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FACULTAD DE INGENIERÍA
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Abstract

In the field of network design, the survivability property enables the network to maintain a certain level
of network connectivity and quality of service under failure conditions.

In this thesis, survivability aspects of communication systems are studied. Aspects of reliability and
vulnerability of network design are also addressed. The contributions are three-fold.

First, a Hop Constrained node Survivable Network Design Problem (HCSNDP) with optional (Steiner)
nodes is modelled. This kind of problems are N P -Hard. An exact integer linear model is built, focused
on networks represented by graphs without rooted demands, considering costs in arcs and in Steiner
nodes. In addition to the exact model, the calculation of lower and upper bounds to the optimal solution
is included. Models were tested over several graphs and instances, in order to validate it in cases with
known solution. An Approximation Algorithm is also developed in order to address a particular case of
SNDP: the Two Node Survivable Star Problem (2NCSP) with optional nodes. This problem belongs to
the class of N P -Hard computational problems too.

Second, the research is focused on cascading failures and target/random attacks. The Graph
Fragmentation Problem (GFP) is the result of a worst case analysis of a random attack. A fixed number
of individuals for protection can be chosen, and a non-protected target node immediately destroys all
reachable nodes. The goal is to minimize the expected number of destroyed nodes in the network. This
problem belongs to the N P -Hard class. A mathematical programming formulation is introduced and
exact resolution for small instances as well as lower and upper bounds to the optimal solution. In
addition to exact methods, we address the GFP by several approaches: metaheuristics, approximation
algorithms, polytime methods for specific instances and exact methods in exponential time.

Finally, the concept of separability in stochastic binary systems is here introduced. Stochastic Binary
Systems (SBS) represent a mathematical model of a multi-component on-off system subject to
independent failures. The reliability evaluation of an SBS belongs to the N P -Hard class. Therefore, we
fully characterize separable systems using Han-Banach separation theorem for convex sets. Using this
new concept of separable systems and Markov inequality, reliability bounds are provided for arbitrary
SBS.

Keywords— Computation Complexity, Survivability, Graph Fragmentation Problem, Stochastic
Binary Systems
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Chapter 1

Introduction

This research is framed in the network design area and aspects of survival, reliability and vulnerability
are addressed. This thesis follows the Swedish style, and is organized in three parts in correspondence
with each of these aspects and its structure is as follows:

• In Part I two papers are included related to subject of Survivability of Network Design Problem
(Chapters 2 and 3). Formally, survivability is defined as the capacity of a network to remain
operational after disturbances or failures in some components. We work with two different
topologies, the first rather general, the second more specific. Both cases addressed are represented
exactly by combinatorial optimization problems, using Integer Linear Programming. Being these
problems N P -hard, depending on the case, some procedures to calculate lower and upper bounds
to the optimal solution, heuristics methods and approximate algorithms are introduced.

• Part II includes two papers related to subject of Graph Fragmentation Problem (Chapters 4 and 5).
The GFP is the result of a worst case analysis of a random attack. A fixed number of individuals
for protection can be chosen, and a non-protected target node immediately destroys all reachable
nodes. The goal is to minimize the expected number of destroyed nodes in the network. GFP also
belongs to the class of N P -Hard problems. In this case, a reviewing of main advances in this topic
is made, and an exact model, using Integer Quadratic Program, with some bounds are proposed
and tested here.

• Part III is dedicated to study of Stochastic Binary Systems (SBS) and its reliability. SBS
generalize the static reliability concept to any system composed of a number of components
subject to independent failures with known probabilities, and where the operation or failure of the
system as a whole is a function of the state of the individual components. In this sense, SBS are a
more flexible tool for evaluating and optimizing the reliability of a wider spectrum of real
systems, both in the networking area and in other quite different applications areas. Here one
paper is presented 6, where the concept of separable stochastic binary systems is introduced,
reliability bounds for arbitrary SBS are provided inspired by a measure of a distance to a
separable system and some experimental results are included.

Main contributions are summarized bellow.
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Survivability Network Design:

1. “A formulation for a Hop Constrained Survivable Network Design Problem ”. Main contributions
are:

• An integer linear model for the Generalized Steiner Problem with weighted Steiner nodes
and diameter constrained is introduced and tested.

• Lower and upper bounds to the optimal solution are proposed and tested, which allow to
approach effectively an optimal solution

2. “An Approximation Algorithm for the Two-Node-Connected Star Problem with Steiner Nodes”.
Main contributions are:

• The Two-Node-Connected Star Problem with Steiner Nodes (2NCSP-SN) is here introduced.

• A generalization of the factor-2 result is offered. Specifically, an approximation algorithm
with factor 4α is introduced for the 2NCSP, being α≥ 1/2 the relation between the link-costs
from the backbone/access network.

• An exact Integer Linear Programming (ILP) formulation for the 2NCSP-SN is presented.

• A sensibility analysis is carried out in order to understand the effectiveness of our
approximation algorithm.

Graph Fragmentation Problem

3. “Graph Fragmentation Problem for Natural Disaster Management”. Main contributions are:

• A mathematical programming formulation for the GFP is introduced.

• Lower and upper bounds are obtained.

• Testing of performance of our exact solution for the GFP under different test cases coming
from real-life applications

3. “Graph Fragmentation Problem: Analysis and Synthesis ”. Main contributions are:

• this paper present a review and a comprehensive analysis for the GFP, its relation with
Component Order Connectivity problem (COC).

• a new feasible vulnerability/connectivity metrics is proposed as a synthesis.

• improvements in IQP modeling.

Reliability in SBS

6. “Building Reliability Bounds in Stochastic Binary Systems”. Main contributions are:

• An efficient representation of separable systems is proposed. It considers N+1 real numbers,
being N the size of the system (measured as the number of components subject to failure)

• The interplay between monotonicity and separability in stochastic binary systems are
explored.
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• A metric to find the closest separable system for any given SBS φ is provided. As a
consequence, a distant-minimizer separable system φ∗ was found, as well as upper and
lower bounds (φ and φ respectively)

• Corresponding ILP formulations to find φ∗, φ and φ are proposed and solved using CPLEX.

• Reliability bounds for arbitrary SBS are found using the previous construction, duality and
Chernoff inequality.

• A Proof-of-Concept shows the performance of the reliability bounds and the benefit of our
new representation of separable systems.
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Part I

Survivability Network Design





Chapter 2

A formulation for a Hop Constrained
Survivable Network Design Problem

Survivability is defined as the capacity of a network to remain operational after failures in some
components, and it is one of the critical requirements in network planning and design. In this chapter,
survivability and quality of service concepts are combined, adding hop-constraints to connectivity
aspects. This approach ensures that for every distinct pair of nodes, there exists a predefined number of
edge/node disjoint paths, so that each such path does not exceed a given hop limit. The focus is on
modelling networks represented by undirected graphs without rooted demands, considering costs in arcs
and in optional (Steiner) nodes. An integer linear model is presented in order to solve exactly this
problem. The exact model is is complemented with the calculation of lower and upper bounds to the
optimal solution and with an heuristic method to effectively solve large instances.
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2 G. Ferreira, S. Nesmachnow, F. Robledo / A formulation for a HCSNDP

1. Introduction

In network design, the survivability property enables the network to maintain a certain
level of network connectivity and quality of service under failure conditions. Survivability
has been considered as one of the critical requirements in network planning and design [5].
It often involves considering design requirements on the network topology, or in the case
of communication networks, constraints could be associated with protocol, bandwidth
allocation, etc. For instance, a topology requirement would achieve a design that keeps
a minimum two-connected network against any failure of a single link or node. This
concept can be applied to multiple types of networks, such as communication, power,
transportation network, etc. (see for instance [3] [8]).

Formally, survivability is defined as the capacity of a network to remain operational
after disturbances or failures in some components [1]. The survivable network design
problem has been extensively studied [5, 3, 8, 10] and it is known to be NP-hard[6].
Survivability properties are usually modeled by requiring a minimal number of node -or
edge- disjoint paths between certain pairs of nodes.

In this article, we combine survivability and quality of service concepts for the prob-
lem that imposes additionally hop-constraints when designing survivable networks. This
approach ensures that for every distinct pair of nodes, there exists a predefined number of
edge/node disjoint paths, so that each such path does not exceed a given hop limit.

Recent literature calls this kind of problems as Hop Constrained Survivable Network
Design Problem (HCSNDP) [5, 2, 7]. The HCSNDP proposes finding the optimal net-
work design with survivability requirements and effectiveness in quality of service (e.g.,
the maximum length of paths is bounded).

We focus on solving a variant of the HCSNDP that is applied to model networks
represented by undirected graphs with not rooted demands, considering costs in arcs and
in optional (Steiner) nodes, too. Different values of parameters for constraints between
each pair of terminal nodes are allowed in the problem formulation, including hop length
and number of node disjoint paths constraints. This is a generalization of HCSNDP that
we named as ”Generalized Steiner Problem with weighted Steiner nodes and diameter
constrained” (GSPWDC).

We introduce an integer linear model for the GSPWDC. The exact model is tested
over some graphs in order to perform a validation in cases with known solutions. Since
this kind of problems is NP-hard, we propose and test some procedures to calculate lower
and upper bounds to the optimal solution, which allow to approach effectively an optimal
solution. These bounds are very useful when facing large problem instances.

The paper is organized as follows. Next section introduces the main concepts and
definitions releted to the problem model and formulations. The proposed problem for-
mulation is presented in Section 3. Lower and upper bounds to the optimal solution are
analyzed in Section 4. The experimental evaluation is reported and discussed in Section
5. Finally, Section 6 presents the conclusions and the main lines for future work.
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2. Background

A network is represented as a graph, G = (V,E). We consider only two possible types
of nodes: terminal nodes, for which connectivity requirements are defined (set T), and
optional or Steiner nodes (set S).

There are two models to specify the survivability conditions [6]. In this work we
follow the Generalizad Steiner Problem (GSP) approach by Winter [11]: given a network
represented by a graph G = (V,E), with costs associated to edges, let T ⊆ V be the set
of terminal nodes and let Q = {q = (i, j),∀i, j ∈ T} be the set of all pairs of nodes in
T ⊆ V; the problem is to find a subgraph with minimal cost so that ∀q ∈ Q at least
rq ∈ N node -or edge- disjoint paths exist. In the case where T = V and rq = k,∀q ∈ Q ,
with cost associated to the edges and node disjoints paths, the problem is also known as
NCON(G, k) [9]

In order to model the HCSNDP, we use a variant of the GSP, that we call “General-
ized Steiner Problem with weighted Steiner nodes and diameter constrained (GSPWDC)”,
which is formulated as follows:

Given a undirected simple graph G = (V,E), with: (i) a set of edge cost or weights
C = {ci j ∈ R+},∀(i, j) ∈ E; (ii) a set of terminal nodes T ⊆ V; (iii) Q = {q} the set of
pairs of nodes in T ⊆ V, (iv) a matrix with node (or arc) connectivity requirements R =
{Rq}∀q ∈ Q; (v) a vector with node weights A = {ai ∈ R+, i ∈ S = V\T}; and (vi) a matrix
of maximum length of paths allowed (hop requirements) L = {Lq ≥ 0, inte1er,∀q ∈ Q};
the GSPWDC consist in finding a minimal cost subgraph H ⊆ G such that it covers T
and ∀q ∈ Q exist at least Rq node or arc disjoint paths linking a pair of terminal nodes
q = (i, j) in H, so that each one has no more than Lq hops or arcs.

Calling a pair of terminal nodes q as a demand, if all q have a common node, then
the demand is called rooted, otherwise it is unrooted. According to Mahjoub [7], when
| Q |= 1, the HCSNDP can be solved in polynomial time for L ≤ 3, and it is NP-hard for
L ≥ 4. When | Q | is not constrained, the problem is NP-hard, even in simplest case when
Q is rooted, R=1 and L=2 ∀q ∈ Q.

The review of related work about models and formulations for the hop-constrained
survivable network design problem allows identifying four existing models. The first three
models are all variants of the same approach, initially proposed by Gouveia in 1998 [4]
and later completed by Botton [1]. All of them were proposed to solve HCSNDP and were
also implemented and tested over different networks. The fourth model was presented as
an ILP model to solve SNDP in the survey by Kerivin and Mahjoub [6]. This model does
not have practical results reported, but it was used to extract some interesting properties
of polytopes corresponding to constraints space instead.

All the existing models for hop-constrained survivable networks use the same main
idea to represent hop constraints. A set of auxiliary graphs are introduced: an auxiliary
graph Gq—also called layered graph due to the method applied for building it— is defined
for each q ∈ Q. Each graph Gq contains all existing paths between each pair of terminal
nodes q = (o, d) with length not greater than Lq (being Lq the number of hops allowed for
q = (o, d)). The survivability constraints are formulated over these auxiliary graphs and
hop constraints are implicitly considered because in the auxiliary graphs all paths have
lengths shorter than Lq.

14



4 G. Ferreira, S. Nesmachnow, F. Robledo / A formulation for a HCSNDP

3. An ILP formulation for the HCSNDP

The proposed formulation is a variant of the existing models known as “Hop-indexed
formulation”, presented by Gouveia et al. [5] and “Hop multi-commodity flow formula-
tion (HOP-MCF)” introduced by Botton [1]. The proposed model also incorporates some
concepts used in recent works [6, 7, 4]. The model presented here allows considering
constraints with different maximal length of paths between each pair of terminal nodes,
as well as different numbers of required node-disjoint paths between each pair of termi-
nal nodes (i.e., allowing heterogeneous survivability conditions). The model includes the
cost of edges and nodes, too. In order to represent hop constraints, just like in the afore-
mentioned previous works, we use extended layered graphs (one for each q ∈ Q) that
implicitly guarantees satisfying the maximum path length constraints.

The main idea behind the proposed formulation is to decompose the problem into |Q|
subproblems, one for each pair of terminal nodes q ∈ Q. Let (o(q), d(q)) be a pair of
origin–destination nodes corresponding to q. Fixed q, each subproblem is modeled with
a directed graph composed of L + 1 layers (according to the transformation proposed by
Gouveia [4]): being G = (V,E) the original undirected graph, the alternative represen-
tation is Gq = (Vq,Aq) where Vq = Vq

1 ∪ . . . ∪ Vq
L+1 / Vq

1 = o(q), Vq
L+1 = d(q) and

Vq
l ⊆ {V \ {o(q)} such that there are a simple path between o(q) and each v ∈ Vq

l with
length at most l, with l = 2 . . . L.

Using the same notation proposed by Botton [3], let vq
l be the copy of v ∈ V in the

l-th layer of graph Gq, then Aq = {(iql , jql+1)/(i, j) ∈ E, iql ∈ Vq
l , jql+1 ∈ Vq

l+1, l ∈ {1, . . . ,L}}∪
{d(q)l, d(q)l+1, l ∈ {2, . . .L}}. Details and graphical examples of the extended layered
graphs were already provided by Botton [3, 1].

An edge in E with end points i and j is denoted as i j, while the arc between iql ∈ Vq
l

and jql+1 ∈ Vq
l+1 in the directed graph is denoted as (i, j, l).

When using the proposed transformation, all paths from o(q) to d(q) in Gq fulfill hop-
constraints.

Consider the following set of parameters:

i) ai denotes the cost associated to each Steiner node i;

ii) ci j is the cost associated to edge i j,∀i j ∈ E;

iii) Rq is the minimal number of node-disjoint paths required between o(q) and d(q),
∀q ∈ Q;

iv) Lq is the maximum length allowed for paths (hops) between o(q) and d(q), ∀q ∈ Q.

