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Resumen

Reflex es un núcleo versátil para la programación orientada aspectos en Java. Provee
de las abstracciones básicas, estructurales y de comportamiento, que permiten im-
plementar una variedad de técnicas orientadas a aspectos. Esta tesis estudia dos
tópicos fundamentales. En primer lugar, el desarrollo formal, utilizando el lenguaje
Haskell, de las construcciones fundamentales del modelo Reflex para reflexión parcial
de comportamiento. Este desarrollo abarca el diseño de un lenguaje, llamado Ker-
nel, el cual es una extensión reflexiva de un lenguaje orientado a objetos simple. La
semántica operacional del lenguaje Kernel es presentada mediante una máquina de
ejecución abstracta. El otro tópico fundamental que estudia esta tesis es validar que
el modelo de reflexión parcial de comportamiento es suficientemente expresivo para
proveer de semántica a un subconjunto del lenguaje AspectJ. Con éste fin, se desar-
rolló el Reflex Sandbox: un ambiente de experimentación en Haskell para el modelo
Reflex. Tanto el desarrollo formal del modelo de reflexión parcial de comportamiento
como la validación del soporte de AspectJ, son estudiados en el contexto del Reflex
Sandbox. La validación abarca la definición de un lenguaje orientado a aspectos que
caracteriza el enfoque de AspectJ a la programación orientada a aspectos, aśı como
la definición de su máquina de ejecución abstracta. También se presenta un compi-
lador que transforma programas escritos en este lenguaje al lenguaje Kernel. Este
proceso de compilación provee los fundamentos para entender cómo dicha transfor-
mación puede ser realizada. El proceso de compilación también fue implementado en
Java, pero transformando programas AspectJ a programas Reflex. También se pre-
sentan mediciones preliminares del desempeño de un programa compilado y ejecutado
en Reflex y un programa compilado, y ejecutado con el compilador AspectJ.

Palabras Clave: Reflexión, Reflexión Parcial, Programación Orientada a Aspectos,
Reflex, AspectJ
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Abstract

Reflex is a versatile kernel for Aspect-Oriented Programming (AOP) in Java. It
provides the core abstractions based on both structural and behavioral reflection to
implement a variety of aspect-oriented techniques. This thesis focuses on two main
subjects. In the first place, a formal definition, using the language Haskell, of the
core constructions of the Reflex model for Partial Behavioral Reflection (PBR) has
been developed. This development embodies the design of a language, called Kernel,
which is a reflective extension of a simple object-oriented language embedding the core
constructions of the PBR model. The operational semantics of the language is given
in terms of an abstract execution machine. The other major subject addressed in this
work has been the validation that the PBR model has the required expressiveness
to provide semantics to a subset of the AspectJ language. To this end, the Reflex
Sandbox, an experimentation environment in Haskell for the Reflex model, has been
developed. Both the formal development of the PBR model and the validation of
the support for AspectJ are studied within the Reflex Sandbox. It embodies the
definition of an aspect-oriented language, which characterizes the AspectJ approach to
AOP, and the corresponding execution machine. A compiler, transforming programs
from this aspect-oriented language to the Kernel language, has also been developed.
This compiler provides the foundations for understanding how the transformation is
possible. A Java implementation of the compiler, transforming AspectJ programs into
Reflex programs, has also been developed. Preliminary benchmarks are also presented
for the Java implementation of the compiler.

Keywords: Reflection, Partial Reflection, Aspect Oriented Programming, Reflex,
AspectJ
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Chapter 1

Introduction

Over the history, programming language research has been motivated by the con-
struction of languages which allow the programmer to clearly capture the concerns
involved in the development of a software system. By concern, here we mean, a
functionality that the system must perform and, as a consequence of a design de-
cision, it is treated independently. By clearly capturing we mean, that each con-
cerns should be encapsulated in the appropriate language abstraction, in order to be
well-modularized, well-localized and composed as necessary. Achieving those prop-
erties increase the reusability of the concerns’ implementations and enhance their
traceability between the different development phases. The advent of object-oriented
languages (OOL) represents a big step in the construction of languages for better
concern modularization. They introduce the notion of object as an abstraction en-
capsulating data and behavior. An object communicates with other objects using
messages through well-defined interfaces. The object proves to be an attractive ab-
straction to encapsulate the concerns resulting from the decomposition of the system.
Still, the programming language community has detected several limitations of the
OOL approach [WY88, HO93, AWB+93, OI94, LSLX94, KLM+97], in particular re-
garding the development of software in the presence of concerns that tend to crosscut
the system basic functionality, the so-called crosscutting concerns [KLM+97]. Those
concerns are typically non-functional, like among others: security, auditing, distribu-
tion and communications. As a consequence of these limitations, the implementation
of those concerns results in tangled code: this means that the modules of the system
get ”polluted” with code dedicated to address such concerns. Consequently, neither
the ”polluted” concerns nor the crosscutting concerns can be clearly modularized.
This limitations are not only related to OOLs, but also to procedural and functional
languages [KLM+97]. Since this work is concerned with OOLs, the rest of the intro-

1
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duction confines attention to this latter kind of languages.

Aspect-Oriented Programming (AOP) [KLM+97] is a promising technology to mod-
ularizing software in the presence of crosscutting concerns. It defines the notion of
aspect as an abstraction to encapsulate crosscutting concerns. Since its introduction
in [KLM+97], several AOP approaches have come out. An AOP approach essentially
consists of: a base language, one or more aspect languages and an aspect weaver ca-
pable of combining programs written in those languages1. The programmer using
the abstractions of the base language (e.g. objects in an OOL) implements the basic
system functionality, while the aspect language is used to implement the crosscutting
concerns. Along with the aspect definition, the programmer must specify how the
aspects must be composed with the base level program. Such a specification is used
by the weaver to automatically perform the composition of the crosscutting concerns
with the rest of the system. Among the great variety of AOP approaches, AspectJ
[KHH+01] is a reference: it is a simple, well-designed and production quality exten-
sion of the Java programming language. An aspect in AspectJ can be defined using
two kinds of mechanisms: dynamic crosscutting makes it possible to define additional
behavior to run at well-defined points in the execution of a program; static crosscut-
ting makes it possible to modify the static structure of a program (e.g adding new
methods, implementing new interfaces, etc).

Multiple aspect-oriented (AO) proposals have emerged and there are more to come.
Each of those proposals represents a restricted area in the design space of AOP, and
each of them differentiates from the others in terms of the conceptual model they
offer, the specification language, its genericity, binding time, expressiveness, etc. For
instance, there are different conceptual model proposals: AspectJ [KHH+01] relies on
the concepts of join point, pointcuts and advices; Event-Based AOP [DMS01] uses the
concepts of crosscuts, monitors, events and aspects; Composition Filters [BA01] rather
talks in terms of composable method filtering. Also, some approaches adopt general-
purpose aspect languages (GPALs) [KHH+01, BAT01, OT01a], while others rely on
domain-specific aspect languages (DSALs) [LK97, MKL97, NCT04]. DSALs provide
high-level constructions specialized for a particular domain or aspect (e.g. security).
They offer several advantages like: declarative representations, simple analysis and
reasoning, domain-level error checking, among others. The price for those advantages
is the loss of generality. On the other hand, GPALs provide low-level constructions
for aspect construction, allowing more general aspect definitions.

In [TN04a] the authors motivate the need for an AOP kernel. The motivation is based
on two main observations. The first one is that most AO proposals share several com-
monalities (e.g. weaver base code transformation) that can be factored out by an

1Actually, there is a family of AOP approaches, the so-called symmetrical ones, which do not
distinguish between base and aspect languages. However, in this work we are mainly concerned
about asymmetrical approaches, which do make the distinction.
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AOP kernel. The second observation relates to the idea that the most adequate con-
ceptual model and level of genericity for a given application domain actually depends
on the particular situation: there is no definitive, omnipotent AO proposal that best
suits all needs. Therefore, when several aspects are to be handled in the same piece
of software, combining several AO proposals may be the best choice. However, the
tools available for each AO proposals are not meant to be compatible with each other,
which makes it difficult to combine them in a single piece of software. The tools of
the different AO proposals are implemented with a close-world assumption, i.e. each
tool affects the base code directly. Consequently, combining different tools without
appropriate coordination may have unexpected results. This problem further com-
plicates in the scenarios that aspects defined in two or more different tools affect the
same program point, since the interaction is resolved blindly. An AOP kernel enables
a wide range of approaches to work together without breaking each other. Through
the appropriate structural and behavioral models, such a kernel must provide a core
semantics, generic enough to support the different proposals.

From its beginnings, AOP has a deep connection with work in computational reflection
[Smi82, Smi84, Mae87b], as mentioned in [KLM+97]. A reflective system is aware of
its own structure and behavior, and can introspect and alter itself. The computations
in a reflective system conceptually occur at the base or meta level. Typically, the
former corresponds to the external domain that the system models, while the meta
computation controls how the base level computation is performed. The concept
of reflection has been extensively studied in the context of programming languages
[dRS84, KRB91, Riv96, DS01]. A reflective language offers to the user a back door
to the language implementation, providing mechanisms to introspect and/or alter the
language inner structures and its semantics. Such a back door provides a view of
the program execution that no base level program could ever see, such as the entire
execution stack or all calls to objects of a given class. Therefore, the user programs
running at the metalevel have crosscutting views of the base level program, which
makes them suitable for crosscutting concern implementation. As pointed out in
[Kic01], AOP offers a principled way to do reflection, hiding from the user most of
the complexity associated to the implementation of a reflective system by providing
a high-level language to express the semantics alterations over the base language.
In [KLM+97] they said ”AOP is a goal, for which reflection is one powerful tool”,
suggesting that reflection can be seen as a tool to implement AOP rather than an
AOP approach. Reflection is too complex for a regular programmer to work with and
often, it is too inefficient, specially in the case that behavioral reflection is the goal.

Reflex [TNCC03] is a reflective extension for Java that further extends the primitive
reflective mechanisms of that language by providing support for behavioral reflec-
tion and a more complete support for structural reflection. Behavioral reflection
is provided through a comprehensive model of partial reflection, which allows to
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specify where and when reflection must occur. This model is meant to reduce the
costs associated to reflection by using it only when it is needed. As presented in
[TNCC03, CMT04] Reflex proves to be an effective and efficient approach to imple-
ment crosscutting concerns. In [TN04a] the authors put forward partial behavioral
reflection (PBR) as an appropriate low-level framework for the construction of an
AOP kernel. They have also claimed Reflex as an AOP kernel for the Java language,
taking care of the behavior, structure and composition of aspects.

In order to validate such a claim, there is still much work to be done. First, a
formal understanding of the low-level constructions of the model is required, since
the only available description for the model is the informal semantics presented in
[TNCC03, Tan04] and its implementation in Java [RFX]. Second, several consequent
case studies should be carried out to validate the aptitude of the Reflex model as
an AOP kernel. In [CMT04, TN04b] the authors already studied the support of
lightweight domain-specific aspect language for concurrent programming. However,
a serious validation requires studying the support for a general-purpose, expressive,
and widely-accepted aspect language [RTN04], like AspectJ.

There are two main problems addressed by this thesis:

• The most fundamental portion of Reflex, the core constructions of the PBR
model, has been given semantics through the design of a language, which em-
beds the constructions in the model, and the corresponding abstract execution
machine. The language is a reflective extension of a simple OOL called BASE.
The machine is used to give operational semantics to the language. Both the
language and the corresponding machine have been formally written down in
Haskell. This has made it possible to express the semantics of the model in
a more abstract and simple way that it is achieved by the informal semantics
described in [TNCC03, Tan04] and its implementation in Java [RFX]

• Taking the first and most fundamental step in the validation of the support for
the AspectJ language: providing semantics for a subset of its dynamic cross-
cutting mechanism. Both theoretical and practical validations are performed.
The theoretical validation embodies the definition of an extension to the BASE
language incorporating the considered AspectJ constructions and the develop-
ment of a compiler in Haskell, showing how the constructions of the PBR model
are used to express the semantics alterations defined (over the base level pro-
gram) by the AspectJ constructions. The practical validation embodies the
implementation of a compiler in Java, transforming an AspectJ program into
a Reflex program, along with benchmarks showing that very reasonable levels
of efficiency can be achieved. Those benchmarks compare the performance of
programs compiled using the AspectJ Compiler [aspb] and programs compiled
into the AOP kernel.
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In addition, the Reflex Sandbox (RSB), an experimentation environment in Haskell
for the Reflex model, has been developed. The RSB provides a concise model of
Reflex’s AOP kernel for theoretical studies. It is a tool that can be used to implement
alternative semantics for the low-level constructions of the model. The RSB is inspired
in the Aspect Sanbox (ASB) [asb, MKD02, MKD03a, MKD03b, WKD04], sharing the
same high-level goals, but the ASB was oriented to the study of different models of
AOP.

