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Resumen

En esta tesis se estudian modelos y algoritmos para el diseño óptimo de recorridos de
buses en sistemas de transporte público urbano colectivo. El problema conocido como
TNDP (Transit Network Design Problem) consiste en determinar el número y el itinerario
de ĺıneas de transporte público y sus correspondientes frecuencias, en términos de una
infraestructura dada de calles y paradas. Las soluciones deben satisfacer una demanda
origen-destino dada y deben tener en cuenta los intereses de los usuarios y de los operadores
y un conjunto dado de restricciones f́ısicas, poĺıticas y de presupuesto.

Se propone una formulación expĺıcita de programación lineal entera mixta, que incor-
pora el tiempo de espera y la existencia de múltiples ĺıneas en el comportamiento de los
pasajeros. Seguidamente se discute el impacto en la estructura del modelo, al agregar re-
stricciones de transbordos y de capacidad de la infraestructura y de los buses. El modelo
se aplica (usando un solver estándar) a casos de prueba muy pequeños, aśı como a uno
real relativo a una ciudad pequeña que consta de 13 ĺıneas de buses.

Con el propósito de atacar casos de mayor tamaño, se propone un algoritmo construc-
tivo ávido que produce un conjunto de recorridos que son convenientes tanto para los
usuarios como para los operadores, teniendo en cuenta restricciones de transbordos. Uti-
lizando un caso de prueba real, se muestra que el algoritmo propuesto mejora resultados
del estado del arte.

Como una extensión del algoritmo constructivo, se representa la existencia de los obje-
tivos en conflicto de usuarios y operadores usando un modelo de optimización combinatoria
multi-objetivo para el TNDP. Este nuevo modelo se resuelve con una metaheuŕıstica que
explota la naturaleza multi-objetivo del problema para resolverlo eficientemente. Uti-
lizando un caso de prueba de referencia existente en la literatura y uno real, se muestra
que el algoritmo propuesto mejora resultados del estado del arte y produce soluciones de
caracteŕısticas comparables a las del sistema real.

Los valores objetivo del algoritmo constructivo y de la metaheuŕıstica se comparan
con valores correspondientes a soluciones de referencia; en el primer caso se compara
contra soluciones óptimas obtenidas con la formulación matemática, mientras que para el
segundo se compara contra la solución que opera el sistema de transporte público de la
ciudad correspondiente al caso de prueba real.

Finalmente se discuten las relaciones entre las diferentes contribuciones de esta tesis y
se comentan varias cuestiones relacionadas a la aplicación de las metodoloǵıas propuestas
a casos reales. También se formulan algunas opiniones y recomendaciones en relación a
futuros desarrollos de éste tópico de investigación.

Palabras clave: Transporte público, Diseño óptimo de recorridos y frecuencias de buses,
TNDP, Programación lineal entera mixta, Heuŕısticas, Caso de prueba real.
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Abstract

In this thesis we study models and algorithms for the optimal design of bus routes in urban
public transportation systems. The problem known as TNDP (Transit Network Design
Problem) consists in determining the number and itinerary of public transportation lines
and their corresponding frequencies, in terms of a given infrastructure of streets and
stops. The solutions should satisfy a given origin-destination demand and should take
into account the interests of users and operators and a given set of physical, policy and
budgetary constraints.

We propose an explicit mixed integer linear programming formulation which incorpo-
rates the waiting time and the existence of multiple lines in the behavior of the passengers.
Then, we discuss the impact in the structure of the model of adding transfer, infrastruc-
ture and bus capacity constraints. We apply the model (using a standard solver) to very
small test cases as well as to a real one, related to a small-sized city comprising 13 bus
lines.

In order to deal with cases of larger sizes, we propose a greedy constructive algorithm
that produces a set of routes that are convenient for both users and operators, taking
into account constraints related to transfers. By using a real test case, we show that the
proposed algorithm improves results from the state of the art.

As a further extension, we represent the existence of the conflicting objectives of users
and operators using a multi-objective combinatorial optimization model for the TNDP.
This new model is solved by a metaheuristic that exploits the multi-objective nature of
the problem in order to solve it efficiently. By using a benchmark test case and a real
one, we show that the proposed algorithm improves results from the state of the art and
produces solutions with characteristics comparable to the real one.

Objective values of both constructive and metaheuristic algorithms are compared with
values corresponding to reference solutions; for the first one we compare against optimal
solutions obtained with the mathematical formulation, while for the second one we com-
pare with the solution operating the public transportation system of the city corresponding
to the real test case.

Finally we discuss the relationships between the different contributions of this thesis
and we comment several issues related to the application of the proposed methodologies
to real cases. We also give some opinions and recommendations concerning future devel-
opments in this research field.

Keywords: Public transportation, Optimal design of bus routes and frequencies, TNDP,
Mixed integer linear programming, Heuristics, Real test case.
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Chapter 1

Introduction

This thesis is about models and algorithms for the optimal design of routes (or lines) in
urban public transportation systems (hereafter, public transportation systems). In most
cities of the world there are public transportation systems, either conceived as a service
that should be provided to the inhabitants (like electricity or drinking water), as a tool for
urban planning (used to guide land use or to alleviate street congestion), or as business of
private companies.

A public transportation system is composed by an infrastructure and services that
operate over it. Those services are provided to persons that need to travel along the city
(hereafter, users). When designing and implementing the system, two types of monetary
costs arise: fixed costs due to construction of the infrastructure and variable costs due
to operation of the services. These costs are perceived by the whole society; in the most
common case, the government builds the infrastructure, the operators (companies) provide
the services and the users pay a given fare to access such services. There is another cost
which is not monetary and is perceived by the users: the travel time. The total cost of
the system is the sum of the monetary fixed and variable costs plus the travel time of all
users.

When designing a whole public transportation system (either from an existing one
or from scratch), many decisions should be taken, which impact on the total cost of the
system. That process of decision making faces the existence of many feasible alternatives
which result in different levels of total cost. The design of a public transportation system
can be modeled as an optimization problem, in particular as a cost minimization one.
However, such a problem is intractable as a single monolithic unit, given the number
of variables, relations among them and even conflicting objectives. For this reason the
problem is divided in parts of smaller size, in such a way that the resulting problems can
be tractable. Usually that division corresponds to the different scopes (and their internal
organization) where decisions are taken [98]. Also, the subproblems belong to the different
planning stages of the whole system, defined according to the time horizon where they
take place, namely strategic (long term), tactical (medium term) and operational (short
term) [33].

Among the different existing technologies to construct and operate a public trans-
portation system, this work is restricted to systems based on buses, where we assume an
already available infrastructure (street network, stops). Therefore we do not consider de-
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cisions related to building new infrastructure (for example, exclusive bus corridors, tram
or underground networks); this implies that fixed costs are not part of our models. The
subproblems that are tackled during the planning of a public transportation system based
on buses, according to the division proposed in [18] are:

1. Design of routes, where one should decide the number of lines and the itinerary of
each one in terms of the street network, in such a way that the demand of travel
between different points of the city is satisfied.

2. Frequency setting, where the time interval between buses of each line is decided.
Usually these decisions are taken for different scenarios of demand, for example,
different seasons of the year or times of day.

3. Timetable construction, where one should determine the exact starting and ending
time of each bus performing every route of every line.

4. Fleet assignment. Given a timetable, it should be determined the sequence of trips
assigned to each bus, respecting constraints of available fleet and depot location.

5. Crew assignment. Drivers and other staff needed to operate each bus should be
assigned, respecting the working rules.

In most public transportation systems, problem 1 is solved within the scope of the
municipality or planning agency (hereafter, regulator), while problems 2 and 3 are solved
jointly by the regulator and the operators. Problem 1 corresponds to strategic planning
while problems 2 and 3 correspond to tactical planning. In these problems, the main
objective is to design a system which offers the highest possible level of service, with the
lowest possible cost. From the point of view of the users, such a system should satisfy the
needs of travel of all the inhabitants of the city, with the lowest possible travel time and fare
and reasonable comfort conditions. However, there are different constraints that preclude
the existence of such system: capacity of the infrastructure and buses, available budget and
other constraints resulting from the fact that the public transportation system is part of a
more complex one: the city where it is embedded. For these reasons, the regulator should
take into account all these elements when designing routes, frequencies and timetables. On
the other hand, problems 4 and 5 (corresponding to operational planning) are solved in the
context of the operators, where usually there is a single objective: cost minimization. The
five problems mentioned above are solved sequentially, therefore decisions taken in a given
stage of the sequence are conditioned by decisions taken in previous stages. Although the
division proposed in [18] suggests an ordering for solving the subproblems, that division
is not the only possible one [91]. At first sight, one may think that independently of
the division in stages and their sequencing, it is desirable to solve optimally each one of
the associated subproblems, thus contributing to the optimization of the overall public
transportation system. Actually this is not true, since there are examples which show
that by solving problems 4 and 5 simultaneously we can obtain better results than if we
solve them separately [50]. However, the current state of practice shows that it is hard
to solve simultaneously problems that involve decisions taken in different scopes; clearly
this is not the case of problems 4 and 5, which are both solved within the same scope.
Therefore, to solve problems 1, 2 and 3, the usual way is to consider a primary objective
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to be optimized, while taking care in other desirable properties of the solutions which
contribute indirectly to the optimization of 4, 5 and the overall system.

1.1 Optimization of routes

The problem of route optimization for a public transportation system is formulated in
terms of a graph, whose nodes represent intersections of streets or zones and whose arcs
represent connections between such nodes (for example, a street segment between two
consecutive intersections or a connection between two adjacent zones). The correspondence
between elements of the graph model and the reality depends on the level of aggregation
adopted. A given origin-destination matrix expresses the number of trips that should
be satisfied (each one to be performed by one person) between nodes of the graph in a
specific period of the day. A route is a sequence of adjacent nodes in the graph. The term
line is used in this work as synonymous of route, however in real systems, a line (usually
identified by a number or name from the point of view of the users) can be composed by
various routes (for example, forward and backward directions).

In general terms, the problem of route optimization is a variant of the generalized
combinatorial optimization problem of network design [76]. In that problem one should
select a subset of arcs from a given set, considering aspects like level of service, fixed and
variable costs, structural, physical and behavioral considerations (among others); these
aspects may be modeled either in the objection function or as constraints. The main
difference of the problem of route optimization for public transportation systems with
respect to the general network design problem is that in addition to determining which
arcs to include in the solution, one should determine how these arcs are combined to
form different routes. Also one should determine the frequency of each route [33], since
that variable has direct impact in the level of service to the users and in the cost of the
operators. Given that we are considering as main objective to maximize the level of service,
one should optimize a performance measure (or several ones) of a set of routes, from the
point of view of the users. Typically these measures are the travel time (a component of
the cost) and the occupancy of the buses (as a measure of comfort). The first one usually
has three components: access and egress time that represent the walking time to reach
the origin stop and the final destination of the trip respectively, waiting time at the stop
and on-board (inside the bus) travel time; also a transfer time between lines may need to
be considered. The occupancy of buses is expressed in terms of the demand (amount of
persons) that use each line in relation to the provision of such resource. The computation
of these measures require to model the perception that the users have of the “goodness”
of a set of lines; for doing that, one should “simulate” the use of the lines by the users.
This problem is modeled by a sub-model called the assignment model, which distributes
the demand over a given set of routes, assigning flows that represent how the users use
the lines. The assignment model should apply the hypothesis about the behavior of the
users with respect to a set of lines. The assignment problem has been studied as part of
the route optimization problem [70, 77, 109], the frequency optimization problem [17, 60]
or as an isolated problem [22, 30, 110]. In this thesis we do not contribute to this topic,
however the assignment model is considered as a central component of any model of route
optimization, given that usually it determines the computation of the objective function.



4 Introduction

The following hypothesis delimitate the scope of this thesis, concerning the models and
algorithms studied for route optimization:

1. The public transportation system is considered in isolation from other modes of
transportation, for example private cars. Moreover we consider a single mode of
public transportation, which is based on buses.

2. We do not consider the interactions between the public transportation system and
the dynamics of land use of the city where it is embedded.

3. The demand is considered inelastic. We assume a fixed set of users that do not have
other alternative for traveling (captive clients).

4. We do not model the impact that might cause the fare charged for using the service
of public transportation, in the behavior of the users concerning the use of the lines.
It is known that different fare structures have consequences in such behavior [124].

5. We do not consider the existence of advanced traveler information systems (ATIS),
which also have influence in the behavior of the users [97].

6. We assume that users are sensitive to the waiting time and to transfers. It is known
that certain features of some systems, like special infrastructure (bus stops or sta-
tions) and operation schemes (high frequency, coordinated timetables, ATIS), con-
tribute to decrease the negative perception that users have about waiting time and
transfers.

1.2 Literature review

In this section we review the existing literature about optimization of routes for public
transportation systems. We focus on the aspects related to mathematical models and
algorithms to solve the problem. Similar reviews with the same focus have been published
in [33, 98]. Other aspects of the problem have been considered in [59, 68].

Most works related to models and algorithms for route optimization in public trans-
portation systems are approximate methods (heuristics), based on formulations that are
not explicit. A formulation is said to be explicit if it has completely defined all the math-
ematical expressions that represent decision variables, constraints and objective function.
In some cases the problem is decomposed in subproblems that have an explicit formula-
tion; the decomposition usually consists in solving firstly the route design and then the
frequency setting.

In [109], a zonal division of the city and a graph that contains information about on-
board travel time is considered. Based on this information, a set of routes is determined
by evaluating different “skeletons” (using a procedure inspired from [70]); a skeleton is
a sequence of zones whose extremities are terminals (previously identified). In a second
stage, a minimization problem is considered, whose objective function includes the total
travel time (waiting, on-board and transfer) and a factor that penalizes the number of
standing passengers. In addition, a constraint on the fleet size (buses circulating simulta-
neously in the system) is considered; the fleet size is obtained from the duration of each
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route and its frequency. The assignment model assumes that passengers traveling between
two nodes of the graph are distributed among the fastest lines that connect both nodes.
The resulting minimization problem is solved by applying a gradient projection method.

In [35], a first procedure determines the streets of the city where the lines of public
transportation will be defined, by solving approximately a network design problem [76]. In
a second stage, a procedure creates routes until covering the whole demand, creates new
routes based on identified transfer points and finally combines routes and eliminates parts
of routes with low utilization. In the following stage, a frequency optimization problem
similar to the one considered in [70, 109] is solved.

While the studies mentioned above generate a set of routes with frequencies from an
empty set, in [77] a procedure to improve an existing system is proposed; it is based on
operations of insertion and elimination of nodes in routes and interchange of parts between
different routes. Afterwards, a model that assigns a fixed fleet of buses to the resulting
routes is applied, so as to minimize the waiting time. The assignment model used is
inspired from [22].

In [18], another model based on two stages is proposed. In the first one, an objective
function is minimized, which contains the deviation of the on-board travel time of a given
solution (set of routes) with respect to the time of the minimum cost path in the graph
that represents the streets of the city (independently of any set of routes); in addition,
the total transfer time is computed. The constraints include limits on route length and
number of routes. In the second stage, two terms are added to the objective function
considered in the previous stage: the total waiting time and the fleet size. The last term
represents the interest of the operator, therefore the model has multiple objectives, in this
case included into the same objective function using weighting factors. This work proposes
an algorithm of route generation based on a breadth first search in the street graph, that
can be used as an auxiliary subroutine to solve the proposed model.

A model based in [18] is proposed in [65], putting special emphasis in the multi-
objective characteristic of the problem. This approach seems to be reasonable, given that
in the context of strategic planning, limit values in the single objectives (for example fleet
size) may not be known beforehand. Instead, the regulator may be interested in exploring
different alternative solutions with different levels of compromise (or trade-off) between
the objectives of users and operators. To obtain such solutions efficiently, an algorithm
specially designed for this purpose is developed.

In [10], a greedy algorithm for generating routes is proposed; it produces solutions
that satisfy constraints of demand covering, introduced by this work. These constraints
state that a given proportion of the total demand should be covered with no more than
a given number of transfers; this introduces realism to the model. Demand covering con-
straints have been treated indirectly in previous works by limiting the transfers implicitly,
for example by including them in the objective function. In a related work [9], the au-
thors combine this route construction algorithm with an improvement procedure and an
assignment model [8] based on [60], to solve the route optimization problem considering
constraints of bus capacity.

All the studies mentioned above have done the main contributions to the modeling of
the problem. The solution methods used are heuristics with different degrees of knowledge
of the real problem; in some cases, solution improvement procedures are proposed, but
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concepts related to local search and neighborhoods are not explicitly mentioned. More
recently, several studies which explore new solution methods for the existing models and
variants have been published. The salient characteristic of these methods is the use of
metaheuristics [14, 56] as an optimization tool. Most of these recent studies about route
optimization for public transportation systems use already existing assignment models.
Therefore the latest contributions in the assignment aspect are located in the bibliography
specific to this topic; updated surveys can be found in [33, 69].

In [101], the authors propose a genetic algorithm to solve a variant of the model of route
optimization proposed in [9], using the assignment model presented in [8]. The algorithm
selects the “optimal” subset of routes from a pool of many possible routes, generated by
using an algorithm similar to the one proposed in [18]. In this work the frequencies are
not determined by the genetic algorithm, while in [113] they are codified as part of the
solution, therefore they are also “optimized”.

In [94], a genetic algorithm which uses several genetic operators that include problem
knowledge is proposed. The used assignment model assumes that the users select a priori
a single line for traveling from the origin to the destination; this hypothesis is not realistic,
since a user having multiple lines with identical on-board travel time, usually will take
the first one passing by the stop. The objective function of the optimization model has
an explicit formulation once the values of the assignment variables are known for each
feasible solution; this allows to compute optimal frequencies for that solution.

A stream of work considers the application of different metaheuristics to solve a variant
of the optimization model proposed in [9]; the authors apply Tabu Search [44], Simulated
Annealing [43] and Genetic Algorithms [42]. These algorithms are based on a very big pool
of routes, generated using an algorithm that computes the k minimum cost paths [122]
between pairs of nodes of the street graph. Where a neighborhood structure is needed, the
neighbors are obtained by changing one route r in the current solution, by a route that is
contiguous to r in the pool of routes. Two routes are contiguous in the pool if they have
subsequent indexes in the list of k minimum cost paths, considering the list sorted with
respect to the cost of its elements.

Usually the algorithms that tackle the route optimization problem using metaheuristics
require repeated invocations to the subroutine that implements the assignment model.
This component is critical and the consumption of computational resources is significative
with respect to the whole running time of the optimization algorithm. This is because the
assignment algorithms imply searching and enumerating paths in the solution composed
by routes. To overcome this difficulty, in [1] a parallel version of the algorithm proposed
in [113] is implemented, dedicating a computational unit to the execution of the assignment
model.

More recently, explicit mathematical programming formulations for the route opti-
mization problem have been proposed; in all cases the formulations are of mixed integer
linear programming (MILP) type.

In [120], a model that minimizes operator’s cost under constraints of bus capacity and
number of routes is proposed. The formulation has the ability of constructing routes from
edges of the graph that represent the streets; for doing that, a big number of auxiliary vari-
ables is introduced, however the total number of variables and constraints is polynomial.
The formulation is solved applying directly a MILP solver.
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The formulation proposed in [58] minimizes an objective function that combines line
cost, number of transfers and on-board travel time. The first term represents the interest
of the operators, while the other terms represent both the interest and the behavior of the
users. The different terms are weighted by coefficients that should be determined. The
constraint set includes street capacity, line length and maximum number of transfers. The
formulation is solved applying directly a MILP solver, over a set of predetermined lines.

In [107], the authors propose a multi-commodity formulation which minimizes the
on-board travel time and the number of transfers, under constraints of bus capacity and
budget. To model transfers, a particular graph structure is used, which increases the size
of the model significantly. The number of variables of the formulation is super-polynomial,
therefore the decomposition of Dantzig-Wolfe [28] is used to solve the linear relaxation.

In a similar vein, the model proposed in [15] minimizes the on-board travel time and the
operator’s cost, under constraints of bus and street capacity. In this model, two conflicting
objectives are included into the same objective function and the transfers are ignored. The
number of variables of the formulation is super-polynomial, therefore a column generation
method is used to solve the linear relaxation; then a feasible integer solution is obtained
using a heuristic procedure.

These last two studies [15, 107] prove that their respective formulations state problems
that belong to the NP-hard class. Moreover, the used assignment models are implicit in the
formulations and they model situations that are not realistic in many scenarios related to
public transportation systems based on buses; in particular they do not model the waiting
time in the behavior of the users. It is worth mentioning that in these cases where an
explicit mathematical formulation is used to model the problem, either (global) optimal
solutions or solutions with a lower bound (as a reference of distance to optimality) are
reported. None of the methods mentioned on this review which are based on heuristics
without an explicit formulation, provide this type of result; as an exception, a lower bound
for the on-board travel time component of the objective function is reported in [9].

The test cases used in all the studies mentioned above can be classified on three
types: (1) abstract cases usually small-sized, (2) cases corresponding to real cities small
or medium-sized and (3) cases corresponding to real cities of big size. Example of type 1
is the case used in [65] whose network has 8 vertices and 13 edges, while example of type
2 is the case relative to the city of Postdam, Germany used in [15] whose network has 410
vertices and 891 edges. As example of type 3 we mention the case used in [1] relative to
the city of New Delhi, India, with 1332 vertices and 4076 edges. It is worth mentioning
that the size of the graph is not directly related to the size of the city that it represents,
since it strongly depends on the level of aggregation of the data and the procedure used
to construct the case for the model of route optimization. It should be taken into account
that not only the size of the graph determines the computational cost of an algorithm to
solve this problem; also the number of nonzero elements of the origin-destination matrix
plays an important role in determining that cost. Among all the published test cases for
the problem, only the one proposed by Mandl [78] has been used as benchmark by several
authors [9, 20, 40]; part of the information of this case has been added recently to the
repository OR Library [75].

Finally we should mention on this review, several studies which are related to the
topic of this thesis, which apply to variants of the problem or to problems that are closely
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related to the route optimization for public transportation systems. In [46, 47, 121],
the interaction of the public transportation mode with other modes is modeled, while
in [61, 72], the elasticity of the demand is modeled within the model of route optimization.
In [21, 40, 80, 119], the problem of route optimization is solved without considering the
frequencies as decision variable; in all these cases the assignment model can be simplified.
The problems of stop location [63], design of limited-stop services [73] and frequency
optimization [26] share an important characteristic with the problem of route optimization:
all of them require an assignment sub-model that represents the behavior of the users with
respect to a set of lines of public transportation.

1.3 Motivation of this thesis

The main motivation of this thesis is the study of the problem of route optimization
in public transportation systems, from an Operations Research perspective. The goals
are to develop models and algorithms that can be applied to real cases related to public
transportation systems based on buses. The literature review presented in Section 1.2
allows to identify the following specific topics where interesting research can be done:

• The combinatorial characteristic and the need of representing the behavior of the
users are the main difficulties to formulate and solve the problem. The existence of
multiple objectives should also be taken into account. These issues have been already
identified by other authors in previous studies [9, 20]. However, the influence of
capacities over the behavior of the users has not been widely discussed in the context
of this problem. A relevant issue that must be taken into account is that when bus
capacities are introduced, optimizing a single measure that represents the various
actors of the problem (users, operators, regulator), usually will lead to results that
are not consistent with the behavior of the users [93].

• The existing mathematical programming formulations do not model (into the same
formulation) realistic scenarios under some of the hypothesis stated in Section 1.1,
because they do not include the waiting time in the behavior of the users and they
do not control the number of required transfers in the optimal solution.

• The methods based on heuristics without an explicit formulation do not provide an
evaluation of distance to optimality of the produced results.

• The computational experiments with cases related to real cities do not always present
details of the construction of the case (graph and origin-destination matrix), there-
fore the interpretation of the results in terms of the reality is difficult.

Given that we are dealing with a real problem which has direct impact to the society, it
is worth asking about the feasibility of application of the results of this research. Although
the literature published concerning the optimization of routes for public transportation
systems has grown in the last years, the tools used in practice to solve this problem
are much more scarce than their counterparts related to assignment models for public
transportation systems. Possible reasons for this fact are:
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• According to [98], there is a tendency to keep stable the design of routes of public
transportation in any city, mainly due to the impact that changes may have on the
users of the system.

• An optimization model is usually conceived as a normative tool, in the sense that
it produces a recommendation of decision to be taken. A set of routes completely
generated by an automatic tool based on a mathematical model is likely to be taken
with skepticism by the planner (who takes decisions in the scope of the regulator,
also referred as decision maker). The lack of trust in any model of route optimization
in some cases may be due to the perception that it is impossible to include all the
aspects of the problem and the knowledge of the planner into the model. On the other
hand, the assignment models are descriptive tools, in the sense that they provide a
picture of the use of the system by the users; these type of tools are used as decision
support systems in situations where the planner wants to evaluate quantitatively the
impact of different given alternative designs.

• The data necessary to apply a model of route optimization, in particular those
related to the demand, are very costly to obtain and they are subject to errors.
Given that the demand information is a critical input for the models, there is a risk
that errors in data propagate through the model, causing that the solution obtained
is not useful because it corresponds to a distorted scenario. Although the presence of
errors on data might justify the lack of trust in the results produced by the models,
the existing applications of descriptive tools (that use demand data intensively) in
the planning of public transportation systems are large; several commercial software
packages that include assignment models for public transportation (for example:
EMME [64], ESTRAUS [48] and VIPS [102]) have been used as decision support
systems in many cities all over the world.

• The models of route optimization for public transportation systems are difficult to
formulate and solve.

In [98] (year 1994), the authors suppose that automatic methods for generating routes
will not be used in the short term. However, in subsequent years the studies published
concerning models and algorithms for route optimization in public transportation suggest
that there is still interest (and need) of expanding the state of the art in this topic. There
is an underlying idea that it is always desirable to “facilitate” the work of the planner,
with more or less degree of automatization. In recent publications, new advances in the
mathematical modeling of the problem can be found, as well as new algorithmic techniques
(exact combinatorial optimization methods, metaheuristics) and applications to real cases
in different places like Chile [47], Germany [15], Hong Kong [112], Italy [23], Spain [100]
and United States [123].
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1.4 Contributions of this thesis

The main contributions of this thesis are the following:

• An explicit mathematical formulation for the problem.

• Approximate algorithms (heuristics) that solve some aspects of the problem.

• Application of the proposed models and algorithms to a real case and discussion of
the results.

• Implementation of a software tool that allows to apply the methodologies developed
to real cases related to small and medium-sized cities.

The developed methodologies approach the problem without requiring special local
knowledge of the reality where they will be applied, i.e., only the data required by the
models are needed. Thus, the methodologies are somehow generic and they are not strongly
biased towards a particular reality. The results are compared quantitatively, using indica-
tors that measure the performance of the solutions obtained (for example, travel time or
fleet size); we do not incorporate the judgement of the planners, neither in the generation
of solutions nor in their evaluation. This thesis does not propose advances concerning
the assignment model, however we have used such models that are realistic under the
hypothesis stated in Section 1.1. The models and algorithms studied are conceived to
be used either in the context of strategic or tactical planning of a public transportation
system; they can be used to define a completely new set of routes for the system, or to
make changes or adjustments to an existing one.

Concerning the mathematical modeling, we have developed an explicit mathemati-
cal programming formulation that includes the following aspects of the problem: (i) the
behavior of the users, taking into account the waiting time and multiple routes, (ii) con-
straints of minimum percentage of demand satisfied with a given number of transfers
(demand covering constraints) and (iii) the capacity of the infrastructure and the buses.
The consideration of these three aspects into the same formulation is a contribution to the
state of the art, since the existing formulations either do not model all these aspects or
they are not explicit. The proposed formulation allows to reason about the mathematical
structure of the problem; in particular it is useful to illustrate the difficulty of solving
the problem when including the demand covering and the infrastructure and bus capacity
constraints. For very small instances and particular cases of the problem, the proposed
formulation allows to obtain the optimal solution, using standard MILP techniques. Thus,
the formulation is useful to evaluate the distance to the global optimum of the solutions
produced by the approximate algorithms. The formulation is also applied to a real case
related to a small-sized city.

