algorithm 7 Gout = Alg GRASP (G,B, α, w)

1: for i = 1 TO B do
2: SCl ← LowestReduction(G)
3: SCh ← HighestReduction(G)
4: RCL← {v : Sc(G− v) ≤ SCl + α(SCh − SCl)}
5: v ← ChooseRandom(RCL)
6: G← G− {v}
7: end for
8: while Improve(G) = True do
9: (G,LocalImprove)← Swap(G)
10: end while
11: return Gout

5.3.1. Path Relinking

Path relinking was used in this work as a post-optimization strategy. Once

the Construction Phase together with the Local Search find Maxiter solutions,

the solutions with the lowest scores are chosen to integrate an elite set. Path

relinking is performed for every pair of solutions in the pool. In this work, a

mixed path relinking process was applied. In mixed path relinking, two paths

are simultaneously explored, the first emanating from xs and the second from

xt, until they meet at an intermediary solution equidistant from xs and xt

Laguna et al. (2004); Resende and Ribeiro (2005); Ribeiro et al. (2012). It is

faster than back-and-forward path relinking and is usually less than twice as

long as the backward or forward variants. It was suggested by Glover in Glover

(1997) and was first implemented by Resende and Ribeiro (2010), where it was

shown to outperform forward, backward, and back-and-forward path-relinking.

A template for the mixed path relinking is presented in Figure 5.1. In line 1

and 2, the best solution in the elite set and its score are saved as xb and f(xb).

The path relinking process is applied to every pair of solutions in the elite set

while the stopping criteria are not satisfied. The symetric difference between

the pair of solutions is computed in line 5. The current solutions is initialized

as xs in line 6. The loop between line 7 and line 18 determines the best solution

at each step. Be x ⊕ l the solution x that incorporates attribute l. In line 8,

the element l from ∆ that minimizes f(x ⊕ l) is chosen and the symmetric

difference ∆ between x and xt is updated in line 9. The chosen attribute l∗

is incorporated into the current solution in line 10. From line 11 to line 14,

the test verifies if the new solution x improves the best solution xb , then xb
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Algorithm 8 Mixed path relinking(eliteset)

1: xb ←best sol(eliteset)
2: f(xb)←best score(eliteset)
3: while stopping criteria not met do
4: for (every pair of solutions(xs, xt) in eliteset) do
5: ∆← {j = 1, ..., n : xsj 6= xtj} ;
6: x← xs;
7: while |∆| > 1 do
8: l∗ ← argmin{f(x⊕ l) : l ∈ ∆}
9: ∆← ∆\{l∗}
10: x← x⊕ l∗;
11: if f(x) < f(xb) then
12: xb ← x;
13: f(xb)← f(x);
14: end if
15: x′ ← xt
16: xt ← x
17: x← x′

18: end while
19: end for
20: eliteset←UpdateElite(eliteset, xb)
21: end while
22: return xb

Figure 5.1. Mixed path relinking

and f(xb) are updated. The roles of the initiating solution and the guiding

solution are swapped in lines 15,16 and 17 and a new iteration starts. If a new

best solution is found during the relinking process, the elite set is updated

replacing the worst solution in the pool with the new best solution (line 20).

The relinking process starts again with the updated elite set, as long as the

stopping criteria are not met: either a fixed number of iterations has been

reached or no improvement has been found. The path relinking terminates

and returns the best overall solution (xb).

5.4. GRASP-MIS for SWGFP

In this section, we will show how the GRASP and Path-Relinking

procedures are combined to obtain an algorithm based on Maximal
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Algorithm 9 GRASP −MIS(G,B,w,Maxiter, α)

1: eliteset← ∅
2: for i = 1 to Maxiter do
3: ŝ← Construction Phase(G,B,w,α);
4: s← Local Search(ŝ);
5: solutions← solutions ∪ {s};
6: end for
7: eliteset← build elite set(solutions)
8: best sol← PathRelinking(eliteset)
9: return best sol

Figure 5.2. Pseudocode of GRASP with path relinking.

Independent Sets (MIS) (Figure 5.2). In order to disrupt graph connectivity

and minimize SWGFP score, we propose a GRASP combined with Path

Relinking procedure based on the construction of maximal independent sets

as a starting point. Graph connectivity can be disrupted through the removal

of a vertex cover of that graph, leaving only an independent set( Arulselvan

et al. (2009); Addis et al. (2016)). Recalling from Chapter 3, the optimality of

the Graph Fragmentation Problem and, for instance, the Stochastic Weighted

Graph Fragmentation Problem is strongly related with the finding of a vertex

cover. For this reason, we started by finding a maximal independent set using

a greedy randomized approach and then, some nodes in the vertex cover were

added back to the graph in a greedy fashion, until the vertex cover had exactly

B nodes. Unlike previous works, we considered a graph with weighted nodes.