Also, consider the following set of variables:

i) zi j is a binary variable that indicates if edge i j ∈ E is in the solution;

ii) xl,q
i j is the flow through arc (i, j, l), for each q in the layer l of Gq;

15
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iii) Ni is a binary variable that indicates ∀i ∈ S if the Steiner node i is included or not in
the solution. Each Ni is used to allow at most one active outgoing arc from a node
i over all layers of Gq, guaranteeing not to repeat nodes in a path between o(q) and
d(q).

The ILP-HCSNDP formulation is presented next.

(ILP-HCSNDP) min
∑

(i, j)∈E
ci j.zi j +

∑

i∈V
ai.Ni with: (1)

∑

j:(o(q), j,1)∈Aq

x1,q
o(q), j = Rq (2)

∑

j:( j,d(q),Lq)∈Aq

xL(q),q
j,d(q) = −Rq (3)

∑

j:( j,i,l−1)∈Aq

xl−1,q
i j −

∑

j:(i, j,l)∈Aq

xl,q
ji = 0, f or all q ∈ Q, l ∈ {2, . . . ,Lq}, i ∈ Vq

l (4)

∑

l=1,...,Lq

xl,q
i j + xl,q

ji ≤ zi j, f or all (i, j) ∈ E, q ∈ Q (5)

zi j ∈ {0, 1}, f or all (i, j) ∈ E (6)

xl,q
i j ≥ 0 inte1er f or all (i, j, l) ∈ Aq, q ∈ Q (7)
∑

l=1,...,Lq

∑

j∈δ(i)

xlq
i j ≤ Ni f or all q ∈ Q, (i, j) ∈ E, and i ∈ S (8)

Ni ∈ {0, 1}, f or all i ∈ S (9)

In the ILP-HCSNDP formulation, Equation (1) is the objective function: it proposes
minimizing the costs associated to arcs and Steiner nodes. Regarding the constraints, the
network flow over Gq (Equations (2), (3), and (4)) assure that there are Rq paths from
o(q) to d(q). Equation (5) does not enable using multiple times a given edge i j on a path
in Gq, thus guaranteeing the edge-disjointness property, while they also link variables z
and flow variables of copies of the same arc in different layers, which means that the
total unimodularity property of matrix restriction is lost [1]. As a consequence, a set of
constraints (defined in Equation (7)) must be explicitly introduced to obtain a feasible
solution.

Equations (2)–(7) are present in the model by Botton; our formulation includes new
constraints (defined in Equation (8) and Equation (9)) in order to guarantee the existence
of node-disjoint paths and to allow the model to represent the costs associated to Steiner
nodes. Note that xl,q

i j ≤ 1, i , j, as stated by Equation (5) and Equation (6).
Constraints (stated in Equations (2), (3), and (4)) represent |Q| independent sets of

network flow constraints, one set defined for each q ∈ Q. Then, if constraints defined
in Equations (5)–(9) are relaxed, there will be |Q| independent network flow problems
to solve, and the solution for each variable xlq

i j will be integer. So, the model can take
advantage of following a constraint decomposition approach, but in this case, the difficulty

16



6 G. Ferreira, S. Nesmachnow, F. Robledo / A formulation for a HCSNDP

is that in the objective function, variables xlq
i j have no costs.

A simple idea to easily test the feasibility of constraints related to maximum number
of node-disjoint paths allowed, is to consider for each q∈Q a set CS(q) where CS(q) ⊆
V\{o(q), d(q)} such that nodes o(q) and d(q) are not connected by a path in subgraph G′⊆G
induced by V′=V\CS(q). So, CS is a cut set between o(q) and d(q) nodes. Applying
Menger’s theorem [6], for each q, the minimum size of CS(q) indicates the maximum
number of node-disjoint o(q)-d(q) paths.

4. Lower and upper bounds

Due to the intrinsic complexity of ILP-HCSNDP, heuristic and approximate approaches
have to be used to cope with general and real-world instances of medium and large di-
mension. This section proposes and describes a set of procedures to calculate bounds to
the exact solution of the problem.

We propose computing two lower bounds (called LB1, LB2) and four upper bounds
(called UB1, UB2, UB3,UB4), which are defined and explained below. The proposal for
computing upper bounds is based on a general idea: when fixing values of all variables zi j
and Ni, then only xi j variables remain, and the original problem can be separated in | Q |
independent subproblems, which can be solved independently, too.

Lower bounds:

• LB1: it is an optimal solution of the ILP-HCSNDP integer relaxation. Here we
work over Gq, but it is a linear program working in real variables.

• LB2: it is an optimal solution of the ILP-HCSNDP relaxing constraints of maximal
length of paths. Here we work over original graph G, and integer variables.

Upper bounds:

• UB1: it fixes all boolean variables zi j and Ni to one. For each one of | Q | indepen-
dent subproblems, we find the optimal solutions. Then, we calculate which arcs we
must include in a global feasible solution in order to support all optimal solutions of
the subproblems. If some of this subproblems are not feasible then, global problem
is not feasible.

• UB2: it fixes all boolean variables zi j and Ni, some to one and other to zero. For
each one of | Q | subproblems, we find optimal solutions and then we calculate
which arcs must be included in a global solution in order to support all optimal so-
lutions of the subproblems. If some of this subproblems are infeasible, the solution
is discarded.

• UB3: it is an improvement of UB1 and UB2 computed using a Dantzig-Wolfe de-
composition (DW) applied over ILP-HCSNDP problem. Equations (2) are included
in DW subproblem (network flow problem) and remaining constraints are in the
main problem. Integer conditions should be included in the main problem, because
the subproblem always has integer solutions. In this work we do not include inte-
ger conditions in the main problem, so we used results of DW decomposition only
when solutions or upper bounds are integer and improve UB1 or UB2.

17



G. Ferreira, S. Nesmachnow, F. Robledo / A formulation for a HCSNDP 7

• UB4: A greedy heuristic algorithm that builds a feasible solution.

In UB1 and UB2 cases, as zi j and Ni variables are fixed, we can work with separate
| Q | independent subproblems, so we could profit this condition working in parallel. In
UB3, the subproblem of DW decomposition can be separated, too. For UB1,UB2, and
UB3 we work over Gq, then may be hard to calculate a feasible solution due to high
dimensions.

Algorithm 1 presents a pseudo-code of the heuristic applied to compute UB4. It is a
greedy algorithm that include a diversification phase

The proposed heuristic for computing UB4 starts by calculating a minimum float cost
problem over Gd, with capacity arcs constraints and one additional constraint (lines 12-
13). In this float problem, the pair of nodes in q are taken as source and destination. All
edges have maximal capacity equal to one, except the edge that links sink to source that
has minimal capacity Rq. This assures to find Rq node-disjoint paths between nodes in q.

Let xi, j,∀(i, j) ∈ E be decision variables. The constraint added in line 13,
∑

i j∈E xi j ≤ b,
with b = Rq*Lq bounds the total path length. This constraint does not ensure that all paths
have length lower than Lq, but it decreases the search domain in order to find a feasible
solution. For solving this extended float problem, an integer linear programming can be
used. It is even necessary because the last constraint breaks integrality property of the
float solution.

After that, the float solution s(q) found, which is a binary vector with |E| elements,
is tested in order to determine if hop constraints are satisfied (line 17). If there are some
path that do not satisfy hop limits in last finding solution s(q), then b is decreased by one
(line 18) and the procedure is repeated. If the procedure does not attain a feasible solution
and the extended float problem is infeasible for some value of b, the procedure adds cuts
in order to exclude paths that do not satisfy hop limits.

The heuristic procedure finishes when it finds an infeasible problem for some q (line
24), i.e., the global problem does not have a solution, or when it finds a global feasible
solution. In effect, as b is an integer and it is decreased by one at each iteration where the
feasibility test for Lq fails, the procedure does finish in a finite number of steps. If cuts
must be added, they are also performed in a finite number of steps.
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Algorithm 1 Proposed heuristic algorithm A:
Require: V, E,T, S, Q,C = {ci j,∀(i, j) ∈ E}, A = {ak,∀k ∈ S}, p, R, L
Ensure: 1s . 1s is a binary vector with dimension |E|

1: Build data structures: incidence matrix node-node, incidence matrix node-arcs
2: Convert undirected graph to directed, where each arc is replaced by a pair of edges

with opposite senses.
3: Replace each Steiner node S by a pair of nodes (S1,S2) linked by an edge going from

S1 to S2, such that all incoming edges to S are incoming to S1 and all outgoing edges
of S are outgoing edges of S2. Let Gd be this directed graph.

4: Build incidence matrix node-node and incidence matrix node-arcs NEa for Gd.
5: Order Q by preferences: Sort list Q according to our R and L values in descendent

order (first pairs q of terminal nodes with high R(q) and L(q)) that is, we process first
those pair of terminal nodes that allow the longest paths, which requires more path
linkings between them.

6: Build an ordered list of Steiner nodes ListS, based on preferences calculated accord-
ing to cost of nodes divided by our degree. Order it by increassing preferences

7: for all q ∈ Q do
8: if ListS , ∅ then, . Diversification step
9: extract first element r of ListS with probability p

10: cr = −1
11: end if

. Search a candidate solution
12: Build a minimum float cost problem over Gd, with capacity arcs constraints
13: Add a constraint

∑
i j∈E xi j ≤ b, where b = Rq*Lq

14: while b > 0 do
15: Solve a linear program built in the previous points. Let s(q) be this solution.
16: if s(q) , ∅ then
17: if some path s(q) does not satisfy hop limits Rq then
18: b← b − 1
19: else
20: b = 0
21: end if
22: else
23: if b = Rq*Lq then
24: Display ”infeasible problem”
25: Stop
26: else
27: Add a cut excluding paths that do not satisfy hop limits in s(q)
28: end if
29: end if
30: end while
31: Set to 0 all costs associated with edges in feasible solution corresponding to s(q)
32: Modify ListS, extracting all elements with cost ≤ 0
33: 1s = 1s ∨ s(q) . In order to build a global feasible solution
34: end for
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5. Computational experiments and results

This section presents the experimental evaluation of the proposed ILP-HCSNDP model.
The analysis is oriented to validate in cases with known solution and to research their be-
havior on large instances.

5.1. Development and execution platform
The model was implemented in CPLEX 12.51 MIP solver, and the executions were

performed on a eight-cores Intel i7 processor at 3.07 GHz having 16GB RAM.

5.2. Problem instances
The proposed formulation was tested over eight graphs, using different values for the

size of sets Q, R, and L. This methodology also allows having heterogenous values in
matrices R and L.

We decided to work with simple undirected graphs. Table 1 summarizes the main
characteristics of the graphs used in the experimental analysis. Column D is the graph
density, defined for this type of graphs as 2|E|/|V|(|V|−1). Note that the maximal value
for D is 1 when solving a complete graph with 1

2 |V|(|V|−1) edges.

Table 1: Graphs and instances used in the experimental evaluation

graph | V | | E | D instance

FR1 19 43 0.2515 I1
FR2 11 30 0.5454 I2,I3,I4,I10,I11,I12
EON 19 36 0.2105 I5, I13
NFSNET 14 52 0.5714 I6, I14
TA1 24 55 0.1993 I7
B1 50 63 0.0514 I8
B2 50 63 0.0514 I9
RAU2 85 148 0.0415 I15

Instance I1 is built from FR1, a simple graph for which it is easy to find a solution.
This problem instance is used to tune the model. Instance FR2 has been studied as a
NCON(G, r) instance, with ri j= 2, f or all (i, j) ∈ E,

where the edge costs satisfy the triangle inequality. We use this example to test our
model in a case with known optimal solution. EON and NFSNET are graphs used in the
article by Gouveia et al. [5]. The remaining graphs are taken from libraries of test sets
available at Internet: TA1 is from Survivable fixed telecommunication Network Design
library (SNDlib, http://sndlib.zib.de), B1 and B2 are instances of the Steiner Tree Problem
from SteinLib (http://steinlib.zib.de)

Finally, RAU2 graph is a real-life scenario based on the current Uruguayan academic
network (www.rau.edu.uy).

A given graph can be associated with several instances that differ in their parameter
values. The last column in Table 1 indicates the problem instances created from each
considered graph.
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5.3. Numerical results and discussion

Table 2 reports the parameter values and the results obtained for each instance solved.
A given value in columns labeled L, R, ci j or ai means that the respective parameter is
constant for all paths between each pair of nodes in T. Otherwise, the “diff” label is used
to report when using different values. Instances marked with * are cases with R = 1,
where optimal solutions or upper bounds are known. Columns labeled opt, const, bin,
int and time report for each instance the optimal value (when attained), the number of
constraints, the number of binary variables, the number of integer variables, and the time
(in seconds) to solve each instance, without including the time taken to calculate Vq, the
set of nodes in the layered graph Gq. The number of constraints and variables before
the CPLEX presolve stage are reported; applying a presolve method could significantly
reduce that number.

Table 2: Instances details and experimental results

instance | T | | Q | L R ci j ai opt const bin int time (s)

I1 2 1 5 4 1 1 32 820 60 431 0.04
I2 11 55 7 2 diff 0 25 4497 30 25396 2.58
I3 11 55 8 2 diff 0 24 4992 30 29191 1.45
I4* 11 55 7 1 diff 0 20 4497 30 25396 137.13
I5* 10 45 3 1 1 1 10 16980 45 9887 0.04
I6 6 15 2 2 diff 1 9 7164 60 3169 0.03
I7* 24 396 4 1 1 0 23 24553 51 117201 2.35
I8* 9 36 50 1 diff 0 82 174268 104 238090 1319.00
I9* 13 78 50 1 diff 0 83 339570 79 515729 63177.00
I10 11 55 diff 2 diff 0 24 4713 30 27133 1.55
I11 11 55 diff 2 diff 0 26 4704 30 26983 3.33
I12 11 55 diff diff diff 0 25 4704 30 26983 14.28
I13 10 45 diff diff diff diff 12 16909 45 9374 0.06
I14 10 45 diff diff diff diff 18 25519 67 11696 0.14
I15 20 190 diff diff diff diff 6583 1944361 213 582187 8198.33

The experimental evaluation was performed over graphs with up to 85 nodes and 148
arcs. Most instances are solved in a few seconds, only two cases demanded more than an
hour: instance I9 (about 20 hours) and instance I15 (about two hours). Instances I8 and
I9 took longer to find the optimal solution; these are cases with R=1, and large sets L and
T. According to the cases studied, the parameters that most influence the resolution time
are |L| and |T|; the first is related to the dimensions of Gq and the second to the number of
graphs. In effect, the quantity of x variables, which are the most numerous, depends on
|Q|, |L| and 2×|E|, since each Gq is a directed graph. The number of remaining variables
(all binary) depends on the number of Steiner nodes and the quantity of undirected edges.

For a given specific instance (I15), we explored several values of |T| in the experi-
ments. The largest value of |T| for which we were able to obtain results in reasonable
execution times (less than 24 hours) was |T|= 20. This is a relevant result for our research
community since all variants of I15 problem instance are built over the real infrastruc-
ture of our Uruguayan academic network, allowing to explore different configurations for
survibability and quality of service for academic and research projects.
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Table 3 reports the lower and upper bounds computed for each instance solved. The
column labeled Bound, indicates the kind of bound reported. Possible values are: LB1,
LB2, UB1, UB2, UB3, or UB4, whose meaning has already been described in 4.