Three languages and the corresponding execution machines are included in the defini-
tion of the RSB. In addition to BASE, the base level language, the RSB includes the
Kernel language and Pointcut and Advice (PA) language. The Kernel language is a
reflective language that extends BASE by incorporating the constructions of the PBR
model. PA is an AO language, also extending BASE, containing the constructions of
AspectJ’s dynamic crosscutting mechanism. The AO constructions included in the
PA language are inspired in those used by the ASB to describe the AspectJ approach
to AOP [MKD03b, WKD04]. In addition, the RSB also embodies the compiler that
transforms a PA program into one expressed in the Kernel language. This process
leaves the BASE portion of the program intact and compiles its AO portion making
use of the reflective constructions of the Kernel language.

Since the Kernel machine has been designed to only support part of the Reflex model
constructions, not every PA program can be compiled into a Kernel program. This
design decision also implies that some interesting features of the AspectJ language
(e.g. aspect composition) were left out of the PA language. On the other hand,
the Java implementation of the compiler, transforming AspectJ programs into Reflex
programs, does consider all the constructions of the Reflex model. Therefore, it
supports the compilation of all the AO constructions defined in the PA language and
some additional features of the AspectJ language. It was implemented as a plugin
for Reflex’s plugin architecture. The plugin also implements a reflective API for
the AspectJ language, providing introspection facilities, which are similar to those
provided by the Java reflection API. The API of the plugin can be used to introspect
the aspects (along with its members) defined in the AOP kernel and to access the low-
level kernel constructions used to represent them. The main benefit of the API is that
it provides access to AOP kernel aspects at the appropriate level of abstraction, which
can be used, for instance to define composition rules among aspects of heterogeneous
languages.

The RSB provides a testing environment where tests can be done on a per-machine
basis or on an inter-machine basis. The former allows to intuitively check that a ma-
chine behaves as expected. The latter allows to perform comparative tests between
two machines. For instance, allowing to get an initial intuition of the correctness a
compiler between two machines. The Kernel and PA machines have been fully im-
plemented using the Haskell language and tested using the RSB testing environment.
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The compiler from the PA machine to the Kernel machines also has been tested using
the environment.

1.1 Contributions of this Work

The results presented in this work constitute a contribution to the evolution of Reflex
as an AOP kernel. In the first place, the RSB environment, whose conception, design
and implementation are precisely described in this document, provides a formal setting
in which the semantics of the Reflex model can be defined. In particular, this makes
it possible to develop theoretical case studies where experiments concerning how the
kernel may support different AOP approaches can be carried out. As a concrete
experiment, in this work attention has been confined to the study of the dynamic
crosscutting mechanism of the AspectJ language. The comparison between the Kernel
and PA machines reveals the abstraction gap that exists among them, meanwhile the
RSB compiler shows how the lower-level constructions of the Kernel can be used to
provide semantics for the higher-level constructions of the PA language. Finally, it is
illustrated that the transformation is feasible in an industrial environment, Java, and
that it can be done efficiently.

In summary, this work makes the following contributions:

• The formal development in Haskell of the core constructions of Reflex’s PBR
model, i.e. the Kernel machine. The Kernel language provides a dedicated
syntax for the constructions in the PBR model, avoiding thus the unnecessary
noise resultant of being limited to use object-oriented syntax to express those
constructions. This is in contrast to the API-based approach followed by the
Reflex original implementation in Java. The mentioned syntactical enhancement
and the concise semantics described by the Kernel machine greatly simplify the
understanding of the PBR model. Furthermore, a comprehensive conceptual
description of the model, in the context of reflective languages, is also presented.

• The validation of Reflex’s PBR model being sufficiently expressive to efficiently
represent the semantics of the core constructions of AspectJ’s dynamic cross-
cutting mechanism. Such a validation, represents the first important case study
that has been carried out in order to fundament the claim that PBR is an ap-
propriate framework for the construction of an AOP Kernel and that Reflex is
a promising candidate for an AOP Kernel for Java.

• The experiment described in the previous item deepens on the understanding of
the relation between reflection and AOP. The idea that reflection can support
AOP is not new (for instance see [KLLH03, Sul01]) and has been a matter of
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(often mundane) discussion since the beginning of AOP. We have gone one step
further by actually showing that an essential part of an efficient AOP language,
AspectJ, originally implemented without resorting to reflection, can actually be
supported by reflection in an efficient way.

• The construction of the RSB experimentation environment. It constitutes a very
useful tool for rapidly prototyping new extensions to the Reflex model. It also
provides a setting for experimenting with different AOP approaches, avoiding
all the complex issues present in production quality environments like Java. The
new extensions to the Reflex model can be developed by extending the Kernel
or BASE machines. In addition, the BASE language and machine can also be
extended to incorporate concise models for AOP approaches being studied.

• Improvements to the Reflex model. The feedback obtained from the AspectJ
case study suggests enhancements that can be done to the PBR model. Some
of them have already been incorporated into the model, e.g. the ones that we
present in [RTN04], while others remain to be further analyzed.

1.2 Structure of the Thesis

This thesis is structured as follows. Chapter 2 includes background information on
computational reflection, aspect-oriented programming, AspectJ and the Reflex model
for partial behavioral reflection. It also further motivates this work. Chapter 3 is ded-
icated to the description of the Kernel machine. First, the BASE language and its
corresponding execution machine are presented. Secondly, the features of the Reflex
model to be included in the Kernel machine are described, along with the design
of the Kernel language. Finally, the semantics of the language are exposed through
the presentation of the Kernel machine. In addition to the description of the model
semantics, a comprehensive conceptual description of the model in the context of re-
flective languages is also presented. Chapter 4 introduces the PA language, including
the most important features of AspectJ’s dynamic crosscutting mechanism. In addi-
tion, the development of the PA machine is described. Chapter 5 is dedicated to the
presentation of how the Reflex model can be used to provide semantics for the high-
level constructions of AspectJ. First, this is analyzed within the RSB by presenting
a compiler from a PA program to a Kernel program, which provides the foundations
for the required translation. Secondly, based on the feedback obtained from the RSB,
the compiler is reviewed in the context of Java. Finally, the implementation of a
plugin for Reflex, including the compiler and the required infrastructure to execute
AspectJ programs in Reflex, is presented. Preliminary benchmarks of the plugin are
also presented. Chapter 6 concludes this thesis with a short summary, and presents
the related work in the area and an outline of future work.
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Chapter 2

Background and Motivation

This chapter presents the background information on two themes surrounding this
work, reflection and aspect-oriented programming (AOP). Both of them are research
areas that have addressed the design of techniques for crosscutting concern modular-
ization. Herein, the need for an AOP kernel is further motivated, and an explanation
of why reflection is a powerful tool for AOP kernel implementation is also provided.
Reflex, a reflective extension for the Java language, is presented as well as an initiative
to evolve into an AOP kernel. This initiative also motivates the need for a formal
understanding of the Reflex model. The AspectJ language, a reference among the
great variety of AOP proposals, is presented. Finally, the need for the validation of
the aptitudes of Reflex for providing semantics to AspectJ is further motivated.

This chapter is organized as follows. Section 2.1 presents the problem that AOP,
and consequently an AOP Kernel, intend to solve: modularization of crosscutting
concerns. This problem is motivated in the context of Separation of Concerns, a fun-
damental principle of software engineering. Section 2.2 introduces the main concepts
behind AOP. Also, it briefly describes the great variety of existing AOP propos-
als and languages. The concept of reflection and its applicability in the context of
programming languages is described in Section 2.3. Section 2.4 presents a compre-
hensive description of Reflex and its model for partial behavioral reflection. Section
2.5 further motivates the need for an AOP kernel and argue why reflection, and in
particular partial reflection, offers an adequate model for the construction of such a
kernel. In addition, it motivates the present work regarding the construction of the
Reflex Sandbox. Section 2.6 presents the AspectJ language, in particular focusing on
those constructions of its dynamic crosscutting mechanism. Finally, Section 2.7 makes
it clear the importance of validating the Reflex AOP kernel by providing semantics
to a subset of the AspectJ dynamic crosscutting mechanism.

9
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2.1 Separation of Concerns

Separation of Concerns (SoC) [Dij68, Par72] is a commonly known and fundamental
principle of software engineering. The motto of SoC [HL95] is that concerns must
be properly identified and isolated in order to manage system complexity, achieve a
system that is easy to understand, allow better reuse of the concerns and enhance
system maintenance (among other desirable properties). Separating concerns results
in a higher level of abstraction, allowing the developer to reason about individual
concerns in isolation. At the same time, concerns are easy to understand since their
code is not cluttered with the code of other concerns. The ideal is that this separation
should be made in all the phases of the system development (i.e. analysis, design,
implementation, etc), in order to achieve the desired properties in each phase and
obtain traceability among them.

In particular, during the implementation of the system, the identified concerns are
programmed using the constructs offered by the programming language. Therefore,
the programming language fulfills a crucial role in achieving good SoC at the im-
plementation level. As a matter of fact, one of the major quests of programming
language research is that of being able to develop software systems while preserving a
good SoC. Object-Oriented Languages (OOLs) were themselves a step forward in this
direction. However, as software systems are applied to more and more complex situa-
tions and demanding environments, it becomes difficult to maintain a good separation
of all concerns. As it has been pointed out in [HL95], there are many kinds of con-
cerns which OOLs fail to correctly separate (modularize). This kind of concerns are
called crosscutting concerns [KLM+97]. They are concerns that crosscut the system’s
basic functionality, which are typically associated to non-functional requirements, e.g.
synchronization, auditing, distribution, among others.

In order to illustrate those concerns, consider the Java code shown in Listing 2.11,
which is part of an airline reservation system. The system must allow the user to
reserve seats of a given flight and pay for them. In addition, the system must audit
all the actions performed by the user.

Listing 2.1 outlines one possible design for this system, which consists of two use-
case controllers, one for making a reservation and one for paying the ticket, and an
Audit class that encapsulates the logic for recording the user actions. Since the audit
must be performed for each system operation, each operation must invoke the Audit
class in order to record its own execution. Note that the audit concern crosscuts the
basic system functionality (i.e. reservation and payment) and is not appropriately
modularized, because the controllers must explicitly invoke the audit method. A

1As a general convention of the present work, the programming language (L) used to implement
the code of a listing shall be specified by an annotation of the form < L Code > in the listing’s
caption.
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class ReservationController { class Audit {

int reserve(int flight , int seat ,..){ Audit itsInstance;

Audit.get (). audit(user ,tstamp ,..); static Audit get (){..}

[..] void audit (...){..}

} }

void cancel (){

Audit.get (). audit(user ,tstamp ,..);

[..]

}

}

class PaymentController {

void payTicket(int resNumber , ...){

Audit.get (). audit(user ,tstamp ,..);

[..]

}

}

Listing 2.1: Audit Example <Java Code>

different design may be adopted, in order to enhance the modularity of the solution,
for instance, using the Observer design pattern [GHJV95]. However, using design
patterns requires adding several artificial classes, which increase the complexity of
the design, and usually does not solve the problem completely.

This difficulty for appropriately modularizing crosscutting concerns comes from the
fact that OOLs lack an appropriate construct to modularize them [HL95, KLM+97].
This issue along with the design of techniques more suitable for modeling crosscutting
concerns is studied in the next section.

2.2 Aspect-Oriented Programming

Aspect-Oriented Programming (AOP) [KLM+97] has been proposed as a program-
ming technique for improving separation of concerns in software (see Section 2.1), in
particular for modularizing crosscutting concerns. As explained in [Lop02], AOP was
conceived based on an extensive amount of prior work, consisting of various techniques
trying to solve the same problem, achieving crosscutting modularity. Among those
techniques were: Composition Filters [AWB+93], Adaptive Programming [LSLX94],
Subject-Oriented Programming [HO93] and Metalevel Programming [OI94, WY88].
The great contribution of the paper [KLM+97], which formally presents AOP, was
clarifying the various concepts involving crosscutting modularity and proposing an
homogeneous terminology for describing them, which otherwise were treated inde-
pendently by each different technique.



12 CHAPTER 2. BACKGROUND AND MOTIVATION

2.2.1 Motivation and Concepts

As presented in [KLM+97], the motivation behind AOP relies on the observation that,
in many existing programming languages, the design decisions involving crosscutting
concerns are hard to clearly capture using the existing entities to modularize code.
They made the analysis based on a family of languages, which they call generalized-
procedure (GP) languages, which are characterized by being languages whose domi-
nant abstraction and composition mechanisms are based in some form of generalized
procedure. This family of languages includes object-oriented languages, functional
languages and procedural languages. For instance, in an object-oriented language2

the classes and methods are the dominant abstraction (i.e. the generalized proce-
dures) while the method invocation is the dominant composition mechanism (i.e. the
generalized procedure call). It is important to note that AOP does not disregard the
many important advances that those languages have made in terms of abstraction,
genericity, encapsulation, etc; on the contrary, AOP is built over those languages in
order to further extend their power.