In summary, an adaptive, randomized and greedy construction phase was used

to generate Maxiter solutions and to perform a local search in each one of

them(lines 2 to 6). From this set, the best solutions (the solutions with lower

score) were selected to build an elite set (line 7). Then, path relinking was

applied between all pair of solutions form this set to obtain the best overall

solution (line 8).

5.4.1. Construction phase

A pseudocode for the construction phase is presented in Figure 5.3.

Following Feo et al. (1994), this phase starts by finding a maximal independent

set(MIS) for a given graph G (lines 1 to 8). This is done in a greedy randomized
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Algorithm 10 Construction Phase(G(V,E), w,B, α)

1: MIS ← ∅
2: while B 6= ∅ do
3: minweight←min{weight(v) : v ∈ B}
4: RCL = {v ∈ B :weight(v) ≤ min weight + α × (max weight −

min weight)}
5: Select v∗ ∈ RCL at random
6: MIS ←MIS ∪ {v∗}
7: B = B\{v∗}\{u ∈ B : (u, v∗) ∈ E}
8: end while
9: S0 ← V \MIS
10: while |S0| > B do

11: x←argmin(
∑Wi

2

W
: i are connected components in MIS ∪ chosen )

12: chosen← chosen ∪ {x}
13: S0 ← S0\{x}
14: end while
15: return S0

Figure 5.3. Pseudocode of Construction Phase.

fashion. The minimum weight (min weight) of the available nodes in each step

is computed in line 3. A Restricted Candidate List (RCL) is built with every

node whose weight (w) does not exceed min weight + α × (max weight −
min weight) and is not adjacent to the previously chosen nodes (line 4). A

node is chosen randomly from the RCL and it is included in the MIS (lines

5 and 6). The set of available nodes is updated by deleting the chosen node

and its adjacent nodes (line 7). These steps are repeated until it cannot be

found other nodes to be included (B = ∅)and the maximal independent set is

built. Nodes in the vertex cover obtained after building the MIS, are the initial

solution S0(line 9). In general, S0 has more than B nodes so it represents an

infeasible solution to the SWGFP. However, a feasible solution can be built by

removing nodes from S0 and greedily adding them back to the MIS, until S0

remains with exactly B nodes. The node chosen at each step (x) is the one

that minimizes the SWGFP function when added to the subgraph formed by

the MIS and previously chosen nodes (line 11 and 12). The chosen node x is

deleted from S0. It was shown that this strategy is effective for finding critical

nodes and outperforms other methods (Addis et al. (2016)).
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5.4.2. Local Search

Once a solution S0 is built in the construction phase, a local search

phase is performed on this solution (Figure 5.4). A first-improvement local

search strategy was chosen. In a first-improvement strategy the algorithm

chooses any neighbour with a better value for objective function. During

the neighbourhood search, the first-improving step is performed. At each

search position s, the procedure evaluates the neighbouring candidate solutions

s′ ∈ N(s) and the first s′ that presents a lower value for the objetive function is

selected. This kind of search has the advantage of avoiding the time complexity

of evaluating all possible neighbours (Hoos and Stützle (2004)). A 2-node-

exchange (or swap) neighbourhood is used in this algorithm: a node v ∈ S0

is exchanged with a node u ∈ V \ S0 and a new score is computed. If the

score is lower, the new solution is kept as the best solution and the local

search is restarted from this new solution. The local search continues until

no further improvement can be found. While improvements can be found, the

local search is performed(lines 2 to 16). A node v is removed from S0, the

symetric difference between S0 and V is computed and stored in nodes and

the improve flag is set as FALSE (lines 3, 4 and 5). A node (from the nodes

set)is added to S0 and the score is computed. If the score is lower than the

original solution, this is replaced by the new solution; the improve flag is set

to TRUE(lines 7 to 10). If the solution does not improve the current one,

the inspected node is removed from nodes (line 12) and the search continues

through the neighbourhood until it has been completely inspected and no

improvement can be done. The best solution S0 is returned.

5.4.3. Path Relinking

We combined the GRASP-MIS with the Path Relinking strategy already

described in 5.3.1, as a post-optimization process. As previously described, we

applied a Mixed Path Relinking on an elite set containing the best solutions

selected among the Maxiter solutions delivered by the GRASP. This process is

performed for every pair of solutions in the pool. If a new best solution is found,

the elite set is updated replacing the worst solution in the set with the new

best solution. The relinking process continues while the stopping criteria are

not met: a number of iterations have been done or no improvement has been

found. The path relinking terminates and returns the best overall solution.

The pseudo-code for this Mixed Path Relinking was introduced in Figure 5.1.
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Algorithm 11 Local Search(G(V,E), w, S0, iter)

1: improve← TRUE
2: while (improve) do
3: Ŝ0 ← S0 \ {v}
4: nodes← ∆(S0, V )
5: improve← FALSE
6: while (not improve) and (nodes 6= ∅) do
7: Ŝ0 ← S0 ∪ {u ∈ nodes}
8: if f(Ŝ0) < f(S0) then
9: S0 ← Ŝ0

10: improve← TRUE
11: else
12: nodes← nodes \ {u}
13: end if
14: end while
15: end while
16: return S0

Figure 5.4. Pseudocode of First-Improvement Local Search Phase.
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Chapter 6

Results

6.1. Computational Results

All computational experiments were conducted using R R© language (R Core

Team (2013)), on a Home-PC with Intel R© CoreTM i5-3470U, 3.20GHz, 64-bit

OS.

