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Abstract

IEEE 802.11 wireless networks are very popular in today’s world. This pop-
ularity has been stimulated due to the use of mobile computing devices such
as laptops, tablets, and Wi-Fi enabled phones. We can get 802.11 connectiv-
ity in schools, squares, parks and other public places. All of these places can
have a high concentration of users. Moreover, there are other nonpublic places
like lecture halls, hotel ballrooms, and convention centers that are common
examples of spaces with high concentration of users in a high-density wireless
communications environment.

Dense deployments of wireless networks suffer from increased interference
and, as a result, bad user experience. The interference caused by the co-channel
and adjacent channel interference driven by co-located devices is one of the main
issues to address to improve network performance. The limited number of non-
overlapping channels may lead to severe interference scenarios if no appropriated
spectrum planning is employed.

In this work, we present an in-depth review of research work for the channel
allocation strategies. Then, we formalize the channel allocation as a minimiza-
tion problem of the interference level and we propose three different manners to
optimize channel assignment between participating Access Points with the aim
to improve network performance. The algorithms that we propose can be clas-
sified as local and uncoordinated, coordinated and distributed, and centralized.
The local and uncoordinated solution behaves well in our testbed but present
oscillatory issues that we tackle with a feedback control technique. Finally, this
work presents an evaluation of the strategies, on a testbed and on a simula-
tion environment. In the testbed we demonstrate the practical deployability
of the solutions and lead to the conclusion that the local and uncoordinated
implementation is worthy to be considered as a good strategy for the channels
allocation problem where Access Points works in isolated manner. In the simu-
lation, we test the scalability of both, the coordinated and centralized solution,
and we show that they can be deployed in networks with more than thirty Ac-
cess Points and as a results, we conclude that the centralized implementation
is the best strategy to perform optimization decisions for channel allocation in
connected networks .



Resumen

Las redes inalámbricas IEEE 802.11 son muy populares en el mundo actual.
Esta popularidad ha sido estimulada debido al uso de dispositivos móviles tales
como laptops, tablets y teléfonos Wi-Fi compatibles. Se puede tener conectivi-
dad 802.11 en escuelas, plazas, parques y otros lugares públicos. Todos estos
lugares pueden tener una gran concentración de usuarios. Ms aún, hay otros
lugares no públicos como las bibliotecas, centros de convenciones, salas de con-
ferencias en hoteles, los cuales también son ejemplo de espacios comunes con
una gran concentración de usuarios en entornos de comunicación inalámbrica
de alta densidad.

Instalaciones de redes inalámbricas densas experimentan una interferencia
creciente, y como resultado, una mala experiencia de usuario. Las interferencias
co-canal y de canal adyacente producidas por dispositivos próximos entre śı, son
uno de los principales problemas a abordar para mejorar la performance de la
red. El número limitado de canales que no se superponen pueden conducir a
escenarios de severa interferencia si no se emplea una planificación apropiada
del espectro.

En este trabajo, se presenta una revisión profunda de los trabajos de in-
vestigación para estrategias de asignación de canales. Luego, se formaliza la
asignación de canales como un problema de minimización del nivel de inter-
ferencia y se proponen tres diferentes maneras para optimizar la asignación de
canales entre los Puntos de Acceso participantes con el objetivo de mejorar la
performance de la red. Los algoritmos propuestos pueden clasificarse como local
y no-coordinado, coordinado y distribuido, y centralizado. La solución local y
no- coordinada se comparta de manera aceptable en el prototipo pero presenta
problemas de oscilación que se aborda con una técnica de control por retro ali-
mentación. Finalmente, este trabajo presenta una evaluación de las estrategias,
en un prototipo y en un entorno de simulación. En el prototipo se demuestra
el despliegue práctico de las soluciones y se llega a la conclusión que la imple-
mentación local y no-coordinada es digna de ser considerada como una buena
estrategia para el problema de asignación de canales cuando los Puntos de Ac-
ceso trabajan en forma aislada. En la simulación, se prueban la escalabilidad
de las soluciones coordinada y centralizada, y se muestra que pueden ser de-
splegadas en redes con más de treinta Puntos de Acceso y como resultado, se
concluye que la implementación centralizada es la mejor estrategia para realizar
decisiones de optimización para la asignación de canales en redes conectadas.
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Chapter 1

Introduction

This thesis studies the use of High-Density Wireless Networks, particularly fo-
cusing on the assignment of frequencies seeking to minimize the level of inter-
ference. From a practical perspective, these kinds of networks are formed when
there is a high concentration of users, as in a classroom or a convention center.
In these environments each user, carrying their personal wireless device such
as laptops, PDAs, and mobile phones, searches for wireless connectivity with
his/her own device. As the number of users increases, the network performance
in these contexts enters into a process of significant degradation. To address the
challenge of demanding connectivity by the users, usually, network administra-
tors just add more Access Points with the aim to keeping the quality of service
perceived by the users, leading to what Akella et al [16] called Chaotic Wireless
Deployments.

In educational institutions, cafés, airports, convention centers and homes,
wireless LANs are now one of the most important network access technologies
in the Internet today. Although many technologies and standards for wireless
LANs were developed, one particular class of standards has clearly emerged as
the winner: the IEEE 802.11 wireless LAN, also known as WIFI. The low cost
and the ease of deployment of WIFI devices, as well as the need to support high
bandwidth applications over 802.11 Wireless Networks has led to the emergence
of high density 802.11 networks in urban areas and enterprises.

For this reason and because today’s user devices, such as mobile phones and
tablets, are able to connect to WIFI networks, this thesis will focus mainly on
the IEEE 802.11b/g protocol. But the 802.11b/g networks have the following
limitations: “Radio resource management is often limited to a small number
of non-overlapping channels, which leaves only three possible channels in the
2.4GHz band used in IEEE 802.11b/g”. This means that the network capac-
ity may be reduced due to the interference between simultaneous neighboring
transmissions. This problem can deteriorate if we augment the number of Access
Points without an appropriate spectrum planning.

In consequence, the small number of non-overlapping channels and the de-
ployment of an increasing number of APs (to serve a high concentration of users)
lead to serious interference problems that need to be addressed. Usually, two
types of interference are distinguished [42]:

• Co-Channel Interference (CCI), which is caused by undesired transmis-
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sions carried out on the same frequency channel.

• Adjacent Channel Interference (ACI), produced by transmissions on ad-
jacent or partially overlapped channels.

As a result of higher number of Access Points and the growth in the amount
of users connected to them, transmitting at the same time, the undesired effect
of radio interference becomes more problematic, affecting the network perfor-
mance. This contrasts with the original goal of augmenting the Access Point
deployments to address users requirements. Hence, the assignment of channels
to this potentially large set of APs needs to be carefully coordinated, otherwise
the broadcast nature of WLANs can lead to a serious performance degradation
of the user’s connections.

In this chapter, we will present the definition of a high-density wireless net-
work. Then, we will extend on the concepts of co-channel interference and
adjacent channel interference. Next, we will review the mechanisms to address
the interference problem and we will focus on the channel assignment due it
is the main factor to handle interference. Finally, we will present the thesis
objectives and contributions.

1.1 What are High Density Wireless Networks?

There is not a precise definition of what a “High Density Wireless Network”is
in formal terms. Indeed, each network administrator has forged their own def-
inition drawing upon their own experience. For example lets review how the
industry refers to the term:

• Aruba Networks[39] defines High-density (HD) WLANs as radio frequency
RF coverage zones with a large number of wireless clients and Access
Points in a single room.

• Meru Networks[8] defines a High-density environment as the one that sup-
ports over 500 wireless devices such as a convention center, a campus
auditorium or a big hotel lobby.

• For Cisco[21], High-density WLAN design refers to any environment where
client devices will be positioned in densities greater than coverage expec-
tations of a normal enterprise deployment.

Beyond differences, all these definitions share a common concept: the high
concentration of users in high-density environments such as large meeting rooms,
lecture halls and auditoriums, convention center, meeting halls, hotel ballrooms,
press areas at public events, concert halls and amphitheaters, airport concourses,
financial trading floors, casinos, stadiums, arenas, and ballparks.

The proliferation of wireless-enabled personal and enterprise mobile devices
presents challenges for designing and deploying a wireless network. Lets imagine
the following scenario: we gather 1000 people in an auditorium, each person
using his/her own wireless device searching for good quality connectivity. In
such scenario one Access Point clearly will be overloaded and the throughput
will be very poor. The AP has the physical capacity to handle up to 2048 MAC
addresses [7], but, because the AP uses a shared medium and acts as a wireless
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hub, the performance of each user decreases as the number of users increases
on an individual AP. Similarly to the Ethernet segment, in this technology the
nodes of a 802.11b/g share the medium using, in both cases, a CSMA/CA
(carrier sense with collision avoidance) medium access control scheme.

In cases of high connectivity demand the deployment of various Access Points
is a recurring pattern, although this solution is not enough to gain performance.
Even supposing that users connect to different Access Points, the level of inter-
ference between transmissions can lead to poor performance if no appropriated
spectrum planning is employed. Therefore we need to find new strategies to
minimize the level of interference in this type of networks. To address this
problem and examine the different types of interference we devote the following
section.

1.2 Interference Types

Usually, two types of interference are distinguished: co-channel interference,
which is caused by undesired transmissions carried out on the same frequency
channel; and adjacent channel interference, produced by transmissions on ad-
jacent or partially overlapped channels [37]. Lets look at each type in more
detail.

1.2.1 Co-Channel Interference

Co-channel interference occurs between two access points (APs) that are on the
same frequency channel (see figure 1.1). This type of interference can severely
affect the performance of your wireless network. The spectrum that is available
for the deployment of WiFi is limited. For example, in the 2.4GHz band, there
is just 79MHz of spectrum in the United States. Given that your IEEE 802.11g
devices use a 20MHz channel, you have room for three non-overlapping channels.
You will need to reuse the frequency channels when you deploy your APs.

Co-channel interference is more problematic when you deploy your wireless
network in scenarios that require a denser deployment of APs. Denser deploy-
ments mean that your APs are closer together. This creates a greater potential
of two devices that transmit on the same frequency, which will be close enough
to cause significant interference to each other’s signals. The two solutions for
co-channel interference are, first, the use of a different, non overlapping channel
for each of the APs, and second, moving the wireless network far enough apart
that the access points cells do not overlap.

1.2.2 Adjacent Channel Interference

Adjacent channels are those channels within the RF band being used that are,
in essence, side-by-side. For example, channel one is adjacent to channel two,
which is adjacent to channel three, and so on. These adjacent channels overlap
each other because each channel is 22 MHz wide and their center frequencies are
only 5 MHz apart. Adjacent channel interference happens when two or more
access points using overlapping channels are located near enough to each other
that their coverage cells physically overlap. Adjacent channel interference can
severely degrade throughput in a wireless network.
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Figure 1.1: Co Channel Interference. Source [37].

It is especially important to pay attention to adjacent channel interference
when allocating access points in an attempt to achieve higher throughput in a
given area. Access points on non-overlapping channels can experience adjacent
channel interference if there is not enough separation between the channels being
used, as illustrated in Figure 1.2.

Figure 1.2: Adjacent Channel Interference. Source [37].

Commonly two solutions are used for the problem with adjacent channel
interference. The first solution is to separate those access points that are trans-
mitting on adjacent channels far enough to reduce the overlapping between
their respective cells, or turn the transmit power down on each access point
low enough that the cells do not overlap. The second solution is to use only
channels that have no overlap whatsoever. For example, in systems with direct-
sequence spread spectrum (DSSS) modulation technique the use of channels one
and eleven would accomplish this task.
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1.3 Techniques to Minimize Interference

There are three main approaches to address the challenge of minimize the level
of interference between Access Point [20] that presents one of the interference
described in previous section:

1. Intelligent frequency allocation across APs

2. Load-balancing of user affiliations across APs

3. Adaptive power-control for each AP.

One approach is that power control can be used to mitigate interference
in high density environments [31]. The benefits of power control for inter-
ference mitigation in the context of cellular networks have been widely stud-
ied. However, unlike cellular networks, today’s commercial 802.11 APs support
power adaptation on a per-cell basis instead of a per-client basis. So there is
no straightforward way to apply those concepts to 802.11 networks. One of
the main challenges when dealing with power control is that they can lead to
throughput starvation due to the introduction of asymmetric links. The sym-
metry is preserved only when the product of transmission power and the Clear
Channel Assessment (CCA) threshold for each AP is constant throughout the
network. The proposed algorithm in this topic enable the exchange of appro-
priate information (by means of Beacon frames) between APs to allow them to
optimally tune the transmission power and the CCA thresholds. The algorithm
developers do this by changing the MAC drivers implementation.

Another approach to improve dense networks performance is the association
of users to APs [31] User devices are programmed to associate with the AP
with the strongest received signal strength. This leads to scenarios where some
APs have very few users, while other APs are overloaded with many users.
In general, the problem with User Association strategy is that the algorithms
requires modifications in the AP driver and firmware, as well as in the client
driver.

Finally, the last approach is the channel assignment strategy. The perfor-
mance of a dense wireless local area network depends on the channel assignments
among neighboring access points (APs). The limited number of non-overlapping
channels may lead to severe interference scenarios if no appropriated spectrum
planning is employed. For example, 802.11b/g operates in the frequency range
of 2.4 GHz to 2.485 GHz, within this 85 MHz band, 802.11b/g defines eleven
partially overlapping channels. Any two channels are non-overlapping if and
only if they are separated by four or more channels. In particular, the set of
channels 1,6,11 is the only set of three non-overlapping channels.

Considering the three approaches above mentioned this thesis studies the
channel assignment strategy as a way of minimizing the interference level in
dense wireless networks. The next section is dedicated to examine channel
assignment problem as it is found in 802.11 wireless networks.

1.4 Channel Assignment

One way to reduce the interference problems of high density wireless LAN de-
ployments is to automate as much as possible the channel assignment strategy.
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[25, Physical Layer Selection and Design section in chapter 25]
Nowadays several products offer the ability to automatically lay out chan-

nels along the frequency spectrum. Furthermore, the available technology allows
some devices to continuously monitor the radio space in order to adjust the chan-
nel settings dynamically. In this respect one of the most common approaches
is to layout channels based on physical measurements that assess the quality of
frequencies usage.

Embracing a different approach network administrators, place access points
based on the expected number of users, mounting convenience and environ-
mental constraints. In this cases, when the network is powered on, then APs
communicate with each other through a wired network searching for the optimal
channel assignment.

In this section we will focus on 802.11 wireless networks, examining the
frequency ranges for both 802.11b/g and 802.11a standards. There is a clear
distinction between a 2.4 GHz (802.11b/g) and a 5 GHz (802.11a) channel’s
layout. In Figure 1.3 you can see a graphical representation of WiFi channels
in the 2.4 GHz band.

Figure 1.3: 802.11b/g Channels in 2.4GHz Band. Source [44].

The 2.4 - 2.485 GHz band is divided into 13 channels spaced 5 MHz apart,
with channel 1 centered on 2.412 GHz and 13 on 2.472 GHz (to which Japan
added a 14th channel 12 MHz above channel 13 which was only allowed for
802.11b). 802.11b was based on DSSS with a total channel width of 22 MHz
and did not have steep skirts. Consequently only three channels do not over-
lap. Moreover, many devices are shipped with channels 1, 6 and 11 as preset
options. Even though 802.11g channels are 20 MHz wide, and have space for
four non-overlapping channels (1, 5, 9 and 13), due to the use of orthogonal
frequency-division multiplexing signaling, this is not the case as per 17.4.6.3
Channel Numbering of operating channels of the IEEE Std 802.11 (2012) which
states ”In a multiple cell network topology, overlapping and/or adjacent cells
using different channels can operate simultaneously without interference if the
distance between the center frequencies is at least 25 MHz”. For this rea-
son, both standards, 802.11b and 802.11g, have three non overlapping channels.
Then, in a practical deploy, part of the site survey is to lay out coverage areas
in a way that minimizes channel overlap.

The inability to perform a channel layout with three channels is not sur-
prising. In mathematics, the general result is known as the Four-Color Map
Theorem. Map makers discovered in the mid-19th century that an arbitrary
two-dimensional map can be filled in with four colors. Unfortunately, 802.11
b/g networks have only three non-overlapping channels. Maps where adjacent
regions share a color are unsightly. It is often possible to minimize channel
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overlap by careful AP placement or the use of external antennas.
In contrast, 802.11a has one major advantage when laying out your network.

The major advantage that 802.11a has over 802.11b/g is that it contains 12 or
13 non-overlapping channels, while 802.11b/g has only 3 channels making it
more likely to have interference from adjacent APs. With this being said we
can conclude that for high capacity, high-density networks, the use of 802.11a
will get better results.

But 802.11a has two major drawbacks compared with 802.11b/g. First, the
5 GHz band has a shorter wavelength. Higher-frequency signals will have more
trouble in propagating through physical obstructions encountered in an office
(walls, floors, and furniture) than those at 2.4 GHz. Second, there are more
country controls in this band, for example in 2007 the FCC (United States)
began requiring that devices operating on 5.250 - 5.350 GHz and 5.47 - 5.725
GHz must employ dynamic frequency selection (DFS) and transmit power con-
trol (TPC) capabilities. This restriction was implemented to avoid interference
with weather-radar and military applications.

Finally, 802.11b/g networks have become more popular than 802.11a, be-
cause most personal devices support 802.11b/g. For the above mentioned rea-
sons this thesis will focus on 802.11b/g networks and the constraints of having
only three non overlapping channels.

A strategy to distribute channels between APs is needed to improve wireless
networks performance. A channel assignment strategy can be classified as static
or dynamic. In the static approach, a channel is assigned to the AP permanently
or for a long period. The dynamic strategy assumes that the network interface
can switch the communication channel using a coordinated or uncoordinated
approach.

This thesis seeks to provide a good solution for the channel allocation prob-
lem using a self-managed network while leaving the client devices configuration
untouched. To achieve this goal we formalized the channel allocation as a min-
imization problem of the interference level. Then, we propose three different
strategies to assign channels between APs with the aim to improve network
performance. The algorithms that we propose can be classified as local and
uncoordinated, coordinated and distributed, and centralized. Finally, to test
the proposed strategies we conducted a testbed and simulated a dense network
environment, where the network minimize the interference by assigning the best
channel for each AP and we did this without changing the client devices.

1.5 Objectives

The high concentration of users in any high-density environment presents chal-
lenges for designing and deploying a wireless network. Lecture halls, hotel
ballrooms, and convention centers are common examples of spaces with this
requirement. As the usage of corporate 802.11 wireless networks (WLANs)
grows, network performance is becoming a significant concern. We will look for
a system for improving the performance of enterprise wireless networks using a
dense deployment of access points (APs).

Moreover, the performance of a wireless local area network depends, in part,
on the channel assignments among neighboring access points (APs). The limited
number of non-overlapping channels may lead to severe interference scenarios if
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no spectrum planning is performed. In consequence, our goals of this work are:

• design and implement different strategies to improve the usage of wireless
spectrum in the context of wireless local area networks (WLANs) using
new channel assignment strategies among interfering Access Points (APs).

• test the strategies in a testbed and in a simulation environment to evaluate
the behaviors and compare the results.

1.6 Contributions

The main contributions of this thesis will be:

• An in-depth review of the different channel assignment strategies. We
will be reviewing: industry and academic studies, static and dynamic
approaches, coordinated or uncoordinated strategies.

• Optimize channel assignment in three different manners: in an uncoor-
dinated and distributed scenario, in a coordinated but still distributed
scenario and in a centralized scenario where one node has a view of the
whole network. The proposed strategies were designed for a deployment
environment such as lecture hall or hotel ballrooms, this means that a
typical deployment will consist of less than 50 access points.

• Apply a feedback control technique to address some limitations of the
uncoordinated strategy. The uncoordinated solution present oscillatory
issues that must be handle to be useful. To bound the number of oscilla-
tions that can occur in a given time period we apply a feedback control
scheme where we dynamically adjust a threshold value with the aim to
control the amount of channel switches for the aforementioned time pe-
riod.

• Deployment of the strategies on a testbed to study the feasibility of the
work and to get some real metrics.

• Evaluate the systems in simulations with the aim of measuring scalability
and to determine the best strategy as the number of Access Point increase.

1.7 Thesis Structure

This work is organized as follows. In the next chapter we will present a detailed
description of the state of the art in this field. Then in chapter 3 we present three
different approaches for channel assignment among APs. Chapter 4 presents a
method to handle oscillatory issues encountered in the uncoordinated strategy.
Chapter 5 covers the evaluation of the proposed strategies. And finally, chapter
6 presents conclusions and future works.
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Chapter 2

State of the Art

The need to improve dense Wireless Networks performance has been recognized
by both the research community as well as the industry. In the first part of this
chapter we will examine the industry’s approach to this problem based on the
guidelines developed by major network providers. Secondly we will conduct an
in depth review of the academic research in this field.

2.1 Planning-based Approach

In this work we will describe some of the industry’s approach to deal with High
Density wireless networks.

Aruba Networks has a reference guide (VRD - Validated Reference Design)
for high density wireless network [39]. The purpose of the guide is to describe
the best practices for implementing coverage zones with high numbers of wireless
clients and APs in a single room such as lecture halls and auditoriums. The
guide presents a HD WLAN Capacity Planning Methodology that follow these
steps:

1. Choose a capacity goal: The first step is to pick an application-layer
throughput target linked to the seating capacity of the auditorium.

2. Determine the usable number of channels: For each band, decide
how many non overlapping channels are usable for the HD WLAN. Use a
database of regulatory information (included in the guide), augmented by
site-specific decisions such as whether or not Dynamic Frequency Selection
(DFS) channels are available.

3. Choose a concurrent user target: Determine the maximum number
of simultaneously transmitting clients that each AP will handle. Use a
lookup table based on test data supplied by Aruba. You must do this for
each radio on the AP.

4. Predict total capacity: Use the channel and concurrent user count
limits to estimate the maximum capacity of the auditorium using lookup
tables supplied by Aruba.

5. Validate against capacity goal: Compare the capacity prediction with
the capacity goal from step 1. If the prediction falls short, you must start
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over and adjust the goal, concurrent user limit, or channel count until you
have a plan that you can live with. For large auditoriums over 500 seats,
you should be prepared to accept a per-client throughput of 500 Kbps
or less, assuming a 50/50 mix of .11n and .11a stations and nine usable
channels.

At the heart of this guide, there is Aruba’s Adaptive Radio Management
(ARM) technology. Enterprise WLANs use automatic channel selection algo-
rithms because static channel assignment is cumbersome to design and not re-
sponsive to real-world dynamic RF conditions. Then, Aruba’s ARM technology
uses a dynamic channel planning algorithm in which each access point makes
decisions independently by sensing its environment and optimizing its local situ-
ation. The algorithm is designed so that this iterative process converges quickly
on the optimum channel plan, for the entire network, without requiring a central
coordinating function.