Table 3: Lower and upper bounds

instance optimum LB1 LB2 UB1 UB2 UB3 UB4

I1 32 32 32 32
I2 25 24.14 24 70
I3 24 24 24 70
I4* 20 12.07 20 84 79 26 42
I5* 10 9 9 21 18 15 25
I6 9 9 6 17 24 19
I7* 23 20.8 22 51 51 43 65
I8* 82 72 82 131 141 131
I9* 83 72.5 83 148
I10 24 24 24 62
I11 26 24.36 24 62
I12 25 22.5 22 60
I13 12 11.5 10 24
I14 18 18 17 20
I15 6583 6278.25 4308 13211

6. Conclusions and future work

In this paper we presented and evaluated a formulation for the Hop Constrained Sur-
vivable Network Design Problem.

We focused on the node survivability case for networks represented by simple and
undirected graphs, not rooted demands, and considering costs in arcs and Steiner nodes.
Based on the related previous works, we have developed a new formulation that accounts
for specific quality of service and survivability constraints. The proposed model allows a
heterogeneous setting for the network by including different values for the length of paths
(related to the quality of service) and the number of paths (related to the connectivity
demands), between each pair of terminal nodes.

The proposed formulation was evaluated for medium-size instances with up to 85
nodes and 148 arcs. The evaluation accounted for a significantly large number of de-
cision variables. The CPLEX implementation of the proposed formulation was able to
effectively solve all but one instance to optimality. Most of the problems were solved in
a few seconds. Instance I15, which is based on a real network, was solved in about two
hours. No optimal solution was computed for instance I9. The results for instance I15 are
relevant, as this case study models the current Uruguayan academic network.

We used relaxation methods to compute lower bounds for the problem. In addition,
decomposition techniques and heuristic methods were proposed to find upper bounds.
This approach allowed to find accurate lower bounds that are close to the optimal solution
for the set of problem instances considered in this article.
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In the case of upper bounds, results allowed to conclude that UB1, UB2, UB3 are hard
to calculate for some instances. Nevertheless, UB4 can be computed faster and it allows
computing results for all instances in less than one hour. In this last case, we find that the
proposed heuristic is sensible to preference order in Q, but rather insensitive to chosen
diversification technique.

The main lines for the actual and future work are related to: (i) improving UB4, trying
to introduce an effective diversification technique or to develop a local search phase that
explores neighborhoods of global feasible solutions, (ii) improving the techniques for
constructing and managing the graph Gq and applying decomposition algorithms in order
to be able to solve significantly larger instances applying the proposed ILP formulation,
(iii) try to measure and to assure the distance to optimum of approach solutions, (iv)
introducing new instances of graph with special topologies that put to test the algorithms
or other instances, particular cases of HCSNDP problems, with known optimal solutions.
Being the HCSNDP a NP-hard problem, this kind of (relaxed) exact algorithms may be
useful when combined with heuristic methods in order to effectively solve large instances
modeling real-life situations.
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Chapter 3

An Approximation Algorithm for the
Two-Node-Connected Star Problem with

Steiner Nodes

The Two-Node Connected Star Problem (2NCSP) is a natural extension of the Ring Star Problem (RSP)
where the ring is replaced by an arbitrary two-node connected topology. In this chapter, an extension
of the 2NCSP is proposed, allowing the introduction of optional Steiner nodes in the two-connected
structure if it were economically convenient. An exact Integer Linear Programming (ILP) formulation
for this problem is presented as well as an approximation algorithm.
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Abstract
The goal in topological network design is to build a minimum-cost topology meeting

specific real-life constraints. There is a cost-robustness trade-off under single and multiple
failures.

Previous works in the field suggest that a backbone composed by a two-node-connected
toplogy provides savings with respect to elementary cycles. Consequently, we introduce the
Two-Node Connected Star Problem with Steiner Nodes (2NCSP-SN). The goal is to design
a minimum-cost topology, where the backbone is two-node connected, the access network
is connected in a star topology or by direct links to the backbone, and optional nodes (called
Steiner nodes) could be included in the solution. The 2NCSP-SN belongs to the class
of NP-Hard problems. This promotes the development of heuristics and approximation
algorithms.

An approximation algorithm of factor 4α for the 2NCSP-SN is introduced, being
α ≥ 1/2 the cost-ratio between backbone and access links. This is a generalization of the
well-known factor 2 for the design of minimum-cost two-connected spanning networks (if
we fix α = 1/2). Finally, an exact Integer Linear Programming (ILP) formulation is
proposed in order to highlight the effectiveness of the approximation algorithm. The
results confirm a small gap between the globally optimum solution and the topology
offered by our approximation algorithm when the ratio α is close to 1/2.

Keywords: Network Optimization, Approximation Algorithm, Integer Linear
Programming
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1 Motivation

The minimum-cost toplogy meeting simple connectivity is the Minimum
Spanning Tree, or MST. In this basic setting, Greedy algorithm efficiently finds
the MST [3]. However, the design of communication systems is more challenging,
since the cost-redundancy trade-off should be tackled. In the physical layer, this
means that the network must be robust under single failures of any component, or
two-node connected.

A natural way to connect terminal nodes in order to fulfill two-connectivity is to
consider an elementary cycle. The design of a minimum-cost elementary cycle is a
celebrated problem, known as the Travelling Salesman Problem or TSP. Supported
by the concept of reducitibility and Karp list, it is well-known that the TSP belongs
to the class of NP-Hard problems [2]. Indeed, a natural reduction to Hamiltonian
tour is obtained using 0-1 costs in their links.

A foundational work credited by Clyde Monma et. al. confirms that
elementary cycles are sub-optimal for the design of minimum-weight
2-node-connected spanning network problem or MW2CSNP [5]. However, the
authors show that cost of the cheapest Hamiltonian tour, CH , always respects the
inequality CH ≤ 4/3OPT, being OPT the cost of the globally optimum solution.
Furthermore, the bound is tight, since they build an asymptotic family of graphs
such that the cost-ratio tends to 4/3. The authors find structural properties of the
globally optimum solution for the MW2CSNP and, they remark that the optimum
2-edge connected is also 2-node connected. The MW2CSNP is at least as hard as
the TSP (using 0-1 costs, OPT is not greater than the number of nodes iff the
graph is Hamiltonian). Therefore, several authors address the MW2CSNP using
heuristics and approximation algorithms. Christofides provides a 3/2-factor for
metric TSP which, together with the 4/3 factor credited by Monma et. al. results
in an approximation algorithm with factor 2 for the MW2CSNP [1]. This factor-2
can be extended to several topological network design problems such as Steiner
Networks, using either combinatorial analysis or strong duality theorem from
linear programming [8,9].

The physical implementation of fiber-optics communication imposed a new
challenge, geographical diversity. As a consequence, real-life communication
networks are hierarchically structured in a backbone and access network, where
customers in the last-mile have elementary connectivity requirements [7]. Martine
Labbé et. al. introduced a hierarquically organized network, called Ring Star
Problem, where the backbone is a ring and the access network is a star, this is,

1 Emails:{gferreira,frobledo,promero}@fing.edu.uy
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direct links connected to the ring [4]. A natural topological extension called
Two-Node Connected Star Problem (2NCSP) has been introduced by Recoba et.
al. [6]. The ring is replaced by an arbitrary two-node connected topology, and the
authors confirm savings with respect to optimal solutions for the RSP (which are
in turn feasible for the 2NCSP). Here, an extension of the 2NCSP is proposed, by
the introduction of optional Steiner nodes in feasible solutions.

Complexity: Being RSP and 2NCSP NP-Hard problems, 2NCSP-SN is NP-
Hard too.

The contributions of this article are the following:
• The Two-Node-Connected Star Problem with Steiner Nodes (2NCSP-SN) is here

introduced.
• A generalization of the factor-2 result is offered. Specifically, an approximation

algorithm with factor 4α is introduced for the 2NCSP, being α ≥ 1/2 the relation
between the link-costs from the backbone/access network.

• An exact Integer Linear Programming (ILP) formulation for the 2NCSP-SN is
presented.

• A sensibility analysis is carried out in order to understand the effectiveness of
our approximation algorithm.

The paper is organized as follows. Section 2 formally presents the 2NCSP-SN
using an ILP formulation. An approximation algorithm with factor 4α is introduced
in Section 3. A fair comparison between the globally optimum solution and the
approximation algorithm is performed in Section 4. Finally, Section 5 presents
concluding remarks and trends for future work.

2 Two-Node-Connected Star Problem with Steiner nodes

We are given a simple graph G = (V,E), internal link-costs IC = {ce}e∈E, external
link-costs EC = {de}e∈E, and V = S ∪ T, being T the terminal-set and S Steiner
nodes with costs {a(s)}s∈S. The goal in 2NCSP-SN is to build a minimum-cost
spanning subgraph H = (VH,EH), where T ⊆ VH and VH = I ∪ L, being L the
set of leaf-nodes (in the access network), such that de1H(v) = 1,∀v ∈ L, and the
induced subgraph H(I) is two-node-connected.

Let us develop an ILP for the problem under study. The key idea is to consider
connectivity requirement rq = 2 for every pair of terminals q from the backbone,
while rq = 1 otherwise. Let Q = {q = (i, j),∀i , j, i, j ∈ T ⊆ V}. Consider the
following set of binary variables:
• zi j = 1 iff (i, j) ∈ E is in the backbone;
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• yi j = 1 iff (i, j) ∈ E is in the access network;
• xq

i j is the i − j flow for every pair of terminals q;
• pi = 1 iff the i is included in the access network.

An ILP formulation for the 2NCSP-SN can be expressed as follows:

minH⊆Gc(H) =
∑

i j∈E
ci j.zi j +

∑

s∈S
as.ps +

∑

i j∈E
di j.yi j (1)

s.t.
∑

j:( j,i)∈E
xq

ji −
∑

j:(i, j)∈Edq

xq
i j = I(i).ri ∀i ∈ V, ∀q = (qo, qd) ∈ Q (2)

I(i) = 1 ∀i ∈ V\{qo}, I(qo) = −1 (3)
ri = 0 ∀i ∈ V\{qo, qd} (4)
max(1, pqo + pqd) ≤ ri ≤ 1 +min(pqo , pqd), ∀i ∈ {qo, qd}, ∀q ∈ Q (5)
xq

i j + xq
ji ≤ zi j + yi j, ∀i j ∈ E, ∀q ∈ Q (6)∑

j∈δ(i)

yi j ≤ 1 +Mpi, ∀i ∈ T (7)

∑

j∈δ(i)

(zi j + yi j) ≤Mpi, ∀i ∈ S (8)

yi j ≤ 2 − pi − p j, ∀i j ∈ E, i, j ∈ V (9)
zi j ≤ min(pi, p j), ∀i j ∈ E, i, j ∈ V (10)
zi j + yi j ≤ 1 ∀i j ∈ E, i, j (11)

2pi ≤
∑

j∈δ(i)

zi j ≤Mpi, ∀i ∈ V (12)

Where δ(i) is neighbor-set for node i, and M is an arbitrarily large integer.
The objective function (1) is the contribution of internal/external connections and
Steiner nodes. Constraints (2)-(5) ensure connectivity using Kirchhoff equations.
Constraints (6) and (7) force one-way flow. By Constraint (8), optional Steiner
nodes belong to the backbone, if needed. The definitions of binary variables yi j and
zi j are captured by Constraints (9) and (10). Constraints (11) state that either yi j or
zi j can be set to 1, but not both. Finally, Constraints (12) state that a terminal node
from the backbone could have multiple links, but nodes that belong to the access
network must have a single link.
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3 Approximation Algorithm

From now on, we assume that the internal/external costs are positive and internal
costs satisfy the triangle inequality. Without loss of generality, a complete graph
G = (V,E) is considered. Let αe =

ce
de
,∀e ∈ E be the primary/secondary cost

ratio for each arc. In this section we build an approximation algorithm for the the
2NCSP-SN of factor 4α, being α:

α = max
e∈E
{αe} (13)

Recall that Christofides’s algorithm is a 3/2-factor for the metric TSP. The key
concept of our approximation algorithm is Christofides in order to span the
terminal-set with an elementary cycle. Greedy augmentations of the solution
including Steiner nodes also takes place, whenever the cost is reduced.

In Line 1, Christo f ides is called in order to build an elementary cycle C that
spans the terminal-set T. The corresponding solution is updated in Lines 2-3, where
the backbone is C and the access network is empty yet. In the while-loop (Lines
4-11), Steiner nodes are greedily included in the backbone, whenever the cost is
reduced (Line 5). If this happens, some terminal node v is included in the access
network, and the evidence s ∈ S is added to the backbone (Lines 6-7). Observe that
candidate terminals t ∈ T are iteratively checked (Line 9), and the condition |J| ≥ 3
forces to have a cycle in the backbone. The corresponding feasible solution F is
finally returned (Line 12).

Require: G = (T ∪ S,E),c(e), d(e)∀e ∈ E,
1: C ← Christo f ides(G, c)
2: L← ∅, I← T, E′ ← E(C), J← T
3: F← (L ∪ I,E′)
4: while |J| ≥ 3 do
5: if there are s ∈ S, (t, v), (v,w) ∈ F: c(t, v) + c(v,w) > d(v, s) + c(t, s) + c(s,w) then
6: L← L ∪ {v}, I← I ∪ {s} \ {v}, J← J\{t, v}
7: E′ ← E′ ∪ {(t, s), (s, v), (s,w)} \ {(t, v), (v,w)}
8: else
9: J← J \ {t}

10: end if
11: end while
12: return F = (I ∪ L,E′)

30



Lemma 3.1 If L(F) , ∅ then α > 1/2

Proof. By the triangle inequality, c(t,v) ≤ c(t,s) + c(s,v) and c(v,w) ≤ c(v,s) + c(s,w), so
c(t,v) + c(v,w) ≤ c(t,s) + 2.c(s,v) + c(s,w). If L , ∅, there exists v ∈ L, s ∈ S ∩ I, t,w ∈ I
such that c(t,v) + c(v,w) > d(v,s) + c(t,s) + c(s,w),
Therefore d(v,s) = c(v,s)/αv,s < 2.c(s,v), so there exists e = (v, s) such that αe > 1/2,
that is α > 1/2 with α = maxe∈E {αe}.

�

Theorem 3.2 c(F) ≤ max{2, 4α} ×OPT.

Proof. Let G∗ = (S∗∪T,E∗) be the optimal solution, H the cheapest Hamilton tour
spanning T and HS the cheapest Hamilton tour spanning T ∪ S∗. Analogously, let
us denote TNC (TEC) to the optimal 2-node (resp. 2-edge) connected spanning
subgraph for T ∪ S∗. Recall that F is the output and C the cycle obtained using
Christofides algorithm. Combining Monma and Christofides theorems:

c(G∗) ≤ c(F) ≤ c(C) ≤ 3
2

c(H) ≤
(3
2

) (4
3

)
c(TNC) = 2c(TNC) (14)

Let G∗ = B∪L, being B its backbone. Consider an augmentation F′ for G∗, doubling
edges from L with cost cr, j = αr, jdr, j and adding them. F′ is 2-edge connected and

c(F′) = c(B) + 2
∑

r∈L
cr, j ≤ c(B) + 2α

∑

r∈L
dr, j = 2αc(G∗) + (1 − 2α)c(B), (15)

If 1 − 2α > 0, c(F′) ≤ 2αc(G∗) + 2(1 − 2α)c(G∗) ≤ 2c(G∗). In this case a factor
2 is provided, and by Lemma 3.1 F consists of an elementary cycle.