6.1.1. Test problems

We used five graphs as test cases in our experiments. These are:

Arpanet: The precursor of the Internet, with 20 nodes and 25 links

(Figure 6.1a)

Dodecahedron: A famous graph from Graph theory, with 20 nodes and

30 links (Figure 6.1b)

EON: The European Optical Network, with 19 nodes and 36 links

(Figure 6.1c)

FON: A real-life Fiber Optic Network with 62 nodes and 126 links (Risso

(2014)) (Figure 6.1d)

IEEE300: Flow test case from Power Electric Grid (Hines et al. (2010))

with 265 nodes and 373 links (Figure 6.1e)

6.1.2. Experiments

Several experiments were conducted. In the first place, a Brute Force

procedure was performed on the following graphs: Arpanet, Dodecahedron,
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(a) Arpanet graph (b) Dodecahedron graph (c) EON graph

(d) FON graph (e) IEEE graph

Figure 6.1. Graph topologies

EON and FON. Brute Force lists all the possible combinations of B nodes for

each graph (Cn
B = n!

B!(n−B)!
combinations) and calculates the score by removing

each of those sets. The solution producing the lowest score is considered the

global optimum for the SWGFP and the score is recorded. This procedure

was repeated with parameter B varying from 1 to 6. This was done for the

four mentioned graphs, under the three types of attack: Random, Weighted

and Best. Since this procedure is prohibitive for large instances, Brute Force

was not applied on the IEEE300 graph. Next, we ran the Random Algorithm,

which picks uniformly at random a solution of B nodes from the graph and

calculates the score when the selected set is removed from the graph. This

algorithm was ran 10 times for the five graphs (Arpanet, Dodecahedron, EON,

FON and IEEE) under the three types of attack: Random, Weighted and Best,

with parameter B varying from 1 to 6. The best solution found among the

10 runs was recorded for each instance. Besides, the average run-time was

computed. For graphs Arpanet, Dodecahedron, EON and FON, the average

percent deviation from the optimal solution was calculated. For IEEE300

graph, since the optimal score was not known, we calculated the average

percent deviation from the best-known solution among all the solutions found
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by the algorithms. Finally, 10 runs of each GRASP algorithm (GRASP and

GRASP-MIS) were performed for the five graphs, under the three types of

attacks, varying B from 1 to 6. Average run-time per iteration was calculated.

The best score found by each algorithm was recorded after each test. For

the first four graphs (Arpanet, Dodecahedron, EON and FON) the average

percent deviation from the optimal solution was determined, while for the

IEEE300 graph, the average percent deviation from the best-known solution

was calculated. Both for GRASP and GRASP-MIS algorithms, Maxiter = 50

and the elite set size k = 5. After some preliminary experiments, parameter α

was set to 0.05 for GRASP and 0.95 for GRASP-MIS. The results are described

below.

6.1.3. Random Attack

The optimal scores obtained by Brute Force for Arpanet, Dodecahedron,

EON and FON are listed in Table 6.1. Also, Brute Force running-time is

detailed in this table. In Table 6.2, the average percent deviation from the

optimal solution, the best score found and average run-time per iteration is

presented for algorithms: Random, GRASP and GRASP-MIS. The Random

Algorithm, although the faster, performs poorly when compared to GRASP

and GRASP-MIS. The Random algorithm found the optimal solution in only

5 out of the 24 tests. Besides, it presented large deviation values for almost

all the tests. On the other hand, GRASP found the optimal solution in 21 out

of the 24 tests while GRASP-MIS found 23 optimal solutions and presented

null or small percent deviation from the optimal scores. GRASP and GRASP-

MIS showed null deviation values in 21 and 22 cases respectively. GRASP had

only 1 deviation value lower than GRASP-MIS while GRASP-MIS had 3 lower

deviation values than GRASP. This is more evident in large instances like the

FON graph, where nearly all the deviation values obtained by GRASP were

higher in comparison with those of GRASP-MIS, indicating that GRASP-MIS

is more robust than GRASP.

In Table 6.3, the best-known scores are detailed for each B value. As it can

be noted in table 6.4, the best solutions were found by GRASP-MIS. GRASP

only found the best value in 3 out of the 6 cases. Again, the Random algorithm

is the algorithm that performs worst, with higher scores and larger deviation

values.
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In the 14 cases where GRASP-MIS running times are higher than GRASP, they

are still moderate: less than half a minute. GRASP-MIS clearly outperforms

GRASP, with lower score and small deviation values under the Random Attack.

