PEDECIBA Informatica

Instituto de Computacion - Facultad de Ingenieria
Universidad de la Republica
Montevideo, Uruguay

Tesis de Maestria
en Informatica

RON — Redes oportunistas

Jorge Visca

2014

Jorge Visca

RON — Redes oportunistas

ISSN 0797-6410

Tesis de Maestria en Informética

Reporte Técnico RT 14-04

PEDECIBA

Instituto de Computacion — Facultad de Ingenieria
Universidad de la Republica.

Montevideo, Uruguay, 2014

RON - Redes Oportunistas

Jorge Visca - jvisca@fing.edu.uy

Tutor: Dr. Eng. Javier Baliosian

Tribunal:
Dr. Lisandro Zambenedetti (Revisor)
Dr. Gustavo Betarte
Dr. Marcos Viera

Facultad de Ingenieria
Universidad de la Republica

Noviembre de 2013

Resumen

El gran crecimiento de las redes inalambricas ha exigido a los protocolos es-
tablecidos hasta sus limites. Caracteristicas de las redes que se asumian como
dadas, tales como la existencia de caminos de extremo a extremo o tiempos
de propagacion bajos, son cada vez méas frecuentemente comprometidas. Estas
situaciones pueden surgir como consecuencia de fallos en redes convencionales, o
de operar redes en situaciones muy adversas o impredecibles, cuando los nodos
de la red se encuentran entre ellos solo esporadicamente. Este tipo de redes son
conocidas como "Redes Tolerantes a Retardos" o "Redes Oportunistas". Para
operar, estas redes necesitan nuevos algoritmos de enrutamiento.

Por otro lado, cierto tipo de aplicaciones tales como redes de sensores son
altamente dindmicas: nodos son agregados o retirados de la red continuamente,
y nuevos flujos de datos son establecidos o modificados a medida que el propio
analisis de los datos resulta en nuevos requerimientos de informaciéon. En este
escenario el enrutamiento convencional, por destino, se torna engorroso debido a
la necesidad de mantener y operar un inventario de los dispositivos participantes
de la red. De aqui surge el interés en nuevos métodos para especificar flujos de
datos, y el Enrutamiento Basado en Contenido es una tecnologia prometedora
en este sentido.

La combinaciéon de Redes Oportunistas y Enrutamiento Basado en Con-
tenido provee una plataforma altamente flexible para resolver nuevos problemas
de ingenieria de redes. Este trabajo presenta un nuevo protocolo oportunista
basado en contenidos, que utiliza algunos de los conceptos mas exitosos de los
algoritmos existentes e implementa algunas soluciones novedosas. El compor-
tamiento y rendimiento del algoritmo es evaluado y algunos escenarios especial-
mente probleméticos (para este y otros algoritmos) son identificados.

Abstract

The explosive growth in use and coverage of wireless networks has pushed the
established network protocols to their limits. Some fundamental assumptions
usually taken for granted, such as the existence of a end-to-end path or low prop-
agation times, are being more and more frequently violated. These violations
can be caused by outages and failures in otherwise conventional networks (e.g.
network partitions), or stem from the need to communicate data in extremely
adverse or unpredictable situations, when network nodes meet only sporadically.
Depending on the approach, these kinds of networks are called Delay Tolerant
Networks (DTN) or Opportunistic Networks (ON). To support data networks
in such conditions, new routing algorithms are needed.

Additionally, some network applications, such as sensor networks, are highly
dynamic: nodes are added or removed at any moment, and new data flows
are established and modified as new requirements are distilled from the data
obtained from the network itself. In this scenario the traditional destination
based routing scheme imposes and insurmountable burden on network provi-
sioning and inventory. Other methods for specifying data flows are required,
and one such method is Content Based Routing.

The combination of Opportunistic Networking and Content Based Routing
offers a very flexible platform for solving novel engineering problems. This work
presents a new content-based opportunistic network protocol, that builds on
concepts found in existing algorithms and implements some novel ideas. This
algorithm’s behavior and performance is evaluated and some specially challeng-
ing scenarios are identified, that also apply to other algorithms of this class.

Contents

1 Introduction
1.1 Objectives
1.2 Contribution
1.3 Structure of the Document

2 State of the Art

2.1 Delay Tolerant Networks
2.1.1 DTNBundles
2.1.2 Addressing
2.1.3 Routing
2.1.4 Conclusiono e

2.2 Opportunistic Networks
2.2.1 Taxonomyo

2.3 Opportunistic Protocols
2.3.1 Direct Delivery o .
2.3.2 Epidemic Routing
2.3.3 Spray and Wait L.
234 PROPHET
2.3.4.1 TImproving PROPHET

2.3.5 Timely-contact probability protocol
23.6 RAPID

2.4 Content Based Networking
241 Examples o

2.5 Content-Based Opportunistic Protocols
2.5.1 Guidec, Maheoet al.
25.2 CEPMFo
253 CAR

2.6 Conclusions

3 DEMOS Project
3.1 DEMOS System
3.2 Node Architecture
3.21 RON
3.22 Rmoon

CONTENTS

3.2.3 LuPA agent

3.2.3.1 PDP - Policy Decision Point

3232 EP

4 RON Opportunistic N
4.1 Requirements . . .
4.2 RON Protocol . . .

4.2.1 Overview .

- Enforcement Point

etwork

4.2.2 Previous Work
4.2.3 Publish-Subscribe addressing
4.2.4 Network maintenance

4.2.5 Network reso

urces conservation

4.2.6 Security considerations

4.3 TImplementation . .

5 RON Evaluation

5.1 Subscription Qualityo

5.2 Delivery behavior .

5.2.1 Notification re-incidence
5.2.2 Acknowledgments and destination based routing.

5.2.3 Replacement

policies L

5.3 Automatic parameter management
5.4 Optimal Routing estimation
5.4.1 Genetic Algorithm for a Opportunistic Routing Oracle . .
5.4.2 RON effectiveness evaluation

5.5 Test Deployment .
6 Conclusion

7 Future Work
7.1 New routing metric
7.2 Replacement policy
7.3 Data patterns . . .

7.4 Inventory summary broadcast

7.5 Real-life deployment

Bibliography

32
33
35

36
36
37
38
39
40
41
42
44
45

49
49
53
35
55
57
60
62
63
65
66

68

70
70
71
71
72
72

74

Chapter 1

Introduction

There is a class of networks were the usual routing algorithms do not work.
These networks are called under various names, Delay Tolerant Networks, Dis-
ruption Tolerant Networks or Opportunistic Networks, but they all share a
defining property: there is no guarante a path between two nodes exists when
a data transmission is attempted. This means that a message has to be stored
in intermediate nodes waiting for a transmission opportunity, and this might
happen several times as the message travels towards its destination.

This condition appears under several scenarios, and covers a wide spectrum
of network applications. On one extreme, it can be seen as a limit case for a tra-
ditional network. As Internet expanded explosively and new link technologies
(like underwater communications) and extreme deployment scenarios (like in-
terplanetary Internet) got explored, network partitions could not be considered
anymore a breakage event. Not only network partitions became usual, but also
other pathological conditions such as very low throughput, asymmetric links or
very high propagation delays.

The other great motor of opportunistic networks was the apparition of a
profusion of battery powered and wirelessly networked devices, such as smart-
phones, laptops, smart-home appliances, etc. Also, this profusion of low cost
wireless devices created the opportunity for creating highly flexible networks in
places beyond the reach of traditional Internet infrastructure. These networks
could serve a very wide spectrum of tasks: emergency services, environmental
data collection, low cost delivery of bulk data, vehicular fleet tracking, etc.

The classical solution for a infrastructure-less networks is the mesh (ad-
hoc) network. Nevertheless, the routing algorithms used in mesh networking
are direct descendants of the usual Internet algorithms, usually variations of
distance-vector and link-state algorithms. Thus, mesh networks share the same
assumption Internet does: the existence of a end-to-end path. So even tough
a mesh network does not depend on external infrastructure, it does depend on
the nodes generating a infrastructure themselves. Trouble is, mesh networks are
even more vulnerable to network partitions and extreme transmission charac-
teristics.

CHAPTER 1. INTRODUCTION 7

To implement a really infrastructure-less network, a new network paradigm
is needed, were nodes are free to roam and establish connections with their pairs,
and were the routing algorithm is smart enough to make intelligent decisions
on what data keep, and whom it handle to when opportunity arises. Besides
the routing and forwarding tasks typical of a routing algorithm, nodes have to
store information between connection opportunities. Besides bandwidth, new
resources have to be managed, like airtime and storage utilization. Also, as
the nodes are usually battery powered, power consumption is a critical resource
to manage. To make intelligent decisions, information is needed: algorithms
should learn and take advantage of network patterns. There could be patterns
in the movement of the nodes, the data flows, or in the availability of certain
resources.

Due to having more resources to manage and more inputs for taking de-
cisions, opportunistic routing algorithms are bound to be more complex. On
the other hand, opportunistic routing is most useful on devices with limited
resources, typically battery powered. This makes for a hard design balance
between performance and resource consumption.

To the present day, the opportunistic routing is an open problem: new ap-
proaches, algorithms and solutions are being proposed, and new challenges are
identified.

These highly dynamical networks, with nodes appearing and leaving with
no announcements highlight one challenge in particular: the addressing scheme.
The traditional addressing of Internet is destination based: the node at the
source of the information flow specifies the destination node. This assumes the
source must know the destination for a data transfer to happen, and this was
found to be limiting in many applications, and a heavy burden to administer.
New methods are needed to allow nodes to access the information they need.
In particular, methods that allow the data flow to be specified by the data
consumers, and that do not depend on the identity of nodes. Such a paradigm
exists, Content Based Networking, were data consumers describe the data they
need, and information of interest is routed to them, transparently, from wherever
it could be.

The combination of Opportunistic routing and Content Based addressing
promises a very flexible and robust network infrastructure, but there are many
challenges ahead.

1.1 Objectives

The main purpose of this work is to provide a networking solution for the DE-
MOS project (described in more detail in Chapter 3). The DEMOS project
attempts to improve the life conditions of children in environmentally vulner-
able areas and neighborhoods with poor infrastructure. For this purpose it
proposes deploying a wide network of low-cost environmental sensors in public
areas and children’s living premises. The combination of a deployment with
many sensors covering a wide area and lack of infrastructure presents challenges

CHAPTER 1. INTRODUCTION 8

for the data collection: how to transmit data from these low-cost, remote sensor
nodes to a collection point for processing?

The proposed method is to take advantage of a local OLPC (One Laptop
Per Child) program. The existence of these numerous nodes, moving period-
ically trough the neighborhood as children go to and from school, create an
opportunity for implementing an Opportunistic Network: the children’s laptop
can be used as mobile nodes to shuttle information between sensor nodes and
collection points. For this purpose, a software solution must be developed, the
DEMOS System (see Section 3.1). This solution is comprised of a set of tools
and services that will be used to support, configure and maintain the network.

One of the components of the DEMOS System is the network protocol used
to transmit data between nodes, in a Opportunistic way. This protocol is the
expected result of this work. Therefore, the work is organized following three
objectives, as follows.

The first objective of the present work is to perform an in-depth study of
infrastructure-less wireless networks, especially the ones categorized as Delay
Tolerant or Opportunistic. It is expected to lead to the deployment of a real
solution, so special importance is devoted to existing proposals and their proper-
ties. In case of real deployment, it is to be made using low-cost and low-powered
devices, thus the efficient use of available resource (computational and air time)
is favored.

Due to the nature of the network, it was expected to adapt better to content
based addressing, instead of conventional destination based (for a discussion on
this issue, see Section 2.4). Therefore, Content Based Opportunistic algorithms
are of special interest.

The second objective is the development and implementation of a network
solution for the DEMOS project. For this purpose, a set of requirements were
drawn (see Section 4.1). If no suitable technology or existing solution is found,
a new solution is to be created.

Finally, the behavior of the selected solution is to be studied in depth, to
prove it is adequate for the DEMOS project and get new insight on the challenges
and weaknesses in the research area in general. The analysis should also provide
base for future work.

1.2 Contribution

The main contribution of this work is a novel content-based opportunistic algo-
rithm, RON. The algorithm (described in Chapter 4) uses some ideas of existing
solutions, but improves over them in some areas that were not handled correctly
before. The algorithm is simple, efficient and is easily modifiable. This makes
it a good base platform for adopting and testing out new ideas.

The implementation is highly portable and has been extensively tested in
simulated environments as well as real hardware.

A method for autonomically managing the protocol was designed and imple-
mented (see Section 5.3). The method is very flexible and based on high-level

CHAPTER 1. INTRODUCTION 9

policies, and allows to modify the behavior of the protocol in response to envi-
ronment changes.

A method for estimating the maximum delivery rate possible in an oppor-
tunistic network by an algorithm possessing perfect knowledge (“Oracle”) was
developed. This method is based on a Genetic Algorithm, and provides an upper
bound to attainable performance.

There were identified areas that impose limitations on the performance and
robustness of the protocol. These weaknesses are not exclusive of RON, and
actually are shared with other ON platforms. They are described in Chapter
7. Based on the results shown in Chapter 5, RON is a good infrastructure for
developing solutions for these issues, thanks to the simplicity of its architecture
and flexibility of the implementation.

1.3 Structure of the Document

The description of the research area and analysis of the existing solutions is
presented in Chapter 2.

A specific use case for an Opportunistic Network, the project DEMOS, is
described in Chapter 3. For this application, a set of requirements are defined
in 4. These requirements and the State of the Art analysis lead to the creation
of the RON protocol, described in Section 4.2. The implementation is described
in Section 4.3.

The solution’s performance and behavior are analyzed in Chapter 5, and
new work directions are presented in Chapter 7.

Chapter 2

State of the Art

The ideas behind Delay Tolerant Networks or Opportunistic Networks predate
Internet. Some ideas appear in research on Packet Radio Networks by DARPA
as far back as 1978[1]. Also, FidoNet operated in an environment consisting of
temporary connections between nodes in the form of more or less periodic phone
calls (early nineties). Similar networks were supported by the UUCP protocol
since the early eighties.

Recently there has been a new surge in research in the area, driven by the
widespread adoption of wireless links for the purpose of supporting Internet,
and the apparition of novel network applications, such as sensor networks.

In this chapter we will present a review of the concepts and technologies
used in the area, as well as implementations and solutions available.

2.1 Delay Tolerant Networks

The concept of Delay Tolerant Networks (DTNs') was introduced as a specific
research field in [2], in relation with IP network research. The authors point
out that there are several assumptions made about the underlying links on a
standard IP network, like the existence of a end-to-end path, a low round-
trip time and low packet loss probability. On the other hand, the category of
networks which break one or more of these assumptions (“ challenged networks”)
is growing in importance, as Internet gets deployed over technologies which
cannot support them.

The authors present the following characteristics of these challenged net-
works:

High latency, low data rate These networks provide services over low band-
width links. For example, a low power radio as used in sensor networks
could provide about 10kbps, and latencies of around 1 second can be com-
mon. Also, links can be highly asymmetric, or even unidirectional.

! These networks are also known as Disruption Tolerant Networks, the name under which
they are referred by DARPA.

10

CHAPTER 2. STATE OF THE ART 11

Disconnection End-to-end connectivity can be unavailable for relatively long
spans of time. These disconnects can be caused by faults, or normal
operations conditions. For example, nodes can be mobile and be in range
only occasionally, or nodes can go on-line according to a schedule to save
batteries.

Long queuing times Unlike conventional packed switched networks, queuing
times can be arbitrarily long (hours or days are usual). Longer discon-
nected periods usually lead to longer queuing times.

Low duty cycle operation When deployed for providing communications from
batteries, efforts are made to minimize the time spent transmitting and
receiving data. For example sensor nodes could collect data continuously,
but transmit only when enough data has been collected.

Limited resources Several of the applications envisioned (sensor networks,
emergency relief) are based on small devices with limited computing re-
sources. Limitations can be in transmitter uptime and power, raw com-
puting power, storage, total cost, etc.

Also, several approaches to cope with challenged networks are identified. The
first approach is to engineer the links as to fool upper layers into believing there
is a normal TP layer underneath (“link-repair approaches”). Another approach
identified is to have proxy agents at the edges of the DTN. This method does not
offer a general method for providing transit. As a result, the authors argue for
the use of a general purpose message oriented overlay architecture, providing a
reliable asynchronous message delivery, as the appropriate approach to take full
advantage of challenged networks. This came to be a very successful approach,
and one of the defining architectural characteristics of DTNs.

DTN research is being done within the Internet Research Task Force um-
brella, through the Delay-Tolerant Networking Research Group[3]. As such, the
view of the network is Internet-centric: the architecture consists of a network
of independent Internets, each supported by a typical Internet stack within.
The communications between these Internets are occasional, either scheduled
or random, and are sustained trough DTN gateway nodes.