Otherwise, combining (14) and (15) we have that:

c(G∗) ≤ c(F) ≤ 2c(TNC) = 2c(TEC) ≤ 2c(F′)
≤ 4αc(G∗) + 2(1 − 2α)c(B)
≤ 4αc(G∗).

�

4 Proof-of-Concept

In order to highlight the effectiveness of our approximation algorithm, a sensibility
analysis with respect to the ratio α is carried out. We consider a single instance from
TSPLIB named berlin52.tsp. This is the case of a real-life network with Euclidean

31



costs. In order to find the globally optimum solution, an induced subgraph with 22
nodes is considered (with 10 terminal-nodes and 12 Steiner nodes). The ILP has
been executed in CPLEX 12.6.3 MIP solver using an Intel i7 processor, 2.30 GHz,
8GB RAM. Table 1 illustrates the performance c(F)/OPT as a function of α. In
these examples we take αe constant: αe = α ∀e ∈ E. The cycle C obtained using
Christofides algorithm is c(C) = 3164.8, while the cheapest Hamiltonian tour H
spanning the terminal-set has a cost c(H) = 2826.5. Naturally, since F considers
greedy augmentations of C, we get that c(F) ≤ c(C) in all cases.

Table 1
Sensibility Analysis as a function of α

α OPT c(F) c(F)/OPT

10 485.78 3117.3 6.42

4 1110.48 3164.8 2.85

2 2115.02 3164.8 1.50

4/3 2611.45 3164.8 1.21

1 2786.80 3164.8 1.14

4/5 2811.63 3164.8 1.13

2/3 2822.88 3164.8 1.12

4/7 2825.60 3164.8 1.12

Our approximation algorithm outperforms Christofides only when α = 10. In
this case Steiner nodes are included in the solution. The factor is far away from 4α
in all cases. Furthermore, when α = 4/7 the ratio 1.12 is the lowest. Curiously
enough, the results suggest that the performance is consistently better when the
ratio α is decreased.

5 Conclusions and Trends for Future Work

The Two-Node Connected Star Problem with Steiner Nodes (2NCSP-SN) is
introduced. Its hardness promotes heuristics and approximation algorithms. Here,
we introduce an approximation algorithm of factor 4α for the problem, being
α ≥ 1/2 the minimum ratio among internal/external costs. An exact ILP
formulation is also proposed. The celebrated factor 2 from Steiner networks is
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retrieved when α = 1/2. Furthermore, a proof of concept suggests that the
performance of the algorithm is consistently better when α is close to 1/2.

Currently, we are working to develop a full GRASP methodology enriched with
Variable Neighborhood Descent (VND) to find high-competitive solutions for the
2NCSP-SN.
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Part II

Graph Fragmentation Problem





Chapter 4

Graph Fragmentation Problem for
Natural Disaster Management

The Graph Fragmentation Problem (GFP) was defined as a worst case analysis of an abstract epidemic
modelling, it can bee seen as a particular case of the Node Immunization Problem (NIP) when the level
of virulence is innite. In the GFP a population is represented by a graph, and there is a budget constraint
B, that allows to immunize or protect only B nodes or individuals of population. The nature picks a
node v uniformly at random from population represented by a graph, if the individual is not protected,
the disaster kills all the members of the same connected component as v. The goal is to minimize the
expected number of deaths. In this chapter a mathematical programming formulation and exact resolution
for small instances are introduced.
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Abstract. Natural disasters represent a threaten for the existence of human
beings. Given its remarkable importance, operational researchers should
contribute to provide rationale decisions.
In this paper we study a purely combinatorial problem that models management
disasters, called Graph Fragmentation Problem, or GFP for short. The problem
belongs to the N P-Hard class. As corollary, finding the optimal protection
scheme is prohibitive for large populations. First, we review the problem and its
properties. Then, we introduce a mathematical programming formulation and
exact resolution for small instances. Finally, we discuss feasible model
extensions and trends for future work.

1 Motivation

History reveals painful memories full of pandemics, lighting shocks and fires. The
Spanish flu from 1918 was deadlier than any war in history, and half the population of
the world has been exposed to the virus [14]. An infernal fire in October 1871 ravaged
part of Chicago, leaving more than 90.000 homeless and 300 deaths [10].

We encourage operational researchers to be engaged with society, and provide
means to cope with natural disasters. In this paper, we follow the research line
introduced in [12]. There, a single individual of a population is exposed to a natural
disaster, and the disaster is immediately propagated through neighbors. Our task is to
determine a sub-population that is protected beforehand, subject to a budget constraint.
Clearly, the notion of protection depends on the specific application (location of
fire-stations, isolation in electric systems, vaccination against a pandemics).

This paper is organized as follows. Section 2 presents the background of the
problem under study, and its origin from epidemic modelling. Section 3 presents a
formal definition of the GFP. Theoretical results for the GFP are presented in
Section 4, together with the main approaches to address the problem. The main
contributions are offered in Section 5, 6 and 7. Specifically, a mathematical
programming formulation for the GFP is introduced in Section 5. Lower and upper
bounds are obtained in Section 6, inspired by relaxations. An experimental analysis is
carried out in Section 7, where we test the performance of our exact solution for the
GFP under different test cases coming from real-life applications. It is worth to notice
that the literature in the exact analysis of the GFP is scarce, and here we provide the
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first steps towards the development of optimal protection schemes under this
fundamental model. Section 8 presents feasible model extensions, concluding remarks
and trends for future work.

2 Background

A cornerstone in epidemic model is classical SIR (Susceptible -Infected - Removed). In
SIR it is assumed a fully-mixed infinite population with random contacts. More realistic
models are available from authoritative literature in the field [9, 2]. They consider a
graph and epidemic spread governed by probabilistic rules. The authors claim that node-
protection (choosing which nodes to remove, so that the epidemic cannot propagate
through them) is a presumably hard task, but they do not provide hints nor mathematical
proofs.

The Graph Fragmentation Problem, or GFP, represents a worst case analysis of an
abstract epidemic modelling. In [12], a realistic SIR-based model is provided, and the
Graph Fragmentation Problem (GFP) is introduced as an extremal analysis of highly
virulent scenarios. Incidentally, it models other catastrophic events, such as
fire-fighting and electric shocks (the formal model is presented in Section 3). There,
only Greedy-based heuristics are presented, and there is no complexity analysis. A
GRASP heuristic enriched with a path-relinking post-optimization stage is developed
in [13].

The first result on computational complexity is offered for the GFP in [11]. The
authors prove that the GFP belongs to the class of N P-Hard problems. This
theoretical result confirms the intuition from epidemiologists that finding an optimal
node-protection mechanism is a hard task.

Curiously enough, in a more recent paper, the optimal protection scheme is found
in all acyclic graphs, elementary cycles and some bipartite graphs [1]. In contrast, GFP
presents a strong inapproximability result for general graphs. More specifically, there is
no approximation algorithm with factor lower than 3/2, unless P = N P .

3 Graph Fragmentation Problem

We are given a population represented by a graph G = (V,E), and a budget constraint
B, which is a natural number B such that 0 ≤ B ≤ |V |. We can choose B nodes and
protect them: we delete the nodes from G obtaining a subgraph G′, so that the chosen
nodes cannot be affected by the disaster. The nature picks a node v uniformly at
random from G′. The disaster kills all the members of the same connected component
as v.

The goal is to minimize the expected number of deaths. Mathematically, if the
subgraph G′ has V ′ = n nodes and k connected components with orders n1, . . . ,nk, the
probability to choose component i is ni/n. Therefore, the expected number of deaths is
E(G′) = ∑k

i=1 ni pi, with pi = ni/n. The goal of the Graph Fragmentation Problem
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(GFP) is to choose the protected set in order to minimize the expected number of
deaths:

min
U⊆V

k

∑
i=1

n2
i

n

s.t.|U | ≤ B.

Observe that the denominator n is constant for a fixed instance (G,B) in the GFP.
Therefore, our problem is to minimize the Euclidean norm of the vector n=(n1, . . . ,nk),
or Constrained Euclidean Norm Minimization (CENM):

min
U⊆V
‖nG−U‖2

s.t.|U | ≤ B,

where nG−U = (n1, . . . ,nk) is the vector with the orders of the connected components
from G′ = G−U . Observe that the objective function ‖nG−U‖2 is minimized when the
resulting graph G′ = G−U has isolated nodes. The reader is invited to consult [1, 6, 4]
for a discussion of related vulnerability metrics.

4 Analysis

In this section we highlight the main ideas on the analysis of the GFP for a better
understanding of the problem. The following problem will be used to characterize the
computational complexity of the GFP.

Definition 1 (Minimum Cardinality Vertex Cover)
Instance: simple graph G = (V,E) and positive integer k.
Does there exist a node-set U such that |U | ≤ k and every link is incident to some node
from U?

Recall that Minimum Cardinality Vertex Cover belongs to Karp list of 21 N P-
Complete decision problems [8].

Theorem 1. The GFP belongs to the class of N P-Hard problems.

Proof. The graph G′ = G−U has isolated nodes if and only if U is a vertex cover,
where |U | ≤ B. Thus, the GFP is at least as hard as Minimum Cardinality Vertex Cover.

The following problem will be considered in order to prove a stronger
inapproximability result for the GFP:

Definition 2 (Multiway k-cut)
Instance: simple graph G = (V,E), terminal set K ⊆V with |K|= k, positive integer B.
Does there exist a separator set U ⊆V −K with |U | ≤ B such that each terminal node
belongs to different components in G−U?
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We know that Multiway 2-cut is in P . A polynomial time algorithm is provided by
Ford and Fulkerson [5]. However, Multiway k-cut is N P-Complete for every fixed
k ≥ 3 [3].

Theorem 2. It is N P-hard to approximate GFP within 5
3 − ε , for any ε > 0.

Proof. Consider an instance of Multiway 3-cut with ground graph G = (V,E),
distinguished nodes {v1,v2,v3} and positive integer B. Replace those nodes by large
cliques {KN ,KN ,KN}, where N >> |V |. The order of the new graph G∗ is roughly 3N.
If the instance accepts a 3-cut, the cost in the GFP with instance (G∗,B) is roughly N.

Otherwise, the expected number of dead nodes is never lower than (2N)2+N2

3N = 5N
3 .

Therefore, an approximation algorithm with factor 5/3 would decide if G with
distinguished nodes {v1,v2,v3} accepts a 3-cut using B nodes. The existence of such
algorithm implies the solution of 3-cut.

Even though the GFP does not accept an optimal solution in polynomial time (unless
P = N P), there exists a dynamic programming-based polynomial time method to
find the optimal solution in acyclic graphs:

Theorem 3. If G is acyclic, there exists a polynomial time algorithm to find the best
protection scheme with B nodes.

Proof. First, consider arbitrary graphs G1 and G2 that accept a polynomial time
algorithm for any B, then we can solve the problem for G = G1 ∪ G2, using all
partitions B = B1 +B2. This reasoning holds for disjoint branches of a rooted tree (the
root is arbitrary in this context). We can consider leaf nodes and their parents, and
proceed with disjoint branches as before. The number of stages in a dynamic
programming algorithm is not more than the height of the tree (which is not greater
than the order of the graph). Finally, the result hold for acyclic graphs. Just connect all
the trees by a fixed auxiliary node and consider the previous algorithm for the resulting
tree. The reader is invited to consult [1] for technical details.

Theorem 4. The size of the connected components in G′ = G−U must be as even as
possible.

Proof. Let n1 ≥ n2 ≥ . . . ≥ nk be the orders of the connected components in G′. If
|n1−nk| ≥ 2, a straight calculation shows that ‖(n1, . . . ,nk)‖2 ≥ ‖(n1−1, . . . ,nk +1)‖2.
This means that the cost in the GFP is reduced whenever the size of the components in
G′ are as even as possible.

There is no general result for cyclic graphs in general. However, the following result
holds for the elementary cycle:

Theorem 5. The best protection scheme is known for the cycle Cn.

Proof. Delete an arbitrary node, and obtain an elementary path. Then, protect B− 1
nodes in such a way that the resulting sub-paths are as even as possible. By Theorem 4,
the resulting graph provides the minimum-cost protection scheme.
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Let us further analyze the GFP for bipartite graphs. Consider G= (V1∪V2,E) where
E ⊆V1×V2. Recall that König theorem asserts that the minimum cardinality of a vertex
cover in bipartite graphs is precisely the size of the maximum matching L. This number
can be found by Ford and Fulkerson algorithm: connect all nodes from V1 to a source
s, all the nodes from V2 to a sink t, and find the max-flow with unit capacities in the
links. If B≥ L, all nodes from a vertex cover can be protected, and they can be found in
polynomial time. We obtain the following:

Theorem 6. The optimality for the GFP can be found in polynomial time for all
bipartite graphs whenever B is not lower than the maximum matching.

The computational complexity for the GFP remains open for bipartite graphs in
general.

5 Mathematical Programming Formulation

An integer quadratic programming model (IQP) for the GFP is developed. In the model
we consider a directed graph Gd = (V,E ′), where every link from G is replaced by two
one-way links. Consider the following model variables:

– nk: size of connected component k;

– Ui ∈ {0,1}, i ∈V : node i ∈U (or not);

– xk
i j ∈ {0,1}, (i, j) ∈ E: link (i, j) belongs to component k in G;

– Nk
i ∈ {0,1}, i ∈V : node i belongs to the component k;

– yu,v
i j ∈ {0,1}, (i, j) ∈ E, u,v ∈ V : there is some u-v-path that includes (i, j) in the

way i→ j.
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The mathematical programming model is the following:

min. ∑
i=1..K

n2
i /(n−B) (1)

s.t. ∑
j∈V

U j ≤ B, (2)

∑
j∈V

Nk
j = nk,∀k = 1 . . .K (3)

∑
k=1...K

Nk
j = 1−U j,∀ j ∈V (4)

Nk
i +Ns

j ≤ 1,∀i, j ∈V, i 6= j,(i, j) ∈ E,∀k,s ∈ K,s 6= k, (5)

∑
k=1...K

xk
i j ≤ (1−Ui),∀(i, j) ∈ E, i, j ∈V (6)

∑
k=1...K

xk
i j ≤ (1−U j),∀(i, j) ∈ E, i, j ∈V (7)

Nk
i +Nk

j ≤ 1+ xk
i j,∀k ∈ 1 . . .K,∀(i, j) ∈ E, i, j ∈V (8)

yu,v
i, j + yu,v

j,i ≤ ∑
k=1...K

xk
i j,∀u,v ∈V,∀(i, j) ∈ E, i, j ∈V (9)

∑
(u, j)∈E ′

yu,v
u, j ≥ Nk

u +Nk
v −1,∀u,v ∈V,∀k ∈ 1 . . .K (10)

∑
(u, j)∈E ′

yu,v
u, j = ∑

(i,v)∈E ′
yu,v

i,v ,∀u,v ∈V (11)

∑
(r, j)∈E ′

yu,v
r, j = ∑

(i,r)∈E ′
yu,v

i,r ,∀r,u,v ∈V,r 6= u,r 6= v (12)

The objective function captures de cost of the GFP (1). Inequality (2) represents
the budget constraint. The size of each connected component is found using Constraint
(3). Constraints (4) set Nk

j = 0 for every k whenever j is picked for protection.
Furthermore, if j is not picked for protection, exactly one member of the variable-set
{Nk

j }k=1...n must be set to 1. Constraints (5) avoid the existence of a path between
different connected components. In Constraints (6)-(7), the variable xk

i, j is set to 0
when at least one of i or j are protected. Constraints (8) respects the definition of the
binary variable xk

i, j. Constraints (9)-(12) represent Kirchhoff equations, that ensure
connectivity in each component. The binary variables yu,v

i, j represent the u-v flow that is
carried in the link (i, j). Constraint (9) avoids two-way flows. Constraints (10)-(12)
model this flow.