Table 6.1. Brute Force solution score for Arpanet, Dodecahedron, EON and FON
graphs under Random Attack

Graph Budget Optimal Score Time

Arpanet

1 46 0.07s

2 22.055 0.22s

3 12.294 1.49s

4 7.750 6.54s

5 6.133 21.91s

6 4.285 57.22s

Dodecahedron

1 57 0.06s

2 54.000 0.30s

3 45.352 1.72s

4 37.500 7.39s

5 25.000 20.63s

6 19.285 51.23s

EON

1 66 0.05s

2 45.058 0.26s

3 35.250 1.39s

4 20.400 5.43s

5 14.285 14.79s

6 9.384 38.85s

FON

1 241 0.11s

2 231.166 2.45s

3 214.779 50.8s

4 206.000 11m55s

5 190.508 2h19m57s

6 177.714 22h55m06s
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Table 6.2. Average % deviation from optimal score, best found score and average
run-time for Arpanet, Dodecahedron, EON and FON graphs under Random Attack

Graph Budget
Random Grasp GraspMIS

%Dev Best Sc. Avg Time %Dev Best Sc. Avg Time/It %Dev Best Sc. Avg Time/It

Arpanet

1 3.04 46 0.008s 0 46 0.06s 0 46 0.12s

2 101.63 40.722 0s 0 22.055 0.13s 0 22.055 0.14s

3 233.87 34.882 0.005s 0 12.294 0.21s 0 12.294 0.18s

4 306.04 14.500 0s 0 7.750 0.33s 0 7.750 0.21s

5 366.30 15.666 0.005s 0 6.133 0.30s 0 6.133 0.22s

6 350.00 11.357 0.001s 0 4.285 0.53s 0 4.285 0.31s

Dodecahedron

1 0 57 0.009s 0 57 0.09s 0 57 0.15s

2 0 54 0.003s 0 54 0.16s 0 54 0.18s

3 11.82 45.352 0.003s 0 45.352 0.20s 0 45.352 0.22s

4 26.50 42.375 0.002s 0 37.500 0.30s 0 37.500 0.27s

5 70.56 30.600 0.002s 0 25 0.47s 0 25 0.28s

6 93.00 21.428 0.003s 0 19.285 0.58s 0 19.285 0.29s

EON

1 2.57 66 0.006s 0 66 0.08s 0 66 0.13s

2 44.03 61 0.005s 0 45.058 0.16s 2.22 46.058 0.17s

3 66.41 51.687 0.001s 0 35.250 0.27s 0 35.250 0.18s

4 156.99 39.400 0s 0 20.400 0.26s 0 20.400 0.20s

5 252.70 31.285 0.002s 0 14.285 0.40s 0 14.285 0.27s

6 363.19 36.461 0.003s 0 9.384 0.57s 0 9.384 0.29s

FON

1 2.82 245 0.006s 0 241 0.25s 0 241 1.17s

2 5.59 239 0.004s 0.37 232.033 0.40s 0 231.166 1.35s

3 11.22 232.016 0.002s 0 214.779 1.20s 0 214.779 1.56s

4 13.69 227.034 0.004s 0 206 1.70s 0 206 1.72s

5 20.78 216.193 0.002s 4.13 198.368 2.51s 0 190.508 2.08s

6 27.05 217.071 0.003s 2.40 181.9821 4.06s 0.30 177.714 2.22s
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Table 6.3. Best-known score for IEEE graphs

Graph Budget Best Score

IEEE

1 646.295

2 423.570

3 388.3664

4 327.639

5 279.046

6 232.432

Table 6.4. Average % deviation from best-known score, best found score and
average run-time for IEEE graphs under Random Attack

Graph Budget
Random Grasp GraspMIS

%Dev Best Sc. Avg Time %Dev Best Sc. Avg Time %Dev Best Sc. Avg Time

IEEE

1 14.82 733.409 0.0065s 0 646.295 1.33s 0 646.295 19.15s

2 74.62 727.616 0.007s 0 423.570 4.39s 0 423.570 20.76s

3 87.37 647.278 0.0045s 0 388.366 14.83s 0 388.366 23.92s

4 122.27 711.199 0.0055s 8.21 354.548 25.98s 0 327.639 23.68s

5 159.67 635.384 0.004s 22.58 342.046 29.29s 1.63 279.046 23.52s

6 207.12 624.447 0.0065s 8.11 246.182 94.32s 0.03 232.432 29.08s

The score evolution for each one of the graphs considered is presented

in Figure 6.2. For the three algorithms we represented the best score found

by each one of them. A higher score reduction is achieved by both GRASP

algorithms when compared with the Random algorithm. From the 30 cases

that were analyzed, GRASP-MIS achieves the highest score reduction 29 times;

GRASP only achieves the highest score reduction in 24 cases.
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(a) Arpanet Graph (b) Dodecahedron Graph

(c) EON Graph (d) FON Graph

(e) IEEE Graph

Figure 6.2. Score evolution under Random Attack

42



6.1.4. Weighted Attack

The optimal scores obtained by Brute Force for Arpanet, Dodecahedron,

EON and FON together with Brute Force running-time are listed in Table 6.5.