The design methodologies for the GP languages tend to decompose the system into
functional units3. Each unit is modeled, at the code level, through its dominant
abstraction mechanism (e.g. classes and methods), and all of them are composed using
the language composition mechanism (e.g. method call) to form the overall system.
The crosscutting concerns are inherently hard to cleanly modularize because of their
nature: they, by essence, crosscut the basic system functionality. Since those concerns
must be coordinated with the system’s functional units, the programmer facing the
implementation of the system must compose them manually, leading to tangled code:
meaning that the functional units of the system get ”polluted” with code dedicated
to address such concerns4. For instance, consider the example shown in Listing 2.1
(Section 2.1), where the audit concern is composed with the rest of the system using
method invocation, resulting in tangled code. Tangled code is extremely difficult to
maintain, since small changes to the functionalities requires manually untangling and
then re-tangling it, besides leading to less understandable and reusable code. As
argued in [KLM+97], this crosscutting nature can not be appropriately captured with
the abstraction and composition mechanisms provided by GP languages, thus new
mechanisms for abstracting and composing crosscutting concerns are required.

In [KLM+97] also, they present two important terms: component and aspect. Con-
sidering a system and its implementation using a GP language, a concern that must

2Assuming that the language is class-based.
3Commonly known as functional decomposition [Par72].
4Note that the tangled code notion is defined from the point of view of the ”affected” functional

units. In addition, the notion of scattered code is also commonly used to refer to the same concept
seen from the point of view of the crosscutting concern: meaning that the code of the concerns is
spread out rather than well-localized.
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be implemented is:

A component when it can be cleanly encapsulated in a generalized procedure. The
components tend to be units of the system’s functional decomposition.

An aspect when it can not be cleanly encapsulated in a generalized procedure. The
aspects rather tend to be concerns that affect the performance or semantics of
the components in systemic ways.

They also further precise what it means for a concern to be ”cleanly” encapsulated:
well-localized, easily accessed and composed as necessary.

The goal of AOP is to assist the programmer in cleanly separating components and
aspects from each other, by providing mechanisms that make it possible to abstract
and compose them to produce the overall system [KLM+97]. AOP, by itself, does not
define any mechanisms for abstracting and composing aspects, those are defined by
each particular aspect-oriented (AO) technique. In the next section a characterization
of the different AO techniques is presented.

2.2.2 Characterizing Aspect-Oriented Techniques

As presented in [KLM+97], an AO technique consists of: a component language to
program components, one or more aspect languages to program aspects, and an aspect
weaver, that given a component program and one or more aspect programs combines
them. The design of an AO technique implies understanding well what should be
the component language, what should be the aspect languages, and what must be
shared between them. The component languages are typically GP languages. Aspect
languages should preferably be high-level and more tailored to the specific aspect they
are tackling, in order to be easier and safer for the programmer to use. This implies
that special care must be taken in the design of the aspect languages, in order to
anticipate anything that the aspect programs need to control, and at the same time,
to restrict the control over what it does not need to know. Section 2.2.3 presents an
overview of the different styles of aspect languages. Each aspect language defines the
mechanism for aspect abstraction, and in coordination with the component language
(and also possibly with the other aspect languages), the mechanism for composition
[MKD03b].

The different AO techniques can be classified in symmetric and asymmetric [HOT02a].
Symmetric techniques are those that do not make distinction between components and
aspects, both are treated as a single composable element and are implemented using
the same language. Conversely, asymmetric techniques make an explicit distinction
between components and aspects, providing specific mechanisms for the component-
component composition and component-aspect composition. Optionally, they may
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also provide specific mechanisms for aspect-aspect composition. For instance, AspectJ
[KHH+01, MKD03a], is an asymmetric technique supporting aspect-aspect composi-
tion.

In [MKD03b] the authors further refine this conception of the elements that conform
an AO technique, in order to include symmetrical techniques. For instance, Hyper/J
[OT01a, OT01b] consists of: a single language in which components and aspects are
implemented, a weaver responsible for combining several programs implemented in
that language and a specification of how the combination must be done. They present
a general model, that allows to characterize most of the AO techniques that actually
exist. Since in this work we are interested in asymmetrical techniques, we shall not
enter into further details about the symmetrical ones. The rest of the presentation of
AOP is in the context of asymmetrical techniques.

The aspect weavers process the components and aspects, in order to compose them
properly to produce the overall system. Essential to that task is the notion of join
points, which are those elements of the component language semantics that the aspect
program coordinate with [KLM+97]. The aspect weaver works by generating a join
point representation of the component program and integrating the aspect program
in the component program at appropriate places, according to the representation.
For instance, considering the airline system (see Section 2.1), the join points would
be the executions of the system operations (i.e. the methods in the controllers), and
the weaver would perform the integration by placing the invocations to the audit
concern. Finally, the weavers can be designed to perform the integration at runtime
or at compile time.

2.2.2.1 Join Point Model

As explained in [MKD02], the ability of the different AO techniques to modularize
crosscutting concerns lies in its join point model (JPM). A JPM is defined based on
three elements:

• The join points, which are the points of reference that aspect programs can
affect;

• A means of identifying join points;

• A means of associating a behavior to the join points.

Join points may be dynamic join points if they refer to runtime actions, such as
method calls, method executions, object instantiation, etc. They may be static join
points if they denote locations in the code (e.g. expressions). Also, as explained in
[KLM+97], the join points are not necessarily explicit constructs in the component
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language, they may refer to implicit elements, e.g. elements that can be inferred from
a static (resp. dynamic) analysis of the program code (resp. execution) revealing some
particular structure or behavior of it. For instance, they may denote data flows in
the component program [KLM+97], or elements in the class graph [LSLX94]. But as
a matter of fact, most of the AOP techniques are based on a join point model similar
to that of AspectJ [KHH+01], characterized as the dynamic crosscutting mechanism,
where join points are well-defined points in the execution of a program.

The Aspect Sandbox (ASB) [asb] was a project meant to provide an experimentation
environment where different AOP techniques can be studied and compared, along
with prototyping alternative AOP semantics and implementation techniques. In this
context, different join point models have been studied and characterized through
the implementation of a interpreter in Scheme, describing its approach to AOP. In
[MKD03b] they further refine the notion of join point, as existing in the result of
the weaving process rather than being in any of the input programs (component or
aspects programs), which allows them to describe a wider range of AO techniques
(e.g. symmetrical techniques).

Another dimension of AOP where special attention has been placed is how to identify,
or select, join points. In AspectJ [KHH+01], join points are selected through pointcuts,
which are predicates that declaratively specify a set of join points of interest (see
Section 2.6 for an detailed explanation). The introduction of control-flow crosscutting,
in which a pointcut depends on control flow relation with respect to another pointcut,
is very valuable. It was first introduced in [KHH+01], but in somehow restrictive
manner, then [DT04] the authors propose a much more expressive way of reasoning
about control flow. In [MK03] the authors have studied the support for dataflow-
based pointcuts, which allows to specify where aspects should be applied based on
the origins of values. Other approaches to identify join points have been developed,
such as in [DD99], where the authors proposed a logic metaprogramming approach to
AOP, where logical queries can be used to specify crosscuts, and in [ACK05], where
they propose a framework to define semantical pointcuts based on ontologies, which
are used to represents different semantical views of a program.

Yet another interesting dimension of AOP is the aspect interaction and composition.
Two (or more) aspects are said to interact, when both of them try to affect a single join
point occurrence. In those cases, additional semantics must be provided in order to
solve the issue. For instance, AspectJ [KHH+01] provides a construct to specify aspect
precedence, which allows to specify the order in which aspects must be applied upon
an interaction. In [DFS02] the authors have pointed out that such a construct is not
sufficient to handle complex interaction between aspects. Composing aspects does not
solely refer to specifying the order in which they apply, but to possibly condition their
application to the presence and application of other aspects. In [DMS01, DFS02] the
authors are concerned by the formal description and analysis of aspect interactions,
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and they propose several expressive composition operators in order to specify the
resolution semantics of the interactions.

2.2.3 General vs. Domain-Specific Languages

There is a wide range of AOLs which have been proposed, some of them are general-
purpose aspect languages (GPALs), providing low-level constructions to deal with
crosscutting modularity, while others are domain-specific aspect languages (DSALs),
providing high-level constructions specialized for a particular domain or aspect. DSALs
present various advantages, they offer declarative representation, such as simple analy-
sis and reasoning, domain-level error checking and optimizations. Meanwhile, GPALs
provide greater generality for the definition of aspects. As first argued in [KLM+97],
aspect languages should preferably be high-level, providing a dedicated set of con-
structions focusing on an specific aspect domain, in order to be easier and safer for
the programmer to use. Actually, the first AOLs used to experiment with AOP were
DSALs [MKL97, LK97, ILG+97]. Those experiments have provided elegant and sim-
ple languages to effectively modularize specific aspects of a system. However, since
their specificity and close-world designs, they were not appropriate to experiment with
aspect interaction and composition. Therefore much of the research efforts shifted into
GPALs [KHH+01, OT01a, DMS01, DFS02].

The balance of pros and cons between GPALs and DSALs is also valid in the context
of programming languages in general, not only aspect languages. Although, in the
context of AOLs, the need for languages that provide as much control as possible seems
to be particulary evident, because of the power that AOP encloses. As explained
in [FF00] AOP allows the programmer to make quantified programmatic assertions
over the whole system, consequently a single aspect definition may be affecting the
system semantics in many different points. Furthermore, [DGH+04] presents a series
of measures of AspectJ showing that the language must be used with care in order
to avoid efficiency pitfalls. Therefore, having an appropriate domain-specific control,
through DSALs, seems to be the right direction.

2.3 Reflection in Programming Languages

Since its birth in [KLM+97], AOP has been deeply related to reflection. Moreover,
reflection has been a mentor in the development of AOP, often used to prototype
different AOLs during their conception. In this section we shall introduce the con-
cepts related to reflection (Section 2.3.1) and how they are used in the design of
programming languages (Section 2.3.2 in ahead).
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2.3.1 Computational Reflection

The concept behind Computational Reflection can be grasped by analyzing the mean-
ing of the word Reflection in the context of philosophy. Reflection is a human-mind
activity: our mind is capable of considering some subject of matter and also has the
faculty of considering one’s owns ideas or acts as the subject of matters. Therefore,
allowing us to reflect about our own ways of thinking or functioning, and possibly
changing it. By doing a parallel with this idea, we can say that computational reflec-
tion is the activity performed by a computational system when doing computation
about its own computation. Those reflective computations may affect the state and
computation of the system.

The concept of reflection has been deeply studied in philosophy and it was Brian C.
Smith, in his PhD thesis [Smi82], the one that gave the first major step in bringing this
concept into the computer science world. He proposed and defined what it means for a
system to be reflective. He presented the general architecture of procedural reflection
and illustrated it through the implementation of a reflective dialect of Lisp, called
3-Lisp.

In order to better understand reflection, we will define the most relevant concepts
behind it (see Figure 2.1 for a graphical illustration), based on [Mae87a].

Definition Computational system
A system that acts and reasons about a domain.

The domain is the piece of reality or the abstract problem that the computational
system models. From the computational system’s point of view, the domain is external
to the system. Computational systems are described by programs, which are textual
descriptions enclosing the definition of the structures and behavior required to model
the external domain. The structures hold data relevant to the domain modeling, while
the behavior reasons and acts over them. The computational system is the program
being ran by an executor, see Figure 2.1(a). In order to be useful, both sides (i.e.
the system and its domain) must be up-to-date with each other, which means that
if one side changes, this leads to a corresponding effect in the other. This two-way
connection is known as the causal connection.

Definition Causal connection
Property that ensures that changes in the domain are reflected in
the computational system, and vice-versa.

Now considering this definitions and the fact that systems can reason and act on other
systems, we can define the concept of a metasystem, see Figure 2.1(b).
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Figure 2.1: Computational Reflection

Definition Metasystem
A computational system whose domain is another computational
system.

The domain of a metasystem, a computational system, is called the base system.
An evaluator is an example of a metasystem that turns a program into a compu-
tational system by executing it. The evaluator is causally connected with its base
system. The program of the evaluator, or any other metasystem, is a metaprogram.
Reflective systems appear when considering a metasystem whose domain is itself, see
Figure 2.1(c).

Definition Reflective system
A metasystem causally connected to itself.