This is an IQP formulation or more general, a mixed integer quadratic problem
(MIQP). It is well known that it is NP-hard. However, it is important to remark that,
differently from MILP or ILP, the source of complexity of IQP is not restricted to the
integrality requirement on variables [?].

6 Bounds for the GFP

A lower bound is found by a natural relaxation of the problem, where the variables nk,
xk

i j, Nk
i and yuv

i j assume real values. Although this problem is also MIQP, only Ui
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variables remain binary. In order to find an upper-bound, the objective function is
modified, and as a result we obtain an integer linear program. Observe that all the
constraints are linear. Since we preserve all constraints, a feasible solution for the GFP
is produced. The new objective function is to minimize the size of the largest
component.

The upper bound of GFP is an ILP, also NP-hard. It is modeled as follows:

minZ with:
s.t.nk ≤ Z, ∀k

Eq.(2)− (12)

7 Proof of Concept

This section presents the exact analysis that is product of our mathematical
programming model under selected real-life networks. The model was implemented in
CPLEX 12.6.3.0, MIP solver, and the executions were performed on an eight-core
Intel i7 processor at 3.07 GHz, 16GB RAM. As a proof-of-concept, four graphs
coming from real-life applications were considered:

– The electrical optical network EON considered by Gouveia et. al [7]. See
Figure 1(b).

– The National Science Foundation Network form the USA, also considered in the
previous study [7]. See Figure 1(c).

– The Uruguayan Academic Network, RAU2, depicted in Figure 1(d).
– ARPANET (Advanced Research Projects Agency Network), depicted in

Figure 1(e).

We also considered a toy example in which the analysis is straight (see graph N1 from
Figure 1(a)). Table 1 summarizes the main characteristics of the graphs considered in
the experimental analysis. Columns LB, UB and Opt stand for lower-bound, upper-
bound and optimal value, respectively. The optimal value was calculated solving the
exact model developed in Section 5.

Table 1. Results

graph |V | |E| B |V |−B LB UB Opt

N1 9 8 1 8 1.03 4.00 3.50
RAU2 10 17 2 8 1.06 2.75 2.75
NFSNET 14 52 5 9 1.13 4.56 4.56
EON 19 36 6 13 1.06 3.46 3.00
ARPANET 20 25 5 15 1.04 2.87 2.60

The gap between the upper bound (UB) and the optimal value in the GFP (opt) is
small under all instances. This highlights the fact that the size of the connected
components should be as even as possible, in a strict correspondence with Theorem 4.
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(a) N1 graph (b) EON graph

(c) NFSNET

(d) RAU2

(e) ARPANET

Fig. 1. Test graphs
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Curiously enough, if we consider ARPANET with budget 6 instead, the optimal
solution could not be found in a reasonable time (less than 48 hours). However, the
bounds are efficiently found in that case, where either some variables assume real values
or a the objective is replaced by a linear one.

Note that a trivial lower bound for GFP is 1. In effect, when we protect and remove
B nodes in any graph, there are |V | −B remaining nodes and in the best case, these
result all disconnected. Then, there would be |V |−B connected components with size
1 and the value of objective function for lower bound is 1. As shown in the Table 1,
all values found for proposed lower bound, are very near to the trivial lower bound. It
would be desirable to improve these values in future work or to research if this gap has
some theoretical basis.

The complexity of the quadratic objective function promotes further research in the
analysis of exact and approach algorithms for the GFP.

8 Conclusions and Trends for Future Work

We strongly believe that operational researchers should be engaged with the society in
providing means to cope with risk analysis and natural disasters. A purely combinatorial
problem is studied in this paper, called Graph Fragmentation Problem or GFP. The GFP
belongs to the class of N P-Hard problems, and there is no hope to find efficient
algorithms to solve it optimally, unless P = N P . However, it is possible to solve
cases where the population is configured with no cycles or elementary cycles.

A new mathematical programming formulation for the GFP is introduced in this
paper, together with bounds. Exact resolutions in CPLEX confirm the fact that optimal
solutions can be obtained for the GFP under small populations. Futhermore, there
computational efficiency of an integer linear programming relaxation is notorious, and
provides feasible solutions with small gaps for the optimal GFP.

Further research includes the development of heuristic methods, extended models,
and the interplay between related relaxations. Observe that in the GFP it is assumed
that a singleton is picked uniformly at random. This selection law could be modified,
and the attacker could select relevant individuals from the system first. As future work,
we would like to understand this generalization of the GFP with weighted nodes and
adaptive protection schemes. Game theory provides a means to find optimal answers to
different attacking systems.
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References

1. Manuel Aprile, Natalia Castro, Franco Robledo, and Pablo Gabriel Romero. Analysis of
Node-Resilience strategies under natural disasters. In International Conference on Design of

46



Reliable Communication Networks 2017 (DRCN 2017), pages 93–100, Munich, Germany,
March 2017.

2. Frank Ball and David Sirl. Acquaintance vaccination in an epidemic on a random graph with
specified degree distribution. J. Appl. Probab., 50(4):1147–1168, 12 2013.

3. E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and M. Yannakakis. The
complexity of multiway cuts (extended abstract). In Proceedings of the Twenty-fourth Annual
ACM Symposium on Theory of Computing, STOC ’92, pages 241–251, New York, NY, USA,
1992. ACM.

4. T. N. Dinh, Y. Xuan, M. T. Thai, P. M. Pardalos, and T. Znati. On new approaches of
assessing network vulnerability: Hardness and approximation. IEEE/ACM Transactions on
Networking, 20(2):609–619, April 2012.

5. L. R. Ford and D. R. Fulkerson. Maximal Flow through a Network. Canadian Journal of
Mathematics, 8:399–404.

6. T. Gomes, J. Tapolcai, C. Esposito, D. Hutchison, F. Kuipers, J. Rak, A. de Sousa,
A. Iossifides, R. Travanca, J. Andr, L. Jorge, L. Martins, P. O. Ugalde, A. Pai, D. Pezaros,
S. Jouet, S. Secci, and M. Tornatore. A survey of strategies for communication networks to
protect against large-scale natural disasters. In 2016 8th International Workshop on Resilient
Networks Design and Modeling (RNDM), pages 11–22, Sept 2016.

7. Luis Gouveia, Luidi Simonetti, and Eduardo Uchoa. Modeling hop-constrained and
diameter-constrained minimum spanning tree problems as steiner tree problems over layered
graphs. Mathematical Programming, 128(1):123–148, 2011.

8. R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and J. W. Thatcher,
editors, Complexity of Computer Computations, pages 85–103. Plenum Press, 1972.

9. M. E. J. Newman. The structure and function of complex networks. SIAM Review,
45(2):167–256, 2003.

10. John J. Pauly. The great chicago fire as a national event. American Quarterly, 36(5):668–683,
1984.

11. J. Piccini, F. Robledo, and P. Romero. Analysis and complexity of pandemics. In 2016 8th
International Workshop on Resilient Networks Design and Modeling (RNDM), pages 224–
230, Sept 2016.

12. Juan Piccini, Franco Robledo, and Pablo Romero. Node-Immunization Strategies in a
Stochastic Epidemic Model, pages 222–232. Springer International Publishing, Cham, 2015.

13. Juan Piccini, Franco Robledo, and Pablo Romero. Graph fragmentation problem. In
Proceedings of 5th the International Conference on Operations Research and Enterprise
Systems, pages 137–144, 2016.

14. J. K. Taubenberger, A. H. Reid, R. M. Lourens, R. Wang, G. Jin, and T. G. Fanning.
Molecular virology: Was the 1918 pandemic caused by a bird flu? Was the 1918 flu avian in
origin? (Reply). Nature, 440:9–10, April 2006.

47



48



Chapter 5

Graph Fragmentation Problem: Analysis
and Synthesis

Here the GFP is addressed by several approaches: metaheuristics, approximation algorithms, polytime
methods for specic instances, and exact methods for small instances. Also an analysis of GFP
computational complexity is included.
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Abstract

Vulnerability metrics play a key role in the understanding of cascading failures and target/random attacks to a
network. The Graph Fragmentation Problem (GFP) is the result of a worst case analysis of a random attack. We
can choose a fixed number of individuals for protection, and a non-protected target node immediately destroys all
reachable nodes. The goal is to minimize the expected number of destroyed nodes in the network.
In this paper, we address the GFP by several approaches: metaheuristics, approximation algorithms, polytime
methods for specific instances, and exact methods for small instances. The computational complexity of the GFP is
included in our analysis, where we formally prove that the corresponding decision version of the problem is NP-
Complete. Furthermore, a strong inapproximability result holds: there is no polynomial approximation algorithm
with factor lower than 5/3, unless P = NP . This promotes the study of specific instances of the problem for
tractability and/or exact methods in exponential time. As a synthesis, we propose new vulnerability/connectivity
metrics and an interplay with Game Theory, using a closely related combinatorial problem called Component Order
Connectivity.

Keywords: Vulnerability metrics; Graph Fragmentation Problem; Computational Complexity; Approximation Algorithms;
Metaheuristics; Game Theory.

1. Introduction

Modern connectivity theory is largely pressed by social networks analysis, disaster management and
business models in telecomunications. In the classical literature, we find minimum-cost
k-node-connected spanning topologies as a reference network design model (Monma et al., 1990; Stoer,
1993). This is a notion of survivability under a fixed number of component failures of a system. More
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recently, the focus moved towards disaster management, centrality and vulnerability metrics under
random/targeted attacks (Mauthe et al., 2016; Thai and Pardalos, 2011; Gouveia and Leitner, 2017).

Simulation tools were developed in order to capture a large framework of cascading failures in
epidemic modelling (Marzo et al., 2017). However, under cascading failures, the system is more robust
when the individuals are poorly communicated, in a strong contrast with modern connectivity theory.
To the best of our knowledge, there is no simulation tool available for both apparently antipodal
scenarios.

The Graph Fragmentation Problem (GFP) is the product of a worst case analysis of a random attack
under cascading failures, therefore, it is suitable for pandemic analysis. However, in its min-max version
we recover a previous problem called Component Order Connectivity (COC). The corresponding max-
min version for COC is a suitable connectivity metric.

The goal of this paper is to present a comprehensive analysis for the GFP, its relation with COC and
new feasible vulnerability/connectivity metrics as a synthesis. Both GFP and COC are formally
presented in Section 2. Section 3 contains a comprehensive analysis for the GFP. This section covers
several approaches for the problem in different subsections, such as Complexity (Subsection 3.1),
Approximation Algorithms (3.2), Polytime methods for special graphs (3.3), Exact Analysis (3.4) and
Metaheuristics (3.5). Each subsection is enriched with references for further reading. In Section 4 we
discuss vulnerability/connectivity metrics suggested by GFP and COC, and a potential interplay with
Game Theory. Finally, Section 5 summarizes the conclusions and trends for future work.

2. Graph Fragmentation Problem

This combinatorial optimization problem was introduced by Piccini et al. (2015), originally inspired
by epidemic modelling. We are given a population represented by a graph G = (V,E), and a budget
constraint B, which is a natural number B such that 0 ≤ B ≤ |V |. We can protect (i.e., delete) a
node-set U ⊆ V with cardinality |U | = B, obtaining a subgraph G′ = G − U . The nature picks a
node v uniformly at random from G′. The disaster kills all the members that belongs to the connected
component of v. The goal is to minimize the expected number of deaths.

Mathematically, if the subgraph G′ has |V ′| = n nodes and k connected components V1, . . . , Vk with
respective orders n1 ≥ n2 ≥ . . . ≥ nk, the probability to choose component i is ni/n. Therefore, the
expected number of deaths isE(G′) =

∑k
i=1 nipi, with pi = ni/n. The goal of the Graph Fragmentation

Problem (GFP) is to protect B nodes in order to minimize the expected number of deaths:

min
U⊆V

E(G− U) =

k∑

i=1

n2i
n

s.t.|U | = B.

Observe that the cost-function in the GFP is precisely E(G′), which represents the expected number of
deaths. A smart node-protection technique is desirable, since in practice the number of vaccines B (or
budget) is much lower than the population n = |V |.

The Component Order Connectivity problem (COC) is identical to the GFP, but the goal is to minimize
the size of the maximum connected component (the objective function is replaced by n1 = |V1|).
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3. Analysis

In this section we address the GFP using different approaches. The hardness of the corresponding
decision version is formally proved in Subsection 3.1. As Corollary, the GFP belongs to the class of
NP-Hard NP-Optimization problem. The treatment is kept as simple as possible.

Subsection 3.2 presents a negative result of inapproximability. In fact, there is no feasible
approximation algorithm with factor α < 5/3, unless P = NP . This promotes the definition of
tractable sub-problems (Subsection 3.3), finding exact solutions for small-sized instances
(Subsection 3.4) and the development of metaheuristics (Subsection 3.5).

3.1. Complexity

The hardness of the GFP has theoretical value. Indeed, in Piccini et al. (2016) it is proved that a large set
of Node-Immunization Problems are at least as hard as the GFP. Therefore, this proves that immunization
is a hard task, and the intuition from epidemiologist is correct. Here, we prove the hardness of the GFP
in a more simple way than in Piccini et al. (2016).

The following problem will be used to characterize the computational complexity of the GFP.

Definition 1 (Minimum Cardinality Vertex Cover).
Instance: simple graph G = (V,E) and positive integer k.
Does there exist a node-set U such that |U | ≤ k and every link is incident to some node from U?

Recall that Minimum Cardinality Vertex Cover belongs to Karp list of 21 NP-Complete decision
problems (Karp, 1972). Observe that if a vertex cover U is found, there is only one dead in G′ = G−U
for the GFP. This is clearly a globally optimum solution. The optimality for the GFP is strictly related to
the determination of a vertex cover.

Theorem 1. The GFP belongs to the class of NP-Hard problems.

Proof. The graph G′ = G − U has isolated nodes if and only if U is a vertex cover, where |U | ≤ B.
Thus, the GFP is at least as hard as Minimum Cardinality Vertex Cover.

3.2. Approximation Algorithm

The following problem will be considered in order to prove a stronger inapproximability result:

Definition 2 (Multiway k-cut).
Instance: simple graph G = (V,E), terminal set K ⊆ V with |K| = k, positive integer B.
Does there exist a separator set U ⊆ V − K with |U | ≤ B such that each terminal node belongs to
different components in G− U?

We know that Multiway 2-cut is in P . A polynomial time algorithm is provided by Ford and Fulkerson
(1956). However, Multiway k-cut is NP-Complete for every fixed k ≥ 3 (Dahlhaus et al., 1992). If the
answer of Multiway k-cut is affirmative for a given instance (G,K,B), such a separator set U ⊆ V −K
with |U | ≤ B is called a k-cut. Otherwise, there is no k-cut for instance (G,K,B), and the answer
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is negative. In the following, Kn denotes the complete graph or clique with n nodes, where all pair of
different nodes are adjacent. Additionally, Cn represents the elementary cycle with n nodes.

Theorem 2. It is NP-hard to approximate GFP within any factor α < 5
3 .

Proof. A sketch of the proof is here presented (the interested reader is invited to see the Appendix for
further details). Consider an instance of Multiway 3-cut with ground graph G = (V,E), distinguished
nodes K = {v1, v2, v3} and positive integer B. Replace those nodes by large cliques {KN ,KN ,KN},
where N >> |V |. The order of the new graph G∗ is roughly 3N . If the instance admits a 3-cut, i.e. a
subset whose removal separates v1, v2, v3, then the optimal cost in the GFP with instance (G∗, B) is
roughly N . Otherwise, the expected number of dead nodes is never lower than (2N)2+N2

3N = 5N
3 .