In Table 6.6, the average percent deviation from the optimal solution, the

best score found and average run-time per iterarion is presented for Random,

GRASP and GRASP-MIS algorithms. Here, the Weighted Attack score

function is being considered. The Random Algorithm present fast running-

times but is the algorithm that performs worst. This algorithm found only

4 optimal solutions throughout the 24 tests. It also showed large deviation

values for almost all the tests. GRASP found the optimal solution in 20 out of

the 24 tests while GRASP-MIS found the optimal solution in all of the 24 tests.

GRASP showed null deviation values in 20 tests while GRASP-MIS showed

null deviation values in 21 tests with the remaining three deviation values

being smaller than GRASPs’. Again, this is more evident in large instances

like the FON graph, indicating that GRASP-MIS has greater robustness.

In Table 6.7, the best-known scores for graph IEEE300 are detailed for each

B value. In Table 6.8, it can be appreciated that the 6 best solutions were

found by GRASP-MIS while GRASP only found 3 solutions with the lowest

score. The Random algorithm performs worse than the GRASPs, obtaining

solutions with higher scores and larger deviation values.

In the 13 cases where GRASP-MIS running times are higher than GRASP, they

are still moderate and do not surpass the 30 seconds per iteration. Like under

the Random Attack, GRASP-MIS shows a better performance than GRASP,

with lower scores and higher robustness.

43



Table 6.5. Brute Force solution score for Arpanet, Dodecahedron, EON and FON
graphs under Weighted Attack

Graph Budget Optimal Score Time

Arpanet

1 46 0.06s

2 21.790 0.47s

3 13.050 3.23s

4 8.055 16.33s

5 6.187 67.07s

6 4.333 251.85s

Dodecahedron

1 57 0.11s

2 54 0.56s

3 45.352 3.59s

4 37.500 10.92s

5 25.000 40.05s

6 19.285 138.21s

EON

1 66 0.09s

2 47.571 0.55s

3 36.236 3.21s

4 22.959 14.44

5 15.311 34.16s

6 9.789 101.72s

FON

1 244 0.19s

2 235.033 5.76s

3 222.479 108s

4 214.495 56m54s

5 198.859 14h59m04s

6 185.663 32h40m47s
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Table 6.6. Mean % deviation from optimal score, best found score and average
run-time for Arpanet, Dodecahedron, EON and FON graphs under Weighted Attack

Graph Budget
Random Grasp GraspMIS

%Dev Best Sc. Avg Time %Dev Best Sc. Avg Time/It %Dev Best Sc. Avg Time/It

Arpanet

1 2.94 46 0.004s 0 46 0.06s 0 46 0.08s

2 105.86 41.177 0.002s 0 21.790 0.13s 0 21.790 0.14s

3 197.87 22.714 0.001s 0 13.050 0.23s 0 13.050 0.17s

4 274.10 10.722 0.003s 0 8.055 0.34s 0 8.055 0.21s

5 342.22 7.705 0.003s 0 6.187 0.34s 0 6.187 0.22s

6 394.81 11.400 0.003s 0 4.333 0.67s 0 4.333 0.31s

Dodecahedron

1 0 57 0.004s 0 57 0.11s 0 57 0.12s

2 0 54 0.004s 0 54 0.16s 0 54 0.18s

3 12.45 51 0.002s 0 45.352 0.21s 0 45.352 0.22s

4 24.25 42.375 0.004s 0 37.500 0.34s 0 37.500 0.26s

5 75.68 34.600 0.001s 0 25 0.58s 0 25 0.28s

6 98.56 27 0.003s 0 19.285 0.72s 0 19.285 0.29s

EON

1 3.71 66 0.003s 0 66 0.11s 0 66 0.10s

2 36.22 61 0.003s 0 47.571 0.11s 0 47.571 0.17s

3 63.80 45.655 0.003s 0 36.236 0.21s 0 36.236 0.18s

4 142.83 40.892 0.001s 0 22.959 0.25s 0 22.959 0.20s

5 224.42 38.063 0.002s 0 15.311 0.41s 0 15.311 0.25s

6 366.65 20.136 0.002s 0 9.789 0.60s 0 9.789 0.28s

FON

1 1.31 244.008 0.003s 0 244 0.30s 0 244 1.01s

2 3.73 238.024 0.003s 0.41 236.008 0.41s 0 235.033 1.26s

3 7.25 231.034 0.002s 2.05 227.034 0.76s 0.74 222.479 1.45s

4 9.02 226 0.003s 2.12 219.062 1.27s 0.21 214.495 1.61s

5 16.27 225 0.003s 4.22 207.256 2.37s 1.00 198.859 1.26s

6 21.92 215.036 0.002s 0 185.663 5.14s 0 185.663 1.70s
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Table 6.7. Best-known score for IEEE graphs under Weighted Attack