The reference architecture of DTN is described in [4] and [5]. The end to
end message oriented overlay is referred as the “ Bundle layer”. The nodes that
implement the Bundle layer are the DTN nodes. To interact with a DTN,
applications generate self-contained messages of arbitrary length, called ADUs
(Application Data Units). These ADUs are delivered to the Bundle layer, which
will split them in protocol data units called Bundles. Bundles are handled by
the nodes maintaining the Bundle layer until they reach destination. Nodes
have dedicated persistent storage for keeping bundles between communication
opportunities.

CHAPTER 2. STATE OF THE ART 12

2.1.1 DTN Bundles

The unit of information transmitted in a DTN is called a bundle, and is specified
by the IETF in [6]. A bundle is a variable length PDU, bundling together all
the information needed to complete a transaction. This is done to reduce the
number of round-trips, which is of critical importance in DTN due to the very
high latencies. The Bundle Protocol offers end-to-end transport for applications
over a DTN, and provides such functionality as Fragmentation Control and
Error Detection and is integrated with the remaining of the DTN architecture
for elements such as naming and addressing.

2.1.2 Addressing

The addressing scheme for bundles is based on the concept of Endpoints. An
endpoint is a group of nodes which can be addressed collectively. A node can
participate in several endpoints, and is required to belong at least to an Endpoint
of which is the only member. Endpoints are identified by an EID (Endpoint
Identifier) which is a name expressed as a URI [7].

An application sends an ADU addressing it to an EID, this is, to a node or
group of nodes. Conversely, if an application is interested in receiving ADUs to
a certain EID, it must register that interest with the node.

The addressing flexibility of the DTN architecture is supported by the flex-
ibility of the URI schemas. When deploying a DTN, an URI scheme must be
designed to provide a naming that makes sense for the application: whether it
takes into account geographical location, or follows some organizational lines,
application domain groups, etc.

When a bundle is addressed to a endpoint composed of multiple nodes, it is
considered as delivered when in reaches a subset of the endpoint called MRG
(minimum reception group). The MRG can be single node (unicast), one of a
group of nodes (anycast) or all of a group of nodes (multicast and broadcast).
The MRG is an attribute associated to the endpoint.

2.1.3 Routing

The DTN specification intends to lay the ground for further research, and for
this purpose provides a framework for future work. It envisions supporting
operations in a very wide spectrum of condition and scenarios, from sensor net-
works to interplanetary Internet and deep-space communications. The involved
links have vastly different behavior, and thus the routing algorithms should be
different, too. To classify the different conditions the RFC4838 proposes the
following classification:

Persistent Contacts Always available links. Example: a DSL link.

On-Demand Contacts Links that can be brought up when needed. A ini-
tiator node must perform some action to activate the link, which will be
available until terminated. Example: a dial-up connection.

CHAPTER 2. STATE OF THE ART 13

Intermittent - Scheduled Contacts Links that are known in advance will
be available at some moment in time, for a given amount of time. Exam-
ples: low orbit satellite, scheduled communication sessions with a space-
craft.

Intermittent - Opportunistic Contacts Link opportunities that occur un-
expectedly, without previous planning. The duration of the connection
lasts an undetermined amount of time. Example: a device with a short
range radio (eg. a Smart-phone with bluetooth) moves into range.

Intermittent - Predicted Contacts If it is possible to get enough informa-
tion from previous story and the behavior is consistent enough, it is pos-
sible to use this information to predict future link opportunities. This
can be seen as a variation of scheduled contact (with predictions instead
of schedules), or a variation of opportunistic contacts (with predictions
instead of completely random encounters). Examples: Wi-Fi devices on
buses meeting on the road trough the day.

The routing methods themselves for these situations were proposed as an area
of work in the research area of delay tolerant networking. Only a very gen-
eral overview is provided, proposing maintaining the conventional separation
between routing (computation of routing paths) and forwarding (delivery of
bundles between nodes). The routing information is kept in the RIB (routing
information base), from which the forwarding state FIB (forwarding information
base) is derived.

2.1.4 Conclusion

Besides relaunching the research in the area, the DTN architecture identified
some important concepts.

In first place, the recognition that it is not viable to attempt to make DTNs
transparent at the TP level, and that it is needed to encapsulate the DTN be-
havior in a separate layer. The idea of supporting a DTN trough a message
oriented asynchronous overlay has been of great importance.

Another important idea is to extend the addressing scheme beyond what is
usual in IP networks. In DTN architecture is done in a very general way relying
on URI expressed addresses, but it opened the door to other paradigms, like
content based routing.

Finally, the importance of storage as another resource that must be managed
in a carry-and-forward-network is presented.

At the same time, great effort was spent specifying a framework for Internet-
like development: considerable detail was provided for the format of bundles;
gateways and proxies for interacting with TCP /IP networks are described; pri-
ority (QoS) and acknowledgment flags are specified, etc. This implies a rather
complex implementation even before “filling in the blanks” of routing, addressing
implementation, etc., and is not very useful or can be restricting in some appli-
cations. For example, a sensor network is a single use network, with messages

CHAPTER 2. STATE OF THE ART 14

that can be very small or fixed size, were message traffic flows only in one direc-
tion. A DTN like architecture could impose unneeded complexity (like bundle
fragmentation) and preclude some useful behavior (like message aggregation).

2.2 Opportunistic Networks

Tough usually the terms Opportunistic Networks (ON) and DTN are used in-
terchangeably, ON can be seen as a generalization of DTN[8]. Unlike DTN,
which is based on Internet technologies, ON does not make any assumptions
on the topology of the network or underlying technologies. While in DTN the
points of disconnection are restricted to the gateway nodes, in ON each node
that receives messages makes routing decisions.

All this makes ON a more flexible concept, that can be applied to novel areas
such as Sensor Networks.

2.2.1 Taxonomy
In [8] a two-level taxonomy for Opportunistic Networks is proposed:

Infrastructure vs infrastructureless Infrastructure means that the network
is asymmetric, in the sense that some nodes are more powerful and play
a special role in the routing. Infrastructureless networks are flat, and all
nodes are equal.

Infrastructure: Fixed vs Mobile Specific geographic locations of significance,
or mobile nodes, whether predetermined trajectory or random.

Infrastructureless: Dissemination vs Context based Dissemination algo-
rithms are forms of controlled flooding. These algorithms typically do not
keep any knowledge about the network. Context based algorithms attempt
to use some form of knowledge about the network behavior to select the
best candidates to carry messages to a destination.

As a taxonomy, it suffers from a lack of homogeneity. The first level (whether
the network has dedicated infrastructure) is based on properties of the network.
But then, while the “infrastructure” case is further categorized in function of
more properties of the network, the “infrastructureless” case is categorized in
function of properties of the algorithms (context aware or not).

In [9] the authors propose two main classifications for DTN (ON) algorithms:

Replication versus Forwarding Replicating algorithms are those which can
generate multiple copies of a message as it traverses the network. Forward-
ing means there is a single copy, thus at any given moment, any message
is located on a single mobile node.

Resource Constraints This classifies the algorithms according to the resources
they take into account for making routing decisions. The two main re-
sources are Storage and Bandwidth.

CHAPTER 2. STATE OF THE ART 15

‘ Problem ‘ Storage ‘ Bandwidth ‘ Routing ‘ Examples ‘
P1 Unlimited | Unlimited | Replication | Epidemic, Spray and Wait
P2 Unlimited | Unlimited | Forwarding Modified Dijkstra
P3 Finite Unlimited | Replication PROPHET
P4 Finite Finite Forwarding
P5 Finite Finite Replication Rapid, MaxProp

Table 2.1: A ON algorithm taxonomy[9]

This creates 5 main classes of algorithms, as seen in Table 2.1. The algorithms
shown as examples are described in more detail in the following sections.

2.3 Opportunistic Protocols

For supporting Opportunistic Networks there is a wide range of algorithms
available. It is an ongoing research field, and differing approaches can be found.
Solutions vary in complexity, flexibility and robustness. A pattern can be seen
where more sophisticated algorithms provide higher flexibility and higher ex-
pected performance at the cost of a more difficult setup and a explosion in the
number of configuration parameters. For a overview of existing solutions, see
Table 2.2.

2.3.1 Direct Delivery

It is the simplest form of ON. The source node stores the packet until it meets
the destination node, when it delivers the packet and erases it from its own
storage. In many realistic use cases can have extremely bad performance.

2.3.2 Epidemic Routing

One important family of protocols is Epidemic Routing [10]. Epidemic Rout-
ing is based on Epidemic algorithms, a method for synchronizing distributed
databases[11]. In Epidemic Routing a node carrying a message will deliver it to
each node it meets, and each node that receives the message will start replicating
it in a similar way. This way, the message will eventually reach its destination.
There is a compromise between resource utilization (bandwidth and storage)
on one side and network performance (delivery rate and latency) on the other.
To tune this behavior, the authors use two configuration parameters: a upper
bound for the message hop count, and a per-node buffer space. When there
are no limitations on the number and opportunity of replications, the result is
flooding of the message in the network. In this case the latency is minimized,
but at the cost of traffic overhead and storage waste in the nodes.

The Epidemic Routing algorithm is described as follows [10]. When two
nodes A and B met, the one with the lower id initiates a session. The session

CHAPTER 2. STATE OF THE ART 16

consists of three steps:

1. A sends SV

2. B requests SVa+ SVg

3. A sends messages unknown to B

In step 1, the node A sends a Summary Vector (SV'), which is a vector
containing the hashes of all messages in A’s buffer. Node B intersects the
incoming SV with the complement of it’s own to find messages that are available
in A but not in B, and requests them. Then, in step 3, the node B delivers the
requested messages.

As a management strategy for the buffer, FIFO is used. Some problems are
described, in particular lack of QoS and fairness with relatively small buffers. In
particular, aggregated buffer space used by a host is proportional to the number
of messages it emits, which can be unfair to other nodes using the network. This
effect could be mitigated using some form of Fair Queuing algorithm, such as
WFQ (Weighted Fair Queuing).

Behavior under resource consumption bounding is analyzed.

A weakness of this algorithm is that during a meeting messages are delivered
only from the node with lower id to the one with higher id. This means that
the numeration scheme for nodes must be defined in line with the expected data
flows. This is not always possible.

Nevertheless, two important ideas appear implemented: the need to limit
the life-cycle of messages (trough hop-count in this case), and a method for
efficiently exchange information on the availability of messages.

2.3.3 Spray and Wait

Spray and Wait[12] is a method to limit Epidemic’s resource utilization. Spray
and Wait routing consist of two phases: first, the node replicates as in Epidemic
Routing, up to L copies of a message. After that, and if the destination has not
been found yet, each of the L nodes carrying a copy of the message will keep
it for direct transmission (until they find the destination). In the basic version
called Source Spray and Wait, the algorithm replicates to the first distinct L
nodes it meets. A variation intended to reduce the overhead is to forward a
copy with probability p < 1 (Randomized Flooding).

A more sophisticated variation called Binary Spray and Wait (BSW) is
proved to be optimal when nodes move in ITD manner. In BSW, each packet
has a “copies carried” counter. The source node initializes it at L. When a
node carrying a message meets a node which does not, it hands over half of the
carried packets. Nodes keep handing out half of their inventory until only one
packet instance is left, at which moment they switch to direct delivery.

Both Epidemic Routing and Spray and Wait are very simple methods, that
do not collect any information on the network to adjust their behavior. They
are an example of infrastructureless / dissemination based algorithms.

CHAPTER 2. STATE OF THE ART 17

2.3.4 PROPHET

A widely used and studied protocol for ON is PROPHET (Probabilistic Routing
Protocol [13]). This protocol is specifically proposed for DTN type networks,
and as such uses the various DTN RFCs. In particular, the data units trans-
mitted are DTN Bundles (see 2.1.1). This protocol is based on Epidemic Rout-
ing, with provisions made for the fact that in a real network nodes usually do
not move completely randomly. To take advantage of the movement patterns
of nodes, a new probabilistic metric is maintained by the nodes, the delivery
predictability, in the form of a vector of predicted delivery chances for each
destination. These probabilities P, ode,destination) are included in the summary
vector to be exchanged when nodes meet, and are updated trough a technique
known as gossiping: the delivery probability for a destination in the incoming
summary vector is used to update own probabilities. This is done using the
following formulas:

Plap) = Papyoa + (1= Plap),ia) X Pinit (2.1)
P(avc) = P(a,c)ozd + (1 - P(a,c)old) X P(a,b) X P(a,c) X ﬁ (2-2)
P(a,b) = P(”'ab)old X Fyk (23)

The equation 2.1 shows the reinforcement behavior, which raises the delivery
predictability of a node if it meets a given destination frequently, driven by a
configuration coefficient P;,;;. The reinforcement can also be transitive, apply-
ing equation 2.2 to the entries in the predictability vector of the encountered
node. In this case, the speed of the reinforcement is regulated by a configuration
coefficient .

The delivery predictability ages, slowly decreasing if a given destination is
not seen. This happens following equation 2.3, where ~ is the configurable aging
coefficient, and k is the number of time units since last aging.

These probabilities are used to decide which messages to request from a
passing node. There lays the main difference with Epidemic Routing, which
requests all messages not already possessed, whatever their target.

The exact policy used to determine whether a message is going to be re-
quested (based on it’s delivery predictability) is configurable. The alternatives
are[14]:

GRTR (default) A node delivers a bundle to every node with a higher delivery
predictability for its destination.

GTMX As GRTR, but with a configurable maximum number of replications.

GTHR A node delivers a bundle to every node with a higher delivery pre-
dictability for its destination (as GRTR), or with said delivery predictabil-
ity higher than a threshold.

CHAPTER 2. STATE OF THE ART 18

GRTR+ Deliver only to nodes with delivery predictability higher than the
maximum seen thus far.

GTMX+ Like GTMX, but with maximum delivery predictability tracking as
in GRTR+.

GRTRSort Bundles to transmit are selected as in GRTR, but are also trans-
mitted in a specific order. The ordering criterion is that bundles with
greater differences in the predictabilities are transmitted first.

GRTRMax As GRTRSort, but the ordering criteria is that higher predictabil-
ities of the receiving node are transmitted first.

Once enough messages are requested, the buffer becomes full. After that, in
order to store a new message in the buffer some other must be dropped. Asnoted
before, Epidemic Routing uses simple FIFO for message buffer management,
which has certain limitations. To address that, PROPHET proposes several
policies, selectable at configuration time [14]:

FIFO This is the default policy. Oldest bundles are discarded first.

MOFO - Evict most forwarded first The bundles that were forwarded most,
times are discarded first.

MOPR - most favorably forwarded first A special coefficient is defined for
each destination, which is updated on each replication as FFAV = FAV, 4+
(1 — FAV,4) x P, where P is the delivery predictability of the receiver.
Bundles with highest values of FAV are discarded first.

Linear MOPR - most favorably forwarded first As MOPR, but the co-
efficient is updated as FAV = FAV 4+ P.

SHLI - Shortest life time first Bundles have an associated lifetime value.
Bundles with less remaining time are discarded first.

LEPR - least probable first Between all the bundles transmitted more than
a configurable M F' times, discard the ones with the lowest delivery pre-
dictability first.

PROPHET is the first algorithm studied that attempts to learn the behavior
of the network to make better decisions. It does so trough gossiping, a widely
studied and used method for propagating information trough a network.

A criticism of the solution is that, the profusion of selectable behaviors and
parameters, while providing great flexibility for different scenarios, makes it
very difficult to setup correctly. The difficulty is increased by the fact that the
impact of the different options is not particularly obvious.

An important contribution of PROPHET is that it is one of the few DTN
platforms to be actually tested in a real-life application [15]. In that applica-
tion, a DTN deployment attempted to provide connectivity to Sami reindeer
herders in Laponia, northern Sweden. Besides testing out the routing, it used

CHAPTER 2. STATE OF THE ART 19

a full DTN stack to provide two Internet based services, E-mail and cached
Web browsing. Additionally, a fully contained ON service was implemented for
debugging, NSIM (Not So Instant Message), that allowed to send text messages
between nodes. Interestingly, NSIM gained popularity and became one of the
most used means of communication in the DTN. At the same time, the ex-
periment identifies a mismatch between the DTN and the e-mail service. The
first (and lesser) difficulty is that the protocols used for delivering mail (SMTP,
POP, IMAP) are interactive, and thus not well suited to bundling. The second,
and main, difference, is architectural: the client-server nature of e-mail forced
messages to go trough a gateway, even when addressed to an immediate neigh-
bor. This is an important insight on the limitations of the DTN architecture
and the need of new applications for taking full advantage of a ON.

2.3.4.1 Improving PROPHET

PROPHET serves as a basis for further improvements. For example PROPHET+
[16] proposes enhancing the delivery probability with a weighted function that
takes into account several other attributes, namely Buffer Parameter (express-
ing available buffer space), Power Parameter (remaining power available), Band-
width Parameter (available bandwidth in the pair communication) and Popu-
larity Parameter (the rate of successful message exchanges for the node).

The exact coefficients used for the weighted sum are fixed at configuration
time and should depend on the nature of the network. The authors propose the
use of simulations for estimating optimum values.