Concerning the development of algorithms, the contributions are in two directions: (i)
a greedy algorithm to construct a set of routes, which takes into account both objectives of
users and operators and demand covering constraints, and (ii) an algorithm based on the
GRASP metaheuristic [45] that solves the model of optimization of routes and frequencies
proposed in [9] with a multi-objective approach. The obtained numerical results improve
the state of the art. Both algorithms are applied to a real case, showing that they have
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practical usefulness. The first algorithm has a structure that allows to be used in an
interactive way by the planner while the second one is designed to facilitate the planner
the task of dealing with the multi-objective aspect of the problem.

The developed algorithms have been applied to a real case of study relative to Rivera,
a small city of 65,000 inhabitants in Uruguay. The procedures to obtain the data and to
construct the case were performed in a project which is strongly related with this thesis.
This is an important point, since allow us to keep control over all the aspects of the
research concerning this thesis, in this case, the data collection and processing. The results
produced by the algorithms are discussed in light of the hypothesis of the optimization
model and the heuristic nature of the solution method. Moreover, they are compared
against the solution corresponding to the public transportation system of Rivera, taking
into account the source of the data and the procedures used to construct the case.

Finally we have developed a software tool that allows to prepare the information needed
to construct a test case for the application of the route optimization algorithms. The tool
enables the researcher to experiment with new algorithms of optimization and evaluation
of routes and facilitates the data processing and the analysis of solutions (set of routes).
The software also allows to communicate the results to the planner, by using a graphical
user interface and a data format that is standard in the geographical information systems
that are usually available. This is an important requirement looking at the application of
the developed methodologies to real cases.

The research work undertaken during the development of this thesis has been presented
and published in the following instances:

Reviewed journals

• A. Mauttone and M. Urquhart. A multi-objective metaheuristic approach for the
Transit Network Design Problem. Public Transport 1(4):253-273, 2009.

• A. Mauttone and M. Urquhart. A route set construction algorithm for the Transit
Network Design Problem. Computers & Operations Research 36(8):2440-2449, 2009.

Technical reports

• A. Mauttone. Formulación de programación matemática para el problema de op-
timización de recorridos y frecuencias en sistemas de transporte público. Reportes
Técnicos PEDECIBA Informática, Instituto de Computación de la Facultad de In-
genieŕıa, RT 09-14, 2009.

Conferences

Complete papers:

• R. Alvarez, M. Mart́ınez and A. Mauttone. Heuŕıstica de búsqueda de entorno
variable para el problema de ruteo de transporte público urbano. 42o Simpósio
Brasileiro de Pesquisa Operacional, Bento Gonçalves, Brazil, 2010.

• A. Mauttone and M. Urquhart. Una metodoloǵıa para la optimización de recorridos
y frecuencias en transporte público y su aplicación a un caso de estudio real. 7o

Congreso de la Vialidad Uruguaya, Montevideo, Uruguay, 2009.
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• A. Mauttone and M. Urquhart. Optimización multi-objetivo de recorridos y fre-
cuencias en transporte público aplicado a un caso de estudio real. XIII Congreso
Chileno de Ingenieŕıa de Transporte, Santiago, Chile, 2007.

• A. Américo, F. Mart́ınez, A. Mauttone and M. Urquhart. Multi-objective evolution-
ary algorithm for the transit network design problem. VI International Conference
on Operational Research for Development, Fortaleza, Brazil, 2007.

• A. Mauttone and M. Urquhart. A Multi-Objective Metaheuristic approach for the
Transit Network Design Problem. 10th International Conference on Computer-Aided
Scheduling of Public Transport, Leeds, United Kingdom, 2006.

Extended abstracts:

• A. Mauttone, M. Labbé and R. M. V. Figueiredo. A Tabu Search approach to solve
a network design problem with user-optimal flows. VI ALIO/EURO Workshop on
Applied Combinatorial Optimization, Buenos Aires, Argentina, 2008.

• A. Mauttone and M. Urquhart. Modelo de programación lineal entera para el diseño
de redes de transporte público. XIV Congreso Latino Ibero Americano de Investi-
gación de Operaciones, Cartagena de Indias, Colombia, 2008.

• A. Mauttone and M. Urquhart. Una heuŕıstica basada en memoria para el prob-
lema del diseño de recorridos en transporte público urbano. XIII Congreso Latino
Iberoamericano de Investigación Operativa, Montevideo, Uruguay, 2006.

Abstracts:

• A. Mauttone, R. Giesen and M. Urquhart. Formulation and Heuristic Solution for
the Transit Network Design Problem. XV Congreso Latino Ibero Americano de
Investigación de Operaciones, Buenos Aires, Argentina, 2010.

• A. Mauttone and M. Urquhart. GRASP for Multi-Objective Optimization of Public
Transportation Networks. XV Congreso Latino Ibero Americano de Investigación
de Operaciones, Buenos Aires, Argentina, 2010.

• A. Mauttone, R. Giesen and M. Urquhart. Transit Network Design Problem: A
Mathematical Formulation and Heuristic Solution. Transportation and Logistics
Workshop, Reñaca, Chile, 2009.

• H. Cancela, A. Mauttone, M. Urquhart and O. Viera. Models and algorithms for the
Transit Network Design Problem. Transportation and Logistics Workshop, Reñaca,
Chile, 2009.

1.5 Structure of the document

This document is organized as follows. Chapter 2 presents the theoretical background
including concepts, definitions and notation used in the thesis; it states formally the prob-
lem to be studied. A specific section is dedicated to the assignment model. In Chapter 3
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we present the proposed mathematical programming formulation for the problem of route
optimization in public transportation systems; starting from a base formulation we then
include constraints of demand covering and infrastructure and bus capacity, studying the
implications that they pose. A section of numerical results is presented, that applies the
proposed formulation to different test cases including a real one. Chapter 4 presents the
greedy algorithm proposed to construct a set of routes; the reported experiments make
comparisons with results from state of the art and show that the algorithm has desirable
properties to be used as subroutine of an algorithm that optimizes routes and frequen-
cies. In Chapter 5 the multi-objective approach to the problem is presented, as well as an
algorithm to solve approximately the proposed model; results are compared with results
from state of the art and experiments show the usefulness of the approach in a real case.
A dedicated section of the experiments discusses the results obtained with the real case in
comparison with the real solution (the one operating the public transportation system of
the city). Finally, in Chapter 6 we elaborate conclusions from the overall research work
undertaken in this thesis and we identify future work. The document includes two ap-
pendixes: in Appendix A we describe the construction of the real case related to the city of
Rivera while Appendix B shows the main features of the software tool developed to assist
the research concerning the optimization and evaluation of routes for public transportation
systems.
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Chapter 2

Background

In this chapter we present the concepts, definitions and part of the notation used in the
remaining part of the document. Some additional notation is defined in specific chapters.
We present the modeling of the problem of route optimization in terms of graphs. A
section is devoted to the assignment model. Finally, the problem to be studied in the
thesis is defined.

2.1 Modeling the problem in terms of graphs

The modeling of the problem of route optimization for public transportation systems, re-
quires to represent the infrastructure over which the routes will be defined and the demand
that should be satisfied. Once the routes are defined, it is necessary to represent the trajec-
tories that the users will follow from their origins to their destinations using those routes.
A mathematical structure suited to represent these elements is the graph. In some cases,
the elements of the graph have a direct correspondence with elements of the reality, for
example, each node represents an intersection of streets and each arc represents a section
of street between two intersections. In other cases, the elements of the graph represent
fictitious entities, for example, zone centroids or waiting arcs. A zone centroid is a point
that represents an entire geographical zone [99] and a waiting arc is used to calculate the
waiting time for the users [110]. The literature presents a representation based on graphs
for urban transportation problems, which is widely used [99, 108]. Moreover, the specific
literature of assignment models for public transportation presents several representations
using graphs, each one proposed for the particular case that is modeled [97]. The models
of route optimization require a combination of different graph models, given that we need
to represent into the same model, decisions about the structure of the routes (in terms
of the infrastructure, in this case, street network and bus stops) and the behavior of the
users (in terms of routes and walking paths). This issue is not commonly recognized in
the literature.

In the following we describe a graph model proposed to represent the elements of a
public transportation system, needed to formulate the problem of route optimization; the
description is divided in aspects related to infrastructure and demand (Section 2.1.1),
routes (Section 2.1.2) and assignment (Section 2.2).
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2.1.1 Infrastructure and demand

The routes are defined in terms of the infrastructure, that in the case of this thesis is given
by the streets considered for running the buses and the stops of public transportation. On
the other hand, the demand is determined by the users of the system, who inhabit the
city and need to perform trips from certain origins to certain destinations. The trips can
originate at any geographical point of the city, in particular at households, buildings of
service, education, health, etc. Given that it is not convenient to represent any possible
point of trip generation, the models of urban transportation usually consider the trip
generation at the level of zones [99]. Thus, the demand is considered as concentred in a
fictitious point located inside the zone called centroid, which is connected to the bus stops
that lie inside the zone.

We model the infrastructure and the demand using a directed graph G = (N, A),
where each node n ∈ N can be of type street, stop or centroid (eventually at the same
time). Let NS , NP , NC ⊆ N be the node sets (not necessarily disjoints) of type street,
stop and centroid respectively. The arcs of the graph represent connections between the
nodes, which can be of type travel (a street segment whose endpoints are of type street or
stop) or walk (one endpoint is a stop and the other one is a stop or a centroid). Each arc
a = (i, j) ∈ A has an associated cost ca that represents a travel time. For a travel arc, this
cost represents the time spent by any bus for traveling from node i to node j; therefore,
it is also the time that will experience the users (on-board the bus) of a line which passes
by that arc. The cost of a walk arc represents the time spent by any user for walking
between stops or between a stop and a centroid (the place where the trip starts or ends).
Figure 2.1 presents an example of the graph model described above. A similar model has
been proposed in [6].

The demand is given by an origin-destination (OD) matrix defined as D = {dij} where
i and j are centroid nodes (they belong to NC). Each element dij > 0 (called OD pair)
expresses the number of trips that should be satisfied by time unit in a given time horizon,
from i to j; each trip will be performed by one person that will occupy one place inside
the bus.

2.1.2 Routes

The physical structure of the routes is a sequence of streets where the buses will pass; in
real public transportation systems there can exist forward and backward routes, circular
routes and other particular structures of routes. The degree of detail of the representation
of the route structure strongly depends on the degree of detail of the model given by the
graph G. An important aspect of the modeling of the route structure is the inclusion of the
stops. Those elements represent the points through which the users access to the public
transportation system. The stops are included into the model as graph nodes. It should
be taken into account if besides the decision concerning the structure of the routes, we
want to represent the decision concerning whether or not to stop at each bus stop located
in the street where the line passes. Observe that this decision directly determines the
points where the users can access a given line. In this thesis, we assume that buses stop at
every bus stop in their route. Moreover we could want to model the decision concerning
the location of the bus stops, although in this thesis we consider a given fixed set of bus
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Figure 2.1: Representation of the infrastructure and the demand in terms of graphs

stops. In a general sense, we define a route in terms of graph G as a sequence of adjacent
nodes, except those of type centroid.

2.1.3 Simplified model

In order to simplify the models and algorithms developed on this thesis, we adopt a par-
ticular structure for the infrastructure graph and the routes defined over it. To represent
the infrastructure, we use an undirected graph G = (V, E) whose vertices in V represent
the same entities than those represented by the nodes in N of the directed variant (Sec-
tion 2.1.1). An edge e ∈ E represents a bidirectional connection between two vertices; its
cost ce is defined analogously to the cost of the arcs in A of the directed variant. Note
that this model is in some cases a simplification of the reality, since not all streets have
two directions.

The routes are defined as a sequence of adjacent vertices in G, therefore they are
composed by undirected edges. We assume that each route has forward and backward
directions, having identical on-board travel time. This is also a simplification, since in
reality both directions of a given route may be composed by different real streets, therefore
their durations may differ slightly (note that lines having significant differences between
both directions are not well represented by this model). Circular routes and loops (routes
that pass many times by the same vertex) are not allowed.

Increasing the level of detail concerning these hypothesis has different impacts on the
difficulty of modeling and solving the problem in the context of this thesis.

2.2 Assignment model

The assignment model determines the way in which the users move themselves from their
origins to their destinations, using a given set of public transportation lines. This model



18 Background

is a critical component of any model of route optimization, since it is necessary to obtain
measures concerning the performance of the system, in this case the level of service [33].
Within the scope of this thesis and under the hypothesis stated in Section 1.1, the level
of service is measured in terms of the travel time and the level of occupancy of the buses.

The assignment model is a descriptive model which “simulates” the interaction of
the users with the buses to obtain the measures of interest. In the context of route
optimization, the assignment model is embedded into a normative model which suggests
a set of optimal public transportation lines. Such assignment model should apply the
hypothesis assumed concerning the behavior of the users with respect to a set of lines;
these hypothesis should answer at least the following questions, given an OD pair and a
set of public transportation lines:

• Which route or combination of routes will be used by the users for traveling from
the origin to the destination?

• What information do they consider for taking that decision?

• Do all users use the same routes?

• How do they behave if there is not sufficient capacity in the routes that they want
to use?

• Do all users perceive the same travel time along the same route?

Consider a set of routes R = {r1, . . . , rm} defined over G according to Section 2.1.2,
with their corresponding frequencies F = {f1, . . . , fm}, where fi denotes the number of
buses per time unit passing by route ri. We also refer as headway to the inverse of the
frequency, i.e., the average time elapsed between two consecutive buses of the line.

We define a directed graph GT = (NT , AT ) of trajectories which allows to represent
the flows of passengers (hereafter used as synonymous of users) from their origins to their
destinations. Each trajectory corresponds to a given OD pair; it is a simple path on GT

that starts on the corresponding origin centroid, ends on the corresponding destination
centroid and includes on its extremities, walk arcs connecting these two centroids with
stops of the public transportation system (called access and egress arcs). Between these
two arcs, the trajectory should include a sequence of arcs that represents the movement of
the passengers using the routes in R. A given trajectory may include more that one route
if the passenger performs transfers; in this case, we define stage of travel as the ordinal
of the route in the route sequence followed by the passenger to reach his destination. A
trajectory that involves transfers may include walk arcs representing the movement of the
passenger between bus stops to take the next line in the sequence.

Observe that different passengers of a same OD pair may use different trajectories
(Figure 2.2). The graph GT should allow to represent all the possible trajectories of all
OD pairs, given a set of routes. The structure of the trajectory graph depends on the
particular assignment model in which it is used. Figure 2.3 shows two possible structures
for the same set of routes shown in (a): the variant (b) does not allow to represent the
flows discriminated by line, while variant (c) allows to do that, increasing the size of the
model. In [97], different structures of the trajectory graph are presented, depending on
the purpose of the assignment model.
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Given a trajectory graph GT corresponding to a set of routes defined over G and an OD
matrix, the assignment model determines the flow va of passengers (demand) over each arc
a ∈ AT . The way in which such flows are determined depends on the hypothesis assumed
concerning the questions formulated above. The main differences between the assignment
models for public transportation existing in the literature, are given by the consideration
of the congestion (due to capacities, crowding and passenger boarding/alighting) and the
perception of the travel time [97]. In the models that do not consider congestion, given a
set of routes R the travel time for a given passenger is fixed and independent on the way in
which other users use the lines of R; in the models that consider congestion, the travel time
that experience the users depends on the way in which all users use the system [19, 30, 71].
Concerning the perception of the travel time, deterministic models assume that users
of the same OD pair perceive the same travel time along a given trajectory; stochastic
models assume that such travel time is a random variable [96]. Concerning the level of
detail of the information considered by an assignment model, the literature distinguishes
between schedule-based models and frequency-based models [97]. The former type requires
a complete detail of the timetable of each line and time-dependent demand data. The
latter type considers only the frequency of each line and an average value of demand in a
given time horizon. While schedule based models allow to obtain detailed output measures
(for example, travel times discriminated by time of day), frequency based models obtain
averaged output values.

Under hypothesis of no congestion, the assignment model can be posed in terms of a
minimization problem; this is possible since an expression that summarizes the optimiza-
tion of the overall system is consistent with the behavior of each individual of such system.
Usually it is assumed that the users choose the lines that they will use by minimizing a gen-
eralized cost that includes walking time, waiting time, on-board travel time and the fare;
because this last variable is not taken into account in this thesis, the overall travel time
(walking + waiting + on-board) is considered as the cost that the users want to minimize
when making their decisions. The walking and on-board travel time are attributes of the
arcs of the trajectory graph GT (obtained directly from G), therefore they are fixed. On
the other hand, the waiting time depends on the lines that the users consider to perform
their trips, therefore they can not be computed a priori. In the context of frequency-based
assignment models, the most accepted approaches existing in the literature assume that
the arrivals of both passengers and buses to the stops are stochastic processes. Therefore
the waiting time of a passenger waiting on a stop for a set of lines R = {r1, . . . , re} with
corresponding frequencies F = {f1, . . . , fe} is a random variable of mean value [33]

E(tw) =
β∑

ri∈R fi
. (2.1)

The case β = 1 corresponds to a negative exponential distribution for the inter-arrival
time of buses to the stop (with mean 1/fi) and to a uniform distribution of the inter-
arrival time of passengers. For deterministic bus arrivals, expression (2.1) with β = 1/2
corresponds to an approximation of the waiting time [16, 110].

Assuming that the passengers take the first bus arriving to the stop (among the buses
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that perform routes of the set R), the probability of using the route ri is [33]

Pi =
fi∑

r′i∈R fi′
, (2.2)

which is known as the frequency share rule.
Using expressions (2.1) and (2.2) the assignment problem can be formulated as a

problem of minimization of travel time, whose solution is a set of trajectories in GT ;
since congestion is not considered, the problem can be separated for each OD pair. The
concrete formulation of the problem depends on the hypothesis assumed concerning the
way in which the users choose the lines. In the simplest case, for a given OD pair the
solution of the assignment problem is a single trajectory; it corresponds to a situation
where the passenger selects a priori a single line [34] for which he will wait (this is known
as “all or nothing” assignment). Transfers may be considered in this situation, but always
restricted to wait for a single line at any stop. An example of this simple trajectory is the
one composed by the yellow line and then the blue one, in Figure 2.2. However, in systems
based on buses, the most general case includes situations where there is more than one
line (eventually overlapped) that can be used to travel between two stops; this implies
that the solution to the assignment problem may contain more than one trajectory for the
same OD pair (the trajectories consisting in the red line and the green one respectively, in
Figure 2.2). The issue posed by this situation was formally presented in [22] as the common
bus lines problem, later studied and generalized by [29, 110], that consider multiple lines
(not necessarily overlapped).

2.3 Transit Network Design Problem

In this section we define the elements of the problem that we take into account in the
thesis. Given that in different instances of this research we have studied concrete variants
or aspects of the problem, approached with different techniques, the concrete terminology,
definitions and notation are given in the corresponding parts of the document.

In general terms, we included the following elements of the problem in our research
concerning models and algorithms for route optimization in public transportation systems:

• The interest of the users.

• The interest of the operators.

• The behavior of the users.

• Transfers and demand covering constraints.

• Constraints regarding infrastructure and bus capacity.

In the following we discuss in general terms how these elements are modeled.
The models of route optimization have as main objective to design a system with the

highest possible level of service to the users [33], measured in terms of the travel time
and the occupancy levels of the buses. Given a set of routes defined over graph G, these
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measures are obtained from the flows va determined by the assignment model, over arcs
a of the corresponding trajectory graph GT .

The interest of the operators is usually the maximization of profit, which under the
hypothesis of inelastic demand (therefore fixed income, assuming that the whole demand
is covered by routes) is equivalent to the minimization of cost. The real operator’s cost is
difficult to express in a general sense [109], given that it depends on each particular case
(fare structure, existence of subsidies). For that reason, the size of the fleet is commonly
used as a proxy for operator’s cost, defined as the number of buses necessary to operate
a set of routes R = {r1, . . . , rm} with corresponding frequencies F = {f1, . . . , fm}. The
number of buses to operate route ri is calculated as fi

∑
a∈ri

ca, assuming that the route
is a cycle (for example, with forward and backward directions connected by their ends).
Observe that the fleet size is an important component of the operator’s cost, since it is
directly proportional to the route length and the staff (drivers) time needed to operate
the buses.

The behavior of the users with respect to a set of lines is considered by the assignment
model. In the route optimization models studied in this thesis, we consider assignment
models that take into account the minimization of travel time (including waiting time),
transfers and multiple lines (Section 2.2).

Both objectives of users and operators should be taken into account by the regulator
when planning the routes; in terms of the optimization model, its decisions are the values
given to the variables that represent the routes (defined in terms of G) and frequencies.
On the other hand, the behavior of the users (represented by the assignment model) is
reflected by flows va over arcs a of the trajectory graph GT , for a given set of routes and
frequencies.

Once an OD matrix is available to represent the needs of public transportation lines,
we may consider to cover all the required demand. We say that the demand is covered by
a set of routes R if for each OD pair (i, j) there is at least one trajectory in GT connecting
nodes i and j, which may or not include transfers. In most real systems, usually it is
impossible to connect every OD pair directly (without transfers) because the resulting
system has a high number of lines (therefore the operation cost is high). Transfers can be
included as a penalized term into the objective function of the model of route optimization,
however this approach does not allow the planner to control the amount of transfers on
the optimal solution. An alternative is to include demand covering constraints, introduced
by [9]. These constraints state that for any feasible solution, at least a given percentage
of the total demand

∑
i,j=1..n dij should be covered with no more than a given number of

transfers. For example: at least the 70% of the whole demand should be covered without
transfers (direct trips), and the remaining 30% with one transfer at most. Related to
this constraints, we should take into account that a trajectory includes walk arcs that
connect zone centroids (where the demand is generated) with public transportation stops
(where the lines pass); therefore the zoning of a city and its corresponding coding in the
graph G should include walk arcs of reasonable distance, otherwise the demand can not
be considered as covered.

The capacity of the infrastructure can be represented through the capacity of the streets
over which routes are defined. In terms of the graph G, this capacity can be included as an
attribute of street arcs. It should express the maximum number of buses that can pass over
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each arc by time unit; we note that no congestion effect is considered before the capacity is
reached. This constrains the way in which routes and frequencies are defined; it affects the
decisions of the planner. The bus capacity constraint expresses a maximum allowable flow
on each line l; it links the flows va determined by the assignment model with the capacity
of the line, defined as flω (where fl is the frequency of line l and ω is the capacity of
each bus, expressed in number of persons). Although the bus capacity constraint seems to
be expressed in a similar way as the street capacity constraint, it impacts very differently
when it is included in the route optimization model, since it affects the behavior of the users
(represented by the flows) in response to decisions of the planner (represented by routes
and frequencies). The models studied in this thesis consider the bus capacity constraint
so as to ensure sufficient capacity in such a way that the users can use the routes that
they desire. In other words, the users will perceive lines of unlimited capacity; but that
perception should be ensured by the optimization model, otherwise the assignment sub-
model will produce flows that are not consistent with the hypothesis stated in Section 2.2
(among them: no congestion). The same modeling approach is adopted in [9, 73]. However
there are real cases where it is technically impossible to ensure sufficient capacity in the
routes that the users desire to use; despite the existence of public transportation modes
with high frequency possibilities (BRT, underground trains), the frequencies can not be
increased arbitrarily above the physical limits (operational constraints related to safety also
come into play). In these cases, the behavior of the users under hypothesis of congestion
should be modeled, i.e, we should model the situation of users who are forced to wait for
the next bus due to lack of line capacity; under this scenario the user may choose other set
of lines, different from the one that would be chosen in absence of congestion. This issue
entails to solve an equilibrium problem [108] within the assignment model [19, 30, 55].
This characteristic adds complexity in a high degree to the problem of route optimization;
the literature published in this specific topic is very scarce [47].

With the purpose of using an abbreviated name for the problem of route optimization
in public transportation systems defined in general terms on this section, we use the de-
nomination Transit Network Design Problem introduced by [9]. We refer as solution to
this problem, a set of routes (as defined in Sections 2.1.2 and 2.1.3) with their correspond-
ing frequencies. The term “network” comes from the fact that the users perceive a set
of routes as a network, obtained by merging all the routes into a single entity. The term
“transit network” usually refers to public transportation systems based on buses, which
are the subject of this thesis. Other terms have been used to denominate the problem of
route optimization, as the “line planning problem”, which also includes systems based on
trains [106].
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Chapter 3

Mathematical programming
formulation∗

In this chapter we present a mathematical programming formulation for the TNDP. We
propose an explicit formulation that models the aspects of the problem identified in Sec-
tion 2.3. The issues that motivate this part of the thesis are the following ones:

• The research concerning this specific topic is relatively recent and scarce.

• Despite the existence of algorithms based on explicit mathematical programming
formulations that have solved real instances of the problem, the component related
to the assignment sub-model is not realistic for systems based on buses (specially
under hypothesis 6 of Section 1.1). The modeling of the waiting time of the users
and the assignment to multiple routes are two key aspects of such systems that are
not included in the existing formulations.

• The influence of demand covering and bus capacity constraints in the structure of
the resulting formulation has not been studied.

• We are interested in obtaining lower bounds or (when possible) optimal solutions.
These results can be useful to evaluate heuristic approaches to the problem. More-
over we want to explore the applicability of the formulation to solve real instances
of the problem.

A specific literature review is included at the beginning of the chapter, followed by an
analysis that justifies partially the motivations for this part of the thesis. We propose a
base formulation that minimizes the total travel time of the users, subject to a constraint
on the fleet size. The assignment model known as “optimal strategies” [110] is used to
model the behavior of the users. The resulting formulation is mixed integer nonlinear,
with a super-polynomial number of variables that represent the routes. The existence
of these variables is the main difficulty to solve exactly the problem, due to its discrete
nature and high number. The frequencies are represented as real variables. The nonlinear
nature of the formulation is due to the constraint that splits the flow of passengers among

∗ Part of the content of this chapter was published in [82] and presented in [83].
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different bus lines; we propose a linearization of this constraint, casting the formulation
into a MILP one. We then add the demand covering constraints, which increase the size of
the model considerably. The constraint related to street capacity is directly incorporated
into the model, while including the bus capacity constraint leads to a bilevel programming
formulation [12]. We then present some alternatives to solve that formulation, based on
existing techniques for this kind of problem. Finally, we present computational results
applying the linearized formulation without demand covering, infrastructure and bus ca-
pacity constraints. We use very small test instances, either specially created for this work
or obtained from the literature, for which optimal solutions are obtained. The case of the
city of Rivera (Appendix A) is used to show that the formulation could be employed to
solve a particular application of the TNDP.

3.1 Literature review

The existing mathematical programming formulations for the TNDP are relatively recent
and scarce. This is possibly due to the difficulties to formulate the problem [20] and to
devise efficient methods to solve it. In the following we review each one of the existing
formulations.

In [120], a MILP formulation that minimizes the operator’s cost subject to a bus
capacity constraint is proposed. A salient characteristic of this formulation is that it
allows to generate implicitly the structure of the routes; however, this requires that a
maximum number of routes in the solution should be specified. The routes are represented
by introducing node labels that indicate whether a given node belongs to a given route
and its ordinal in the route. The behavior of the users is not modeled; the demand is
assigned to the routes so as to satisfy the bus capacity; this is not a realistic assumption
in our context. Despite having a high number of variables, the total size of the model
(number of variables and constraints) is of polynomial order with respect to the size of
the problem.

In [58], the authors propose a MILP formulation that minimizes an objective function
including line cost, number of transfers and on-board travel time; therefore the interest of
the operators and both interest and behavior of the users are considered simultaneously.
These different terms are weighted by coefficients that express the relative importance
of each one. Frequencies are not decision variables and the waiting time is ignored in
the behavior of the users. The constraint set includes street capacity, line length and
maximum number of transfers. The model assumes that a pool of candidate lines is
provided and even the possible trajectories that users will use are identified beforehand.
Since neither bus capacity is considered nor the frequency share rule is applied, all the
demand corresponding to the same OD pair uses the same trajectory.