Therefore, an approximation algorithm with factor strictly less than 5/3 would determine whether
(G,K) admits a 3-cut using B nodes or not, thus solving Multiway 3-cut.

The interested reader can find the minimum size N = N(ε, n) explicitly in terms of n and ε in the
Appendix, for any ε > 0 and graph-size n.

3.3. Polytime Methods

The main result of the following paragraphs is that the GFP is solvable in polynomial time for all acyclic
graphs. The optimal solution for elementary cycles and specific bipartite graphs are provided as well.

First, we informally outline a decomposition result when the input graph has multiple components:

Lemma 1. If G1 and G2 accept polytime algorithms for GFP, also G = G1 ∪ G2 accepts a polytime
algorithm.

Proof. Consider two polytime algorithms A1(G1, B1) and A2(G2, B2), and all natural partitions B =
B1+B2. AlgorithmA(G,B) appliesA1(G1, B1) andA2(G2, B−B1) for all feasible numbersB1 ≤ B.
The minimum objective value is returned.

Lemma 1 is the key concept to prove the main result of this subsection.

Theorem 3. The optimal solution for the GFP can be found in polytime for all acyclic graphs.

Proof. By Lemma 1, it suffices to study a single connected component (i.e., a tree). Choose an arbitrary
root-node for the tree. The main idea is to climb from bottom-to-top using a dynamic programming
approach. Essentially, we can apply Algorithm A from Lemma 1 to disjoint branches and climb up to
the root.

Consider a set of branches T 1, . . . , Tm with constant size such that they are either disjoint or they only
share the root-node. For each Ti, a brute-force algorithm finds the optimal solution in constant time for
all possible budget values B1, . . . , Bm with

∑
Bi = B. Iteratively apply Algorithm A from Lemma 1

in order to find the optimum protection scheme in the union ∪T i. The addition of disjoint branches or
parent nodes is produced recursively, until the optimum for the whole tree is met.

The reader is invited to consult Aprile et al. (2017) for technical details of the proof. The result in
Theorem 3 can be extended to a larger class of graphs, defined by the notion of treewidth. Given a graph
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G(V,E), a tree decomposition of G is a tree whose nodes correspond to subsets of V called bags, and
such that the following conditions hold: for each edge uv ofG, there is a bag containing both u and v; and
for any v ∈ V , the subgraph induced by bags containing v is connected. The treewidth of G is defined
as the size of the largest bag in a tree decomposition of G. It is easy to see that trees have treewidth
equal to 1 (choose the tree decomposition with a bag for each edge of the tree). Graphs whose treewidth
is small, i.e. bounded by a constant, have a “tree-like” structure. For instance, series-parallel graphs
and outerplanar graphs have treewidth at most 2. This parameter is widely studied; see Bodlaender and
Koster (2007) for a survey. In particular, when a combinatorial optimization problem is polynomially
solvable on trees by dynamic programming, this usually extends to all graphs of bounded treewidth.
This applies to the GFP as well.

Theorem 4. The optimal solution for the GFP can be found in polytime for all graphs of bounded
treewidth.

Proof. We only give a sketch of proof. We consider a tree decomposition of the graph G, and we run a
dynamic program on the tree such as in Theorem 3 in a bottom-up fashion. An optimal solution for the
subgraph of G corresponding to the current branch as in Aprile et al. (2017) for trees. The running time
of the algorithm depends polynomially on the size of G and exponentially on the treewidth, hence it is
polynomial as long as G has constant treewidth.

We conclude the section by finding the optimum solution for elementary cycles. First, a basic property
of the GFP will be useful. For any set of vertices U , let nG′ = (n1, . . . , nk) the vector of the respective
orders of the connected components fromG′ = G−U , such that n1 ≥ n2 . . . ≥ nk. Further, for any real
p ≥ 1, denote ‖n‖p = (

∑
i |ni|p)1/p the p-norm. The canonic basis of the vector space Rk is denoted by

{e1, . . . , ek}. The GFP can be re-written as an euclidean norm minimization:

min
U⊆V
‖nG′‖22

s.t.‖nG′‖1 = n

Proposition 1. For any graphG(V,E), let k be the number of components of ofG′ in an optimal solution
of GFP. If U ⊂ V yields the vector nG′ = (n1, . . . , nk), then the condition n1 − nk ≤ 1 is a sufficient
criterion of optimality for the GFP.

Proof. If n1 ≥ nk +2, then the vector u = n− e1 + ek has lower Euclidean norm. Else, if n1− nk ≤ 1
there is no feasible improvement, and a global optimum is met.

Corollary 1. If G = Pn, the optimum solution for GFP has r paths Pd+1 and B+1− r paths Pd, where
the integers d and r are found using Euclidean division rule: n−B = d(B + 1) + r.

Proof. The sufficient criterion from Proposition 1 holds.

Corollary 2. The optimum for (Cn, B) is the optimum for (Pn−1, B − 1).

Proof. Remove an arbitrary node and proceed as in Corollary 1.
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3.4. Exact Analysis

Here we simplify the mathematical programming model for the GFP introduced in Castro et al. (2017).
In particular, we reduce the number of binary variables and redundant constraints.
Consider G′ = G− U , nk the size of component k and binary variables:

• Ui ∈ {0, 1}, i ∈ V : node i ∈ U (or not);
• xkij ∈ {0, 1}, (i, j) ∈ E: link (i, j) belongs to component k in G;
• Nk

i ∈ {0, 1}, i ∈ V : node i belongs to the component k;

The mathematical programming model for the GFP is the following:

min.
∑

i=1..K

n2i /n (1)

s.t.
∑

j∈V
Uj ≤ B, (2)

∑

j∈V
Nk

j = nk, ∀k = 1 . . .K (3)

∑

k=1...K

Nk
j = 1− Uj ,∀j ∈ V (4)

Nk
i +N s

j ≤ 1,∀i, j ∈ V, i 6= j, (i, j) ∈ E,∀k, s ∈ K, s 6= k, (5)
∑

k=1...K

xkij ≤ (1− Ui),∀(i, j) ∈ E, i, j ∈ V (6)

∑

k=1...K

xkij ≤ (1− Uj), ∀(i, j) ∈ E, i, j ∈ V (7)

Nk
i +Nk

j ≤ 1 + xkij ,∀k ∈ 1 . . .K,∀(i, j) ∈ E, i, j ∈ V (8)

The objective function captures the cost of the GFP (1). Inequality (2) represents the budget constraint.
The size of each connected component is found using Constraint (3). Constraints (4) set Nk

j = 0 for
every k whenever j is picked for protection. Furthermore, if j is not picked for protection, exactly one
member of the variable-set {Nk

j }k=1...n must be set to 1. Constraints (5) avoid the existence of a path
between different connected components. In Constraints (6)-(7), the variable xki,j is set to 0 when at least
one of i or j are protected. Constraints (8) respect the definition of the binary variable xki,j .

3.5. Metaheuristics

Naive heuristics for the problem where presented for the first time in Piccini et al. (2015). This is the
first evidence that an iterative node-protection picking nodes with maximum degree is sub-optimal. A
pure Greedy notion for the problem is presented in Piccini et al. (2016), where the protected nodes are
iteratively picked minimizing the objective function as large as possible in a step-by-step fashion.
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GRASP is a powerful multi-start metaheuristic, which consists in two phases: a Construction phase
and Local Search phase (Resende and Ribeiro, 2016). A full GRASP enriched with a Path-Relinking
post-optimization stage has been recently introduced by Piccini et al. (2017). The GRASP iteratively
builds the protected-set. In each iteration, it finds the worst/best node for protection, and trades greediness
for randomization, choosing a random node from a Restricted Candidate List of the top-ranked nodes
(indeed, a fixed percentage α ∈ (0, 1) of the whole list). After the classical multi-start process of a
traditional GRASP implementation, a pool of elite solutions are selected, and a new exploration phase
takes place using path-relinking. The performance of the GRASP methodology is studied using optimal
solutions of small instances (found by an exhaustive search of the feasible-set). The results confirm that
this GRASP heuristic achieves optimal results for small instances. The reader is invited to consult Piccini
et al. (2017) for further details.

3.6. Proof-of-Concept

We perform a fair comparison between the optimal solution provided by the IQP model and our
GRASP methodology. As a proof-of-concept, we considered 9 graphs. These graphs include real-life
networks such as the US National Science Foundation Network, the electrical optical network
considered by Gouveia et al. (2011), the Uruguayan Academic Network depicted in Figure 1(a) and
ARPANET. The IQP formulation model was implemented in CPLEX 12.6.3.0, MIP solver, and the
executions were performed on an Intel(R) Core(TM) i7 CPU 3.33GHz, 16GB RAM. Graphs are
sketched in Figure 1. Table 1 summarizes the main characteristics of the graphs considered in the
experimental analysis.

Table 1: Results

Case Graph |V | |E| B |V | −B ]bin ]int ]const COC ]f.soln UB Opt GFP opt known GRASP UB (sec) GFP (sec) GRASP (sec)

1 Rau2 10 17 2 8 290 11 435 3 23 2.750 2.750 2.750 2.750 2.03 5 0.08

2 NSfNET 14 52 5 9 952 15 1645 5 25 4.556 4.556 4.556 9.000 12.93 1341 0.16

3 Eon 19 36 6 13 1083 20 1555 4 20 3.154 3.000 3.000 8.077 8.28 22689 0.22

4 Arpanet 20 25 6 14 940 21 1171 3 25 2.000 2.000* 2.000 2.857 14.02 7200* 0.24

5 Dodecaedro 20 30 6 14 1040 21 1381 7 26 6.429 6.429 6.429 12.143 18.94 30816 0.24

6 LATA5S 40 72 6 34 4560 41 6145 12 32 9.706 9.706* 9.353 24.882 554.14 18000* 0.41

7 es10fst01 18 20 5 13 720 19 869 3 21 2.077 2.077 2.077 2.385 27.14 630298 0.19

8 es10fst09 21 29 6 15 1092 22 1403 4 23 2.867 2.867* 2.867 3.000 20.93 7200* 0.23

9 se03 13 21 4 9 468 14 667 5 26 4.556 4.556 4.556 9.000 9.61 295 0.13

The respective columns |V |, |E| and B from Table 1 summarize the order, size and budget of the
input; |V |−B the order of the remaining graphG′, ]bin the number of binary variables, ]int the number
of integer variables, and ]const the number of constraints. The column COC is the optimal value for
COC problem and ]f.soln is the number of simultaneously feasible solutions for both COC and GFP.
Column UB is the optimal value for COC andOptGFP the optimal value for GFP by means of the IQP
formulation. Column opt known is the known optimal value by an enumeration of all feasible solutions,
and GRASP the output of our GRASP methodology. The last three columns show the CPU time for
UB, GFP and GRASP , measured in seconds.

Here GRASP is executed without the path-relinking post-optimization stage. It is worth to remark that
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(a) RAU2 (b) NFSNET (c) EON graph (d) ARPANET

(e) Dodecahedron (f) LATA5S (g) es10fst01 (h) es10fst09

(i) se03

Fig. 1: Test graphs

the full GRASP presented in Piccini et al. (2017) has reached optimality in practically all instances.
The gap between COC (UB) and the optimal value for the GFP (Opt GFP ) is small under all

instances. This reinforces the fact that optimal solutions for the GFP must be balanced, according to
Proposition 1. The timeout has been elapsed for Arpanet, LATA5S and es10fst09. They are marked
with an ”*”. The upper bound differs from the optimal value only under LATA5S.

The complexity of the quadratic objective function promotes further research in the analysis of
algorithms for the GFP. Close upper-bounds where found using linear programming (i.e., COC
problem), in few seconds.
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4. Synthesis

4.1. Vulnerability and Connectivity Metrics

The COC provides a metric of survivability under intentionally malicious attacks, since the attacker
picks a node from the largest connected component. On the other hand, the GFP is a metric of
survivability under random attacks. Clearly, the effect of intentionally malicious attacks is more
adverse, and this explains the fact that the optimal value for COC is an upper-bound for the GFP.

We can find an alternative reading of both problems in terms of connectivity. Let us consider a simple
graph G with node-connectivity κ(G) > B. In this case, the network is robust under B node failures.
Therefore, strong connectivity implies survivability. If κ(G) < B, there are many ways to disconnect
the graph, and both problems slightly diverge (observe that a balance in the size of the components is
desirable for COC as well). The case κ(G) = B is critical, and both problems look for node-separator
sets with cardinality B.

4.2. Discussion: GFP and Game Theory

Since COC is a min-max problem, we recall the celebrated Minimax Theorem on zero-sum games Nash
(1951). This theorem is a consequence of linear programming theory as well Dantzig (1963).

We would like to find an interplay between attacker/defender roles and zero-sum games, in order to
find a Nash equilibrium. If COC is a zero-sum game, the optimal value for the corresponding max-min
version must be identical to the optimal value of the COC. However, this is not the case for COC.

For example, if we are given an elementary cycle with 6 nodesG = C6 and budgetB = 2, in COC we
protect two nodes that achieve the diameter and the optimum value is 2. In the corresponding max-min
problem we should protect two adjacent nodes, and the score is precisely, 4.

In fact, if we stick to the terminology with component sizes n1 ≥ n2 . . . ≥ nk of the resulting graph
G′ = G− U , the following inequality holds in general:

Proposition 2. min|U |=B n1 ≤ max|U |=B nk.

Indeed, the max-min version is trivial for connected graphs:

Proposition 3. If G is connected, the score for max-min is n = |G| −B.

Proof. If G is connected, consider a spanning tree T ⊆ G. Since T is a tree, it has some leaf-node,
v1 ∈ T . The resulting subgraph T − v1 is another tree. If we iteratively remove B leaf-nodes, we reach a
node-set U such that T −U is connected. Therefore,G′ = G−U is also connected (since it has possibly
more links), and the optimal value for the max-min problem is precisely n = |G− U | = |G| −B.

Proposition 4.2 discards a potential interplay between COC and zero-sum games. Currently, we
consider an extension for the GFP with roles of atacker and defender, called Stochastic Weighted GFP
(SWGFP), where:

• And attacker picks the singleton v ∈ V following some probability law p(v) in the nodes, and
• Non-negative real weights w(v) are assigned to the nodes of the system.
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Nodes are assigned weights related with their importance in the network, and the attacker follows some
specific probability law, which is not necessarily uniform. The goal is to choose some defense strategy
(or node-protection scheme) U ⊆ V with |U | = B such that the expected loss E(G−U) =

∑k
i=1Wkpk

is minimum, being Wi the weight of component Vi and pi = P (v ∈ Vi). Greedy notions for random and
targeted attacks were also found. Nevertheless, a bridge between Game Theory and the GFP is still an
open problem.

5. Conclusions and Future Work

The Graph Fragmentation Problem has been analyzed using several approaches. It is not only hard in a
strong sense, but also there is no approximation algorithm with factor α < 5/3, unless P = NP .
However, the optimality in graphs with bounded treewidth is guaranteed.

Powerful heuristics for the problem are already available. In fact, a GRASP methodology enriched
with a path-relinking post-optimization stage shows close-to-optimality results under instances with
hundreds of nodes. This is confirmed finding the optimal values with a brute-force approach, and an
IQP formulation. As a synthesis, we show the interplay between the GFP and vulnerability/connectivity
metrics. Additionally, potential extensions for the GFP are discussed, including the Stochastic
Weighted GFP (SWGFP).