Each access point periodically scans all channels for other access points,
clients, rogue access points, background noise, and interference. During the
scan, the access point is not servicing its own associated clients, so scanning
can be suspended for situations such as clients in power-save mode or active
voice calls. Following scanning, two figures are derived: the coverage index,
and interference index. These are used to calculate the optimum channel and
transmit power for the access point. The interference index is a single figure
representing both Wi-Fi channel activity and non-Wi-Fi channel noise and inter-
ference. When the interference index on the current channel is high compared to
other channels, the access point will look for a better channel, generally choosing
the channel with the lowest interference index. This not only avoids non-Wi-Fi
interference, but minimizes co-channel interference, as other access points on
the same channel contribute to the interference index.

The coverage index comprises the number of access points transmitting on a
particular channel, weighted by their signal strengths as measured by the access
point. The ARM algorithm maximizes and equalizes coverage indices for all
channels across all access points, and this is the primary parameter used to
control an access point’s transmit power, within configured limits. An ARM
dynamic channel planning algorithm optimizes the RF plan by making best use
of the available spectrum, avoiding interference while also meeting the desired
coverage parameters.

Aruba’s guide the algorithm is embraced by many others techniques. They
recommend that once you planned the capacity you must follow others design
topics, like coverage strategy (a specific method or approach for locating APs
inside a wireless service area), choosing access points and antennas, aesthetic
considerations, among others.

Similarly, Cisco[21] has a design guide that provides engineering guidelines
and practical techniques for designing, planning, and implementing a Wireless
LAN within a high density environment. As Aruba, Cisco mention a series of
step for a successful high user density WLAN. The steps are:

1. Plan: Determine application and device requirements such as bandwidth,
protocols, frequencies, service level agreement (SLA), etc.

2. Design: Determine density, cell sizing, antennas, coverage, site survey, etc.

3. Implement: Install, test, tune, establish baseline, etc.

18



4. Optimize: Monitor, report, adjust, review baseline for SLA

5. Operate: Cisco Wireless Control System (WCS) monitoring, troubleshoot-
ing tools, capacity monitoring and reporting tools, etc.

During design phase the guide have many sections devoted to channel assign-
ments issue. After discussing why Co-Channel Interference (CCI) is important
in high-density WLANs they present some design steps to mitigate the effects
of CCI.

They focus on two technologies to help deal with channel issues.
The Cisco WCS and controllers make monitoring co-channel interference

and identifying the responsible AP or APs a fairly straightforward exercise.
Cisco Radio Resource Management (RRM) algorithms are centralized and are
a network-wide resource that continuously evaluates every single AP in the RF
network to determine its relationship to every other AP in the system. It does
this through the use of over the air (OTA) measurements and observations.
Knowing how well other APs can hear a selected AP is a very useful feature
when considering or planning a high-density WLAN deployment. Using Cisco
WCS, it is possible to evaluate how well APs can hear one another-independent
of a channel. This information is shown in a graphic display that shows not
only how APs are effecting each other on a particular map, but also how other
APs that are not on the map can impact a WLAN as well.

The wireless LAN controller maintains two lists of APs, both transmit and
receive (TX and RX) neighbors that indicate how other APs hear a selected
AP and how a selected AP hears other APs. This can be viewed using the
Wireless LAN Controller (WLC) Configuration Analyzer tool and used to tune
the resulting network and identify sources of RF as the APs themselves see it.
Since this observation is based on OTA metrics and not based on predictive
modeling, these values are independent of the antenna and AP combination.

Both guides are a serie of step for network administrator or network in-
staller. They not only based on proprietary technologies but also they are based
on a careful planning. In those work they plan (cisco) or set a capacity goal
(Aruba). How many users, how big is the room, how many seats, and so on.
In both guides there are recommendations on how to choose APs, (if needed)
which kind of antennas and where to locate APs taking into account aesthetic
considerations.

All these management solutions are customized for proprietary hardware
and use proprietary algorithms to achieve their ends, making them both hard to
validate and hard to compare with other algorithms. I think the most important
contributions of these guides are they put together a number of issues to deal
with high density wireless network. I choose them because it touched most of
the topics about how to design a High Density WLANs from channel assignment
between APs to transmission power. And that both works discussed as the main
topic the channel assignment strategy.

So this sentence can summarize the importance they put on channels: The
number of allowed non overlapping channels is the primary capacity constraint
on an HD WLAN.
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2.2 Academic Related Work

Academic approach to the channel assignment strategy can be divided in differ-
ent ways: genetic algorithm, distributed algorithms, algorithms with the help
of client, and centralized algorithms.

Techniques that solve management problems for wireless LANs fall into two
broad categories: static optimization and dynamic optimization. The academic
research can be classified into those categories, for example genetic algorithm
are intended for a static optimization whereas the other proposed techniques
are mainly dynamic optimization. Lets review each approach in the following
subsections.

2.2.1 Genetic Algorithms

FAP web [3] is a web-site devoted to Frequency Assignment Problems (FAPs) in
wireless communication networks. In this website they classified the frequency
assignment problem for fixed channel assignment schemes in four different fla-
vors.

In the minimum order frequency assignment problem (MO-FAP), we have to
assign frequencies in such a way that no unacceptable interference occurs, and
the number of different used frequencies is minimized. In the minimum span
frequency assignment problem (MS-FAP), the problem is to assign frequencies
in such a way that no unacceptable interference occurs, and the difference be-
tween the maximum and minimum used frequency, the span, is minimized. In
case all assignments contain some unacceptable interference, we can decide to
find a partial assignment that minimizes the overall blocking probability. In
the minimum blocking frequency assignment problem (MB-FAP), the problem
is to assign frequencies in such a way that no unacceptable interference occurs
and the overall blocking probability of the network is minimized. Besides the
approaches in which the maximum interference level is minimized, another ap-
proach is given by the minimization of the total sum of interference levels. In
the minimum interference frequency assignment problem (MI-FAP), we have to
assign frequencies from a limited number of available frequencies in such a way
that the total sum of weighted interference is minimized.

All of these flavors are formally modeled using graphs notations. As one
of the FAP website major contribution is to provide a formal definition of the
frequency assignment problem we will now present the mathematical models
they have developed.

The standard representation of a FAP is by means of a graph G=(V,E),
the interference graph or constraint graph. Each connection is represented by a
vertex v ∈ V . The available channels or frequencies for a vertex are denoted by
the setDv ⊆ D. Let cv denote the required number of frequencies for connection
υ ∈ V . Two vertices v and w for which the corresponding connections may
interfere for at least one pair of frequencies, are connected by an edge {v, w} ∈ E.
For each pair of frequencies f ∈ Dv and g ∈ Dw we penalize the combined choice
by a measure depending on the interference level. This penalty is denoted by
pvwfg. The interference between two frequencies f, g ∈ Dv assigned to the
same vertex v can be modeled in the same way: an edge {v, v} ∈ E and penalty
pvvfg. Another way to model this, is by replacing v by cv vertices and additional
edges between all of them. Some instances deal with a frequency plan in which

20



changes are considered, to reduce interference. This reduction should take place
under minimal changes of the total frequency plan, thus changes in the plan are
penalized per change as well. This is modeled with additional penalties on the
frequencies to be chosen for each vertex: the choice of frequency f ∈ Dv costs
qvf .

In the FAP web there is a digest of frequency assignment literature where
for each of the flavors above there are a list of papers from more than a decade
that propose solutions using heuristic search techniques. The techniques are
Greedy, Integer Linear Programming, Tree Search, Simulated Annealing and
Genetic Algorithms among others.

There are various paper to look at like [29, 22, 43] but we will look just to one
example that use Genetic Algorithms. In [30] a heuristic algorithm is proposed
and analyzed after that the authors prove that the problem for the channel
assignment problem for the 802.11 network is NP-complete. The authors define
an objective function like:

Ui ≡ ρi +
N
∑

k=1

Xik[
∑

j∈Ci(1)

ρjXjk +
∑

(m,n)∈Ci(2)

ρmρnXmkXnk]

This definition can be interpreted as follows. The first term on the right
hand side is the offered load associated with AP i. The first summation term
inside the brackets represents the total traffic load of all class-1 interfering APs
that are assigned with the same channel as AP i. This is so because according to
the CSMA protocol and the detection threshold α in use, AP i senses channel
busy when any one of its class-1 interferers transmits on the same channel.
Similarly, the last summation term represents the effective channel utilization
due to class-2 interferers if they use the same channel.

The objective function for the channel assignment is to minimize the utiliza-
tion at the most stressed bottleneck AP:

MinimizeMax{U1, U2, ..., UM}
The algorithm is outlined as follow:

1. Generate a random, initial channel assignment for the network, which
is treated as the best assignment obtained so far. Let the maximum
effective channel utilization for the assignment be denoted by V (i.e.,
V = max{Ui}).

2. Based on the best assignment, identify the AP (say i) with the highest ef-
fective channel utilization. In case of tie, one such AP i is chosen randomly
as the “bottleneck”.

3. For the bottleneck AP i, identify its current assigned channel, say k. For
each available channel n from 1 to N with n 6=k and each co-channel AP (say
j) in Ci(1) (i.e., those APs in the set that have been assigned with channel
m), temporarily modify the channel assignment by re- assigning only AP j
with channel n. Based on (3), re- compute the maximum effective channel
utilization, denoted by Wjn, for the new assignment. After completing
such testing for all such n and j, let W be the minimum among all the
Wjn’s.

4. Compare W with V and perform the following:

(a) If W < V , then replace V by W and record the associated new as-
signment as the new best solution (i.e., to finalize the channel change
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for one AP that minimizes the objective function the most − a greedy
step). Continue with Step 2.

(b) If W = V , then with a pre-specified probability δ, replace V by W
and record the new assignment as the best solution. Continue with
Step 2

(c) If W > V , a local optimum has been reached (i.e., the best assign-
ment obtained so far is the local suboptimal solution). Continue with
Step 5.

5. Repeat Steps 1 to 4 with a number of random, initial assignments. The
final solution is chosen to be the best, according to (4), among the local
suboptimal assignments.

6. Test if constraints (5) for all APs are satisfied for the final assignment.
If so, the final assignment is feasible. Otherwise, it is considered that no
feasible solution exists for the network under consideration.

The drawback of this methodology is that it is for fixed channel assignment
schemes. You must run the algorithm beforehand the network is operational and
then assign each AP the corresponding channel. Also, the genetic algorithm does
not get the optimum just a good value that approximate to the optimum. Can
be costly on the computer resource to evaluate it.

2.2.2 Client-Assisted Channel Assignment Algorithms

Yue et al [46] proposed a completely distributed channel assignment scheme for
uncoordinated WLANs. They study are based under the following premises:

• Network nonspecialists. Unlike WLANs managed by certified system ad-
ministrators, uncoordinated WLANs are usually set up by inexperienced
and independent users who are not knowledgeable in network configura-
tion. These users very likely expect the devices to be plug-and-play (i.e.,
self- configurable). They cannot be expected to know how to configure
the appropriate channel to minimize interference in their neighborhoods.

• Unplanned topology. In managed WLANs, such as campus or enterprise
networks, the system administrators can calculate where the APs should
be placed in order to minimize co-channel interference and achieve high
throughput. In uncoordinated WLANs, on the other hand, APs are placed
without any concerted planning; some areas may have high AP density
and hence may experience high interference and poor performance.

• AP independence. Due to the absence of central management and the
prevalence of inexperienced users, configuration for uncoordinatedWLANs
should be as simple and automatic as possible. The APs of different
WLANs should operate independently without any direct communication.

They present the problem formulation and show that it is NP-hard. They
then propose CACAO, a novel distributed channel assignment scheme for unco-
ordinated WLANs. The APs auto-configure their channels depending on their
local traffic information. The approach, termed Client-Assisted Channel Assign-
ment Optimization (CACAO), makes use of client feedback to perform channel
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assignment. Such feedback may be obtained using the proposed IEEE 802.11k
standard for radio resource management, which defines a series of measurement
requests and statistical reports between an AP and its clients.

To formulate the problem the authors model the network as graph G =
(V,E), where V = {ap1; ap2; ...; apn} is the set of n APs. In this model, clients
associated with an AP are grouped with the AP and collapse into a single
(super) node for the purpose of interference accounting. Let W (api, apj) be
the potential interference level between APi and APj . The larger the weight
W (api, apj) is, the higher the interference between APi and APj will be if they
use the same channel.

Next they define a Boolean function interference map I(api, apj) for each
edge, where

I(api, apj) =

{

1 if api and apj are on the same channel;
0 otherwise

One may consider that the product of W (api, apj) and I(api, apj) indicates
the total interference level between api’s BSS and apj ’s BSS. Given G(V,E) and
W (api, apj), channel assignment C is a mapping C : V → {1...k}, where k is the
total number of non overlapping channels (e.g., k = 3 for the IEEE 802.11b/g
standard). The channel assignment problem is to find a mapping C such that
the total interference level is minimized, i.e.,

minCL(G,C) =
∑

∀e=(api,apj)∈E

W (api, apj) ∗ I(api, apj)

Finally, the authors formalize this proving a theorem
Theorem. Given a weighted undirected graph G = (V,E), with n ver-

tices, V = {v1; v2; ...; vn} , and a weight function W (vi, vj). Let C : V →
{1...k} be a k-coloring of G. The problem of finding C that minimizes LG =

∑

∀e=(api,apj)∈E,C(vi)=C(vj)

W (vi, vj) is NP-hard.

The proposed distributed algorithm is as follow: Let api.c denotes the op-
erating channel of api . Let G(api) = (V (api), E(api)) be the subgraph of G
containing only vertex api and all its directly connected neighbors.

The CACAO algorithm for each api has two phases:

1. Initialization. Initial assignment

(a) api.c← rand(k)

2. Optimization. Repeated for each AP

(a) Gatherstatistic()

(b) ct = ComputeInterference()

(c) SwitchTo(ct)

The algorithm is self-explanatory. From the algorithm you can see that they
proposed a completely distributed channel assignment scheme for uncoordinated
WLANs. Their model is based on a single (super) node, representing channel
condition information in an AP, gathered by its associated clients. We will
see later in the Graph Coloring based section a strategy named Hsum and the
CACAO algorithm employs the Hsum strategy and the key contribution is the
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use of a modified channel metric based on client traffic. This algorithm does
not employ coordination among APs in order to improve the solution quality.

Before the CACAO strategy there was another client driven approach for
channel management in Wireless LANS.

Mishra et al. [33] proposed an efficient client-based approach for channel
management (channel assignment and load balancing) in 802.11-based WLANs
that lead to better usage of the wireless spectrum. This approach is based on a
conflict set coloring formulation that jointly performs load balancing along with
channel assignment.

The strategy tries to minimize interference at wireless clients by implicitly
modeling its location and distribution with respect to the APs. The algorithm
is centralized and is well suited for centrally managed wireless networks.

2.2.3 Centralized Algorithms

Another approach to solve the problem of dense deployment of APs is to use
centralized algorithms where one entity makes the decisions and communicate
those decisions to the rest of the entities. In this regards there are two interesting
works.

The first one is named DenseAP [36] by Murty et al at Harvard University
and Microsoft Research.

The design is very simple as you can see in Figure 2.1.

Figure 2.1: Overall Architecture of the DenseAP System. Source [36].

The system consists of several DenseAP nodes (DAPs) which provide wire-
less service and a DenseAP controller (DC) which manages the DAPs. A DAP
is a programmable Wi-Fi AP connected to the wired network. Each DAP pe-
riodically sends summaries to the DenseAP controller comprising of a list of
associated clients, their traffic pattern summaries, RSSI values of a few packet
samples from their transmissions, current channel conditions, and reports of
new clients requesting service from the network. They classify DAPs into two
categories: they refer to DAPs that do not have any clients associated with
them as passive; those that have at least one associated client are called active.
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The DC manages the DAPs. The periodic reports sent by the DAPs provide the
DC with a global view of the network activity. Using this global view, the DC
selects the right DAP for a client, allocates channels to DAPs, performs load
balancing when needed, handles client mobility, and deals with DAP failures.

One of the interesting point in the proposed algorithm is in the association
a new client process. When a new client first appears in the network, it scans
on all channels and sends out probe requests. Because this client has not yet
been added to the ACL (list of clients associated with an AP) of any DAP, all
DAPs that hear the probe requests simply report them to the DC. To calculate
reasonable signal strength estimates, the DC waits for a short while (10-30
seconds in the current implementation) after the first report of a new client is
received. During this interval it continues to collect reports of probe request
packets from DAPs. At the end of this interval the DC calculates the average
signal strength of all the probe request frames seen by each DAP.

If two or more APs see the client, then the DC use a metric called Available
Capacity (the metric is based on the transmission rate the client and the DAP
can use to communicate with each other; and how busy the wireless medium is
in the vicinity of the client and the AP) to decide which AP must respond the
client. Assume two DAPs, A and B hear probe requests from a client M. Assume
that A is active i.e. it already has other clients associated with it, whereas B
does not (passive). After calculating AC(A) and AC(B) the DC then compares
those values and picks the higher of the two. If they are equal, it decides in
favor of B, since B has no clients associated with it. If the DC picks A, it adds
M’s mac address to A’s ACL. If it picks B instead, it first instructs B to stop
scanning and to stay on channel Y (assuming that DAP B has recently seen the
highest available free air time on channel Y) It then adds M’s mac address to
B’s ACL.

Note two key aspects of this algorithm. First, they never move existing
clients to another DAP as a result of a new client association. Second, DAPs
are only assigned channels on an on-demand basis, as part of the association
process. A DAP is assigned a channel only when a client in its vicinity requests
service from the network. When a DAP becomes passive, it no longer has an
assigned channel.

An interesting aspect of this work is that the authors design DenseAP system
keeping a key emphasis on practical deployability. The authors argue that
because of the incredibly wide diversity of existing Wi-Fi devices, DenseAP must
provide significant performance benefits without requiring any modifications to
existing Wi-Fi clients. Furthermore, they do not consider any changes that
require hardware modifications or changes to the 802.11 standard.

The work although very interesting is based on centralized architecture, so
it has associated the disadvantage of this kind of architecture like one point
of failure. Another aspect is that the solution is based on wired infrastructure
between APs, so this mean that the APs belongs to the same administrative
domain.

SMARTA [15, 13] is similar to DenseAP in that it uses a centralized server
to increase the capacity of a dense AP deployment without requiring client
modifications.

The SMARTA architecture is illustrated in Figure 2.2. The central con-
troller coordinates the channels and power levels of the thin access points. The
choices of channels and power levels are decided based on optimizing a utility
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function, whose value is computed using measurements performed by the access
points. The controller periodically cycles through five phases: startup, channel
assignment, annotation, power-level assignment, and refinement.

Figure 2.2: SMARTA System Architecture. Source [13].

The controller computes and periodically updates a Conflict Graph (or CG)
which is a graph where nodes are APs and there is an edge between two APs,
if they interfere when assigned the same channel. In the second or channel as-
signment phase, the optimizer makes use of the CG to generate optimal channel
assignments for the access points. At the end of this step, every AP is assigned
a good channel. In the third or annotation phase, the CG is augmented fur-
ther to generate an annotated conflict graph, or ACG. The annotated conflict
graph adds clients to the conflict graph, which previously only contained access
points. During ACG construction, access point channels may be re-assigned
to reflect client information in the channel assignment process. In the fourth
or power-level assignment phase, SMARTA computes optimal power levels for
access points. After this procedure completes, SMARTA moves to the fifth or
refinement phase. In this phase, the power levels of access points are altered to
account for small dynamic changes in the environment. This allows the system
to evolve the configuration in response to changes in the environment.

Lets talk briefly about the channel assignment algorithm used in SMARTA.
Channel assignment attempts to allocate orthogonal channels to nodes in the
conflict graph that have an edge between them. The algorithm first assigns a
random channel to each access point and computes the current total number
of conflicts. Then, considering each access point (ai ) in turn it computes the
gain in utility (in terms of reducing the total number of access-point conflicts)
by switching that access point to a different channel. It computes the gain
in utility for the access point on all channels and selects the channel C that
yields the greatest gain for ai . It then checks whether changing ai to C yields
an improvement in utility that is larger than the best utility gain seen in the
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iteration so far. If so, (ai, C) is labeled as the best improvement seen so far.
Because the algorithm performs this operation across all access points, it selects
the access point and channel change that yields the largest gain in overall utility.
This process repeats until it reach a configuration where any further one-point
alterations do not yield a gain in utility. Because the solution of the algorithm
may depend on the initial assignment of channels to access points, they perform
multiple runs of the algorithm and choose the best solution (in terms of utility)
among them.

In the second phase of channel-assignment, they refine channel allocations
as an optimization of the assignment they computed previously. For channel
refinement, whenever they add a client to an AP (to construct the ACG), they
try all other channels for that AP to see if they can reduce the total number
of client conflicts, keeping the number of inter-AP conflicts constant. If such a
channel is available (e.g. in the case of 802.11a), the access point is switched
to that channel. If not, the access point remains on the same channel. This
procedure is local to an access point as it does not require AP coordination to
perform the channel search.

SMARTA uses a different approach to one of DenseAP.
The central controller builds a conflict graph among the APs, and uses this

graph to tune the APs channel and transmit power. It does not manage client
associations.

There are two main differences between SMARTA and DenseAP. First,
DenseAP relies on correctly managing client associations. Second, DenseAP
also shown that unilateral power control (without client cooperation) can hurt
the performance of the system.

SMARTA is evaluated entirely in simulations impeding to do a fair compar-
ison of SMARTA with DenseAP.

2.2.4 Distributed Algorithms

A natural question regarding distributed algorithms is if they are able to achieve
the optimal solution for the channel assignment problem. Optimal solution
means the minimal sum of all interference factors among interfering APs in the
network [34].

Proposal of distributed algorithms to solve the problem of a wireless LAN
selecting a channel to minimize interference with other WLANs can be classified
in the following flavors:

• Single Self managed

• Policy Based

• Game Theory Based

• Constrain Based.

• Graph Coloring

An important implementation detail to be considered in each of these tech-
niques if they are coordinated or uncoordinated. If the proposed algorithm
require collaborations among entities. Commonly if the solution requires co-
ordination among the participating APs usually means that the technique is

27



applicable to wireless network under the same administrative domain. Lets
review each type of distributed algorithms in the following sections

2.2.5 Single Self-Managed Algorithms

The algorithm is a fairly simple one. The station periodically measures the
channel quality (the interval between measurements need not be constant and
can be selected to respect the cost of switching channel and the time needed
to measure channel quality). When the channel quality of acceptable, keep
using the same channel. Otherwise, randomly choose a channel with weighted
probability based on past experience.

2.2.6 Policy-Based Distributed Algorithms

Hadjiantonis and Pavlou[27] present a policy based approach for dynamic chan-
nel configuration. They propose a policy-based solution based on the ad-hoc
networking paradigm. A Distributed Policy Repository provides the support
for policy-based device management and devices can autonomously adapt by
examining local conditions and taking corrective actions in real-time.