The idea of a reflective system provides a two-level (actually multi-level) way of think-
ing. Reflective systems can be conceptually divided in a base-system (or -level) rep-
resenting the external domain, and a meta-system (or -level), capable of reasoning
and acting upon its own computation. The computations occurring at the metalevel
provide views of those of the base level that no base program could ever see, such
as the entire execution stack, or all calls to objects of a given class. Therefore, they
crosscut the base level computations, providing a suitable framework for crosscutting
concerns representation.
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Now that the concept of reflection has been presented, let’s focus on the programming
language5 used to implement the reflective system. The program that describes the
reflective system must be capable of manipulating a representation of the system
itself, in the same way as it does with its external domain. Therefore, a causally
connected representation of the program itself and the executor must be made explicit
by the programming language for program manipulation. The representation of the
executor comprehends the language semantics and the runtime structures used in its
implementation. Understanding how this self-representation can be provided, is where
most of the research efforts in reflection has been focused, and shall be explained in
detail in the next section.

2.3.2 Reflective Programming Languages

A programming language is ”a medium to express computations, which is defined by
its syntax and its semantics” [MJD96]. A illustrative analogy was done in [KRB91]6

between programming language design and theater play, where the producer is the
language designer/implementor and the user is the audience. The audience only sees
on-stage behavior, which is supported by a backstage infrastructure, unknown to the
audience. The producer is responsible for setting up this infrastructure in order to
support the on-stage behavior. Programming language design is similar, language
design is an activity where the designer provides a set of high-level constructions
to be used by the programmer as a black-box abstraction. During the process, the
designer is expected to produce languages with well-defined and fixed semantics. Users
are expected to use the language at their convenience, but respecting the designer
decisions. Reflective languages come to challenge this tradition, by allowing the user
to access and modify some or ”all” aspects of the language backstage.

The reflection community still lack of a widely accepted account of what is a reflective
language [MJD96, Riv96]. Some of the most relevant characterizations are:

• B. Smith gives two important requirements for a language to be reflective
[Smi84]. First, the language needs ”an account of itself embedded within it”;
which means, the language must be able to access its own representation. Sec-
ond, this self-representation must be causally connected with the language im-
plementation.

• Maes [Mae87a] presents the following requirements for reflective languages: (1)
it must recognize reflection as a fundamental programming concept; (2) it must

5For simplicity we assume that only one language is used for implementing the system.
6Actually the analogy was made between the language implementation and the documented

language.
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provide support for modular implementation of reflective computation; (3) its
implementation must provide an open-ended architecture. Besides, she comple-
ments this by saying ”The interpreter of such a language has to give any system
that is running access to data representing (aspects of) the system itself [...]”
and ”The interpreter also has to guarantee that the causal connection between
these data and the aspects of the system they represent is fulfilled [...]”7.

• Malenfant et al. say that ”a programming language is said to be reflective when
it provides (full) reflection”. [MJD96].

The first two characterizations differ from the third in the fact that full reflection is
not required by a language to be reflective. Full reflection stands for not imposing
any limit on what the program can modify or change, therefore ideally any part of
the language semantics, syntax, implementation and runtime, should be accessible.
However, there are theoretical limits that make it impossible to achieve full reflection
as pointed out in [WF88, DS01]. Actually, the precise point where a language that
incorporates reflective properties becomes a reflective language is not well defined
[Riv96]. In spite of the theoretical limits, the requirement of full reflection is useful to
contrast reflective languages from programming languages that may only incorporate
some reflective properties. Malenfant [MJD96] explain that the confusion arises be-
cause reflective properties already appear in several existing languages. For example,
if we contrast standard non-high-order languages with high-order languages, we will
note that there are entities that are implicit in the former and that are given the
status of first class in the latter. As first class entities, they can be manipulated as
standard entities (e.g. passed as parameter, assigned to variables, etc). This is the
case of Scheme, where functions and continuations are first class. Clearly, Scheme
is not considered a reflective language, the break point came up from the fact that
Scheme does not provide a representation (data structures) for those entities that can
be inspected [MJD96].

The key concept behind reflective languages seems to be their ability to build such rep-
resentations for some aspects of itself, and make them available to the user program,
which can manipulate (i.e. introspect or change) them as ordinary data. Reification
is commonly known as the process where those aspects of the language, which were
implicit to the user program, are brought to the fore using a representation expressed
in the language itself [MJD96]. Those representations are causally connected to the
related reified information such that a modification to one of them affects the other.
The concept of reification shall be explained in grater detail in Section 2.3.2.2.

With regard to this thesis, we shall consider as reflective languages those that recog-
nize reflection as a fundamental concept and provide at least one reflective mechanism,

7Although this characterization is focused in interpreted languages, it is also valid in the context
of compiled languages.
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which offers to the user program the ability to reify some aspect of the language, for
introspection, and optionally, modification. The next section gives a detailed account
of what is a reflective mechanism.

2.3.2.1 Reflective Mechanism

Reflective mechanisms is the name given to the facilities provided by a programming
language that allow some form of reflective computation. Malenfant defines them as
”any means or tool made available to a program P written in a language L that either
reifies the code of P or some aspect of L, or allows P to perform some reflective
computation” [MJD96]. There are two useful distinctions that can be made to better
understand reflective mechanisms.

The first comes from a natural distinction between structural and behavioral reflection
[MJD96]:

Definition Structural reflection Definition Behavioral reflection
The ability of a program to access its
own structure, as it is defined in the
programming language.

The ability of a program to access
its dynamic representation, which
means, have access to its operational
execution as it is defined by the pro-
gramming language implementation.

Therefore reflective mechanisms can be structural or behavioral. For example, in
an object-oriented langauge, structural mechanisms may give access to the classes in
the program as well as their defined members; while behavioral mechanisms may give
access to the language method lookup mechanism, as well as the state of the execution
stack of the various threads in the program. Behavioral mechanisms may cover any
aspect of the semantics of the language, its particular implementation strategy and
the runtime infrastructure used for the implementation.

The second distinction is made between introspection and intercession [BGW93]:

Definition Introspection Definition Intercession
The ability of a program to reason
about reifications of otherwise im-
plicit aspects of itself or of the pro-
gramming language implementation.

The ability of a program to actu-
ally act upon reifications of other-
wise implicit aspects of itself or of the
programming language implementa-
tion.

Java language mainly provides a limited introspection mechanism through the reflec-
tion API by allowing to introspect class hierarchy and access class members, but it
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does not provide any mechanism to modify this data. Smalltalk [Riv96] provides a
huge set of introspection mechanisms and also provides intercession mechanisms al-
lowing modifications to the class hierarchy and memory management policies, among
others.

Note that these two distinctions are orthogonal, the former determines which is the
domain of the representation (the program or the processor) and the latter determines
the type of access given to that representation.

2.3.2.2 Reflective tower

Behavioral reflection is by far more difficult to achieve than structural reflection.
Smith [Smi82] was a pioneer in the field of behavioral reflection and was the one that
proposed the reflective towers as a means to model behavioral reflection. He proposes
an architecture for 3-Lisp where every program P is interpreted by a continuation-
passing metacircular interpreter, which is a program P1 also written in 3-Lisp [Smi82,
Smi84, dRS84]. Theoretically, the interpreter program P1 is also executed by run-
ning an explicit copy of itself, say P2, and so on up to infinity. This architecture
resembles an infinite stack, where at the bottom (level0) is the user program, and on
top of it, there are a infinite number of interpreters, where the interpreter at leveln
is responsible of interpreting the program at leveln−1. This stack structure along
with the crucial property of causal connection between its levels, is what is called the
reflective tower. Actually, since the levels of the tower do not need to be based on
interpreter techniques, they use the term reflective processor program (RPP) instead
of interpreter, in order to avoid confusions [dRS84]. See Figure 2.2 for a graphical
illustration. Part of the user program can be executed at the level of RPP1 (in 3-Lisp,
these special programs are called reflective procedures). Therefore, gaining access to
its dynamic representation as it is modeled by its processor. By executing code at the
next higher level, the program is inserting code into its processor, therefore modifying
it.

user program runing at level 0

RPP runing at level 1

RPP runing at level 2

RPP runing at level 3

causal connection

Figure 2.2: Reflective tower
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In the reflective tower, there are an infinite number of levels at which a program
is processed, each level is simultaneously active and has its own local state. As
mentioned in [dRS84], this infinity can be eliminated in practice. They introduce the
notion of degree of introspection of a program: in any single program P and input i,
only a finite number of levels, say ∆, are needed to run the program. This number is
the degree of introspection. Therefore, given ∆ the level ∆ + 1 can be replaced by a
non-reflective implementation of the processor G, eliminating the infinite levels.

Since ∆ can only be determined at runtime, the implementation of G is proposed to
be a level-shifting processor (LSP): such a processor is able, when it is determined
(dynamically) that a new level of processing is required, to create the explicit state of
the LSP on the fly as if it had run from the beginning of the program, and to resume
computation from this state. This notion of jumping up in the execution level is called
shift-up, see Figure 2.3. The optimal strategy is based on never run at a higher level
that necessary, therefore they also provide the notion shift-down to decrease the level
in which the LSP is running. A shift-down requires saving the level state, in order to
be reinstalled the next time this level is reached.

Implementation Processor G

User Program (n = 1) User Program (n = 2)

RPP (n = 1)

User Program (n = 3)

RPP (n = 2)

RPP (n = 1)

shift up

shift up

User Program (n = 2)

RPP (n = 1)

shift down

execution time

Implementation Processor G

Implementation Processor G

Implementation Processor G

Figure 2.3: The level-shifting processor

As mentioned in [MJD96], reflective towers seems to be an ubiquitous notion in every
system supporting behavioral reflection.

Two major papers from Wand and Friedman attempt to give a more formal denota-
tional account of the concepts behind reflection and the reflective tower. In the first
paper [FW84], they explain that the concept of reflection, as formulated by Smith,
can be decomposed in two process (or operators), called reification and reflection,
which respectively correspond to shift-up and -down.
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Definition Reification Definition Reflection
The process by which the state of the
interpreter is passed to the program
itself, suitably packaged (reified) so
that the program can manipulate it.

The process by which program values
are re-installed as the state of the in-
terpreter.

They defined the state of the interpreter as: the interpreter registers holding an
expression, an environment and a continuation. As further mentioned, the process
of reification can be thought of as converting program into data. Such a data can be
manipulated as values by reflective programs and transformed back into program by
the reflection process.

In the second paper [WF88] they give a formal semantic account of the reflective
tower, by using meta-continuation semantics. By doing so, they manage to formally
explain the reflective tower without using reflection in the formalization.

As a final comment about terminology, the data representing a piece of program is
also called reification. The process of reflection has been named differently by some
authors, absorption [Ste94] and deification [Yok92, DS01]. From now on we shall refer
to it as absorption.

2.3.3 Reflective Object-Oriented Languages

The advent of both object-oriented programming (OOP) and reflection was carried on
in the 80’s, by two different communities. Although OOP’s initial steps can be tracked
down to the 60’s, it was not until the 80’s that OOP was adopted by a large number
of programmers and organizations [Bru02], and its was not until the 90’s, when most
of the advances in understanding OOP occurred. Once OOP gained popularity, most
of the work in reflection was rapidly formulated in the context of object-orientation.
The reason seems to be a good match between both, as explained in [Ibr90].

Object-orientation as a programming paradigm promotes major improvements over
the older procedural programming. It shrinks the gap that exists between programs
and the domain (or reality) being modeled, by introducing the notion of object
[JCJ+92]. In short, an object can be seen as an abstraction of an entity of the
modeled domain, that encapsulates the data and behavior required to represent it.
Objects are somehow independent. They communicate among them using messages,
through well-defined interfaces, in order to collaborate to realize more complex tasks.
Therefore, OOP allows to build programs that are closer to the real elements they
model. Consequently, programs can be understood more easily, and the objects that
compose them, are more likely to be reused. Furthermore, they support the notion
of sub-typing allowing integrated means of localized extensions.
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As mentioned in Section 2.3.2, a fundamental property of every reflective language (or
system), is the capability it offers to introspect or intercede-on its self-representation
(structural or behavioral). This self-representation must be at the appropriately level
of abstraction, in order to improve its usability. This is where object-oriented model-
ing techniques can be used, providing a flexible, extensible and easy to use paradigm
to structure the self-representation. Maes said in [Mae87b], ”the concept of reflection
fits most naturally in the spirit of object-oriented programming” and note the contri-
bution that introduces the notion of object into the reflection world by saying ”an
object is free to realize its role in the overall system in whatever way it wants to. Thus,
it is natural to think that an object not only performs computation about its domain,
but also about how it can realize this (object-) computation”. Moreover, the com-
munication between objects performing domain computation, so-called base objects,
and objects performing meta computations, so-called metaobjects, can be based on a
well-defined interface or protocol. Such an interface is commonly known as metaobject
protocol (MOP), and shall be explained in grater detail in the next section. It allows
to program base objects independently of metaobjects. Consequently, responsibility
assignment stays in harmony, base objects keep focus on modeling domain entities,
meanwhile metaobjects control how base computation is done. Taking some distance,
this distinction between base and metaobjects can be seen as a two-layer, or n-level,
architecture, where base objects reside at the base level, while metaobjects reside at
the metalevel8. See Figure 2.4(a) for an illustration. The dash-line that encloses
the reflective processor and the metalevel represents the customized processor, in the
sense that its behavior has been modified. In addition, all object-oriented mechanisms
and properties are still present: the implementations of base and meta -objects can
be changed independently (thanks to the interface between them), metaobjects can
be reused in different contexts and extension mechanisms (i.e. through delegation
and sub-typing) can be used to extend metaobjects. This opens a great spectrum of
possibilities, like developing metaobject libraries.