As future work, we would like to develop competitive heuristics for the SWGFP, and have a
comprehensive understanding of node-protection schemes on the lights of Game Theory.

6. Appendix

Theorem 5. It is NP-hard to approximate GFP within 5
3 − ε, for any ε > 0.

Proof. A reduction from Multiway 3-cut is provided (Aprile et al., 2017).
Consider an instance G, K = {t1, t2, t3} and B for Multiway 3-cut, and assume there is an

approximation algorithm A with factor 5/3 − ε for GFP, for some ε > 0. Let n = |V (G)|. We produce
a corresponding instance for the GFP by means of the polynomial reduction (G,K,B) → (G(K), B),
where the new graph G(K) is identical to G, but the terminal nodes t1, t2, t3 are replaced by cliques
K1,K2,K3 with M = cn nodes each (for a constant c to be specified later) and each node in a clique is
connected in the same way as the corresponding terminal in G. The intuition behind the reduction is
that the large cliques corresponding to the terminals are the “heaviest” parts of the graph and to
minimize the objective function of GFP one must ensure that the cliques end up in different
components. We now run the algorithm A on input (G(K), B). Let S be S the output of the algorithm,
AG(K) its objective value and ñ = n + 3M − 3 − B the number of nodes in G(K) − S. There are two
cases:

1. If AG(K) < 5M2

ñ the we claim that the answer to Multiway 3-cut is YES and the certificate can be
obtained in polynomial time from S.

2. Otherwise, we claim the answer to Multiway 3-cut is NO.
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This implies that we can solve Multiway 3-cut through the algorithm A, hence we will be done once we
prove the two claims.

1. First, suppose that

S ⊂ V (G(K) \ {K1,K2,K3} = V (G) \ {t1, t2, t3}.

Assume by contradiction that removing S from G does not disconnect all the terminals, i.e. there is a
component of G\S that contains at least two of them. If the component contains all three cliques, the
objective value AG(K) is at least 9M2/ñ, a contradiction. Otherwise, the component in G(K) \ S has
size at least 2M , and there is another component containing the third clique of size at least M , hence

AG(K) ≥ (2M)2 +M2

ñ
=

5M2

ñ
,

again a contradiction. Now, consider the case in which some of the vertices of S belong to some clique
Ki, we will show that we can obtain a YES-certificate from S∩V (G). Assume that removing S from
G(K) leaves a component C such that C ∩Ki 6= ∅ for i = 1, 2, 3, but then |C| ≥ 3M −B ≥ 3M −n
and AG(K) ≥ 5M2/ñ if we choose for instance c ≥ 2, hence we get a contradiction. So the only
possibility, without loss of generality, is that removing S from G(K) leaves a component C such that
C ∩Ki 6= ∅ for i = 1, 2, and C ∩K3 = ∅. Then, if |S ∩Ki| = Bi for i = 1, 2, 3 and t = |C ∩V (G)|,
we have |C| = 2M −B1 −B2 + t, and there is another component containing vertices of K3 of size
at least M −B3. Now, we must have t ≤ B1 +B2 +B3, otherwise it is immediate to verify that

AG(K) ≥ (2M −B1 −B2 + t)2 + (M −B3)
2

ñ
≥ 5M2

ñ
,

a contradiction. Hence we have that S′ = S ∪ (C ∩ V (G)) \ ∪iKi is a YES-certificate for G.
2. We have

GFP (G(K), B) ≥ 1
5
3 − ε

AG(K) ≥ 1
5
3 − ε

5M2

ñ
.

We will now choose c so that

1
5
3 − ε

5M2

ñ
>

2M2 + (M + n−B)2

ñ
. (9)

Assuming the latter is true, we have that the three terminals cannot be disconnected, hence the answer
to Multiway 3-cut is NO. Indeed, the value 2M2+(M+n−B)2

ñ is the maximum value that is achievable
having the three cliques in different components (the value is obtained if all other nodes belongs to
the same clique, and is smaller otherwise), and the optimal value is larger than that. To conclude the
proof, we need to find c such that Inequality (9) holds. This is an elementary calculation that we omit.
It is easy to verify that, for instance, c = 55/ε satisfies Inequality (9).

c© 2018 International Transactions in Operational Research c© 2018 International Federation of Operational Research Societies
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Part III

Reliability in Stochastic Binary Systems





Chapter 6

Building Reliability Bounds in Stochastic
Binary Systems

In system reliability analysis, the goal is to nd the probability of correct operation of a system subject to
component failures. Stochastic Binary System (SBS) is a mathematical model of multi-component
on-off systems subject to random failures. SBS models extend classical network reliability models
(where the components subject to failure are nodes or links of a graph) and are able to represent more
complex interactions between the states of the individual components and the operation of the system
under study. In this chapter, the concept of separable stochastic binary systems are introduced, together
with their efcient representation, and reliability bounds for arbitrary SBS, exploiting duality and
Chernoff inequality, are calculated.
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Abstract—A Stochastic Binary System (SBS) is a
mathematical model of multi-component on-off systems subject
to random failures. SBS models extend classical network
reliability models (where the components subject to failure are
nodes or links of a graph) and are able to represent more
complex interactions between the states of the individual
components and the operation of the system under study.

The reliability evaluation of stochastic binary systems
belongs to the class of NP-Hard computational problems.
Furthermore, the number of states is exponential with respect
to the size of the system (measured in the number of
components). As a consequence, the representation of an SBS
becomes a key element in order to develop exact and/or
approximation methods for reliability evaluation.

We introduce the concept of separable stochastic binary
systems, whose structure can be efficiently represented.
Reliability bounds for arbitrary SBS are provided inspired by a
measure of a distance to a separable system, duality and
Chernoff inequality. Opportunities for future work arising from
this representation are also discussed.

Index Terms—Stochastic Binary System, Network Reliability,
Computational Complexity, Chernoff Inequality.

I. INTRODUCTION

In system reliability analysis, the goal is to find the
probability of correct operation of a system subject to
component failures. A common practical problem is to
design a system with maximum reliability meeting budget
constraints [1], [2], [3], [4].

Classical network reliability analysis shaped the body of
this field. In this basic setting, we are given a connected
graph G with perfect nodes, and the links work
independently with identical probability r. The all-terminal
reliability, RG(r), is the probability that the resulting
subgraph remains connected. This model and some variants
(such as perfect links and nodes subject to failure) has been
employed to model reliability of classical communications
networks, where the emphasis was on a fixed infrastructure
of sites holding communication equipment and of fixed links
connecting them. Nevertheless, these models have limitations
to represent the more diverse landscape of communication
networks infrastructure, relying on different equipments,
paradigms, and particularly in the case of wireless networks,
where usually there does not exist a fixed, predetermined
topology. Stochastic binary systems (SBS) generalize the

static reliability concept to any system composed of a
number of components subject to independent failures with
known probabilities, and where the operation or failure of
the system as a whole is a function of the state of the
individual components. In this sense, SBS are a more
flexible tool for evaluating and optimizing the reliability of a
wider spectrum of real systems, both in the networking area
and in other quite different applications area [5], [6], [7], [8].
At the same time, SBS present their own challenges in terms
of computational analysis, as the evaluation of the reliability
a general stochastic binary system belongs to the class of
NP-Hard problems. This has motivated different research
efforts, tackling efficient exact methods for some subclasses
of SBS, as well as approximations for the general case [9],
[10], [11], [12].

In this paper, we propose a novel representation of a
special subset of stochastic binary systems, called separable
systems. This representation is then exploited in order to find
reliability bounds for arbitrary stochastic binary systems. The
contributions can be summarized by the following items:

• An efficient representation of separable systems is
proposed. It considers N + 1 real numbers, being N the
size of the system (measured as the number of
components subject to failure).

• We explore the interplay between monotonicity and
separability in stochastic binary systems.

• A metric to find the closest separable system for any
given SBS φ is provided. As a consequence, we find a
distance-minimizer separable system φ∗, as well as upper
and lower bounds (φ and φ respectively).

• Corresponding ILP formulations to find φ∗, φ and φ are
proposed and solved using CPLEX.

• Reliability bounds for arbitrary SBS are found using the
previous construction, duality and Chernoff inequality.

• A Proof-of-Concept shows the performance of the
reliability bounds and the benefit of our new
representation of separable systems.

This paper is organized as follows. Section II presents
fundamental concepts of stochastic binary systems. Separable
systems are introduced in Section III. They can be
represented more efficiently using N + 1 real numbers
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instead of 2N numbers that are used to represent arbitrary
SBS. Reliability bounds for arbitrary SBS are found in
Section IV using separable systems. A proof-of-concept is
presented in Section V. Finally, Section VI has concluding
remarks and trends for future work.

II. STOCHASTIC BINARY SYSTEMS

The following terminology is adapted from [13].

Definition 1 (Stochastic Binary System). A stochastic binary
system is a triad (S, r, φ):
• S = {1, . . . , N} is a ground set of components,
• r = (r1, . . . , rN ) are their elementary reliabilities, and
• φ : {0, 1}N → {0, 1} is the structure.

The concept of reliability is generalized to arbitrary
stochastic binary systems.

Definition 2 (Reliability/Unreliability). Let S = (S, p, φ) be
a stochastic binary system, and consider a random vector
X = (X1, . . . , XN ) with independent coordinates governed
by Bernoulli random variables such that P (Xi = 1) = ri.
The reliability of S is the probability of correct operation of
the system:

RS = P (φ(X) = 1) = E(φ(X)) =
∑

x:φ(x)=1

P (X = x). (1)

The unreliability of S is US = 1−RS .

A stochastic binary system is homogeneous if the
elementary reliabilities are identical (i.e., ri = r for all i). In
this paper we deal with homogeneous SBS.

Definition 3 (Pathsets/Cutsets). Let S = (S, r, φ) be a
stochastic binary system. A possible state or configuration
x ∈ {0, 1}N is a pathset (resp. cutset) if φ(x) = 1 (resp., if
φ(x) = 0).

The binary set {0, 1} is equipped with the partial order,
defined by 0 ≤ 0, 0 ≤ 1 and 1 ≤ 1. The set {0, 1}N inherits
a natural order in the Cartesian product. Given two partially
ordered sets A and B, a function f : A→ B is monotonically
increasing if f(a1) ≤ f(a2) whenever a1 ≤ a2. As usual, we
denote y < x if y ≤ x and y 6= x. Let us denote by 0N (resp.
1N ) the binary word with all bits set to 0 (resp. to 1), and by
δi the binary word with all bits in 0 except the bit in position
i which is set to 1.

Definition 4 (Stochastic Monotone Binary System (SMBS)).
The triad S = (S, r, φ) is a stochastic monotone binary system
if the structure function φ : {0, 1}N → {0, 1} is monotonically
increasing, φ(0N ) = 0 and φ(1N ) = 1.

Observe that SMBS represent well-behaved SBS, in the
sense that, given a working configuration, the system can fail
after the removal of some components, but can not fail if
some failed components start to work. Additionally, the
system does not work if it has no operational components,
and the full-system works.

Definition 5 (Minpaths/Mincuts/Rays). Let S = (S, r, φ) be
an SMBS:
• A pathset x is a minpath if φ(y) = 0 for all y < x.
• A cutset y is a mincut if φ(x) = 1 for all x > y.
• The x-ray is the set Sx = {y ∈ {0, 1}N : y ≥ x}.
It is worth to remark that an SMBS is fully characterized

by its mincuts (or its minpaths). In fact, if we are given the
complete list of minpaths, then the complete list of pathsets
is precisely the union of the x-rays for some minpath x.

We will denote by x the state complementary to x in bits
(i.e., 0 in x are set to 1 in x, and vice-versa). In particular,
φ(x) = 1 − φ(x). The following definition of duality will be
useful for our later analysis of monotonicity and bounds [14]:

Definition 6 (Duality). The dual of a stochastic binary
system S = (S, r, φ) has identical ground set S, elementary
reliabilities rdi = 1− ri, and structure φd(x) = 1− φ(x), for
all possible states x ∈ {0, 1}N . The dual is denoted by
Sd = (S, 1− r, φd).

The following examples provide an insight of the different
applications of stochastic binary systems. Classical examples
include a reference in the field for the interested reader.

1) All-Terminal Reliability: the ground set is precisely the
links of a simple graph. The system is up if the resulting
random graph is connected.

2) K-Terminal Reliability: in the same random graph, the
system is up if some distinguished node-set K, called
terminals, belong to the same connected
component [15].

3) Diameter Constrained Reliability: a diameter constraint
d is added to the K-Terminal Reliability. The system
is up if every pair of terminals are connected by paths
whose length is not greater than the diameter [16], [17].

4) Node-Reliability: the ground set is the set of the nodes of
a simple graph. The system is up if the resulting random
graph is connected.

There exists an interplay between SBS and propositional
logic. Recall that a theorem-proving procedure is the first
NP-Complete decision problem established by Stephen
Cook [18]. In other words, the recognition of a tautology is
a hard decision problem from propositional logic.

Theorem 1. The reliability evaluation of an arbitrary SMBS
belongs to the class of NP-Hard problems.

Proof. Arnie Rosenthal formally proved that the reliability
evaluation for the K-terminal reliability model belongs to
the class of NP-Hard computational problems [19]. Since
K-Terminal is a particular SMBS, the result follows by
inclusion.

Corollary. The reliability evaluation of an arbitrary SBS
belongs to the class of NP-Hard problems.

Les us close this section with three elementary properties
of the dual system that will be useful in our analysis.
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Lemma 1. The dual of the dual is the original system.

Proof. φd
d
(x) = 1− φd(x) = 1− (1− φ(x)) = φ(x).

Lemma 2. The dual of an SMBS is another SMBS.

Proof. Consider arbitrary states x ≤ y and a monotone
structure φ. Since x ≥ y, we get that φ(y) ≤ φ(x).
Therefore: φd(x) = 1− φ(x) ≤ 1− φ(y) = φd(y).

Tue dual system has complementary reliability with respect
to the original one:

Lemma 3. If S = (S, φ, p) is an SBS, then RSd = 1−RS .

Proof. Recall that the dual system has complementary
probabilities in every component. Therefore:
P d(X = x) =

∏
i:xi=1(1 − ri)

∏
i:xi=1(ri) = P (X = x).

Let P denote the path-sets of the original SBS. Then:

RSd =
∑

x:φd(x)=1

P d(X = x) =
∑

x:φ(x)=0

P d(X = x)

= 1−
∑

x:φ(x)=1

P d(X = x)

= 1−
∑

x:φ(x)=1

P (X = x)

= 1− P (x ∈ P) = 1−RS .

III. SEPARABLE SYSTEMS

Observe that {0, 1}N is the set of the extremal points of
the unit hypercube QN ⊆ RN . Let us assign labels to the
extremal points of QN according to a given structure φ.
Every hyperplane defines a partition of RN into two subsets.
Consider the family of hyperplanes H such that 0N and 1N
lie on different sides. For any member H of H, denote by
Q0 ⊆ QN the extremal points of the hypercube that belong
to the side of 0N ; and Q1 = QN − Q0. Define a structure
function φH such that its cutsets are precisely Q0, and its
pathsets are Q1. Consider an equivalence relation (H,∼)
such that H1 ∼ H2 if and only if φH1 = φH2 .