This is a good example of increasing the flexibility of the algorithm at the
cost of further increasing the amount of configurable options.

2.3.5 Timely-contact probability protocol

In [17] the authors present another variation on epidemic routing. The proto-
col attempts to take into account historical encounter information to predict
a encounter probability in a future time slot. For this purpose, it divides the
encounter history with each node in time slots, or segments. The probability of
meeting with a node inside a future time slot is estimated as the proportion of
slots with registered meetings to the total number of recorded slots. The meet-
ing history must be kept in the node, and old segments get discarded to limit
storage consumption and adapt to changes in contact patterns. In opposition,
PROPHET keeps a single number for each destination.

During a meeting, a candidate node is selected to relay a message if its
contact probability is above a threshold. This probability is computed as the
sum of the probabilities of all possible paths across the nodes in the network.
For this purpose, each node keeps a matrix of encounter probabilities between
each pair of nodes. When two nodes meet, they exchange their matrices and
update their own. This matrix is used to compute the accumulated encounter
probability. This is heavier than PROPHET, which exchanges a vector of nodes
with their respective encounter probabilities. Also, no explicit computation of

CHAPTER 2. STATE OF THE ART 20

possible routes is done in PROPHET, instead it relies on the transitive formula
2.2.

2.3.6 RAPID

Unlike other ON algorithms, RAPID[9] attempts to explicitly calculate the ef-
fect of replication on the selected routing metric. RAPID is a utility driven
algorithm: a per-packet wutility function is used to select packets to replicate as
to maximize the increase in the local utility.

For example, if the routing metric is minimize average delay, the utility
function of a packet is the negative of the expected time to deliver said packet.
This estimation is made locally, with the help of a control plane for gathering
information from other nodes. RAPID will replicate packets in decreasing order
of their contribution to the total utility per resource used (marginal utility).

RAPID has three core components:

Selection algorithm refers to the estimating the utility value of packets can-
didates to be replicated, and their sorting according to decreasing marginal
utility.

Inference algorithm contains the heuristics used to estimate the utility value
of a packet. These are derived from the routing metrics used (such as
minimize average delay, minimize missed deadlines, minimize mazimum
delay, etc.) To help in this task, summarized information from the nodes
is propagated trough the network using a control channel.

Control channel is used to disseminate meta-data on the network state, in-
band using a fraction of the total bandwidth. Data shared includes ac-
knowledgments, average size of past encounter opportunities, local esti-
mation of delivery delay for own messages, etc. Though the information
is usually old and out of sync by the time it is used, simulations show that,
it’s use improves the performance.

The experience with RAPID lead to several interesting conclusions. The first is
that a DTN routing algorithm needs information on the network to approach
optimum solutions. General algorithms will perform worse than algorithms that
collect data on behavior. At the same time, DTN routing is shown to be a NP-
Hard problem, only approachable with heuristics. A balance must be found
between amount of meta information distributed and gain obtained from it.

2.4 Content Based Networking

There is a class of networked applications that rely on rich message addressing[18].
For example, Instant Messaging can maintain many-to-many discussions in real
time; personalized news services can notify users according to sophisticated se-
lection criteria; Service Discovery allows to gain access to new service providers

CHAPTER 2. STATE OF THE ART 21

according to type, location, etc. without having prior knowledge of them; moni-
toring tools and sensor networks that allow retrieving information from dynamic
and weakly structured networks using powerful and complex criteria, like loca-
tion, type and values of data, etc.

Traditional IP addressing only provides destination-routed unicast, multi-
cast and broadcast, communications, which is cumbersome to implement that
kind of applications in a efficient way. Thus, a class of middleware appeared,
the content-based publish/subscribe systems (such as CORBA Notification Ser-
vice, Java Message Service, COM+ Event System, amongst others). Usually,
these systems are implemented on the application layer, and only solve the
application-side of the solution: they provide users means to implement rich
addressing applications. Meanwhile, the underlying network support is still tra-
ditional IP addressing and the frameworks are not actually distributed, having
typically Client-Server architectures. This brings problems of scalability, as all
messaging must go trough one or a few nodes (message brokers), which lay on
the critical path of all communications and thus become bottlenecks.

In [18] the concept of content-based networking is introduced. At the phys-
ical architecture level it is identical to a traditional network: it is modeled as
a non-directed graph of nodes connected trough communication links. Nodes
with multiple links are called routers, nodes with a single link are hosts. The
main difference with traditional networking is at the service model. Nodes are
not assigned unique addresses, which are not used by the source when send-
ing datagrams. Addressing is specified by the receiver, advertising a receiver
predicate (r-predicate) which specifies the messages the node is interested into.
Whenever a node pushes a datagram into the network, it will be routed to all
nodes that advertised a r-predicate that match the datagram.

Thus, if we denote the universe of datagrams with D, the universe of predi-
cates is P : D — {true, false}. A predicate P, (predicate advertised by node
n) is a Content-Based Address of node n. Any datagram d such as P, (d) = true
is considered as cb-addressed to node n. From this can be seen than a node can
have multiple cb-addresses and cb-addresses from different nodes can have iden-
tical predicates. Consequently, cb-addresses can not serve as node identifiers in
the general case.

To define an addressing scheme, two models must be defined: a Datagram
Model (a definition for D), and a Predicate Model (a definition for P). This is
a very flexible method, and allows to model several usual addressing schemes.
In particular, destination addressing such as used in a IP network is easily
modellable: the Datagram Model is the definition of a IP packet, while the
Predicate Model is the class of functions that only take the destination field as
a parameter.

The concepts of routing and forwarding from traditional networking also
have a related meaning in Content-Based Networking. The routing becomes
the process of maintaining forwarding tables in the nodes, which contain pred-
icates, trough the exchange of predicates and other routing information. The
forwarding refers to the local decision in a node of choosing where to send a
datagram, finding the matching predicates in the forwarding table.

CHAPTER 2. STATE OF THE ART 22

2.4.1 Examples

A well known implementation of a content based network is CBCB (Combined
Broadcast and Content Based) [19]. CBCB provides content based routing over
an ad-hoc mesh network, and takes a two-layer approach. First, over the sup-
porting mesh network a broadcast tree rooted at the message source is con-
structed. Then, this broadcast tree is pruned according to predicates leading
to subscribers. Thus messages follow the branches from the broadcast tree that
lead to the subscribers.

One of several methods can be used to build the broadcast trees, like a shared
minimal span tree, or per source shortest path trees. Predicates are propagated
upstream these trees to populate forwarding tables in the nodes.

An interesting design decision is that CBCB supports only one predicate per
node. This simplifies the protocol, without losing generality, as a predicate can
be the result of the combination of several predicates. A service that supports
the addition and revoking of separate predicates and handling of messages to
them can be implemented on top of CBCB.

We developed a content based routing platform, RNR (Router-based Noti-
fication Router) [20]. The purpose was to provide content based networking for
ad-hoc mesh networks using low cost consumer grade wireless hardware. For
this, RNR attempted to use as little resources as possible. It is somewhat simi-
lar to CBCB in that it combines a broadcast tree and uses predicates to direct
messages, but the broadcast tree is rooted at the subscriber and is built by the
same process that floods predicates. Predicates are flooded from the subscriber,
and the flooding process has the side effect of building a coverage tree that leads
to the subscriber along a shortest path (similar to how a convergecast works).
This provides for a very simple and compact implementation.

2.5 Content-Based Opportunistic Protocols

There are two forces motivating the combination of content-based and oppor-
tunistic networking.

The first comes as a intent for further increase the robustness of a content-
based mesh network. Just as a mesh network attempts to add support for
mobility and resilience to sporadic link failure, opportunistic networking can
be seen as a method to protect against frequent failures that lead to network
partitions.

The other motivation happens from the need of providing more powerful
primitives for applications running over a pure opportunistic network, such as
a vehicular or sensor network. For example, it is frequent for a user of a sensor
network to be interested on certain classes of readings from sensors, classes
defined over the attributes of the readings: their values, geographical location,
etc.

Content-based opportunistic network is a relatively new research branch,
and there are few actual solutions described. Of these, we do not know of any

CHAPTER 2. STATE OF THE ART 23

instance of real life deployment. Also, we identified some serious weaknesses
in the algorithms, which were part of the motivation for developing our own
system RON. This will be commented in more detail in 4.2.2.

2.5.1 Guidec, Maheo et al.

In [21] a Content-Based Opportunistic Protocol is presented. It follows the
general principles behind Autonomous Gossiping[22] in the sense that it com-
bines Gossiping message propagation with an autonomous policy for message
selection.

It is optimized for reducing the consumption of resources, particularly the
wireless medium. For this purpose it minimizes the global amount of data trans-
mitted, and uses broadcast rather than unicast transmissions. The idea behind
using broadcast transmissions is that they are less costly than rounds of point-
to-point unicast messages. The reduced reliability of multicast is compensated
by the opportunistic nature of ON: instead of relying on a reliable point-to-point
protocol, a new opportunity for repeating a failed transmission can be offered
by the opportunistic behavior.

The protocol is oriented to documents, and is not fully content-based in the
sense that the content based behavior is applied to a document descriptor, a
list of attributes that is associated to each document. The interest of a host
on certain documents is specified by a interest profile, which is a predicate that
selects descriptors. Documents are stored in an internal cache.

The protocol is based on nodes announcing its interest profile and the content
of its own cache, and reacting to other node’s announcements. The algorithm
has three main phases:

Announcement Periodically, each node broadcasts a message containing it’s

own profile, and a list of descriptors of locally cached documents (or cata-
log). When a node receives such a message, it will store the profiles. This
list of profiles is used to optimize the transmitted catalog: only descrip-
tors that match some previously seen profile are included. To adapt to
changes in the neighborhood, the list neighbor’s profiles is reset each time
the node makes an announcement.
When a node listens an announcement that contains a descriptor that
matches node’s profile and is not yet in the local cache, it will request the
document trough a separate unicast channel (to avoid triggering answers
from several nodes).

Request processing When a node receives a document request (trough a uni-
cast message as seen above), it will broadcast said document. The docu-
ment is broadcast because there can be several requests for a single docu-
ment, and a broadcast can satisfy all of them in a single transmission. Each
document is transmitted not more than once between announcements.

Document receptions When a node receives a document broadcast, it will
check it against it’s own profile. If the document is of interest, it will will

CHAPTER 2. STATE OF THE ART 24

store in the local cache. An interesting property is that it is possible to
overheard a document broadcast without actually requesting it, from a
dialog between other nodes.

Later work by the same authors[23]added the capability of using multi-hop
message exchange for better coverage of connected segments of the network
that could appear. It is based on multi-point relays (MPR), and is inspired in
OLSR.

In our opinion, a weakness of this protocol is that the local cache contains
only documents that match the profile of the node (this property is inherited
from Autonomous Gossiping). This precludes a node of being a carrier of infor-
mation if it has no local interest in it, even if it’s mobility pattern makes it very
adequate for shuttling information between a pair of nodes. This can result in
bad performance if the profiles are highly specific and do not overlap between
nodes, or the proportion of nodes with a profile is small.

2.5.2 CEPMF

The Content Encounter Probability Message Forwarding scheme is presented in
[24]. In the CEPMF scheme subscribers spray the predicates into the network,
which will be maintained in the relay nodes with an associated utility-value.
This utility parameter will indicate the priority of the relay node to drive a
message towards its consumer.

In CEPMF, a message is a set of attribute/value pairs, and a predicate is a
logical constraint (in DNF) over the values of said attributes. For example, a
message with the content:

[class="alarm”, device="node10”, alarm-type="lowdisk”, alarm-value=10]

would match a predicate such as:

[class="alarm” Aalarm-type="lowdisk” Nalarm-value <15V class="alarm” Nalarm-
type—"intrusion”|

Subscribers distribute predicates to relay nodes using Binary Spray and Wait
as described in 2.3.3. Each relay node associated a message encounter probabil-
ity ep € (0,1) which will be used to evaluate the probability that the relay can
transmit a matching message to the predicated creator. The ep parameters is
assigned a initial value when the predicate is registered, and then is reinforced
when the predicate is met in the network (equation 2.5), and ages when this
does not happen (equation 2.4).

EPnew = €Pold X e~ (t—to) (2.4)

EPnew = €Pold + (1 - epold) X €Dinit (25)

This allow the node to learn how good it is to relay for the different predi-
cates, knowledge which will be used while forwarding messages. This is similar to
what PROPHET does (see 2.3.4), but with an important difference: PROPHET

CHAPTER 2. STATE OF THE ART 25

does not use Spray and Wait, but floods predicates limiting the propagation nat-
urally as the encounter probability gets too low. Also, from comparing equations
2.1 and 2.5 can be seen that PROPHET takes into account the encounter prob-
abilities of both emitter and receiver, while CEPMF does not: it applies a fixed
reinforcement on each meeting instance. This means that once predicates are
available in all nodes, the reinforcement stops being useful.

Special care is taken with the handling of the possible overlaps between
predicates. When a node has overlapping predicates, a message that satisfies
the intersection of the predicates will satisfy both predicates. Thus there is an
extra advantage in carrying such a message. This behavior is implemented by
splitting two overlapping predicates, P, and P, in three predicates: P3 = PiNP»
for the intersection, and P, = P, — P, P, = P, — P for the disjoint parts. The
encounter probability of the intersection is higher than of each original predicate,
and is calculated as eps = ep; + (1 — ep1) X epo.

Messages are tagged with the ep value of the predicate they match on the
relay. On the message emitter, the ep of the message is initialized at 0, and
a relay will accept a message if the message’s ep value is less than the ep of a
matching predicate. This way, messages follow a path along relays with increas-
ing values of ep, toward the subscriber. Also, message propagation is limited
with a binary TTL (similar to the one used to propagate the predicates).

Message propagation is triggered by a node (source or relay) broadcasting
own content messages. This broadcast is made periodically. When a listening
node receives a message that matches some predicate with a greater ep than
the message’s ep, it will store the message in the local cache, update its ep, and
send a unicast acknowledgment to the source. This ack is used to signal the
emitter that the message was accepted, so it must reduce the binary TTL. Tt
also inhibits the relay from broadcasting the message again for a while.

The fact that nodes periodically broadcast its message inventory makes this
algorithm heavier that the one described in 2.5.1 or PROPHET, which are based
on broadcasting the (much smaller) list of predicates.

2.5.3 CAR

Context Aware Adaptive Routing for Delay Tolerant Networks[25] focuses on
a DTN topology consisting of a set of disconnected clouds, with some mobile
nodes that migrate between them. Inside each cloud a proactive mesh rout-
ing protocol is used, such as Dynamic Destination-Sequenced Distance-Vector
(DSDV). Communication between clouds is done in a forwarding mode, this is,
a packet is trusted to a single mobile node to be relayed to remote clouds.
CAR chooses a node to carry a message using Kalman Filter predictions
and multi-criteria decision theory. To calculate a delivery probability, a node
starts by calculating a utility function as a weighted sum of several context at-
tributes. Basic CAR uses two attributes: a change rate of connectivity (number
of connections a disconnections in a lapse of time, measures the mobility), and
co-location (whether the node is the same cloud with another node). Other
attributes can be added, such as battery level. The weight assigned to each

CHAPTER 2. STATE OF THE ART 26

attribute is itself variable as a function of the attribute and its value. For exam-
ple, the weight assigned to the battery level rises as the battery level reaches a
critical value, or the co-location attribute can be ignored completely if it’s value
is deemed unreliable by the Kalman predictor.

Between updates of information, CAR uses Kalman Filters to predict the
evolution of attributes. This allows to estimate the value of attribute when
there are no updates from neighbors (like when the node is disconnected), and
to reduce the frequency of exchanges of context information between nodes.

Forwarding is done to a configurable fraction of available links. Firstly,
information is used on nodes visible trough DSDV. Then, if there are remaining
links to explore, prediction is used. Finally, if there are links available, remaining
copies are forwarded randomly.

As seen in the algorithm by Guidec, Maheo et al. (see 2.5.1), CAR also
mixes a Carry and Forward with Mesh routing, where nodes besides having a
buffer also maintain an ad-hoc mesh network (MPR in the former, DSDV in the
later). In this case it is a natural off-shot of the view of the networks as a mesh
network with occasional partitions, typical of DTN inspired work, and not as a
collection of mobile nodes that only meet, occasionally.

2.6 Conclusions

Amongst the context-aware opportunistic routing protocols, two families can
be identified (see Table 2.2). The first group uses some method to predict the
deliverability to a certain destination using information collected on the behavior
of other nodes in the network. This is somewhat similar to link-state routing,
and usually uses some control channel to disseminate extra routing information.
Examples of this kind of algorithm are RAPID, Timely-contact Probability and
CAR. These are highly complex algorithms, that resort to some sophisticated
methods, such as the distributed calculation of marginal utilities or Kalman
Filters. These algorithms have necessarily complex implementations, and bring
doubts to their manageability, specially in the light of the difficulties with other,
much simpler, algorithms.