In addition, OOP also contributes in providing fine-grain control of the locality [KAR+93]
of the reflective computation. Locality stands for the scope that changes done at the
metalevel have on the base level computation. The object-based structuring of the
self-representation allows to provide access to individual features of it (thanks to the
object ”independency”), which are isolated and can be affected without having to deal
with the rest of the features.

The object-oriented community also benefits from reflection [Mae87b]. Initially, the
community was facing some difficulties in finding an agreement on which the ideal
object oriented language should be, it seems that the only answer was ”it depends on
the case”. This is where reflection can help, by providing a way to build open-ended

8Note that from the reflective tower point of view, this conceptual division is present for each
pair of adjacent levels.
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Figure 2.4: Object-Oriented Programming and Reflection.
a) Enhancements in modularization as consequence of applying OO techniques to structuring the metalevel.

b) Different types of MOPs

languages, where aspects of the language that were otherwise implicit are made ex-
plicit, through the use of MOPs, allowing the customization of the language behavior
based on the user needs. A good example can be seen in the design of the CLOS
MOP [KRB91]. Another benefit, which is actually more valuable, is the study of
MOPs for SoC, which proves to be an effective tool for modeling non-functional (i.e.
crosscutting) concerns. For instance, MOPs have been developed for a wide-rage of
domains, including distribution [Str93], mobile objects [LBS00, TVP02], concurrency
[WY88, MMY94], only to mention a few.

2.3.3.1 Metaobject Protocols

The key gain of this union between reflection and OOP, is the appearance of the
MOPs. From the programming language perspective, a MOP provides a back-door
to the language implementation; using the full power of object oriented techniques
implicit aspects of the language are exposed through this interface in a proper abstract
and encapsulated way. This interface is like any other standard interface between
objects. Kiczales et al.define it as:
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Definition Metaobject Protocol
Metaobject protocols are interfaces to the language that give users
the ability to incrementally modify the language’s behavior and
implementation, as well as the ability to write programs within
the language. [KRB91]

Kiczales et al. in the book The art of the Metaobject Protocols [KRB91], give a detailed
explanation of the design of a MOP for the Common Lisp Object System (CLOS),
which is an object-oriented variant of Lisp. In a short paragraph they explain how
this concept can be applied to design a programming language which clarifies what
is meant by a MOP:

”First, the basic elements of the programming language - classes, methods and
generic functions - are made accessible as objects. Because these objects repre-
sent fragments of a program, they are given the special name of metaobjects.
Second, individual decisions about the behavior of the language are encoded
in a protocol operating on these metaobjects - a metaobject protocol. Third,
for each kind of metaobjects, a default class is created, which lays down the
behavior of the default language in the form of methods in the protocol.”

Zimmermann in [Zim96] clarifies the notion of MOP by presenting three different
types of MOPs, depending on how the reflective computation is triggered (see Figure
2.4(b)):

Explicit MOPs are used by base objects to communicate to the metalevel. For
instance, using this type of MOP, a base object may send messages to a given
metaobject or may change a metaobject by another one. This usually results
in explicit changes in the behavior of the base objects. In Figure 2.4(b), the
arrow from the base object to the processor represents the base object using the
explicit MOP to query or change some aspect of the metalevel (e.g. changing a
metaobject or getting a reference to a metaobject). For example, a base object
may change its status from volatile to persistent, by sending a message to the
metaobject responsible for handling its persistence.

Implicit MOPs take place transparently: base objects do not know that a jump
to the metalevel is occurring. The transparency at the object level comes from
the fact that the interpreter itself triggers the meta computation. For example,
each time an object is created, its state may be transparently initialized by
informing of such an event to the persistence metaobject, which retrieves the
object’s state form storage. Analogously, when the object is destroyed, its state
is updated in the storage.
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Inter-metaobject Protocols are used by metaobjects to communicate with each
other. This protocol is also explicit (implemented using standard message call)
but is transparent for the base objects.

It is interesting to note that explicit and implicit MOPs usually collaborate in order
to achieve a given behavior: the base objects use the explicit MOP to specify the
desired semantics (e.g. being persistent), which is then implemented through the
implicit MOP (e.g. intercepting object creation and destruction).

As reflective approaches matured, attempts to apply them in various domains have
brought to the fore the need for further investigating structuring aspects of the met-
alevel. Most reflective systems are based on the reification of the structural concepts
offered by the language (classes, methods, objects, etc), like in [KRB91, DS01]. In
[McA96], the author characterizes this approach as a top-down one: taking the high-
level concepts of the language and breaking them into its constituent pieces. Although
this approach presents the advantage of a limited and particular set of concepts that
are usually well-understood, it is hard to integrate new concepts or behaviors that
have no foundation in the base language. Therefore, compromising the expressiveness
and extensibility of the computations that can be implemented at the metalevel, two
desirable properties according to him. Therefore, he formulates a bottom-up approach,
which consists in starting from the basic operations (e.g. message send, field access,
object creation, etc) defining the computational behavior of an object. This approach
promotes the separation of the description of the computational behavior on an ob-
ject form that of the base language, thus concentrating on what occurs, not how the
description is organized. Object systems are therefore reduced to a set of conceptual
operations, whose occurrences can be seen as the events which are required for object
execution. This operational decomposition, as an approach to structure the metalevel,
has shown to be both expressive and extensible [McA96].

The approach that is used to structure the metalevel has a direct impact in the design
of its corresponding MOPs. For instance, if the metalevel is organized in terms of
operations (e.g. like in Reflex, see Section 2.4) its implicit and explicit MOPs are also
structured in terms of operations. Therefore, through the explicit MOP, a base object
may configure what operations must be reified for each metaobject, and through
the implicit MOP, the processor may trigger the metaobject execution, upon the
occurrence of an operation.

2.3.4 Partial Reflection

The basic idea of partial reflection is to make use of reflection only when it is needed,
therefore avoiding unnecessary reification. This idea was first motivated in the Work-
shop on Reflection and Metalevel Architectures in Object-Oriented Programming
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[Ibr90]. Among the topics addressed at the workshop were: measuring reflection,
identifying which parts must be reified, efficiency and reflection. Brian Smith pointed
out that most real world problems only require partial causal connections between the
base level and the metalevel. Systems like 3-Lisp, where causal connection is full, are
not the common case. He further noted that research efforts should focus on partial
connections. They concluded that reflection is usually inefficient because compilation
is the embedding of a set of assumptions and reflection is the retracting of some of
these assumptions. Having these retractions everywhere, to achieve full reflection, is
the cause of inefficiency. Therefore, having the proper mechanism in order to have
a fine control of where reflections should take place, would be a great contribution.
This mechanism is partial reflection.

In [Tan04] they clarify what it means for a system to be partially reflective by giving
a characterization of its execution model. Let ξ be the semantic function represent-
ing the compiler or interpreter capable of executing the text of a program P . The
application ξ[[P ]] denotes an execution function that given an initial environment, ex-
ecutes the program producing the final environment. The execution expression for a
standard program is

ξ[[P ]](D) where ξ : Prog → (Env → Env)

where D represents the initial environment. Partial reflection implicitly divides P
in two parts, Pr is the subset of the program to be reflected upon and Pnr is the
complement. Pnr will be executed directly by ξ, while Pr will be interpreted by a
(localized) metalevel program L. The execution expression for Pr will be

ξ[[L]](Pr, D) where ξ : Prog → ((Prog x Env) → Env)

which means that ξ will execute the metaprogram L receiving as a parameter Pr (to
be interpreted by L) and the initial environment. Therefore, the partial reflection
approach can be characterized by two coexistent expressions Enr = ξ[[Pnr]](D) and
Er = ξ[[L]](Pr, D). This expressions shows that partial reflection requires an hybrid
execution model. In the first model traditional execution can be carried out, while
in the second, reflection techniques are required. This double execution model also
illustrates that the optimization techniques used in reflection (like the ones mentioned
[Tan04, p.44]) can also be used with partial reflection to optimize Er.

Additionally, considering |P | as a measure of the size of P (e.g. in terms of structures
and execution points), ρ can be introduced as the degree of reflectivity of a partial
reflective program.

ρ = |Pr|
|P | ρ ∈ [0, 1]
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Intuitively this arbitrary measure reflects the fraction of structures and execution
points reified by a program. As pointed out in [Ibr90], unnecessary use of reflection
should be avoided to reduce performance overhead. Therefore, a crucial task to be
considered in the design of a reflective system is minimizing ρ.

2.4 Reflex

Reflex is a reflective extension for Java, developed by Éric Tanter in his PhD. thesis
[Tan04]. The reflective mechanisms provided by Java are mainly limited to struc-
tural/introspection. Reflex further extends those mechanisms by providing support
for behavioral reflection (introspection/intercession) and a more complete support for
structural reflection (introspection/intercession).

Behavioral reflection is provided through a comprehensive model of partial reflection
(see Section 2.3.4), which allows to specify where and when reflection must occur,
thus avoiding the costs of doing unnecessary reifications. In Reflex, the metalevel is
structured in terms of operations (e.g. message send, object instantiation and Java
cast operator), providing a fine-grained decomposition of the language behavior (see
Section 2.3.3.1). Reflex is designed as an open reflective extension for Java. It is open
in the sense that it does not impose any specific MOP [TNCC03, Tan04]. Indeed,
Reflex allows metalevel architects to define their own MOP, based on the Core Reflex
framework, possibly reusing parts of a standard MOP library. Architects can define
which operations can be reified, and how (including the interface with the metalevel),
by defining an operation support [TNCC03].

In addition, Reflex is an implementation of a language-independent conceptual model
which was defined in [TNCC03] and later refined in [TN04b]. An overview of the con-
ceptual model is presented in Section 2.4.1, which introduces the basic notions, fairly
abstract, behind Reflex. Later in Section 2.4.2 the implementation model defined for
Reflex is presented, refining the abstract notions in the context of Java.

2.4.1 Conceptual model

The conceptual model consists of three parts: behavior, structure, and composition.
This section reviews the first and briefly mentions the second, since this work is mainly
concerned about behavior. The presentation of the composition shall be deferred until
Section 2.4.3.

Reflex approach to partial behavioral reflection relies on a hookset model [TNCC03],
which consists of grouping execution points into composable sets and attaching some
metabehavior to these sets through metalinks. The hookset model has three layers
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(see Figure 2.5 for a graphical illustration):

Hookset Layer is responsible for the selection of the execution points of interest.
It relies on the notion of hook, which is an entity responsible for interception
and reification of an execution point. A hookset is a composable set of hooks,
possibly crosscutting the object decomposition.

Metaobject Layer is composed of metaobjects. The metaobjects are the entities
responsible of performing the metacomputation on the reification points (hook-
sets).

Link Layer is composed of metalinks. The metalinks are the entities responsible
for binding hooksets to metaobjects. From now on we shall refer to metalinks
simply as links or behavioral links. In addition, they are responsible for assuring
the causal connection between the base and meta level. Links are explicit in
the model and highly configurable. They are characterized by attributes like:
scope to specify the scope of metaobject; control to specify how the control is
passed to the metaobject; activation condition to establish when the link must
be activated or deactivated; among others. The most relevant attributes of links
are explained in detail in Section 2.4.2.

The hookset layer is meant to provide the mechanisms to specify hooksets. Those
mechanisms are expected to provide fine-grained selectivity of the execution points
where reification must occur, so as to avoid unnecessary reifications. To this end, spa-
cial and temporal selection should be provided: spacial determines where reification
must occur, among the base level objects, and temporal determines when the reifica-
tion must occur. The hooks in a hookset may be disseminated along the objects of
the base level, therefore providing support for crosscutting metaobjects.

metalevel

base level

metaobject

link

hookset

hook

Figure 2.5: The Hookset Model
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Structural reflection is achieved by providing a class-object model [TN04b], which in
turn provides an intuitive structural description of the program. This is represented
by class objects aggregating member objects (e.g. field, methods) and providing the
possibility to perform intercession, i.e. structural modifications. The model organiza-
tion is similar to the behavioral part, it defines the notion of structural link which binds
a set of classes, so-called classset, to a structural metaobject. Structural metaobjects
can introspect those classes and modify them.