Graph Budget Best Score

IEEE

1 647.498

2 423.8525

3 392.233

4 333.171

5 283.016

6 234.720

Table 6.8. Average % deviation from best-known score, best found score and
average run-time for IEEE graphs under Weighted Attack

Graph Budget
Random Grasp GraspMIS

%Dev Best Sc. Avg Time %Dev Best Sc. Avg Time/It %Dev Best Sc. Avg Time/It

IEEE

1 14.70 734.035 0.0065s 0 647.498 1.63s 0 647.498 16.24s

2 74.39 724.116 0.007s 0 423.852 4.27s 0 423.852 18.02s

3 87.52 722.092 0.0045s 0 392.233 11.77s 0 392.233 19.32s

4 118.32 632.752 0.0055s 7.67 358.723 21.92s 0 333.171 19.90s

5 157.87 719.133 0.004s 21.19 343.000 28.99s 0 283.016 20.14s

6 204.31 631.024 0.0065s 16.13 272.597 89.03s 1.41 234.720 24.12s

The score evolution for all the graphs is presented in Figure 6.3. The best

scores obtained by each algorithm, for each one of the test cases, is represented

here. A higher score reduction is achieved by both GRASP algorithms when

compared with the Random algorithm. Both GRASP and GRASP-MIS

achieve an equal score reduction in 23 cases, with GRASP-MIS outperforming

GRASP in the remaining 7 cases by showing higher score reductions.
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(a) Arpanet Graph (b) Dodecahedron Graph

(c) EON Graph (d) FON Graph

(e) IEEE Graph

Figure 6.3. Score evolution under Weighted Attack
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6.1.5. Best Attack

Brute Force solutions for Arpanet, Dodecahedron, EON and FON are listed

in Table 6.9. Also, Brute Force execution-time is listed in this table. In

Table 6.10, the average percent deviation from the optimal solution, the best

score found and average run-time per iteration is presented for: Random,

GRASP and GRASP-MIS. The Random Algorithm presents faster execution

times. Nevertheless, its performance is poor when compared with both GRASP

algorithms. The Random algorithm found only 5 of the the optimal solutions,

presenting large deviation values for nearly all the tests. GRASP found the

optimal solution in 22 tests while GRASP-MIS found the optimal solution in

the 24 tests listed on this table. Both GRASP algorithms perform well for

small instances. However, like in the other types of attacks, GRASP-MIS has

a better performance when dealing with larger instances: it is more efficient

and more robust. GRASP-MIS presented null deviation values in 22 tests

while GRASP presented null values in 21 tests. The remaining 3 deviation

values obtained by GRASP were higher than the corresponding GRASP-MIS

deviation values.

In Table 6.11, we present the best-known scores for graph IEEE300 for each

B value. In Table 6.12, it can be observed that GRASP-MIS found the 6 best

solutions among all the solutions found by the algorithms. GRASP found 5

solutions with the lowest score. It must be noted that the Random algorithm

found solutions with higher scores and large deviation values from the best-

known solutions. In the 13 cases where GRASP-MIS running times are higher

than GRASP, they are still moderate. Like under the Random Attack and

Weighted Attack, GRASP-MIS shows a better performance than GRASP, with

lower scores and smaller deviation values.
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Table 6.9. Brute Force solution score for Arpanet, Dodecahedron, EON and FON
graphs under Best Attack

Graph Budget Optimal Score Time

Arpanet

1 46 0.13s

2 24 1.09s

3 19 5.64s

4 11 24.39s

5 9 77.08s

6 6 234.47s

Dodecahedron

1 57 0.14s

2 54 1.63s

3 48 8.16s

4 42 30.03s

5 30 88.18s

6 21 226.54s

EON

1 66 0.11s

2 54 1.05s

3 43 5.75s

4 27 20.90s

5 17 60.24s

6 12 149.68s

FON

1 244 0.09s

2 237 2.50s

3 229 51.89s

4 221 12m40s

5 212 4h15m07s

6 200 23h51m12s
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Table 6.10. Average % deviation from optimal score and average run-time for
Arpanet, Dodecahedron, EON and FON graphs under Best Attack