The second group of algorithms uses a simple epidemic method, more in line
with a Distance-vector routing algorithm. Each possible neighbor is assigned a
coefficient which represents an abstract “quality” for it, expressing how good the
node is to deliver information to it. This coefficient is adjusted following very
simple rules, usually increasing as the node gets in touch with a destination (di-
rectly or trough mediators), and decreasing as time passes without encounters.
Examples of algorithms in this group are PROPHET and CEPMF.

For the purpose of a real world deployment on devices with limited com-
puting power, the second group is considered more promising. Nevertheless, all
the reviewed solutions have serious shortcomings. In particular, the two Epi-
demic/Content Based algorithms have unsatisfactory forwarding management:
the algorithm by Guidec, Maheo et al. does not support carrying information
not addressed to the node, and CEPMF is based on periodical broadcasts of the

27

CHAPTER 2. STATE OF THE ART

§[000301 213stunyiodd() :g'g O[qeL,

dr Surseorour Suore

Jurde | sodessowl ‘AI0jULAUL (BurSe / juoureoiojuod)
+ LI, Areurg jseopeolg AY111qRqO1J JI93UNOdU Pposeq-ju9juo)) ANdAD
TLIL Areurq
‘SIUOUIROUNOUTR ‘°
'/U Soreye) + e[goig Buidissor) snowouojny poseq-1uajo)) | 19 O_YRIN ‘D9pINK)
SYUI] o[qerese AdSA
Od1d JO uomnoelj € Of, + SIoY[Y uewrey] + AN PosB(-juaquos qvo
Suryeotjdox
1811 Poje[ep JO AN [eUISIRWI | TOTJRUTUILSSIP B)EP [QUURYD
AI[19M 9s0MOTT | 03 SUIPIOIDR POIIOG [01)U00 ‘USALIP A1) | POSeq-UOIIRUI)SO(] ardavy
PIoY o1y} ® SIOJUNOOUD
1000 AyTiqeqoad PIOYSOIY) © I9A0)M SJO[SoUIT) pue Lyqeqoxd

Amoare | Aypqeqoad Azearp | syged orqissod yim XLIjey poseq-uorjyeunso([19RIUOI-A[oWL T,
o[qeyoeres suorydo suorpdo 107)0 ‘dq (Burde / juoureniojured)
Y30 *Od1d Suiseadut Juoly Liqeiomaig ALarp(] | paseq-uoreunsa(| LdHdOYd
KI9AT[OP 90011P
uot) otwepide ‘oseyd omT, poseq-uorjeunso([MeA\ pue Aexdg
pt epou
Sursearour 3uore
0414 ‘10909A Arewruung yunod doy + orweptdy poseq-uoneur)so(] | Sunnoy osrweprdy
ouUOU | POSe(q-UOIyeuIISo(] KIOAT[O(] 99011
JuoweSrUR]N
Topgng Surpremioq Surnoy 3uIssoIppy

CHAPTER 2. STATE OF THE ART 28

inventory, which is potentially very expensive.

This suggests the creation of a new algorithm, which is Content Based,
uses a Epidemic-like routing relying on the broadcast of the profiles, and takes
advantage of the broadcast medium when forwarding messages.

Chapter 3

DEMOS Project

DEMOS project (Domestic Environment Monitoring with Opportunistic Sensor
networks) [26] aims to improve the environmental monitoring in areas with
little infrastructure, with minimal cost. DEMOS takes advantage of the OLPC-
like programs to develop a low-cost platform for environmental sensors, such
as air-quality sensors, that are deployed at the living premises of children in
environmentally vulnerable neighborhoods as well as at their schools, parks,
etc.

The main idea is to use children’s laptops to collect and carry information
from widely deployed environmental sensors, as they move to and from school,
in the neighborhood, etc. The fact that sensor nodes do not need to have a
connection to Internet but only need a simple Wi-Fi interface allows to reduce
cost, and adds flexibility to their placement.

The DEMOS project is the main driver behind the present work. As will be
seen, the solution developed for DEMOS project depends on the existence of an
opportunistic network, used to shuttle data between sensor nodes and collection
points.

3.1 DEMOS System

To support the DEMOS project we have developed the DEMOS system. The
DEMOS system is a policy-based, self-managed system that consists of a set
of services deployed on many network devices or nodes. Depending on which
services are deployed on a node it falls under some of the following categories:

Sensors. These are the nodes that collect environmental data. They are usually
fixed to a place, and they have attached sensing hardware. Different nodes
can have different sensing hardware attached.

Collectors. These nodes are usually placed at schools, and are the recipients of
data generated by Sensor nodes. Data is collected and relayed to a central
Management Station through the Internet.

29

CHAPTER 3. DEMOS PROJECT 30

Figure 3.1: A Carrier Node and a Sensor Node

Carriers. These are the mobile nodes that relay information from the Sensors
to a Collector in an opportunistic fashion. Usually these are XO laptops
owned and therefore carried around by children.

Management Station. All data is summarized and analyzed here. Addition-
ally, the DEMOS management, rules are edited, compiled and deployed
from this node.

3.2 Node Architecture

The general architecture of a DEMOS sensor is depicted in Figure 3.2. It is an
application of the RAN Architecture [27], and possess three main services. The
first is LuPA, a set of components for rules-based management. The second is
Rmoon, a monitoring service. And finally RON, a common data bus which is
used to exchange information between the instances of the first two services, on
the same node or over the network.

3.2.1 RON

RON (RAN Opportunistic Network) is a common data bus for exchanging mes-
sages between nodes and services. It was developed for providing content-based
publish-subscribe delivery in Opportunistic Networks, and can interoperate with
a mesh oriented bus, RNR. In particular, this protocol is responsible for deliv-
ering sensor readings from sensor nodes to collecting points. It must be present
in all nodes participating in the DEMOS network.

For a full description, see Chapter 4.

CHAPTER 3. DEMOS PROJECT 31

Opportunistic Network

Wireless router -
USB/Serial
/

PIC-18/AVR - [. [4 I_

4
Sensor Sensor

Figure 3.2: DEMOS Node architecture

3.2.2 Rmoon

Rmoon' is a service that monitors the state of a device, and triggers “trap”
notifications when certain conditions occur. Those notifications are delivered
trough the data bus to interested parties in a content based fashion. Therefore,
Rmoon is the main supplier of events for the Policy Decission Point (PDPs)
distributed over the network.

In DEMOS, the main responsibility of Rmoon is to monitor the readings of
environmental sensors attached to a sensor node, and push readings of interest
in the network. To setup a monitoring node, an administration station (usually
a collection point) must send a “command” notification to one or more Rmoon
services. The sample notification shown in figure 3.3a would configure a sensor
node to trigger a message when a gas level goes over 0.7, and send out a reading
at least once each 6 hours. Each such condition set up is called a watcher.

After setting up a watcher, a collecting point should activate a subscription
that will route notifications of interest towards it. The sample subscription in
Figure 3.3b will select any message of type “trap”, carrying a gas sensor reading.
Notice that the subscription does not specify the sensor node, so in this case
the collector is subscribing to all sensor nodes, whoever set them up, as long as
they generate gas level readings.

A Rmoon service will periodically monitor the readings of the attached sen-
sors, and trigger “trap” messages as correspond. A sample trap can be seen in
Figure 3.3c.

!The name RMoon is a pun with the well known RMON (Remote Network MONitoring)
and the Portuguese meaning of Lua (moon).

CHAPTER 3. DEMOS PROJECT

NOTIFICATION
notification_id=123
source=colll
target_node=sensorb
target_service=rmoon
message_type=action
command=watch_mib
watcher_id=gas_alarm

SUBSCRIBE
subscription_id=2
subscriptor_id=colll
FILTER
message_type=trap
mib=gas_level

END

32

NOTIFICATION
notification_id=127
source=sensorb
service=rmoon
timestamp=1313175897
message_type=trap
watcher_id=gas_alarm
mib=gas_level

value=0.71
END

mib=gas_level
op= >
value=0.7
timeout=21600
END

(a) Setting up a monitor (b) A Subscription (c) A Sensor reading

Figure 3.3: Sample exchange with a Rmoon service

Rmoon is a generic service that is easily extensible. For the DEMOS project
we extended Rmoon with support for external sensors. For this purpose we
interfaced with a microprocessor software framework developed in our research
group, called USB4ALL[28]. USB4ALL is a modular firmware that provides
a high level communication mechanism. It allows the controller to discover
installed modules, load and unload them at runtime, and query them trough an
RPC-like mechanism. Originally developed for the Microchip PIC-18 series of
microcontrollers, it has been also ported to AVR based Arduino platform.

The client side is implemented in a library called lubot, written in Lua, and
thus is also highly portable. The only native code needed on the Rmoon side is
a Lua - libusb binding or a small message oriented serial library (depending on
how the microcontroller board is attached, trough USB or serial link).

Besides monitoring external sensors Rmoon can monitor the state of the
node. For example, it could be useful to get information on battery levels or
network conditions. It must be present at least in all sensor nodes, to collect
data from external sensors. It also may be run in any other node which should
be monitored for other purposes.

3.2.3 LuPA agent

LuPA (Lua Policy Engine) groups the policy-related services or functionalities.
Following PBNM (Policy Based Network Management) architecture [29] it in-
cludes a PDP (Policy Decision Point) and an EP (Enforcement Point). Both
components can be installed together or separately, according to the role of the
node.

LuPA implements a general purpose decision engine. It models a manage-
ment problem as a control theory problem: there is a dynamic system (the

CHAPTER 3. DEMOS PROJECT 33

Manager

TFFST -
©)

Determinize,
Export & Deploy

Actions

Responses

Events RMoon Setup

Managed entity

— |:>
Notifications Native interfaces
through bus

Figure 3.4: Message exchange between DEMOS components

managed entity), a set of measures that can be obtained from the system, a
set of inputs (actions) available to manipulate the system, and a controller that
computes these inputs from the measurements. A scheme of the information
flows can be seen in Figure 3.4.

System inputs and outputs are transported trough a content based notifica-
tion bus. The controller is implemented as a rule-based decision engine, allowing
high level descriptions of behaviors. There can be multiple instances of the con-
troller, potentially with different sets of rules, and the notification bus supports
the exchange of messages between nodes. This means a node can take decisions
based on remote information, and these decisions can impact remote nodes, so
the management can be distributed.

3.2.3.1 PDP - Policy Decision Point

PDP’s task is to take autonomous decisions, based on the stream of Notifications
it receives trough the Notification Bus.

The rules engine is actually split in two: a central rules management service,
and a multitude of rules execution services (the PDP itself). In the central rules
management service rules are administered, combined, optimized, conflicts are
resolved, etc. [30]. Then the resulting rule-set is transformed to a representation
that can be efficiently executed in low-power nodes and deployed there. This
compact representation is called a policy file and is pushed to the PDP agents
in a command notification trough the Notification Bus.

CHAPTER 3. DEMOS PROJECT 34

The policy file is a Lua program that implements a Finite State Transducer
with e-transitions (FST-¢), accessible trough function calls. Both the input and
output of the transducer are notifications.

When a policy file is received, the PDP executes it in a special sandboxed
environment. As the policy is initialized, it can emit some notifications, for
example for setting Rmoon watchers, or subscribe for some classes of messages.
After the policy is set up, the PDP starts triggering it with notifications. The
state is kept internally in the policy script, and the PDP must not know how it
is implemented, only that call hooks are respected.

The PDP maintains a list of recent notifications, which is shared into the pol-
icy script’s environment. This list contains a sliding window of the last arrived
notifications. To simplify the state machine, the notifications can be ordered in
the window by a fixed ordering rule. In this way, the state machine does not
have to handle every possible permutation of the notifications of interest.

The size of the sliding windows can be set at configuration time. For this
purpose there are two parameters: a length of time in seconds, and a maxi-
mum number of notifications in the window. Also, there is a special category
of notifications: “happening notifications”. Those are notifications that signal
permanent change in some attribute, and thus must be kept in the window for
it to be correctly processed. For example, a decision could depend on whether
a given service is active or not, thus the hypothetical “going up” and “going
down” notifications from that service could be marked as happening to keep
them in the window. This way, the state machine could count on the presence
of said notification no mater how old it is. Marking and unmarking notifica-
tions as “happening” is policy’s responsibility, and the PDP will comply while
maintaining the sliding window.

By expressing the state machine as Lua code, there is no intermediate rep-
resentation for the state machine and thus no special parsing. All the parsing
work is done in the central server, and the PDP just executes it.

When a state machine recognizes a pattern of notifications, it signals it
sending one or more notifications to the common bus. Said notification can
be a corrective action sent to a node (in the classical PBNM fashion), or an
abstract notification signaling a complex event. Said event would be the result
of correlating multiple event sources, and could be used by a higher level policy
(residing in the same or a remote PDP).

This allows to implement a hierarchy of policies, where node-local events are
processed directly on the node, and network-wide conditions are handled in a
dedicated management node. Where and how many PDP instances there are
depends on the kind of rules are expected to be used. For example, to use a
PDP to recognize certain geographical patterns in sensor readings, the best place
would be a collection point. If the PDP is to manage a node, like switching off
power hungry sensors when power is lost and running from batteries, the PDP
would reside in the sensor node itself.

CHAPTER 3. DEMOS PROJECT 35

3.2.3.2 EP - Enforcement Point

The EP is an ordinary enforcement point, providing functionality to configure a
node. The EP subscribes in the message bus for messages with message_type
= action that are directed to it, and implements several actions to modify
device specific settings such as network configurations or starting services. For
example, an EP could be used to switch a particular sensor hardware off and
on to save battery. The EP is easily extensible trough shell scripts.

It also provides a get_mib action, which allows to query the node on its
internal state. It’s possible to query on, for example, the CPU load, free RAM,
or a reading of an attached sensor.

Chapter 4

RON Opportunistic Network

RON (RAN Opportunistic Network) is a implementation of a Content-based
Opportunistic Network algorithm!. The algorithm collects the best ideas of
the State of the Art, and brings some novel ideas that solve shortcomings and
provide new functionality.

4.1 Requirements

During the development of the DEMOS project (see Chapter 3) the need for a
opportunistic network appeared. DEMOS envisions a sensor network deployed
in urban or rural settings, with the objective of monitoring environmental vari-
ables. Sensors themselves have very low costs and are widely deployed, with the
possibility of adding new sensor nodes as need arise. Data collection would be
assured by the normal daily movements of kids carrying their XO laptops, from
the country’s OLPC program, Plan CEIBAL [31]. As the kids pass near sensor
nodes on their way to or from school and elsewhere, data would be unloaded to
the laptop and be carried around until (opportunistically) delivered to a central
collection point, possibly installed in a school.

From this application a set of requirements was derived for a supporting
opportunistic platform.

Content-Based Notification Bus

When dealing with an unplanned network of devices, such as the DEMOS sensor
network, the maintenance of an inventory containing addresses and configura-
tions, setups, software updates, etc. of such devices adds to the management
burden. Moreover, without such an inventory, configuring and reconfiguring
each sensor to adapt to changes in the interests of the operators and users of
the network or to changes in its layout may be an impossible task.

I The sources are available at https://github.com/xopxe/Ron

36

CHAPTER 4. RON OPPORTUNISTIC NETWORK 37

In this context, content-based routing appears as an interesting solution.
From previous work we had experience developing a distributed policy-driven
management platform RAN [27], which originally worked over a mesh network
using our mesh network content-based notification bus, RNR (see Section2.4.1).

In RAN architecture, all messages are delivered through a publish-subscribe
notification bus. Subscriptions are used to route notifications to interested
nodes, and notifications are used to distribute data. Notifications could be used
to send commands (for example, configuration changes) and traps or alarms (for
example, upon detecting some error condition).

It was envisioned using the same technology, replacing the mesh network
with an opportunistic one. Ideally, the new protocol would serve as a drop-in
replacement and support RAN’s operation transparently. Also, the new protocol
should interoperate with RNR to support mixed network deployments.

Lightweight

The platform was to be run on devices with low computing and storage power,
and frequently running from battery. Sensor nodes were to be linked to con-
sumer grade wireless routers, with USB or serial ports for interfacing the sensor
hardware. Such devices run with as low as 16Mb RAM and 4Mb flash storage,
with 200MHz CPUs. Even less powered sensor nodes, microcontroller based,
could be expected to be used. Mobile nodes were to be XO laptops. These
laptops, in their most frequent configuration at the moment, were powered by
AMD Geode CPUs, with 256Mb of RAM and 1Gb of flash storage.

Efficient

Due to the low computing power and storage available, the algorithm should be
very efficient in resource utilization.

Another difficulty was related to adverse radio conditions. Sometimes, the
transmission windows could be very short, for example, a kid with a XO laptop
on a bus driving by a sensor node installed on a utility pole. Other times there
would be a very dense wireless network with a lot of active nodes in range and
lots of collisions (kids near or in the school). Thus, the protocol should make
the best use of the airtime, minimizing redundant transmissions and taking
advantage of fleeting pairing opportunities.