The TNDP is formulated in [107] as an extended multi-commodity flow problem that
minimizes the on-board travel time and the number of transfers, subject to a budgetary
constraint (fixed cost of each line) and the bus capacity constraint. The formulation is a
MILP one. The transfers are modeled by using a particular graph structure called change
and go network. That graph includes one arc for each route that shares the same street
arc with other routes and one arc for each possible transfer between routes that share
the same bus stop in the system. Given that the objective function minimizes the travel
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time, both the interest of the users and its behavior are modeled by the same component
of the formulation. Implicitly it is assumed that the users ignore the waiting time when
choosing the lines. The implicit assignment model is constrained by the bus capacity, thus
the formulation models a situation of capacitated user equilibrium [27]. The size of the
formulation is super-polynomial.

In [15], a MILP multi-commodity flow formulation is proposed. It minimizes the travel
time of the users, and fixed and variable costs of the operators, under street and bus
capacity constraints. As in [107], this formulation implicitly assumes that the users ignore
the waiting time and take into account the bus capacity for choosing the lines. Transfers are
ignored, meaning that the users may need to perform an unbounded number of transfers
in the optimal solution. While [107] models the interest of the operator as a budgetary
constraint, in this work it is added as a term in the objective function, resulting in a
multi-objective optimization model. The size of the formulation is also super-polynomial.

Table 3.1 presents a summary of the formulations mentioned above, showing the way
in which the relevant aspects of the problem identified in Section 2.3 are approached.
The formulation [120] models the lowest number of those aspects, therefore it is somehow
the least realistic one; however it has the capacity of generating implicitly the routes.
The formulations of [15, 107] are solved by applying decomposition techniques, where the
routes are generated by solving the corresponding associated subproblem.

By analyzing the formulations reviewed in this section, we can identify the aspects of
the TNDP which are more difficult to model:

• The structure of the routes. In the four formulations, the routes are represented
by sequences of adjacent edges in an undirected graph. These routes are generated
in [15, 107] by solving the subproblem corresponding to the decomposition technique
used to solve the problem. In [120] the routes are generated implicitly through
variables specially introduced; in particular a non-trivial problem is to exclude cyclic
lines from the solution. Note that in Section 2.3 we have assumed that routes
defined over the directed infrastructure graph are cyclic; those cycles can be obtained
by merging both forward and backward directions of the line. However, where an
undirected graph is used to represent the infrastructure, the cycle is implicit in a
route defined as a simple path. In [120], cycles in undirected routes are not allowed.

• Transfers. When using a flow formulation, if the flow is assigned ignoring the indi-
vidual routes (simply each edge of the graph is enabled if at least one route passes
over it), the transfers will be allowed but unbounded. We say that the transfers are
unbounded if in the optimal solution, there may be OD pairs that need to perform a
high number of transfers to reach the destination; this is the case of the formulation
proposed in [15]. On the other hand, the formulation proposed in [107] is based
on the change and go network structure, that allows to represent individually each
route and to identify transfers in the flow assignment; in this model, the transfers
are considered either in the behavior of users as on its interest, through the objective
function. In [58] both lines and passenger trajectories are identified beforehand; this
is only possible when using small-sized instances of the problem. By doing this,
transfers can be identified in the formulation as the number of lines used by each
OD pair and they also can be counted in the objective function and/or bounded in
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a constraint.

• The behavior of the users, in particular the waiting time. This aspect is not taken into
account in any of the presented formulations. The difficulty in modeling the waiting
time lies on its nonlinear dependency with respect to the frequencies (expression
(2.1)). The modeling of the assignment to multiple routes (when included) adds
complexity to the formulation.

Although the solution methods based on mathematical programming have solved in-
stances of the problem of moderate size ([15] apply their method to a real city comprising
27 bus lines), for systems based on buses we consider that the waiting time should be taken
into account in order to have a realistic modeling. Also it is desirable that the transfers
can be included as a constraint in the optimization model. The existing formulations are
suitable under scenarios where the users are not sensitive to the waiting time and transfers,
due either to high frequency services, user information systems (published timetables, real
time information) or coordinated transfers.

3.2 Base formulation

The proposed base formulation considers each OD pair as a commodity that flows through
the trajectory graph defined by the infrastructure graph and the routes defined over it;
we adopt the simplified model described in Section 2.1.3. The interest of the users is
represented by the minimization of an objective function that includes the total travel
time. The interest of the operators is formulated by a maximum fleet size constraint. The
behavior of the users is represented by the “optimal strategies” assignment model [110]. In
the particular notation used to express the formulation, the origin-destination demand is
given by a set of commodities K such that for each OD pair (i, j), there is a corresponding
k ∈ K with associated values Ok = i, Dk = j and δk = dij .

3.2.1 Assignment sub-model

In this section we explain the assignment sub-model used to represent the behavior of the
users. We adopt the model called “optimal strategies”; the main concepts and formulations
presented on this section are taken from its original publication [110].

We adopt this model because it has the following desirable characteristics related to
the definition of the problem studied in this thesis (Section 2.3):

• It makes assumptions about the behavior of the users that are consistent with those
considered in this work; in particular, the model assumes that the users want to
minimize their travel time (walking+waiting+on-board).

• It models the problem of assignment to multiple routes.

• It has an explicit and compact mathematical formulation.

• It is a frequency-based assignment model, suitable to be included into an optimiza-
tion model that handles information at the same level of aggregation (the decision
variables are routes and frequencies).
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Figure 3.1: Example of a strategy to travel from A to B

The model is based on the concept of strategy, which is a set of rules that when applied,
allow the user to reach his destination. An example of strategy for passengers traveling
from A to B in Figure 3.1 is the following:

“At A, take the following bus of lines 1 or 2; if line 1 was taken, finish at B; if line 2 was
taken, transfer at Y to line 3 or 4 and finish at B.”

According to his strategy, the passenger will travel from his origin centroid to his
destination centroid, passing by the following stages: (1) walk to the origin stop, (2) wait
at the stop, (3) travel on-board the bus and (4) walk from the destination stop. Eventually
steps 2 and 3 may be repeated in case of performing transfers, that also may imply to
walk between stops.

A strategy for a given OD pair k ∈ K can be defined as a set of possible trajectories
determined a priori, defined over the graph GT ; each trajectory is a simple path from
Ok to Dk. Note that if we restrict a strategy to a single trajectory, we are modeling a
situation that is not real in the context of the assignment to multiple lines; in the example
of Figure 3.1, the strategy is composed by three trajectories. The model assumes that
a given user selects the strategy that minimizes his total travel time. To do this, he
will select a priori (i.e., before leaving the place where the trip is originated, in this case
the origin centroid) a set of “attractive” lines among all the possible lines that connect
the bus stops located near their origin and destination centroids. In this process, the
passenger considers information related to the on-board travel time of all the lines of the
system (given by the cost of the travel arcs in GT ) and the walking times in all the system
(given by the cost of the walk arcs in GT ); he also knows the frequency of all the lines
of the system, needed to compute the waiting time. While waiting at the bus stop, the
user will take the first bus passing by that stop, belonging to the set of attractive lines
determined a priori. A strategy is optimal if it minimizes the total travel time. Since
the model of optimal strategies is probabilistic, in the sense of the assignment of demand
corresponding to the same OD pair to multiple routes, the measure that is minimized is
the total expected travel time. It is worth mentioning that this model assumes that the
user is perfectly informed and even is able to manage all that information in order to
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determine the optimal strategy (which eventually may be quite complex).
For simplicity, in the following we will assume that all vertices of the infrastructure

graph are of type street, stop and centroid at the same time; this implies that the demand
can be generated at any vertex and walk arcs are not considered. The computation of the
optimal strategy is stated as an optimization problem defined over a particular structure
of the trajectory graph. It includes nodes and arcs specific for each route and arcs that
represent wait. More precisely, given an infrastructure graph G and a set of routes R
(with corresponding frequencies) defined over G according to the simplified model stated
in Section 2.1.3, the arcs in AT of the trajectory graph can be:

• Travel arcs AV , that model the movement of a bus performing a route of R (and the
passengers that travel on-board), from a given vertex to other one of G.

• Wait arcs AW , that model a passenger waiting for a given line of R, in a vertex of
G.

• Destination arcs AD, that model the end of the travel.

The sets of arcs mentioned above are such that AT = AV ∪ AW ∪ AD; these sets are
disjoint.

The set of nodes NT of the trajectory graph is obtained as follows. For each route
r ∈ R that passes by vertex v ∈ V , a node nrv ∈ NT is generated; then for each route r
that passes by edge e = [i, j] ∈ E, forward and backward travel arcs −→a re = (nri, nrj) and←−a re = (nrj , nri) respectively are generated, whose costs are such that ce = c−→a re

= c←−a re
.

For each OD pair k ∈ K, their corresponding origin and destination nodes ON
k , DN

k ∈ NT

are generated, as well as a wait arc (ON
k , nrOk

) for each route r that passes by Ok in G
(also called origin arcs). Destination arcs are generated analogously. Wait and destination
arcs have zero cost. The value fa refers to the frequency of the route from which the arc
a ∈ A was generated. An example of the relation between the infrastructure graph and
its corresponding trajectory graph for a given set of routes, is shown in Figure 3.2.

The model of optimal strategies is formulated by expressions (3.1)-(3.5), that we call
ASIG1. In order to simplify the notation, hereafter we omit the superindexes T of the sets
N and A of the trajectory graph and we assume a single OD pair (therefore we omit the
subindexes k of O, D and δ). We define values bn for n ∈ N , such that bO = δ (demand
on the origin node), bD = −δ (demand on the destination node) and bn = 0 otherwise.
The sets A+

n , A−n ⊂ A denote outgoing and incoming arcs respectively from (to) node n.
The variable Vn represents the demand quantity that flows through node n ∈ N and the
binary variable xa states if arc a ∈ A is part of the optimal strategy. The variable va

(already defined at Section 2.2) represents the flow assigned to arc a ∈ A.
The objective function states the minimization of the on-board travel time (first term)

plus the expected value of the waiting time (second term, using expression (2.1) with
β = 1). Constraint (3.2) states the split of demand flow at a given node among its
outgoing arcs, using expression (2.2), while constraint (3.3) states the flow conservation
at nodes. Note that the formulation states that passengers wait at every node of the
graph, therefore we assume that arcs that are not of wait type have a very high frequency
(consequently, the corresponding waiting time can be ignored).



32 Mathematical programming formulation

On-board travel arc

DO

Destination arc

O D

Corresponding trajectory graph

Infrastructure graph, three routes and one OD pair

Wait arc

Figure 3.2: Trajectory graph corresponding to a given infrastructure graph and set of
routes

min
v,V,x

∑

a∈A

cava +
∑

n∈N

Vn∑
a∈A+

n
faxa

(3.1)

s.t.

va =
faxa∑

a′∈A+
n

fa′xa′
Vn ∀ a ∈ A+

n , n ∈ N, (3.2)

Vn =
∑

a∈A−n

va + bn ∀ n ∈ N, (3.3)

Vn ≥ 0 ∀ n ∈ N, (3.4)
xa ∈ {0, 1} ∀ a ∈ A. (3.5)

We can observe that ASIG1 is not linear (expressions (3.1) and (3.2)) with mixed
variables (v and V are real while x is binary). However, by performing the following
change of variables:

wn =
Vn∑

a∈A+
n

faxa
∀n ∈ N, (3.6)

substituting the constraint of nonnegativity of flow at nodes (Vn ≥ 0) by its analog for
arcs (va ≥ 0) and applying properties of the feasible set determined by the resulting
constraints, the authors [110] obtain the formulation given by expressions (3.7)-(3.11),
called ASIG2. In this formulation, AW+

n denotes the set of outgoing wait arcs from node
n. Note that this formulation, which is linear with real variables, has a strong resemblance
with the formulation of the minimum cost path problem [2]. The differences consist in
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that ASIG2 includes the term that represents the waiting time in the objective function
(3.7) and the constraint (3.9) that splits the flow. This constraint causes that the solution
to the problem is not a single trajectory, instead it is a set of trajectories that represent
the different (attractive) lines that the user considers as part of his strategy; this concept
is denominated as hyperpath in [95].

min
v,w

∑

a∈A

cava +
∑

n∈N

wn (3.7)

s.t.
∑

a∈A+
n

va −
∑

a∈A−n

va = bn ∀ n ∈ N, (3.8)

va ≤ fawn ∀ a ∈ AW+
n , n ∈ N, (3.9)

va ≥ 0 ∀ a ∈ A, (3.10)
wn ≥ 0 ∀ n ∈ N. (3.11)

So far, we have excluded the access/egress arcs and centroids from our presentation. We
note that these elements can be easily incorporated to this model. Centroids can be linked
through walking arcs (which are independent of the routes) to origin and destination nodes
that represent origins and destination stops in the model described above. Formulations
ASIG1 and ASIG2 will be still valid. On the other hand, walk arcs between bus stops
(which may be used when performing transfers) can not be added directly to the model
illustrated by Figure 3.2; note that the model assumes that transfers take place at the
same bus stop.

3.2.2 Formulation of the model of route optimization

In the following we present the mathematical programming formulation proposed for the
TNDP. Let R be the set of all possible routes defined over G according to the simplified
model stated in Section 2.1.3. We define the binary variable xr that takes value 1 if route
r ∈ R is included in the solution, 0 otherwise, while the real valued variable fr indicates
the frequency of route r ∈ R expressed in buses per time unit. Now we add the subindex
k to variables v and w and to the constant value b, to indicate their corresponding OD
pair k ∈ K. We also use the following notation: Er ⊆ E are the edges of the route r ∈ R,
r(a) ∈ R is the route that originated the arc a ∈ A (each arc belongs to exactly one route)
and B is a maximum allowed fleet size.

The formulation called OPT1 is given by expressions (3.12)-(3.20). Its objective func-
tion (3.12) represents the interest of the users and their behavior (along with constraints
(3.14) and (3.15), which as the objective function, are part of the assignment sub-model).
Constraint (3.13) represents the interest of the operator while constraint (3.16) states that
the users only can use routes that are part of the solution. Formulation OPT1 is nonlinear
(constraint (3.15)) and mixed integer (variable x is binary).

We note that the only constraint imposed on the frequencies is the nonnegativity
constraint (3.17). This may be unrealistic, since in real systems both lower and upper
levels on frequencies should be imposed; the former is to ensure a minimum level of
service in terms of waiting time, while the latter is for technical reasons. Solutions to
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OPT1 will minimize the total travel time (which includes the waiting time) subject to
a maximum fleet size; these quantities are indirectly and directly proportional to the
frequencies, respectively. Thus, the optimal solution to this problem may have arbitrary
low or high values of frequencies; this issue will be addressed in Section 3.2.3.

min
x,f,v,w

∑

k∈K

(
∑

a∈A

cavak +
∑

n∈N

wnk) (3.12)

s.t.
∑

r∈R

2fr

∑

e∈Er

ce ≤ B, (3.13)

∑

a∈A+
n

vak −
∑

a∈A−n

vak = bnk ∀ n ∈ N, k ∈ K, (3.14)

vak ≤ fr(a)wnk ∀ a ∈ AW+
n , n ∈ N, k ∈ K, (3.15)

vak ≤ δkxr(a) ∀ a ∈ A, k ∈ K, (3.16)

fr ≥ 0 ∀ r ∈ R, (3.17)
vak ≥ 0 ∀ a ∈ A, k ∈ K, (3.18)
wnk ≥ 0 ∀ n ∈ N, k ∈ K, (3.19)
xr ∈ {0, 1} ∀ r ∈ R. (3.20)

3.2.3 Linearization

The only nonlinear expression in OPT1 is the constraint of flow splitting (3.15). Note that
in the original assignment model [110], this expression is linear since the frequencies are
problem data; on the other hand, frequencies are decision variables in the model of route
optimization. We propose a linearization of this constraint, by discretizing the domain of
frequencies. A new parameter of the problem is introduced, that represents all the possible
values of frequencies on routes:

Θ = {θ1, . . . , θp}, (3.21)

indexed by f .
Then, in OPT1 the real variable fr should be substituted by the new binary variable

yrf which takes value 1 if route r has frequency f , 0 otherwise. The expressions that
involve variable f in OPT1 should be rewritten in terms of y. The linearized formulation
called OPT2 is given by expressions (3.22)-(3.32), where f(a) refers to the index in Θ
of the frequency corresponding to the wait arc a ∈ AW (which is a fixed value). The
trajectory graph should include a wait arc for each element in Θ (Figure 3.3 shows an
example for |Θ| = 3); in that graph, only the arcs corresponding to the frequency selected
for each route will be enabled (constraint (3.27)).

Observe that the constraint of flow splitting (3.25) is linear in OPT2, given that θf(a)

is a constant value. Therefore we obtained a MILP formulation. It is worth mentioning
that the linearization increases the size of the model, since a new binary variable y is
added, as well as a number of wait arcs proportional to the size of the set Θ.
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θ3

D

D

Corresponding trajectory graph

Infrastructure graph, two routes and one OD pair

O

O

θ1

θ2

Figure 3.3: Trajectory graph for the linearized formulation

min
x,y,v,w

∑

k∈K

(
∑

a∈A

cavak +
∑

n∈N

wnk) (3.22)

s.t.
∑

r∈R

2
∑

f∈Θ

θfyrf

∑

e∈Er

ce ≤ B, (3.23)

∑

a∈A+
n

vak −
∑

a∈A−n

vak = bnk ∀ n ∈ N, k ∈ K, (3.24)

vak ≤ θf(a)wnk ∀ a ∈ AW+
n , n ∈ N, k ∈ K, (3.25)

vak ≤ δkxr(a) ∀ a ∈ A, k ∈ K, (3.26)

vak ≤ δkyr(a)f(a) ∀ a ∈ AW , k ∈ K, (3.27)
∑

f∈Θ

yrf = xr ∀ r ∈ R, (3.28)

vak ≥ 0 ∀ a ∈ A, k ∈ K, (3.29)
wnk ≥ 0 ∀ n ∈ N, k ∈ K, (3.30)
xr ∈ {0, 1} ∀ r ∈ R, (3.31)
yrf ∈ {0, 1} ∀ r ∈ R, f ∈ Θ. (3.32)

3.3 Enforcing transfer, infrastructure and bus capacity con-
straints

In this section we incorporate to the base formulation developed in Section 3.2, constraints
related to transfers, infrastructure and bus capacity. These elements of the TNDP were
identified in Section 2.3 as important aspects to be included into a realistic model for a
public transportation system based on buses under the hypothesis stated in Section 1.1.
The transfer constraints are written by means of an auxiliary structure of the trajectory
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graph. The street capacity constraint is directly incorporated to the model, while the bus
capacity constraint (jointly with the transfer constraint) leads to a discussion related to a
bilevel mathematical programming formulation for the TNDP.

3.3.1 Transfer constraints

The modeling of transfers in OPT2 depends on the structure of the trajectory graph
used. The definition of GT given in Section 3.2.1 includes transfer arcs, as illustrated in
Figure 3.2. It results in a structure that is very similar to the change and go network used
in [107]. By using this structure, we can obtain an optimal solution where an unbounded
percentage of the total demand

∑
k∈K δk performs an unbounded number of transfers.

This could be avoided by setting a high cost ca to each arc a that represents a transfer,
however it is not clear the magnitude that should have that cost to obtain a desired
result. On the other hand, if we eliminate the transfer arcs from GT , there can exist
an OD pair that is forced to travel using a single route with a high travel time, which
could be decreased by performing transfers. An alternative is to include demand covering
constraints (Section 2.3). These constraints were introduced in [9] but they have not
been yet included into an explicit mathematical formulation, instead they are verified
algorithmically in the context of heuristics [9, 101]. In their original definition, demand
covering constraints accept solutions where a certain portion of the total demand may
be unsatisfied, i.e. it can not be covered by performing any number of transfers. In our
models, we are restricted to the case that the whole demand should be covered. For
this reason, we call transfer constraints to our particular version of demand covering
constraints.

To model the transfers and to have control over them in the optimization model, we
introduce a parameter that states the maximum allowed number of transfers, given by the
positive integer constant τ . Then, we generate τ + 1 trajectory graphs GT

i , i ∈ [1..τ + 1]
corresponding to each possible stage of travel of the passengers. The origin arcs connect
the origin nodes only with the graph corresponding to the first stage, GT

1 ; destination
arcs connect the destination nodes with the graphs of all stages. The arcs that represent
transfers have the form (nr1v, nr2v), where r1, r2 ∈ R are routes passing by the same vertex
v, the first node belongs to the graph GT

i and the second node belongs to GT
i+1, for all

i ∈ [1..τ ]. Then, the sum of the flows of destination arcs connected to graph GT
i will

represent the number of users that make i − 1 transfers. Figure 3.4 shows an example
of such a graph structure for the scenario of Figure 3.2, imposing τ = 1 (one transfer at
most). We note that the size of the model increases considerably, since the graph structure
is replicated for each stage of travel and new transfer arcs are added.

Then, the transfer constraints can be written as
∑

k∈K

∑

a∈∪i=1..sAD
i

vak/
∑

k∈K

δk ≥ ∆s ∀ s ∈ [1..τ ], (3.33)

where AD
i ⊂ A denotes the set of destination arcs of GT

i , and 0 ≤ ∆1 . . . ≤ ∆τ ≤ 1 are
real values such that ∆s is the proportion of the total demand

∑
k∈K δk that should be

covered with no more than s− 1 transfers (i.e., with at most s stages of travel).
By adding constraint (3.33) to formulation OPT2 and using the structure of the trajec-

tory graph proposed above, we can control the transfers as stated in Section 2.3. However,
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GT
2

GT
1

D

O

Transfer arcs

One transfer

No transfers

Figure 3.4: Trajectory graph used to express transfer constraints

by doing this we can obtain solutions that are not consistent with the behavior of the users
stated by the assignment model of optimal strategies. We resume this issue in Section 3.4,
related to a bilevel formulation for the TNDP. We note that alternatively, expression (3.33)
could be added to the objective function as a penalized term. However, this approach re-
quires determining the value of such penalty and even that value is assumed to be the
same for both planner and user.

3.3.2 Street and bus capacity constraints

We consider to incorporate infrastructure and bus capacity constraints to OPT2. In our
context, the infrastructure is given by the streets over which the routes will be defined.

Street capacity constraint

The capacity of the streets is given for each edge e ∈ E by a positive real value κe which
expresses the maximum number of buses that can pass by e per time unit. Observe that
since the infrastructure graph is undirected, the capacity refers to the total number of
buses passing in both directions of the edge. The street capacity constraint relates the
edge capacity with the frequency of each line that passes by it, as follows:

∑

r∈R

∑

f∈Θ

yrfθfΛer ≤ κe ∀ e ∈ E, (3.34)

where Λer is a binary constant that takes value 1 if route r passes by edge e, 0 otherwise.
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Note that by adding this constraint we are not affecting variables that model the
behavior of the users, so it can be added directly to formulation OPT2.

Bus capacity constraint

The capacity of the bus represents the maximum number of passengers that can travel
inside the vehicle. The bus capacity constraint relates the flow of demand assigned to
travel arcs of the trajectory graph, with the capacity of the lines, as follows:

∑

k∈K

vak ≤
∑

f∈Θ

yr(a)fθfω ∀ a ∈ AV , (3.35)

where ω denotes the capacity of the bus. This parameter can be given through a single
value that expresses the total capacity of the bus or through the product of the capacity
of seated passengers and a coefficient (greater than 1) that states the allowed load factor
(standing passengers over the seat capacity of the bus).

It is worth mentioning that although the expression of the bus capacity constraint is
similar to the one corresponding to the street capacity constraint, it impacts in a very
different way in formulation OPT2. Since the bus capacity constraint is written in terms
of variables that represent decisions of passengers, adding it directly to OPT2 may result
in solutions that are not consistent with the assignment model of optimal strategies. We
resume this issue in Section 3.4.

3.4 Bilevel mathematical programming formulation

Formulation OPT2 models decisions taken by different actors in the context of the TNDP.
Variables x and y represent decisions of the planner who decides which lines and frequencies
to establish, while variables v and w represent decisions of the users who decide which
lines to use, among those determined by the planner. The objective function of OPT2
models at the same time, the interest of the users (taken into account by the planner, when
determining the lines and frequencies) and their behavior (determined by themselves, by
choosing the lines according to the hypothesis of the assignment model). Therefore we are
modeling optimization criteria adopted by different actors of the system, using the same
objective function, under the same constraints. This can be done as in OPT2 correctly,
however when we add transfer and bus capacity constraints, these criteria have different
constraints. This lead us to consider a bilevel mathematical programming formulation for
the TNDP.

3.4.1 Bilevel mathematical programming

Bilevel mathematical programs [12, 25, 49] model scenarios with the following character-
istics:

• The decisions are taken by two different agents, who constitute a hierarchy.

• Each agent may have different objectives and constraints and can exercise direct
control over only certain variables.
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• The agent corresponding to the upper level of the hierarchy should take decisions
which: (a) constraint the decisions of the agent corresponding to the lower level and
(b) need to anticipate the reaction of the lower level.

The decision making process modeled by a bilevel mathematical program can be seen
as carried out in two sequential stages [49]: first, the higher level announces his plan of
action and second, the lower level reacts rationally to that plan. The plan announced
by the higher level is taken as exogenous data by the lower level, that independently
optimizes his plan of action according to his goals and limitations, disregarding the goals
of the higher level. Decisions of the lower level influence decisions of the higher level, since
lower level variables may be present at constraints and objective function of the higher
level.

The general formulation of a bilevel programming problem (BLPP) is the following [25]:

min
x∈X,y

F (x, y) (3.36)

s.t. G(x, y) ≤ 0, (3.37)
y ∈ arg min

y′
f(x, y′) (3.38)

s.t. g(x, y′) ≤ 0, (3.39)

where x, y and y′ are real vectors, but they may be integer of binary as well.

In BLPP we identify upper level variables x and y, objective function F and constraint
G, while their counterparts corresponding to the lower level are y′, f and g respectively.
The set X imposes an additional constraint to the upper level variables, independent
of the lower level ones. On the other hand, to verify constraint G for a given x, we
need to know the solution y of the lower level problem (which does not know constraint
G, instead it has its own constraint g). Observe that a special constraint of the upper
level states that feasible solutions should be optimal solutions to the optimization problem
corresponding to the lower level; in fact, the original denomination for this kind of problem
was “mathematical programs with optimization problems in the constraints” [25]. Special
cases of BLPP have been used to model scenarios having the characteristics named at the
beginning of this section, in areas related to economics, transportation and engineering [12,
25]. An extensive annotated bibliography on this topic can be found in [32].

Hereafter, for sake of simplification we use the following notation to refer to BLPP:

min
x∈X,y

F (x, y) (3.40)

s.t. G(x, y) ≤ 0, (3.41)
min

y
f(x, y) (3.42)

s.t. g(x, y) ≤ 0, (3.43)
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where we dropped the reference to argmin and the prime symbol from the lower level
variables. Observe that a trivial relaxation of this problem is as follows:

min
x∈X,y

F (x, y) (3.44)

s.t. G(x, y) ≤ 0, (3.45)
g(x, y) ≤ 0, (3.46)

which has the form of a conventional one-level mathematical programming formulation.
Concerning the computational complexity of BLPP, it has been proved that even in

its simpler form (the case where both levels are linear) the problem belongs to the NP-
hard class. Anyway, solution methods that guarantee to find the global optimum for that
variant have been proposed [12, 25].

3.4.2 Bilevel formulation for the TNDP

If we add the transfer and bus capacity constraints directly to OPT2, the implicit assign-
ment of flows will be done respecting them, modeling a situation that is not coherent with
the reality.