Graph Budget
Random Grasp GraspMIS

%Dev Best Sc. Avg Time %Dev Best Sc. Avg Time/It %Dev Best Sc. Avg Time/It

Arpanet

1 3.69 46 0.004s 0 46 0.06s 0 46 0.12s

2 77.50 27 0.003s 0 24 0.14s 0 24 0.15s

3 119.47 32 0.001s 0 19 0.22s 0 19 0.17s

4 190.00 15 0.002s 0 11 0.32s 0 11 0.21s

5 210.00 15 0.003s 0 9 0.38s 0 9 0.19s

6 316.66 14 0.003s 0 6 0.57s 0 6 0.26s

Dodecahedron

1 0 57 0.005s 0 57 0.07s 0 57 0.15s

2 0 54 0s 0 54 0.12s 0 54 0.18s

3 5.93 48 0.002s 0 48 0.21s 0 48 0.22s

4 14.28 48 0.002s 0 42 0.31s 0 42 0.27s

5 48.00 42 0.002s 0 30 0.53s 0 30 0.35s

6 85.71 30 0.002s 0 21 0.67s 0 21 0.32s

EON

1 3.03 66 0.004s 0 66 0.06s 0 66 0.13s

2 20.74 63 0s 0 54 0.14s 0 54 0.19s

3 40.23 54 0.003s 0 43 0.20s 0 43 0.19s

4 105.92 52 0.002s 0 27 0.31s 0 27 0.25s

5 202.35 42 0.003s 0 17 0.43s 0 17 0.23s

6 291.66 41 0.003s 0 12 0.52s 0 12 0.24s

FON

1 1.47 245 0.001s 0 244 0.30s 0 244 1.16s

2 2.78 240 0.003s 0 237 0.43s 0 237 1.26s

3 4.71 235 0.003s 0 229 0.82s 0 229 1.40s

4 6.47 231 0.001s 0.18 221 1.22s 0 221 1.47s

5 9.85 230 0.004s 0.47 213 1.95s 0.37 212 1.08s

6 13.75 218 0.003s 2.00 204 2.81s 0.60 200 1.78s
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Table 6.11. Best-known score for IEEE graphs under Best Attack

Graph Budget Best Score

IEEE

1 690

2 513

3 483

4 403

5 367

6 239

Table 6.12. Average % deviation from best-known score and average run-time for
IEEE graphs under Best Attack

Graph Budget
Random Grasp GraspMIS

%Dev Best Sc. Avg Time %Dev Best Sc. Avg Time %Dev Best Sc. Avg Time

IEEE

1 7.72 737 0.004s 0 690 1.27s 0 690 18.96s

2 44.35 735 0.003s 0 513 4.35s 0 513 20.87s

3 52.18 728 0.001s 0 483 22.93s 0 483 21.79s

4 82.17 728 0.002s 0 403 46.90s 0 403 21.86s

5 98.44 702 0.003s 1.63 373 81.45s 0 367 22.00s

6 202.65 701 0.003s 15.48 239 117.14s 1.33 239 25.24s

The score evolution for all the graphs is presented in Figure 6.4. The best

scores from each algorithm are represented here. The higher score reduction is

achieved by GRASP-MIS, achieving the optimum(or the best-known score) 30

times, followed by GRASP, which achieves the best values in 27 cases. Random

algorithm is the one that performs worse.
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(a) Arpanet Graph (b) Dodecahedron Graph

(c) EON Graph (d) FON Graph

(e) IEEE Graph

Figure 6.4. Score evolution under Best Attack
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6.1.6. Graph Topology

In the context of SWGFP, a higher score reduction implies a greater

graph fragmentation. This translates into a lower expected loss when

a singleton is infected. To illustrate this idea, Figure 6.5 shows the

FON graph topology before node immunization (6.5a); FON topology after

immunization with nodes selected using GRASP (6.5b) and FON topology

after immunization with nodes selected using GRASP-MIS (6.5c). Immunized

nodes are represented in red. This example corresponds to the Best Attack for

B = 6.

(a) Before node immunization (b) After node immunization with
GRASP

(c) After node immunization with
GRASP-MIS

Figure 6.5. FON graph topology: before and after node immunization
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Chapter 7

Conclusions

In this thesis the Stochastic Weighted Graph Fragmentation Problem

(SWGFP) is introduced. This combinatorial optimization problem is a

generalization of the Graph Fragmentation Problem (GFP). The GFP aims

to identify a set of non-weighted nodes whose immunization or removal might

help to fragment the graph, mitigating contagion spread in a network and

minimizing the expected loss. On one hand, the genesis of the Graph

Fragmentation Problem (GFP) is purely epidemiological, motivated by an

extremal pandemic analysis. On the other, the Critical Node Problem (CNP) is

connectivity-driven, and the goal is to minimize the connectivity of the graph.

A formal proof of the equivalence between the CNP and GFP is included

for the first time in this thesis. The result launches joint research, potential

collaborations and hints for future work.

The SWGFP is an extension of the GFP. It includes weighted nodes (or

node-importance) and arbitrary probability laws of an attacker, that picks a

singleton in the network and infects all the members that belong to the same

component.These weights reflect the node importance or the cost of losing it.

It must be highlighted that several studies have been conducted on critical

nodes in vertex-non-weighted graphs, however, research on critical nodes in

vertex-weighted graphs is scarce. Considering weighted nodes is important

since different nodes usually do not have the same relevance in a network.

Another novelty introduced by the SWGFP is the existence of three probability

laws under which an attacker performs its attack on the network with the

defender having full knowledge of the probability law. The three probability

laws differ in the amount of knowledge about the network the attacker relies on.
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Under the Random Attack the attacker is assumed to have null information,

under the Weighted Attack the attacker is assumed to have partial information

and under the Best Attack the attacker is assumed to have full information.