4.2 RON Protocol

After reviewing existing options, it was found that none was really adequate to
the envisioned use, or had some serious shortcomings. Nevertheless, some basic
ideas were considered sound and it was decided to develop a protocol that used
the best of the available alternatives, and implemented some of our own. The
result is RON (RAN Opportunistic Network).

CHAPTER 4. RON OPPORTUNISTIC NETWORK 38

Algorithm 4.1 RON algorithm skeleton

1 N : Array[#N] of Notification

2 V : Array[#V] of {Subscription, quality}
3

4 each t seconds

5 broadcast(V)

6

7 when received_view(V’)

8 V.merge(V')

9 N’ = matching(N, V')

10 broadcast (N’)

11

12 when received notifications(N’)
13 N.merge(N’)

4.2.1 Overview

The main idea is that RON is a fully broadcast based protocol. All messages are
sent without an explicit destination, and any node listening a packet makes a
local decision on how to use that information. The rationale behind this decision
is that as the wireless medium is naturally broadcast, unicast communications
are wasteful: the medium gets occupied for all nodes in range anyway. Also,
network maintenance is realized trough periodic broadcasts of a subscription-
quality vector.

The algorithm is very simple (See Figure 4.1). It is patterned after a Gossip-
ing Algorithm, with an active thread which transmits periodically, and a passive
thread that processes incoming messages and generates responses.

RON manages two types of entities: Notifications and Subscriptions, which
are the datagrams and r-predicates as described in Section 2.4, respectively. The
implementation of these entities is described in more detail in Section 4.2.3.
There are two kinds of messages being emitted: a View, which is the vector of
Subscriptions with associated qualities (triggered from the active thread), and
a set of Notifications (triggered from the passive thread). Special care is taken
to reduce the network utilization, as will be described in Section 4.2.5.

The specific RON behavior is determined by the function MATCHING and
two MERGE functions, one for Views and one for Notifications. These will be
described in more detail in Section 4.2.4.

This structure is highly flexible, and allows to experiment with different solu-
tions for routing and forwarding tasks. The routing is handled by VIEW.MERGE
function. It processes the View vector message, and decides how to use the
routing information (the quality attributes) contained. Forwarding is handled
by the MATCHING and NOTIFICATIONS.MERGE pair of functions. The first se-
lects notifications to be broadcast, and the seconds chooses which to actually
keep when notifications are received. Both sets of functionality (routing and for-
warding) are weakly coupled: it can be seen that only the MATCHING function

CHAPTER 4. RON OPPORTUNISTIC NETWORK 39

uses both Notifications and Views vectors.

The RON solution provides implementations for all of these components, as
will be described in following sections, and their behavior will be analyzed in
Chapter 5. Nevertheless, it is possible to provide alternative solutions, and in
fact the tests of RON will point out some possible areas of improvement.

4.2.2 Previous Work

The RON protocol shares some ideas with the protocols described in Section2.5,
but with some important differences.

RON shares with the protocol by Guidec, Maheo et al. (see 2.5.1) the
idea of broadcast of announcements, and the ability of taking advantage of
overheard traffic. But as mentioned, said protocol imposes the restriction of
nodes keeping only messages that match node’s own profile. This can cause
poor message distribution behavior. This is somewhat alleviated by the MPR
functionality, where the nodes continuously try to detect connected network
segments to allow multihop delivery, but the result can be seen as unnecessarily
complex and cumbersome.

RON lifts the restriction on messages having to match node’s profile to be
kept. A RON node makes the decision on what messages keep based on the
quality of said node to deliver the message, whether it is targeted to it or not.
This allows for a much simpler protocol.

Also, the protocol 2.5.1 uses a separate unicast channel to actually deliver
the document from one to another, while RON uses broadcast messages also
for this purpose (allowing for overhearing messages). But this is related to the
type of data each protocol is targeted for: the former is intended for relatively
big documents, the later for small data units that fit in a single packet. If RON
was to be used for a similar purpose (carrying big documents), a similar scheme
could be implemented.

The method used by RON to propagate the qualities and predicates has a
lot in common with CEPMF (see 2.5.2). Periodically a table is broadcast, con-
taining a list of reachable predicates with associated qualities. Said qualities are
maintained in the process of listening other nodes’ broadcasts: as time passes
without receiving data on some predicate, the quality ages (with a exponential
law), and each time a predicate is received, the associated quality is reinforced.
The reinforcement is done differently: CEPMF does not take into account the
incoming quality associated to the predicate (as seen in 2.5), but RON does: the
higher the incoming quality associated to the predicate, the stronger the rein-
forcement. As mentioned in 2.5.2, there are doubts the CEPMF implementation
as described is workable at all.

CEPMF distributes predicates using binary Spray and Wait (described in
Section 2.3.3). This requires confirmation from the receiver that the handover
was actually accepted, as the emitter must change its own state when this
happens. This behavior is hard to implement in broadcast, and CEPMF uses
unicast for this purpose. RON does not use Binary Spray and Wait, and uses the
natural decrease in predicate quality to limit their distribution. In this, RON

CHAPTER 4. RON OPPORTUNISTIC NETWORK 40

SUBSCRIBE NOTIFICATION
subscription_id=sid23 notification_id=notif123
subscriptor_id=collectori source=sensor_nodel
FILTER message_type=trap
mib=temperature watcher_id=watch_temp
value > 35 mib=temperature
END value=36.5
END
(a) A Subscription (b) A Notification

Figure 4.1: Sample messages in the Notification Bus

behavior is more in line with PROPHET, adapted for the purpose of content
based routing.

In CEPMF there are two types of periodical broadcasts: the predicate-ep
table, used to maintain the encounter probabilities as seen above, and the mes-
sages from the local buffer for initiating the message forwarding. RON is more
efficient in that it only periodically broadcasts the predicate’s table, with mes-
sage broadcasts being triggered by listening a predicate of interest broadcast.
This way, notifications are transmitted only when there is a potential interested
node in reach.

As described in 2.5.2, CEPMF transmits messages following a chain of nodes
with strictly increasing encounter probabilities. This can cause problems of
local maximums. For example, imagine there are two internally well connected
network sectors, both interconnected trough a seldom seen node. If a predicate
is published in one well connected region, it will reach the other region trough
the connection node. Once there, nodes can raise the quality for the predicate
above the level found in the connection node, as they are in a well connected
segment (see equation 2.5). Once that happens, a notification published in that
segment wont be able to cross back to the predicate publisher’s region. On the
other hand, RON makes the decision to keep messages comparing the relative
qualities of the messages in the buffer. This gives better opportunities for such
“weak” messages, as the bad movement pattern of the connection node possibly
affects the other messages in the buffer, too. It is also possible to tune the
comparison between messages in the buffer adding weights, heuristics, etc., to
better handle these cases.

4.2.3 Publish-Subscribe addressing

As mentioned in Section 2.4, the basic entities of Content-Based-Networking
are datagrams and r-predicates. These are implemented in RON as Notification
and Subscriptions, respectively.

Both entities are encoded as plain text multi-line strings. A Subscription (fig-

CHAPTER 4. RON OPPORTUNISTIC NETWORK 41

Algorithm 4.2 Views merging pseudo-code

1 function V.merge(V' : Set of {Subscription, quality})
2 for s in V’ do

3 if s in V then

4 V.reinforce (s)

5 else

6 V.add(s)

7 end

8 end

9 for s in V do

10 if not (s in V’) then V.aging(s)
11 end

12 end

ure 4.1a) has two sections. The first is a header or general information section,
holding a unique id for the subscription and the unique id of the subscriptions
issuer node. The header is used for administrative and network maintenance
tasks. Then, after the FILTER label, comes the filter section (the cb-address).
It contains a list of conditions that describe the notifications the subscriber is in-
terested into. Each condition is of the form attribute-operator-value, and there
is an implicit and between all the conditions. A Notification meets the sub-
scription if and only if it has all the attributes mentioned in the filter, and their
values meet the conditions. This implies that a subscription with an empty
filter is satisfied by any notification. Notice that this is less expressive than
the full BNF expressions usual in publish-subscribe platforms. This decision
was driven to keep the implementation as simple as possible. Nevertheless, if
the need arises RON is easily modifiable to support BNF, as the notification-
subscription matching functionality is orthogonal to the routing functionality.

Notifications (figure 4.1b) are the messages that actually contain the infor-
mation being transmitted in the network. They consist of a set of key-value
pairs. The only mandatory field is notification_id, a unique identifier for the
message. All the rest are free to be defined by the network user. In the example,
the Notification does satisfy the Subscription, and thus will be delivered to the
Subscription emitter.

4.2.4 Network maintenance

As the buffer space in the node is limited, decisions should be made as to
what messages to carry. These decision should be made as to maximize the
performance of the network. If the nodes do not move completely at random
but following certain movement patterns, some nodes will be more adequate
to transport some messages. For this purpose, a quality metric 0 < ¢ < 1
associated to each subscription is maintained on each node.

As shown in 4.1, a node periodically broadcasts it’s View, the set of Sub-

CHAPTER 4. RON OPPORTUNISTIC NETWORK 42

scriptions it has with their qualities. A Subscription has a fixed quality of 1
in the node that published it. When a node listens a View broadcast, it uses
it to update it’s own View trough a VIEW.MERGE() call (line 8 of 4.1). The
VIEW.MERGE (see pseudo-code 4.2) method does two tasks: first, for every sub-
scription in the incoming message it will either add it to the local View (if not
already present there), or update the associated quality (if already there). Then
for every subscription in the local View but not present in the incoming list, it
will degrade it’s quality (“age”). The aging is done using using expression 4.1 and
the reinforcement is done using expression 4.2, where v and P are configuration
parameters driving the aging and reinforcement velocities, respectively.

Gnew = Gold X ’Y_(t_to) (4.1)

Qnew = Yold + (1 - qgld) X Qin X P (42)

The reception of a View broadcast, besides updating the local Views, triggers
the broadcasting of all matching Notifications. This is done with the help of
the MATCHING function. This functions selects from the Notifications buffer
all the notifications that satisfy a given subscription predicate using one-way
matching (for details, see Section 4.3). This way, periodical View broadcasts
are answered with Notification broadcasts, which is the way Notifications are
propagated in the network. The redundant Notification transmissions protect
against communication failures. There are several policies in place to reduce
network traffic, as will be seen in 4.2.5.

Each time a node listens a Notification being broadcast, it must decide
what to do with it, and this is done by the NOTIFICATIONS.MERGE method
(see pseudo-code 4.2). If the node’s buffer is not full, the Notification is simply
stored, as there is no penalty in carrying it. If the buffer is full, it must be de-
cided whether ignore the incoming Notification, or drop some Notification from
the buffer to make space. For this purpose, an accumulated quality is computed,
which is the sum of the qualities for all matching Subscriptions (not counting
locally registered Subscriptions, as the node will not act as a Notification carrier
for those). Between Notifications with equal accumulated qualities, the older are
considered worse. Other policies can be enforced at this point, like guarantees
of minimum and maximum times being carried for Notifications, weighing the
Subscriptions contribution according to their importance, etc.

The buffer can be configured to reserve a portion for locally registered noti-
fications. This allows to guarantee local notifications will survive enough time
to be handled to other nodes.

4.2.5 Network resources conservation

Several measures are taken to reduce the resources utilization, specially the air
time.

CHAPTER 4. RON OPPORTUNISTIC NETWORK 43

node 1 | node 2

Periodic View
broadcast

Update local view,
request missing
subscriptions.
Serve Subscription

request
New Subscription,
store it.

Periodic View
broadcast

Update local view.

Periodic View
broadcast
Update local view.

Figure 4.2: Subscription propagation and Views

Subscription propagation

The full content of a Subscriptions (i.e. full header and predicate) only has to
be distributed once, as it will be then stored locally in each node. Trough the
rest of the Subscription’s lifetime only its unique identifier and quality are used,
to maintain the Subscription qualities and trigger Notifications broadcasts, as
described in Section 4.2.4. Thus, the VIEWS broadcast actually only contains
the a list of identifiers and associated qualities. When a node sees a identifier
for a subscription not in its local buffer, it will request it trough a separate
SUBREQUEST broadcast containing said identifier. Any node that listens that
broadcast and possess a copy of the Subscription will broadcast a SUBSCRIBE
message containing the full subscription. This extra exchange is worthwhile as
it is done only once per Subscription propagation step, and reduces the size of
the periodical broadcasts considerably by omitting the predicates from then on
(see Figure 4.2).

CHAPTER 4. RON OPPORTUNISTIC NETWORK 44

Broadcast storm control

Sometimes a single View broadcast from a node can cause responses from mul-
tiple nodes at the same time, each one a broadcast. This behavior is called a
broadcast storm, and can cause high losses in dense networks. For controlling
this a simple policy is implemented. Each transmission is delayed a small ran-
dom time, and at the same time nodes do not transmit data already seen in a
small time window. This way, the first node to transmit will inhibit all others
nodes in range from repeating the information. Notice that it is still possible
for a node to receive several responses due the hidden station phenomenon.

This policy applies to Notification as response to View broadcasts and Sub-
scribe as response to Subrequest broadcasts. For this purpose, all Subscriptions
and Notifications are tagged in the nodes with a last_seen time stamp, updated
each time they are seen in the network.

Redundant Notification broadcast reduction

When a node broadcasts a View, it can receive as answer Notifications it already
has in it’s buffer. To reduce this probability, nodes add to the view message
notification ids they already have, as many as it fits in the message (as will be
seen in section 4.3, messages have a size limit). Nodes upon receiving the View
message will omit from the list of notifications to broadcast in response the ones
mentioned in it.

This can be further improved using Bloom Filters (see Section 7.4).

Lifetime limitation

To avoid out of date entities from being a burden on performance, several mea-
sures are taken to limit their lifetime.

Notifications have a emitted counter associated, which counts the number of
broadcasts made. It is initialize at 0 when a node accepts a notification, and is
incremented by one each time it is broadcast. The Notification will be dropped
when the counter reaches a max_ transmits value.

When a Subscription quality drops bellow certain value, it is removed from
the node.

4.2.6 Security considerations

Content Based networks present several security challenges when compared to
destination routed networks.

The main difficulty is that in the general case it is not possible to use a tun-
neling schema to protect end-to-end communications. In such a scheme data
is encrypted at the emitter and then decrypted at the receiver, thus traversing
the network encrypted. This is not possible with RON in the general case be-
cause in a Content Based network intermediate nodes must access the content
in plain form for the purpose of making routing decisions. This implies that
messages must be decrypted and re-encrypted at each hop, which impacts the

CHAPTER 4. RON OPPORTUNISTIC NETWORK 45

performance and resource consumption. Nevertheless, a end to end encryption
scheme could be supported if Subscription filters on encrypted fields were re-
stricted to expressions testing only for equality: the expression should compare
the value in the notification against a encrypted value. Only unencrypted fields
would be compared for >, <, etc. If the network application could adopt these
restrictions, a simple end-to-end scheme is possible, with no special support
needed from RON.

Nevertheless, for full support of encryption for content based networking,
routing nodes must participate.

As a proof of concept, RON implements MD5 signing on each hop, for both
payload messages (Notifications), and all network maintenance messaging, like
Views. The signing is done using a key specified in the configuration file.

Further analysis of alternatives for securing a DEMOS-like opportunistic
network is presented in [32]. The work identifies existing approaches and their
weaknesses. In particular, an unsolved problem identified is the key management,
in a highly dynamic and weakly structured network.

4.3 Implementation

RON is developed in Lua [33]. Lua is a compact virtual-machine based dynamic
language, with great emphasis on extensibility. It is weakly typed and has a
garbage collector. It is written completely in ANSI C and thus the core has
minimal dependencies, and can be run in an extremely wide spectrum of plat-
forms down to embedded microcontrollers. At the same time, it offers powerful
facilities to programmers, like pattern matching, hash-based tables, functions
as first class members, closures and lexical scoping.

Besides being virtual-machine based, its compiler is very compact and fast
and is usually deployed compiled directly in the virtual machine. This is un-
like, for example, Java development environment, where the user machines are
only expected to contain the run-time environment (JRE). The compiler is only
available on developer’s machines (trough the JDK), and software is deployed as
compiled bytecode. In Lua is usual to deploy the source code and get it compiled
transparently by the runtime. This frees from the write-compile-deploy cycle,
and allows for easily swapping pieces of code on the fly. As Lua has functions as
first class members, which means that functions are assignable as any variable,
behavior of applications can be changed even at runtime. This offers a great
platform for prototyping and experimentation.

The virtual machine takes as little as 200kb of storage and 800kb of RAM
(the virtual machine can be compiled with options that further reduce this foot-
print). This includes all the core platform-independent functionality. Additional
platform dependent functionality is provided by modules, like full POSIX and
Socket, support.