2.4.2 Implementation Model

Reflex is implemented as a portable Java library [TNCC03]. It does not rely on
any runtime support from the Java Virtual Machine (JVM) for implementing the
reflective extensions, it is completely based on standard Java. In order to support
the extensions it relies on bytecode transformation techniques, performed at load-
time. Hooks adopt the form of a base level piece of code responsible of reifying the
operation and jumping to the metalevel. Thus, during class loading, Reflex transforms
Java classes into reflective classes, through the insertion of hooks at the appropriate
places, along with additional infrastructure code required. By infrastructure code we
mean, new fields (e.g. a field holding the reference to the metaobject) and methods
(e.g. a method to initialize such a reference) that are inserted in the classes, in order to
support behavioral reflection. The process of converting normal classes into reflective
classes is explained in grater detail in Section 2.4.3. To make classes reflective, Reflex
uses the Javassist framework [CN03] for load-time structural reflection. Javassist
relies on a specific class loader to perform the load-time transformations.

There are four roles that participate in the development of a reflective application us-
ing Reflex: (1) the metalevel architect is responsible for designing the particular MOP,
based on the requirements of the target application domain, see Section 2.4.2.2; (2)
the metaprogrammer which implements the metaobjects classes, see Section 2.4.2.6;
(3) the base programmer which implements the base application; (4) the assembler
that links both levels by implementing the causal connection, see Section 2.4.2.3 to
Section 2.4.2.5. As it shall be presented in the next sections, all the roles interact
with Reflex though its API.

2.4.2.1 Example

The presentation of Reflex (and later AspectJ) shall be based on a simple example, a
Shape Editor System (Figure 2.6). The system manages three kinds of shapes: Line,
Point and Composite. A Line is represented by two points, one for each extreme.
Composite is a shape container. All the shape classes are subclasses of Shape, which
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is an abstract class with one method, moveXY. This method is meant to perform
a vertical and horizontal translation on the concrete shape, therefore, for Point it
translates the point, for Line it translates both extreme points and for Composite it
translates the overall shape by translating each inner shape.

+moveXY(x:int, y:int)

Line

+moveXY(x:int, y:int)

Shape

+moveXY(x:int, y:int)

Point

+moveXY(x:int, y:int)

Composite
2

*

+addShape(Shape s)
+removeShape(Shape s)

Figure 2.6: Simple shape editor system

In addition, the Composite shapes provide two additional methods: addShape which
receives a Shape and adds it to its collection; removeShape which receives a Shape
and removes it from its collection.

2.4.2.2 MOP Definition

The definition of the MOP is performed by the metalevel architect based on the
requirements of the intended application. The metalevel architect must analyze those
requirements with the purpose of determining the language operations that the MOP
must be capable of dealing with. Once the requirements are clear, he/she can define
the application’s MOP by configuring Reflex to support the required operations.

Adding support for an operation implies specifying: how the language element repre-
sented by the operation is identified in the code, the information that must be reified
upon an operation occurrence and the interface that metaobjects must implement
in order to receive the reification of the operation. Reflex provides a comprehensive
framework for specifying an operation support. The metalevel architect must provide
several elements (i.e. classes and interfaces) in order to define an operation. Among
those elements are:

• Operation classes. Operations are represented at load-time by static operation
classes. An instance of a static operation class represents the static occurrence of
an operation at the base level class definition (e.g. the invocation to a method
occurring at the program text). The architect is responsible of defining the
exact information that must be included in the representation. During hookset
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definition, the information exposed by the operation class should be enough to
decide if a hook should be generated for it. Similarly, dynamic operation classes
represent language operations during runtime, including state information of the
particular operation occurrence (e.g. the this reference). The static operation
class is mandatory, since it is crucial for the hookset selection process, while the
dynamic operation class is optional.

• Metaobject Interfaces They are Java interfaces that specify what data is reified
and how this data must be passed at runtime to the metaobjects, upon an
operation occurrence. The metaobjects must implement the interfaces of the
operations that they expect to process9.

• Hook Installers. They are bytecode transformation entities responsible of pars-
ing a class definition to find occurrences of a given operation class, and gener-
ating the appropriate hooks to install, if any.

For a detailed description of these elements and the implementation framework see
[TNCC03, Tan04].

The specification of the particular MOP is done through the OperationAPI. The
specification may include operations defined by the metalevel architect or from a
comprehensive set of predefined Java operations provided by Reflex. From the point
of view of the MOP classification presented in Section 2.3.3.1, such an API is part of
the explicit MOP provided by Reflex. It allows to configure the implicit MOP, which
is the one that upon the occurrence of a specified operation performs its reification
(if it is selected by any hookset) and jumps to the metalevel. Typically, the MOP
specification is provided in a special base level class, called the configuration class,
along with the assembler binding information.

2.4.2.3 Hookset definition

Hooksets are responsible for performing spacial selection. They are meant to perform
the selection during load-time, thus their decision is limited to the static properties
of the operations. Hooksets are intentionally defined based on a selection predicate,
represented by a class selector and an operation selector. The class selector deter-
mines which classes may contain operations of interest, later the operation selector
determines which operations of those classes must be hooked (if any). Selectors are
implemented as classes realizing some particular interface. The Listing 2.2 illustrates
the implementation of a class and an operation selector. The former selects a class
using its name, while the latter does the same with the operation name.

9The interface of the metalevel can also be defined by the assembler at link definition time. This
shall be explained in detail in Section 2.4.2.5.
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public class NameCS implements ClassSelector{

private String itsName;

public NameCS(String aName) {itsName = aName ;}

public boolean accept(RClass aClass) {

return aClass.getName (). equals(itsName );

}

}

public class NameOS implements OperationSelector{

private String itsName;

public NameOS(String aName) {itsName = aName ;}

public boolean accept(Operation aOp , RClass aClass) {

return aOp.getName (). equals(itsName );

}

}

Listing 2.2: Reflex Selector Definition Example <Java Code>

There are two types of hooksets, namely primitive and composite. The first is an
operation-specific set defined by a triple: operation, class selector, operation selec-
tor. The primitive hooksets that are related to the same operation can be composed
through standard set operators (union, intersection and difference). The second is
the union of several hookset, possibly related to different operations. Listing 2.3 illus-
trates the definition of two primitive hookset that select all invocations to a method
named moveXY inside Composite and Line respectively, and a composite hookset as
the union of both.

PrimitiveHookset compHS =

new PrimitiveHookset(MsgSend.class ,

new NameCS("Composite"), new NameOS("moveXY"));

PrimitiveHookset lineHS =

new PrimitiveHookset(MsgSend.class ,

new NameCS("Line"), new NameOS("moveXY"));

CompositeHookset bothHS = new CompositeHookset ();

bothHS.add(compHS );

bothHS.add(lineHS );

Listing 2.3: Reflex Hookset Definition Example <Java Code>

The possibility of composing hooksets through the set operators, makes hookset def-
initions a powerful reuse mechanism. In the same way, selectors allow the definition
of general purpose selection predicates, like the ones in Listing 2.2, thus offering the
possibility of reusing them.
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2.4.2.4 Link definition

Links are specified during load-time by BLink10 objects, and make it possible to
specify and characterize (by their attributes) the association between hooksets and
metaobjects. Among the most relevant attributes are:

• control specify how the control is passed to the metaobject, it can be passed
BEFORE or AFTER the operation gets executed, or AROUND the operation execution
(i.e. replacing its execution). In addition, control can also be passed both before
and after the operation execution, using control BEFORE AFTER.

• scope determines whether, for the associated hookset, there is one single metaob-
ject controlling each and every hook (GLOBAL scope), or if each class involved has
a particular metaobject handling hooks occurring within its instances (CLASS
scope), or if each object has a dedicated metaobject (OBJECT scope)

• activation is a dynamically-evaluated condition to determine if the link is active
or not. It is used to specify temporal selection.

• mintypes makes it possible to impose type restrictions on the metaobjects
associated to the link.

Link definition also comprises the specification of how metaobjects must be instan-
tiated or obtained. There are basically two means of obtaining metaobjects: either
by instantiating a metaobject class or by querying a metaobject factory, which is a
class exposing a method that once invoked, must obtain the metaobject instance (e.g.
creating it or obtaining it elsewhere) and return it. Metaobject factories offer the
possibility to have a fine-control of how the metaobjects are obtained and initialized,
making it a very convenient way to set up an instance-based crosscutting metaobject.
The scope and initialization (it supports eager and lazy initialization) link attributes
also affect how and when metaobjects are obtained, but we shall not enter into fur-
ther details about them, the interested reader may refer to [Tan04] for a complete
explanation.

Continuing with the example, Listing 2.4 illustrates how a BLink object can be created
and defined through the Reflex API. The defined link associates the previously defined
hookset bothHS with a logging metaobject, obtained by instantiating the class LogMO.

The links are created and defined through the LinkAPI (i.e. API.links()). Note
that the link theCompLink is defined using AROUND control, therefore it will replace
the operation occurrence execution.

10The ’B’ stands for behavioral links, in contrast to structural links also present in the model.
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BLink theCompLink =

API.links (). addBLink(bothHS , new MODefinition.MOClass("LogMO"));

theCompLink.setControl(Control.AROUND );

theCompLink.setControl(Scope.GLOBAL );

Listing 2.4: Reflex Link Definition Example <Java Code>

The support for link activation is optional. The activation attribute can be disabled,
meaning that the link can not be activated/deactivated (i.e. it is always active),
or it can be enabled, in which case an activation condition must be specified. The
condition is encapsulated in an object exposing a method to evaluate the condition.
The method may receive operation occurrence reified information, static or dynamic,
as its parameters (specified through call descriptors, see Section 2.4.2.5) and must
return a boolean value. For a detailed description of link activation see [Tan04]. An
interesting characteristic of the activation conditions is that they can be changed
during runtime, through RTLink objects. An RTLink object is a runtime representa-
tion of a link, which provides the means to access/change metaobjects and activation
conditions. The RTLink objects can be obtained through the LinkAPI.

Note that the LinkAPI is also part of the Reflex explicit MOP. As it is mentioned in
Section 2.3.3.1, it provides the means for base objects (and metaobjects) to obtain a
reference to a metaobject in order to communicate with it.

2.4.2.5 Hookset Restrictions and MOP Descriptors

Hookset restrictions can be attached to a hookset in order to further refine its selection
by setting restrictions on the operation’s dynamic occurrence, thus complementing
the hookset, which only base its decisions on the static occurrence. MOP descriptors
describe, at the link level (as opposed to the operation level, see Section 2.4.2.2),
which information has to be reified, and how, upon occurrences of a given operation.
In addition, MOP descriptors allow to specify how the invocation to the metalevel
must be done as to pass the reified information. Hookset restrictions (from now on
simply restrictions) and MOP descriptors were proposed as extensions to the Reflex
model in [RTN04]. The motivation behind those extensions relies on achieving a
efficient and clear support of the AspectJ dynamic crosscutting mechanisms as we
will see in Chapter 5. They were further refined in [Tan04].

MOP descriptors involve two notions: Parameters as objects describing how certain
information is reified upon operation occurrence and Call Descriptor as a general
purpose mechanism describing how to perform a method invocation.
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Parameter objects implement a dedicated interface, Parameter:

interface Parameter {

public String getCode(Operation aOp);

}

The role of a parameter object is to generate the source code that, when executed,
results in the reference to the desired information. Standard parameters are provided,
such as CONTEXT object, which refers to the currently executing object. Operation-
specific parameters are provided by hook installers via Parameter Pools, e.g. MsgSend
operation provides parameters for accessing the target object, or a parameter (at a
given index) of the invocation. Finally, the user may define custom parameters by
providing the source code using the extended Java language supported by Javassist
[CN03].

Call descriptors consist of three elements: the name of the method to invoke, the name
of the type declaring the method and the parameters (through parameter objects)
to be passed in the invocation. Based on this description, Reflex can generate the
appropriate hook code to invoke metaobjects. A MOP descriptor basically associates
call descriptors to the various controls (BEFORE, AFTER, AROUND), specified either at
link or hookset level, thus allowing a fine-grained specification of how reification must
be done.

Listing 2.5 illustrates the specification of a MOP descriptor for the logging example.
Suppose that the LogMO class has the method named logit that expects to receive
the target Shape as a parameter.