Taking into account nodes’ weights and anticipating the type of attack that

will be performed on the network contributes to achieve a better protection

of the network prioritizing the highest-weighted nodes whether they should be

removed or maintained.

From a methodological point of view, two GRASP enriched with Path-

relinking have been proposed to solve the SWGFP in this thesis. The first

GRASP was based on a previously designed GRASP that had been used

to solve the Graph Fragmentation Problem; this was adapted to solve the

SWGFP under the three possible types of attacks. A second hybrid GRASP

was developed based on the construction of Independent Sets (GRASP-MIS).

This concept that had been proposed by Arulselvan et al. (2009) to find critical

nodes, however, it has not been explored in the context of graphs with weighted

nodes and, in particular, in the SWGFP.

As it can be appreciated in Chapter 6, computational experiments showed

that the latter outperforms the former in terms of the quality of solutions and

the average percent deviation from the scores of the best-known solutions. In

terms of the running-times, before performing the computational experiments,

a difference between both algorithms was expected: GRASP performs a Greedy

phase iterating it B times to find the best B nodes to immunize while GRASP-

MIS iterates the Greedy phase n − m − B times, with n being the order of

the graph, m the size of the maximal independent set and B the budget, in

order to obtain a vertex cover of size B. In the cases where the running-

times required by the GRASP based on Independent Sets (GRASP-MIS) are

slightly higher than those required by the simple GRASP, the average times

are still moderate. As expected, GRASP-MIS showed faster running-times

than GRASP when B values were increased. For all these reasons, the newly

proposed GRASP-MIS based on Independent Sets has proved to be an effective

tool to solve the SWGFP under the three types of attacks: Random, Weighted

and Best. This is helpful to the design of efficient protection strategies for the

network in face of disasters.

The hypothesis about the reason why the algorithm based on Independent

Sets outperforms the classical GRASP is that, since the SWGFP aims to

maximally fragment the graph while minimizing the expected loss, a set
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of low-weighted isolated nodes (or Independent Set) provides the maximum

fragmentation and minimum expected loss for that graph leaving the remaining

nodes (a Vertex Cover) as an optimal solution for the problem. Nevertheless,

the SWGFP imposes a restriction on the solution size which must be exactly

B. If the Vertex Cover size equals B, the optimal solution has been found. If

not, the exceeding nodes must be removed from the Vertex Cover and returned

to the graph in a way that the SWGFP score function is minimized.

Finally, it must be highlighted that accurately identifying nodes which

play a key role in graph connectivity is essential to prevent catastrophic

consequences after an infection or an attack on a network and thus ensuring

network survivability. As future work, we would like to further explore the

importance of Independent Sets in the context of critical node identification,

and in particular, critical weighted nodes. The need to protect nodes which

have a great influence on network connectivity at the same time that they

have high weight so as to minimize expected loss, presents us the challenge

of identifying an appropriate initial Independent Set for the algorithm to be

applied on. We believe that additional studies should be made in order to

address this issue. Regarding the SWGFP, we would like to analyze this

combinatorial optimization problem in terms of game theory, and explore

potential applications. Furthermore, we would like to survey the scientific

literature on the CNP and its impact in the understanding of the equivalent

problem, the GFP.
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Chen, D.-B., Gao, H., Lü, L., and Zhou, T. (2013). Identifying influential

nodes in large-scale directed networks: the role of clustering. PloS one,

8(10):1–10.

Crucitti, P., Latora, V., Marchiori, M., and Rapisarda, A. (2004). Error and

attack tolerance of complex networks. Physica A: Statistical mechanics and

its applications, 340(1-3):388–394.

Dasgupta, S., Papadimitriou, C. H., and Vazirani, U. (2008). Algorithms.

McGraw-Hill, Inc.

Data, S. and Wang, H. (2005). The effectiveness of vaccinations on the

spread of email-borne computer viruses. In Proceedings of the 18th Canadian

Conference on Electrical and Computer Engineering, pages 219–223. IEEE.

del Rey, A. M. (2015). Mathematical modeling of the propagation of malware:

a review. Security and Communication Networks, 8(15):2561–2579.

Di Summa, M., Grosso, A., and Locatelli, M. (2011). Complexity of the critical

node problem over trees. Computers & Operations Research, 38(12):1766–

1774.

Dinh, T. N., Xuan, Y., Thai, M. T., Pardalos, P. M., and Znati, T.

(2012). On new approaches of assessing network vulnerability: hardness and

approximation. IEEE/ACM Transactions on Networking, 20(2):609–619.

Dinh, T. N., Xuan, Y., Thai, M. T., Park, E., and Znati, T. (2010).

On approximation of new optimization methods for assessing network

vulnerability. In INFOCOM, volume 2010, pages 1–9.
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