All messages are emitted in UDP broadcast packets. This imposes a limit
of about 1500 bytes minus headers per message, if we want to avoid fragmen-
tation at the IP layer (depending on the MTU of the medium). Thus a single

CHAPTER 4. RON OPPORTUNISTIC NETWORK 46

Algorithm 4.3 One-way matching

1 function matches(Notification n, Subscription s)
2 for {key, op, value} in s.predicate

3 nvalue = n|[key]

4 if not satisfies(nvalue, op, value) then
5 return False

6 end

7 end

8 return True

9 end

Notification can not exceed this size. This is not considered an important lim-
itation, as the protocol main purpose is to transmit relatively small size units
of information (sensor readings). To transmit bigger units of information, one
possibility is to split the message in multiple notifications, send them separately
and reassemble them at the destination (RON behaving as an non-reliable trans-
port layer). Another possibility is to extend RON with the ability of handling
delivery of opaque documents trough a separate unicast channel, with Notifica-
tions containing only an associated descriptor (as does the protocol described
in 2.5.1).

View messages are automatically split in several packets as needed. This
is done splitting the quality vector in chunks of appropriate number of entries,
and broadcast them sequentially. This does not affect the algorithm behavior:
receivers process each View segment independently and do not have to know
they come from the same node.

Algorithmically, the most expensive task is the matching of notifications
against subscriptions (the forwarding decision). In RON, this is done in a simple
sequential way, using one-way matching [34] (see Figure 4.3). This makes the
worst case of the process O(nxsx|S]|), where n is the number of the notifications,
s the number of subscriptions, and |S| is the average size of a subscription
(number of conditions). It must be noticed that the matching is done only once
for each notification-subscription pair as a new notification or subscription is
registered in the node, and the results are then cached.

There are methods to improve the performance of this method. For example,
a predicate can be strictly included in another, and thus if the more general
predicate fails a match, the test for the included can be avoided.

Nevertheless, one-way matching showed adequate performance, both in mem-
ory consumption and CPU load, under a realistic traffic load and on very low
end hardware [35]. In Figure 4.3 the results of running RON on a Asus 520gu, a
consumer grade wireless router with 32Mb RAM, 8Mb flash storage and 200Mhz
Broadcomm CPU, are shown. The router runs OpenWRT, a Linux distribution
for embedded platforms.

RON is configured with a buffer of 40 messages, and the experiment runs
during 380s. The message load is increased during the first 50 seconds up to 10

CHAPTER 4. RON OPPORTUNISTIC NETWORK

100 T T T T T T

80 -

40

CPU Load (%)

20 -

AT |

0 50 100 150 200 250 300
Time (sec)
(a) CPU Utilization by RON

350

400

1400

1200

1000

800 =

RAM (kb)

600 -

400

200

0 | | | | | |

0 50 100 150 200 250 300
Time (sec)
(b) RAM use by RON

Figure 4.3: Resource Consumption by RON

350

400

47

CHAPTER 4. RON OPPORTUNISTIC NETWORK 48

local data sources, that generate one notification every 5s. After second 50, a
new subscription is registered each 10 seconds. Each subscription matches all
the notifications arriving, and there are 33 different subscriptions at the end of
the simulation. Notice that a notification matching a subscription is a worst-
case scenario for one-way matching, as all the expressions in the predicate are
tested.

The increase in RAM before second 50 is due to the notification buffer get-
ting filled, and after that the memory increase corresponds to the storage of
subscriptions.

One notification each 5 seconds matching over 30 subscriptions can be con-
sidered a very high load for the application. The memory consumed is under
1.5Mb, and the CPU use, while quite spiky, can be evaluated as peaking at
20-30%.

Chapter 5

RON Evaluation

For simulating the behavior of RON, we use an experimental ns3[36] branch,
which is able to run native code inside the network simulator. Running the Lua
virtual machine inside the Network Simulator makes possible to run the same
codebase that would run in a normal deployment. This allows to verify that
the application runs on realistic hardware and at the same time test big and
complex scenarios in a controlled environment, that could not be realistically
be maintained in the real world. An example of the simulator testing RON in
a big network with 100 nodes can be seen in [37].

5.1 Subscription Quality

To test the behavior of the subscription quality control (see 4.2.4) we run sim-
ulations of a simple scenario.

The simulated terrain consists of two adjacent squares with 1000m sides
(see Figure 5.1). In the extremes lay two fixed nodes, with a single subscription
each, while in the center lays a single fixed node that generates notifications.
Inside the squares there are mobile nodes, the same amount in both, which

Figure 5.1: Mobility Model for Subscription Quality verification

49

CHAPTER 5. RON EVALUATION 50

T
Subscription A
Subscription B

Quality

0 ! ! ! ! ! ! ! !
0 10000 20000 30000 40000 50000 60000 70000 80000 90000

Time (sec)

Figure 5.2: Subscription Quality adjustment, n=14, P=0.05, g=0.9998

never leave their square. They move with a Random Direction mobility model,
with velocities uniformly varied between 1 and 2 m/s. All the nodes have a
wireless interface, with a range of 100m. VIEW messages are triggered each 60
seconds. The nodes moving in the left square randomly met the Subscriber A
directly, but can receive Subscription B only trough the nodes from the right
square, when meeting them in radio range near the center separation. Thus,
nodes on the left square should have higher quality for Subscription A, which
would make them better adapted to carry hypothetical notifications from node
E that match Subscription A. Conversely, nodes on the right square would have
higher quality for Subscription B. This behavior can be seen in Figure 5.2, in a
network with 14 mobile nodes (7 in each half).

The values for P and v must be determined experimentally for good results.
If P is too low or v too high, the qualities of different subscriptions will even-
tually get near 0 and be indistinguishable. Conversely, if P is too high or v
too low, all qualities will approach 1. For example, in Figure 5.2 we see the
results of running for about 100000 second and computing the average quality
for each subscription (starting at second 30000 to give time to stabilize). The
figure shows the sharp rise of the quality when two nodes are in range (driven
by equation 4.2), followed by a slow decay of the quality between encounters
(driven by equation 4.1).

As can be seen in Figure 5.4 the optimal values for P and ~ depend on the
Network Density: values that work with certain network movement pattern may
not be adequate in another. The graph shows the qualities for both subscriptions
when P=0.05 and v=0.9998, with 20 and 40 nodes, averaged over 5 runs. If
the number of nodes in the network changes dynamically, the determination of
the parameters can be a difficult task. Also, the parameters must be the same
for all nodes across the network, for the qualities shared trough VIEW messages
be comparable. This is another difficulty if the network is not homogeneous
(some nodes are clustered in areas with different densities). This also precludes

CHAPTER 5. RON EVALUATION

Subscription A ——
Subscription B ———

1 ~
08 [
g ot
© -
5 05 |
© o0a L
03
02
01
O —
o
g
T
[m]

(b) Difference between average qualities

Figure 5.3: Impact of Parameters on Subscription Quality

o1

CHAPTER 5. RON EVALUATION

T T T
Subscription A ——
Subscription B ——

10000 20000 30000 40000 50000 60000 70000 80000 90000
Time (sec)
(a) n=20, P=0.05, g=0.9998

06
05 |-
04
=
s 03
(¢)
02|
0.1
0
0
2>
IS
p=)
(€]

Subscription A ——
Subscription B ——
] |]

0

Figure 5.4: ITmpact of Network Density on Subscription Quality adjustment

10000 20000 30000 40000 50000 60000 70000 80000 90000
Time (sec)
(b) n=40, P=0.05, g=0.9998

CHAPTER 5. RON EVALUATION 33

Figure 5.5: Mobility Model for Delivery Analysis

adjusting the parameters locally in the nodes from estimated network density,
for example using mean times between encounters.

As a result, this method of managing qualities, while simple, cheap and
widely implemented, presents some difficulties in realistic scenarios.

5.2 Delivery behavior

RON is a probabilistic algorithm, as the underlying problem is. RON does not
make guarantees on when a message will arrive, or whether it will arrive at
all. The main attribute of a Opportunistic Network routing algorithm is the
Delivery Rate, which the proportion of messages emitted that actually reach
destination. The Delivery Rate varies with the network characteristics (mobility
patterns, node density, traffic load) and the parameters of the algorithm (size
of the buffers, number of retransmits, etc.)

Another attribute of interest is the latency: the average time a message takes
to reach destination. This is only defined for messages that actually arrive. This
attribute must be handled with care, as a easy way of improving Latency is to
reduce Delivery Rate: simply flooding a single message as to reach destination
as fast as possible, and dropping everything else.

To study RON behavior related to message delivery a simulation scenario was
setup (see Figure 5.5). It is similar to the one used in Section 5.1 with 8 and 14
nodes configurations, with changes to the emitter and subscriber nodes. In this
scenario, the node labeled S emits a subscription, and node N will periodically
emit matching notifications. These notifications are emitted each 500secs. A
message to reach destination has to migrate between nodes at least once, in the
separation line between both halves.

Different values for the size of notification buffer and maximum number
of message replications are tried, and each scenario is run for about 1000000
seconds of simulated time. Nodes start prefetched with already full buffers, as
to skip the initial transitional where the performance is better than average.

In Figure 5.6b can be seen that very low Delivery Rates come paired with
low latencies, as the messages that actually reach destination are the ones that
reach it quickly. Also can be seen how aggressive replicating of messages, despite
having a negative impact on Delivery Rate, improves Latency.

o4

CHAPTER 5. RON EVALUATION

8 nodes
14 nodes

-

N ,,/4,...,.,5\ N/
N

J

\

[ele]lolelolelolele)]

ajey Aanalleg

Buffer Size

Max Replicas

(a) Delivery Rate of RON

8 nodes
14 nodes

N OLOTONT—OOMNO©

T T T

(0as) Aousie

Buffer Size

Max Replicas

Latency of delivered messages

)

b

(

Figure 5.6: Impact of Parameters on RON Delivery

CHAPTER 5. RON EVALUATION 35

Also, denser networks have better Latencies, as they have more encounters
per unit of time and this leads to faster message propagation.

A message is lost in RON when it is dropped from the buffers of all nodes
that received it before reaching destination. As the buffer size grows the average
lifetime of a message grows accordingly, and this leads to higher chances of
reaching destination before extinction. This can be seen in Figure 5.6a. Also can
be seen that it is not always worthwhile to increase the number of replications.
In fact, it can lead to decrease in delivery rate. Excessive replication adds to
the number of messages being transmitted, and increases the chance of a needed
message missing the transmission window.

Besides internal configuration, the protocol’s performance is affected by the
node mobility patterns. To better understand the behavior of Opportunistic
Protocols the Research Group developed a special synthetic mobility model,
that allows to manipulate some of the main parameters of the network to study
their impact on the protocol’s behavior. The mobility model and a study of
RON can be found in [37].

5.2.1 Notification re-incidence

Basic RON algorithm does not keep history of what notifications have been
already stored in a node. This means that a given notification can be accepted
again by a node after being dropped, if the node encounters the notification
a second time. This is rarely a useful behavior, except when the network is
configured with very low values of number of replications. In that case, the
average lifetime of a notification in a node is low, as it gets dropped after a few
rounds of broadcasts, but the re-acceptance can provide a greater accumulated
lifetime in the node and an adequate lifetime of a notification in the network.
Conversely, as the number of replicas grows, the re-incidence of notification do
not contribute to the performance of the network and only occupy resources,
both buffer space and airtime. This can be seen contrasting figures 5.7a and
5.6a (the number of reincidences is calculated in a network with 8 nodes).

To test the impact of re-incidence control on RON performance, a modified
RON was tested. The modified RON keeps a list of notifications that already
were carried, and won’t accept them again. The results can be seen in Figure
5.7b (again, run in a network with 8 mobile nodes). It results clear that while
with very low number of replicas the re-incidence is critical to keep notifica-
tions alive long enough, usually the re-incidence control provides much better
and consistent performance. This comes at the cost of a moderate increase in
memory consumption, needed to keep a moving window of notification-ids.

5.2.2 Acknowledgments and destination based routing.

The re-incidence problem is related to a wider problem, the life-time control
of messages. The issue is that notifications can survive in the network beyond
the moment in time a copy has reached destination. This is related to the
impossibility of knowing when a message has reached all potential destinations,

CHAPTER 5. RON EVALUATION

Reincidences
N
o

non reincident
reincident

Delivery rate

000000000
[SEN VIRY NS TOENTST RN

(b) Impact of re-incidence control on Delivery Rate

Figure 5.7: Reincidence control in RON

CHAPTER 5. RON EVALUATION a7

Algorithm 5.1 RONd ACK message pruning

1 function prune_ for(m)

2 for n in N do

3 if n.source—m. target

4 and n.target=m.source

5 and n.seq<m.ack

6 Or n.source=m.source

7 and n.target=—m.target

8 and n.ack<m.ack and not n.seq

9 then
10 N.remove(n)
11 end
12 end
13 end

due to a fundamental difference between destination based and content based
routing. In destination based routing, there exists the concept of data flow
between pairs, and a ACK mechanism can be implemented. The ACK can be
used to drop from buffers messages that have already reached destination. This
can improve the performance of a opportunistic network [38].

This is not possible with content based networks, as there could be several
recipients, and none of them have to know the existence of others nor if they
received the message already or not.

A destination-routed variation of RON exists, called RONd. The algorithm
is identical to RON, with the further restriction that only destination based
subscriptions are allowed, of the form target—mnode-id, where a nodes subscribe
to messages that have them as destination. All messages get tagged with a source
and target fields. The target field will match the destination node’s subscription.
This is an example of destination routing implemented as a particular case of
content-based routing as described in Section 2.4.

RONd has an ACK mechanism. An additional sequence and acknowledg-
ment number is maintained by the nodes for each dataflow, this is a seq/ack
pair for each node it sends data to or receives data from. All messages sent are
tagged with it’s sequence number (the seq field). The reverse data flow gets
tagged with an ack field, indicating the last sequence number arrived such as
seq+1 has not arrived yet. If there is a dataflow going back, ack are sent piggy-
backing it. Otherwise new explicit ACK messages are generated (at a relatively
slow rate) with no own seq number.

The ack and seq fields are used by nodes to prune messages that have already
reached destination. The pseudo-code of that pruning can be seen in Figure 5.1.

5.2.3 Replacement policies

The replacement policies can be critical for good network behavior. Different
topologies and movement patterns stress replacement policies differently, and

CHAPTER 5. RON EVALUATION 38

the wrong policy can completely spoil the network.

Starvation by Subscriber Proximity.

Analysis shows that replacement policies that only use subscription quality to
make routing decisions (like default PROPHET) show some pathological be-
havior. In the example shown in Figure 5.8a, suppose node A is subscribed to
messages originated in B, and B is subscribed to messages from A. The expected
behavior is that notifications from A flow towards B, and from B to A. Trouble
is nodes closer to A will have a higher quality assigned to the subscription gener-
ated on A, and thus notifications targeted to A will always beat the notifications
targeted to B (and originated in A). This means the buffers on the nodes close
to A will be occupied by messages to A, and will not accept messages going for
some remote node. The same happens close to B. The problem can be described
as follows: if the buffer assignment is driven by subscription quality, the buffer
utilization is skewed towards notification near its destination in detriment of the
ones starting their journey. This can lead to death by starvation. This is bound
to happen when there is a notification emitter close to a notification receiver.

Simulating the described setup, with notifications being generated each 500
seconds, and Subscription quality adjustment as per Figure 5.2, provides the
result shown in Figure 5.8b. One of the two flows (from B in this run) gets
completely displaced, while the other behaves normally. Of the two flows, the
one first to arrive near it’s destination is the one that survives.

To handle this scenario, the replacement policy should ensure certain level of
diversity where lower ranked notification have a chance of survival in the buffer,
for example taking into account the age of the notifications and weighing in
favor of the youngest.

Synchronization storm

Another usual movement pattern that can lead to problems was identified while
working on movement models for the DEMOS project. As mentioned in Section
4.1, the project envisions collecting data from distributed environmental sensors
using the daily movement of kids going to and from school carrying their XO
OLPC laptops. In that model all nodes approach a collection point (the school)
near simultaneously. When that happens, all nodes come in range of each other
for a window of time, and all see the same notification broadcasts. If all the
nodes take the same decisions on what notifications to keep, the end result is
that the buffers from all the nodes contain the same messages, bringing down
the potential throughput of the network to the capacity of a single node.

The simplest case where this happens is when there is a single subscription
in the network (from the data sink, ie. school), and the replacement policy
mandates using FIFO for discarding messages when there is a draw in accumu-
lated qualities for the messages in the buffer. In this case, after a single round
of broadcasts per node, all the nodes remain holding the same n messages, the
last n to appear in the network (where n is the buffer size of the nodes).

CHAPTER 5. RON EVALUATION

(a) Model with message exchange

1 U U T U T T T
0.8 - —
o 06 —
o
Fl
o
=
©
0 04} —
0.2 |- —
Notifications from A ——
H Notifications from B ——
0 | | | |
0 100000 200000 300000 400000 500000 600000
Time (sec)

(b) Delivery behavior when exchanging messages

Figure 5.8: Starvation with subscription quality-based replacement

CHAPTER 5. RON EVALUATION 60

5.3 Automatic parameter management

As seen in Sections 5.1 and 5.2, the algorithm is sensible to the configuration
of several parameters. Correct configuration of parameters can have a critical
importance on performance, and their correct values depend on the nature of
the network: network density, mobility patterns, etc. The difficulty is increased
by the fact that a network can be not homogeneous, or vary it’s behavior as
time passes. Nodes can join or abandon the network, or the mobility patterns
can depend on the time of the day, etc.