The authors adopt the notion of ”hybrid mobile ad hoc networks“ by re-
laxing the main constraints of pure general-purpose MANET (a mobile ad-hoc
network (MANET) is a self-configuring infrastructureless network of mobile de-
vices connected by wireless), i.e. they consider the deployment of a network that
consists of user devices with limited infrastructure support and connectivity.

Policy-based management (PBM) simplifies the complex management tasks
of large scale systems, since high-level policies monitor the network and au-
tomatically enforce appropriate actions in the system. Policies are defined as
Event-Condition-Action (ECA) clauses, where on event(s) E, if condition(s) C
is true, then action(s) A is executed.

The components of a Policy-based management (PBM) system can be de-
scribed as follow: The Policy Repository (PR) is an integral part of every
policy-based system because it encapsulates the management logic to be en-
forced on all networked entities. It is the central point where policies are stored
by managers using a Policy Management Tool (PMT) and can be sub-
sequently retrieved either by Policy Decision Points (PDP) Once relevant
policies have been retrieved by a PDP, they are interpreted and the PDP in
turn provisions any decisions or actions to the controlled Policy Enforcement
Points (PEP).

PR is a centralized concept, various techniques exist to physically distribute
its contents for resilience and load balancing. Typical implementations of a
PR are based on Lightweight Directory Access Protocol (LDAP) Servers, also
known as Directory Servers (DS).

The self-management framework proposed by the authors is as follows:
Management logic is encapsulated in policies that are transparently enforced

to devices. Network Operators and Service Providers use the policy-based
system to introduce the appropriate policies, aiming to set guidelines for the
management of numerous user devices. Contrary to traditional management
systems, the designed system does not require the mandatory enforcement of
policies and tight control of managed devices. The system physically and log-
ically distributes the policies among devices, making them available to vast
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numbers of users that voluntarily choose to enforce the relevant policies that
would eventually relieve them from manual configuration.

The DPR is designed, as an extension of the traditional PR. It is responsible
for the distribution of policies in the network and for logically connecting the
devices that collaboratively participate in the managed domain.

Distributed Policy Repository

They propose the distribution of management tasks among PDPs hosted on
user devices and based on policy guidelines stored in DPR. The DPR is a set of
distributed and/or replicated LDAP directories (replicas), configured to store
policies. The design is based on the advanced replication and distribution fea-
tures of modern LDAP servers.

Depending on user density and population, devices are organized in clusters
and each Cluster Head hosts a PDP, facilitating the policy provisioning for its
cluster’s PEPs. The selected Cluster Heads collaboratively share management
tasks as well as the hosting of the DPR. In order to decide where to place the
DPR replicas, all Cluster Heads (PDPs) execute a special set of policies that
combines a-priori knowledge of localized events (e.g. scheduled sport event) with
dynamic real-time context information (e.g. processing load or free memory of
each PDP).

For the authors the coordination of distributed PDPs in a wireless environ-
ment is quite hard. In the proposed solution, they transform this problem to
the maintenance and deployment of the DPR by exploiting standardized LDAP
operations and replication features. In this way, the DPR glues together the
distributed PDPs and offers a logically uniform view of network management
objectives through policies. Each DPR replica controls a configurable number
of PDPs and each PDP is responsible to discover a replica for retrieving of poli-
cies and updates. The adopted pull-based approach relieves the DPR replicas
from tracking PDPs and their operation is not affected from the intermittence
of connections or the fluctuating number of PDPs.

Hybrid Ad Hoc Networks Self-Management

The authors select the case study of hybrid ad hoc networks for experimentation.
Inter-layer communication is used between MAC and Application layers,

aiming to make the PBM system aware of the wireless channel conditions and
provide a feedback mechanism for policies. Based on specified application events
(e.g. reduced throughput), the triggered policies can initiate relevant procedures
that with the inspection of MAC layer headers provide feedback to the system
and possibly trigger further policies to correct the problem. A ”closed control
loop“ management system is thus formed, adding a degree of autonomy. The
authors observes two important advantages with the adoption of this approach.
First, by using a policy-based design, the system is highly extensible and easily
configurable. Policies can change dynamically and independently of the under-
lying technology. And second, by implementing decision logic at the Application
layer, modularity is preserved without modifying the MAC protocol. Policies
and extracted inter-layer parameters relieve the MAC layer from additional
computations since inter-layer communication is only used when needed.
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The authors then focus on two potential obstacles that need to be overcome
in order to make the deployment of ad hoc networks easy, efficient and safe:

1. interference between newly created ad hoc networks and existing WLANs,
and

2. regulatory conformance of ad hoc networks deployment.

and they attempt to propose solutions to the above problems based on the
designed policies for a PBM system.

We will talk only on point number one, because number two is out of the
scope of this work.

From the first point above: Interference between deployed ad hoc networks
and existing infrastructure-based WLANs, as well as interference with already
deployed ad hoc networks in the same area is the main reason for the disappoint-
ing performance of ad hoc networks and it can lead to severe problems in the
throughput and coverage of collocated infrastructure-based WLANs. Choosing
a random channel is likely to have a detrimental effect on the ad hoc network
performance. To tackle this problem, they design policies that exploit MAC
layer information for the initial configuration as well as the dynamic adaptation
of the occupied wireless channel.

For the implementation of the Distributed Policy Repository they have used
OpenLDAP Server [11]. They made the decision based in that it is an open
source implementation of a very fast and reliable LDAP v3 Directory Server for
Linux. In addition, the minimum specifications required for running this server
allow an extensive range of devices, including low-spec laptops to efficiently host
a directory replica. The DPR consists of one or more Master read-write directo-
ries and several read-only directory replicas (shadow copies). Master directories
are hosted and controlled by the managing network entities, i.e. Network Op-
erator and/or Service Providers.

After a global view of the work lets concentrate our attention to the policies
defined to tackle the interference problem. There two important actions that
are triggered named: optimizeChannel and channel-switch. Triggered actions
optimizeChannel using as parameters the monitored measurements of a channel
set. In the initialization event of the ad-hoc network a scanChannels() action
is triggered. After finishing scanning (on scan complete event) three different
actions can be triggered:

if the are PC (Preferred Channels) the optimizeChannel action is triggered
with PC as parameters and algorithm

if the are FC (Free Channels) but the are no PC then the optimizeChannel
action is triggered with FC as parameters and algorithm.

else the optimizeChannel is triggered with all as parameters and algorithm.

Note that in the three cases there is an algorithm parameter. They have
implemented an algorithm based on the weighted average (WA) of a channel
metric. For each candidate channel, the algorithm use for the calculation of the
WA the channel metric and weights.

Similarly, when there is a new WLAN detected or when the Link Quality is
reduced (because of an increased interference) and the LinkQuality fall below a
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given threshold an action named generateStartAdapt is triggered to initiate the
adaptation process for channel optimization. This action monitor an specified
application metric. If it detects the reduction of goodput below some value, it
acts by scanning all channels it then trigger the channel-switch method using
the weighted average algorithm with specified weights.

Summary

The value of this work is in the proposal of use policy-based solution for the self
management of wireless network for dynamic channel configuration. During last
years a strong impulse have been done for the self management architecture on
the network devices. Moreover, the RAN System that we will be using for our
solutions design is a complete rule-based, distributed system specially designed
and implemented to enable autonomic behavior on very constrained devices,
such as domestic wireless routers with resources as low as 16 MB of RAM and
4 MB of storage memory.

The framework presented by the authors is based on autonomic elements
concept, this mean the strategy is uncoordinated. The study is focused in
hybrid ad hoc networks and it is based on LDAP technologies.

One of the drawback of this work is the empirical results. We believe that in
the lack of simulations results more testbed must be considered. Although the
one presented here shows promises results more scenarios must be tested. The
testbed implemented for the demonstrations has only one scenario. It consists
of 10 nodes: 2 laptops, 4 PDAs, and 4 Internet Tablets. The devices were
organized in two independent clusters of five nodes each.

2.2.7 Game Theory Based Distributed Algorithms

Consider a dense urban residential area where each house/unit has its own
wireless access point (AP), deployed without any coordination with other such
units. It would be much better for individual APs that are in physical proximity
to each other to form groups, where one member of the group would serve
the terminals of all group members in addition to its own terminals, so that
the other access points of the group can be silent or even turned off, thereby
reducing interference and increasing overall Quality of Experience (QoE). These
groups would include only members whose signal strength is sufficient to serve
all group members.

Since there is no centralized entity that can control the APs and force them to
form cooperative groups, the creation of such groups must be able to arise from
a distributed process where each AP makes its own decisions independently and
rationally for the benefit of itself and its terminals. Antoniou et al [17] propose
a Game Theory based approach to model such decentralized schemes.

The authors model the idea of cooperative neighborhoods as a game and
show that a group cooperative strategy in equilibrium, i.e. a strategy for units to
voluntarily participate in a group where members serve terminals on a rotating
basis, has the property that a unit participating in the group strategy is more
likely to gain more in terms of QoE, than a unit defecting from such cooperation.
They propose a protocol (the cooperative-neighbourhood game) with point of
operation the game theoretic equilibria of a game. They further propose a
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protocol for the participating units to operate in the associated equilibrium
point of the game to achieve the reduced interference.

Game Theory provides appropriate models and tools to handle multiple,
interacting entities attempting to make a decision, and seeking a solution state
that maximizes each entitys utility, i.e. each entity’s quantified satisfaction. The
work is inspired by the Prisoner’s Dilemma/Iterated Prisoners Dilemma game
model.

For a good although succinct description of the game you can refer to the
prisioner dilemma page on wikipedia [45].

The interactions in a cooperative neighbourhood can be modeled as a game
between the participating units, where each member of the group has two choices
at any given time: (a) to cooperate with its group members or (b) to defect from
cooperation. Which of the two behaviors to select in each round depends on
the strategy of behavior that a player has decided to follow during the repeated
game. The strategy of each player, i.e. each unit, is selected such that it
results in the highest possible payoff for the particular player. We refer to such
interaction between any two neighbours as a cooperative-neighbourhood game.

In a one shot strategic game with two players if a player believes that his
opponent will cooperate, then the best option is certainly to defect (according
to the rules of the game). If a player believes that his opponent will defect,
then by cooperating he takes the risk of receiving the least payoff, thus the best
option is again to defect. Therefore, based on this reasoning, each player will
defect because it is the best option no matter what the opponent chooses.

Therefore, based on this reasoning, each player will defect because it is the
best option no matter what the opponent chooses. However, this is not the best
possible outcome of the game for both. The best solution for both players would
be to cooperate and receive the second best payoff.

What we have described is a one-shot Prisoners Dilemma, i.e. the players
have to decide only once, no previous or future interaction of the two players
affects this decision. Cooperation may evolve, however, from playing the game
repeatedly, against the same opponent. This is referred to as Iterated Prisoners
Dilemma, which is based on a repeated game model with an unknown or infi-
nite number of repetitions. The Iterated Prisoners Dilemma is a quite popular
repeated game model which demonstrates how cooperation can be motivated by
repetition (in the case the number of periods is unknown), whereas in the one-
shot Prisoners Dilemma as well as in the finite version of the Iterated Prisoners
Dilemma, the two players are motivated to defect from cooperation.

Then the equilibrium point of the cooperative neighbourhood game, is that
all members of a neighbourhood cooperate by assuming either the role of the
leader and serving all terminals of the neighbourhood, or remaining silent to
reduce interference while its terminals are being served by the leader.

Once the neighborhood is setup and session is stablished between mem-
bers, each access point behaves in either of two ways, serves all terminals in
a neighbourhood or remains silent. The rotation phase of the protocol occurs
in a timely manner according to the member number of each participant, by a
session modification initiated by the leader.
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Summary

Game theory has been used in networking research as a theoretical decision-
making framework, for example for routing and congestion control[24]. So it is
valuable that this proposal tries to apply game theory to reducing interference
in dense deployments of wireless network.

The use of game theory in wireless networks unfortunately comes with a set
of challenges, the most important of which are the following ones: assumption
of rationality, assumption to willingness to cooperate, choice of utility func-
tions/payoff calculation and not guaranteed existence of the equilibrium. An-
other issue is that to succeed must be cooperative incentives. The basic idea
for node punishment is that nodes should be rewarded or penalized based on
their behavior. Nodes that offer resources should be aided. On the other hand,
selfish nodes should be gradually isolated from the network.

2.2.8 Constraint Based

In artificial intelligence research area, a distributed constraint optimization
problem (DCOP), consists of a set of variables that are distributed to a group
of collaborative agents as valued constraints. The goal is to optimize a global
objective function, maximizing the weight of satisfied constraints. Consider a
set of N agents, A = {a1, a2, ..., aN}, and a set of N values, D = {d1, d2, ..., dN},
where each value dj is assigned to an agent aj and belongs to a finite discrete do-
main Dj . For each pair of agents (ai, aj) a cost function fij(x, y) : Di×Dj → R
is defined. Agents have to coordinate themselves in order to find a set of values
that optimize a global function, establishing the costs for constraints. There-
fore, the goal of a DCOP algorithm is to find the optimal set, denoted D∗ ,
whose values minimize a global cost function g∗ = g(D∗).

Monteiro et al [35] formalize the channel allocation as a distributed con-
straint optimization problem and propose a new cooperative channel allocation
strategy. A solution based on the distributed pseudotree-optimization proce-
dure (DPOP) is employed. The adjacent channel interference is analytically
modeled for DPOP. In this work the APs can coordinate themselves using a
dedicated wireless control interface.

They propose in this paper a new cooperative channel allocation strategy
using the distributed pseudotree-optimization procedure (DPOP) described by
Pectus and Faltings in [4]. The goal is to reduce the number of control messages
exchanged between APs. The new algorithm is denoted DOCA (Distributed
Optimal Channel Assignment).

The DPOP algorithm employs an utility propagation method, based on dy-
namic programming inspired by the sum- product algorithm. It considers a
pseudotree arrangement of the constraint graph G, which is composed of tree
edges, edges that are part of a spanning tree, and back edges that are not part
of the spanning tree. It is important to point out that the pseudotree can be
obtained by executing the depth-first search (DFS) traversal algorithm in the
constraint graph G, starting from one of the nodes aj ∈ A. A path in the graph
that is entirely made of tree edges is denoted as a tree-path. A tree-path asso-
ciated with a back-edge is the tree path that connects two nodes involved in a
back-edge.

With the following definitions: A = {a1, a2, ..., aN}: set of agents (APs).

33



D = {d1, d2, ..., dN}: finite domain for agents variables (available channel set).
Pj : parent of node aj , the single node above in the hierarchy of the pseudotree
that is directly connected to node aj through a tree edge. Cj : the children of
node aj , the set of nodes below in the pseudotree that are directly connected to
the node aj through tree edges. PPj : the pseudo-parents of node aj , the set
of nodes above in the pseudotree that are directly connected to node aj through
back-edges. PCj : the pseudo-children of node aj , the set of nodes below in
the hierarchy of the pseudotree that are directly connected to node aj through
back-edges. The algorithm is divided in three phases. First the agents organize
in a pseudotree structure to be used in the next two phases, denoted UTIL and
VALUE propagations, respectively.

In the UTIL propagation phase, the UTIL messages are propagated up the
tree. The leaf agents send UTIL messages to their parents. A child ak of a
node aj will send a vector of the optimal utilities, containing the cost of its
best solution for every possible combination of variable assignments that can be
achieved by the subtree rooted at node ak plus the relation between ak and its
neighbor aj .

After a node aj receives all its children messages, it can compute the optimal
values that can be achieved by the entire subtree rooted at aj . Since all of aj s
subtrees are disjoint, by summing then up, it is possible to compute how much
each of its children Cj values gives for the whole subtree rooted at itself. Thus
aj can send to Pj its UTIL message. Then node aj can store its optimal values
corresponding to the values received from its children Cj . Each node ai relays
its messages according to the UTIL phase of the algorithm. In the VALUE
propagation phase, messages are propagated down the tree. This phase starts
after the root node receives all its children messages. It can compute the optimal
overall solution, based on all the UTIL messages received from its children. The
root node then chooses the values that will leads to the optimal solution and
informs its children sending a VALUE message to all of them. After receiving
the VALUE message from its parent Pj , each node is able to recognize the
optimal value dj for itself and pass its dj to its children. At this moment, the
algorithm is finished for node aj .

Summary

The paper proposes a distributed algorithm to minimize the global interference
of a network of wireless access points. The issue is of high interest for the
management of high density wireless networks and the authors address it timely.
Another strong point of the paper is that presents a good review of the state of
the art. Overall, the authors demonstrate a good understanding of the problem
under study.

One of the main weakness of the paper is the feeling that good part of the
proposal complexity is being hidden or understated. For example, the authors
are not clear about the size of the UTIL messages and they are indirectly re-
vealed by the last graph.

More important is that the authors are comparing their solution with LO-A
algorithm in terms of the number message exchanged and how both algorithm
approximate to the optimal cost but they do not mention the actual communi-
cation overhead induced by LO-A algorithm (in bits) this way they can compare
it against their proposed algorithm.
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Building the underlying tree needed by the algorithm is not a trivial process
in terms of communication overhead and complexity. This complexity, or even
the fact that electing a leader is not always a resoluble problem, is understated
or ignored by the authors in this text.

2.2.9 Graph Coloring Based

A channel assignment problem is typically modeled as a graph-coloring problem
to improve the above basic strategy: there is a vertex on the graph corresponding
to each AP, an edge on this graph represents potential interference, and the
colors represent the number of non-overlapping channels. A goal of the channel
assignment problem is to cover all APs (vertices) with the minimum number of
channels (colors) such that no two adjacent APs (vertices) use the same channel
(color). This is the minimum graph coloring problem.

Mishra et al[34] propose a variation on the above problem and define a
weighted variant of the graph-coloring problem, In this weighted variant, each
vertex corresponds to a distinct AP as in the case of traditional modeling.
However, each edge on this graph now has a weight associated with it. The
weight of an edge indicates the importance of using different colors (channels)
for the corresponding vertices (APs) that are connected by that edge. Note that
in this variant it is permissible to allocate overlapping channels to neighboring
APs.

They present two techniques. The first technique does not require any col-
laboration among the APs and can be applied to a wireless network formed
by APs belonging to different WLANs. The technique assumes that the APs
are greedy in nature they try to minimize the interference within their area of
coverage. The second technique tries to reduces the total number of clients suf-
fering interference in the network as a whole. However, this technique requires
collaboration among the APs. This is particularly suited for efficient channel
assignment for a single wireless network, or for multiple wireless networks if the
administrators are willing to cooperate.

The authors give a formal definition of the problem as follows:
They modeled the network with a overlap graph: G = (V,E) where V =

{ap1, ap2, ..., apN} is the set of APs. There is an edge between APs api and apj
(api 6= apj) if there is an overlap in the interference region of the BSS created
by APs according to the interference model.

Let W be the weight function on G. W (api, apj) indicates the number of
clients associated with the two corresponding APs that are affected if these APs
are assigned the same channel.

A channel assignment C(api), api ∈ V is a mapping C : V → {1...k} from
the set of vertices to the set of colors. The edge (api, apj) can be classified as
conflict free edge if the interference between these two channels is zero (e.g.
channels 1 and 6 in 802.11b) or as conflict edge if the choice of colors have some
positive interference (e.g. channels 1 and 2 in 802.11b).

They define a term Interference-factor, denoted by I(api, apj), for each edge,
which is the interference between the colors assigned to the two APs.

Thus, given G and W as defined above, the channel assignment problem is
to find a mapping C such that an objective function is optimized. Then in this
work the authors define three objective functions Lmax, Lsum and Lnum
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Minimize: Lmax(G,C) = max
∀e=(api,apj)∈E

I(api, apj)W (api, apj)

This mean, minimize the maximum impact of interference among all overlap
regions between APs.

Minimize: Lsum(G,C) =
∑

∀e=(api,apj)∈E

I(api, apj)W (api, apj)

This mean, minimize the total effect of all interference experienced by clients
as a consequence of channel assignments.

Minimize: Lnum(G,C) =
∑

∀e=(api,apj)∈E

I(api, apj)

this mean, minimize the total impact of conflict edges.

The authors focus on the Lmax objective function and they present two dif-
ferent strategies which they call Hminmax and Hsum to minimize this objec-
tive function. As mentioned before Hminmax, does not require communication
between the APs, and applies to multiple coexisting wireless networks sharing
a limited RF spectrum. It attempts to reduce the Lmax objective function.
The second algorithm, Hsum, tries to reduce the Lmax objective function (like
the Hminmax) algorithm, but additionally is also able to reduce the Lsum ob-
jective function to a significantly lower value than what Hminmax is able to
achieve, without compromising the Lmax objective function. To do this, the
Hsum algorithm requires some cooperation between APs.

As we do not present algorithms details here, the reader can consult the
referenced paper for further information.

Summary

Two channel assignment algorithms for WLANs were proposed, modeling the
problem as a weighted vertex coloring problem. The authors did a good for-
malism of the problem presenting three objectives function, but they focus in
one of them only. As we will see in the next chapter our focus will be in an-
other function, more precisely in the Lnum objective function which we will be
extending with some other restriction.

In Hminmax algorithm, they tries to minimize Lmax objective function us-
ing a locally and uncoordinated approach. It does not require any collaboration
among access points and can be applied to wireless networks where APs belong
to different administrative domains.

In Hsum, aims to minimize the overall interference experienced by clients,
but requires coordination among the participating APs. This technique is ap-
plicable to wireless networks under the same administrative domain, where APs
coordinate themselves using a wired network.

2.3 Conclussion

As we can see from previous sections there are several studies for channel assign-
ment problem in dense wireless networks. But, far from solved the subject under
study continues to be a challenge. For example a newspaper article [6] in july 2,
2012 commented Hollywood’s plan to be on the front lines of technology was a
failure. The article continue reporting that “The aim was to install transmitters
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throughout the city that would enable digital water-meter readings, credit-card
parking-meter payments and a secure police and fire network. The cherry-on-
top fringe benefit: a free citywide wireless network. The Wi-Fi tanked for a lack
of places to set up transmitters without signal interference.”Those interferences
produced by Access Points installed in big buildings, towers and houses. And to
the point of view of residents the article reports that “What frustrates residents
are the hundreds of access points or little antennas affixed to the tops of poles
and light posts across the city that continue to broadcast Wireless Hollywood
yet are unable to connect to the Internet.”

This thesis reviews the state of the art in channel assignment for wireless net-
works, describing many algorithms individually and conforming a very complete
description of available strategies, being a good starting point for the channel
assignment for wireless networks study.

We can summarize related work as:

• Planning-based approaches (industry’s approach).

• Genetic Algorithms. To run once and assign channels as results of algo-
rithm run.

• Client Assisted. Needs to install some piece of software in client devices.

• Centralized. One node with a global network view making decisions.

• Distributed. Distributed algorithms can be subclassified as:

– Policy-Based

– Game Theory Based

– Constraint Based

– Graph Coloring Based

In the following chapters we will be using ideas from works described in
previous sections. We will present three different solutions to the problem of
channel assignment that use RAN[32] as their control communication bus. RAN
is a rule based system similar to the one on section 2.2.6. In the formalization of
the problem we will be extending Lnum objective function presented in section
2.2.9 with more constraints like that there are neighboring access points that
are not running our software but that produce interference.