Concerning constraint (3.33), in the optimal solution the demand may result assigned
to trajectories that do not involve transfers, when there are faster trajectories that involve
transfers. Observe that in reality, by enforcing transfer constraints, it is the planner who
wants to avoid transfers, while the users ignore them in the assignment model of optimal
strategies. Figure 3.5(a) illustrates this situation. Assume a single OD pair which has two
alternatives to travel: the first one involves one transfer but has a small travel time t1
while the second one does not involve transfers but has a very high travel time t2 >> t1;
also assume ∆1 = 0.5, meaning that at least the half of the total demand should travel
directly (without transfers). If we add constraint (3.33) directly to formulation OPT2,
in the resulting optimal solution at least the half of the demand corresponding to that
OD pair will be assigned to the alternative 2 which has a very long travel time, when a
more realistic assignment will route the entire demand to alternative 1 (which includes
one transfer).

Concerning capacities, if we add constraint (3.35) directly to formulation OPT2, we
may obtain an optimal solution having an assignment of demand that is not realistic.
As an example (Figure 3.5(b)), consider a set of passengers corresponding to the same
OD pair, having two alternatives to travel: Line 1 has a very small on-board travel time
and low frequency (therefore low capacity), while Line 2 has higher frequency (therefore
higher capacity) but also has a very higher on-board travel time. In this case, the solution
according to the optimal strategies assignment model with the bus capacity constraint
added directly, will split the demand into two groups that consider a priori different sets
of attractive lines: the first group will use the whole capacity of Line 1, while the second
one will use Line 2 with a very higher overall travel time. Observe that a more realistic
behavior for this second group of passengers would be to use Line 1 anyway, which entails
to wait for the next bus with available capacity; this leads to the concept of assignment
under hypothesis of congestion which is out of the scope of this thesis (see Section 2.3).
We resume this issue in the next subsection corresponding to bus capacity constraint
considerations.
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DO
Alternative 1: t1

Alternative 2: t2 >> t1

(a) Demand covering

���������
���������
���������
��������� DO

Line 2

Line 1

(b) Bus capacity

Figure 3.5: Adding constraints directly to OPT2

An alternative to model in a realistic manner the inclusion of transfer and bus capacity
constraints, is to consider the bilevel nature of public transportation systems. Observe that
the variables involved in those constraints (in particular v) represent decisions of the users
that are subject to decisions of the planner; therefore, he can enforce those constraints
by deciding appropriate lines and frequencies (x and y respectively) so that the users will
act according to the hypothesis of the optimal strategies assignment model. This means
that they will perform transfers when they consider necessary to do so and they will
perceive unlimited bus capacities. The bilevel mathematical programming formulation
(3.47)-(3.61) called OPT3 captures this situation.

We can observe that in OPT3, the objective functions of both levels are the same, how-
ever, the decision variables are different; while the upper level objective function models
the interest of the users (routes x with frequencies y, determined by the planner), the lower
level objective function models their behavior (flows v and waiting times w, determined
by the assignment model). Constraints (3.48)-(3.52) involve only variables of the upper
level; they model constraints that the planner should take into account, independently of
the reaction of the users to his decisions. Constraints (3.60)-(3.61) involve variables that
belong to both levels or to the lower level only; they model constraints that the plan-
ner should take into account after knowing the reaction of the users (given by the lower
level problem) to his decisions. The lower level problem represents the assignment model
of optimal strategies, where constraints (3.56) and (3.57) state that only the routes and
frequencies enabled by the planner can be used.

Upper level: the planner determines

Lower level: the users decide
which lines to use, subject
to decisions of the planner.

waiting times w
flows v and

frequencies y
routes x and

routes and frequencies, anticipating
the reaction of the users.

Figure 3.6: Bilevel structure of the TNDP

Figure 3.6 illustrates the interdependence between the decisions of the planner and
the users, modeled by OPT3. Bilevel programming has been used to model many urban
transportation problems, where relationships similar to the one encountered in the TNDP
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need to be represented, usually involving a central planner and a set of users [92].

min
x,y,v,w

∑

k∈K

(
∑

a∈A

cavak +
∑

n∈N

wnk) (3.47)

s.t.
∑

r∈R

2
∑

f∈Θ

θfyrf

∑

e∈Er

ce ≤ B, (3.48)

∑

r∈R

∑

f∈Θ

yrfθfΛer ≤ κe ∀ e ∈ E, (3.49)

∑

f∈Θ

yrf = xr ∀ r ∈ R, (3.50)

xr ∈ {0, 1} ∀ r ∈ R, (3.51)
yrf ∈ {0, 1} ∀ r ∈ R, f ∈ Θ, (3.52)

min
v,w

∑

k∈K

(
∑

a∈A

cavak +
∑

n∈N

wnk) (3.53)

s.t.
∑

a∈A+
n

vak −
∑

a∈A−n

vak = bnk ∀ n ∈ N, k ∈ K, (3.54)

vak ≤ θf(a)wnk ∀ a ∈ AW+
n , n ∈ N, k ∈ K, (3.55)

vak ≤ δkxr(a) ∀ a ∈ A, k ∈ K, (3.56)

vak ≤ δkyr(a)f(a) ∀ a ∈ AW , k ∈ K, (3.57)

vak ≥ 0 ∀ a ∈ A, k ∈ K, (3.58)
wnk ≥ 0 ∀ n ∈ N, k ∈ K, (3.59)∑

k∈K

∑

a∈∪i=1..sAD
i

vak/
∑

k∈K

δk ≥ ∆s ∀ s ∈ [1..τ ], (3.60)

∑

k∈K

vak ≤
∑

f∈Θ

yr(a)fθfω ∀ a ∈ AV . (3.61)

Observe that additional constraints (other than those concerning transfers, infrastruc-
ture and bus capacity) impact in different ways on OPT3. For example, we may want to
add a constraint on the maximum number of lines, expressed as

∑

r∈R

xr ≤ L, (3.62)

where L is a positive integer value that states the maximum number of lines in the so-
lution. This constraint represents decisions of the planner that do not need to know the
corresponding reaction of the users. Moreover, the planner may want to design a system
that guarantees a maximum waiting time for any user at any stop; this leads us to the
following constraint ∑

a∈AW+
n

vak ≥ wnk/ε ∀ n ∈ N, k ∈ K, (3.63)

where ε is an imposed upper limit on the waiting time, expressed in time units. Observe
that both constraints (3.62) and (3.63) belong to the upper level of OPT3. However, the
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first one does not require a bilevel model in order to be included, since it involves only
variables corresponding to decisions of the planner; by contrast, the second one involves
variables controled by the users, so its modeling is analog to that one required when
including the bus capacity constraint.

Bus capacity constraint considerations

The lower level of formulation OPT3 assumes that every user can board any bus of any line
selected as part of his optimal strategy according to the assignment model [110]; in other
words, it is assumed that the buses have unlimited capacity. If we consider the capacity
of the bus in the hypothesis of the assignment model, we should take into account that
the users may behave in a way different from as they do in the uncapacitated case. This
approach leads to an assignment that models congestion, whose formulation and solution
are considerably more complex than the case without congestion, since an equilibrium
problem should be considered [19, 30, 55].

In OPT3, we consider the capacity constraint of the buses with a different approach:
the optimization model should ensure sufficient capacity on the lines that the users desire
to use. This implies that the bus capacity is not taken into account in the assignment
sub-model; instead, it is included as a constraint of the route optimization model. This
approach has been used in previous works concerning the TNDP and related problems [9,
26, 73]. It is worth mentioning that there are cases where it is not possible to ensure
the desired capacity on the lines, given the high demand that may have certain lines and
the technical limitations of the transportation mode, which imposes a maximum allowed
frequency. In these cases it is necessary to include the bus capacity constraint into the
assignment model, as it is done in [47] in the context of a variant of the TNDP and [52]
that proposes a frequency optimization model. To the best of our knowledge, there are no
published studies concerning a comparative evaluation of the performance of the routes
and frequencies of a public transportation system, which has been designed according to
the two alternatives mentioned above for including the bus capacity constraint.

3.4.3 Alternatives to solve the bilevel formulation for the TNDP

According to [118], the problem stated by OPT3 can be classified as a Discrete Continuous
Linear Bilevel (DCLB) problem, i.e., linear bilevel with discrete variables in the upper level
and continuous variables in the lower level. In this section we mention alternatives to solve
OPT3 exactly, keeping in mind that in principle there is not an efficient standard solution
method for this kind of problem, even if the set of possible routes is small.

The algorithm of Moore and Bard described in [12] could be used to solve OPT3 exactly.
That algorithm guarantees to find the global optimum if all the variables controlled by the
higher level are discrete and all the variables controlled by the lower level are continuous.
This is the case of OPT3. The algorithm performs a branching on the (discrete) higher
level variables, uses as subroutine an algorithm to solve a linear bilevel problem only with
continuous variables at both levels and applies specific fathoming rules. Computational
results involving instances comprising up to 40 variables are reported in [12]. With the
increase of computer speed it is likely that today larger instances can be solvable.
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A different alternative to solve OPT3 is based on the fact that the lower level of that
formulation is linear with continuous variables only. Thus, the lower level problem can
be substituted by the optimality conditions given by its constraints, the constraints of its
dual and the complementary slackness conditions. The dual [13] of problem (3.53)-(3.59)
can be expressed as

max
π,λ,µ,ν

∑

k∈K

∑

n∈N

bnkπnk −
∑

k∈K

∑

a∈A

δkxr(a)λak −
∑

k∈K

∑

a∈AW

δkyr(a)f(a)µak (3.64)

s.t.

πik − πjk − λak ≤ ca ∀ a = (i, j) ∈ A−AW , k ∈ K, (3.65)

πik − πjk − λak − µak − νak ≤ ca ∀ a = (i, j) ∈ AW , k ∈ K, (3.66)∑

a∈AW+
n

θf(a)νak ≤ 1 ∀ n ∈ N, k ∈ K, (3.67)

λak ≥ 0 ∀ a ∈ A, k ∈ K, (3.68)

µak, νak ≥ 0 ∀ a ∈ AW , k ∈ K. (3.69)

Let s1
nk, s2

ak and s3
ak be slack variables associated to inequality constraints (3.55), (3.56)

and (3.57) respectively. Analogously, let t1ak, t2ak and t3nk be slack variables associated to
inequality constraints (3.65), (3.66) and (3.67) respectively. Then, the complementary
slackness conditions are

s1
nkνnk = 0 ∀ n ∈ N, k ∈ K, (3.70)

s2
akλak = 0 ∀ a ∈ A, k ∈ K, (3.71)

s3
akµak = 0 ∀ a ∈ AW , k ∈ K, (3.72)

t1akvak = 0 ∀ a ∈ A−AW , k ∈ K, (3.73)

t2akvak = 0 ∀ a ∈ AW , k ∈ K, (3.74)

t3nkwnk = 0 ∀ n ∈ N, k ∈ K. (3.75)

Expressions (3.70)-(3.75) can be linearized by applying the method proposed in [49]
which uses the disjunctive nature of the complementary slackness conditions and proposes
to substitute each product xy by equations

x ≤ Mz,

y ≤ (1− z)M,

where z is a binary variable and M is a sufficiently high positive value. Thus we can
substitute in OPT3 problem (3.53)-(3.59) by its constraints (3.54)-(3.59), the constraints of
its dual (3.65)-(3.69) and the linearized version of the complementary slackness conditions
(3.70)-(3.75). In this way we can transform the original DCLB formulation into a MILP
one. Note that a large number of new binary variables are introduced in order to obtain
this one-level formulation. According to [12] in principle this method is not necessarily
efficient, since some limited experiments suggest that a large portion of the search tree
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has to be enumerated. However, further studies that apply a similar approach to network
design problems ([67] and [84] which is co-authored by the author of this thesis) have
shown that cases of moderate sizes can be solved.

3.5 Numerical experiments

In this section we perform numerical experiments using the formulations developed. Our
goal is to investigate the possibilities of using the models, by applying directly a general
purpose MILP solver. Note that we are not proposing any concrete optimization approach
to the problem based on the formulations developed. More precisely, the aim of the
experiments is to produce results to answer the following questions:

1. Up to which size (in terms of number of vertices, edges and commodities) are in-
stances solvable to optimality?

2. Can the formulations be used in a process of decision making in the context of a real
instance of the problem?

In order to answer 1, we use small-sized instances either generated specifically for this
study as well as taken from the literature. For 2, we use the test case relative to the city
of Rivera (Appendix A). The experiments were ran using CPLEX 10 under Linux, in a
Dual Core computer of 2.8 GHz with 2 GB of RAM memory, that we call machine 1.
The experiments that involved large-sized models were ran using CPLEX 12, in a Core i7
computer of 3.4 GHz with 16 GB of RAM memory, that we call machine 2.

3.5.1 Small instances

In this experiment we try to solve exactly the problem stated by formulation OPT2 without
including transfer arcs; therefore the set R should contain all the possible routes defined
according to the hypothesis stated in Section 2.1.3. We use two test instances (Figure 3.7):

• Small: An instance specially generated for this study, comprising 8 vertices, 10
edges and 4 OD pairs. Figure 3.7(a) shows its corresponding infrastructure graph G
and OD pairs K; edge on-board travel time is expressed in minutes while demand
quantity is expressed in trips per minute.

• Wan and Lo: Taken from [120], comprising 10 vertices, 19 edges and 9 OD pairs.
Edge on-board travel time is expressed in minutes while demand quantity is ex-
pressed in trips per hour in Figure 3.7(b).

To solve Small, the size of the set R of all possible routes is 79 after eliminating all
routes having at least one endpoint that is neither origin nor destination of any OD pair;
note that by eliminating these routes we are not excluding the optimal solution, since we
are not considering transfers. We use three different values for the fleet size B (8, 20 and
60 buses) and the set of possible frequencies was set as Θ = {1/60, 1/30, 1/5}, expressed
in buses per minute. The numbers of variables and constraints of the corresponding model
are 8,212 and 13,880 respectively. For Wan and Lo, we imposed an upper limit on route
duration, since the number of all possible routes is very high (3580). By doing this we
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obtain a set R comprising 608 routes, while we use a set of frequencies Θ = {3, 9, 15, 20},
expressed in buses per hour. For setting B we use the value of the optimal solution
obtained in [120], equal to 995. The resulting model has 199,465 variables and 393,090
constraints.
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Figure 3.7: Small-sized test cases

The results are presented in Table 3.2, where Opt denotes the optimal value (or best
found), LR denotes the optimal value of the linear relaxation and Gap is the percentage
gap between these two values, relative to the last one. R∗ is the optimal set of routes,
1/f refers to the average of headways (inverse of frequency) of each solution (note that
average headways do not necessarily coincide with the inverse of any value in Θ), while
T is the execution time expressed in seconds (in machine 1). The rows tagged with †
indicates that a time limit of 4 hours was imposed. We can observe that only the case
Small with low values on the fleet size constraint was solvable to optimality. For a high
value on that constraint, the optimal value was not attained within the imposed time
limit. We may expect this behavior since the fleet size constraint bounds the size of the
feasible space. Also note that the gap decreases according to the increase in the fleet
size. Another expectable result is the increase of number of routes and decrease of average
headway, according to the increase in the available fleet size. For the instance of Wan
and Lo, it was necessary to reduce the size of the route set R, since the memory was not
sufficient to load the model generated using the whole set of feasible routes. This behavior
is also expected, since the cardinality of this set grows in a super-polynomial order as a
function of the size of graph G.
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Instance Opt LR Gap |R∗| 1/f T

Small B = 8 385.00 253.03 52 3 60 1
Small B = 20 291.50 239.60 21 5 42 547
Small B = 60 † 254.20 236.69 7 7 31 -
Wan and Lo † 1778.19 1170.44 52 6 1/3 -

Table 3.2: Results of OPT2 applied to instances Small and Wan and Lo

3.5.2 Real test case

In this experiment, we applied OPT2 to the case of the city of Rivera (Appendix A);
transfer arcs were not included in order to be consistent with the behavior of the users
of such system. We did not intend to solve this case to optimality, instead we wanted
to explore the applicability of the model to a given situation of decision making in the
context of a real case. More specifically, the model was used to select the optimal subset
of routes from a given pool of routes R and to determine their optimal frequencies. That
pool might for example include the routes of the current system and other alternative
routes identified by the planner; the model may be used in this case to decide whether it
is convenient to replace an existing route by a new one.

In order to generate a pool of routes, we ran the Pair Insertion Algorithm (PIA,
Chapter 4) three times, for different values of its maximum route duration parameter.
We selected routes randomly from those executions, obtaining a pool R comprising 48
routes. We used the current solution of Rivera as reference to configure the set of possible
frequencies Θ and the value B of the fleet size constraint; the first one includes the values
of frequencies used by the lines of Rivera ({1/60, 1/40, 1/30, 1/20}, expressed in buses per
minute), while the second one is equal to 25.65 (see Section 5.5.4). The model generated
with those data to run OPT2 has 11,990,000 variables (from which 192 are binary) and
9,528,450 constraints.

We imposed a time limit of 4 hours on machine 2, obtaining an integer feasible solution
with a 12% relative MIP gap and cost equal to 587.00. The solution comprises 16 routes
taken from the three runs of PIA executed to construct the provided pool R. The model
selected 16 routes with low values of frequencies (1/f=51), instead of selecting less routes
with higher frequencies. This is considered by the model as the best way of exploiting the
available fleet size; observe that high frequency lines require a higher fleet size. Moreover,
low frequencies do not necessary imply low waiting time, because this value is computed
in terms of the frequencies of potentially many lines (expression (2.1)). We performed
an additional experiment by adding the constraint (3.62) of maximum number of lines
to OPT2, with L = 15. In this case, the optimal solution was found within the time
limit, with cost equal to 590.68. The solution comprises 15 routes with higher frequencies
(1/f=45). Thus, we can observe that the model increased the frequencies in order to
improve the overall travel time, when the total number of routes is bounded.

In summary, we can observe that the model was able to solve the particular application
of the TNDP posed on this experiment. We showed that OPT2 could be used in a scenario
of decision making concerning a small-sized real case. We note that the routes of the pool
provided by us are not intended to be directly practicable in the real city; the goal of this
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experiment is only to show that the resulting model can be solvable. Some improvements
to the implementation of the model could be performed, in order to make more efficient the
application of a MILP solver. For example, we can implement a preprocessing technique
that substitutes segments of routes by a single arc, thus reducing the total number of
variables of the model. We observed that adding more routes to the pool R reduced
considerably the chances of solving the problem, mainly due to high memory requirements.

3.6 Conclusions and future work

We have proposed mathematical programming formulations to model the TNDP. The for-
mulations are based on definitions of two graph models, an infrastructure and a trajectory
graph, that are used to represent decisions of the planner and the users, respectively. The
need for including both graphs into the same model is not usually recognized in the liter-
ature relative to the TNDP. We start from a base formulation, which includes an existing
assignment sub-model that considers multiple routes and the waiting time in the behavior
of the users. This last aspect of the assignment problem has not been considered in the
existing explicit formulations for the TNDP. Then we add constraints that represent im-
portant aspects of the problem, like transfer, infrastructure and bus capacity constraints.
We study the impact of adding these constraints in the mathematical structure of the
formulation, based on concepts of bilevel mathematical programming; alternative solution
methods for the bilevel formulation are mentioned.

By means of numerical experiments we give an idea of the size of problem instances
that are solvable by using a standard MILP solver, in terms of number of vertices and
edges of the infrastructure graph and number of OD pairs. We also show that the value
of the fleet size constraint plays an important role when solving the problem. Moreover,
we show that the base formulation could be used in scenarios of decision making with a
real test case, relative to a small city; although the model generated for this particular
application is very big (several millions of variables and constraints), it is solvable with a
reasonable distance to optimality.

We do not propose an specific algorithm to solve the formulations, therefore it is an
interesting future task to continue the research on this direction; for instance by applying
a column generation approach as it is done in [15, 107]. Another line of future research
concerning this part of the thesis, is the investigation of the applicability of the solution
alternatives mentioned in Section 3.4.3 to the bilevel formulation including transfer and bus
capacity constraints; in particular, the special structure of that formulation (the objective
functions of both levels are the same) may be exploited in order to improve the efficiency
of the solution methods.



Chapter 4

Route construction algorithm†

In this chapter we present a constructive algorithm to generate a set of routes to solve the
TNDP. The algorithm is specially designed to produce a set of routes that fulfils demand
covering constraints (Section 2.3), while taking into account the interests of both users
and operators. The motivations for developing this algorithm are:

• The need of a heuristic to obtain approximate solutions, given the high combinatorial
complexity of the problem [15, 65, 107].

• Usually a metaheuristic needs an initial solution to start the search and requires to
evaluate the objective function many times. In the case of the TNDP, that evaluation
entails an invocation to the assignment model (Section 2.2), which is computationally
intensive. For this reason it is desirable to have an initial feasible solution as good
as possible, without requiring repeated invocations to the assignment model.

• It is desirable to have an algorithm whose logic is simple and understandable to be
used in an interactive way by the planner.

The general structure of the proposed algorithm is inspired in the Route Generation
Algorithm (RGA) [10], where its original expansion of routes by inserting individual ver-
tices is replaced by a strategy of insertion of pairs of vertices. The proposed algorithm,
called Pair Insertion Algorithm (PIA) can be used to generate initial solutions for a local
improvement or evolutionary algorithm, as well as to complete an unfeasible solution with
respect to demand covering constraints. Numerical results comparing PIA with RGA over
a real test case show that both algorithms produce solutions with similar quality from the
users viewpoint (in terms of on-board travel time), while PIA produces better solutions
from the operators viewpoint (in terms of number of routes and total route duration) and
requires a higher execution time. Since the TNDP arises in a context of strategic planning,
a solution that reduces the operation cost of the system is highly desirable, even though it
takes more time to be computed. The experimental study of the proposed algorithm also
shows its ability to produce diverse solutions in both decision and objective spaces; this is
a useful property when looking at the use of PIA as a subroutine in the context of another
algorithm such as metaheuristics, in particular for a multi-objective problem like TNDP.

† Most of the content of this chapter was published in [85].
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We use PIA jointly with a frequency optimization model, to obtain a complete solution
(routes and frequencies) for the TNDP, and we compare these results with optimal values.

4.1 Introduction

A key component in the overall planning of a public transportation system is the network
design, where a set of routes is defined over the street network. According to [18], network
design is the first of the five stages of a systematic decision sequence, followed by frequency
setting, timetable development, bus and driver scheduling. Decisions at network design
level are usually taken for a long term horizon, in the context of strategic planning [33].
The transit network directly determines characteristics of the public transportation sys-
tem with respect to the users’ interest such as geographical accessibility and travel time;
alongside with the frequencies, it also defines an important component of the cost for
the operators. Once the transit network is defined, all the subsequent decisions about
timetable development, and bus and driver scheduling are conditioned by it, so the overall
cost of the public transportation system highly depends on the transit network [18].

The Transit Network Design Problem (TNDP) aims to find a set of routes with their
corresponding frequencies, optimizing the objectives of users and operators [9]. Main
problem data are the street network and the demand of trips between different points
of the city. Constraints refer usually to demand covering, required level of service and
resource availability. Frequencies are included in the TNDP as decision variables because
they also have a direct influence in the cost structure of both users (determining the
waiting time) and operators (defining the required fleet size).

The TNDP is a hard to solve combinatorial problem [65], given the discrete nature of
some of its variables (those that represent routes). It is also difficult to formulate with a
mathematical programming approach [20]. For all these reasons, most existing approaches
to solve it rely on approximative methods, i.e., heuristics and metaheuristics [10, 44, 109,
113]. Most of these methods use an specific purpose algorithm to explicitly construct a
set of routes, which is not always feasible with respect to demand covering constraints
(Section 2.3).

A few works exist in the literature about heuristic algorithms to construct a set of
routes for the TNDP, while ensuring demand covering feasibility [10, 65, 94]. Only the
Route Generation Algorithm (RGA) [10] generates, starting from an empty solution, a set
of routes that covers the whole demand, while considering some aspects of interest from
both users and operators points of view. RGA was designed taking into account several
desirable properties and design principles; in this sense, it can be considered as a heuristic
that incorporates a deep knowledge of the problem from the application viewpoint. It
includes a mechanism to explicitly cover the demand (with or without transfers). However,
the cost for the operators (represented by number of routes and total route mileage) of the
resulting set of routes produced by RGA remains high when the requirement of demand
covering is increased [10].

In this work we take some ideas from RGA and we add new ones to propose an algo-
rithm that produces solutions that are more convenient for the operators in comparison
with RGA, while maintaining almost the same cost for the users (in terms of travel time).
Those solutions are highly desirable, since they reduce the operation cost of the transit
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system, allowing to operate a more sustainable system while not degrading its quality
from the users viewpoint. The algorithm proposed addresses the problem of the fulfilment
of demand covering constraints, while taking care in producing solutions that are conve-
nient for both users (low on-board travel time) and operators (low number of routes and
total route mileage). A solution constructed by the proposed algorithm can be used as a
starting point for a local improvement method or as an initial solution for an evolutionary
algorithm, in order to improve its quality. The algorithm can be also used to complete
an unfeasible solution with respect to demand covering constraints. We have performed
computational experiments which are based on a real test case that constitutes a reference
to compare the results produced by the algorithm.

The chapter is organized as follows. In Section 4.2 we give some definitions and notation
used in the following sections. A brief literature review specially focused on approximative
methods and route set construction algorithms for the TNDP is given in Section 4.3, as
well as the motivation of this work. A detailed description of the proposed route set
construction algorithm is presented in Section 4.4. Numerical results of an experimental
study and their analysis are shown in Section 4.5 while conclusions and future work are
given in Section 4.6.

4.2 Definitions and notation

We assume that an infrastructure graph G = (V, E) and an origin-destination matrix D are
given; we refer to Chapter 2 for the definition of these elements. For simplicity, as we did
it in Section 3.2, we adopt the simplified model for representing the routes (Section 2.1.3)
and we assume that all vertices are of type street, stop and centroid at the same time.

We only work with the routes R = {r1, . . . , rr} of a solution for the TNDP (Section 2.3);
frequencies are not taken into account. The interests of users and operators are represented
by functions Y1 and Y2 respectively. The former is defined as

Y1(R) =
|V |∑

i=1

|V |∑

j=1

dijtij(R)/t∗ij , (4.1)

where tij(R)/t∗ij represents (for passengers traveling from i to j) a deviation ratio of
the minimum on-board travel time using routes of R, from the minimum possible value
(independent of any set of routes). According to this, tij(R) is calculated by using an
all-or-nothing assignment approach (Section 2.2), and t∗ij is calculated as the cost of the
shortest path in G between i and j. We assume that passengers apply a transfer avoidance
criterion (as it is done in [8, 60]); therefore, when assigning the demand, a trajectory with
higher on-board travel time but lower number of transfers is preferred. In the remaining
part of this chapter, when we refer to shortest paths in G and cost of a route r, it is always
with respect to the values of on-board travel time represented by ce for every edge e ∈ E;
in this way cost(r) =

∑
e∈r ce.

Operators’ interests are represented by

Y2(R) =
∑

rk∈R

tk , (4.2)
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R D0(R) D0(R) ≥ Dmin
0 D01(R) D01(R) ≥ Dmin

01

{(1,2)} 0.10 × 0.10 ×
{(1,2);(2,3)} 0.20 × 1.00 X
{(1,2,3)} 1.00 X 1.00 X

Table 4.1: Demand covering for three different sets of routes
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Figure 4.1: Illustrative example

which is the total duration of routes in R (equivalent to the total route mileage), where
tk = 2

∑
e∈rk

ce is the duration (round-trip time) of route rk. Low values in both functions
(4.1) and (4.2) are considered in this work as a desirable property for a set of routes R
which is intended to be part of a good solution (routes and frequencies) for the TNDP.

We adopt the following notation to express the demand covering constraints. For
a given set of routes R, D0(R) ∈ [0, 1] is the proportion of the total demand Dtot =∑|V |

i=1

∑|V |
j=1 dij covered by routes in R directly (without transfers). Similarly, D01(R) is

the proportion of Dtot covered by routes in R directly or indirectly (one transfer, at most).
Dmin

0 and Dmin
01 are constant values, which constrain D0(R) and D01(R) respectively as

D0(R) ≥ Dmin
0 , (4.3)

D01(R) ≥ Dmin
01 . (4.4)

Table 4.1 shows for the illustrative case of Figure 4.1 and for three different sets of
routes R, the corresponding values of D0(R) and D01(R) and results of checking the
fulfilment of demand covering constraints when Dmin

0 = 0.75 and Dmin
01 = 1.00.