As the exact behavior of the network can not be predicted, it brings the
need of self-configuration, where nodes autonomously adapt to changes in the
network. An example of adaptation in ON nodes can be found in [39], tough
with a simple Spray-and-Wait network in a very particular mobility scenario.

When deployed in support of a DEMOS network (see section 3), there is
already a generic decision-making platform running: LuPA (Lua Policy Agent,
to see a more in depth description of LuPA see section 3.2.3). The purpose of
LuPA is to allow managing a system trough high level policies. At run-time,
LuPA recognizes certain patterns of events and generates actions, expressed in
said policies.

As mentioned in 4.1, originally the role of RON in DEMOS was providing
communications between data providers and data sinks, which in RAN archi-
tecture mean LuPA components. LuPA itself was tasked with managing sensor
nodes, and the information they generated. The fact that LuPA infrastructure
was deployed already and was flexible enough, created the opportunity to use it
to manage the RON bus. The idea was that from LuPA’s point of view, RON
could be seen just as another system to be managed.

For testing the viability of using LuPA to manage RON, a scenario was
created [40]. As a configurable parameter it was selected the number of replicas,
which as can be seen in Section 5.2 has impact on both loss rate and latency.
As the input variable network density was used, as simulation shown that it had
a direct impact on optimum values for number of replications. As the network
density is not directly measurable from a node, time between encounters was
used as an indicator.

The process was the following: first, a simulation was used to test out dif-
ferent, scenarios and find the optimum values for the configuration parameter
in each. The experimental setup comprises between 10 and 50 nodes moving
following a specially developed mobility model in a 1000m x 1000m square area.
For more details on the experimental setup, refer to [40].

Then, from these simulations rules were derived, which would allow to select
the optimum values in the different scenarios.

Rule 1 If estimated_loss_high then reduce_max_r
Rule 2 If estimated_loss_low then increase_max_r
Rule 3 If estimated_delay_high then increase_max_r

Rule 4 If estimated_delay_low then reduce_max_r

CHAPTER 5. RON EVALUATION

9000 T T T T
1 T2
8000 - —
7000 -
@ 6000 - -
L
>
(8]
8
% 5000 - —
-
4000 —
3000 —
Managed ——
Not managed ——
2000 | | | |
0 50000 100000 150000 200000 250000 300000
Time (sec)
(a) Average latencies
1 T T T T
T T2 Managed ——
Not managed ——
0.8 - —
0.6 —
L
o
]
o
-
04 —
0.2 - -
0]]]]
0 50000 100000 150000 200000 250000 300000

Time (sec)

(b) Average loss rate

Figure 5.9: Impact of parameter management for RON

CHAPTER 5. RON EVALUATION 62

The meaning of the rules is that an increase in number of replicas reduces the
delivery rate but improves latency, and the reduction has the opposite effect.
The conditions to increase or reduce the number of replicas are based on com-
paring the estimated density of the network (obtained from measuring times
between encounters) with the expected optimum performance (obtained from
the simulation in the first step).

Finally, these rules would be deployed to the LuPA agent residing in each
node, and used to dynamically update the managed parameter.

The rules were validated installing them in the nodes, running a scenario
where the number of nodes varied, and comparing the performance of the net-
work with the management enabled and disabled. The results of the experiment
are shown in Figure 5.9. At time 7’1 the number of nodes on the network drops
from 50 to 10, and at 72 rules are applied. As can be seen, the management
achieves a moderate improvement in loss rate and a important reduction in
latency.

5.4 Optimal Routing estimation

RON being a probabilistic algorithm, offers no guarantee on the performance.
As there is no indication what the best possible performance could be in the
current scenario, it is hard to evaluate the performance of the algorithm.

Lacking a reference value to compare against, opportunistic algorithms are
evaluated in the literature by comparing the performance with other algorithms.
Nevertheless, not knowing the maximum performance attainable makes hard to
ascertain if the differences are meaningful.

A possible solution is to compare against an Optimal Routing algorithm,
that makes the optimal routing decisions (an Oracle). Such an algorithm is
assumed to run with perfect knowledge of the movements of the nodes and data
traffic trough the considered lapse of time, and has no restrictions on computing
time or storage as long as it is feasible.

Such an algorithm could be applied to a recorded movement trace and com-
pute (offline) what could have been the best routing decisions made. The out-
come of this algorithm is then taken as the upper bound of what can be expected
from a routing algorithm. As most practical algorithms work under a set of re-
strictions (limited worldview, CPU power and storage), they will deliver worse
performance than Optimal Routing.

The computation of the exact solution of the Optimal Routing problem is
very costly. An approach for an exact solution using Integer Linear Program-
ming can be found in [9]. Due to scalability issues, the method is limited to
scenarios with small loads.

CHAPTER 5. RON EVALUATION 63

5.4.1 Genetic Algorithm for a Opportunistic Routing Or-
acle

For the purpose of evaluating opportunistic algorithms we developed a non
exact Optimal Routing algorithm that provides an upper bound on possible
performance. It is based on Genetic Algorithms (GA), and at the cost of not
being exact, provides good solutions for medium-sized networks. As an example,
the algorithm applied to a trace with 20 mobile nodes and about 7000 node
encounters over 13 hours, converged to a solution for the delivery of 200 messages
in under 1 hour in a Intel i3 @3GHz machine.

The GA’s objective is to find an upper bound solution for maximizing deliv-
ery rate, given a limited buffer in the devices. It is designed to find upper bounds
for gossiping-like algorithms, this is, algorithms that exchange messages in cer-
tain communication rounds. In RON’s case it corresponds to a View message
and resulting Notification replies.

The GA developed makes two assumptions on the behavior of the network.
In first place, it assumes that on each encounter opportunity there is enough
time to exchange all the desired information. This is a reasonable expectation
in DEMOS, where the messages are small (on the order of hundreds of bytes).
If it wasn’t so, the algorithm will have to be extended to take in account also
the order in which the messages are delivered.

The second restriction is that it will not allow a message to return to a node
where it has already been. Under this assumption a message can be carried
by a node only once on the message’s way to destination. This may lose some
solutions under certain circumstances, but we expect the impact to be low (for
an analysis on the impact of re-incidence of messages, see 5.2.1). This limitation
allows to simplify the algorithm, as the number of hops that a message can do
on it’s way to destination is bound by the number of nodes in the network.

An important observation for the GA representation is that any optimal
routing solution is attainable with a single instance of each message present
throughout the network. The multiple copies made by opportunistic algorithms
such as RON are a method to cope with uncertainty, but once a message reaches
destination, we could trace-back the path followed by the message, and deter-
mine that all other copies of the message could have been omitted without loss.
Thus, the GA has to find the optimal decisions to be made with a single copy
of a message, this is, when a node should handle it to what other node.

A second observation is that if the optimum solution requires that a given
message is not delivered, it can be safely dropped right at the emitting point.

The GA was developed using GAlib[41] version 2.4.7, a library for imple-
menting Genetic Algorithms written in C++.

To apply Genetic Algorithms, the problem and solutions must be expressed
in a suitable way. We transform the recorded trace into an internal representa-
tion, consisting of a graph that holds all the needed information for solving the
optimum routing problem. In this graph, each decision point (a transmission
opportunity) is represented by a node, and each decision (whether transmit or
to keep a message) is represented by a directed edge connecting two nodes. The

CHAPTER 5. RON EVALUATION 64

nodes are labeled by the mobile device they belong to. A path in this graph
represents the evolution of a message trough the network. Also, each node is
labeled with a time-stamp from the original trace.

Messages are introduced in the network at special nodes, “Entry Points”.
There is a distinct Entry Point for every message. Conversely, a message reaches
destination when it reaches a node labeled with the message’s target device (all
such nodes are “Exit Points”).

When an edge connects two nodes belonging to the same device, it represents
a “keep message” decision. When an edge connect nodes belonging to different
mobile devices, it represents a “transmit” decision. The graph is thus represented
as follows:

. G={N,E}
e N; C N (entry points)
e Np C N (exit points)

NIQNO:Q)

o /= Ekeep U Etransmit

Nodes have at most 2 exit edges (one “keep” and one “transmit”)
e Nodes have at most 2 incoming edges (one “keep” and one “transmit”)
A path a message can take will respect the following restrictions:

e Each path start at a different node from N; (therefore there is at most |N|
paths)

e Each path ends at node from Ng(several paths can end in the same node).
e There are no loops in a path (the no reincidence restriction).
e Nodes are traversed by no more than Z paths, where Z is the buffer size.

The objective of the algorithm is to build as many paths as possible respecting
these restrictions.

It must be noticed that in this context, the favored or “shortest” paths are
not measured by the number of hops, but by the difference in the timestamps
between its entry and exit points. This is due that the less time a message
is kept in the network, less network resources it consumes. This heuristic also
strives to minimize the latency of the network.

A Gene is represented as an array of paths. The length of the array is given
by the number of entry points, this is, the number of messages transmitted. A
slot in the array may be empty, representing that the given message is being
dropped. Each path, in turn, is an array of fixed length equal the number of
mobile devices in the network (as mentioned before, if there are no loops this is
the longest possible path). Thus, a gene can be seen as a bidimensional array

CHAPTER 5. RON EVALUATION 65

1 T
0.8 |-
2
Q 0.6 |- 2
e 2
) ©
z
© 04 o)
x
0.2 - 0.2
Oracle —+—
RON —x—
RON Effectiveness —¥—
0 | | | | | 1 | | | 0
0 20 40 60 80 100 120 140 160 180 200

buffer size

Figure 5.10: RON and Optimal Routing

sized |Ng| x |devices|. Genes are designed to hold only feasible individuals
(valid solutions). To keep genes feasible after applying genetic operators, a
factibilization process is applied. This implies potentially modifying the gene
to make it comply with the restrictions detailed above, in particular the buffer
limit. The process consists of a local search step, where offending paths are
attempted to be re-routed to avoid nodes with full buffers, and if this fails, the
path is dropped from the gene (the message is dropped from the network).

5.4.2 RON effectiveness evaluation

In the following experiment, we compare the performance of RON with the
offline solution provided by the GA Oracle. The scenario is similar to the one
used in 5.1, with 10 mobile nodes. The emitter node generates 200 messages,
with intervals of 2 minutes, and the network is run for 15 hours. Different
buffersizes are tried, between 10 and 200. Notice that a buffer of 200 can hold
all the messages present in the network, and in such conditions RON should
achieve a 100% delivery rate, eventually. The graph 5.10 shows the average of
4 runs. For each run, the upper bound using the GA oracle was calculated.
RON effectiveness is calculated as the proportion of RON delivery rate to
the Oracle’s. It can be seen that the oracle achieves a 100% delivery rate with
buffers over 50. Therefore RON effectiveness for greater values of buffer is not
indicative, as the Oracle performance is already maxed out. From the delivery
rate achieved by RON and the Oracle with buffers under 50, it can be claimed

CHAPTER 5. RON EVALUATION 66

that RON achieves a performance in the 20 - 30% range of the optimal, with
the effectiveness improving with buffer size.

It must be noticed that in the very simple scenario used, there is no infor-
mation RON can learn to make better decisions. The performance shown is
achieved with the basic buffer management and forwarding schemes. When ap-
plicable, routing policies should improve over this base-level performance trough
smarter buffer management. On the other hand, there is a limit on the effective-
ness attainable from a distributed algorithm operating on a limited local view
compared to a offline perfect-knowldege algorithm.

5.5 Test Deployment

As part of the DEMOS project, a mobility model suitable for describing the
movement of kids to and from school and trough the neighborhoods was developped42.
One of the inputs necessary for validating such a models is real mobility data.
The data of interest includes power down and power up events, encounters
with other laptops and those encounters duration, and encounters with school’s
Access Points. Analyzing such data it is possible to extract some metrics of in-
terest, such as average time between encounters, average association time, time
distribution of said encounters, etc.

For the purpose of collecting activity data, a small application was installed
in the laptops of a selected school, with the cooperation of Plan Ceibal [31]. The
application was installed on 83 laptops, and a total of 9710 events were logged
over a span of 5 weeks.

The data transmission portion of collection system was handled by RON:
as part of the deployed application a instance of RON was installed on each
laptop. Each event detected by the data collecting application was expressed as
a notification and pushed in the RON network. At the same time, a instance
of RON was installed in the school’s server, together with an data logging ap-
plication. This application published a subscription in the RON network for all
events, and stored them in a RDBMS as they arrived, for further analysis.

It must be noticed that this schema is not the described above for DEMOS. In
DEMOS, notifications are generated in remote static nodes (the sensor nodes),
and mobile nodes (laptops) only collect these notifications and ferry them to
school. In this experiment, the notifications are generated by the mobile nodes
themselves, and handled directly to the school.

For this application, a particular set of configuration options were provided
(see Table 5.1).

As mentioned, in this application the mobile nodes deliver the information
themselves, without being forced to relay it trough intermediate nodes: it behave
as a Direct Delivery system (see 2.3.1). As the routing behavior is not used,
the configuration parameters used to manage subscription quality do not apply
and are not shown. Moreover, as can be seen in the configuration provided,
there was a small proportion of the buffer spared for carrying notifications from
other nodes (100 slots, the difference between the total inventory size and the

CHAPTER 5. RON EVALUATION 67

‘ Parameter ‘ Value ‘ Description ‘
inventory _ size 700 Estimated from a worst case
notification rate trough a
unconnected weekend.
reserved _owns 600 Each node is mostly responsible for
its own notifications.
max notif transmits 10
max ownnotif transmits 00 The node never drops own
notifications on transmit count.
save each 60s The state of the RON is saved once a
minute to handle power downs.
max owning time 3 days | Acceptable time between encounters
prior to starting losing notifications.
send _views_timeout 30min We estimate that laptops either
connect for a session and are used for
a period of time, or fail to establish
connection.
delay message emit 10min | Limits the frequency at which a given
message will be seen in the network.

Table 5.1: RON configuration parameters

reserved slots for own messages), but it was verified that 100% of the delivered
messages were delivered by the same node that emitted them.

Therefore, this experiment is not adequate for analyzing the opportunistic
routing behavior or the protocol. Nevertheless, it allowed us to verify two critical
characteristics.

In first place, it proved that the application is deployable and robust enough
to be run in production conditions. RON was installed automatically using
the standard XO deployment mechanisms, and shown it can run reliably in the
actual hardware. It handled correctly such events as forced power-offs, and the
resource consumption did not register as noticeable by the laptops users.

In second place, the forwarding mechanism proved it can work in the very
hostile wireless environment in the school. The school is a point where there
is a high concentration of wireless nodes, actively trying to use the wireless
link to the school’s Access Points, all at the same time. In our experience,
the environment is harsh enough to make some broadcast based protocols to
fail. RON did effectively deliver data, and moreover, did so without imposing a
noticeable load on the host network.

Chapter 6

Conclusion

A new protocol for Content-Based Opportunistic Networks was developed, RON.
This protocol improves on previous work in the area, solving several of the weak-
nesses of existing algorithms.

The proposed solution is simple and easy to implement. The provided im-
plementation is highly portable and efficient and is easily adaptable to test out
new ideas.

RON is well adapted to a real use-case, the DEMOS project. Its behavior,
scalability and performance has been tested extensively in a simulated environ-
ment. It is of note that the code-base that was run in the simulator is exactly
the same as it is deployed on real hardware. Also a test deployment was made
in the context of another project, demostrating that the implementation is able
to perform on real hardware under real world conditions.

The content-based routing simplifies the deployment and management of a
sensor network, allowing to add sensor nodes and new data consumers without
having to change configurations nor manage a network inventory. This makes
viable to deploy sensor nodes on a as-needed basis, even for short spans of time.

Several issues were identified were further work is needed. In particular, the
difficulty of keeping optimal parameter configurations in the face of changing
network characteristics. Also, some routines in RON have several alternatives,
implementing different policies. The correct alternative depends on the nature of
the network. One specially important task is lifetime management of messages
in the network: if the messages are held for too short a time, they have a high
chance of being dropped before reaching destination. If they are stored for too
long, they overload the network increasing the chance of other messages getting
dropped. The lifetime management is specially hard in content-based networks,
as a single message can have multiple destinataries and is difficult to know when
a message has been delivered to all of them.

Tests with RON have shown that the buffer management policy can have
critical impact in the performance of the network. We have shown that under
relatively common conditions, some of the most widely used policies such as
FIFO or Sorting by Quality can have catastrophic results. Preliminary test

68

CHAPTER 6. CONCLUSION 69

with RON and different replacement policies point out two important properties.
First, a replacement policy must maintain diversity of selected messages trough
all the nodes in the network. This means that it must avoid synchronization
effects that lead to the same message being selected in most nodes. The second
property, is that it appears that for different networks there are different optimal
policies. For example, for DEMOS a special policy was developed that takes
into account the periodic nature of movement in the DEMOS network. This
policy performed much better than FIFO, which failed completely under same
conditions.