MsgSendPool thePool =

API.operations (). getParameterPool(MsgSend.class );

theCompLink.setMOCall(Control.AROUND ,

new CallDescriptor("LogMO", "logit",

new Parameter []{ thePool.getTargetObject ()}));

Listing 2.5: Reflex MOP Descriptor Definition Example <Java Code>

In the example we attach a MOP descriptor at the link level, associating the only
control specified for the link (i.e. AROUND) to a call descriptor invoking logit and
passing the target object as a parameter11. Note that the parameter object repre-
senting the target object is obtained through the MsgSend parameter pool, accessible
from the OperationAPI.

11Actually, the parameter object obtained is of type Object, while the logit method expects an
object of type Shape. Reflex provides special parameters that cast the object to the appropriate
type, but we do not include this with the purpose of simplifying the presentation.
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Prior to MOP descriptors, the interface to the metalevel was defined by the metalevel
architect during MOP definition. This definition was rather general with not possi-
bility to be customized based on each metaobject needs. MOP descriptors bring this
definition closer to the metaobjects, allowing the assembler to specify the interfaces
of each metaobject and fine-tune which information must be reified. In addition,
metaobjects now do not have to realize standard interfaces, which blur implementa-
tion.

A hookset restriction is a dynamically-evaluated condition that must be true in order
for a hook to trigger reification and metaobject invocation. Such a restriction is
hardwired in the hook code at generation time to improve performance. Hookset
restrictions are specified when defining a link or hookset. In case that the hookset
bound to a given link is compound, it is possible to set a restriction that applies to
all or only some of its sub-hooksets.

A restriction is specified as a static method and hence can be computed based on
globally-available information (i.e., static fields or methods), as well as parameters
if needed. Parameters are specified when declaring the restriction using the call
descriptor mechanism. The list of parameters must be compatible with the signature
of the restriction method.

The code in Listing 2.6 continues with the example by restricting the hookset compHS
to only select the shapes that are instances of Point. Note that this kind of selection
can not be achieved with the hookset, because the type of the shapes grouped by a
Composite shape can not be known statically. Thus, we set a restriction that checks
that the target object is an instance of class Point. Also note that associating a
similar restriction to the lineHS is not required, since we know in advance that it
always calls moveXY over Point shapes.

// Method declared in class Restrictions

public static boolean onlyPoint(Object o){

return (o instanceof Point);

}

// Restriction declaration , included in the configuration class

compHS.addRestriction("Restrictions", "onlyPoint",

new Parameter []{ thePool.getTargetObject ()});

Listing 2.6: Reflex Restriction Definition Example <Java Code>

The restriction is associated to the hookset and is defined by giving the name of the
class and the method that defines its logic, along with the parameters it receives
(taken from the parameter pool)12.

12The call descriptor mechanism is also used to specify the invocations to activation conditions,
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2.4.2.6 Metaobject definition

Metaobject classes are free to realize the interfaces defined by the metalevel architect
(see Section 2.4.2.2) or define their own interface at its convenience. The second
alternative is the recommended one, for being more flexible and usually more efficient
than the other one, because only the required information is reified.

Reflex provides a marker interface for metaobjects, called BMetaobject, which is
the only requirement for the implementation of metaobjects. The metacomputation
to be performed by the metaobject is implemented as a method of the class. The
parameters of the method represent the reified information it expects, which must be
compatible with the parameters specified in the corresponding MOP descriptor. The
return type of the method must be void if the metaobject is associated with control
BEFORE or AFTER, and Object for the AROUND control. The methods that replace an
operation occurrence must return a value compatible with the value returned by the
replaced occurrence. If the value is a primitive Java value, it must be boxed into an
object; later Reflex takes care of unboxing the value at hook code level.

Reflex provides a mechanism, so-called proceed13, that allows AROUND metaobjects
to execute the operation occurrence that triggers the metacomputation. Metaobjects
that make use of this mechanism must extend class ProceedMO, inheriting the method
proceed that allows to continue with the execution of the operation. The value
returned by this method is the one returned by the operation occurrence execution.
In addition, the mechanism allows to modify the occurrence (e.g. by changing its
arguments or the target object) before proceeding. To this end, the class ProceedMO
provides the methods to perform such a modifications. For instance, the method
setArg can be used to change the an argument before proceeding.

Continuing with the example, the code in the Listing 2.7 illustrates how the LogMO
is implemented, making use of the proceed mechanism. The logging metaobject logs
the calls to moveXY by printing a message before and after proceeding with their
execution.

Proceed is deeply related to composition. Actually, one of its most interesting features
is that upon proceeding, it may not only execute the replaced operation occurrence,
but it may execute nested metaobjects that reify the same operation occurrence. This
shall be explained in the next section.

see [Tan04]
13The mechanism is inspired by the AspectJ proceed, see Section 2.6.
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public class LogMO extends ProceedMO implements BMetaobject {

public Object logit(Shape aShape ){

System.out.println("Before " + aShape );

Object r = proceed ();

System.out.println("After " + aShape );

return r;

}

}

Listing 2.7: Reflex Metaobject Implementation Example <Java Code>

2.4.3 Composition

When several BLinks happen to affect the same operation occurrence, they interact
[TN04a]. Usually, those interactions can not be resolved automatically, because they
depend on the application semantics. However, interactions can be detected auto-
matically. In Reflex, interactions are detected during load-time, in the B-Link setup
(BLS) phase. See Figure 2.7 for a graphical illustration. Each class being loaded goes
through that phase14. An initial selection step determines which are the BLinks that
potentially apply over the class. Then, selection goes at operation level, determin-
ing for each operation occurrence inside the class, which are the BLinks that apply.
If more that one BLink applies simultaneously over an operation occurrence, those
BLinks go through the Detection-Resolution-Composition (DRC) step. The DRC
step either is able to resolve the interaction and appropriately compose the BLinks,
or inform the user that an interaction has been detected and not resolved. Reflex
provides two mechanisms, interaction selectors and ordering and nesting, in order to
specify the interaction semantics. Once the interactions are resolved, the hooks are
generated and setup into the class code. If there is at least one BLink that applies,
the result of the BLS phase is the reflective class otherwise the class stays intact.

The interaction selectors mechanism allows the user to specify if a link must apply
in the presence of other links. The interaction selectors are attached to links. The
interaction selector of a link is queried whenever the link is involved in an interaction,
in order to determine whether it actually applies or not, which depends on the other
links present in the interaction. An interaction selector is implemented by realizing an
interface containing a single method, boolean accept(LinkInteraction li), which
receives a collection with the links that are interacting, and must return False when
the link must not apply or True otherwise.

In addition to the interaction selectors, the users may specify the ordering and nest-
ing relations among links. Reflex provides two composition operators, seq and wrap,

14Actually, each class before going into the BLS phase, goes through the SLink application phase,
which sets up structural links. For more information see [Tan04].
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select(c)
for each op,

for each p

generate hook
select(p) DRC setupB-Links

composed

B-Links

B-Links

c loaded

load (c)

c : class being loaded op: operation concerned by links
p : occurrence of op within c DRC: Detection-Resolution-Composition

Figure 2.7: B-Link Setup Phase

dealing with sequencing and wrapping, that the user may use to specify the compo-
sition rules. The rule seq(l1, l2) means that l1 must be applied before l2. The
rule wrap(l1, l2) means that l2 must be applied within l1. These rules are defined
in terms of primitive operators, ord and nest, not dealing with links but with link
elements: a link element is a pair (link, control), where control is a control attribute
value. Thus, in general, a link l1 has three link elements: be1 is the link element
for BEFORE control, ar1 for the AROUND control and af1 for the AFTER control. The
ord operator expresses sequencing between link elements of the same control. The
nest operator expresses nesting between an AROUND link element and other link ele-
ments. For instance, ord(be1, be2) express that be1 must be applied before be2 and
nest(ar1, af2) means that the application of the link element af2 is nested within
ar1. Using this primitive operators, the rules are defined as:

seq(l1, l2) = {ord(be1, be2), ord(ar1, ar2), ord(af1, af2)}

wrap(l1, l2) = {ord(be1, be2), ord(af2, af1),

nest(ar1, be2), nest(ar1, ar2), nest(ar1, af2)}

Note that the rules specify all the possible relations between the link elements of two
links. Once the rules are applied over two concrete links, only the appropriate ord
and nest relations apply. In order to illustrate this and the use of the rules, Figure
2.8 shows two examples of using both rules to specify the composition between two
links. The result of the application of the rules to the links is illustrated graphically
as a tree. The black circle represents the root of the tree.

• The first example composes one link with AROUND control and another with
BEFORE AFTER, thus the only valid link elements are: ar1, be2 and af2. The
result of composing them with seq is that the reifications are performed in the
natural order: first be2, then ar1 and finally af2. The result of using the wrap
rule is that the link elements of l2 are nested within the ar1.



2.5. MOTIVATION FOR AN ASPECT-ORIENTED KERNEL 43

• The second example composes two links with BEFORE AFTER control, thus the
only valid link elements are: be1, af1, be2, af2. The result of using the seq
operator is that the link elements of l1 always are applied (i.e. the operation is
reified) before the elements of l2, respecting the control. The result of using the
wrap operator is that the link elements of the second link are enclosed within
the elements of the first.

l : AROUND1

be(L )1

af(L )1

be(L )2

af(L )2

Wrap(l ,l )1 2Seq(l ,l )1 2

be(L )2

ar(L )1

af(L )2

be(L )2

ar(L )1

af(L )2

Wrap(l ,l )1 2Seq(l ,l )1 2

be(L )1

af(L )2

be(L )2

af(L )1

l : BEFORE_AFTER2 l : BEFORE_AFTER1 l : BEFORE_AFTER2

Figure 2.8: Composition operators

Finally, note that in the first example, when the links are composed with the wrap
operator, link l2 gets executed only if the metaobject associated to link l1 invokes
proceed.

2.5 Motivation for an Aspect-Oriented Kernel

In [TN04a, Tan04] the authors have made various observations about the current
state of the art of aspect-oriented technologies that suggest the necessity for the
development of an aspect-oriented kernel. Among those observations are:

Combining several aspect-oriented proposals Since the advent of AOP [KLM+97],
numerous AOLs have been proposed, along with different models for achieving a
more effective modularization. The space of AOP is under exploration, and each
proposal is a fixed point or a restricted region in the space. Each proposal differ-
entiates from the others in terms of its specification language, its genericity, its
binding time, its expressiveness, etc. Since the tools available for each proposal
are not meant to be compatible with each other, the programmer facing the de-
velopment of a system, is usually forced to choose the proposal that best suits
his needs, even though the best option may be combining two or more of those
proposals. The tools available are implemented with a close-world assumption:
each tool eventually affects the base code directly, thus the combination of those
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tools, without appropriate coordination, may have unexpected results. The key
idea is that providing the most adequate conceptual model and level of gener-
icity for a given application domain actually depends on the specific situation:
there is no definitive, omnipotent proposal that best suits all needs. Therefore,
combining several aspect-oriented proposals seems promising15, which in turn
requires coordinating them. Having an aspect-oriented kernel, over which each
different proposal could be implemented and coordinated, offers an attractive
solution for this issue.

Aspect Interaction Aspects interaction further complicates the previous observa-
tion, since it occurs when one or more aspects (possibly implemented with
different tools) are affecting the same program point. Providing the adequate
semantics for performing the composition may be very difficult (if not impos-
sible) by using heterogeneous tools. Even worst, since the tools perform the
composition silently and blindly, the user may never become aware that an in-
teraction has occurred and how it was resolved, thus introducing bugs which are
hard to track. Implementing those approaches on top of a kernel that provides
appropriate support for the detection an resolution of aspect interaction would
offer a safer and correct way of resolving the interactions.

Easy Tool Implementation Each new proposal usually has to ”reinvent the wheel”,
Since the program transformation work done by each AOP proposal is very sim-
ilar, and can be factored out in a kernel for AOP.

An AOP kernel enables a wide range of approaches, from well-established to experi-
mental, to coexist and collaborate without breaking each other. Such a kernel must
provide core semantics, including structural and behavioral models, along with aspect
interaction detection and resolution, generic enough to provide semantics for those
approaches. In addition, the AOP kernel allows the designers of AOLs to experiment
more comfortably and rapidly by using the kernel as a back-end, focusing on the best
way for programmers to express aspects, rather that handling low level details.