4.3 TNDP and route construction

The TNDP is a hard to solve optimization problem. Its exact resolution has several
difficulties [9, 20], namely, high combinatorial complexity, a multi-objective nature [65]
and the requirement of an assignment sub-model [33].

It has been treated almost exclusively with approximative methods. Its combinatorial
complexity prohibits the exhaustive enumeration of all feasible solutions. Mathematical
programming formulations face the difficulty of modeling the assignment component; ex-
isting work using this approach has made simplifications to it [15, 107, 120]. We refer
to Sections 1.2 and 3.1 for a more detailed discussion about these characteristics of the
problem.

Existing approximative methods for the TNDP can be classified in two groups:
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1. Heuristics. Classical approximative methods, either constructive or local improve-
ment procedures, as well as combinations of them [9, 10, 109]. Another kind of
heuristics for the TNDP consists of selecting the best possible set of routes from a
previously generated pool of candidates [65].

2. Metaheuristics. Modern approximative methods that implement efficient mecha-
nisms to explore the search space. The application of metaheuristics to the TNDP
has been concentrated in using Genetic Algorithms [20, 94, 101, 103, 113], but some
works also explore the use of Tabu Search [44] and Simulated Annealing [43].

When solving the TNDP with some approximative methods, routes have to be explic-
itly designed by using a route construction algorithm. Several routes must be generated,
which are then grouped to form a set of routes that fulfils the constraints of the problem.
An important type of these constraints are the demand covering constraints.

A few works exist in the literature about heuristic algorithms to construct a set of routes
for the TNDP, while ensuring demand covering feasibility. In [10], a greedy constructive
algorithm that generates a set of routes from scratch is proposed; [65] uses a non-linear
set covering formulation to select a subset of routes from a previously generated pool of
candidate routes. In [44], an optimization model that includes the uncovered demand in
the objective function is used, while the algorithms proposed in [94, 101] do not guarantee
demand covering at the end of the execution.

The Route Generation Algorithm (RGA) [10] is the only constructive algorithm that
generates from scratch a set of routes, ensuring the fulfilment of demand covering con-
straints; it also takes care of the interests of users and operators in the produced results.
RGA also allows to specify a predetermined set of routes as an initial partial solution.
It proceeds by iteratively adding routes to the solution under construction. Routes are
generated by using the shortest path in G between vertices with high demand. Additional
vertices are then inserted in these routes (expansion of routes) according to a pre-specified
criterion. The algorithm ends when the set of routes under construction fulfils demand
covering constraints (4.3) and (4.4). Figure 4.2 shows a seudo-code of RGA.

A key step in RGA is the expansion of routes (procedure ExpandRoute), where the
algorithm takes advantage of a previously existing route to cover the demand between
vertices which are close to it and vertices which are already included into the route. Thus,
the expansion of a route considers the insertion of vertices on it, taken from a set of
candidate vertices. A feasible candidate is a vertex v which is at distance 1 (measured in
number of edges) from the route r and which fulfils the following constraints (as explained
in [10]):

1. It does not already belong to r.

2. It still has a high percentage of its total originating demand left uncovered after
previous insertions in other routes.

3. The resulting route (after insertion of v in r) does not become circuitous. This is
determined by comparing the on-board travel time between the extreme vertices of
the route, against the travel time between those vertices over the graph G (indepen-
dently of any route).
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procedure RGA(in Dmin
0 , Dmin

01 , out R);
R ← ∅; D0(R) ← 0; D01(R) ← 0;
l ← List of pairs of vertices (i, j) of G with dij 6= 0;
while D0(R) < Dmin

0 or D01(R) < Dmin
01 do

(u, v) ← Select (i, j) with maximum dij in l;
r ← Create a route with the shortest path between u and v in G;
ExpandRoute(r);
R ← R ∪ {r};
Delete from l pairs of vertices whose demand is covered directly by r;
Update D0(R) and D01(R);

end while;
Filter routes in R;
return R;

end RGA;

Figure 4.2: RGA, general structure

4. The ratio of the contributed incremental demand covered to the insertion cost (on-
board travel time) exceeds a minimum value.

5. The required frequency of service on the resulting route does not exceed a max-
imum operationally implementable value. A preliminary assignment is performed
(as described in the explanation of expression (4.1)) and the resulting flow is com-
pared against a maximum allowable line capacity (determined by given parameters
of maximum frequency and bus capacity).

6. The round-trip time of the resulting route does not exceed a maximum allowable
value.

A route is expanded until the set of feasible candidates to be inserted is empty. Since
after expansion, a route may include another existing route, a filter procedure is included
at the end of the algorithm. Other elements of RGA (the initial number of routes, the order
of expansion of routes and the use of k-shortest paths) were left aside on this simplified
description; the essence of the algorithm is given by the strategy of the expansion of routes.

The computational experiments performed with RGA in [10] show that when demand
covering requirements are increased, values of number of routes and total route mileage
are significantly increased. For example, a change in Dmin

01 from 0.90 to 1.00 causes an
increase of about 100% in the number of routes and 60% in the total route mileage. Despite
the fact that the algorithm can produce good solutions from the users viewpoint, if these
solutions have a high cost for the operators, they could result in a system that either is
very expensive for the users (in terms of fares) or it may need a great amount of subsidies
to cover the operation costs.

This issue motivated the research concerning this part of the thesis, where a new
strategy of insertion of vertices on existing routes is proposed, inspired in the general
structure of the Route Generation Algorithm.
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4.4 Pair Insertion Algorithm

The Pair Insertion Algorithm is based in the observation that the expansion of routes is
a key component in the overall design of RGA, and therefore it determines the quality of
the solutions produced. Since only the insertion of individual vertices on existing routes is
considered by RGA, the inter-zonal nature of the demand is not taken into account. This
inter-zonal nature, which is given by the origin-destination matrix, is addressed on this
work by considering the insertion of pairs of vertices on existing routes, therefore, covering
directly the demand associated to them. In this way, vertices which are at distances higher
than 1 from the route will be potentially inserted on it.

The basic principle of PIA is to connect pairs of vertices with high values of demand.
The connection is made either by creating a new route based in the shortest path in
G between those vertices, or by inserting both vertices in an existing route. Figure 4.3
outlines the main structure of the algorithm. It starts with an empty set of routes R,
and iteratively seeks to cover the demand given by origin-destination matrix D. A list
l of pairs of vertices whose demand is still not covered directly is maintained. At each
iteration step, the pair of vertices (u, v) with the highest demand duv in l is selected and
that demand is covered according to one of the two following possibilities:

1. Creating a new route, using the shortest path between u and v in G.

2. Inserting vertices u and v in suitable positions of a convenient route of R. It evaluates
the cost of insertion of both u and v between all pairs of consecutive vertices in
routes of R. The most convenient route and the most suitable positions for insertion
of vertices u and v on it are those which minimize the cost increase in the solution
under construction.

The lowest cost increase due to insertion of vertices u and v in a route of R according to
case 2 is compared with the cost of the shortest path between u and v according to case 1;
the best (less costly) case is selected and the algorithm proceeds. It ends when constraints
of demand covering imposed by parameters Dmin

0 and Dmin
01 are fulfilled. Observe that the

structure of the main loop of PIA is the same as the RGA’s one. The difference is that
where RGA always create a new route to cover the demand associated to the first element
of l, PIA evaluates if that demand can be covered by expanding an existing route, thus
trying not to add an additional route.

Figure 4.4 explains the computation of the most convenient candidate route built by
insertion of a pair of vertices; we discriminate the cases when no vertex belongs to the
route and when one vertex belongs to the route. A route r with |r| vertices has |r|+1
possible positions for insertion of a single vertex; 1 denotes the position before the first
vertex of the route and |r|+1 denotes the position after the last vertex. When insertion
of vertex v is performed between two consecutive vertices vi and vi+1 in r, it is connected
to them by using the shortest paths in G between vi and v, and between v and vi+1

respectively. If the resulting route after the insertion contains a loop, it is discarded as
candidate.

In procedure Candidate, when trying to insert vertices into routes, two constraints are
imposed: maximum duration (round-trip time) and maximum circuity factor, represented
by parameters tmax and ρmax respectively. The circuity factor ρ of a route r with extreme
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procedure PIA(in Dmin
0 , Dmin

01 , in ρmax, tmax, out R);
R ← ∅; D0(R) ← 0; D01(R) ← 0;
l ← List of pairs of vertices (i, j) of G with dij 6= 0;
while D0(R) < Dmin

0 or D01(R) < Dmin
01 do

(u, v) ← Select (i, j) with maximum dij in l;
r ← Create a route with the shortest path between u and v in G;
r′ ← Create a route by inserting u and v in the most suitable

positions in the most convenient route r′′ in R, by calling
Candidate(u, v, R, ρmax, tmax, r′);

if cost(r) < cost(r′)− cost(r′′) then
R ← R ∪ {r};
Delete from l pairs of vertices whose demand is covered directly by r;

else
R ← R ∪ {r′} − {r′′};
Delete from l pairs of vertices whose demand is covered directly by r′;

end if;
Update D0(R) and D01(R);

end while;
Filter routes in R;
return R;

end PIA;

Figure 4.3: PIA, general structure

vertices u and v, is defined in [10] as the ratio between the on-board travel time between
u and v using r, and the cost of the shortest path between u and v in G (independent
of any route), i.e., ρ(r) = cost(r)/t∗uv. These constraints are imposed to limit the growth
of the route, when several vertices have been inserted on it. Other constraints such as
route capacity constraints can be easily incorporated to the model and implemented in
the proposed algorithm.

Since the insertion of pairs of vertices on a route r may imply the insertion of a whole
path P in r, it may be possible that there is an already existing route r′ ∈ R included
in P . For this reason, there can be at the end of the main loop of PIA routes that are
completely included in other ones. As in RGA, PIA has a filter procedure that eliminates
these included routes, because we are interested in minimizing the number of routes and
total route duration.

4.4.1 Rationale of the algorithm

The design of PIA is based in the following line of thought.
Probably the main objective in transit network design is to cover the demand in the

best possible way, given a restriction in the available resources (however other objectives
can be stated when designing a transit network [116]). Since the demand has an inter-
zonal nature, expressed in the form of an origin-destination matrix, it has to be covered
for pairs of vertices. For this reason, we consider the insertion of pairs of vertices on routes
as a key idea of our algorithm.

The ideal solution from the users viewpoint is one that covers every non null element of
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procedure Candidate(in u, v, in R, in ρmax, tmax, out r′);
r′ ← ∅; cost(r′) ←∞;
for each r ∈ R do

if u ∈ r then
for each p ∈ [1..|r|+ 1] do

rAux ← Insert v in position p in r;
if cost(rAux) < cost(r′) and rAux respects ρmax, tmax then

r′ ← rAux; Label r as r′′;
end if;

end for;
else if v ∈ r then

for each p ∈ [1..|r|+ 1] do
rAux ← Insert u in position p in r;
if cost(rAux) < cost(r′) and rAux respects ρmax, tmax then

r′ ← rAux; Label r as r′′;
end if;

end for;
else

for each p1, p2 ∈ [1..|r|+ 1] do
r′ ← Insert u and v in positions p1 and p2 respectively in r;
if cost(rAux) < cost(r′) and rAux respects ρmax, tmax then

r′ ← rAux; Label r as r′′;
end if;

end for;
end if;

end for;
return r′;

end Candidate;

Figure 4.4: Computation of the most convenient route

demand dij with a route that includes the shortest path between i and j in G. It is desirable
that this condition can be fulfilled for a high number of elements in D. Almost every work
related to the TNDP agrees that there must exist a route including the shortest path in G
between pairs of vertices with high demand. Based on these observations, the algorithm
proposed considers the elements of D in decreasing order of demand and generates routes
using the shortest path between them.

Since the ideal solution from the users viewpoint is not convenient from the operators
viewpoint, the number of routes has to be restricted. For this reason, when we consider
the next pair of vertices (u, v) whose demand duv has to be covered, we test the possibility
of including these two vertices in an existing route in the solution under construction.
Doing this, we take advantage of the existence of a route, and we modify it so it can serve
the demand associated to a pair of vertices which are close to it. Since it is not desirable
to extend so much an existing route by inserting vertices in it (because travel time will
be increased for demand already served by the route) we impose constraints of maximum
route duration and circuity factor to candidate routes resulting from the insertion.

Even if a pair of vertices (u, v) can be inserted in an existing route, we compare the
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cost of extending this route with the cost of the shortest path in G between u and v. We
always try to minimize the increase of the overall duration of routes in the system. This
criterion represents somehow the interest of the operators, since the sum of the durations
of all routes in the system is directly proportional to the fleet size (which is an important
component in the costs for the operators).

4.4.2 Implementation variants

The PIA constructive algorithm as presented in Figure 4.3 admits some variants in its
implementation. The following is a list of modifications that can be considered with
different purposes:

1. Concerning the decision of the next element of list l to be considered to cover its
corresponding demand, the original strategy (as presented in Figure 4.3) is deter-
ministic, i.e., always the pair of vertices with maximum demand is selected. One
possible alternative is to consider a sublist l′ of elements with highest demand in l
and then select one element from it, in a systematic way. A particular case of this
strategy is the greedy randomized construction [45], where a random selection of an
element of l′ is performed, with a given distribution of probabilities.

2. The shortest path in G is always used when PIA creates a new route to be added to
the solution under construction. In [10], the authors observe that by using alternative
paths there are chances of covering more demand with a slight increase in the route
length; k-shortest paths [122] have been used in [10, 43, 44] in the context of the
resolution of the TNDP and this feature can be easily incorporated to the original
version of PIA.

3. The proposed algorithm starts with an empty set of routes, but it can be fed with an
initial set of given routes R; if so, D0(R), D01(R) and list l have to be appropriately
initialized with information given by R. This characteristic of incremental construc-
tion of the algorithm allows for example to consider a set of initial fixed routes
given by the planner. Another use of the algorithm can be made when there is a
need to complete an unfeasible solution with respect to demand covering constraints,
since some algorithms (for example some local search algorithms [57]) manipulate
unfeasible solutions at intermediate steps, and may end with no feasible solution.

4. Though PIA uses an undirected graph as underlying model, it can be adapted to
work with a directed graph as input network. This constitutes a more realistic
modeling since routes may not have the same duration in both ways. Both the
structure of routes and some parts of the algorithm (specially those that check and
update demand covering) must be modified in order to model this characteristic.
The algorithm also can be easily extended to support a graph with different types
of nodes (street, stop and centroid).

5. Demand covering with more than one transfer can be considered in the model and
implemented in the algorithm. Though it adds more complex subroutines to the
algorithm, it may decrease its overall execution time, since under this scenario there
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is no need to create or modify routes when a given percentage of the whole demand
is already covered with a given number of transfers (therefore the algorithm will stop
earlier).

4.5 Experimental study

In this section we perform computational experiments of the proposed algorithm, with the
following scope:

1. Comparison between PIA and RGA. This set of experiments was made to compare
the behavior of both algorithms, in terms of their sensitivity under changes in de-
mand covering requirements, and in terms of values of Y1 and Y2 of the solutions
produced, as well as execution times.

2. Analysis of diversity. This second set of experiments was designed to investigate
the ability of PIA to produce different solutions, by changing values of some of its
parameters. This is made in order to evaluate the usefulness of PIA as a subroutine
of a more structured algorithm, which may require a set of diverse solutions.

3. Using PIA to solve the TNDP. This experiment tests the accuracy of PIA, by com-
paring its results against exact results obtained by the mathematical formulation
proposed in Chapter 3. We also obtain a complete solution (routes and frequencies)
for a real case using PIA.

The first and second experiments use a real case related to the city of Rivera, Uruguay,
which is described in Appendix A. The real case gives a reference for comparison, specially
in terms of the required number of routes as a function of demand covering requirements.
The third experiment also uses the small cases used in Chapter 3.

Implementations were made in C++; programs were run on a Pentium 4 PC, with
a 1.6 GHz processor and 512 MB of RAM. Values of Y1 are calculated in terms of the
elements of the origin-destination matrix, which are expressed in trips per minute; Y2 is
expressed in minutes.

4.5.1 Comparison between PIA and RGA

The implementations of both algorithms use the same data structures and subroutines,
thus trying to make the comparison as fair as possible. Both algorithms rely on the
availability of pre-computed shortest paths (and their cost) between all pairs of vertices
in G. For the implementation of RGA, the criterion of maximum demand per minimum
time insertion was implemented [10]. According to this, the vertex which maximizes dv/tv
is selected (from the set of feasible candidates) for insertion in route r, where dv is the
demand of elements in l between vertex v and vertices on r, and tv is the cost increase of the
route resulting after the insertion of v. The implemented procedure ExpandRoute applies
three out of the six constraints of the original version of RGA, namely, loop avoiding,
maximum route duration and maximum circuity factor.
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Sensitivity for different levels of demand covering

As mentioned in [10], increasing the imposed levels of demand covering causes an increase
in the number of routes and total route mileage in the solutions produced by RGA. This
tendency was also expected in PIA, but to a lower extent.

In this experiment we run both algorithms for different combinations of Dmin
0 and

Dmin
01 , and we investigate its effect in values of deviation from the shortest path Y1, total

route duration Y2 and number of routes |R|.
Table 4.2 shows that parameter Dmin

01 is the main factor that rules the increase of Y2

and |R| for both algorithms; values of Y1 do not necessarily increase because they are
summations of ratios that can decrease (new routes are needed in order to cover more
demand, which can decrease the travel time of the already covered demand), in particular
for higher levels of Dmin

0 . While increasing Dmin
0 for a fixed value of Dmin

01 does not impact
so much (values along the same column), increasing Dmin

01 has a significant impact (values
along the same row).

When comparing PIA with RGA, we can observe that while values of Y1 vary in a
similar way, values of Y2 and |R| increase to a high extent for RGA. For example, for a
fixed value of Dmin

0 = 0.50, an increase of Dmin
01 from 0.50 to 1.00 causes an increase in Y2 of

427% for PIA and 728% for RGA; the increase in |R| is 467% for PIA and 767% for RGA.
This shows that when we increase the amount of demand covered to that level (which is
desirable from the users viewpoint), the cost increase for the operators (represented by
number of routes and total route duration) when using RGA is around 65% higher than
the cost increase using PIA. The cost increase for the users (represented by travel time)
is almost the same for both algorithms.

Objective values of the produced solutions

In this experiment we compare the results produced by both algorithms in terms of func-
tions Y1 and Y2, which are intended to be minimized when solving the TNDP. We also
compare number of routes and execution time values.

In order to compare, we implemented the greedy randomized construction variant
explained in Section 4.4.2 (implementation variant number 1), in both PIA and RGA.
The list l′ is constructed by selecting the α|l| elements with highest demand of l, where
α ∈ [0, 1] is a parameter. The random selection of an element (u, v) from l′ is made by
using a biased probability distribution [104], where bias(u, v) = duv, and the corresponding
probability is

Prob(u, v) =
bias(u, v)∑

(i,j)∈l′ bias(i, j)
. (4.5)

This means that the probability of choosing the pair (u, v) is proportional to its demand.
Demand covering related parameters were set as Dmin

0 = Dmin
01 = 1.00; we impose

this strong requirement of demand covering for two reasons: (i) to compare results under
extreme conditions of required demand covering, (ii) to obtain solutions which are com-
parable to the public transportation system of Rivera, where all the demand is served
without transfers. Values of parameters over routes were ρmax = 1.5 and tmax = 120
(minutes). Parameter α for the greedy randomized construction was set to 0.2.
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Table 4.2: Sensitivity under changes in levels of required demand covering
(a) PIA

Dmin
01 0.50 0.75 0.95 0.99 1.00

Dmin
0 Y1

0.50 11.35 12.61 15.90 16.20 16.09
0.75 - 14.41 15.90 16.20 16.09
0.95 - - 16.24 16.20 16.09
0.99 - - - 16.14 16.09
1.00 - - - - 16.09
Dmin

0 Y2

0.50 207.48 306.63 713.24 831.40 1093.04
0.75 - 359.68 713.24 831.40 1093.04
0.95 - - 763.09 831.40 1093.04
0.99 - - - 1042.43 1093.04
1.00 - - - - 1117.98
Dmin

0 |R|
0.50 3 4 10 11 17
0.75 - 5 10 11 17
0.95 - - 10 11 17
0.99 - - - 15 17
1.00 - - - - 18

(b) RGA

Dmin
01 0.50 0.75 0.95 0.99 1.00

Dmin
0 Y1

0.50 12.20 13.46 16.17 16.26 15.97
0.75 - 15.16 16.17 16.26 15.97
0.95 - - 16.01 16.26 15.97
0.99 - - - 16.17 15.97
1.00 - - - - 15.97
Dmin

0 Y2

0.50 280.14 368.47 1106.24 1602.67 2319.86
0.75 - 717.63 1106.24 1602.67 2319.86
0.95 - - 1486.28 1602.67 2319.86
0.99 - - - 1991.08 2319.86
1.00 - - - - 2402.13
Dmin

0 |R|
0.50 3 4 12 18 26
0.75 - 8 12 18 26
0.95 - - 16 18 26
0.99 - - - 22 26
1.00 - - - - 27
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Execution Y1 Y2 |R| over T

PIA

1 16.20 1179.83 19 660.45 15.20
2 16.32 1198.66 19 665.79 15.16
3 16.75 1098.18 19 584.33 13.39
4 16.09 1212.77 19 662.04 13.77
5 15.90 1190.65 19 647.47 13.11
6 16.46 1225.81 16 697.35 15.23
7 16.14 1074.17 19 560.99 11.56
8 16.65 1128.35 15 645.15 12.23
9 15.65 1218.93 20 673.14 15.42
10 17.04 1081.83 18 578.34 11.25

Average 16.32 1160.92 18 637.51 13.63

RGA

1 16.30 2114.59 23 1503.43 0.48
2 16.10 1851.23 20 1250.00 0.39
3 15.89 1960.08 21 1338.90 0.38
4 16.49 1997.97 22 1392.33 0.52
5 16.16 1818.06 20 1210.66 0.39
6 16.13 2307.79 24 1681.13 0.44
7 16.05 2040.36 22 1395.03 0.34
8 16.10 1966.98 21 1358.40 0.39
9 15.71 2144.98 23 1527.34 0.41
10 15.92 2036.59 21 1403.43 0.33

Average 16.09 2023.86 22 1406.07 0.41

Table 4.3: Results of 10 independent executions

Table 4.3 shows for each set of routes R produced by each algorithm in 10 independent
executions, values of functions Y1 and Y2, number of routes |R| and execution time T (in
seconds). We also calculate a measure of the overlapping of routes in a solution, defined
as

over(R) =
∑

e∈E

ce max{0, Re − 1} ,

where Re is the number of routes in R which use edge e.
We can observe that while both algorithms produce results with similar values in Y1,

when comparing averages, RGA produces higher values than PIA in number of routes
(22% higher) and total route duration (74% higher). This difference is accompanied by
an overlapping of routes which is more than 100% higher for RGA, suggesting that there
are many routes serving the same demand in solutions produced by this algorithm. On
the other hand, execution time is highly favorable for RGA, which is on average 27 times
lower than the execution time for PIA. This significant difference can be explained by
(i) the quadratic computational complexity of the Candidate subroutine in PIA, and (ii)
the computational burden resulting from the handling of paths in the insertion of pairs of
vertices in PIA.

Table 4.4 shows results from 1000 independent executions of both algorithms, summa-
rized in minimum, average and maximum values. We can observe that averages remain
approximately the same as those in Table 4.3. Minima in Y1 are very similar between PIA
and RGA, and relatively close to its lower (theoretical) possible value, that is attained
when tij(R)/t∗ij = 1 for every (i, j), in this case, 13.94. One remarkable fact is that PIA
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Y1 Y2 |R| over T

PIA
Minimum 15.26 903.60 12 401.74 6.91
Average 16.30 1146.08 18 615.23 12.82

Maximum 17.67 1441.05 24 860.55 21.36

RGA
Minimum 15.49 1429.40 15 880.49 0.27
Average 16.18 1998.44 22 1377.50 0.47

Maximum 17.47 2610.48 28 1950.24 1.13

Table 4.4: Summarized results of 1000 independent executions

has produced a solution with 12 routes, less than the number of routes in the real system
of Rivera, which is 13; on the other hand, the smallest set of routes produced by RGA has
15 elements

4.5.2 Analysis of diversity

Since PIA can be used as a subroutine of another algorithm (for example, a metaheuristic
working with populations or with a multi-start strategy), it can be useful to obtain different
(diverse) solutions; this type of diversity is considered with respect to decision variables.
On the other hand, given the multi-objective nature of the TNDP, it may be desirable to
obtain solutions with different trade-off levels between the conflicting objectives of users
and operators; this type of diversity is considered with respect to the objective space.

In this section we study the diversity in decision space by computing a measure of
similarity among solutions, which takes into account the structure of their routes (in
terms of the sequences of vertices). Diversity in objective space is grasped graphically, by
plotting the results in a two-dimensional space defined by the objectives.

Diversity in decision space

When using PIA as a subroutine of an approximative algorithm for the TNDP, a possi-
ble requirement imposed to it, is the ability to generate a diverse set of solutions (sets
of routes). Some metaheuristics require a constructive algorithm capable of producing
several solutions, being each one different from the other ones (see for example GRASP,
Genetic Algorithms and Scatter Search in [56]). This difference (or diversity) is considered
with respect to decision variables, in this case the structure of routes. Several existing
metaheuristic based algorithms for the TNDP have this requirement on the constructive
algorithm [94, 103, 113].

In this work, we propose a diversity measure diver over a set of solutions < =
{R1, . . . , Rm}, which is defined as

diver(<) = 1−
∑

(Ri,Rj)∈<,i<j sim(Ri, Rj)

|<|(|<| − 1)/2
,

where sim is a measure of similarity between two sets of routes calculated as

sim(Ri, Rj) =

∑
r∈Ri

sim(r,Rj) +
∑

r∈Rj
sim(r,Ri)

|Ri|+ |Rj | .
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α/k 1 2 5 10 20 50
deterministic 0.00 0.00 0.00 0.00 0.00 0.00

0.2 0.31 0.37 0.39 0.44 0.44 0.45
0.4 0.30 0.37 0.42 0.43 0.44 0.46
0.6 0.31 0.38 0.41 0.42 0.46 0.47
0.8 0.32 0.37 0.41 0.43 0.45 0.47
1.0 0.34 0.36 0.41 0.44 0.44 0.46

Table 4.5: Diversity in decision space

Similarity between sets of routes is calculated in terms of the similarity of a route with
respect to a set of routes and it is defined as

sim(r,R) = max
ri∈R

{sim(r, ri)} ,

where sim(r, ri) is the proportion of the cost of the arcs in r which are already included
in ri with respect to its cost, i.e. sim(r, ri) =

∑
e∈r∧e∈ri

ce/
∑

e∈r ce. Thus, the diversity
measure is based on a similarity measure that takes into account the structure of routes
in detail. Note that diver(<) ∈ [0, 1], where 0 states that all solutions in < are identical
(meaning that < is not a diverse set) while 1 indicates the opposite situation (i.e. any pair
of sets of routes are built over totally different sets of edges).

In order to obtain diverse solutions in decision space by using PIA, we change its α
parameter and we use the implementation variant number 2 (explained in Section 4.4.2),
where the new route to be considered for addition to the solution under construction is
generated by using one of the k-shortest paths (k is a parameter); the selection is made
randomly with a uniform probability distribution in the discrete interval [1..k]. The k-
shortest paths are generated in a previous step using Yen’s algorithm [122].