We will implement a totally uncoordinated approach like the one presented
in 2.2.6, a coordinated approach like the one presented in 2.2.7 and finally we
will implement a centralized approach like the one presented in 2.2.3.

The centralized algorithm must produce the best result based on their knowl-
edge of the whole network. We decided to implement it mainly to compare the
other two approaches. The only similarity with the strategy in 2.2.3 is that both
rely on a central node. DenseAP algorithm only assign channel to an AP, when
a new client will be assigned to them and the AP does not has clients yet. In
our case, the central node calculates channel assignments at the beggining for
each participating node.

We decided to implement the uncoordinated approach for those cases where
connection between nodes can be a mess. We implemented this strategy using
RAN, that is a rule based system, therefore we designed a set of policies to
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control de autonomic behavior. In this regard this work is similar to the one
presented in 2.2.6, with the exception they are constrained to hybrid ad hoc
networks.

Finally, the coordinated approach is a natural way of doing distributed com-
putation; that is, on how to solve problems and perform tasks efficiently in a
distributed computing environment. This environment consists of a finite col-
lection of computational entities communicating by means of messages in order
to achieve a common goal; for example, to perform a given task, or to compute
the solution to a problem. Although each entity is capable of performing com-
putations, it is the collection of all these entities that together will solve the
problem or ensure that the task is performed. In this kind of computation, to
solve a problem, we must discover and design a distributed algorithm or pro-
tocol for those entities: A set of rules that specify what each entity has to do.
The collective but autonomous execution of those rules, possibly without any
supervision or synchronization, must enable the entities to perform the desired
task to solve the problem. In 2.2.7, the authors present a coordinated approach
although it is based on game theory. We present a greedy implementation of a
coordinated approach to apply the concepts of a distributed computation.
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Chapter 3

Proposed Strategies

In this chapter we will formalize the channel allocation problem which is defined
as a minimization problem where we have an objective function named Lran that
we want to minimize. Lran is similar to Lnum presented by Mishra2.2.9 Lran is
defined with the goal of minimize the total interference level seen by the APs.
To calculate Lran we defined a term Interference-level, denoted by Il(api, apj),
which is the interference level (or measured interference) that node api senses
with respect to apj .

Once the problem is formalized, we will present the strategies that have
been implemented to solve it. In this respect, we implement three different
proposals, with the intent to evaluate the practical deployability and scalability
of the strategies. In a later chapter we will present a testbed for the three
approaches to evaluate the real behavior of the protocols, and also present some
simulations mainly for scalability evaluation.

The proposals can be classified as:

• Local and uncoordinated.

• Distributed and coordinated.

• Centralized.

These implementations match many of the basic concepts that we reviewed
in the previous chapter.

For the local and uncoordinated approach we will follow a strategy that
bibliography refers as Least Congested Channel (LCC) [26]. The conceptual
steps described in bibliography are:

1. Each AP periodically checks other data transmissions in the channel that
it is using.

2. If the volume of traffic in that channel (generated by other APs or clients
of other APs) is greater than a threshold, then the first AP tries to move
over to a less congested channel.

In our implementation the strategy is implemented as follows:

1. One node will observe the channels used by neighboring nodes and measure
the signal level quality for each of them.
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2. If the level of interference in the node is greater than a threshold, then
the node tries to move over to a less congested channel.

For the distributed and coordinated approach we will determine a leader
that will coordinate the execution of the distributed protocol. Although leader
election can be implemented using a distributed algorithm (we will review this
topic in more detail later, in section 3.4.1), in our implementation, the leader
is determined statically during system set up. Once the leader is determined,
then this particular node will start the process. It will coordinate a two step
distributed algorithm:

1. First, a ranking process is fired. When the ranking process completes each
node is ranked according to the level of interference (the one that has more
interference is first).

2. Second, in the order determined in the previous step, each node is re-
quested to assign itself a channel knowing it’s neighbors assignment.

This is a greedy implementation of the algorithm.
Finally, in the centralized implementation, one node acquires information of

all the others in the system and their level of interference. Then, that node
will use a backtracking algorithm to obtain the optimal solution in a reasonable
time. After the algorithm has been completed, then this central node informs
other nodes in which channel they must operate. This approach is similar to
those presented in section 2.2.3.

To implement all these strategies we use RAN [19] as the core infrastructure.
We will review RAN in section 3.2.1. Our goal is to have the same implementa-
tion of our strategies to run both, in the testbed and in the simulator, without
changes. To be able to accomplish this goal we stablished the necessity of a
set of utilities or operations. These utilities are needed to acquire information
about the level of interference at each node and the channels being used. We
will provide a high level description of these utilities in section 3.2.2.

Lastly, we will present the design of the three strategies used to solve the
channel allocation problem showing in detail the algorithms implementation.

3.1 Formal Definition of the Problem

In this section we will formalize the problem and then, in later sections we will
present different strategies to solve it. We will base this theoretic formulation
on what Mishra et al[34] present as Lnum objective function, but we extend that
notion with some other constraints.

Let k denote the total number of non-overlapping channels available. The
first restriction of the problem is that we will be working with the 802.11 b/g
protocol, so in this case k = 3.

Next, we will define a graph G = (V,E) where V = {ap1, ap2, ..., apN} is the
set of APs that form the network.

From those N APs there is a subset that are under our control and there is
another subset that are in the environment interfering with our nodes. Notice
that, because we cannot manage these neighbouring APs, they are not running
our algorithms.
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The second restriction can be stated as follows: We have control over a
subset V ′ of V , so we can manage only V ′, in other words we change channel
assignment of nodes belonging to V ′. The set of nodes in V − V ′ are in the
neighborhood, but interferes with the set V ′ and they already have a channel
assigned that cannot be changed.

If apj can interfere api then an edge between APs api and apj (api 6= apj)
is placed. For this to happen both APs must be in channels that overlap (see
Figure 1.2), for example if api is in channel 1 and apj is in channel 3, and the
signal of node apj is listened by node api.

In most cases, if apj interferes with api the opposite is also true, ie api
interferes with apj because both APs are operating in overlapping channels,
and is highly probable that if api can listen apj then apj can listen api. But
this last statement is not true in all cases, for example if the transmission power
is not the same in both nodes and they are far enough so that one node can
listen to the other but the latter cannot listen the former.

The third restriction is that the graph is directed.
As Mishra et al stated for their weighted graph coloring problem, we will say

that the problem of Channel Assignment C(api) where api ∈ V ′ is a mapping
C : V ′ → {1...k} from the subset of vertices we can manage to the set of available
channels.

We define the Interference-level, denoted by Il(api, apj), for each edge, which
is the interference level (or the measured signal-to-noise ratio that is presented
as the link quality ) that node api senses with respect to apj . In chapter 5 when
we present our testbed and the simulation we will explain how Il(api, apj) is
measured.

Finally, we present our objective function:

Minimize
Lran(G,C) =

∑

∀e=(api,apj)∈E∧api∈V ′

Il(api, apj)

Note that this objective function Lran (that we named in honor of our RAN
system) is very similar to Lnum presented by Mishra. The differences are that
we use Interference-level instead of the Interference-factor and the restriction
that one of the nodes belongs to a V ′ and the other node can be an unmanaged
neighbor (may be part of another network).

Lran as defined above minimizes the total interference level seen by the APs.
There is a fourth restriction in our problem not mentioned above but that

has practical implications. The amount of nodes that we are considering in this
work are in the order of tens. We will not work in an environment with hundreds
or thousands of APs. This is because the focus of this work are places such as
schools, lecture halls, hotel ballrooms, work offices and convention centers that
are reduced in size.

3.2 Solution Design

Two of the proposed strategies need to exchange messages between participating
nodes. So the first constraint that we need to overcome is the design of a
communication infrastructure. For this purpose we use RAN[19][32]. RAN,
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as we will see in the next section, has a communication bus named rnr, that
connect all participating nodes. Because we developed the RAN System we have
a good knowledge of what kind of message are interpreted by the RAN System
and how those message must be formatted.

We want to minimize our objective function Lran. For this to happen we
need a way to measure interference between nodes and we need to detect the
channels being used by each node, independently of the operating host. In
this regard we abstracted a set of utilities that must be available in both, in
the testbed and in the simulator. While in the testbed we make use of existing
Linux operating system commands, in the simulation we build four programs for
the Windows platform that mimic the behavior of the Linux operating system
commands.

As was mentioned in the introductory section of this chapter we are propos-
ing three solutions for the channel allocation problem. We will first present a
local and uncoordinated approach. This approach will work locally, where each
node will take decisions based on his knowledge of the environment without any
coordination with the rest of the nodes in the network.

Also, we will present a distributed and coordinated approach that is based on
a greedy strategy. A greedy algorithm is an algorithm that follows the problem
solving heuristic of making the locally optimal choice at each stage with the hope
of finding a global optimum. In this case we propose to sort nodes according to
a rank value. To do this we need a leader and a coordination between nodes.
Then each node, starting in the best ranked node, makes the locally optimal
choice of the channel that it must operate in.

Finally, we will present a centralized solution where one node will have the
view of the entire network and then it will be responsible to calculate the best
channel assignment for each node.

The rest of the chapter is as follows. In the next section we will present a
brief description of the RAN System and we will present the set of commands
mentioned above. Then we will present the implementation design of the local
and uncoordinated solution in detail. Later, we will present the coordinated
and distributed solution where we will see that we need to have a leader, and
we will show how the rest of nodes coordinates with the leader for a channel
assignment. Finally, we will present the centralized solution and we will see how
a backtracking algorithm can determine the channel assignment for each node
in the network.

3.2.1 Ran System Architecture

We here, present a very succinct description of the RAN system. For more
information please refer to [19] or [32].

The system comprises a set of services and a communication bus (RNR).
The services are deployed in the participating nodes, and use the rnr bus to
communicate between them, be it on the same node or on the ones deployed
elsewhere (but belonging to our set of nodes V ′). The services are a policy
decision and enforcement points as defined in PBNM (collectively known as
LUPA), and a monitoring service (RMOON). The architecture can be seen in
Figure 3.1

The monitoring service (rmoon) will use the GetXxx utilities presented in the
next section, to inform the policy decision point (PDP) about the environment.
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Figure 3.1: Ran System Architecture. Source [32].

For example rmoon will use GetChannel to let pdp know in which channel the
AP is operating. The policy enforcement point (PEP) is in charge to do actions
instructed by the pdp component. To do this, pep will use the SwitchChannel
command.

At the heart of the Ran System is the policy decision point. Based on data
passed from the rmoon via the rnr communication bus pdp can instruct pep to
switch channel via the rnr communication or pdp can determine to stay in the
same channel.

pdp is feeded with a finite state machine (fsm) to implement the behavior of
each deployment. For each of our proposed strategies we need to provide pdp
with a FSM. In the following sections we will be explaining what is inside these
fsms.

To compile the rules into the finite state machine understood by our pdp
implementation we use a special kind of finite state machine, presented in [18],
called a Finite State Transducer extended with Tautness Functions and Identi-
ties (TFFST).

Then we have one fsm for each node of our local and un-coordinated ap-
proach, we will have two kinds of fsm for the distributed and coordinated ap-
proach, one for the leader and one for the rest of nodes, and for the centralized
approach in the nodes we will have only rmoon and pep components without
pdp and the central node will have a program to calculate the best channel
assignment for each node.

To finish with this brief presentation of the Ran System we must say that
all the RnR communications are trough TCP sockets, using a simple protocol
with four control messages. There is an instance of the RnR router running on
every node that is part of the system, this makes the system homogeneous from
the communications point of view.

The RnR protocol has four messages:

43



Subscription when an entity of the system, such as a PDP or an RnR router,
wants to subscribe to some kind of notifications it has to send a subscription
message like the one depicted bellow.

SUBSCRIBE

subscriptor_id=srid

subscription_id=snid123

FILTER

anatribute = this text

anotheratribute < 20

END

The message has a header with basic information about the message itself.
That is: the identifier of the subscriptor needed later to forward the notifi-
cations, and the identifier of the subscription, needed for processes such as
unsubscriptions.

Notification a notification is a message that either (i) informs about the
occurrence of an event at some entity of the system, or (ii) carries a request for
the enforcement of an action. Any client (publisher) can issue them or subscribe
to receive those notifications of its interest. A sample notification could be:

NOTIFICATION

source=srid

notification_id = notid234

timestamp= 1234

anatribute = this text

anotheratribute = 5.0

END

Control Messages for completeness we will mention that there are two mes-
sages with a supporting role: HELLO and HELLO REPLY. They are used during
the connection phase to interchange identities between clients and routers and
between routers.

3.2.2 Utilities

As we mention before to implement our testbed and our simulation we identified
a set of operations to be available at each node. These operations will be invoked
from the RAN system to obtain information or to do an action. The following
is the list of operations:

1. GetChannel. Each node must know in which channel he is operating. For
example, in 802.11bg this can be an integer between 1 and 11.

2. GetCellsInRange. Each node must be able to find who are the interfering
nodes. This mean it must be able to detect neighbors node and on which
channel those nodes are operating, and the level or quality of the signal
perceived for each of those nodes.

3. GetAddress. This is intended for node identification. In testbed this can
be the mac address and in the simulation can be a node name.
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4. SwitchChannel. Each node can be requested to switch the channel he is
actually using.

In appendix A there are the implementation details of each operation for the
testbed environment and for the simulation environment.

3.3 Local Un-Coordinated Solution for Channel

Assignment

Commercial access points have an option to automatically configure the channel
where the access point will operate, named Auto. This auto channel scan option
lets the access point automatically find the channel with the least interference
and uses that channel for communication. If you disable this option, the access
point uses the channel that you specify manually. In this section we present
an un-coordinated solution where each node in isolated mode keeps monitoring
the environment for a less congested channel and swithching to that channel if
some conditions, that we will be explaining below, are met.

In this solution each RAN system deployed in a node work locally, this mean
that the Rnr communication bus is not connected to the Rnr of other nodes.
The Rnr in this implementation is used only to communicate pdp, pep and
rmoon components of the same node.

The implementation is as follow:

Step 1: initialize At startup pdp instruct rmoon to continuously inform two
values: the channel least used and the interference level in the channel the node
is using. rmoon accomplish this using the commands presented before. rmoon
invokes GetCellsInRange to get the list of all nodes that are in the area of
interference, the channels they are using and the perceived quality of the signal.
With this information it can determine the channel least used. Also with this
information plus the command GetChannel that return the channel currently
used by the node, rmoon can determine the level of interference.

The messages send from the pdp to the rmoon are the following:

NOTIFICATION

notification_id=wt1123637438

service=/lupa/pdp

host=127.0.0.1

target_host=127.0.0.1

target_service=/lupa/rmoon

watcher_id=clu

mib=ChannelLeastUsed

message_type=action

command=watch_mib

op=>

value=0

END
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NOTIFICATION

notification_id=wt2617761189

service=/lupa/pdp

host=127.0.0.1

target_host=127.0.0.1

target_service=/lupa/rmoon

watcher_id=noaumc

mib=NumberOfAPsUsingMyChannel

message_type=action

command=watch_mib

op=>

value=0

END

The meaning of the fields:

• notification id is the identifier of the message

• service and host indicate which component is sending the message, in this
case pdp on the local host.

• target host and target service indicates the destination of the message,
in this case rmoon on the local host.

• message type and command tells the destination (rmoon) to do a watch mib
action

• watcher id is an identifier of the watcher.

• mib is the value that must be monitored by the watch mib action. More
on this below.

• op and value indicates that rmoon must notify when the values monitored
satisfy the condition, in this case always that the value is greater than
zero.

The two values monitored by the rmoon service in this solution are: Channel-
LeastUsed and NumberOfAPsUsingMyChannel. ChannelLeastUsed is the chan-
nel number with less interference, ie is a value belonging to the set: {1, 6, 11}.
NumberOfAPsUsingMyChannel is the level of interference in the channel the
node is using. Is a real value in the range 0..1. This value is calculated from all
nodes in the same channel as this node and the perceived quality of the signal.

Step 2: rmoon notifying pdp After the initialization step rmoon as it
was instructed continuously monitor for the conditions and notify pdp with the
following notification messages:

NOTIFICATION

notification_id=trap_997422823

service=/lupa/rmoon

host=127.0.0.1

target_host=127.0.0.1

target_service=/lupa/pdp

watcher_id=noaumc

mib=NumberOfAPsUsingMyChannel

message_type=trap

value=0.78571428571429

END
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NOTIFICATION

notification_id=trap_670617586

service=/lupa/rmoon

host=127.0.0.1

target_host=127.0.0.1

target_service=/lupa/pdp

watcher_id=clu

mib=ChannelLeastUsed

message_type=trap

value=6

END

In both cases you can observe that the origin is rmoon and the target is pdp,
and that the message type is a trap message. In the mib attribute is specified
which value is being reported: NumberOfAPsUsingMyChannel or ChannelLeas-
tUsed. In the first case as we mention is a real value between 0 and 1 and in
the second case is the least congested channel.

Step 3: pdp evaluate conditions After receiving trap notification messages
from rmoon, pdp evaluates if the AP needs to perform a channel switch or not.
Lets suppose the AP is operating in channel C then two conditions must be met
for the pdp take the decision to switch channel. The conditions are:

• C is different from channel (value attribute) informed in the trap mes-
sage for mib ChannelLeastUsed. This mean that exists a least congested
channel other than C.

• the value informed in the trap message for mib NumberOfAPsUsingMy-
Channel is greater than a Thresohold value.

At first Thresohold is a configuration value but then we realize that the
system present oscillatory issues, so for this reason we applied a feedback con-
trol technique to set this value at runtime based on desired value of a another
measured value. This will be presented in next chapter.

Step 4: if conditions are met then pdp instruct pep to switch channel
If conditions presented in the last paragraph are both true then pdp request
pep to switch channel with the following notification message.

NOTIFICATION

notification_id=randomrandom4

service=/lupa/pdp

host=127.0.0.1

target_host=127.0.0.1

target_service=/lupa/pep

message_type=action

command=switchChannel

message=6

END

In this message the source is pdp and target is pep. The message type is
action. When the message type is of type action two other attributes must be
specified: command and message. In this solution when this kind of notification
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is emitted the command attribute value always is switchChannel. In other ways
when pdp instruct pep to do an action, this action always be a switchChannel.
The message attribute value indicates to which channel pep must change. In
the example above the AP will start operating in channel 6.

To actually implement the action pep will use the SwitchChannel command
presented in the RAN System.

This complete the implementation details of the local and un-coordinated
RAN system for channel assignment in dense wireless networks.

3.4 Distributed Coordinated Solution for Chan-

nel Assignment

The distributed coordinated solution considered here, as well as the centralized
solution presented in the next section, require, for their solution, the Connectiv-
ity (CN) restriction (i.e., every node must be reachable from every other node).
We will also assume Total Reliability (TR) and Bidirectional Links (BL).

The connectivity restriction is implemented connecting all participating rnr
services. Every notification message is transmitted to all participating rnr, and
this way it reach every component of the system. Remember when we presented
the RAN System that when an entity of the system, such as a PDP, wants to
subscribe to some kind of notifications it has to send a subscription message like
the one depicted bellow.

SUBSCRIBE

service=rnr

subscription_id=pdp_sub_447657310

FILTER

target_host=host8

target_service=/lupa/pdp

END

Observe the Filter criteria, target host is the node identification (usually the
ip address) that is running the component and target service is the component
identifier in that node (usually it will be /lupa/pdp, /lupa/rmoon or /lupa/pep).
So, when a notification message match the filter criteria the message will be
deliver to the service that registered the subscription.

In a distributed environment, most applications often require a single entity
to act temporarily as a central controller to coordinate the execution of a partic-
ular task by the entities. In some cases, the need for a single coordinator arises
from the desire to simplify the design of the solution protocol for a rather com-
plex problem; in other cases, the presence of a single coordinator is required by
the nature of the problem itself. In this particular strategy we will have a node
named leader that will act as a coordinator to control the algorithm behavior.

3.4.1 Leader Election

From chapter three of the book [41] the problem of choosing such a coordinator
from a population of autonomous symmetric entities is known as Leader Elec-
tion (Elect). Formally, the task consists in moving the system from an initial
configuration where all entities are in the same state (usually called available)
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into a final configuration where all entities are in the same state (traditionally
called follower), except one, which is in a different state (traditionally called
leader). There is no restriction on the number of entities that can start the
computation, nor on which entity should become leader.

As is demonstrated in the book, under our set of restrictions: Bidirectional
Links, Connectivity, and Total Reliability, there is unfortunately a very strong
impossibility result about election.

We already said that pdp is feeded with a finite state machine (fsm) to
implement the behavior of each deployment. In this strategy we will have a fsm
for the leader node and another fsm for all other nodes. We will install manually
the leader fsm in one particular node, so the leader will be set by hand. Changing
the RAN System to select a leader with some of the mechanism described in
the book will be scheduled for future works.

3.4.2 Ranking Mechanism

The algorithm for the distributed and coordinated solution is based on an algo-
rithm for the ranking problem. The ranking problem can be stated as follows:
Considering a graph where each entity x has an initial value v(x); these values
are not necessarily distinct. The rank of an entity x will be the rank of its value;
that is, rank(x) = 1 + |{y ∈ V : v(y) < v(x)}|. So, whoever has the smallest
value, it has rank 1. See figure 3.2

Figure 3.2: Ranking in a Network. Source [1].

In our solution the value v(x) that each entity have is the interference level
at that node (including the leader). The node with less interference will have
value 1 and the node with greater interference will have value |Nodes|.
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To solve the ranking problem there are two approaches: centralized or de-
centralized. We will use a centralized approach where each node will send the
value that it has to the leader. Then, the leader compute the ranking by simply
comparing the values.

Once the ranking has been stablished the leader instructs in turn each node
to assign a channel. First, the node that is ranked greater (the one that has more
interference). The node based on their local information assign a channel itself.
Once the node has assigned a channel the node inform the leader that is has
completed the work. The leader then instruct the second node (according to the
ranking) to assign a channel. The process continues until all nodes, including
the leader have a channel assigned.

3.4.3 Leader Implementation

Step 0: leader store its own interference value At startup the pdp
component of the leader node instruct its own rmoon to measure its interference
level (this is done in all nodes). Then it store this value because the leader node
will be ranked too.

Step 1: leader request all other nodes to send it values The first
step of the protocol itself begin with the pdp component of the leader node
broadcasting a message to all participating pdp to send its value, so the leader
can rank the entire network.

The message send from the pdp to all others pdp is the following:

NOTIFICATION

notification_id=randomrandom4

service=/lupa/pdp

host=host_lider

target_service=/lupa/pdp

mib=rank

message_type=trap

value=1

END

Two things must be observed. First, the identification of the sender is im-
portant because all pdp will respond to the service and host, in the example
above the /lupa/pdp service in the host lider node. Second, the destination
is the target service. Note that there are no target host attribute. This is
because RAN System deliver messages to the susbcriptor if the filter criteria
evaluates true. pdp services subscribe with two conditions: target service and
target host. The notification only comes with target service. The condition to
deliver a message is that if the attribute is present it must be true. This is the
way we can send a broadcast message to all pdp services.