A general solution for managing the protocol is proposed and implemented.
This solution uses a general purpose policy-based decision engine, and is easily
extensible to provide new functionality. It allows RON to adapt the config-
uration parameters autonomously in response to changes in the node or the
network.

Chapter 7

Future Work

During the development and testing of RON, several problematic areas were
found. From analysis of previous existing solutions, these issues are shared
with other algorithms, and point out to difficulties implicit to the problem of
opportunistic routing.

RON, with its simple architecture and the ease of adaptation of the imple-
mentation provides a good opportunity for exploring new solutions.

7.1 New routing metric

The tests of RON have identified difficulties with the reinforcement/aging pat-
tern for estimating the usefulness of a neighbor.

In first place, the method is highly sensitive on the correct configuration of
the (admittedly few) configuration parameters. As was shown in Section 5.1, the
algorithm works correctly in a very narrow band of configuration parameters.
The workable configuration values are dependent on encounter dynamics of the
network, which in turn depends on the density, movement patterns of the nodes,
etc. If the network changes, the values for which the routing behaves correctly
change too. This attempts against the robustness of the network.

An extra problem stems from how these link qualities and coefficients are
used: the calculated qualities are shared amongst nodes for comparison, com-
bination, etc., so the parameters that drive the coefficient’s values must be
common to all participating nodes for their values be comparable. This in turn
brings two difficulties: first, different areas of the network can have different dy-
namics and thus different correct values for the parameters. Second, it inhibits
the possibility of a node autonomously adjusting the parameters adapting to
the environment.

This brings the following idea: if the semantics of the quality coefficient were
not absolute to the network, but only indicative of a local preference of to the
node, it would be possible to adjust the quality’s driving method. This could
be done autonomously to provide an expected distribution of qualities for the

70

CHAPTER 7. FUTURE WORK 71

node, independently of the decisions taken by other nodes. Such quality, to be
useful, would need also a method to be combined with the qualities received
from neighbors.

A first approach could be to replace the quality coefficient with a buffer
assignment coefficient, following the idea that bigger proportion of the buffer
is assigned to better connected destinations. A difficulty with this approach
is that it ties rigidly the buffer assignment to reachability, independently of
actual traffic volumes. A low traffic but well connected destination could get
disproportionate buffer space.

7.2 Replacement policy

The issue of buffer management and the policies used to assign space in the
buffer for messages and how they get replaced, is little studied. Most imple-
mentations use a simple FIFO or “sorted by quality” policy (CAR, RAPID,
CEPMF). PROPHET provides several policies, based on sorting along certain
selectable metric, but the impact and the implications of the different alterna-
tives is not clear.

As mentioned before, some widely used policies show patological behavior
under some common scenarios. Further work is needed to develop workable
alternatives, and two possible approaches were identified. One alternative is to
find a policy that behaves robustly in different networks. The other possibility
is to select the replacement policy autonomously, adapting to the network on
the fly. This could be done using the ideas shown in Section 5.3.

Another functionality that could be easily added to a new replacement policy
is prioritization of messages. Notifications could be tagged with some type of
priority class tag, which would then be taken into account by the replacement
routine when managing the buffer.

7.3 Data patterns

The fact that there may be different data flows with different volumes, and that
these loads can change dynamically is not sufficiently explored.

In [10] fairness problems are described when using FIFO buffer manage-
ment policies. Using some form of Fair Queuing algorithm is proposed, but not
explored.

RAPID (see 2.3.6) creates a highly general framework that could in principle
be used to take into account information volumes (defining a suitable metric),
but it is not clear how that could be done.

Moreover, to the best of our knowledge none of the existing algorithms at-
tempt to predict the future evolution of traffic loads, as it’s done with the
encounter opportunity patterns.

CHAPTER 7. FUTURE WORK 72

7.4 Inventory summary broadcast

As mentioned in 4.2.5, it is possible for a node to receive notifications it already
has in the buffer, as a response to a View broadcast. To reduce this possibility,
RON attaches a list of notifications IDs, as to allow the View listener to avoid
repeating messages.

Nevertheless, this method does not scale, as it is lineal over the number of
messages in the buffer. Meanwhile, there is a hard limit for a packet size of 1500
bytes (most of which is occupied by the View).

A method for including a digest of buffer content using constant space is
using a Bloom Filter. Bloom Filters allow to build a fixed-size digest at the cost
of a probability of a false positive. This means there is a probability the digest
will report a element as present, when it actually was not. The digest does not
report false negatives. The false positive probability increases as more elements
are put in the digest. It is possible to determine the value for parameters that
provide certain level of maximum false positive probability given a digest size.

A difficulty with implementing Bloom Filter digest is the implications of a
false positive. It would mean that a View receiver interprets that a certain
message is in the emitter’s buffer when it is not. This would preclude said
message from being broadcast. Moreover, the same false positive could affect
all nodes, and none of them would provide the message.

7.5 Real-life deployment

At the moment, there have been only small scale deployments in real hardware,
basically to verify functionality and resource utilization. The algorithm itself
has only been tested for scalability in a simulated environment (up to about 200
nodes, with synthetic mobility models). The software platform itself has been
deployed and used on a medium sized scenario, but the routing component has
not been exercised (see 5.5).

A necessary following step would be the validation of a medium to large
scale deployment for a real application, such as envisioned by DEMOS project.

List of Figures

3.1
3.2
3.3
3.4

4.1
4.2
4.3

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9

A Carrier Node and a Sensor Node
DEMOS Node architecture
Sample exchange with a Rmoon service
Message exchange between DEMOS components

Sample messages in the Notification Bus
Subscription propagation and Views
Resource Consumption by RON

Mobility Model for Subscription Quality verification
Subscription Quality adjustment, n=14, P=0.05, g=0.9998
Impact of Parameters on Subscription Quality
Impact of Network Density on Subscription Quality adjustment .
Mobility Model for Delivery Analysis
Impact of Parameters on RON Delivery
Reincidence control in RON
Starvation with subscription quality-based replacement
Impact of parameter management for RON

5.10 RON and Optimal Routing

73

30

List of Tables

2.1 A ON algorithm taxonomy[9]
2.2 Opportunistic Protocols

5.1 RON configuration parameters

74

Bibliography

(1]

[2

[7]

8]

R.E. Kahn, S.A. Gronemeyer, J. Burchfiel, and R.C. Kunzelman. Advances
in packet ratio technology. Proceedings of the IEEE, 66(11):1468 — 1496,
1978. ISSN 0018-9219. doi: 10.1109/PROC.1978.11151.

Kevin Fall. A delay-tolerant network architecture for challenged inter-
nets. In Sigcomm ’03: proceedings of the 2003 conference on applications,
technologies, architectures, and protocols for computer communications,
pages 27-34, New York, NY, USA, 2003. ACM. ISBN 1-58113-735-4. doi:
10.1145/863955.863960.

Delay-tolerant networking research group (dtnrg). URL
http://www.dtnrg.org/.

K. Fall and S. Farrell. DTN: an architectural retrospective. Selected Ar-
eas in Communications, IEEE Journal on, 26(5):828-836, May 2008. doi:
10.1109/JSAC.2008.080609.

V. Cerf, S. Burleigh, A. Hooke, L. Torgerson, R. Durst, K. Scott, K. Fall,
and H. Weiss. Delay-Tolerant Networking Architecture. RFC 4838 (Infor-
mational), April 2007. URL http://www.ietf.org/rfc/rfc4838.txt.

K. Scott and S. Burleigh. Bundle Protocol Specification. RFC 5050 (Exper-
imental), November 2007. URL http://www.ietf.org/rfc/rfc5050.txt.

T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource Identi-
fier (URI): Generic Syntax. RFC 3986 (Standard), January 2005. URL
http://www.ietf.org/rfc/rfc3986.txt.

L. Pelusi, A. Passarella, and M. Conti. Opportunistic networking: data for-
warding in disconnected mobile ad hoc networks. Communications Mag-
azine, IEFEE, 44(11):134 —141, 2006. ISSN 0163-6804. doi: 10.1109/M-
COM.2006.248176.

Aruna Balasubramanian, Brian Levine, and Arun Venkataramani. Dtn
routing as a resource allocation problem. In Proceedings of the 2007 con-
ference on Applications, technologies, architectures, and protocols for com-
puter communications, SIGCOMM ’07, pages 373 384, New York, NY,
USA, 2007. ACM. ISBN 978-1-59593-713-1. doi: 10.1145/1282380.1282422.

5

BIBLIOGRAPHY 76

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Amin Vahdat and David Becker. Epidemic routing for partially-connected
ad hoc networks. Technical report, 2000.

Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson, Scott
Shenker, Howard Sturgis, Dan Swinehart, and Doug Terry. Epidemic al-
gorithms for replicated database maintenance. In Proceedings of the sizth
annual ACM Symposium on Principles of distributed computing, PODC
87, pages 1 12, New York, NY, USA, 1987. ACM. ISBN 0-89791-239-4.
doi: 10.1145/41840.41841.

Thrasyvoulos Spyropoulos, Konstantinos Psounis, and Cauligi S.
Raghavendra. Spray and wait: an efficient routing scheme for inter-
mittently connected mobile networks. In Proceedings of the 2005 ACM
SIGCOMM workshop on Delay-tolerant networking, WDTN ’05, pages
252 259, New York, NY, USA, 2005. ACM. ISBN 1-59593-026-4. doi:
10.1145/1080139.1080143.

Anders Lindgren, Avri Doria, and Olov Schelén. Probabilistic routing in
intermittently connected networks. In SAPIR, pages 239-254, 2004.

A. Lindgren, A. Doria, E. Davies, and S. Grasic. Probabilistic Rout-
ing Protocol for Intermittently Connected Networks, October 2010. URL
https://datatracker.ietf.org/doc/draft-irtf-dtnrg-prophet.

Anders Lindgren and Avri Doria. Experiences from deploying a real-life dtn
system. In Consumer Communications and Networking Conference, 2007.
CCNC 2007. Jth IEEE, pages 217 —221, 2007. doi: 10.1109/CCNC.2007.50.

Ting-Kai Huang, Chia-Keng Lee, and Ling-Jyh Chen. Prophet+: An
adaptive prophet-based routing protocol for opportunistic network. In
Advanced Information Networking and Applications (AINA), 2010 2/th
IEFEE International Conference on, pages 112 —119, 20-23 2010. doi:
10.1109/AINA.2010.162.

Libo Song and David F. Kotz. Evaluating opportunistic routing protocols
with large realistic contact traces. In Proceedings of the second ACM work-
shop on Challenged networks, CHANTS ’07, pages 35-42, New York, NY,
USA, 2007. ACM. ISBN 978-1-59593-737-7. doi: 10.1145/1287791.1287799.

Antonio Carzaniga and Alexander L. Wolf. Content-based networking: A
new communication infrastructure. In NSF Workshop on an Infrastructure
for Mobile and Wireless Systems, number 2538 in Lecture Notes in Com-
puter Science, pages 59 68, Scottsdale, Arizona, October 2001. Springer-
Verlag.

Antonio Carzaniga, Matthew J. Rutherford, and Alexander L. Wolf. A
routing scheme for content-based networking. In Proceedings of IEEE IN-
FOCOM 2004, Hong Kong, China, March 2004.

BIBLIOGRAPHY 7

[20] J. Visca, J. Baliosian, and E. Grampin. A distributed notification bus
for constrained devices. In Network Operations and Management Sym-
posium, 2009. LANOMS 2009. Latin American, pages 1 6, 2009. doi:
10.1109/LANOMS.2009.5338802.

[21] F. Guidec and Y. Maheo. Opportunistic content-based dissemination in
disconnected mobile ad hoc networks. In Mobile Ubiquitous Computing,
Systems, Services and Technologies, 2007. UBICOMM ’07. International
Conference on, pages 49 =54, 2007. doi: 10.1109/UBICOMM.2007.23.

[22] Anwitaman Datta, Silvia Quarteroni, and Karl Aberer. Autonomous Gos-
siping: A self-organizing epidemic algorithm for selective information dis-
semination in mobile ad-hoc networks. In In International Conference on
Semantics of a Networked, pages 126-143, 2004. doi: 10.1.1.58.3986.

[23] J. Haillot and F. Guidec. A protocol for content-based communication in
disconnected mobile ad hoc networks. In Advanced Information Networking
and Applications, 2008. AINA 2008. 22nd International Conference on,
pages 188 —195, 2008. doi: 10.1109/AINA.2008.82.

[24] Liu Yazhi, Niu Jianwei, and Ma Jian. Content encounter probability based
message forwarding in opportunistic networks. In Information Science and
Engineering (ICISE), 2009 1st International Conference on, pages 2589
—-2594, 2009. doi: 10.1109/ICISE.2009.426.

[25] Mirco Musolesi and Cecilia Mascolo. CAR: Context-aware Adaptive Rout-
ing for Delay Tolerant Mobile Networks. IEEE Transactions on Mobile
Computing, 8(2):246 260, February 2009.

[26] Demos (domestic environment monitoring
with opportunistic sensor networks). URL
www.laccir.org/laccir/Portals/0/RFP/20090121_Request_for_Proposals.htm.

[27] J. Baliosian, J. Visca, E. Grampin, L. Vidal, and M. Giachino. A rule-
based distributed system for self-optimization of constrained devices. In
Integrated Network Management, 2009. IM °09. IFIP/IEEE International
Symposium on, pages 41 —48, june 2009. doi: 10.1109/INM.2009.5188785.

[28] Andés Aguirre, Pablo Fernéndez, and Carlos
Grossy. Usb4all - generic usb interface. URL
http://www.fing.edu.uy/inco/grupos/mina/pGrado/pgusb/material .html.

[29] A. Westerinen, J. Schnizlein, J. Strassner, M. Scherling, B. Quinn, S. Her-
zog, A. Huynh, M. Carlson, J. Perry, and S. Waldbusser. Terminology for
Policy-Based Management. RFC 3198 (Informational), November 2001.
URL http://www.ietf.org/rfc/rfc3198.txt.

[30] Javier Baliosian and Joan Serrat. Finite state transducers for policy eval-
uation and conflict resolution. In POLICY, pages 250—, 2004.

BIBLIOGRAPHY 78

[31]
[32]

[33]
[34]

[35]

[36]

[37]

[38]

[39]

[40]

|41]

[42]

Plan Ceibal project. URL http://www.ceibal.org.uy/.

Leonardo Vidal, Javier Baliosian, Eduardo Grampin, Jorge Visca,
Guillermo Apollonia, Matias Richart Juan Saavedra, and Martin Giachino.
Seguridad en redes oportunistas (SeRO). Technical report, Facultad de
Ingenieria - Universidad de la Republica - Uruguay, Proyecto AMPARO,
2011.

Lua, the programming language. URL http://www.lua.org.

Holger Karl and Andreas Willig. Protocols and Architectures for Wireless
Sensor Networks. John Wiley & Sons, 2005. ISBN 0470095105.

Jorge Visca, Guillermo Apollonia, Matias Richart, Javier Baliosian, and
Eduardo Grampin. Embedded Rule-based Management for Content-based
DTNs. In 1st International Workshop on Network Embedded Management
and Applications, 2010. NEMA 2010., Niagara Falls, Canada, October
2010.

ns3 network simulator. URL http://www.nsnam.org/.

Matias Richart, Jorge Visca, Javier Baliosian, and Eduardo Grampin. A
mobility model for opportunistic routing protocols validation. In LANOMS
2011, Quito, Ecuador, oct 2011.

Evaluating the impact of an acknowledgment strategy for APRP, LANC
09, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-775-2. doi:
10.1145/1636682.1636695.

P. U. Tournoux, J. Leguay, F. Benbadis, V. Conan, M. Dias de Amorim,
and J. Whitbeck. The accordion phenomenon: Analysis, characteriza-
tion, and impact on DTN routing. In IEEE INFOCOM 2009 - The 28th
Conference on Computer Communications, pages 1116-1124. TEEE, April
2009. ISBN 978-1-4244-3512-8. doi: 10.1109/INFCOM.2009.5062024. URL
http://dx.doi.org/10.1109/INFCOM.2009.5062024.

J. Baliosian, J. Visca, M. Richart, G. Apollonia, L. Vidal, M. Gi-
achino, and E. Grampin. Self-managed content-based routing for op-
portunistic networks. In Integrated Network Management (IM), 2011
IFIP/IEEE International Symposium on, pages 121 =128, may 2011. doi:
10.1109/INM.2011.5990682.

Galib, a c++ library of genetic algorithm components. URL
http://lancet.mit.edu/ga/.

M. Giachino. Demos connectivity model. Master’s thesis, Facultad de
Ingenieria, Universidad de la Reptblica, 2012.