In this experiment we vary α and k, and for each combination of these parameters
we perform 10 independent executions of PIA, thus generating sets of 10 solutions over
which diversity values are computed and shown in Table 4.5. Observe that diver is not
so sensitive to parameter α; any value of α > 0 will cause PIA to produce a diverse set of
solutions (since α = 0 represents the deterministic version of the algorithm). Parameter k
shows a higher influence in diversity, with a monotonically increasing tendency; diversity
increases even for high values of k, however, we must take into account that respective
solutions are not necessarily good in terms of Y1 and Y2.

We observe that diversity is always far from 1.00. This fact suggest that still it may be
possible to improve the diversity of the results, by introducing other mechanisms in the
algorithm; however, we must consider that the fulfilment of demand covering constraints
(specially for higher values of Dmin

0 ) keeps the maximum reachable diversity bounded.

Diversity in objective space

Since the TNDP is a multi-objective problem, where objectives of users and operators
are conflictive [65], a possible use of PIA consists in producing solutions with different
trade-off levels between these objectives (in our case represented by functions Y1 and Y2

respectively). These different solutions can be obtained simply by taking advantage of
the stochastic nature of the greedy randomized version of the algorithm. However, by
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changing the parameter of maximum duration of routes tmax, a wider range of trade-off
levels can be obtained. In this experiment we made 10 executions of the greedy randomized
version of PIA with the same parameter configuration as that used in Section 4.5.1; at
each execution the value of tmax is randomly selected (with uniform probability) from the
real interval I = [40, 120] (minutes).

Several measures have been proposed to evaluate the diversity in objective space of a
set of solutions for a multi-objective problem [31]. However, all of them must be applied
to a non-dominated set of solutions. Because we are interested in getting an idea of the
diversity in objective space of all obtained solutions, we use a graphical method consisting
in plotting the solutions in the two-dimensional space defined by Y1 and Y2.

Figure 4.5 shows the 10 solutions obtained by the greedy randomized version of PIA
(set <1, already shown on Table 4.3) as well as the 10 solutions obtained by the same
version of the algorithm also including the variation of tmax as explained before (set <2).
We can see that there is a region of the objective space (corresponding to low values of
Y1 and high ones of Y2) that is covered by <2 and not covered by <1. This shows that by
changing the parameter tmax, the algorithm is able to produce solutions with very low cost
for the users (and very high for the operators), which can not be obtained by the greedy
randomized version. Despite the fact that these solutions may represent an extreme trade-
off level between the conflicting objectives (and therefore they may not be practicable in
the real system), they may be useful in the context of an algorithm that is designed to
produce a Pareto front as solution of the multi-objective TNDP. The highest value reached
by PIA for Y2 in 1000 independent executions using only the greedy randomized version
is 1,441.05 (see Table 4.4), which is significantly lower than the maximum reached in <2

(which is greater than 2,100.00, with a low value in Y1, suggesting that it is close to the
optimal Pareto front [31]). Thus, the variation of parameter tmax allows the algorithm to
produce solutions in a wide range of trade-off levels between functions Y1 and Y2. It is
interesting to note that diversity in objective space does not imply necessarily diversity in
decision space for solutions in <2; we observe that diver(<2) = 0.27, which is lower than
the minimum diversity already shown in Table 4.5.

4.5.3 Using PIA to solve the TNDP

The goal of these experiments is to compare results produced by PIA against optimal
solutions for the TNDP. For doing that, we use PIA as a subroutine of a 2-phase heuristic
that solves the problem stated by formulation OPT2 (Section 3.2.3); thus we are under
conditions to compare the results with those obtained by using directly the formulation
with a MILP solver (Section 3.5). Since we want to evaluate the accuracy of PIA but it
only determines the routes of a solution, we then determine the optimal frequencies for
those routes by applying OPT2. By comparing that solution with the optimal one we are
somehow evaluating the contribution of PIA in obtaining a complete solution to the TNDP;
note that the comparison is likely to be independent on the way in which the frequencies
are determined, sice they are optimal for those routes. The 2-phase approach explained
above is similar to several existing heuristic approaches that determine the routes in a first
stage and the frequencies in a second one [9, 77, 103]. We also use the 2-phase heuristic to
generate a complete solution (routes and frequencies) for the case of Rivera (Appendix A).
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Figure 4.5: Diversity in objective space

Comparison between exact and approximated results

We use the 2-phase heuristic to obtain approximate solutions corresponding to the in-
stances considered in Section 3.5.1. The parameter setting used for PIA was tmax = 200
for Small and tmax = 1.2 for Wan and Lo, while ρmax = 1.5 for both cases. Table 4.6
shows the objective values already shown in Table 3.2 (column Opt), the approximated
value obtained by the 2-phase heuristic (column Heu) and the percentage gap between
these two values, relative to the first one. We can observe that gaps are relatively constant
for the case Small, while for the case of Wan and Lo the gap is relatively low. We should
remember that the optimal value for this case was computed using a subset of all possible
routes and a time limit (Section 3.5.1), therefore some routes (that could be found by
PIA) may be missed and some parts of the feasible space could remained unexplored in
that computation.

We note that we are not proposing an approximate algorithm to solve the TNDP; we
only wanted to have an idea of closeness to the optimum of results obtained by PIA. The
2-phase heuristic presented here is very simple, so one can expect that the approximation
can be improved by using more sophisticated ideas. Moreover, the small sizes of the test
cases used do not allow PIA to perform all of its logical branches; therefore these tests can
not be taken as a strong evaluation of the accuracy of the heuristic. Part of the motivation
of the experiment presented in the next section is given by this fact.

Obtaining a solution for Rivera

The 2-phase heuristic was applied to the case of the city of Rivera. We used the fol-
lowing parameter setting, whose values are suggested by the solution (routes and fre-
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Instance Opt Heu %Gap
Small B = 8 385.00 460.00 19
Small B = 20 291.50 355.00 22
Small B = 60 254.20 292.50 15
Wan and Lo 1778.19 1807.50 2

Table 4.6: Comparison of exact and approximated results

quencies) of the public transportation system of Rivera: tmax = 80, ρmax = 1.5, Θ =
{1/60, 1/40, 1/30, 1/20} and B = 25.65. Note that it is not possible to obtain the optimal
value using the mathematical formulation OPT2, since the size of the set of all different
routes in G is not manageable. In order to provide a reference of distance to optimality,
we compute lower bounds for both on-board and waiting time (terms of objective function
(3.22)), using the definitions presented in Section 5.5.1 (tv∗ and tw∗ respectively). The
solution found attained an objective value of 604.79, comprising 16 routes with an aver-
age route duration and route headway of 74 and 52 minutes respectively. The distance
to on-board travel time lower bound tv∗ is 21% while the distance to waiting time lower
bound tw∗ is 31%. These bounds are provided only in order to give an idea of distance
to optimality, despite they may be weak; for example, they do not take into account the
value of the fleet size constraint, and the one related to waiting time is actually a pseudo
lower bound (Section 5.5.1). Objective value, number of routes, average route duration
and average route headway are 9%, 12%, 17% and 41% higher than their respective values
corresponding to the solution of Rivera. Note that even though our frequencies are opti-
mal for a given set of routes (obtained from a single deterministic execution of PIA), they
are very low in comparison with the ones of Rivera; the difference is that the frequencies
of the lines of Rivera are defined over a set of routes that is “optimized” by the planners
of the municipality. We resume the comparisons with the solution operating the public
transportation system of Rivera in Section 5.5.4.

4.6 Conclusions and future work

The PIA algorithm proposed modifies the RGA by using a new strategy of insertion of
pairs of vertices, instead of the original expansion of routes by inserting single vertices.

When compared with RGA, PIA produces solutions with similar values of on-board
travel time, and significantly better in terms of number of routes and total route duration.
On the other hand, execution time is significantly higher; this fact is explained mainly by
the quadratic computational complexity of the subroutine of insertion of pairs of vertices,
which is intensively used by PIA. Further investigation looking at possible strategies to
reduce the complexity of the algorithm are required to improve execution times. However it
is worth mentioning that execution time is not the main concern in the context of strategic
planning, where TNDP takes place. Though execution times are highly favorable to RGA,
the cost of the solutions produced by PIA from the operators viewpoint are much lower,
while the cost for the users is almost the same. In terms of the real transit system,
this reduction of operation costs may imply a reduction on fares and/or subsidies, while
maintaining the revenues of the operators and the level of service for the users.
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The algorithm has shown to be flexible to be used as a subroutine in other algorithms
such as metaheuristics; it is capable to produce diverse solutions in both decision and
objective spaces. It is used in [90] to generate solutions with different trade-off levels
between the objectives of users and operators, in the context of a metaheuristic based
algorithm; it is also used in [88] to complete unfeasible solutions with respect to demand
covering constraints.

A real medium to small-sized test case was used in this work. The algorithm has
shown to be capable of producing solutions which are comparable (in terms of number of
routes) to real solutions. For cases of much larger sizes, the applicability of the algorithm
has to be tested, specially with regard to execution time. Demand covering plays an
important role on those cases: high imposed levels of demand covering without transfers
may impact on the performance of the algorithm, by increasing its execution time. Also the
possibility of covering the demand with more than one transfer has to be considered in both
model and algorithm for big cases, since the budget of the operators will not allow direct
connections as users might wish; this impacts on the complexity of the implementation of
the algorithm but not necessarily it degrades its computational performance (as explained
in Section 4.4.2).

We use PIA as a subroutine of a simple heuristic that obtains a complete solution
(routes and frequencies) for the TNDP; its results are compared with exact results com-
puted by using a mathematical programming formulation. Thus, we provide a reference
to evaluate the accuracy of PIA. It would be also interesting to study how close are the
solutions produced by PIA to Pareto optimal solutions according to objectives Y1 and Y2.



Chapter 5

Multi-objective metaheuristic
approach to route optimization‡

In this chapter we present a multi-objective metaheuristic approach for the TNDP. The
motivations for the research related to this part of the thesis are:

• The TNDP is a complex combinatorial problem, therefore a heuristic approach seems
to be a suitable alternative to solve real instances.

• The problem has an intrinsic multi-objective nature, given that the objectives of
users and operators are conflictive. Roughly speaking, this mean that an improve-
ment in one objective is attained only with a detriment on the other one.

• The multi-objective nature of the TNDP has been treated in the literature by reduc-
ing the problem to a single-objective one, either by weighting both objectives into a
single objective function or by considering one objective as a constraint. These meth-
ods arrive to a single solution that highly depends on the parameters used (weights
in the objective function and values in the constraint), which may be difficult to set
for the planner.

• In case we want to obtain a set of solutions representing different levels of trade-off
between the conflicting objectives, a straightforward approach is to run a single-
objective algorithm repeatedly with different weighting or constraining parameters.
A heuristic algorithm that exploits the search to obtain solutions with different levels
of trade-off in a single run seems to be a more efficient approach.

• The only previous work that applies a multi-objetive approach to the TNDP is [65],
where the authors solve the multi-objective problem by using a special purpose
heuristic algorithm that obtains a small set of non-dominated solutions. By contrast,
multi-objective metaheuristics is a promising technique to be applied to the TNDP
in the context of a multi-objective approach to the problem, in the sense that more
non-dominated solutions could be found.

‡ Different parts of the content of this chapter were published in [90] and presented in [87] and [89].
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• It is desirable to test the multi-objective approach with a real case; a comparison of
the solutions obtained against the solution of the real system would provide elements
to validate the approach.

In this work we model the TNDP as a multi-objective combinatorial optimization
problem and we propose an algorithm based on the GRASP metaheuristic to solve it;
as a multi-objective metaheuristic, the algorithm produces in a single run a set of non-
dominated solutions representing different trade-off levels between the conflicting objec-
tives of users and operators. The case proposed by Mandl is used to show that the
multi-objective metaheuristic is capable of producing a diverse set of solutions, which are
compared with solutions obtained by other authors. We show that the proposed algorithm
produces more non-dominated solutions than the Weighted Sum Method with the same
computational effort, using the cases of Mandl and the city of Rivera. We also show that
the proposed algorithm produces solutions which are comparable with the solution of the
real system of Rivera.

5.1 Introduction

The main objective in the design of routes for a public transportation system is the max-
imization of the level of service offered to the users [33], subject to constraints on infras-
tructure, policy and budget. One of the most important budgetary constraint is related
with the operation cost of the services. In a general sense, a better service is offered
to the users in the presence of more routes and high frequencies. But there exist upper
bounds for the resources of the service provider that make their operation profitable (fares
and subsidies are also bounded). Then a convenient trade-off level has to be established,
maybe entailing the evaluation of various alternative system designs. Thus, the problem
of the optimal design of routes and frequencies has an intrinsic multi-objective nature.

The exact resolution of the TNDP has the following difficulties, enumerated among
others in [9, 20]:

• High combinatorial complexity: [65] classified the problem as a complex variant of
the generalized network design problem [76], which is NP-hard.

• The TNDP requires an assignment submodel: the evaluation of a given solution
(from the users viewpoint) needs a behavior model of the passengers concerning the
routes and frequencies of the solution.

• Multi-objective nature: the existence of conflicting objectives adds complexity to the
problem, either in the a priori estimation of the relative importance of the objectives,
or in the calculation of several solutions with different trade-off levels between the
conflicting objectives.

The combinatorial complexity of the TNDP has been tackled in the existing litera-
ture almost exclusively by means of inexact methods. Complete enumeration of feasible
solutions is prohibitively expensive; mathematical programming formulations exist only
for simplified versions of the problem [15, 107, 120]. The first algorithms published for
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the TNDP were heuristics [7, 10, 77, 109]. Lately, several applications of metaheuris-
tics have been proposed, most of them using Genetic Algorithms with different coding
schemes [94, 103, 113], Tabu Search [44] and Simulated Annealing [43].

The assignment models generally used in the context of the TNDP aim to give a real-
istic representation of the interaction between passengers and buses; but their complexity
must be kept bounded given the impact they have in the overall efficiency of the optimiza-
tion algorithms. The most used approaches are all-or-nothing assignment [94], common
lines and transfers [9], and detailed network treatment [41].

Multi-objective optimization problems require a different treatment than single-objective
ones. Instead of having a single optimal solution, they have a set of different non-
dominated solutions which represent different trade-off levels among the conflicting objec-
tives. In order to identify a single solution from that set, additional information (usually
provided by a decision maker, in our terminology, the planner) is required, concerning
the relative importance of the conflicting objectives. There are several ways to take into
account this information in the overall multi-objective optimization process [37], namely:
(i) in the a priori mode the preferences among different objectives are known at the be-
ginning of the process and the optimization technique uses this information to find an
optimal solution, (ii) in the a posteriori mode the information from the decision maker
is used to analyze a set of non-dominated solutions previously generated, (iii) in the in-
teractive mode preferences are introduced during the process, which alternates computing
steps with preference setting, requiring a high participation level of the decision maker.

Most of the previous work on the TNDP have considered the multi-objective nature of
the TNDP by using an a priori estimation of a vector of weights to express a particular
trade-off level between the conflicting objectives [9, 41, 94, 103, 113]. The a posteriori
mode has been adopted only in [65] and [86]. To the best of our knowledge no interactive
multi-objective optimization method has been applied to the TNDP

All the existing metaheuristic based algorithms for the TNDP, with the exception
of [86], solve a single-objective optimization problem by summarizing the different objec-
tives into a single one by using a vector of weights. In recent years, a growing amount
of work has been published about metaheuristics specially designed for multi-objective
combinatorial optimization problems. This type of algorithms has been denominated as
multi-objective metaheuristics and they are defined by different authors as: methods that
aim at generating a good set of non-dominated solutions in a single run [66], and algo-
rithms that deal with the multiple objectives directly [38]. The basic idea of multi-objective
metaheuristics is to adapt the mechanisms of their original single-objective counterparts
to handle effectively and efficiently multi-objective optimization problems [24, 36, 38].

In this work, we present a heuristic based on the GRASP metaheuristic [45, 104] to
solve the TNDP with a multi-objective approach (i.e., adopting the a posteriori mode).
It allows to obtain in a single run, a set of non-dominated solutions representing different
trade-off levels between the conflicting objectives. A previous GRASP based algorithm was
developed by the author of this thesis [86]; its construction and local search components
are completely different. The multi-objective algorithm proposed uses the Pair Insertion
Algorithm (Chapter 4) to construct a set of routes, and a neighborhood definition that is
used to search for a near optimal set of frequencies for a particular trade-off level. The
assignment model of Baaj and Mahmassani [8] is used to distribute the demand among
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the routes of a given solution and to calculate some variables needed by the optimization
procedure. The proposed methodology is tested with the benchmark test case proposed
by Mandl [9] and the case relative to the city of Rivera, Uruguay (Appendix A). Existing
and proposed measures are calculated for different non-dominated solutions in order to
show the ability of the proposed algorithm to generate a diverse set of solutions; these
measures may be useful for the decision maker. The obtained solutions are compared (in
terms of objective values) with solutions published in the literature and with the solution
of the real system of Rivera. Moreover, we show that the multi-objective metaheuristic
algorithm produces more non-dominated solutions than its single-objective version used
as a subroutine in the Weighted Sum Method [31], with the same computational effort.

The remaining of the chapter is organized as follows. We formally state the problem
and used notation in Section 5.2 and present the adopted multi-objective approach in
Section 5.3. Details of the GRASP implementation are given in Section 5.4. Numerical
results are presented in Section 5.5, and finally some conclusions and future work are
formulated in Section 5.6.

5.2 Problem definition and notation

Our model is inspired in the work of Baaj and Mahmassani [9]. The main reason for using
an existing model is that we want to compare our results with existing results published
in the literature; this requires specially to use the same assignment model, in order to
compare objective values under the same hypothesis about the behavior of the passengers.
We use this particular model because it is the only one published in the literature which
contains a detailed description of the assignment sub-model and data to validate our
implementation. Also this model is consistent with the hypothesis stated in Section 1.1.

As we do in Chapter 4, we assume that an infrastructure graph G = (V, E) and
an origin-destination matrix D (defined in Chapter 2) are given. We adopt the simplified
model explained in Section 2.1.3 for representing the routes and we assume that all vertices
are of type street, stop and centroid at the same time. A solution S to our problem is a
pair (R, F ) where R = {r1, . . . , rr} is the set of routes and F = {f1, . . . , fr} is the set of
their corresponding frequencies; each fk is a positive real value that represents the inverse
of the average time between subsequent vehicles on route rk. We denominate line k to the
pair (rk, fk). Given a solution S, the assignment model produces the corresponding flows
v over the trajectory graph (Section 2.2). Let Φk = {va} be the set of flows in travel arcs
a that belong to route rk, computed by the assignment model.

The conflicting objectives of users and operators are modeled with functions Z1 and
Z2, respectively, which have to be minimized simultaneously. The first function,

Z1(S) =
|V |∑

i=1

|V |∑

j=1

dij(tvij + twij + ttij) (5.1)

expresses the overall time needed to transport the users between their corresponding origin
and destination vertices. It has three components: on-board travel time tv, waiting time
tw and transfer time tt. These values are determined by the assignment model; tvij is
calculated using the costs of the edges of G that are used by lines in S connecting vertices
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i and j; twij depends on the frequencies of these same lines; ttij is a penalty (expressed
in time units) which represents the discomfort of transfers from the users viewpoint (we
define σt as the penalty of each demand unit which has to perform transfers).

The objective of the operators is represented by the fleet size (Section 2.3),

Z2(S) =
∑

rk∈R

fktk , (5.2)

where tk = 2
∑

e∈rk
ce is the total duration (round-trip time) of route rk.

For a given solution S = (R,F ), we consider demand covering constraints as defined
in Section 4.2, namely

D0(S) ≥ Dmin
0 , (5.3)

D01(S) ≥ Dmin
01 . (5.4)

We consider lower and upper values for frequencies, fmin and fmax, respectively. While
the former takes care of the level of service offered to the users, the latter represents a
limit imposed by the operational possibilities of the transit mode. These constraints are
expressed as

fmin ≤ fk ≤ fmax ∀fk ∈ F . (5.5)

The maximum load factor constraint imposes an additional condition for the frequencies.
It is expressed as

fk ≥
φ∗k
ηω

∀fk ∈ F , (5.6)

where φ∗k = max Φk is the critical flow in route rk and ω is the seating capacity of vehicles.
The given constant η ≥ 1 is the maximum load factor in vehicles, expressing a tolerance
in the number of standing passengers. According to this, ηω is the maximum allowed
capacity of vehicles.

Note that although the formulation of this model for the TNDP is not explicit, we
can identify an underlying bilevel structure consistent with the one stated by formulation
OPT3 (Section 3.4.2). Thus, while constraint (5.5) and objective function (5.2) depends
on variables of the upper level only (routes and frequencies), all the other constraints and
objective function (5.1) depends on values (flows and travel times) that are computed by
the assignment submodel. In particular, (5.3)-(5.4) represent the transfer constraint (3.60)
for τ = 1 and (5.6) represents the bus capacity constraint (3.61) of OPT3.

We denominate as P the problem defined by the simultaneous optimization of objective
functions (5.1) and (5.2), under constraints (5.3)-(5.6).

5.3 Multi-objective approach

Given the multi-objective nature of problem P, it does not have a single optimal solution
S∗; instead it has a set of Pareto optimal solutions P ∗, called optimal Pareto front [31].
The optimal Pareto front of a multi-objective optimization problem is the non-dominated
set of the whole set C of feasible solutions. The non-dominated set of a given set C is
made up of all the solutions that are not dominated by another solution in C. A solution
S1 dominates another solution S2 if S1 is no worse than S2 in all objectives and S1 is



74 Multi-objective metaheuristic approach to route optimization

strictly better than S2 in at least one objective. If any of these two conditions is not true,
then S2 is not dominated by S1. When we refer to elements in the feasible set C, we are
dealing with the decision space, i.e., the space where variables take values. On the other
hand, domination is defined according to the values of the objective functions evaluated
over solutions of C in the objective space. In the context of the TNDP, the decision space
is made up of all sets of routes with frequencies (and corresponding demand assignment)
satisfying constraints (5.3)-(5.6). The objective space is a two-dimensional space defined
by functions Z1 and Z2.

Problem P can be classified according to [36] as a multi-objective combinatorial opti-
mization (MOCO) problem. The discrete nature of the variables that represent the struc-
ture of routes gives the combinatorial characteristic. The conflicting objectives represented
by functions (5.1) and (5.2) result in the existence of a set of Pareto optimal solutions
instead of a single optimal solution. Note that other conflicting objectives could be con-
sidered, such as those related to land use and emissions. However, additional (sub)models
and therefore additional data will be required in that case.

The multi-objective nature of the TNDP as it is posed by objective functions (5.1)
and (5.2) (or by similar formulations), has been tackled by the following approaches in
the existing literature:

• Making an a priori estimation of the relative importance of the conflicting objectives
in the form of a vector of weights, and then solving a single-objective optimization
problem [94, 103, 113]. Some authors suggest that by varying the values of these
weights, a set of solutions with different trade-off levels can be obtained [9].

• Calculating a set of non-dominated solutions and selecting a posteriori a single
one [65, 86].

According to [37], the interactive multi-objective optimization method is the most used
in solving practical problems. However, to the best of our knowledge it has not been
published any application of this method to the TNDP.

A priori setting of weights requires estimating coefficients whose role in the opti-
mization model is twofold, namely: (i) expressing the relative importance between the
objectives, and (ii) conversion between different units of the objective functions Z1 and
Z2 (time and buses, respectively). No explicit method to set these coefficients is given in
the literature related to the TNDP. In this work we adopt the a posteriori mode [37], that
we call multi-objective approach for the TNDP. We propose an algorithm to find a set of
non-dominated solutions which can be used in subsequent steps by the decision maker,
either to select a single non-dominated solution, to compare the solutions with an existing
solution or to evaluate alternative solutions.

5.3.1 Multi-objective metaheuristics

The exact solution of P involves finding all its Pareto optimal solutions [37] (Figure 5.1(a)).
Most MOCO problems are proven to be NP-hard [53] as well as #P-hard [115] (this is
true even for problems which have efficient algorithms in the single-objective case) [38].
This implies that it is unlikely that a polynomial time algorithm exists to exactly solve
them, and even to count the elements of the optimal Pareto front. Also from a practical
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(a) Optimal Pareto front (b) Pareto optimal solutions (c) Approx. Pareto front

Figure 5.1: Different approaches to solve the multi-objective TNDP

viewpoint, it may not be convenient to bring all the Pareto optimal solutions to the
decision-maker. In [105], a method to overcome this difficulty in bi-objective discrete
optimization problems is presented, allowing to obtain a subset of the entire Pareto front
(Figure 5.1(b)). However, it requires an exact method for solving the associated single-
objective optimization problem.

In this work we present an algorithm that is approximate in two senses: (i) it produces
a set of non-dominated solutions representing different trade-off levels between the objec-
tive functions (however, other non-dominated solutions may be missing), (ii) there is no
guarantee of Pareto optimality for each solution found. The algorithm is a multi-objective
metaheuristic; therefore, it produces in a single run an approximate Pareto front for P
(Figure 5.1(c)).

The main algorithmic difference of multi-objective metaheuristics with respect to their
single-objective counterparts is the adopted search mechanism to obtain an approximate
Pareto front. In multi-objective optimization, the goals of an inexact algorithm are two,
namely [31]: (i) closeness: one seeks to find solutions which are close to the optimal Pareto
front, (ii) diversity: one also wants to obtain a set of non-dominated solutions which covers
different areas of the objective space, representing a diverse set of trade-off levels between
the conflicting objectives. On seeking closeness and diversity, specially designed search
mechanisms are needed, which have to deal with both decision and objective spaces.
Surveys on this topic can be found in [24, 38].

5.3.2 Multi-objective GRASP for the TNDP

GRASP (Greedy Randomized Adaptive Search Procedure [45, 104]) is a metaheuristic for
combinatorial optimization problems, consisting on the repeated execution of a solution
construction procedure followed by a local search. The construction is performed using a
greedy criterion, by adding iteratively to a solution, elements which are randomly selected
from a candidate list. The local search requires the definition of a neighborhood structure,
through which to successively advance in the direction of improvement of the objective
function. The sequence of construction and local search (GRASP iteration) is repeated a
given number of times, obtaining different trajectories in the feasible space. Finally, the
best found solution is returned.

In this work we adapt GRASP to solve the TNDP with a multi-objective approach.
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Existing adaptations of GRASP for MOCO problems can be found in [11, 51, 62, 74, 117].
The general structure of the proposed algorithm, that we call GRASP TNDP, is the
following (implementation details are given in Section 5.4):

• The construction procedure uses the Pair Insertion Algorithm (Chapter 4). It gener-
ates a set of routes R, which satisfies constraints (5.3) and (5.4) of the optimization
problem P. Routes are constructed by using shortest paths between vertices in G
and then inserting additional pairs of vertices into them.

• The local search calculates a near optimal set of frequencies F , according to con-
straints (5.5) and (5.6), for a given trade-off level between the conflicting objectives
represented by functions (5.1) and (5.2). This procedure takes a random vector of
weights and uses a neighborhood structure to advance in the direction of improve-
ment of a single composite objective function. The neighborhood of a solution is
defined by varying its frequencies in a predetermined set.

In this way, at each GRASP iteration, different points in both decision and objective spaces
are sampled. Different trade-off levels are obtained by varying from one GRASP iteration
to another, parameters of maximum route duration tmax at the construction procedure
and a random vector of weights λ at the local search (Section 5.4). All solutions of the
trajectory of the local search are added to the set of potentially non-dominated solutions
under construction P . At the end of each GRASP iteration, all dominated solutions
in P are deleted. The assignment model of Baaj and Mahmassani [8] is used to load
the demand onto a given solution S, to evaluate objective function Z1(S) and to verify
frequency feasibility according to constraint (5.6).

5.4 The algorithm

When we instantiate the GRASP metaheuristic for a particular application, we have to
tailor all its problem dependent aspects. The construction algorithm has to be specified,
which entails to specify how to build the list of candidate elements to be added to the
solution under construction, how these elements are ranked at each step of the construction
according to a required adaptive greedy function, how to construct the restricted candidate
list, and how the elements are selected from that list. For the local search, a neighborhood
structure and its exploration strategy have to be defined. Also a stopping rule is required.
We now discuss all these elements for our solution to the TNDP.