Step 2: leader ranks node and notify the first one to assign a channel
As we will see below each /lupa/pdp in the network will respond to the broadcast
message with a ranking message in which one of its attribute is the value that
its the level of interference measured by the node in which /lupa/pdp is running.

Leader node wait until all nodes respond. To do this there is a configuration
value in the leader node named totalNodos with the number of participating
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nodes. To count the responding nodes the /lupa/pdp service in the host lider
node take the value of the host attribute in the notification messages received.
It store in a table like structure the node identification and the corresponding
node value reported. This will fire an all ranked event.

When all nodes have responded then /lupa/pdp simply sort the table struc-
ture according to the value field. After sorted the table then it picks the first
entry in the table an send a notification message to the corresponding node
requesting it to assign a channel. The notification message send is as follow:

NOTIFICATION

notification_id=ntf1123637438

service=/lupa/pdp

host=host_lider

target_service=/lupa/pdp

target_host=host1

mib=assignChannel

message_type=trap

value=0.5464

END

Note that the target service is a peer /lupa/pdp.
One thing to consider is that if the first node ranked is the host lider itself

it first instruct its own /lupa/pep service to assign channel and then it picks the
second node in the table structure and send the above notification message.

The notification message to its own pep is as follow

NOTIFICATION

notification_id=ntf1123637438

service=/lupa/pdp

host=host_lider

target_host=host_lider

target_service=/lupa/pep

message_type=action

command=switchChannel

message=0.847

END

Step 3: leader iterates until all nodes has been instructed to assign
channel Every participating node respond to the leader with a okReceived
message, this produce a okReceived event that tell to /lupa/pdp service to move
to the next entry in the ranked table.

Then it send to this node the same message of step 2. The protocol continue
until there are no more entries in the table and the last okReceived is received.

3.4.4 Node Implementation

Step 0: each node store its own interference value At startup the pdp
component of each node instruct its own rmoon to measure its interference
level. When we explain our testbed and our simulation implementations in
later chapter we will explain how this measure is done. Then each pdp store
this value to send it back to the host lider when is instructed to do so.
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Step 1: response to the broadcast message The broadcast message from
the leader node, the message labeled with mib = rank, produce a rank event in
pdp nodes. Then the pdp service will respond with the value stored in step 0.

The message send from the pdp in the nodes to the pdp of the leader is the
following:

NOTIFICATION

notification_id=notif_670617586

service=/lupa/pdp

host=host1

target_host=host_lider

target_service=/lupa/pdp

mib=ranking

message_type=trap

value=0.785468

END

This is the notification message that host lider is waiting from all partic-
ipating nodes as we described in step 2 of leader implementation. Then the
nodes start waiting for the message request to assign a channel.

Step 2: pdp assign channel and send OK back to the pdp of the
leader Upon arrival of the notification that instruct the node that its your
turn to assign channel then an assign channel event is fired. This cause the pdp
send a message to the pep service as follow:

NOTIFICATION

notification_id=ran4123637438

service=/lupa/pdp

host=host1

target_host=host1

target_service=/lupa/pep

message_type=action

command=switchChannel

END

To assign a channel to the AP, pep first scan which channel has the less inter-
ference level and then using the switchChannel command change the frequency
of the AP.

Lastly, pdp respond to the pdp in the leader that it completes the process
sending a response message as follow:

NOTIFICATION

notification_id=ran1123637438

service=/lupa/pdp

host=host1

target_service=/lupa/pdp

target_host=host_lider

command=okReceived

message_type=trap

message=1

END
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3.4.5 Protocol Sequence Representation

In Figure 3.3 you can see a visual representation of the protocol that describes
how messages are exchanged between leader and the rest of the network nodes.

Figure 3.3: Distributed Coordinated Protocol.

3.5 Centralized Solution for Channel Assignment

Last, is the centralized implementation where one node acquires information
from all others node in the system and their level of interference. That node
will use a backtracking algorithm to obtain the optimal solution in a reasonable
time. Then this central node inform each other node in which channel they
must operate. This approach is similar to the ones presented in section 2.2.3.

The central node must have enough power to run the centralized algorithm.
It can be a notebook, a PC or a router with higher capacity than domestic ones.
The central node is implemented in java in contrast to the network entities that
run the Ran System implemented in lua. Java node communicate with a local
Rnr that connects to the rest of Rnrs in the network. In this implementation
java algorithm acts like a big pdp. All other nodes does not have a pdp service.

The protocol works as follows:

Step 1: central node request all other nodes to send it values At
startup central node broadcast a message to all Rmoon services in the network.
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The message send from the java node to all others rmoon is the following:

NOTIFICATION

notification_id=central_not45687

host=monitor_server

target_service=/lupa/rmoon

mib=GetCells

command=watch_mib

message_type=action

op=

value=0

END

The things to be noted here are that there is only target service attribute
and there is not target host attribute, as we explained in the coordinated solu-
tion, this is the way to broadcast a message, and that there is only host attribute
and there is no service attribute, this mean all rmoon in nodes will respond to
that host.

Step 2: all rmoon services in network nodes respond to central node
Upon received above message each Rmoon in network nodes send back the
response message to central node. To respond to the mib = GetCells message,
each Rmoon must use GetAddress command to get it own identification and
GetCellsInRange to get it neighbor nodes and the quality of the signal of each
of them.

With this information Rmoon send a message like this:

NOTIFICATION

notification_id=trap_997422823

service=/lupa/rmoon

host=host1

target_host=monitor_server

watcher_id=noaumc

mib=GetCells

message_type=trap

value=host1#hostx?6?0.8979?-45#hosty?1?0.8546?-54#strangez?1?0.458?-61#

END

Note the string assigned to the value attribute. This is a string composed
of a set of substring separated by the ♯ character. The first substring is the
node identification that is obtained from GetAddress command. The following
substrings are one for each neighbors of the node, with information obtained
from GetCellsInRange command. Each of this substring is also composed of
a set of substrings separated by the ? character. The first part is the neighbor
identification, second is the channel that it is using, third is the signal quality
and fourth is the signal level.

One important thing to note in the last substring is that the neighbor iden-
tification is strangez (usually this value will be a mac address). This mean that
this is a node that not belong to our network but interfere with our nodes.
Central node cannot assign a channel to this node but must take it into account
for the computation.
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Step 3: central node acquires all network nodes information and com-
pute the best channel assignment for each node Central node knowing
the total nodes in the network wait until all nodes respond to the broadcast
message. When all nodes have responded then the central node builds a direct
graph of the entire network using java structures where each node is a vertex
and there is link from v to w if v reported w as it neighbor. There is also a
structure named neighborsConstraint for each node that maintains the set of
nodes that not belong to our network but interferes with nodes in the graph.

When all the structures has been set up then the centralized algorithm is
computed to assign each node the best channel assignment. Instead of us-
ing brute force enumeration of all possible solution we use a technique known
as backtracking to improve the performance of the algorithm. Remember our
fourth restriction of the problem that we have only tens nodes. If we are in
an environment with hundreds or thousands nodes then we must use another
alternatives like genetic algorithms.

The algorithm is implemented as follow: We use fixed length tuples of the
form: < X0, X1, ..., Xn−1 >, where n = |V | Each component Xi represents the
channel assigned to vertex i, for all i, 0 ≤ i ≤ n− 1

We have the following explicit constraints:

• Xi ∈ 1, 6, 11 for all i, i, 0 ≤ i ≤ n− 1.

• for each node i, we know ”foreign” nodes and the channels Ci used by
them.

The objective function is f = min(interference(G)), where interference(G)
is the sum of interferences that are produced inside the network for a candidate
solution tuple having into account the “foreign” nodes also.

The algorithm tries to construct all candidate solutions but as soon as the
solution is greater than one previously found it prunes the solution tree.

After the algorithm finishes, the channel that each node must use is stored
in java structures, then the algorithm iterates over all nodes information and
send a notification message to each pep service requesting it to switch channel.
In this case there is no need to wait for the ACK message from pep because the
central already calculated the channel for each node, so it instructs each pep as
soon as possible.

The notification message to each pep is as follow:

NOTIFICATION

notification_id=central_not324657

host=monitor_server

target_service=/lupa/pep

target_host=host1

message=6

command=switchChannel

message_type=action

END

Note that in this case there are target host and target service attributes.
The command for pep is command = switchChannel and in the message
attribute is the channel to switch (6 in the example above).
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3.6 Summary

In this chapter we formalized the problem of study. Then we presented three
strategies to solve the channel allocation problem. The strategies match the
kind of approaches presented in the state of the art. We described in detail how
each strategy accomplish their work.

We presented a distributed and coordinated approach. In our design a leader
must be identified and then this leader is in charge to coordinate the algorithm
execution. The leader instruct each node to send it a rank value (that is the
interference level measured by each node), then the leader apply a greedy strat-
egy, sorting the nodes with respect to the rank values and asking each one in
turn to assign a channel.

Also we presented a centralized solution. In this solution there is a partic-
ular node that acquire information of the entire network by mean of receiving
information from each participating node. Then this node construct a graph in
memory representing the network and use a traditional technique (backtracking)
to assign each node a channel in a way that minimize the interference level.

Finally, we presented a local and uncoordinated approach. This approach
work locally, ie, with information sensed by the node it takes action in response
to that information without any coordination with the rest of nodes in the net-
work. This approach, of uncoordinated operating, can cause to an unstable net-
work re-configuration process. Then, in the next chapter we study the problem
from a control-theoretical point of view and provide a feedback control-based
solution to bound the oscillations of the solution.
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Chapter 4

Feedback Control Applied

to Un-Coordinated Solution

Most commercial APs have the option to automatically configure the RF channel
where the access point will operate. This auto channel scan option lets the APs
to automatically find the less used channel and set it for communication.

But, how does channel auto-tuning work? According to Juniper networks
company [38], there are four phases in the auto-tuning mode. These are the
four phases of auto-tuning:

• Measurement Phase: Most of the time spent in the auto-tune channel
algorithm is during the measurement phase. RF data from access points
is continually collected during times of typical use.

• Calculation Phase 1 Enrollment: At the end of the measurement phase,
each access point is polled to determine the most recent state of the access
point. Discovery is done in the background with no impact on other system
functions. During this enrollment portion of the calculation phase, the
domain is bootstrapped from a seed radiothis continues until all domain
members are discovered.

• Calculation Phase 2, Optimization: When all access point discovery has
taken place, the access points begin a process of proposing and considering
hypothetical channel moves to and from other access points. The results
of these moves is calculated to determine whether the new topology is
better than the existing one. Any proposed changes are stored by the
mobility domain and are ready for deployment, and one optimal solution
is selected.

• Deployment Phase: During the deployment phase, all proposed channel
changes are applied to all access points in a domain simultaneously. You
can schedule the time of the deployment phase or the solution can be de-
ployed immediately. All client-affecting channel changes in an interference
domain should be completed within the time a client detects signal fail-
ure and tries to re-associate. Few clients, if any, should to have to roam
twice. For this reason they recommend that deployment occurs during
times when there would be minimum client impact.
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By default, the controller evaluates the scan results for possible channel
changes every 3600 seconds (1 hour). A distributed algorithm on controllers
and access points can cause the system to tune to another channel. If the radio
has active sessions, the controller does not change the channel unless it detects
radar or severe interference on the channel. RF auto-tuning also can change
a radio channel when the channel tuning interval expires, if a channel with
less interference or radar is detected. Disturbance is based on the number of
neighbors the radio has and the RSSI of each neighbor. A radio also can change
channels before the channel-tuning interval expires to respond to interference
or radar.

In contrast, our implementation of un-coordinated approach keeps monitor-
ing the channels condition and if it detects that there are a new least congested
channel then the system instructs the access point to change channel. However,
in an environment such as a conference room or a dense urban area in which
each AP uncoordinatedly and continuously performs this process, each AP may
fall in a cascade of channel re-configurations that will make unstable the whole
system.

So, in this work we search for a mechanism to dynamically change channels in
a controlled manner, when and if better conditions are found and without cause
the instability of the system. In this way, the system can adapt to changing
environments with the aim at minimizing the total interference level seen by the
APs. This motivates us to apply a feedback control technique with the goal of
bounding the inherently oscillatory behavior of the solutions.

The remain of the chapter is as follow. The next section presents oscillatory
issues we found in our implementation of the uncoordinated solution. In sec-
tion 4.2 we review the feedback control framework when applied to computing
systems. Section 4.3 describes how our target system, the uncoordinated solu-
tion, is embedded into a closed-loop to achieve the objective of minimize the
number of channel switches per minute. Section 4.4 details our approach to sys-
tem identification and section 4.5 discusses controller design and uses empirical
studies to assess the accuracy of insights obtained from control theory. Finally,
we provide some conclusions of our work.

4.1 Oscillatory issues

As expected, with the un-coordinated solution deployed in a testbed (see chapter
5), the AP’s behavior strongly depends on the threshold value (refer to 3.3).
When the threshold value is set equal to 0.0 the APs keep changing channels
continuously. When the threshold value is set to 1.0, the access points change
its channel only once and then remains in that channel for the rest of the
experiment. Any intermediate value causes a behavior as shown in Figure 4.1.
In this figure we show that if we fix the threshold value in 0.6 and we start the
system three times and let it run during five minutes, we get different number
of channel re-configurations. During the first run there are fourteen channel
changes in five minutes, in the second run ten, and during the third run eleven
changes.

While in the Figure 4.1 we showed the cumulative number of changes as time
pass, in Figure 4.2 we show another view of the same executions that help to
see the variability of the number of channel changes per unit of time.
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Figure 4.1: Cumulative number of channel re-configurations in a five-minute
period (threshold = 0.6).

Figure 4.2: Average of channel changes with minumum and maximum for vari-
ous executions (threshold = 0.6).

59



More precisely, in the Figure 4.2 we show the average of channel changes
per minute in three different executions, i.e. in a time t the figure show the
number of channel re configurations between t and t−1. For example, after two
minutes, the average of channel changes between minute one and minute two
is 0.66 with two channel changes as the maximum and zero channel changes as
the minimum. In the third minute, the average is four channel changes between
minute three and minute two, with a maximum of six and a minumum of two.
The important to note here is in the variability of the results. There are no
relation between to consecutive average values and if you observe carefully both
Figure 4.1 and Figure 4.2, the difference between maximum and minimum with
respect to the average is also variable. The minimum at time three minute is
measured in the execution labeled Run 3, but the maximum at time 330 seconds
is also measured in the execution labeled Run 3.

In this way, we can observe the unpredictability on the number of channel
changes for a given deployment. Our conclusion is that, in our implementation,
the number of channel re-configurations is unstable.

The first observation is that, in some way, the uncoordinated solution is
trying to solve a combinatorial optimization problem by trial-and-error. Since
the information available at each node is limited, and the system highly dynamic,
it does not seems to be a very bad idea. Actually, the intrinsic unstability of
the solution allows to try a high number of solutions in a short period of time.
The obvious drawback is that after trying all possible combinations of channel
distribution among APs, the system keeps changing making it unusable. Thus,
we want a solution that is fast and flexible at start up and relatively stable
in the long run. It needs also to allow changes from time to time to adapt to
environmental changes.

Our goal is to develop a mechanism to bound the oscillations of the solu-
tion while having a quick adaptation to the environment during boot-time and
maintaining the adaptability to change in the long run. To do this we will ap-
ply feedback control techniques. In the next section we will describe feedback
control as applied in computing systems.

4.2 Feedback Control Concepts

We pretend to apply a well known strategy for traditional engineering discipline
named feedback control with the goal of make the system more stable. We based
our study on a reference book in this area “Feedback Control of Computing
Systems”[28] Also we studied a couple of paper that the same authors wrote
where they applied the feedback control theory to the apache web server [23] and
to the IBM Lotus Notes Server [40]. In the first case the authors control a desired
CPU and memory utilization indirectly by manipulating tunning parameters
such as MaxClients and KeepAlive, whereas in the second case the authors
control the queue length of the queue of in-progress RPC requests (it is a client
server system) by tunning parameter SERV ER MAXUSERS. In the same
way we will control the number of channel switch in a access point by adjusting
the threshold value. Remember that the condition to switch channel are: (1)
exits a channel with less interference than the one currently in use, (2) and the
level of interference in channel used is upper than a certain threshold value.
Note that if we set the threshold to a value of 1.0 they never change channel
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because is impossible to find a channel with interference level greater than 1.0
and by the other hand if we set the threshold to a value of 0.0 it will always
find a better channel and it will keep changing channel constantly (the way we
implement the interference level is a value between 0 and 1). So, the intent is
to adjust the threshold value dynamically so that the access point can find a
channel with a good level of interference.

Figure 4.3: Feedback Control in Computing System. Source [28].

The essential elements of feedback control system are depicted in Figure 4.3.
These elements are:

• Control error, which is the difference between the reference input and the
measured output

• Control input, which is a parameter that affects the behavior of the target
system and can be adjusted dynamically

• Controller, which determines the setting of the control input needed to
achieve the reference input. The controller computes values of the control
input based on current and past values of control error

• Disturbance input, which is any change that affects the way in which the
control input influences the measured output

• Measured output, which is a measurable characteristic of the target system,
such as CPU utilization and response time

• Noise input, which is any effect that changes the measured output pro-
duced by the target system

• Reference input, which is the desired value of the measured outputs, such
as CPU utilization, should be 66

• Target system, which is the computing system to be controlled.

The classical controller design methodology consist of two steps:

1. System identification:, Construct a transfer function which relates past
and present input values to past and present output values. These transfer
functions constitute a model of the system.
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2. Controller design:, Based on properties of the transfer function and the
desired objectives, a particular control law is chosen. Techniques from
control theory are used to predict how the system will behave once the
chosen controller is added to it.

Much work have been done that used first-principles approach to system
identification. Although these efforts suggest that first-principles approaches
can yield success, they also indicate that considerable sophistication is required
to do so. Further, for complex computing systems, constructing first-principles
models may be extremely difficult, if not impossible. In that case, we have to
rely on empirical models, that is, models based on data collected from an actual
system.

4.3 Un-Coordinated Solution and Its Closed-Loop

Control

As we saw in previous chapters, we implement the un-coordinated solution for
channel allocation strategy using RAN as their control communication bus.
Architecturally the nodes in RAN System, as in the well-known policy-based
architecture, are composed by a Policy Decision Point (PDP), an Enforcement
Point (EP) and an agent that monitors the state of the device and the behavior
of the network. The PDP follows the event-condition-action (ECA) paradigm
and the notifications sent by the monitoring agent of a node of the network
is the source of events for the PDP of the same node. In the uncoordinated
approach RMoon send two kinds of events to PDP forever: (1) if exist or not a
least congested channel than current channel, and (2) the level of interference in
the current channel. PDP module then evaluate two conditions to determine if
it is worth to switch channel, that really exist a channel less congested than the
current channel and that the level of interference is greater than a threshold.
We consider this threshold value as tunning parameter. If we set the parameter
to a value of 0, then the second condition always met whereas if we set it to
a value of 1 it will never succeed. As such, this parameter has a somewhat
complex effect on stability of the system.

The measured output we will be considering here is the amount of switch
channel per minute. Clearly, the intention here is to reduce the frequency of
changes. If this happens the meaning is that the node found a good channel to
operate. Intuitively in the first minute the node can switch channel more often
but as time pass the node will adjust threshold and it will remain in a good
channel with a reasonable interference level.

In line with the objective of a system that starts very dynamic to try as many
solutions as possible, and then converges to a stable state, the reference value in
this closed loop control system will be the number of channel changes in a time
period (for our testbed we will say x changes in 1 minute). This value specifies
a management policy that the closed loop system tries to achieve. Based on the
current and past values of the control error (the difference between the reference
value and measured amount of channel switch), the controller adjusts the value
of the threshold. The algorithm for computing this adjustment is called the
control law.

The main challenge of this work is about how to treat the interference we
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receive from the other nodes. The problem here is that neighbors node are using
the same uncoordinated solution and so they are changing channel in the same
pace.

Studying the reference papers mentioned above where the authors treat the
RPCs from Users as inputs for the close-loop control of Lotus Notes in [40], we
will consider the interference input as input to our system. Later we will discuss
how it is related to the threshold value and which will be our operating region.

4.4 System Modeling

The difficulty of constructing firs-principles models of computing systems mo-
tivates an approach that requires a less detailed knowledge of the relationships
between inputs and outputs. Statistical techniques have considerable appeal
since we reduce the knowledge required for model construction. That is, instead
of employing detailed knowledge of the target system, we infer relationships be-
tween inputs and outputs by applying statistical techniques to data collected
from the target system. The term black-box model is used since only the inputs
and outputs of the target system need be known.

In system identification, we identify the main components of the system, the
data values that flow in and out of them, and the mathematical relationships be-
tween these values. This section describes our approach to system identification
and its application to Uncoordinated RAN System.

Figure 4.4: Feedback Control in RAN System.

We construct a block diagram as shown in Figure 4.4 for component iden-
tification. We see that interference level and threshold are inputs to the Un-
coordinated RAN System, and the channel switch is the output. Since the
interference level has an indirect effect on threshold value, the two inputs are
not independent and hence they do not combine in a linear fashion. So is impor-
tant to consider the operating region of the system. The operating region of a
system is the range of control inputs (and their associated outputs) that are ob-
served in operation. Then we divide the operating region in two regions. When
the threshold > interferencelevel, the tunning parameter has no effect so we
can ignore this case. When threshold ≤ interferencelevel, exactly threshold
value is the level interference allowed, then the interference level value is not
relevant (as long as we stay in this region) and hence it can be ignored. This
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mean, we will not consider interference level as an input. This results in a SISO
(single-input, single output) model.

To model the system we assume that time is discrete with uniform interval
sizes. Then the relationship between control inputs and measured outputs can
be quantified by linear difference equations:

y(k + 1) = a.y(k) + b.u(k) (4.1)

where u is the input signal and y is the output signal.

4.4.1 Experimental Design and Parameter Estimation

Constructing black-box models requires data to estimate model parameters such
as a and b in Equation 4.1. To collect data we set up a laboratory infrastructure
with six access points running the uncoordinated approach. We will be varying
threshold value in only one of them and measure the number of channels switch
in five minutes.

The results are shown in Table 4.1

Table 4.1: Data Used to estimate parameters

k ũ(k) ỹ(k) u(k) y(k)
1 1 0 0.4 -20.33
2 0.9 4 0.3 -16.33
3 0.8 6 0.2 -14.33
4 0.7 13 0.1 -7.33
5 0.6 14 0 -6.33
6 0.5 24 -0.1 3.67
7 0.4 29 -0.2 8.67
8 0.3 28 -0.3 7.67
9 0.2 28 -0.4 7.67
10 0.1 37 -0.5 16.67

To estimate model parameters once data have been collected we use a commonly-
used method called least squares regression. We proceed as follows:

1. The mean threshold value and amount of channels switch are computed.
The former is computed over [1, 9] (since the last value is not used in the
estimates produced) and the latter over [2, 10]. The average of these values
yields the following results ū = 0.6 and ȳ = 20.33

2. y and u are computed as shown in table , ie as the difference between û
and ū and the same for y.