Recall that in the Euclidean space RN , a hyperplane is
fully characterized by a normal vector ~n and a point P that
belongs to the hyperplane: 〈~n,X − P 〉 = 0, where
〈x, y〉 =

∑N
i=1 xiyi is the inner product. If we denote

~n = (n1, . . . , nN ) and 〈~n, P 〉 = α0, the hyperplane can be
written as

∑N
i=1 nixi = α0.

Lemma 4. If φ = φH for some hyperplane H , then there
exists H2 ∼ H1 with non-negative normal vector such that
‖~n‖1 =

∑N
i=1 ni = 1.

Proof. Let φ = φH for the hyperplane H)
∑N
i=1 nixi = α0,

and suppose that there exists some index j such that nj < 0.
There are two exhaustive and mutually disjoint cases:

i There exists some mincut x = (x1, . . . , xN ) such that
xj = 0: in this case, we know that x + δj is a minpath,
so, φ(x+δj) = 1. By the definition of the hyperplane, we

get that
∑N
i=1 nixi ≤ α0 but

∑N
i=1 nixi+nj > α0. The

only possibility is that nj > 0. But we assumed nj < 0;
this is a contradiction.

ii All mincuts verify xj = 1: Consider an alternative
hyperplane H2)

∑N
i 6=j nixi = α0 − nj . We will prove

that H2 ∼ H . If x is a mincut, then
∑N
i=1 nixi ≤ α0,

and therefore
∑N
i 6=j nixi ≤ α0 − nj . If x is a minpath,

it must have xj = 1. Since
∑N
i=1 nixi > α0 we get that∑N

i 6=j nixi > α0 − nj . Observe that nj = 0 in the new
hyperplane H2, and H2 ∼ H as desired.

By an iterative replacement of all the negative coordinates we
obtain an equivalent hyperplane H2 ∼ H with non-negative
vector ~n′, expressed by H2)

∑N
i=1 n

′
ixi = α′ for some real

number α′. Finally, observe that 0N is always a cutset, so
0 ≤ α′. Analogously, 1N is always a pathset, so

∑m
i=1 n

′
i >

α′ ≥ 0. The result is obtained by a normalization of the normal
vector ~n2, which is possible since

∑N
i=1 n

′
i > 0.

Even though there exist infinite equivalent hyperplanes,
using Support Vector Machine (SVM) it is possible to find a
single hyperplane with the largest gap (this is, with the
largest distance to any of the vertices in the hypercube).
Using Lemma 4, we can replace it by an equivalent
hyperplane with non-negative versor. Without loss of
generality, we will assume a non-negative normal vector with
unit 1-norm.

Proposition 1. The structures φH are monotone.

Proof. By Lemma 4, in particular we can choose ni ≥ 0 in
the hyperplane H)

∑N
i=1 nixi = a0. Let us denote f(x) =∑N

i=1 nixi. If x1 ≤ x2, then f(x1) ≤ f(x2), and therefore
φH(x1) ≤ φH(x2).

A subtlety is that the mincuts from Lemma 4 are indeed the
points Q0 ⊂ QN that are closer to the original hyperplane. A
natural question is to determine if all SMBS can be represented
by a hyperplane. The answer is negative:

Proposition 2. There exist SMBS that cannot be represented
by a hyperplane.

Proof. Consider the SMBS defined by the mincuts
M = {(1, 1, 0, 0), (0, 0, 1, 1)}. Observe that the set of states
P = {(0, 1, 0, 1), (1, 0, 1, 0)} is a subset of minpaths.
Suppose for a moment that there exists some separator
H)
∑4
i=1 nixi = α for some real numbers α, n1, . . . , n4.

Since (1, 1, 0, 0) and (0, 0, 1, 1) are mincuts, we get that∑4
i=1 ni ≤ 2α. However, (1, 1, 0, 0) and (0, 0, 1, 1) are

minpaths, so
∑4
i=1 ni > 2α; a contradiction.

Definition 7 (Separable System). An SBS is separable if the
cutsets/pathsets can be separated by some hyperplane.

An interpretation of separable systems recalls Riesz
representation theorem for Hilbert spaces [20]. Indeed, the
structure of a separable system can be written as an indicator
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that an inner-product exceeds some threshold in a Hilbert
space:

φ(x) = 1〈x,~n〉≥α0
. (2)

A natural question is to characterize separable systems in
terms of pathsets and cutsets. Let us denote CH(P) and
CH(C) the convex hull of the pathsets and cutsets
respectively.

Proposition 3. An SBS is separable iff CH(P)∩CH(C) = ∅.
Proof. If the intersection is empty, Hahn-Banach separation
theorem for convex sets asserts that there exists a hyperplane
H that separates those convex sets [20]. As a consequence,
φ = φH for some hyperplane H .

For the converse, we know that the SBS is separable.
Therefore, there exists some hyperplane H)

∑N
i=1 nixi = α0

such that
∑N
i=1 nixi ≤ α0 for cutsets, and

∑N
i=1 nixi > α0

for pathsets. Suppose for a moment that
CH(P) ∩ CH(C) 6= ∅. There exists some element z ∈ RN
such that:

z =
r∑

j=1

αjxj =
s∑

k=1

βkyk, (3)

for some states x1, . . . , xr ∈ P , y1, . . . , ys ∈ C, and non-
negative numbers such that

∑r
j=1 αj =

∑s
k=1 βk = 1. If we

denote xj = (xj1, . . . , xjN ) we know that
∑N
i=1 nixji > α0.

Therefore, for z = (z1, . . . , zN ) we get that:

N∑

i=1

nizi =
N∑

i=1

ni(
r∑

j=1

αjxji)

=

r∑

j=1

αj [

N∑

i=1

nixji]

> (

r∑

j=1

αj)α0 = α0.

Analogously, using the fact that z =
∑s
k=1 βkyk we get that∑N

i=1 nizi ≤ α0, which is a contradiction. Therefore we must
have CH(P) ∩ CH(C) = ∅, and the result holds.

IV. RELIABILITY BOUNDS

In this section we exploit the properties shared by separable
systems in order to find reliability bounds for arbitrary SBS.
The strategy is the following:
• First, we find an upper bound for the reliability of

separable systems using Chernoff inequality [21].
• For any given structure φ, we find the closest separable

systems φ and φ such that φ ≤ φ ≤ φ.
• By means of Chernoff-upper bound for separable systems

and φ, we produce an upper bound for the reliability of
the original SBS.

• By means of Chernoff-upper bound for separable
systems, φ and duality, we produce an lower bound for
the reliability of the original SBS.

We describe each step in the following subsections.

A. Chernoff Bound

Lemma 5. For all separable systems S we have:

RS ≤ e− supt>0{tα0−
∑m

i=1 c(i,t)}, (4)

being c(i, t) = logE (etxini) = log(p.etni + 1− p).

Proof. We apply a well-known result introduced by Chernoff
and used in the proof of Cramér Theorem for large deviations
bounds [21]. For each t > 0 we have:

RS = P(φ(x) = 1) = P(
m∑

i=1

xini ≥ αo)

= P(t
m∑

i=1

xini ≥ tαo) = P(et
∑m

i=1 xini ≥ etαo)

≤ e−tαoE
(
et

∑m
i=1 xini

)
= e−tαo

m∏

i=1

E
(
etxini

)

= e−tαo

m∏

i=1

(
ec(i,t)

)
= e−{tαo−

∑m
i=1 c(i,t)}, (5)

where Markov’s inequality for positive random variables has
been used. The result holds taking the infimum with respect
to t > 0 on both sides.

B. Closest Separable Systems

For any given structure φ, we build the closest separable
structures φ and φ such that φ ≤ φ ≤ φ in terms of
misclassification error:

Definition 8 (Misclassification Error). If we are given two
structures φ1 and φ2, the misclassification error is:

d(φ1, φ2) =
∑

x∈{0,1}m
|φ1(x)− φ2(x)|. (6)

Clearly, d is a metric in the space of all structures. For a
rough approximation of φ into a separable systems we also
consider the closest separable φ∗ (without bounds):

Definition 9 (Minimum Least Square). Given an arbitrary
structure φ, the separable structure φ∗ minimizes the
misclassification error.

Proposition 4. The lower bound for φ is φ = 1 − φ′, being
φ′ the upper bound of 1− φ.

Proof. By duality, 1−φ ≥ 1−φ ≥ 1−φ. The closest upper-
bound for 1− φ is precisely 1− φ = φ′, and the result holds.

Now, we fully characterize φ∗ and φ using Integer Linear
Programming (ILP) formulations. The lower-bound φ can be
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obtained using Proposition 4. The following ILP describes φ:

min.
∑

x∈{0,1}N
d(x) (7)

s.t.
φ(0) = 0, (8)

φ(1) = 1, (9)

d(x) = φ(x)− φ(x),∀x ∈ {0, 1}N (10)
∑

j=1..N

xijαj > φ(xi),∀i = 1..2N (11)

∑

j=1..N

xijαj ≤ 1 +Mφ(xi),∀i = 1..2N (12)

Where:
• Constraints (8) and (9) establish monotonicity.
• Constraint (10) defines the misclassification error d(x).
• Constraints (11) and (12) state that φ∗ is separable.

Observe that Constraints (11) are active when
xi = (xi1, . . . , xiN ) is a pathset. Note that in this case (12)
is superfluous (choosing the constant M large enough).
Constraints (12) define a similar condition for cutsets.

The following ILP model provides φ∗:

min.
∑

x∈{0,1}N
d(x) (13)

s.t.
φ∗(0) = 0, (14)
φ∗(1) = 1, (15)

d(x) = δ+(x) + δ−(x),∀x ∈ {0, 1}N (16)

φ∗(x) = (1− φ(x))d(x) + φ(x)(1− d(x)),∀x ∈ {0, 1}N
(17)

δ+(y) + δ−(x) ≥ φ(x)− φ(y),∀(x, y) ∈ {0, 1}N , x ≤ y
(18)∑

j=1..N

xijαj > φ∗(xi),∀i = 1..2N (19)

∑

j=1..N

xijαj ≤ 1 +Mφ∗(xi),∀i = 1..2N (20)

Where:
• δ+(x) is set to 1 if x is modified from a cutset into a

pathset.
• δ−(x) is set to 1 if x is modified from a pathset into a

cutset.
• d(x) is set to 1 if φ(x) 6= φ∗(x).

C. Reliability Bounds

Combining the ILP formulation for φ and Chernoff-bound
(Lemma 5), a lower-bound for an arbitrary SBS φ is produced.
Finally, combining the ILP formulation for φ, Chernoff-bound
and Theorem 2, an upper-bound for an arbitrary SBS φ is
produced. First, a technical lemmas:

Lemma 6. The dual of a separable system is also separable.

Proof. If we are given a separable system with hyperplane
H)
∑N
i=1 nixi = α0, being ~n non-negative, then

Hd)
∑N
i=1 nixi = 1 − α0. In fact, if we are given a pathset

from the dual x ∈ Pd, we know that x = 1N − x is a cutset
in the original system, and∑N
i=1 nixi =

∑N
i=1 ni(1 − xi) = 1 −∑N

i=1 nixi > 1 − α0.
A similar calculation holds for pathsets.

Theorem 2. RS ≥ 1−R′, being R′ Chernoff-bound for (φ)d.

Proof. By duality we know that φd ≤ (φ)d. Since the dual of
a separable system is also separable, we can apply Lemma 5
in order to find an upper bound R′ for the reliability of the
system (φ)d. We get that RSd ≤ R′. Finally, recall that the
reliability of a dual is complementary to the reliability of the
original system (Lemma 3). Therefore:

RS = 1−RSd ≥ 1−R′. (21)

V. PROOF-OF-CONCEPT

Our goal is to understand the performance of our
bounding method for some sample situations. We consider a
wireless system subject to node failures. For this reason we
consider the all-terminal Node-Reliability model. Recall that
Node-Reliability is not an SMBS in general.

We considered the graphs sketched in Figures 1-4. For
each graph we consider the SBS given by Node Reliability
with structure φ. Then, we find the closest SMBS φm and
φu, the closest separator systems φ, φ and φ∗, solving the
respective ILP formulations and CPLEX optimization engine.
Tables I and II report the misclassification errors and
reliability bounds respectively, using ri = r = 1/2 for the
elementary reliabilities. The asterisk ∗ means that the
optimization reached the limit of three hours, and this value
is sub-optimal; this is the case of the Icosahedron graph (I).
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Fig. 1. Elementary cycle C6

u v

1 2

1 2 3

1 2 3

Fig. 2. Monma graph M(3,3,2).
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Fig. 4. Icosahedron graph (I)

TABLE I
MISCLASSIFICATION ERROR

Case d(φ, φm) d(φ, φu) d(φ, φ) d(φ, φ) d(φ, φ∗)

C6 12 21 12 23 12
M10 106 720 113 759 113
P 175 390 314 425 190
I 302 958 537 958 379*

TABLE II
PERFORMANCE OF RELIABILITY AND BOUNDS

Case RS(φ) RS(φ∗) RS(φ) RS(φ) LB UB

C6 0.3906 0.2031 0.2031 0.7500 0 1
M10 0.1846 0.0801 0.0742 0.9258 0 1
P 0.5449 0.5059 0.2383 0.9600 0 1
I 0.5317 0.4932 0.2695 0.9995 0 1

Observe that φ∗ achieves the minimum distance,
d(φ, φm) ≤ d(φ, φ), and d(φ, φu) ≤ d(φ, φ), as expected by
definition. However, the gaps are small. This suggests that
finding bounds for an arbitrary SBS by separable systems
(which are advantageous due to their small space
requirement for representation) may not entail a large loss of
precision when compared by bounds obtained using SMBS
approximations (which potentially need exponential space for
representation).

From Table II we can check that
RS(φ) ≤ RS(φ) ≤ RS(φ), while RS(φ∗) is closer to
RS(φ). The last two columns UB is the upper bound found
applying Lemma 5 directly and using the separator
hyperplane for φ. Column LB is calculated applying
Theorem 2 and using the separator hyperplane for φd. For
the four cases under study, these formulations result in trivial
bounds.

Figures 5-8 display the exact reliabilities
RS(φ) ≤ RS(φ) ≤ RS(φ), together with Chernoff bounds,
for each network. The non-monotonicity of RS(φ) is
appreciated Icosahedron network topology. The bounds
provided by the separable systems are much tighter than the
Chernoff bounds. At the same time, there is a clear gap
between lower and upper bounds, specially for
medium-range values of p. When p approaches 1, the quality
of the bounds improve; and particularly the lower bound is
closer to the exact value. This is of interest, as usually when
designing or evaluating a system, the goal is to guarantee a
certain level of reliability (thus, making the lower bound a
relevant approximation).

Fig. 5. C6 graph

Fig. 6. M10 graph
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Fig. 7. Petersen graph

Fig. 8. Icosahedron graph

VI. CONCLUDING REMARKS

An efficient representation of separable systems is here
introduced. This representation is analogous to Riesz
Representation Theorem for Hilbert spaces, but for particular
SBS, using a simple inner product. Supported by this natural
representation, we produce reliability bounds for arbitrary
SBS, exploiting duality and Chernoff inequality. The results
are highlighted in systems under the node-reliability model.

This interesting interplay between Stochastic Binary
Systems and Functional Analysis should be further studied.
As a future work, we would like to develop new reliability
bounds using the theory of Functional Analysis, and apply
these results to potential applications in real-life systems.
Other lines of research include taking into account
dependencies between the components’ states, and studying
how SBS structure can be exploited in a dynamic context
(i.e, when the time dimension is taken into account so that
the components’ states are evolving, i.e, failing and being
repaired, at different moments of the system evolution).
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