5.4.1 Construction algorithm

We use the greedy randomized variant of the Pair Insertion Algorithm (PIA), which pro-
duces a set of routes for the TNDP. Here we present its relevant aspects, more details can
be found in Chapter 4. The construction algorithm (Figure 5.2) starts with an empty set
of routes R, and iteratively seeks to satisfy the demand specified by the origin-destination
matrix D. At each iteration step, a restricted candidate list rcl is constructed by selecting
the α|l| pairs of vertices (i, j) with highest demand dij in l, where α ∈ [0..1] is a real-
valued parameter of GRASP and l is a list made of all pairs of vertices whose demand is
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procedure Construction(in Dmin
0 , Dmin

01 , in ρmax, tmax, in α, out R);
R ← ∅; D0(S) ← 0; D01(S) ← 0;
l ← List of pairs of vertices (i, j) of G with dij 6= 0;
while D0(S) < Dmin

0 or D01(S) < Dmin
01 do

rcl ← Construct according to α and l;
(u, v) ← Select randomly from rcl;
r ← Create a route with the shortest path between u and v in G;
r′ ← Create a route by inserting u and v in the most convenient

positions in the most convenient route r′′ in R;
if cost(r) < cost(r′)− cost(r′′) then

R ← R ∪ {r};
Delete from l pairs of vertices whose demand is covered directly by r;

else
R ← R ∪ {r′} − {r′′};
Delete from l pairs of vertices whose demand is covered directly by r′;

end if;
Update D0(S) and D01(S);

end while;
Filter routes in R;
return R;

end Construction;

Figure 5.2: Construction algorithm

not yet satisfied (directly) by routes in R. The pair of vertices (u, v) is randomly selected
from rcl, and its corresponding demand duv is satisfied according to one of the two cases
explained in Section 4.4. When inserting pairs of vertices on existing routes, constraints
of maximum duration tmax and maximum circuity factor ρmax are applied, as explained
in Section 4.4. The construction ends when constraints (5.3) and (5.4) are satisfied. The
algorithm finally performs an operation that filters routes that are completely included in
other ones.

5.4.2 Local search

The local search operates with the set of frequencies F = {f1, . . . , f|R|} of a solution S =
(R, F ); this means that only frequencies are decision variables in this phase (Figure 5.3).
The domain of frequencies is discretized in the set Θ = {θ1, . . . , θ|Θ|} ∈ R|Θ| as it is
done in Section 3.2.3. That set is a given parameter that is sorted in increasing order,
satisfying θ1 ≥ fmin and θ|Θ| ≤ fmax. The neighborhood NS of S is obtained by varying
the frequency of every route in S. A solution S′ is a neighbor of S if both solutions have
exactly the same routes, they differ in the frequencies of one route and these frequencies
are consecutive values in Θ.

According to this neighborhood definition, the local search algorithm evaluates the
costs of increasing or decreasing the frequencies in all routes of solution S. At each step
of the local search, the cardinality of NS can be at most 2|R|. However, this number
can be smaller when there are routes with frequencies equal to θ1 or θ|Θ|. The local
search receives a random vector of weights λ = (λ1, λ2) and successively moves forward
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procedure LocalSearch(in λ, in S, in out P );
current ← S;
P ← P ∪ {current};
stop ← false;
repeat

S′ ← FirstImprovement(current, λ);
if S′ better than current then

current ← S′;
P ← P ∪ {current};

else
stop ← true;

end if;
until stop;
return P ;

end LocalSearch;

Figure 5.3: Local search

to the neighbor which minimizes the composite objective function λ1Z1 + λ2Z2, using a
first improving strategy [104]. This means that whenever a neighbor that improves the
objective value of the current solution is found, the exploration of the neighborhood is
terminated and the local search proceeds towards its next step. The evaluation of each
neighbor solution involves an invocation to the algorithm that implements the assignment
model (Section 5.4.4). Solutions that violate constraint (5.6) are discarded.

5.4.3 GRASP TNDP

Figure 5.4 presents a pseudo code of the GRASP TNDP algorithm. It begins by calculating
the shortest path between all pairs of vertices in G. This is done just once, independently
of the GRASP iterations, because the cost of the edges of G are considered as constant,
not depending on the flows produced by different solutions. The maximum duration
of routes tmax is determined at each GRASP iteration by sampling a random uniform
value in the real interval [tini

max, tend
max] (given parameters). This idea is applied to obtain

diverse solutions, each having internally homogeneous characteristics, all routes having
approximately the same duration. The initial frequency of every route in R is set as the
maximum value of the set Θ; thus we try to find an initial solution that is feasible with
respect to constraint (5.6). The random vector of weights λ = (λ1, λ2) is determined
by sampling a random uniform value in the real interval [0, 1] for λ1 and then setting
λ2 = 1− λ1.

Observe that GRASP TNDP is consistent with the underlying bilevel structure of for-
mulation (5.1)-(5.6). In particular, given a solution, its objective value according to (5.1)
and the fulfilment of constraint (5.6) are known after applying the assignment submodel.
We should mention that demand covering constraints (5.3) and (5.4) have a slightly differ-
ent meaning than (3.60) in formulation OPT3: while in GRASP TNDP they are intended
to be ensured by the construction algorithm PIA, they may be violated after applying the
assignment submodel (Section 5.4.4). This may happen because PIA uses a preliminary
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procedure GRASP TNDP(in Dmin
0 , Dmin

01 , in ρmax, tini
max, tend

max,
in NumIterations, α, out P );

Calculate shortest paths between all pairs of vertices in G;
P ← ∅;
for i = 1 to NumIterations do

tmax ← Random uniform value in [tini
max, tend

max];
Construction(Dmin

0 , Dmin
01 , ρmax, tmax, α,R);

F ← Initial frequencies;
S ← (R, F );
λ ← Random vector of weights;
LocalSearch(λ, S, P );
Delete dominated solutions of P ;

end for;
return P ;

end GRASP TNDP;

Figure 5.4: GRASP TNDP algorithm

assignment for checking demand covering constraints; that assignment has less information
about the solution (it does not know the values of frequencies).

5.4.4 Assignment submodel

The assignment model of Baaj and Mahmassani [8] is used to load the demand D among
the lines of a given solution S; it is needed in order to calculate Z1(S) and to verify
constraint (5.6). In general terms, it can be considered as a variant of the assignment
model of optimal strategies [110] (explained in Section 3.2.1). The main differences with
respect to that model are:

• It adopts the criterion proposed in [60] concerning transfers. The users consider
a lexicographic strategy in the choice among competing routes (different lines con-
necting the same OD pair), transfer minimization being the primary choice criterion.
Observe that in optimal strategies, transfers are ignored; they are implicitly codified
in the trajectory graph.

• A heuristic solution of the problem of travel time minimization is performed, instead
of an exact one.

The model performs an explicit enumeration of the different routes connecting every
OD pair, including transfers if necessary. It does not consider congestion effects neither
in the calculation of on-board travel time tv (which is calculated in terms of fixed cost
ce on edges e) nor the waiting time tw (solutions lacking bus capacity are discarded).
Calculations are performed as follows, for OD pair (i, j). Let Rij be the set of routes
connecting i and j; assume that it is not empty, therefore transfers are not needed. Let
pk

ij be the proportion of the demand dij assigned to route rk ∈ Rij (i.e., the frequency
share rule (2.2)), defined as

pk
ij =

fk∑
rm∈Rij

fm
,
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which is used to compute the following values:

• tvij ←
∑

rk∈Rij
pk

ijt
k
ij , where tkij is the on-board travel time from i to j using rk,

• va ← va + pk
ijdij for each arc a of each route rk ∈ Rij that is used to transport the

demand dij .

The waiting time is computed as twij ← 1/(2
∑

rk∈Rij
fk), which corresponds to expression

(2.1) with β = 1/2,
If set Rij is empty, transfers are considered; corresponding calculations are similar to

the case without transfers. Transfer time ttij is set to σt in order to penalize each transfer
performed by demand dij .

5.5 Numerical results

We test the GRASP TNDP algorithm with the following scope:

1. Investigate whether the proposed algorithm produces a set of diverse non-dominated
solutions for the TNDP (Section 5.5.1). Some descriptive measures are calculated
in order to illustrate the diversity of the obtained results. Also these measures may
be useful to the decision maker.

2. Compare the results of GRASP TNDP with other results published in the literature
(Section 5.5.2).

3. Compare the relative efficiency of the multi-objective algorithm with respect to
a single-objective variant, used as subroutine in the Weighted Sum Method (Sec-
tion 5.5.3).

4. Apply the GRASP TNDP algorithm to a real city, comparing its solutions with the
solution of the public transportation operating in the city (Section 5.5.4).

We use two test cases to perform the experiments:

• Mandl, taken from [9]. Its corresponding graph has 15 vertices and 21 edges repre-
senting a real city. Its origin-destination matrix is very dense, having 76% of non-
zero elements. The case proposed by Mandl has been used as benchmark instance
by several authors who studied the TNDP [9, 103, 123].

• Rivera, constructed in the context of a project related to this thesis (Appendix A).
It corresponds to a small city of 65,000 inhabitants in Uruguay. Its graph has 84
vertices and 143 edges and its origin-destination matrix was obtained from real data,
having 5% of non-zero elements.

We note the difficulty of performing a comprehensive experimental study over a set of
many different test cases of the TNDP. Both the model and the algorithm proposed on
this work have several parameters which must be set or adjusted in order to perform the
experiments in a realistic and coherent scenario.
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Parameter Mandl Rivera Units

Dmin
0 0.5 1.0 -

Dmin
01 1.0 1.0 -

tini
max 40 40 minutes

tend
max 120 120 minutes
σt 5 5 minutes
ω 40 28 seats
η 1.25 1.50 -

ρmax 1.5 1.5 -
fmin 1/60 1/60 vehicles/minute
fmax 1/2 1/2 vehicles/minute

α 0.2 0.2 -

Table 5.1: Parameter configuration

The used parameter configuration is shown in Table 5.1; the values were set as follows.
Dmin

01 is set in order to satisfy the whole demand. For Mandl we set Dmin
0 = 0.5 in order to

compare with results published in the literature; for Rivera we set Dmin
0 = 1.0, since in the

city the whole demand is satisfied without transfers (note that it is a strong requirement
on demand satisfaction). Both extremes of tmax were set with reasonable values for the
dimensions of both cases and their values of travel time (represented by the costs of the
edges of G). Parameters σt, ω and η are taken from [9] for Mandl, while for Rivera we
use the values of ω and η observed from the real system. The value of ρmax is suggested
in [10]. We use realistic values for frequency range and set of frequency values. The domain
of frequencies was discretized in the set Θ = {1/60, 1/50, 1/40, 1/30, 1/20, 1/10, 1/5, 1/2}.
The α parameter of the randomized version of PIA was previously adjusted. The algorithm
was coded in C++ and all tests were carried out on a Pentium 4 PC, with a 2 GHz processor
and 2 GB of RAM.

5.5.1 Results of GRASP TNDP

The execution of the GRASP TNDP algorithm for the case of Mandl with parameter con-
figuration given in Table 5.1 and 1000 GRASP iterations took 245 seconds and produced
an approximated Pareto front composed of 96 non-dominated solutions. Table 5.2 shows
for 10 solutions (selected as representative points from different regions of the front), the
corresponding values of Z1 (along with its components tv, tw and tt), Z2, number of routes
|R| and averaged values over each route of headway 1/f and duration t; values of the last
two columns are expressed in minutes.

From Table 5.2 we can observe that a wide range of trade-off levels between the conflict-
ing objectives is covered, specially when looking at column Z2 (fleet size). The trade-off
can be characterized by the values of the number of routes and the average of the route
headways. In this way, although there is no monotonic tendency, we can say that solutions
with low cost for the users (and therefore with high cost for the operators) are character-
ized by high values of |R| and low values of 1/f , and vice versa. Moreover, we can observe
that variation along the Pareto front is higher in the waiting time component than in the
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Solution Z1 tv tw tt Z2 |R| 1/f t

1 122.96 110.76 7.44 4.76 189.00 10 2 38
2 133.01 114.84 13.23 4.93 84.00 6 4 44
3 138.55 113.64 19.98 4.93 61.80 6 6 44
4 147.44 117.87 24.89 4.69 38.80 4 5 49
5 159.88 119.47 35.65 4.76 27.00 3 8 67
6 172.33 116.66 52.26 3.40 19.30 4 15 63
7 185.68 121.54 58.28 5.87 14.40 3 13 59
8 221.43 122.87 94.25 4.31 9.20 3 20 61
9 279.99 121.01 149.40 9.58 6.10 5 32 35
10 381.37 119.07 253.24 9.06 4.08 6 52 34

Table 5.2: Results of GRASP TNDP

on-board travel time component of Z1.
We also present several measures that are used to illustrate how diverse the results

produced by the algorithm are. Two of them are relative to distances to lower bounds
from the users viewpoint (equations (5.7) and (5.8)) and the other two are relative to the
utilization of buses. All these measures may be used by the decision maker as a guide in
the selection of one non-dominated solution or in the evaluation of an existing one.

From [9] we take the idea of an optimal route set from the users viewpoint, which
allows every pair of vertices (i, j) to transport its demand dij along the shortest path in G
(independent of any route), with cost t∗ij . According to this, a lower bound for on-board
travel time is defined as

tv∗ =
|V |∑

i=1

|V |∑

j=1

dijt
∗
ij . (5.7)

We propose an analog definition of lower bound for the waiting time. An optimal
frequency set from the users viewpoint can be defined when every pair of vertices is served
by a route with frequency equals to fmax. This is actually a pseudo lower bound, since there
can exist solutions where some pairs of vertices are served by more than one route with
the maximum frequency (see Section 5.4.4 for an explanation on waiting time calculation).

tw∗ =
|V |∑

i=1

|V |∑

j=1

dij

2fmax
(5.8)

Table 5.3 shows for the same solutions of Table 5.2, values of distances from tv and
tw to tv∗ and tw∗, respectively, where the distance from a value v to its lower bound
v∗ is defined as dist(v, v∗) = (v − v∗)/v∗. Table 5.3 also shows measures relative to the
utilization of buses, averaged over each route, namely:

• Mean utilization Ū , defined for each route rk as φ̄k/(fkω), where

φ̄k =

∑
a∈rk

vaca∑
a∈rk

ca
.
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Solution dist(tv, tv∗) dist(tw, tw∗) Ū U∗

1 0.02 -0.31 0.01 0.02
2 0.06 0.22 0.03 0.04
3 0.05 0.85 0.04 0.06
4 0.09 1.30 0.07 0.09
5 0.10 2.30 0.11 0.17
6 0.08 3.83 0.13 0.19
7 0.12 4.39 0.19 0.26
8 0.14 7.72 0.34 0.44
9 0.12 12.82 0.47 0.62
10 0.10 22.43 0.70 0.92

Table 5.3: Results of GRASP TNDP, additional measures

• Critical utilization U∗, defined for each route rk as φ∗k/(fkω).

In Table 5.3 we can observe that the trade-off level between the conflicting objectives
also can be characterized by values of distances to lower bounds and utilization of buses.
In this way, solutions with low cost for the users are characterized by low values of all
these four measures, and vice versa.

The distance to the lower bound in the on-board travel time component is no greater
than 0.14. Nevertheless, the distance to the lower bound in the waiting time component
is up to 22.43. We can observe that the solution with lowest cost for the users present a
negative value in dist(tw, tw∗), since tw∗ is actually a pseudo lower bound; that solution
has a high average of frequencies (see column 1/f in Table 5.2). It is worth mentioning
that this is rather a theoretical result, since from a practical viewpoint it may not be
possible to operate several lines with high frequencies on the same edge of the network; in
other words, the constraint of street capacity is not included in the formulation.

Moreover, we can observe that values of both mean and critical utilization of buses are
lower than 1.00 for all solutions. Maximum critical utilization is shown by solution 10; this
value can not be greater than the level specified by the maximum load factor parameter
η, 1.25 for the case of Mandl.

5.5.2 Comparison with results published in the literature

In this section we compare the results of GRASP TNDP with results published by Baaj and
Mahmassani [9] using the benchmark test case of Mandl. Although other authors [123]
have used the same case the results are not comparable because they solve a different
optimization problem. Note that since the comparison is done in terms of objective values,
also the same assignment model should be used.

The results of Baaj and Mahmassani [9] were obtained using a greedy algorithm (Route
Generation Algorithm) followed by a local improvement phase (Route Improvement Algo-
rithm); the solutions were evaluated using the Transit Route Analyst algorithm [8], which
implements the assignment model described in Section 5.4.4. These algorithms solve the
same optimization problem considered in this work (except for the upper limit on fre-
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Figure 5.5: Comparison with results of Baaj and Mahmassani

quency range fmax which is not considered in [9]); the difference is the adopted approach
to handle the multi-objective aspect of the problem. We use the same parameter configu-
ration except for fmin which is not specified in [9]. We note that the algorithms proposed
in that reference work do not perform an explicit search in the domain of frequencies,
which are set as the minimum value that satisfies constraint (5.6) of maximum load factor
for each route.

Figure 5.5 shows the Pareto front obtained by GRASP TNDP (Section 5.5.1) as well as
the two solutions (BM) obtained by Baaj and Mahmassani [9] for Dmin

0 = 0.5. The values
of Z1 published in the reference work were scaled in order to use the same units, since they
are calculated directly from the origin-destination matrix expressed in trips per day, while
we use the values expressed in trips per minute. We can observe that solutions BM are
dominated by solutions of GRASP TNDP. Moreover, solutions BM are concentrated on a
particular level of trade-off between the conflicting objectives. It is worth mentioning that
without additional information we can not state which part of the Pareto front corresponds
to practicable solutions.

5.5.3 Comparison with the Weighted Sum Method

The aim of this experiment is to study the computational efficiency of the proposed multi-
objective approach to the TNDP. We compare the performance of the multi-objective
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algorithm with a single-objective version of it. We use the Weighted Sum Method [31] as
reference for comparison since it is a straightforward way to obtain a set of non-dominated
solutions using an approach that formulates a weighted sum of objectives (most existing
models in the literature for the TNDP). When applied to problem P (Section 5.2), the
Weighted Sum Method consists in minimizing the objective function (5.9) under con-
straints (5.3)-(5.6), for a given set of different vectors of weights λ = (λ1, λ2),

Z(S) = λ1Z1(S) + λ2Z2(S) . (5.9)

We implemented a single-objective version of the GRASP TNDP algorithm presented in
Section 5.4, to be used as subroutine in the classical Weighted Sum Method. The single-
objective algorithm differs from its multi-objective counterpart in the following aspects:

• It produces a single solution at every run.

• It receives a vector of weights λ = (λ1, λ2), where λ1 + λ2 = 1, representing the
relative importance between the conflicting objectives Z1 and Z2, which is used for
setting tmax = tini

max + λ2(tend
max− tini

max) in the construction procedure and composing
a single objective function Z = λ1Z1 + λ2Z2 in the local search (for all GRASP
iterations).

In order to compare both algorithms we proceed as follows. The single-objective al-
gorithm is run for m different vectors of weights (evenly distributed in the interval [0, 1]),
each run having the same number of GRASP iterations (NumIterations). Then, for
the (multi-objective) GRASP TNDP we assign a number of GRASP iterations equal to
m×NumIterations; thus, both algorithms execute the same number of construction and
local search phases, representing somehow the same computational effort. We run both
algorithms for different combinations of m and number of GRASP iterations. For each
combination we calculate the non-dominated set of the result of merging the Pareto fronts
produced by both algorithms. The number of surviving solutions from this process is
presented in Table 5.4, where each entry shows for the cases of Mandl and Rivera: (a)
number of solutions coming from the Weighted Sum Method (WS), (b) number of solu-
tions coming from the multi-objective approach (MO) and (c) the ratio b/a, as a measure
of relative efficiency (re) of MO. For each test case, the last row of its corresponding part
of the table shows the overall relative efficiency of MO calculated as the average of all re
over the different values of m for a given value of GRASP iterations.

The main conclusion from these results is that MO produces more non-dominated
solutions than WS, with the same computational effort. Note that without additional
information it is not possible to determine which solutions are better than others, since all
of them are non-dominated. Moreover, we can observe that the overall relative efficiency
of MO seems to increase as we increase the number of GRASP iterations used in the
single-objective algorithm. This means that whenever we decide to increase the accuracy
of the approximated results, it is more beneficial to adopt the multi-objective approach.
Figure 5.6 shows the Pareto fronts obtained by both algorithms for Rivera (m = 10 and
500 GRASP iterations) and the solution corresponding to the real public transportation
system of the city (that we call as reference solution); note that this solution can be used
to identify the level of trade-off where practicable solutions are located.



86 Multi-objective metaheuristic approach to route optimization

 0

 200

 400

 600

 800

 1000

 200  250  300  350  400  450  500  550

O
pe

ra
to

rs
 c

os
t (

Z
2)

Users cost (Z1)

GRASP TNDP
Weighted Sum Method

Rivera

Figure 5.6: Non-dominated solutions obtained by both algorithms for the case of Rivera

Number of GRASP iterations

m 10 50 100 200 500

Mandl
2 1 34 34.00 2 46 23.00 2 46 23.00 2 67 33.50 1 88 88.00
5 3 35 11.67 5 50 10.00 5 68 13.60 4 86 21.50 3 118 39.33
10 3 43 14.33 7 69 9.86 7 83 11.86 8 95 11.88 8 124 15.50

avg. re 20.00 14.29 16.15 22.29 47.61

Rivera
2 2 174 87.00 2 228 114.00 2 242 121.00 2 265 132.50 2 288 144.00
5 5 190 38.00 5 235 47.00 5 252 50.40 5 272 54.40 5 276 55.20
10 9 199 22.11 10 233 23.30 10 242 24.20 9 241 26.78 10 277 27.70

avg. re 49.04 61.43 65.20 71.23 75.63

Table 5.4: Results of Weighted Sum Method and multi-objective approach
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The tendency of the overall relative efficiency is monotonic for the case of Rivera; for
Mandl, the observation is valid for high values of GRASP iterations. We used small values
of m since we have limited computational resources (one GRASP iteration takes 0.25
seconds for Mandl, while it takes 25 seconds for Rivera). For real cases, although we are
not assuming anything concerning the method used by the decision maker to analyze the
set of non-dominated solutions, we consider that it is not desirable to use a high number
of different vectors of weights in the Weighted Sum Method.

In order to investigate the behavior of the algorithms for a high number of weight
vectors, we tested the case m = 100 for Mandl, and we observed the following progression
(30.67; 9.62; 7.95; 9.75; 9.82) of the relative efficiency according to the number of GRASP
iterations (10; 50; 100; 200; 500). Comparing with the rows corresponding to low values
of m, this suggests that whenever we allow the Weighted Sum Method a denser coverage
of the objective space (high values of m), the multi-objective approach will need more
computational effort (GRASP iterations) to improve its relative efficiency.

5.5.4 Application to a real case

In this experiment we use the case relative to the city of Rivera (Appendix A), to compare
the results produced by the GRASP TNDP algorithm against the reference solution, i.e.,
the solution operated by the public transportation system of the city. This solution was
codified in terms of the same graph G used to execute GRASP TNDP and was evaluated
using the same assignment model (Section 5.4.4) and parameters. We note that the theo-
retical value corresponding to Z2 (fleet size) of the reference solution is 25.65 (Table 5.5),
while its real value is 23. Despite the fact that the theoretical value (equation (5.2)) is
a fractional approximation of a number that in reality is integer (number of buses), the
discrepancy is due to errors incurred in the modeling of the costs (travel times) of the
edges of G, which are calculated in terms of a constant average bus speed, while in Rivera
the bus speed varies among different lines.

Table 5.5 shows for 20 solutions that represent different regions of the approximated
Pareto front produced by GRASP TNDP (that we call P ), values of Z1, Z2, number of
routes |R| and route headway 1/f and duration t (both in minutes) averaged over the
routes of each solution. We can observe that the algorithm produced solutions in a wide
range of trade-off levels. In the extreme corresponding to solutions of low cost for the
users, we obtained a minimum value Z1 = 208.32, which is very close to the sum of the
lower bounds of on-board and waiting time (see Section 5.5.1), in this case 210.64; note
that tw∗ is a pseudo lower bound, since it can be improved by solutions having many
routes with high frequencies, as it is the case of route number 1 in Table 5.5. In the
opposite extreme, we obtained a value Z2 = 17.24 with 13 routes, which is significantly
less (considering the dimensions of the case) than its corresponding value in the reference
solution (Z2 = 25.65).

Moreover, GRASP TNDP produced solutions which are very close to the reference
solution in the objective space. The solution of P that is closest to the reference one is
0.7% and 3.1% worse than such solution, in terms of Z1 and Z2 respectively; Figure 5.7
shows a zoom of Figure 5.6 in that region of the objective space. This fact should be
analyzed taking into account the approximate nature of the algorithm and the source of
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the data used to construct the test case. Since we use an approximate algorithm, the front
P could be improved in the sense of the closeness to the optimal Pareto front; we can
assume that there are solutions that dominate some solutions of P , which could not be
found by the algorithm. If we assume that GRASP TNDP found solutions that are very
close to the optimal Pareto front, the closeness of the reference solution could be explained
by two reasons:

1. The reference solution is a good one, since it has been continuously adapted during
the existence of the public transportation system, by planners who have a deep local
knowledge of the reality.

2. The origin-destination matrix used to solve the optimization model was estimated
from a survey done on-board the buses of the lines of the reference solution (Ap-
pendix A). Despite the fact that this matrix is considered as a good approximation
to the matrix of desired trips, the demand estimated by this method is somehow
strongly adapted to the supply represented by the lines of the reference solution.
Then, we can expect that the evaluation of that solution in terms of objective func-
tions (5.1) and (5.2) is good.

Solution Z1 Z2 |R| 1/f t

1 208.32 1058.83 49 2 43
2 210.35 926.48 39 2 48
3 213.35 748.52 50 7 44
4 215.47 634.02 50 5 43
5 218.87 512.99 49 7 44
6 222.60 406.95 38 7 49
7 227.51 300.83 46 9 44
8 234.77 244.92 41 12 47
9 243.27 187.28 47 16 44
10 257.89 130.87 40 18 48
11 267.51 107.08 24 18 61
12 281.10 87.43 19 18 70
13 295.11 70.69 18 25 76
14 310.49 57.38 19 28 62
15 334.19 42.69 19 36 70
16 358.19 37.73 15 34 73
17 376.14 33.75 17 45 71
18 419.21 25.67 12 44 87
19 466.81 21.01 13 55 86
20 520.27 17.24 13 60 80

Reference 401.56 25.65 13 37 63

Table 5.5: GRASP TNDP applied to Rivera
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Figure 5.7: Results of GRASP TNDP around the reference solution

5.6 Conclusions and future work

We have proposed an algorithm based on the GRASP metaheuristic to solve the TNDP
with a multi-objective approach. We show that the proposed multi-objective algorithm
produces a diverse set of non-dominated solutions in a single run. Existing and proposed
measures are presented, which can be useful for the decision maker to characterize a given
solution of the Pareto front, with respect to the interests of both users and operators. The
solutions obtained dominated other solutions published in the literature for the benchmark
case of Mandl; for the real case of Rivera, the algorithm produced solutions comparable
with the solution operated by the public transportation system of the city. We also show
that the multi-objective approach is more efficient than the Weighted Sum Method, in the
sense that it produces more non-dominated solutions with the same computational effort.

For future research, we identify several directions. The hypothesis of inelastic demand
is used to simplify the model. However, for some cases elastic demand must be considered
in order to model the changes in the origin-destination matrix according to the supply of
public transport, specially for solutions in the extremes of the Pareto front. Elastic demand
has been incorporated to the TNDP in [41, 61, 72] and a challenging work consists in trying
to incorporate this characteristic into the presented multi-objective approach.