3. As described in section 2.4.3 of the reference book of this work we calculate
the following values:

S1 =
N
∑

k=1

y2(k)

S2 =
N
∑

k=1

u(k)y(k)
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S3 =
N
∑

k=1

u2(k)

S4 =
N
∑

k=1

y(k)y(k + 1)

S5 =
N
∑

k=1

u(k)y(k + 1)

Note that the Si are computed using k ∈ [1, 9].

Table 4.2: Values of Si

i Si

1 1185.42
2 -24.1
3 0.6
4 979.21
5 -24.3

4. From the values of Si we compute the parameters as:

a = S3S4−S2S5

S1S3−S2

2

b = S1S5−S2S4

S1S3−S2

2

We have a = 0.0145 and b = −39.92

(b is negative since a larger threshold decreases channel switches).

5. With this, we can calculate ŷ(k + 1) = ay(k) + bu(k)

If we passing that with different data, we get different estimates. In general,
having more observations decreases the variability of parameter estimates.

4.4.2 Model Evaluation

There are various metrics for assessing accuracy of the model: the root-mean-
square error (RMSE) and the correlation coefficient (CC). Another way to quan-
tify accuracy is by computing the variability explained by the model. This is
denoted R2 and

R2 = 1− var(y−ŷ)
var(y)

where var(y) is the variance of the y(k). R2 ranges from 0 to 1. A value
of 0 means that the model does no better than using the mean value of y to
estimate y(k). A value of 1 suggest but does not guarantee a perfect fit.

The value of R2 that we get is 0.94, that is quite good.

4.4.3 Analysis using Z-Transform Theory

Z-transforms can be used to describe systems. Such a description is called a
transfer function. A transfer function of a system describes how an input U(z)
is transformed into the output Y (z).

We define the transfer function G(z) as
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G(z) = Y (z)
U(z)

That is, G(z) is a ratio of polynomials in z. The denominator polynomial
D(z) is referred as the characteristic polynomial. The characteristic equation
is obtained by setting the characteristic polynomial to 0. The roots of this
equation are called the poles.

For a linear difference equation of the form y(k + 1) = a.y(k) + b.u(k) the
transfer function is:

G(z) = Y (z)
U(z) = b

z−a

One of the most important properties of a system is stability. Intuitively,
we might think of a system with an unbounded output as unstable. So, we
are focusing on bounded-input, bounded output (BIBO) stability. Consider the
following theorem:

Theorem 1 BIBO stability A system represented by a transfer function G(z)
is BIBO stable if and only if all the poles of G(z) are inside the unit circle.

Another dynamic property that can be determined by the pole is speed of
response. As |a| approaches to zero, which is our case, the speed of response
to changes in the input becomes faster. If a = 0, then yk+1 = b.uk. Hence, it
takes one time step for the output y, to converge after changes in the input.
As |a| approaches one, it takes more time steps for the output to converge to a
steady-state after changes in the input.

The final property that can be determined by the pole is whether the system
will respond in an oscillatory manner to changes in the input. If a < 0, then
the behavior of the system will be oscillatory.

The pole of our transfer function is a = 0.0145. So we can say that our
system is stable, have a faster response time and it is not oscillatory.

4.5 Control Analysis and Design

4.5.1 Control Laws and Controller Operation

We need to specify a control law that quantifies how to set the control input to
the target system.

In this work we applied the proportional integral control law that has the
form

u(k) = u(k − 1) + (Kp +Kl)e(k) +Kpe(k − 1) (4.2)

where u(k) is the output of the integral controller and e(k) is the control
error. In other words e(k) is the difference between the desired and actual values
of the output, that is e(k) = r(k) − y(k). r(k) denote the reference signal and
it is the desired output value that we must explicitly specified.

Proportional integral (PI) control combines the integral control with the
proportional control.

The proportional control law is

u(k) = Kpe(k) (4.3)

where Kp is a constant that is chosen when designing the proportional con-
troller. Kp is often referred to as the controller gain of the proportional con-
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troller. The transfer function of a proportional controller is

U(z)

E(z)
= Kp (4.4)

The integral control law has the form

u(k) = u(k − 1) +Kle(k) (4.5)

The controller parameter Kl defines the ratio of control change (the difference
between the current and past inputs) to the control error. The transfer function
of the integral controller is:

U(z)

E(z)
=

Klz

z − 1
(4.6)

PI control combines the advantages of integral control (zero steady-state
error) with those of proportional control (increasing the speed of the transient
response).

The transfer function of the integral controller is:

U(z)

E(z)
== Kp +

Klz

z − 1
(4.7)

The PI controller has a pole at z = 1 (this corresponds to the integral action).

The control transfer function has a finite zero at z =
Kp

Kp+Kl
. If Kp and Kl have

the same sign (as is usually the case), the zero is always on the real line between
0 and 1. When the zero is exactly at 0, PI control reduces the pure integral
control case. When the zero is exactly at 1, it cancel the pole at z = 1, negating
the effect of the integral control, and reduces the pure proportional control case.

4.5.2 Desirable Properties of Controllers

Designing feedback systems requires having clear criteria for what makes one
controller preferable to another. In computing systems, we focus on four prop-
erties: stability, accuracy, settling times and overshoot. We refer to these as the
SASO properties.

The most basic property of a controller is stability; that is, it results in a
stable closed-loop system. Stability is assessed by determining if the poles of
the closed-loop transfer function have a magnitude less than 1.

A second property that we desire in a controller is that it be accurate. We
quantify the accuracy of a closed loop in terms of steady-state error. We can
assess the accuracy of a closed-loop system by computing the steady-state gain
of its transfer function from the reference input to the measured output. There
is a zero steady-state error if and only if this steady-state gain is 1.

A third property of interest is the settling time of the system, the time for
the output to reach a new steady-state value after a change in one of the inputs.
We use Ks to denote the settling time. Settling time is a function of the closed-
loop poles and is estimated using Ks ≈

−4
log|a| by employing the dominant pole

approximation.
The final property we consider is maximum overshoot. Maximum overshoot,

which we denote by Mp, is the largest amount by which the transient response
exceeds the steady-state value as a result of a change in an input, scaled by the
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steady-state value. Overshoot is a property of the response to a step change in
the reference input. Overshoot occurs if one or more poles with a nonzero angle
in the complex plane.

The purpose of control analysis is to ascertain the SASO properties of the
closed-loop system. The purpose of control design is to construct a closed-loop
system with the desired SASO properties.

4.5.3 PI Control Design

We have four design goals for the PI controller: (1) the closed-loop is stable; (2)
steady-state error is minimized; (3) settling time does not exceed K∗

s ; and (4)
maximum overshoot does not exceed M∗

p

The first design goal is achieved by ensuring that all poles lie within the unit
circle. The second goal is achieved by using a PI controller, at least for a step
change in the reference and/or disturbance inputs. Thus, the design problem
is reduced to goals 3 and 4. These control goals can be achieved by properly
selecting the parameters Kp and Kl of the PI controller.

A commonly used approach to controller design is pole placement, in which
the closed-loop system poles are chosen to meet some desired criteria. The steps
in pole placement control design are outlined below. The transfer function of
our system:

G(z) =
Y (z)

U(z)
=

b

z − a
(4.8)

Recall that y(k) is the offset of amount channel switches per minute from the
operating point, and u(k) is the offset of THRESHOLD from the operating
point. The design goals are that settling time does not exceed K∗

s = 10; and
the maximum overshoot does not exceed M∗

p = 10%

1. Compute the dominant poles. The first step is to compute the desired
poles of the closed-loop system based on K∗

s and M∗
p . There is an as-

sumption that the the poles are complex conjugates re±jθ. We have an

upper bound for r that is r = e
−4

K∗
s . So we have r = e

−4

10 = 0.67. Hav-
ing calculated r then we can calculate θ as θ = π logr

logM∗

p
. Using that, we

determine that θ = π logr
log0.1 = 0.7

2. Construct and expand the desired characteristic polynomial. The desired
characteristic polynomial is z2 − 2rcosθz + r2 = z2 − 1.2z + 0.36

3. Construct and expand the modeled characteristic polynomial. The mod-
eled characteristic polynomial is the denominator of

k(z)G(z)

1 + k(z)G(z)
(4.9)

where

k(z) =
(Kp +Kl)z −Kp

z − 1
(4.10)

Eliminating all fractions in the denominator (by multiplication) and ex-
panding the polynomial we get: z2 + [b(Kp + Kl) − 1 − a]z + a − bKp

replacing a and b for the values obtained in section 4.4.1 we get: z2 +
[−39.92(Kp +Kl)− 1.0145]z + 0.0145 + 39.92Kp
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4. Solve for Kp and Kl.

We want the desired characteristic polynomial to equal the modeled char-
acteristic polynomial. That is z2− 1.2z+0.36 = z2 + [−39.92(Kp +Kl)−
1.0145]z + 0.0145 + 39.92Kp

So we have:

−1.2 = −39.92(Kp +Kl)− 1.0145

0.36 = 0.0145 + 39.92Kp

Solving, the system of equations, we have:

Kp = 0.009

Kl = −0.004

5. Verify the result. The closed-loop transfer function from the reference
input to the measured output is

FR(z) =
Y (z)

R(z)
=

([(Kp +Kl)z −Kp]/(z − 1))G(z)

1 + ([(Kp +Kl)z −Kp]/(z − 1))G(z)
(4.11)

FR(z) =
−0.2z + 0.36

z2 − 1.2z + 0.36
=

−0.2z + 0.36

(z − 0.6)(z − 0.6)
(4.12)

As expected, the poles of FR(z) are 0.6, so the system is stable. Also,
FR(1) = 1 and hence there is no steady-state error to a step change in the
reference or disturbance inputs.

4.6 Evaluation

The goal of the evaluation is to show that using the method developed in this
chpater it is feasible to control the system stability. Using the feedback control
technique we can bound the number of channel changes for a given time period.
The other alternative is to have an algorithm that scan for possible channel
changes every t time period, for example every 3600 seconds (1 hour). But we
do not want to wait until the next run if channel conditions become poor. We
want to continuously monitor channel conditions and let the AP change to a
better channel if necessary to keep the quality of the service. But we need to
do this in a controlled manner to avoid a disruptive service. One way to control
and bound the channel changes is by using a feedback control technique and we
devote this section to evaluate the solution by presenting empirical assessments.
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4.6.1 Empirical Assessments

Here, we present empirical results for the feedback control technique applied
to our un-coordinated solution for the channel allocation problem in Wireless
Network. The empirical results were obtained from a subset of the testbed
presented in section 5.3. In this case we use only six of the ten access points
available. The metric we use to evaluate the system are the number of channel
changes per minute. We measure in a time t, the number of channel changes
in the period t and t − 1. In this work the time unit is one minute. Our hope
is that as time pass, the number of channel changes is bound to a configured
value.

We showed in section 4.1 how the system behaves before we applied the
technique presented in this work. We led to the conclusion that the oscillatory
issues are not able to be predicted. For this reason, we developed a feedback
control technique with the aim of controlling the number of channel changes.

To evaluate the system, we install the uncoordinated solution enhanced with
the feedback control technique (we do this in the policy decision point compo-
nent) in each access point of the testbed. We set the threshold to a value equal
to 0.1 and a referenceinput value equal to 5. The meaning of this value is
that we want to allow until five channel reconfigurations per minute. We let the
system run for ten minute period and we obtain the results shown below. For
the experiment we did ten executions of the system.

In Figure 4.5 we show the average of the control error in all access points
per minute. Remember, control error is the difference between the reference
input and measured output. The reference input was set to a value equal to 5.
Observe that at time pass the control error is bound between a value greater
than −5 and a value less than 5. A value of 0 means that the measured output
is five channel changes in the last minute. By setting the reference value equal
to 5 we are allowing to have five channel re-configurations per minute. If you
observe the Figure the average value keeps close to zero and this happen in
all executions. Contrast this with the behavior shown in Figure 4.2 where the
number of channel changes are unpredictable.

Moreover, in Figure 4.6 we show how the threshold value varies with the
time for one particular execution. As was mention before we set the initial value
of the threshold equal to 0.1. Remember that the threshold is a value in the
range of [0, 1]. Then, as the system became more stable the threshold value
tend to be equal to 0.05.

The testbed allow us evaluate how the predictions made by control theory
compare with the behavior of the real system. We updated our implementation
by embedding the proportional integral control law. This control law has the
form depicted in equation 4.2.

In our case, u(k) is the threshold value and e(k) is the control error which
is the difference between the reference input (set to 5) and measured output.
The measured output is the number of channel changes and is calculated every
minute. Having successfully updated our system we could evaluate how the
system self-manage the threshold value, by adjusting the value so that the
difference between the measured number of channel changes is in close proximity
to the value set as the desired number of channel hopping. In Figure 4.6 we
showed how the threshold value converge to a value close to 0.05 to allow the
system to have a number of channel changes per minute around a value of 5
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Figure 4.5: Control error per minute in six different APs (initial threshold=0.1).

changes as showed in Figure 4.5.
This is our first approximation to study the validity of the feedback control

technique applied to an un-coordinated solution for channel allocation in wireless
networks with the aim to help in the stability issues. We will schedule for future
works far more scenarios that those presented here to get more statistics and
thus get more robust conclusions.

4.7 Conclusions

In this chapter, we have introduced a methodology for constructing and ana-
lyzing closed-loop system using a statistical approach to system identification.
This approach is more generally applicable than conventional first-principles
approach because of the difficulty of constructing first-principles models. In
first-principles models we need to know the internal relationships between in-
puts and outputs to find the mathematical model. In our model by applying
statistical techniques to data collected from the target system we could infer
relationships between input and outputs.

In section 4.4.2 we presented R2. R2 ranges from 0 to 1. A value of 0 means
that the model does no better than using the mean value of y to estimate y(k).
A value of 1 suggest but does not guarantee a perfect fit. The fit for our models
of the UnCoordinated RAN System is: R2 = 0.94 that is quite good.

With this work we can control the number of channel changes in a given
fraction of time. We do not eliminate the channel changes but we can control
and bound the velocity of changes. This is a reasonable behavior for our un-
coordinated implementation. Moreover, this allows to have a system that is
capable of changing at the beginning to try multiple possible configurations in
a distributed and un-coordinated manner and, then, to stabilize to make the
system usable.
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Figure 4.6: Variability of threshold value per minute (initial threshold=0.1).

We can go further by adding some kind of intelligence to the system. When
we scan the frequencies use we get the MAC address of the emitting APs. We
can use this knowledge to better manage the way we handle the changes of
channels. But it is out of scope of this work.
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Chapter 5

Model Evaluation

5.1 Introduction

This chapter performs the validation of the proposed strategies. Conceptually,
this chapter can be divided into two main topics: a proof of concepts and a scal-
ability evaluation. The proof of concepts is made by deploying the algorithms in
a testbed scenario. For the scalability evaluation we perform simulations where
can assess the behavior of the strategies when the number of nodes increase.

The rest of the chapter is as follow. In the next section we present the mo-
tivation of the proof of concepts. In section 5.3 we present the testbed scenario
and in section 5.4 we present the empirical result of the testbed. Then, in sec-
tion 5.5 we present the motivation for a simulation-based evaluation. Next, in
sections 5.6 and 5.7 we present the network simulator used and the hosting envi-
ronment under which simulation run. Finally in the last section we show results
by comparing the Lran values obtained from different simulation scenarios.

5.2 Proof of Concepts

We started by implementing a testbed scenario to prove that the implementa-
tions are technically feasible. To do this we need to setup a set of access points
and deploy our algorithms in each of them. The scalability of the solutions will
be measured by simulations, so we only need a small set of access points for
the testbed. Ideally we need more than three access points for the test to be
meaningful. So as to be sure that there will be interference between partici-
pating access points, due we will only make use of the three non-overlapping
channels. Moreover to avoid having the same number of access points in each
channel we considered that the amount of access points must not be a multiple
of three. For this consideration we finally decided to have ten access points for
our testbed implementation.

Also, during the testbed we want to take measures to get some initial insights
about the behavior of each strategy. So, after each strategy run we measure the
interference level at each access point and then we can calculate the Lran value
for the entire system. This will give us some knowledge that we will study
deeply in the simulation.
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The testbed part of this chapter is as follow. In the next section we present
the hardware specification and details of the testbed and then in section 5.4 we
present the results of each implementation.

5.3 TestBed Description

In the context of this work a fully working deployment was implemented in
a testbed. This laboratory setup is a network with ten wireless access points.
Seven access points are LinkSys WRT160NL and three access points are LinkSys
WRT54GL. These access points are designed as consumer-level devices that the
vendor has trimmed down as much as possible.

The main characteristic of the LinkSys WRT160NL are shown in Table 5.1.

Table 5.1: LinkSys WRT160NL

Feature Value
Platform Atheros AR9130
CPU Speed (MHz) 400
Flash (MB) 8
RAM (MB) 32
Wireless NIC Atheros AR9100 (integrated)

The main characteristic of the LinkSys WRT54GL are shown in Table 5.2.

Table 5.2: LinkSys WRT54GL

Feature Value
Platform Broadcom 5352
CPU Speed (MHz) 200
Flash (MB) 4
RAM (MB) 16
Wireless NIC Broadcom (integrated)

For the coordinated protocol and the centralized protocol a communication
network must be provided. To achieve this we also added a TP-LINK desktop
switch model TL-SF1008D with 8 ports and 10/100 Mbps. Each access point
has 4 ports so we use ethernet to make the link between all nodes.

For the centralized protocol we also added a notebook capable of running a
java program. The notebook is an Acer Aspire with AMD Dual-Core Processor
E-350 with 2 GB DDR3 Memory and 250 GB HDD. The operating system is
Ubuntu 12.04 LTS of 32 bit with kernel version 3.2.0. Java version is 6 update
27. This notebook is connected via cable to one of the switch ports.

For the testbed, the original Linksys operating system has been substituted
by OpenWRT Backfire 10.03.1 [12], a linux distribution for embedded devices.
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The procedure we follow was to install each strategy in turn and run the
testbed. First of all, we deployed the solution for the local and uncoordinated
approach and we observed the oscillatory issues that we addressed in chapter 4.
But also we found some very interesting results in the interference level reached
by the uncoordinated solution.

Then we proceed to install the solutions that exchange messages between
nodes: the coordinated and centralized solutions. For both of these strategies
we need to configure network connectivity in each access point. We wired all
access points and configured a Local Area Network with fixed IP addresses for
the RAN System be able to exchange messages between nodes. Both strategies
run to the end and yield results that at first glance are no so promising but are
the basis to stimulate analysis in simulation.

5.4 TestBed Results

We set up all the access points in channel 1. It is important to notice that in
houses close to the building where we deploy the laboratory there were other
access points which interfere with our deployment. In Table 5.3 are the list of
our access points in the initial state and in Table 5.4 are the list of neighbors
AP that we do not manage.

Table 5.3: Initial set up

Ip Mac Address Channel
13.13.13.1 68:7F:74:26:3C:36 1
13.13.13.110 68:7F:74:26:3F:DE 1
13.13.13.111 68:7F:74:26:3E:E2 1
13.13.13.112 68:7F:74:26:39:DB 1
13.13.13.113 68:7F:74:26:3F:BD 1
13.13.13.114 68:7F:74:26:39:D5 1
13.13.13.115 68:7F:74:26:3B:04 1
13.13.13.116 C0:C1:C0:01:25:B3 1
13.13.13.117 C0:C1:C0:01:27:C9 1
13.13.13.118 C0:C1:C0:01:26:D6 1

Table 5.4: Neighbor APs

ESSID Mac Address Channel
TuleWiFi 00:25:12:6D:17:3D 4
Gaby 98:FC:11:BD:66:B4 9
wifigonza 00:23:54:DB:0A:10 1
tatocine C8:6C:87:A0:4A:41 7
gatito 94:44:52:7E:E0:0E 2

After running each of our implementations we can see the new channel as-
signment: in Table 5.5 we can see the result of the uncoordinated implementa-
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tion, in Table 5.6 we can see the result of the coordinated implementation and
in Table 5.7 we can see the result of the centralized implementation.

Table 5.5: UnCoordinated Result

Ip Mac Address Channel
13.13.13.1 68:7F:74:26:3C:36 6
13.13.13.110 68:7F:74:26:3F:DE 6
13.13.13.111 68:7F:74:26:3E:E2 11
13.13.13.112 68:7F:74:26:39:DB 11
13.13.13.113 68:7F:74:26:3F:BD 11
13.13.13.114 68:7F:74:26:39:D5 1
13.13.13.115 68:7F:74:26:3B:04 1
13.13.13.116 C0:C1:C0:01:25:B3 1
13.13.13.117 C0:C1:C0:01:27:C9 1
13.13.13.118 C0:C1:C0:01:26:D6 1

Table 5.6: Coordinated Result

Ip Mac Address Channel
13.13.13.1 68:7F:74:26:3C:36 1
13.13.13.110 68:7F:74:26:3F:DE 6
13.13.13.111 68:7F:74:26:3E:E2 1
13.13.13.112 68:7F:74:26:39:DB 6
13.13.13.113 68:7F:74:26:3F:BD 6
13.13.13.114 68:7F:74:26:39:D5 11
13.13.13.115 68:7F:74:26:3B:04 11
13.13.13.116 C0:C1:C0:01:25:B3 11
13.13.13.117 C0:C1:C0:01:27:C9 6
13.13.13.118 C0:C1:C0:01:26:D6 11

In the uncoordinated implementation five access points are in channel 1,
three are in channel 11 and two are in channel 6, while in the coordinated im-
plementation four access points are in channel 6, another four access points are
in channel 11 and two are in channel 1, finally in the centralized implementation
five access points are in channel 1, three are in channel 6 and two are in channel
11.

Now, lets review the interference measured in each of the testing scenarios.
To compute the interference at a node api we first define Il(api, apj) as follow:
if api and apj are in the same channel then the quality reported by iwlist is
used as the value. Note that in the Il(api, apj) the node api is one of the access
point in Table 5.3 and the node apj can be one of the access point in Table 5.3
or one of the access point in Table 5.4. As you can see there are nodes in Table
5.4 that are not in channels {1, 6, 11}. In this case we multiply the quality by
a factor: 0.8 if channels are adjacent (1 and 2 for example), 0.6 if channels are
two channels distance (1 and 3 for example) and so on. If api and apj are in
non overlapping channels then the value is 0.
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Table 5.7: Centralized Result

Ip Mac Address Channel
13.13.13.1 68:7F:74:26:3C:36 11
13.13.13.110 68:7F:74:26:3F:DE 11
13.13.13.111 68:7F:74:26:3E:E2 6
13.13.13.112 68:7F:74:26:39:DB 1
13.13.13.113 68:7F:74:26:3F:BD 1
13.13.13.114 68:7F:74:26:39:D5 6
13.13.13.115 68:7F:74:26:3B:04 1
13.13.13.116 C0:C1:C0:01:25:B3 1
13.13.13.117 C0:C1:C0:01:27:C9 6
13.13.13.118 C0:C1:C0:01:26:D6 1

Then for each node we calculate: Il(api) =
∑

∀apj∈N(api)

Il(api, apj)

where N(api) are the list of nodes that api can see. Finally we can calculate
the Lran(G,C) value as the sum of all Il(api).

When each deployment start we have that:
Lran(G,C) = 35, 65429
The results obtained after run the testbeds are shown in Table 5.8

Table 5.8: TestBed Results

Strategy Result
Centralized 12,91714286
Coordinated 11,92571429
UnCoordinated 11,19714286

We can observe a decrease of measured value from around 35 to 11 or 12. All
implementations behave similar with a better performance of the uncoordinated
deployment.

Now lets see each scenario in more detail. In Figure 5.1 we can see the results
of the uncoordinated approach. In the horizontal axis are the ip (to distinguish
each) of the access points of the lab. The green bar is the interference level at
the beginning, the blue bar is the interference level at the end of the run. The
black X is the average of the interference at the beginning and the red square
is the average of the interference level at the end. When the run ends the node
111 has the max value: 1, 905714286 and the node 116 has the min value: 0, 28,
with an average value equal to 1, 119714286. The difference between max value
and the average, and the min value and the average is around 0.80.

In Figure 5.2 we can see the results of the coordinated approach. In this case
when the run ends the node 110 has the max value: 2, 54 and the node 116 has
the min value: 0, with an average value equal to 1, 192571429. The difference
between max value and the average, and the min value and the average is around
1.20.

Finally in Figure 5.3 we can see the results of the centralized approach. In
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Figure 5.1: TestBed Graph for the Un-Coordinated Solution.

Figure 5.2: TestBed Graph for the Coordinated Solution.
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this case when the run ends the node 111 has the max value: 2, 591428571 and
the node 1 has the min value: 0, 334285714, with an average value equal to
1, 291714286. The difference between max value and the average, and the min
value and the average is around 1.10.

Figure 5.3: TestBed Graph for the Centralized Solution.

TestBed results shows that the uncoordinated solution outperform the others
solutions in the Lran value. In the case of the centralized implementation,
although it has the greater value for the Lran compared with the coordinated
implementation, the interference level is better distributed between the nodes.
Intuitively, we should expect that the centralized solution must produce the
lower value of the Lran because the central node has the global view of the
network. Then, a natural quetion is, why the uncoordinated solution produce
better results? Our gess is that the problem is the output produced by the
iwlist Linux command. The implementation of the iwlist is driver specific as
we explain later in section A.2.4. Two consecutive runs of the

iwlist wlan0 scan

(used in the get cells in range utility in the testbed) can produce different
outputs.

For example we did two consecutive executions of the

iwlist wlan0 scan

command in a Terminal window and we get for the first run,

wlan0 Scan completed :

Cell 01 - Address: 00:25:12:6D:17:3D

Channel:5

Frequency:2.432 GHz (Channel 5)

Quality=37/70 Signal level=-73 dBm

Encryption key:on

ESSID:"TuleWiFi"

Bit Rates:1 Mb/s; 2 Mb/s; 5.5 Mb/s; 11 Mb/s

Bit Rates:6 Mb/s; 9 Mb/s; 12 Mb/s; 18 Mb/s; 24 Mb/s
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36 Mb/s; 48 Mb/s; 54 Mb/s

Mode:Master

......

Cell 02 - Address: 54:E6:FC:A1:B2:E4

Channel:1

Frequency:2.412 GHz (Channel 1)

Quality=34/70 Signal level=-76 dBm

Encryption key:on

ESSID:"ER"

Bit Rates:1 Mb/s; 2 Mb/s; 5.5 Mb/s; 11 Mb/s; 6 Mb/s

12 Mb/s; 24 Mb/s; 36 Mb/s

Bit Rates:9 Mb/s; 18 Mb/s; 48 Mb/s; 54 Mb/s

Mode:Master

........

Cell 03 - Address: C8:6C:87:A0:4A:41

Channel:5

Frequency:2.432 GHz (Channel 5)

Quality=30/70 Signal level=-80 dBm

Encryption key:on

ESSID:"tatocine"

Bit Rates:1 Mb/s; 2 Mb/s; 5.5 Mb/s; 6 Mb/s; 9 Mb/s

11 Mb/s; 12 Mb/s; 18 Mb/s

Bit Rates:24 Mb/s; 36 Mb/s; 48 Mb/s; 54 Mb/s

Mode:Master

.......

Cell 04 - Address: 98:FC:11:BD:66:B4

Channel:9

Frequency:2.452 GHz (Channel 9)

Quality=31/70 Signal level=-79 dBm

Encryption key:on

ESSID:"Gaby"

Bit Rates:1 Mb/s; 2 Mb/s; 5.5 Mb/s; 11 Mb/s; 6 Mb/s

9 Mb/s; 12 Mb/s; 18 Mb/s

Bit Rates:24 Mb/s; 36 Mb/s; 48 Mb/s; 54 Mb/s

Mode:Master

.........

and for the second run,

wlan0 Scan completed :

Cell 01 - Address: 00:25:12:6D:17:3D

Channel:5

Frequency:2.432 GHz (Channel 5)

Quality=37/70 Signal level=-73 dBm

Encryption key:on

ESSID:"TuleWiFi"

Bit Rates:1 Mb/s; 2 Mb/s; 5.5 Mb/s; 11 Mb/s

Bit Rates:6 Mb/s; 9 Mb/s; 12 Mb/s; 18 Mb/s; 24 Mb/s

36 Mb/s; 48 Mb/s; 54 Mb/s

Mode:Master
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.........

Cell 02 - Address: 00:23:54:DB:0A:10

Channel:1

Frequency:2.412 GHz (Channel 1)

Quality=36/70 Signal level=-74 dBm

Encryption key:on

ESSID:"wifigonza"

Bit Rates:1 Mb/s; 2 Mb/s; 5.5 Mb/s; 11 Mb/s; 6 Mb/s

9 Mb/s; 12 Mb/s; 18 Mb/s

Bit Rates:24 Mb/s; 36 Mb/s; 48 Mb/s; 54 Mb/s

Mode:Master

.......

Cell 03 - Address: 54:E6:FC:A1:B2:E4

Channel:1

Frequency:2.412 GHz (Channel 1)

Quality=36/70 Signal level=-74 dBm

Encryption key:on

ESSID:"ER"

Bit Rates:1 Mb/s; 2 Mb/s; 5.5 Mb/s; 11 Mb/s; 6 Mb/s

12 Mb/s; 24 Mb/s; 36 Mb/s

Bit Rates:9 Mb/s; 18 Mb/s; 48 Mb/s; 54 Mb/s

Mode:Master

........

Note that for the second run we get only three cells while for the first run
we get four cells. Moreover, in the second run cell number 02 is wifigonza and
this AP does not appear in the first run, on the other hand cells number 03 and
04 of the first run do not appear in the second run.

We believe that this intermittence is the cause that the coordinated approach
has value lower than the others two implementations. But the results are very
similar in the three cases. So we will do more case studies during simulation
phase.

Finally, before we end the section related to the testbed we want to show
other graphics. This is to show how the interference affects throughput. To do
this we use MGEN [10] to generate network traffic and to log it. We put all
access points on channel 6 and connect two notebooks using wireless interface
to two different access points. In the two access points that we use we start the
following mgen script:

mgen event "listen tcp 5000" output log.drc

this is to start listen on port 5000 for tcp connections. The log.drc is just a
log file.

Then, in the notebooks already connected to each AP we use the following
mgen script to send tcp traffic to the access points:

0.0 ON 1 TCP DST 13.13.13.110/5000 PERIODIC [-1 1024]

10.0 OFF 1

where 13.13.13.110 is the ip of the access point. This command send 1024
byte packets as fast as possible using tcp for ten seconds.
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After that we run one of our implementations, so the access points are as-
signed new channels. In particular the access points we use to connect the
notebooks changes to channel 1 and channel 11. Then we run the same scripts
mentioned above.

We use TRPR[14] trace analyzer to analyze output produced by MGEN and
creates output suitable for plotting:

trpr mgen input <mgenLogFile> auto X output <plotFile>

the < mgenLogFile > is substituted by log.drc the output of the MGEN
and < plotF ile > is an output file. We use gnuplot[5] to display a graph of
TRPR analysis results.

The results of this experiment are as follow: In Figure 5.4 you can see the
throughput of the first notebook using the shared channel and in Figure 5.5 you
can see the throughput of the first notebook using the non shared channel.

Figure 5.4: Throughput Notebook 1 on a Shared Channel.

While you can see a similar result on the throughput of notebook 1 in both
situation, note that for notebook 2 (figures 5.6 and 5.7) there is a poor through-
put in the case of a shared channel. This suggest that is important to have a
good channel assignment strategy.

5.5 Motivation for Scalability Evaluation

After having proved the feasibility of a practical deploy in a laboratory and get-
ting the first measures of each implementation we wish to measure the behavior
in a network with more quantity of nodes. We can assume that the local and
uncoordinated implementation will scale because that solution will operate in
a node without sending neither receiving messages from/to other nodes. We
just need to install the local and uncoordinated solution in each node of the
network and run it. For the oscillation issues observed we found that we could
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Figure 5.5: Throughput Notebook 1 on a Non-Shared Channel.

Figure 5.6: Throughput Notebook 2 on a Shared Channel.
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Figure 5.7: Throughput Notebook 2 on a Non-Shared Channel.

take control of it with a feedback control technique as demonstrated in Chapter
4. So, one of the goal of the simulation is to measure scalability issues for the
coordinated and centralized solutions because both of them exchange messages
between nodes. As we mention before one of the assumption of our work is
that we are working with tens of nodes (not hundreds or thousands), this mean
we are thinking in a single building, so we experiment in a simulation with 20
and 30 nodes. Also, we added some neighbors node that are not running our
solution but that have a channel already assigned and interferes with our nodes.

Another goal of the simulation is to take measures and evaluate the inter-
ference level in each of the implementations. We will observe how channels are
assigned between nodes in a network with tens of nodes and how this channels
distribution impact on interference level. We will be calculating Lran in all
simulation scenarios and we will compare its value.

The remain of the chapter is as follow. The next section present the simu-
lator we used and how we embed the RAN System into it. Section 5.7 details
the environment under which the simulation run. Finally, we show simulation
results.

5.6 Simulator

For simulation we use DisJ simulator [2]. The DisJ is an Eclipse plug-in.
In DisJ simulator you can visually set up a network graph as shown in Figure

5.8 (DisJ make use of Graphical Editor Framework [4] in order to use graphical
editor).

Then you attach a protocol to the graph and run the simulation. We added
a Wake-Up protocol to start the simulation. This protocol can be described
as follow: “very often, in a distributed environment, we are faced with the
following situation: A task must be performed in which all the entities must
be involved; however, only some of them are independently active (because of

84



Figure 5.8: Defining a Graph Topology in DisJ.

a spontaneous event, or having finished a previous computation) and ready to
compute, the others are inactive, not even aware of the computation that must
take place. In these situations, to perform the task, we must ensure that all
the entities become active. Clearly, this preliminary step can only be started
by the entities that are active already; however, they do not know which other
entities (if any) are already active. This problem is called Wake-up (Wake-Up):
An active entity is usually called awake, an inactive (still) one is called asleep;
the task is to wake all entities up; see Figure 5.9”[41].

Figure 5.9: Wake Up with one Initiator. Source [1].

In our implementation of the protocol there is only one entity that has the
information, so the computation will be started by this entity. The protocol is
outlined as follow:

1. Initiator node when the simulation start→ start rnr, start lupa, send(wake
up) to N(x), become done

2. Any node except the initiator receiving wake up → start rnr, start lupa,
become done, send(wake up) to N(x)

3. Initiator node receiving wake up → do nothing

4. Any node in done state → do nothing

where N(x) means the neighbors of x. Note that all nodes are wake up and
during wake up it start rnr and lupa like if it is a access point. The same rnr
and lupa implementation that run inside the access points run as process in
the computer running the simulation. The only things that change is in the
configuration that point to the fourth utilities.
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5.7 Simulation Environment

The simulation was run using a notebook with the characteristic depicted in
Figure 5.10. Note that the operating system we use to run the simulation is
Windows 7 Enterprise with Service Pack 1 installed.

Figure 5.10: Notebook Used to Run the Simulations.

Eclipse is an open platform for tool integration built by an open commu-
nity of tool providers. Operating under a open source paradigm and it can
be downloaded at www.eclipse.org. Eclipse version is Juno and the java ver-
sion is 7 update 25. As we mention before in order to use Graphic Editor in
EclipseTMwe have to install Graphical Editor Framework (GEF) library. GEF
is an open source project under support of Eclipse Foundation. After Eclipse is
installed, we need to download DisJ and add DisJ the installed Eclipse plugins.

5.8 Simulation Results

We could observe in section 5.4 that the uncoordinated implementation behaves
very well. That solution will scale because each AP will run its own RAN System
without interacting with others RAN. We also showed in chapter 4 a mechanism
that help us handle the inherent oscillatory problem of that solution. This way
the focus of the simulations are in the centralized and coordinated strategies.
We tested both implementations in four different scenarios:

1. A graph with 20 nodes with all nodes running our algorithms (all nodes
are managed by us).

2. A graph with 25 nodes with only 20 nodes running our algorithms (man-
aged by us) and 5 nodes in the neighborhood.
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3. A graph with 30 nodes with all nodes running our algorithms (all nodes
are managed by us).

4. A graph with 40 nodes with only 40 nodes running our algorithms (man-
aged by us) and 10 nodes in the neighborhood.

One of the way to define a graph in the DisJ Graph Editor is to use a topology
library. This provides a ready-made set of topologies that can be edited such as
Ring, Tree, Complete Graph, and more. We used the connected topology library
where we can set the number of nodes and the number of links (see Figure 5.8.

The meaning of the defined graph is as follow:

Nodes Each node in the graph represent an AP.

Links A link between two nodes n1 and n2 indicates that n2 signal is perceived
at node n1. This mean that if n1 and n2 are on the same or adjacent
channel then they will interfere each other.

Distance between two connected nodes The distance between two nodes
represents the quality of the signal perceived at each end. Each node
in DisJ has a position represented by the x and y coordinates. This
information let us calculate the distance between a pair of nodes. Then,
we will represent the signal quality as a function of the distance between
node n1 and node n2. In Appendix A.2 we will show the details. Note
that we will consider only those nodes that can interfere which is the same
to consider those nodes that are connected by a link.

State of a node Each node in DisJ is of type distributed.plugin.runtime.engine.Entity.
We must define a set of States for Entity in any distributed protocol. DisJ
library has provided standard programming interfaces for user to deal with
states. For instance, getState() is for checking a current state of an entity,
and become() is for setting a state of an entity to be at a given state. In
our implementation, the state of a node is equivalent to the channel in
which the AP is operating. With the getState() operation we can query
the access point in which channel it is operating and with the become()
operation we can implement the change of the channel (refer to Appendix
A.2 for more details).

Color of a node In order to see the state change of a node from the simulator,
we can specify a color for each state that defined in the protocol. So in
the figures that follow we set a color for each state of a node: green for
channel 1, yellow for channel 6 and red for channel 11.

5.8.1 Graph with 20 Nodes

In Figure 5.11 you can see the state of the graph after the centralized run com-
pletes and in Figure 5.12 you can see the state of the graph after the coordinated
run completes.

In Table 5.9 you can see the channel assigned to each AP in the runs which
do not have neighbours. In the left column are the node names, then there is
the channel assigned in the centralized simulation for 20 nodes, the next one is
the assignment results for the centralized simulation with 30 nodes. The other
two columns are the same but for coordinated simulation.
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Figure 5.11: Simulation Results with 20 Nodes - Centralized.

Figure 5.12: Simulation Results with 20 Nodes - Coordinated.
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Table 5.9: Results 20 and 30 nodes without neighbours

Node Cent Cent Coord Coord
n0 6 11 1 1
n1 1 1 11 6
n2 11 1 11 1
n3 11 1 11 11
n4 6 1 6 11
n5 1 11 6 6
n6 6 1 11 11
n7 1 11 1 6
n8 11 1 11 11
n9 6 6 6 11
n10 1 1 11 11
n11 1 6 6 11
n12 6 1 11 6
n13 11 6 11 6
n14 6 1 6 11
n15 1 1 6 11
n16 1 6 11 6
n17 1 1 6 11
n18 11 6 11 11
n19 6 11 6 6
n20 6 11
n21 11 11
n22 1 11
n23 11 6
n24 6 11
n25 6 6
n26 6 11
n27 11 1
n28 11 11
n29 1 11
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From the information in Table 5.9 we have that eight nodes are in channel
1, seven nodes are in channel 6 and five nodes are in channel 11. From the
information in Table 5.10 we have that ten nodes are in channel 11, eight nodes
are in channel 6 and two nodes are in channel 1.

The most important result is that nodes (APs) in the centralized solu-
tion do not have interference. For example, lets look at node n0. n0 was
assigned channel 6. The neighbors of n0 are: node n10 with channel 1, node
n5 with channel 1, node n3 with channel 11, node n17 with channel 1 and node
n8 with channel 11. As another example look at node n15. n15 was assigned
channel 1. The neighbors of n15 are: node n18 with channel 11, node n8 with
channel 11 and node n13 with channel 11.

Over the entire graph there are not neighbours sharing the same color.
Now, consider the coordinated solution. There are six nodes (APs) with the

same color as at least one neighbor (in the same channel). The nodes are n10,
n11, n8, n18, n17 and n16. For example, lets look at node n10 that was assigned
channel 11. One of its neighbors is node n8 that is in channel 11 too. As another
example consider node n17 that was assigned channel 6. Its neighbor node n11
is in channel 6 too. The interference level of the entire system is 4, 77 with an
average value of 0, 238 per node.

5.8.2 Graph with 30 Nodes

In Figure 5.13 you can see the state of the graph after the centralized run com-
pletes and in Figure 5.14 you can see the state of the graph after the coordinated
run completes.

Figure 5.13: Simulation Results with 30 Nodes - Centralized.

Here again we can see that nodes (APs) in the centralized solution
does not have interference. While in the coordinated solution we have six
APs that present interference. The total interference level in the system is
2, 1380952381.
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Figure 5.14: Simulation Results with 30 Nodes - Coordinated.

5.8.3 Graph with 20 Nodes plus 5

In Figure 5.15 you can see the state of the graph after the centralized run com-
pletes and in Figure 5.16 you can see the state of the graph after the coordinated
run completes.

In this graph nodes name that start with the letter m are the neighbors node
(nodes not running RAN System). These nodes are: m20, m21, m22, m23 and
m24. To these nodes we have assigned a channel by hand (we set the state of
the node hard coded in DisJ simulator). m20 and m23 have channel 11, m21
and m24 have channel 1 and m23 channel 6. For these nodes the channels are
fixed, but they produce interference.

Figure 5.15: Simulation Results with 20 nodes plus 5 neighbors - Centralized.

In Table 5.10 we list the channel assignment after simulation run when we
add neighbor nodes to the graph, ie nodes that are not running RAN System.
One thing to note here is that the coordinated solution does not assign channel
1 to any node. In this simulation, centralized results get an interference value
greater than zero. But if you look carefully in the Table 5.10 and graph in
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Figure 5.16: Simulation Results with 20 Nodes plus 5 Neighbors - Coordinated.

the Figure 5.15 you can see that only one node (node n0) has interference. In
Table 5.10, considering the second column for n0 you can see that the channel
assigned is 11.

The neighbors of node n0 are n1 in channel 6, n8 in channel 1. But also has
three “external” neighbor nodes. Nodes m20 in channel 11, m23 in channel 11
and m24 in channel 1. Is the interference produced by the nodes m20 and m23
that cause the system to have an interference greater than zero, measured in
node n0. All others node in our domain, does not have interference.

While the centralized approach has a good result as expected, because it
has the knowledge of the entire network to run the backtracking algorithm,
the coordinated approach has demonstrated some problems. As we mention
before, if you look at fourth column in Table 5.10 you can see that the result
only assign channels 6 and 11 in the coordinated solution. This leads that
seven nodes present interference producing a total interference value equal to
6, 3571428571. The nodes with interference are: n10, n0, n8, n6, n19, n14 and
n16. Looking at node n10 we can see that the channel assigned is 11. Their
neighbors are node n1 in channel 6, node m22 in channel 6, n3 in channel 6,
n19 in channel 11, n6 in channel 6 and n16 in channel 11. This mean that
node n10 has interference from nodes n19 and n16. And the other way is also
true. n19 has interference from n10 although with different quality and n16 has
interference from n10 too.

Lets review our final simulation.

5.8.4 Graph with 30 Nodes plus 10

In Figure 5.17 you can see the state of the graph after the centralized run com-
pletes and in Figure 5.18 you can see the state of the graph after the coordinated
run completes.

In this simulation we have similar results to previous one. In the centralized
approach the total measured interference level is 3, 9857142857. A very low level
considering the amount of nodes in the environment (forty nodes in total). In
the third column in Table 5.10 you can see the channel assignment as a result
of the centralized simulation. In thirty nodes managed by us, only four nodes
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Table 5.10: Results 20 and 30 nodes with neighbors

Node Cent Cent Coord Coord
n0 11 6 11 11
n1 6 1 6 11
n2 6 1 6 11
n3 6 1 6 11
n4 1 11 11 6
n5 1 6 11 6
n6 6 6 6 6
n7 1 6 11 6
n8 1 1 11 11
n9 1 11 11 6
n10 11 6 11 11
n11 1 1 11 11
n12 1 1 11 11
n13 1 1 11 11
n14 11 6 6 6
n15 1 6 11 11
n16 1 1 11 11
n17 6 1 6 11
n18 1 11 11 6
n19 1 1 11 11
n20 6 6
n21 1 11
n22 6 6
n23 11 11
n24 1 11
n25 6 6
n26 1 11
n27 1 11
n28 1 11
n29 1 11

Figure 5.17: Simulation Results with 30 Nodes plus 10 Neighbors- Centralized.
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Figure 5.18: Simulation Results with 30 Nodes plus 10 Neighbors- Coordinated.

result with interference: n23, n22, n0 and n20.
In contrast, the coordinated solution present bad results. The total measured

interference level in this case is 11, 1714285714. A much higher value than
3, 9857142857. Again, if you look at the fifth column in Table 5.10 you can see
that the algorithm only assign channels 6 and 11 in the coordinated solution.
This yields that more than eleven nodes have interference.

In the following section we present a chart comparing the behavior of the
coordinated solution versus centralized solution in the simulations.

5.8.5 Summary of Simulation Results

In this section we present a summary of the fourth simulation scenarios com-
paring the results of the coordinated implementation against the centralized
implementation.