We note that the presented numerical results lack of an evaluation of the closeness to
the optimal Pareto front (which was not available). A possible way to accomplish that
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evaluation consists in implementing a modified version of the GRASP based algorithm
to solve a different optimization model (for example the problem stated by formulation
OPT2 presented in Section 3.2.3).

Most metaheuristics for the TNDP are implementations of Genetic Algorithms [94,
103, 113] for single-objective optimization. These ideas can be used to design multi-
objective versions, since there are several applications of genetic algorithms for multi-
objective optimization [24, 31]. This line of research was explored in [5] in the context of
this thesis.

We observe that parallel implementations have improved the performance of several
metaheuristic based algorithms; this is the case of many GRASP based algorithms [104]
as well as the parallel Genetic Algorithm for the TNDP proposed in [1]. A parallel version
of the GRASP TNDP algorithm could improve the performance of its original version;
this could be useful when applying the algorithm to instances of realistic size.



Chapter 6

Final discussions and conclusions

We have studied models and algorithms for the optimal design of bus routes in urban public
transportation systems. Our contributions can be expressed in a very condensed way as:
(i) a mathematical programming formulation that includes several realistic characteristics
of the problem, which can be used in the future to propose an exact solution approach
and (ii) a heuristic approach that can be potentially applied to real cases related to small
to medium-sized cities, which admits some improvements in order to obtain better results.
The contributions related to (i) are supported by directly observing the elements of the
problem included in our formulations, in relation to the state of the art. On the other hand,
the contributions related to (ii) are supported by numerical results which are compared
with results coming from the state of the art as well as from real solutions.

In this chapter we formulate conclusions and we identify future work about the overall
research work concerning this thesis; previous chapters have their own specific conclusions.
We conclude about the different proposed methodologies and our experience concerning
the numerical tests and the application to a real case. Finally we give some opinions
related to the application of the different methodologies to the TNDP and the evolution
of this research field. We also give some recommendations related to the application of
the proposed methodologies to real cases.

6.1 The methodologies

The main contributions of this thesis concerning the methodologies are an explicit mathe-
matical programming formulation to model the problem, a greedy constructive algorithm
to obtain part of a solution to the problem and a metaheuristic that solves approximately
the problem modeled with a multi-objective approach. An effort was done in order to
position the problem within the field of mixed integer linear programming (MILP). Thus
we were able to apply theoretical properties as well as efficient solution methods, since
MILP is an extensively studied and developed area. Furthermore, when adding addi-
tional constraints to the problem, we used the framework of bilevel programming as a
rich tool that enables to model naturally many characteristics of the problem (mainly the
interactions between the planning entity and the users of the system) and helps to devise
solution techniques. Concerning the developed heuristics, our strategy was first to de-
sign a constructive algorithm which can quickly produce solutions of reasonable objective
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values, handling complex constraints like those related to transfers. Many computational
experiments were carried out in order to test the ability of the algorithm to generate good
solutions. The multi-objective nature of the problem inspired an approximate solution
method that produces solutions in a wide range of trade-offs between the interests of users
and operators. The proposed method exploits the multi-objective nature of the TNDP
in order to obtain efficiently all those solutions. The constructive algorithm is used as
subroutine of this method.

Mathematical formulation

The main contribution concerning the mathematical modeling is the inclusion of an as-
signment model that represents in a realistic manner the behavior of the users in systems
based on buses. We use the optimal strategies assignment model [110] which fulfills this
requirement. Thus, the main difference of the proposed model of route optimization with
respect to the existing ones is the consideration of the waiting time and multiple lines,
two aspects of the problem that are closely related [33]. We also present a discussion
about the inclusion of important constraints and its impact in the mathematical structure
of the problem. The proposed formulations were used to (i) obtain optimal solutions for
very small instances of the problem, (ii) validate results of heuristics, (iii) reason about
the structure of the problem and the impact of adding new constraints and (iv) apply
the model to a decision making situation in the context of a real case related to a small
city. We identify three different directions for future work: (i) development of an exact
approach based on the formulation, (ii) development of algorithms to solve the problem in
the cases where the formulation has a bilevel structure, and (iii) dealing with the size of
the model when adding transfer constraints. We also note that the proposed formulation
allows to work with different levels of aggregation; thus, it can be used to model the public
transportation system either only in terms of centroids and connections among them, as
well as in terms of the detailed street network and access/egress arcs. At the most detailed
level, decisions concerning location of bus stops and design of limited-stop routes could be
incorporated; these are possible applications, other than the specific subject of this thesis.
Moreover, related problems like the frequency optimization can benefit from our proposed
formulation.

Constructive algorithm

We proposed a greedy constructive algorithm called PIA, to obtain a set of routes that
takes into account the interests of users and operators and demand covering constraints.
The results obtained improve the ones existing in the literature. The algorithm has desir-
able properties, namely: (i) it produces solutions comparable with real ones, (ii) it does
not require the application of a complex assignment model and (iii) its logic is simple and
may be understood by the planner. We consider (i) as an important issue concerning the
validation of the algorithm, which was tested with a real case using real data. Concerning
(ii), we have proposed an algorithm that can be used as subroutine to generate quickly
an initial solution; further improvement methods (for example metaheuristics) can be ap-
plied, as the one proposed in [4]. Finally, (iii) contributes to the use of PIA as a systematic
procedure that can be used even interactively by the planner in order to design bus routes.
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Multi-objective metaheuristic approach

Although the main objective when designing routes for public transportation systems is
the maximization of the level of service offered to the users [33], other interests should
be considered in order to design a sustainable system. The modeling of this aspect of
the problem using concepts of multi-objective optimization has been treated scarcely in
the literature. Moreover the efficiency of solution methods to solve the TNDP as a multi-
objective problem has not been discussed. The problem is hard to solve even if we consider
a single objective, therefore approximate methods (heuristics) should be used for cases of
realistic size. When a multi-objective approach to the problem is adopted, we have to de-
sign efficient multi-objective heuristics to solve it. In this thesis we propose a metaheuristic
called GRASP TNDP to solve the problem of route optimization with a multi-objective
approach. GRASP TNDP relies on the route construction algorithm PIA. Using the
benchmark case of Mandl, we showed that the algorithm improves the results published
in the literature. Using a real test case related to the city of Rivera, we also compare
results of GRASP TNDP with the solution that is operated by the public transportation
system of the city. Our closest solution to the real one is worse than a such solution by a
small percentage; however, that percentage (3.1% in the operator objective function) can
be significant when it is accumulated in a long term period. Concerning this comparison
we should take into account that: (i) the solution of Rivera contains circular lines, there-
fore it is out of the decision space bounded by the hypothesis that rules our algorithms
(Section 2.1.3); (ii) our solution admits to be improved since its route structure relies only
in a greedy construction. Thus, the algorithm proposed in [4] could be used to improve
the solution by changing its route structure.

General comments

In the following we elaborate general conclusions about the different methodologies to
tackle the TNDP proposed in this thesis, in relation to the state of the art.

Some existing exact approaches to the problem are restricted to applications to cases
lacking real characteristics. The models proposed in [58, 120] are applied to very small
test instances of unrealistic size. These works can be considered as contributions to the
modeling of the problem. In [107], a real test case related to the long distance network of
the German railway is used. However, only solutions to the linear relaxation of the model
are found (spending a running time of two and a half hours); no method is proposed
to find an integer solution. Although no practical method is proposed on that work, it
can be considered as a step in the development of exact methods to the TNDP. In [15]
an approximate solution is obtained for Postdam, a city which had 27 bus lines and 4
tram lines when the study was undertaken. The solution method first solves the linear
relaxation using a decomposition technique and then obtains an integer solution by using a
heuristic procedure. In their experiments, the authors obtain a fractional optimal solution
in less than 10 minutes on a Pentium 4 machine of 3.4 GHz processor. The obtained
(approximate) integer solution has a gap with respect to the fractional one of around 50%;
this gap depends on the values used to weight each term of the objective function. Our
contribution with respect to those studies is the modeling of aspects of the problem that
are relevant to systems based on buses: the waiting time and the assignment to multiple
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lines. Using our formulation, optimal integer solutions can be found for cases of sizes
comparable to those used in [58, 120]. Using the case of the city of Rivera (whose public
transportation system has 13 lines), we were not able to compute an integer solution
along with a lower bound as it is done in [15]; we do not have information beforehand
to decide which lines are likely to be part of a good solution. In our experiments we use
the formulation with a particular purpose, other than obtaining the optimal solution: we
generate a pool of candidate routes (hypothetically suggested by the planner) from which
the optimal subset is selected. This is a real application that we faced during our meetings
with planners of the municipality of Rivera. Moreover, a solution was obtained using the
proposed greedy constructive algorithm and a frequency optimization model; that solution
is presented with gap values of around 20% and 30% with respect to on-board travel time
and waiting time lower bounds respectively (Section 4.5.3).

In light of these observations, in our opinion we have proposed models and algorithms
that exhibit an acceptable trade-off between realism and quality of approximation to the
optimum and to real solutions, in relation to the state of the art.

6.2 The experiments and the application to real cases

In this section, we conclude about our experience in this thesis concerning the computa-
tional tests of the algorithms and their application to real cases.

6.2.1 Experiments

When performing numerical experiments, we faced the difficulty of lack of standard bench-
mark cases. The only case used by several authors and for which the corresponding data
is available is the one proposed by Mandl [78]. Although that case is useful to make
comparisons, it can not be used to validate a given model and/or algorithm, because it is
not clear how it was constructed. In other words, we do not know which elements of the
reality correspond to vertices and edges of its infrastructure graph.

The case of Rivera enabled us to experiment with a realistic scenario; the results
produced by the models and algorithms are easy to interpret, by comparing with the
routes and frequencies operating the public transportation system of the city. Although
at first sight it could seem a very small-sized case, its complexity is sufficiently high to
validate our work. We would like to experiment with a larger case, as it could be the public
transportation system of Montevideo, capital city of Uruguay, which has about 1.5 million
of inhabitants. In particular, we would want to confirm that the heuristics developed in
this thesis are scalable, since they are based on subroutines of polynomial running time
with respect to the size of the infrastructure graph and number of OD pairs. However, we
estimated that the efforts needed to construct that case would be very high; in particular,
origin-destination data at a relatively low level of aggregation was not available. We
consider that high-quality data are mandatory in order to extract consistent conclusions
from experiments with models and algorithms for the TNDP.

When comparing results with those published in the literature, we faced the difficulty
related to the assignment model. In most cases, a consistent comparison requires to use
the same hypothesis concerning the behavior of the users; this is hard to fulfill since the
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assignment model is usually complex and there are many variations among the existing
ones. Moreover, it is not easy to implement an existing assignment model, since many
small details should be taken into account. In this thesis we used two different assignment
models:

• Optimal strategies, proposed by Spiess and Florian [110]. It is used to construct
the mathematical formulations proposed in Chapter 3, since it has an explicit for-
mulation. To the best of our knowledge, no model or algorithm for the TNDP has
previously used this model to represent the behavior of the users; [26] has used it in
the context of frequency optimization. Our implementation of this model was vali-
dated by comparing with values taken from its original publication and by applying
different implementations (the linear programming formulation as well as the label-
setting algorithm proposed in [110]) to different cases, including those of Mandl and
Rivera.

• The model model of Baaj and Mahmassani [8], that in general terms is similar
to the optimal strategies assignment model. The main differences with respect to
that model are: (i) it assumes different hypothesis concerning the behavior of the
users with respect to transfers and (ii) it does not have an explicit mathematical
formulation. By using this assignment model we were able to compare with results
published in the literature. Our implementation of this model was validated by
comparing with values taken from [9].

It is worth mentioning that the optimal strategies assignment model assumes that the
users take into account a considerable amount of information and also that they are able
to manage such information in order to determine the optimal strategy. In some real
scenarios only certain OD pairs behave like this, while the rest apply a simpler approach.
In principle, there are few different behaviors that could be modeled without changing
the nature of the resulting formulation (which is linear). In case we need to model more
specific behaviors, possibly the assignment model of Baaj and Mahmassani is more flexible
in this sense.

The assignment model is a crucial component of any model or algorithm for the TNDP.
Since it represents the behavior of the passengers it strongly determines the realism of the
resulting optimization model. Moreover, its computational implementation has strong
influence on the efficiency of the solution algorithm.

6.2.2 Application to real cases

In this section we mention several issues that should be taken into account when concluding
from numerical results obtained by our models and algorithms with the real case. Also
we comment about the role of the methodologies proposed in this thesis, in the context of
the planning of a real public transportation system.

The case of Rivera

The case was constructed by using the following approach: (i) walk arcs are not considered,
(ii) every vertex is centroid, street and stop at the same time and (iii) the infrastructure
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(a) Real system (b) Non detailed model (c) Detailed model

Figure 6.1: Modeling the bus stops in the TNDP

graph does not necessary follow the street network. That structure is consistent with the
hypothesis of most models for the TNDP. However, it poses some difficulties when we
want to evaluate the solution operating the public transportation system of the city; since
an approximation of that solution is given as input to the models, the values obtained are
subject to errors. This should be taken into account when comparing solutions generated
by the optimization model against the real one, as it is done in Section 5.5.4. Moreover, it
is worth mentioning that the modeling of the bus stops in the infrastructure graph strongly
determines the validity of the assignment model. For example, a passenger waiting for any
of the two lines represented in Figure 6.1(a) sees a single stop if we model the infrastructure
graph as in Figure 6.1(b); however, in a more detailed model (Figure 6.1(c)) the passenger
should first choose between these two lines and then wait at the corresponding stop.
Observe that expressions for the waiting time (2.1) and the frequency-share rule (2.2)
which are the core of most frequency-based assignment models, can not include both lines
in such example. Thus, the modeling of the behavior of the users with respect to the bus
stops is another potential source of error.

Either when constructing the case of Rivera as well as when performing the exper-
iments with models and algorithms, we assumed that the users never perform transfers
and that the OD matrix is fixed and independent of any set of routes and frequencies.
These hypotheses (which can be reasonably assumed in this case) simplified our models,
algorithms and analysis of results. However, in the more general case, a study of the
valuation that users have of the different components of the travel (on-board travel and
waiting time, transfers) with respect to different aspects like the quality of the infrastruc-
ture, would be needed. Also, the elasticity of the demand (in particular with respect to
routes and frequencies) would need to be studied; its inclusion into the proposed models
and algorithms poses and interesting challenge.

The evaluation of the solutions produced by our algorithms was done in terms of
numerical values corresponding to measures of interest like travel time, fleet size and
passenger flows representing occupancy levels of the buses. We did not perform any
subjective evaluation based on a visual inspection of the resulting routes; we did not
research about methodologies and we do not have sufficient local knowledge of the city
of Rivera to do that. A possible comparison of the solutions obtained against the real
one can be done in terms of the route structure, using the similarity measures proposed
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in Section 4.5.2. The solutions proposed by our models and algorithms were not adopted
in Rivera. The planners of the municipality recognized the difficulty of changing the
structure of some historical routes, due to the social impact. But they identified the need
of evaluating new alternatives to the current route structure and frequencies, looking for
a possible reduction in the operation costs. In this context, they recognize the importance
of having a tool that allows to design and evaluate changes, either proposed by researchers
or consultants.

Our models and algorithms in a real application

The TNDP can arise at different stages of the planning of the public transportation system.
At the strategic level we can mention several concrete applications: (i) the complete re-
design of the routes, (ii) estimation of a value of fleet size necessary to bring the service
with a given level, (iii) evaluation of alternative solutions with different trade-off between
different objectives. When using the models proposed in this thesis for strategic planning,
not all the constraints need to be included. Since perhaps an OD matrix corresponding
to the whole day is used, including bus capacity constraints does not make sense, since
OD values may be smoothed due to the large time horizon. On the other hand, demand
covering and street capacity are important constraints that should be taken into account in
this scenario; they can be verified without requiring information concerning real passenger
flows over the lines. At the level of tactical planning, the models concerning the TNDP
could be used to make adjustments to existing routes or to design feeder routes in a given
region or neighborhood of the city. In this case, more detailed information is likely to
be available, therefore a more detailed modeling is desirable. According to this, the bus
capacity constraint can be included.

Although we stated some hypothesis that limit the scope of this thesis (Section 1.1),
their relaxation is not contradictory with the models and algorithms developed. The routes
and frequencies proposed by our algorithms can feed a system that models the interaction
with other modes of transportation and even the elasticity of the demand. Thus, an
iterative loop of route optimization and simulation of the dynamic of the city can be
performed in order to obtain a realistic evaluation of the overall impact of a proposed
route system. On the other hand, considering the effects of fares and advanced traveler
information systems impacts in a high extent in the structure of the models and algorithms
developed, specifically in the assignment sub-model.

6.3 Opinions and recommendations

To close this dissertation, in this section we mention some issues that in our opinion should
be taken into account in future research concerning models and algorithms for the TNDP
and their application to real cases.

We can conclude that either using exact or heuristic methods, it is hard to find an
optimal solution and even to quantify the accuracy of any obtained solution; the gaps
presented in this thesis as well as the ones presented in the existing literature concerning
the TNDP are very high in comparison with other problems in the area of Operations Re-
search. Taking into account these limitations, we note that when applying an optimization
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model to the problem of route optimization in public transportation, generally it is suffi-
cient to obtain a solution that is better (or non-dominated) with respect to the current one.
In our opinion, exact methods based on explicit mathematical programming formulations
to solve the TNDP considering waiting time and assignment to multiple routes, may be
developed in the near future. However, to solve the more complex variant which includes
transfer and bus capacity constraints (as proposed in Section 3.3), heuristic methods seem
to be at this moment the only feasible approach for real cases. Concerning the develop-
ment of heuristics for the TNDP, we note that both PIA and GRASP TNDP algorithms
proposed on this thesis use problem knowledge intensively to obtain good solutions. This
seems to be an appropriate approach since the problem includes complex constraints and
an assignment sub-model. By contrast, a heuristic that performs blindly many moves
(changes) to the solutions is likely to cause infeasibility and inefficiency due to repeated
invocations to the assignment algorithm. Concerning the modeling of the problem we note
that the hypothesis which excludes circular lines (which is present in most existing models
for the TNDP) seems to be very restrictive, since such lines can be convenient for certain
demand patterns in certain parts of the city.

When applying models and algorithms for the TNDP to real cases, special attention
should be put in the modeling of the infrastructure and the demand. The zonal division
of the city is a key aspect in the construction of the model. Observe that such a division
should be made so that the lengths of the access/egress arcs that connect centroids with
bus stops are reasonable. The way in which we construct the zonal division implicitly
applies a criterion of geographical accessibility to the public transportation system. Most
of the existing models for the TNDP and even the assignment model of Baaj and Mahmas-
sani used by us do not consider the access/egress time; moreover, they assume implicitly
that every vertex of the graph is centroid, street and stop at the same time. This is a
reasonable assumption in order to simplify the models; we did the same when presenting
our formulations and solution algorithms. However, when applying those models to real
cases, a more detailed representation of the elements of the problem is likely to be made
in order to construct a realistic scenario. Since demand data usually is presented at the
level of zone centroid, we should include that type of vertex into the model; note that
fixing the demand to bus stops is not a convenient alternative, since by doing this we are
fixing part of the behavior of the users. That aspect of the problem is not commonly taken
into account by researchers, and we consider that it is very important in order to obtain
meaningful results. In the context of our thesis, the models and algorithms proposed can
be easily extended to handle these elements; the software tool described in Appendix B
allows to construct a case according to the discussion presented above.

Finally, all the discussions and conclusions written in this chapter are consistent with
the general idea that in order to apply Operations Research techniques to a real problem,
we have to deal with an appropriate combination of reasonably realistic modeling, efficient
solution methods with some kind of quantification of accuracy, high quality real data
(properly used and processed), critical interpretation of results and tools that allow to
transfer such results to the application area. We tried to focus our efforts in this direction
during the development of this thesis.
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Real test case

In this appendix we describe the main aspects of the construction of the real test case used
in Chapters 3, 4 and 5. That construction was done in the framework of a long-term project
which includes this thesis. The web-site http://www.fing.edu.uy/~mauttone/tndp con-
tains a description of the project as well as the data of the case. A more detailed description
of the case is given in [81].

The case is related to a medium to small-sized city of 65,000 inhabitants in Uruguay,
the city of Rivera. Public transportation has a strong presence in that city. When data
gathering for this work was accomplished on August 2004, the system operated 13 bus
lines with an average route length of 13.6 kilometers and an imposed duration (round-trip
time) of 60 minutes each. Route headway ranges from 20 to 60 minutes. There are 11 lines
which had forward and backward routes, whose structure differ slightly. The other 2 lines
had a circular structure; each one of these lines had a single route, that is traversed in one
direction. The inter-zonal demand had a radial pattern, being the city center the main
attractor of trips. In a regular mid-week day, an average of 13,360 trips were performed
using public transportation in Rivera. The users of this system have a negative perception
of transfers and waiting time; in particular, the planners have designed the timetables of
overlapping routes so as to reduce as much as possible that component of the overall travel
time.

Data to construct a real test case for the TNDP is not easy to gather. Graph G can
be generated from a representation of the street network; a software tool that manages
geographical information can be helpful for this processing. However, to construct the
origin-destination matrix D, a considerable amount of information should be compiled [99],
to express the needs of public transportation between different points of the city. In the
following we explain the construction of the case of Rivera, in terms of the zones, graph
and demand.

Zones

The city was divided in zones. Each zone comprises approximately 4 × 4 blocks of 100
meters each. This size is intended to apply a criterion of geographical accessibility of
the people to the public transportation system. We consider that 400 meters represent a
maximum reasonable walk distance to access to a bus line passing through the zone. The
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Figure A.1: Graph

demand produced (attracted) by a given zone is considered as covered when a line passes
by any place in the street network inside the zone and inside the destination (origin) zone.
Note that we are not considering access and egress times in this model.

Graph

The graph G is an abstraction of the real street network. Each vertex of G represents
a zone of the zonal division; it is located over the intersection of streets that is nearest
to the barycenter of the corresponding zone. An edge exists between two vertices in G
if their corresponding zones are adjacent; its value of in-vehicle travel time is calculated
from the distance of the shortest path in the street network between its extreme vertices
and a bus commercial speed estimated in 13.6 kilometers per hour. The resulting graph of
Rivera, constructed according to the explained procedure, has 84 vertices and 143 edges
(Figure A.1).

Demand

Demand data were collected by means of a survey made on-board of lines operating on the
public transportation system of Rivera. The methodology of the survey is based on the one
proposed in [111]. A sample of 13 out of the 23 bus runs performed per hour by the lines
of the system was selected; a run is a trip of a bus going over the route at a given time. For
each one of these runs, origin and destination stops were recorded for every person using
the bus. Data were collected on a time period of 12 hours. For each line, origin-destination
counts were expanded according to the sample size. Line origin-destination matrices from
the 13 lines were consolidated into a single system origin-destination matrix, containing
average values in the 12 hours time horizon. This matrix is intended to represent the need
for public transportation across all the operation period of the system. Given the size of
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the considered time horizon, significant peaks of demand for some pairs of vertices in some
time periods may be smoothed in the average; for this reason this matrix is not suitable for
estimation of passengers flows. A final step in this data processing consist in transforming
the origin-destination matrix from the level of bus stops to the level of zones. Note that
by increasing the aggregation level of the demand data, we obtain an OD matrix that is
independent on the stops and the lines. The resulting matrix constructed according to the
explained procedure has 5% of non null elements (378 OD pairs). This matrix is based in
observed values which depend on the particular lines operating on the system when data
were collected. However we consider that for the city of Rivera, this matrix of observed
trips is a good approximation to the matrix of desired trips, mainly due to (i) the highly
captive characteristic of the users of the public transportation system of Rivera, (ii) the
high spatial coverage of the city by the existing lines, (iii) transfers are rarely performed
and (iv) the buses do not operate beyond their capacity (all the passengers that desire to
board a given bus, can do it).
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Appendix B

Software tool

In this appendix we describe the main features of the software tool developed to assist the
research concerning models and algorithms for transit route optimization. The software
is called igoR-tp, due to its name (in Spanish) “Interfase Gráfica para la Optimización
de Recorridos en Transporte Público”, translated to English as “Graphical Interface for
Transit Route Optimization”. igoR-tp comprises three modules that implement features
related to different activities:

• Construction. This module is responsible for constructing a test case. It allows
to input data related to the street network, demand and zones. It generates the
infrastructure graph and the origin-destination matrix.

• Experimentation. Once a case is constructed, this module enables to run algo-
rithms that evaluate and optimize sets of routes and frequencies. The module calls
the algorithms and displays the results. Also, it allows to create manually routes
and set their frequencies or to modify existing ones.

• Algorithms. Since new algorithms may arise during the research, this module
allows to integrate them into a library.

igoR-tp was specified in the context of this thesis and implemented by two undergrad-
uate projects [3, 54] and a research and development project [114]. The software is built
upon the MapWinGIS ActiveX Control [79], an open source project leaded by the Geospa-
tial Software Lab of the Idaho State University. igoR-tp works with georeferenced data
in the ESRI [39] shape format. The features included in the tool were specially developed
for the purposes of the research on models and algorithms for transit network design. In
the following we describe the main features of each module of igoR-tp.

Construction

In order to construct a case we should provide a database of georeferenced demand points;
those points can represent households, bus stops, blocks or any place where we have data
related to generation of trips for public transportation. Also we should provide the street
network of the city, in shape format; it can be given directly as a network (street intersec-
tions and segments) or alternatively as a set of polylines, each one representing an entire



104 Software tool

Figure B.1: Construction module

street. Street nodes and travel edges of the infrastructure graph are generated automat-
ically from the street network. Some street nodes can be also of stop type: this should
be specified by the user. Then, zones should be drawn; centroid vertices are generated
automatically by the software. Walk edges between centroids and stops should be specified
(Figure B.1). The full level of detail of the model as presented in Section 2.1 can not be
implemented in this version of the software: the street direction is not considered and stop
vertices can not be independent of street vertices. Finally, the origin-destination matrix
is generated by summing the values of the demand points located inside every zone; note
that other methods for processing the demand data could be implemented. Once the case
is created, the OD pairs can be explored by navigating a list sorted by demand value,
identifying the origin and destination vertices on the map.

Experimentation

In this module we can load a case created with the construction module to experiment
with it. A solution is a set of routes with frequencies from the viewpoint of this module;
the routes are defined over the infrastructure graph according to the definitions given in
Section 2.1.2. Two types of algorithms can be invoked from the experimentation module:
(i) evaluation, which computes measures of interest like travel time and occupancy level,
from an existing solution and (ii) optimization, which generates a solution or several ones.
Since different evaluation and optimization algorithms may be available, we should select
one of them; then, we should enter the parameters according to the selected algorithm.
The module manages different solutions, which are input or output of the algorithms. The
routes of a solution can be created or modified manually; they can be undirected, directed
or circular (Figure B.2). Some features related to displaying information are implemented,
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Figure B.2: Experimentation module

notably the visualization of overlapping routes, which is one of the most difficult issues
concerning the visualization of solutions for the TNDP.

Algorithms

This is a small module which allows to add new evaluation and optimization algorithms,
to the library of algorithms that can be called from the experimentation module. In order
to add a new algorithm, we should provide its executable program and specify the list
of parameters that it takes as input. The executable should accept a pre-specified set of
parameters in order to be called, which are common to all algorithms (among them, the
infrastructure graph and the origin-destination matrix).

igoR-tp has been tested with different versions of the case of the city or Rivera. The
software proved to be capable of managing all the information required to work with a
case relative to a small-sized city. We also tested the software with information related
to Montevideo, capital city of Uruguay, whose population is 1,500,000 approximately. Al-
though we did not intend to construct a test case related to that city (in particular, demand
data is not available), we processed its street network. Once we created the infrastructure
graph, we identified a degradation in the times needed to build the zones, with respect to
the times experienced when working with Rivera. Some work should be done in order to
extend the range of applications of igorR-tp: (i) study (and possibly improve) the perfor-
mance of the system when working with larger cases, (ii) implement the full level of detail
of the infrastructure graph according to definitions given in Section 2.1 and (iii) include
mechanisms which allow to incorporate other methods for processing the demand data.
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