In chart 5.19 we present an average interference level in each node. The
vertical axis is the measured interference level.

The horizontal axis present four points, each one representing a simulation
scenario: the simulation with twenty nodes (section 5.8.1), the simulation with
twenty nodes and five “external” nodes (section 5.8.3), the simulation with thirty
nodes (section 5.8.2) and the simulation with thirty nodes and ten “external”
nodes (section 5.8.4).

In each point of the horizontal axis there are two bars. The blue color corre-
sponds to the results in the centralized simulation and the red color corresponds
to the results in coordinated simulation.

Clearly the centralized solution outperform the coordinated solution. More-
over, in chart 5.20 where we present the total interference level of the entire
network there is a clear gain if we use the centralized approach.

We can conclude that if we have the opportunity to connect the network
is worth to attach a computer and run the centralized implementation that
outperform the coordinated simulation. If we cannot attach a computer to the
network then the coordinated solution can be deployed with the knowledge that
it not produce optimal results. But it decrease the interference level with respect
to the initial.
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Figure 5.19: Average Interference Level.

Figure 5.20: Total Interference Level.
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5.9 Scalability conclussions

Usually, in distributed computation two types of measure are used: the amount
of communication activities and the time required by the execution of a com-
putation. They can be seen as measuring costs from the system point of view
(how much traffic will this computation generate and how busy will the system
be?) and from the user point of view (how long will it take before I get the
results of the computation?).

To measure the amount of communication activities, the most common func-
tion used is the number of message transmissions M, also called message cost.
So in general, given a protocol, we will measure its communication costs in terms
of the number of transmitted messages.

The other important measure of efficiency and complexity is the total execu-
tion delay, that is, the delay between the time the first entity starts the execution
of a computation and the time the last entity terminates its execution. Note
that time is here intended as the one measured by an observer external to the
system and will also be called real or physical time. In general, there is no
assumption about time except that communication delays for a single message
are finite in absence of failure. In other words, communication delays are in
general unpredictable. For this reason, we only say here that the simulations
takes less than five minutes to produce results. Hence, we will calculate the
communication costs of the algorithms by determining the number of message
transmissions.

First of all, let us determine the number of message transmissions for the
coordinated strategy. In this calculation we will omit the trap notification mes-
sages send by the monitoring agent, rmoon, to its own pdp because it is internal
to a node, and will not influence the cost.

In this solution, each service (pdp, pep and rmoon) running in each of the
Access Points send a suscribe message to receive messages routed to them. So,
we have: 3∗|V | where |V | is the number of Access Points running the algorithms.

Looking at the leader node we can observe that, first it send a broadcast
message, and then for each node the leader send a notification message request-
ing to assign a channel. There is also a notification message for his own pep.
Then, we have: 1 + |V |, where 1 is for the broadcast message.

Now, considering the rest of the Access Points, we can observe that each
node respond to the broadcast message (|V | − 1) with the level of interference
measured by the node and then, each node reply to the assign channel message
with an OK notification message (|V | − 1). We can consider the notification
message from each pdp to it’s own pep instructing to change channel: |V | − 1

So, the total number of messages transmitted in the coordinated solution is:

M [Coordinated] = 3 ∗ |V |+ 1 + |V |+ 3 ∗ (|V | − 1) = 7 ∗ |V | − 2

Hence the total number of messages transmitted in the coordinated solution
is O(|V |).

Then, lets examine the total number of messages transmitted in the cen-
tralized solution. In this solution, the central node broadcast a message to all
Rmoon services in the network. Then, all Rmoon services send the response
back to the central node. Thus, we have 1 + |V |, where 1 is for the broadcast
message.
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Finally, after computing the best channel assignment for each node, the
central send to each pep in every Access Points the channel that the node must
operate. For this last communication, the number of messages is |V |

So, the total number of messages transmitted in the centralized solution is:

M [Centralized] = 1 + |V |+ |V | = 2 ∗ |V | − 1

In this case, the total number of messages transmitted in the centralized
solution is O(|V |).

The difference between the two approaches is in the coefficient of |V |. In
conclusion, the cost of both algorithms have the same order, and are determined
by the number of Access Points.
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Chapter 6

Conclusions and Future

Work

This chapter presents the main conclusions of this thesis and proposes guidelines
for future works.

6.1 Conclusions

The performance of dense wireless networks depends on the channel assign-
ments between neighboring access points (APs). The limited number of non-
overlapping channels may lead to severe interference scenarios if no appropriated
spectrum planning is employed. The IEEE 802.11b/g standards provide only a
limited number of non-overlapping channels, creating the need to design a chan-
nel assignment strategy to re-use these channels. Additionally, in dense urban
areas it is usual to find wireless networks scenarios with interfering APs belong-
ing to different administrative domains. Moreover, in many practical scenarios,
like residential deployments in dense urban areas, the interfering WLANs belong
to different administrative domains

We did an in depth review of the state of the art in chapter 2 where we
showed that this topic is important not only from the academic point of view
but also is important to the industry. Main companies in the field, like Cisco,
Aruba and Meru have guidelines of how to setup a high density wireless network.
Then we presented a detailed view of the academic research where there are a
variety of research lines. A channel assignment strategy can be classified as
static or dynamic. The dynamic strategy assumes that the network interface
can switch the communication channel using a coordinated or uncoordinated
approach. From a different perspective the strategies could also be classified as
a centralized implementation with one node having the knowledge of the entire
network or as a distributed solution.

We formalized the problem deriving an objective function:

Minimize
Lran(G,C) =

∑

∀e=(api,apj)∈E∧api∈V ′

Il(api, apj)
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where V’ is a set of AP belonging to our administrative domain and Il is the
interference that api perceived the signal emitted from apj .

Afterwards, we presented three different solutions to the problem of channel
assignment. We can make a correspondence between our proposed strategies
and the classification we did in the state of the art study:

• RAN System is a rule based system similar to the one on section 2.2.6.

• based on what we found in the literature as Least Congested Channel we
developed an uncoordinated solution, similar to the 2.2.6.

• coordinated solution with a philosophy similar to the 2.2.7.

• centralized solution that is in the same direction as those presented in
2.2.3.

We did a testbed deployment of the three strategies with ten access points
and we obtained similar results. We showed in table 5.8, in section 5.4 the
calculated interference level in each implementation. With the uncoordinated
solution performing a little better than the others. The value of the Lran for the
uncoordinated solution was below the values for the coordinated and centralized
solution. But the difference between results in the three strategies are not
significant. We think that this could happen because of the intermittence in the
output produced by the iwlist command.

During the testbed of the uncoordinated implementation we observed that
this solution present oscillatory issues. For this reason in chapter 4 we presented
a feedback control system applied to the uncoordinated strategy. This way we
could demonstrate that is viable to control the oscillatory issues in autonomic
manner. We need to set a desired values for the amount of channel changes per
unit of time (for example one hour) and the system will adapt a threshold value
to meet the objective. We also showed testbed results to evaluate the proposal
getting promising results that must be verified with more scenarios to get more
statistics and thus get more robust conclusions.

Then we did a thorough review of the coordinated and centralized strategies
using DisJ simulator. We have found that the centralized solution outperform
coordinated in all cases.

We can summarize a comparison between the strategies as follows:

• UnCoordinated.

1. There is no need of a communication infrastructure between Access
Points.

2. Good results in testbed, but present oscillatory issues.

3. The oscillatory issues can be controlled by using a feedback control
technique.

4. Is scalable, because each node run in isolated mode.

5. No point of failure. If one node fail, that node will keep operating in
the same channel without affecting the rest.

• Coordinated
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1. Needs a communication infrastructure between Access Points.

2. Produce results not so good as the centralized solution.

3. Relies on leader node that can be determined dynamically.

4. One point of failure. But, although not implemented, we can recover
by recalculating the leader.

• Centralized

1. Needs a communication infrastructure between Access Points.

2. Produce best result because of the knowledge of the composition of
the network by the central node.

3. Relies on a central node that must be setup beforehand.

4. One point of failure.

So the conclusion is that if there is a chance to connect the APs then the
best solution is to use the centralized implementation. It has good results and
does not present oscillatory problems. If APs cannot be connected then the
uncoordinated is a good alternative because we could demonstrate that the
oscillatory issues can be controlled.

6.2 Future Work

Although the coordinated solution prove to be a valid alternative further in-
quiries and studies are needed to improve and attain better results. We suggest
that new research pursue new veins of study such as the adjustment in the algo-
rithm in order to achieve lower values that minimize the function Lran results.
One thing that must be added in the protocol is that when the leader instruct
a node to assign a channel then the leader must send the list of APs (their mac
address) that already have the channel assigned. In the current implementation
a node when instructed by the leader scan the environment an select the chan-
nel with less interference, but if the leader sends to the access point the list of
nodes that already have been switched their channels then the device can select
the channel with more intelligence. This way we believe we can increase the
performance of the coordinated solution.

Another issue to improve that is related to the coordinated implementation
is the leader election. As we mention in section 3.4.1 leader in RAN System
is done manually during set up. We could implement one of the algorithm
described in the book [41]. If -as the research group- we will be using RAN
system for other purpose this can be a good enhancement to the system.

In future research it is also necessary to tune our testbed implementation,
considering the intermittence of the output of the iwlist command. It might be
useful to do a cache of the output for some period of time. If one AP appears
listed in the output we can renew the time to live in the cache, but if the amount
of time elapsed and the AP that is already cache does not appear again, then
we can remove it from the cache. With this we are sure that the centralized
approach will outperform the uncoordinated solution.

At the end of the chapter 4 we showed promising results of the feedback
control technique applied to our un-coordinated solution to bound the oscillatory
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issues. We did this in a small and unique testbed environment. We believe that
to get more accurate results more scenarios must be deployed on the testbed.

Also, we can do a real deployment and test the system with many users.
For example if possible we can try to deploy the solution in a classroom faculty
in the Computer Networks course and ask the students to bring their laptops,
tablets or cell phones, and monitor the association of clients to APs. We can
set up a tool to measure the throughput, the packet loss and the likes.

Finally, there is another member of the Mina Research group [9] that is doing
a research in dense wireless network by handling the transmission power of the
APs. An interesting work would be to integrate both results. In this respect,
we can implement a combined solution by trying to assign the best channel
distribution controlling the transmission power of the APs in order to reduce
interference. Hopefully with this combined approach we can approximate to an
optimal solution.
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Appendix A

Utilities Implementation

As was mentioned in 3.2.2 four operations needs to be available both in the
testbed and the simulation. These operations must have the same output be-
cause we wish the same version of the RAN System to run in the testbed and
in the simulation, with the only change presented in a configuration file where
we point to the correct implementation. In this chapter we will show the imple-
mentation in the testbed using Linux commands available in openwwrt and the
implementation in the simulation where we create java programs that mimic
Linux commands and can be called from a shell line using java command line.

A.1 TestBed Utilities Implementation

The implementation of the fourth operations in the testbed are explained in the
following subsections

A.1.1 GetAddress

We create a shell script file named get address.sh with the following command:

ifconfig wlan0

The output of the above command has the format:

wlan0 Link encap:Ethernet direccinHW 68:a3:c4:85:84:31

Direc. inet:198.18.0.4 Difus.:198.18.0.255 Msc:255.255.255.0

Direccin inet6: fe80::6aa3:c4ff:fe85:8431/64 Alcance:Enlace

ACTIVO DIFUSIN FUNCIONANDO MULTICAST MTU:1500 Mtrica:1

Paquetes RX:2339 errores:0 perdidos:0 overruns:0 frame:0

Paquetes TX:1847 errores:0 perdidos:0 overruns:0 carrier:0

colisiones:0 long.colaTX:1000

Bytes RX:1955831 (1.9 MB) TX bytes:367147 (367.1 KB)

Lua implementation parse the output looking for the mac address as the
identification of the node, this is the piece of information:

HW 68:a3:c4:85:84:31
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A.1.2 GetChannel

We create a shell script file named get channel.sh with the following command:

iwlist wlan0 channel

The output of the above command has the format:

wlan0 13 channels in total; available frequencies :

Channel 01 : 2.412 GHz

Channel 02 : 2.417 GHz

Channel 03 : 2.422 GHz

Channel 04 : 2.427 GHz

Channel 05 : 2.432 GHz

Channel 06 : 2.437 GHz

Channel 07 : 2.442 GHz

Channel 08 : 2.447 GHz

Channel 09 : 2.452 GHz

Channel 10 : 2.457 GHz

Channel 11 : 2.462 GHz

Channel 12 : 2.467 GHz

Channel 13 : 2.472 GHz

Current Frequency:2.432 GHz (Channel 5)

Lua implementation parse the output looking for last line of the output.

A.1.3 GetCellsInRange

We create a shell script file named get cells in range.sh with the following
command:

iwlist wlan0 scan

The output of the above command has the format:

wlan0 Scan completed :

Cell 01 - Address: 00:25:12:6D:17:3D

Channel:5

Frequency:2.432 GHz (Channel 5)

Quality=61/70 Signal level=-49 dBm

Encryption key:on

ESSID:"TuleWiFi"

Bit Rates:1 Mb/s; 2 Mb/s; 5.5 Mb/s; 11 Mb/s

Bit Rates:6 Mb/s; 9 Mb/s; 12 Mb/s; 18 Mb/s; 24 Mb/s

36 Mb/s; 48 Mb/s; 54 Mb/s

Mode:Master

Extra:tsf=0000022f26857718

Extra: Last beacon: 672ms ago

IE: Unknown: 000854756C6557694669

IE: Unknown: 010482848B96

IE: Unknown: 030105

IE: Unknown: 0706555920010B1E

IE: Unknown: 2A0100

IE: IEEE 802.11i/WPA2 Version 1

Group Cipher : TKIP

Pairwise Ciphers (1) : CCMP

Authentication Suites (1) : PSK

IE: Unknown: 32080C1218243048606C

IE: WPA Version 1

Group Cipher : TKIP

Pairwise Ciphers (1) : TKIP

Authentication Suites (1) : PSK

Cell 02 - Address: A0:EC:80:50:68:A6

Channel:1

Frequency:2.412 GHz (Channel 1)

Quality=29/70 Signal level=-81 dBm

Encryption key:on

ESSID:"Mathias"

Bit Rates:1 Mb/s; 2 Mb/s; 5.5 Mb/s; 11 Mb/s; 18 Mb/s

24 Mb/s; 36 Mb/s; 54 Mb/s
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Bit Rates:6 Mb/s; 9 Mb/s; 12 Mb/s; 48 Mb/s

Mode:Master

Extra:tsf=000003129fcb8c55

Extra: Last beacon: 880ms ago

IE: Unknown: 00074D617468696173

IE: Unknown: 010882848B962430486C

IE: Unknown: 030101

IE: Unknown: 0706555320010B1E

IE: Unknown: 2A0104

IE: Unknown: 2F0104

IE: IEEE 802.11i/WPA2 Version 1

Group Cipher : CCMP

Pairwise Ciphers (1) : CCMP

Authentication Suites (1) : PSK

IE: Unknown: 32040C121860

IE: Unknown: 2D1A1E181BFFFF0000010000000000000000000000000000

IE: Unknown: 3D16010D1600000000000000000000000000000000000000

IE: Unknown: DD6A0050F204104A0001101044000102103B000103104700

IE: Unknown: DD090010180203F02C0000

IE: WPA Version 1

Group Cipher : CCMP

Pairwise Ciphers (1) : CCMP

Authentication Suites (1) : PSK

IE: Unknown: DD180050F2020101000003A4000027A4000042435E0062322F00

Cell 03 - Address: ......

Lua implementation parse the output then iterates over each Cell. In each
iteration it takes the lines:

Cell 02 - Address: A0:EC:80:50:68:A6

Channel:1

Frequency:2.412 GHz (Channel 1)

Quality=29/70 Signal level=-81 dBm

then it store the values in a table like structure with the identification, the
channel and the quality of the signal.

A.1.4 SwitchChannel

We create a shell script file named switch channel.sh with the following com-
mand:

uci set wireless.radio0.channel=$1

uci commit wireless

wifi

ifconfig wlan0 down

ifconfig wlan0 up

first we set the new channel in the wireless configuration of the access points
with the help of uci then we down the wireless interface and start it again so
the access point start operating in the new channel.

A.2 Simulation Utilities Implementation

As we mention before, the idea as that the same Lua components that run inside
an access point must run inside the simulation. To do this we need to implement
a set of operations that produce the same output as the operations presented
in section A.1.

There are a couple of conventions for writing a distributed algorithm with
DisJ that a programmer has to follow. The entry class for the protocol must
extend distributed.plugin.runtime.engine.Entity. State for Entity in distributed
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protocol must be public static final int and the name of the state must begin
with state case insensitive.

DisJ library has provided standard programming interfaces for programmer
to use in their algorithms. In particular they have the following methods:

1. public String getName(): return the name of an entity.

2. public int getState(): is for checking a current state of an entity.

3. public void became(int state): is for setting a state of an entity to be
at a given state.

4. public List< String > getPorts(): is list of neighbor nodes name of an
entity.

5. public int getLocationX(): get X coordinate of a node represented in
Graph Editor

6. public int getLocationY(): get Y coordinate of a node represented in
Graph Editor

7. public void receive(String incomingPort, IMessage message): to
receive a message

8. public void sendTo(String portLabel, Serializable message) : send
a given message to a given neighbor

The operations are written as java programs that can be executed as shell
script, this way in a configuration file we will have for the testbed:

command_Switch_Channel = "/sbin/switch_channel.sh "

command_Get_Cells_In_Range = "/sbin/get_cells_in_range.sh"

command_Get_Channel = "/sbin/get_channel.sh"

command_Get_Address = "/sbin/get_address.sh"

and for the simulation:

command_Switch_Channel = "java -cp SimulatorHelper.jar

uy.edu.fing.mina.agriad.SimulatorHelper.SwitchChannel 10181 "

command_Get_Cells_In_Range = "java -cp SimulatorHelper.jar

uy.edu.fing.mina.agriad.SimulatorHelper.GetCellsInRange 10181"

command_Get_Channel = "java -cp SimulatorHelper.jar

uy.edu.fing.mina.agriad.SimulatorHelper.GetChannel 10181"

command_Get_Address = "java -cp SimulatorHelper.jar

uy.edu.fing.mina.agriad.SimulatorHelper.GetAddress 10181"

The last argument of the java program call is a socket port number, because
each node graph when they are awaken start a server socket to listen for request.

Then from lua script file we just call:

local t = run_shell(configuration.command_Get_Address)

We need to parse t to get the Address. Again, to have only one implemen-
tation of lua file both commands the one for the testbed and the one for the
simulation must produce the same output.

To implement the commands for the simulation we define the states of the
entities as the channel of the AP, so we define:
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public static final int STATE_CHANNEL_UNO = 1;

public static final int STATE_CHANNEL_SEIS = 6;

public static final int STATE_CHANNEL_ONCE = 11;

A.2.1 GetChannel

The java program connects (as we explained this connection is via socket) to
the node graph and ask for the channel. The entity using the API calls the
method public int getState() to get the channel and send it back to the java
program that produce the same output as GetChannel for the testbed except
that in the last line:

Current Frequency:2.432 GHz (Channel 5)

it change the values according to node sate.

A.2.2 GetAddress

The java program connects to the node graph and ask for the address. The
entity using the API calls the method public String getName() to get the
address and send it back to the java program that produce the same output as
GetAddress for the testbed except that in the line:

wlan0 Link encap:Ethernet direccinHW 68:a3:c4:85:84:31

it change the value of the mac address for the node name:

wlan0 Link encap:Ethernet direccinHW nodename1

A.2.3 SwitchChannel

The java program connects to the node graph and ask the entity to change
channel passing through the socket interface the new channel number to switch.

The entity using the API calls the method public void became(int state)
to change channel. For DisJ this is only a change in the state of the entity.

A.2.4 GetCellsInRange

The three commands presented before were very easy to implement and there
is a good analogy between the simulation and real implementation. The iden-
tification of an access point is your mac address while the identification of an
entity is its node name. The channel the access point is operating on is the
state of an entity and changing the channel in a access point is equal to change
the state in an entity.

The problem arise in this more complex command. To implement this com-
mand we study the source code of iwlist implementation and look for the be-
havior when it is invoked with the scan parameter. iwlist and the other wireless
tool provide a common front end to different wireless device drivers that sup-
port Linux Wireless Extension (WEXT). Each driver will register handlers with
WEXT that implement the device specific operations defined by this interface.

iwlist make use of the traditional ioctl. First it open a socket:
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/* Create a channel to the NET kernel. */

sock = socket(AF_INET, SOCK_DGRAM, 0);

Then it start scanning:

/* Initiate Scanning */

struct iwreq wrq;

/* Set device name */

strncpy(wrq.ifr_name, "wlan0", IFNAMSIZ);

/* Do the request */

ioctl(skfd, SIOCSIWSCAN, &wrq)

and finally it get the results

/* Try to read the results */

wrq.u.data.pointer = buffer;

wrq.u.data.flags = 0;

wrq.u.data.length = buflen;

/* Set device name */

strncpy(pwrq.ifr_name, "wlan0", IFNAMSIZ);

/* Do the request */

ioctl(skfd, SIOCGIWSCAN, &wrq)

if(wrq.u.data.length)

{

//print results.

}

where SIOCSIWSCAN and SIOCGIWSCAN are defined in wireless.h as
follow:

#define SIOCSIWSCAN 0x8B18 /* trigger scanning (list cells) */

#define SIOCGIWSCAN 0x8B19 /* get scanning results */

The important point to note here is that the ioctl calls are implemented in
the drivers module so the actual function call for ioctl using SIOCGIWSCAN
will invoke a function defined in the drivers module. In other words the ioctl
calls are implemented in the WEXT module but the code that handles this
command is implemented in the device driver. When a user space application
makes an ioctl, WEXT looks up the device drivers handler and runs it.

Note that the device is free to implement the scan how ever it chooses. For
example, it can passively listen for beacons or actively scan by sending out probe
requests.

Because of this we choose our own implementation of the iwlist wlan0 scan.
The only constraint is to keep tied with the output.

The cells in range of a node (an entity in DisJ) are the result of invoking
public List< String > getPorts(). The meaning of this is that the cells that
can interfere with the node (the nodes that are seen by the access point) are
the list of neighbor of the entity.

This is a direct relationship with the real implementation. As we said for
the channel and node states, mac address and node names then we can say that
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the interferers access points are the list of neighbor of the node. The hard part
is to implement for each cell listed in the command result the following output
line:

Quality=29/70 Signal level=-81 dBm

Our implementation in the simulation is a function of the distance between
the nodes in the graph drawn in DisJ. Remember from the API of DisJ the
methods public int getLocationX() and public int getLocationY() to get
the node position. When a node is requested for his cells in range it in turn
request each neighbor (using public void sendTo(String portLabel, Seri-
alizable message) asking for their coordinates. The portLabel parameter in
DisJ terminology is the name of a neighbor node and the message parameter
usually is a any String. Then the node can compute the distance to each neigh-
bor and this way it can send a response with the list of cells and the quality of
the signal.
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