As presented in [KLLH03], AOP is in essence a computational reflection mechanism,
where the dynamic-crosscutting mechanism reflects a program’s behavior: a join point
provides the ability to introspect (see Section 2.3.2.1); advices provide the intercession
(see Section 2.3.2.1) capability, meanwhile the static-crosscutting mechanism reflects
the program’s structure. This comes from the fact that, in the end, AOP provides
high-level constructions to specify semantic alterations of applications written in the
base language. A model that has some convincing history in describing semantic al-
terations is the model for structural and behavioral reflection. Therefore, it seems

15For instance, in [Ras01, SLS03] they experiment with the support of several aspect-oriented
proposals, obtaining positive results.
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to be a promising model for the core semantics of an AOP kernel. Furthermore, the
techniques for partial reflection (see Section 2.3.4), promise reducing the performance
issues typically associated to reflection, hence achieving an efficient kernel implemen-
tation.

2.5.1 Reflex an AOP Kernel for Java

In [TN04a] the authors have presented a detailed description of the requirements for an
AOP Kernel and they put forward PBR as an appropriate low-level framework for the
behavioral model of such a kernel. Also, they have claimed Reflex as an AOP kernel
for the Java language, taking care of behavior, structure and aspect composition. The
hooksets model and the class-object model take care of the behavioral and structural
part, respectively (see Section 2.4.1). The generic layer for Detection-Resolution-
Composition of link interactions provides a powerful framework for aspect composition
(see Section 2.4.3). They further note that Reflex AOP kernel is centered in the
study of AOP Kernels for a unique base language: they do not aim at multi-language
support, or even more ambitiously at any software representation like IBM’s CME
[HOT+02b, CME02], which attempts to address similarly UML diagrams for instance.

Such a complex artifact as an AOP kernel, into which different AO techniques can
be translated, demands a formal understanding of its model’s constructions. Further-
more, it demands having a reduced environment where theoretical case studies on the
support for those AO techniques can be carried out. Previous works in the AOP area
[asb, MKD02, MKD03b, WKD04, DFS02, DT04] have brought to the fore the need
for satisfying these two demands in the context of AO techniques. For instance, the
ASB project [asb, MKD02] (briefly presented in Section 2.2.2.1) has provided concise
models of AOP for theoretical studies and a tool for prototyping alternative AOP
semantics. In order to avoid difficulties to develop formal semantics directly from
complex artifacts like AspectJ, the ASB provides a reduced environment consisting
of a suite of interpreters of simplified AOP languages that allows to characterize the
existing AOP approaches.

The motivation of the present work, regarding the construction of the Reflex Sandbox,
relies on the following two observations. The first is that the only available description
of the Reflex model is the informal semantics presented in [TNCC03, TN04a, Tan04]
and its implementation in Java [RFX]. Therefore, a more abstract and precise de-
scription of the model semantics is need. Such a semantics would enable, for instance
to carry out experiments on the support for AO techniques where the required trans-
formations can be formally studied. The second observation is that the only available
environment to experiment on the support of different AO techniques is Java, where
its inherent complexity makes it harder to implement the required translations and
often deviates attention from the central aspects of them. Therefore, having a reduced
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environment with an executable Reflex model, where the translation strategies to that
model can be rapidly prototyped and tested, would ease the process of studying how
an AO technique can be supported by the Reflex model.

Haskell is the programming language used to model the Reflex Sandbox. It has been
chosen as the modeling language because it has a precise and clear semantics, and it
provides high-level programming language constructs, suitable for rapid prototyping.
Therefore, a formal development of the Reflex model in Haskell makes it possible both
an abstract and precise semantics for the model, and an executable model. The high-
level constructs provided by Haskell also make it possible to prototype translators
form an AO technique to the executable Reflex mode. There are several works in the
AOP community that have used Haskell as the modeling language [DMS01, DFS02,
DS02, DT04]. The Haskell community also offers a set of techniques that simplify the
process of building formal proofs.

2.6 AspectJ

Among the great variety of AOP proposals, AspectJ [KHH+01] is a reference: it is
a simple, well-designed and production-quality extension to the Java programming
language, which allows a modular implementation of crosscutting concerns. AspectJ
is a GPAL (see Section 2.2.3). It extends the Java language with a new unit of
modularity, the aspect. In AspectJ, the core concerns of a system are implemented
using Java, the base-level language, while the crosscutting concerns are implemented
as aspects. The core concerns and the crosscutting ones are statically woven (at the
byte-code level) by the AspectJ Compiler, producing class files that conform to the
Java byte-code specification [HH04].

AspectJ supports two kinds of crosscutting, namely dynamic and static. Dynamic
crosscutting makes it possible to define additional behavior to run at certain well-
defined points in the execution of the program. Static crosscutting makes it possible
to modify the static structure of a program (e.g., adding new methods, implementing
new interfaces, modifying the class hierarchy). Since this work is concerned about the
behavioral part of AspectJ, we restrict the presentation to the dynamic crosscutting
mechanism.

2.6.1 Dynamic crosscutting Elements

AspectJ follows the Pointcut and Advice join point model for AOP [MKD03a]. To
understand it, we need to introduce the AspectJ’s notion of join point and two crucial
elements for the dynamic crosscutting definition: pointcuts and advices.
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In AspectJ, a joint point represents a well-defined point in the execution of a program,
where program behavior can be extended with a crosscutting behavior. AspectJ
supports different kinds of join points, which correspond to different operations of
the underlying language, AspectJ: method-call, method-execution, field-get, advice-
execution, among others.

The AspectJ language provides the means to group join points of interest into a point-
cut, in order to specify the places where an aspect actually affects a base application16.
A pointcut definition may also specify the context information that should be passed
to the aspect (e.g., the arguments of the current join point). Pointcuts are specified
using several primitive pointcut designators (PCDs) which can be combined using the
standard logic operators. For instance, based on the example described in Section
2.4.2.1, the following AspectJ code:

pointcut move(Shape shape , int x, int y):

call(* *. moveXY (..)) && target(shape) && args(x,y);

Listing 2.8: Pointcut Definition Example <AspectJ Code>

defines a pointcut named move that combines three primitive PCDs in order to select
all calls to method moveXY made over an object of type Shape, and exposes both
method parameters as context information.

Finally, the crosscutting behavior that should be applied upon occurrences of join
points matched by a given pointcut definition is called an advice. An advice is a
method-like construct that defines the additional behavior to execute at certain join
points. When defining an advice, one must explicitly bind it to a pointcut. There are
five kinds of advice, which differentiate the moment at which the advice is executed
with respect to the join point execution: before (before the join point execution),
after (after the join point execution), after throwing (after the join point execution,
returning with an exception), after returning (after the join point execution, returning
normally), around (replace the join point execution). An around advice can include
a special proceed statement to trigger the execution of the captured join point, that
is to say, the join point being replaced by the advice. Advices may have parameters,
in which case they must be bound to the pointcut context exposure parameters. For
instance, the following AspectJ advice:

simply ensures that if a shape has been locked, it does not move. For the moment,
assume that itsLockedShapes is a collection that contains all the locked shapes and
is accessible form the advice, in Section 2.6.2 this shall be clarified. The proceed
statement takes as its arguments the arguments of the underlying around advice, and

16Actually, AspectJ supports aspects on aspects, which allows an aspect to affect other aspects in
the same way it does to the base application.
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void around(Shape aShape , int x,int y): move(aShape ,x,y){

if (itsLockedShapes.contains(aShape )){

proceed(aShape ,0 ,0);

}else{

proceed(aShape ,x,y);

}

}

Listing 2.9: Advice Definition Example <AspectJ Code>

returns whatever the around advice is declared to return. The values passed to the
proceed statement can differ from those received by the advice, in that case the new
values are replaced in the context of the captured join point before executing it. For
instance, if the target shape has been locked, the around advice would forbid its move-
ment by passing two zeros to the proceed statement. Therefore, the moveXY method
would be executed with both x and y as zero, resulting in a null movement. Note
that another implementation strategy may avoid performing such a null execution of
moveXY method by not calling proceed when the shape is locked (i.e. simply return-
ing). If the proceed statement is not invoked from the underlying around advice, the
captured join point never gets executed.

2.6.2 The Aspect Unit

The aspect is the central unit of AspectJ, in the same way that the class is the central
unit in Java. An aspect contains both dynamic (i.e. pointcuts and advices definitions)
and static crosscutting elements, which together describe the implementation of a
crosscutting concern. In addition to the AspectJ elements, aspects can contain fields,
methods, and nested class members, just like a normal Java class. Also, an aspect
may implement an interface or extend a standard Java class. For instance, we can
merge the code in Listings 2.8 and 2.9 together in an aspect as shown in Listing 2.10.

This simple aspect definition encapsulates the crosscutting behavior of ensuring that
every shape that has been locked, is not moved. Note that the aspect implements
the ILockShape interface, which encloses the definition of the methods lockShape
and unlockShape. These two methods can be used to lock or unlock a shape, respec-
tively. Every aspect in AspectJ provides an implicit static method, named aspectOf,
that can be used to get the aspect instance. Therefore, in the example a shape can
be locked by doing: ShapeLocker.aspectOf().lockShape(shape). Note that the
responsibility of specifying which shapes must be locked is left outside the aspect.

By default, only one instance of an aspect exists in a virtual machine (VM), much like
the singleton class. Those type of aspects are called singleton aspects. In addition,
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aspect ShapeLocker implements ILockShape {

Collection itsLockedShapes = new HashSet ();

void lockShape(Shape aShape ){ itsLockedShapes.add(aShape ); }

void unlockShape(Shape aShape ){ itsLockedShapes.remove(aShape ); }

pointcut move(Shape shape , int x, int y):

call(* *. moveXY (..)) && target(shape) && args(x,y);

void around(Shape aShape , int x,int y): move(aShape ,x,y){

if (itsLockedShapes.contains(aShape )){

proceed(aShape ,0 ,0);

}else{

proceed(aShape ,x,y);

}

}

}

Listing 2.10: Aspect Definition Example <AspectJ Code>

AspectJ supports per-object aspects and per-control-flow aspects. The former allow to
associate an aspect instance to each object of a particular group of objects of interest.
The latter are somehow an extension of the per-object, where a separate instance
is kept for each thread of execution encompassing a given join point. This work is
concerned about singleton aspects, the interested reader may refer to [Lad03] for a
detailed description of the per-object and per-control-flow aspects.

The aspect unit may include a special construct–declare precedence–to specify
aspect precedence. Such a precedence declaration is used by AspectJ to resolve aspect
interactions (see Section 2.2.2.1). The declare precedence construct is followed
by a list of aspect names. The aspects on the left of the list dominate the ones
on the right. For instance, consider two aspects, A and B. Both aspects declare a
before advice defined over pointcut P. A declaration like declare precedence: A,
B; would specify that the A’s advice must be executed before the B’s advice, because
A has higher precedence. See [Lad03] for a complete description the semantics of the
declare precedence construct.

2.6.3 Pointcut Designator

The PCDs in AspectJ are either user-defined or primitive. The user-defined PCDs
are those that result from a pointcut definition17. For instance, the pointcut defined
in Listing 2.8 results in a user-defined PCD, named move, which can be reused in the

17Note that the terms pointcut and pointcut designator are often used interchangeably.
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definition of other pointcuts. The primitive PCDs are those provided by the AspectJ
language.

The primitive PCDs can be divided into the following categories18:

• Kinded PCDs are those that capture a specific kind of join point. For instance,
call(MethodSignature) captures method-call join points, aexecution() cap-
tures the advice-execution join points, get(FieldSignature) captures field-get
join points, among others. The signatures embedded in the PCDs definitions
allow to further restrict join points of a certain kind by specifying restrictions
over its signature. AspectJ offers wildcards in signature restrictions for con-
venience. For example, call(* *.moveXY(..)) (used in Listing 2.8) restricts
joinpoints of kind method-call to calls to a method named moveXY, with an arbi-
trary number of arguments (through the .. wildcard), having any return type
(specified by the first * wildcard), and being defined over any class (specified
by the second * wildcard).

• Control-flow based PCDs are those that capture join points based on the control
flow of join points captured by another pointcut. There are two control-flow
PCDs. The first is cflow(Pointcut), and it captures all the join points in the
control flow of the specified pointcut, including the join points matching the
pointcut itself. The second is cflowbelow(Pointcut), and it excludes the join
points in the specified pointcut. For instance, consider the following pointcut
definition

pointcut move (): execution(void *. moveXY (..))

pointcut moveControlledPoint ():

move() && within(Point) && cflowbelow(move ())

The pointcut moveControlledPoint selects those executions of the method
moveXY of the class Point, and that are in the control flow of other moveXY
method execution. In other words, it selects the Points that are moved as
a result of moving a Line or Composite shape. Note that the cflowbelow is
used in order to exclude the execution of Point.moveXY from the control flow
restriction.

• Lexical-structure based PCDs are those that capture join points occurring inside
a lexical scope of specified classes, aspects, and methods. There are two PCDs
in this category: within and withincode. The former is used to capture join
points within the body of a specified class or aspect. The latter is used to capture
all the join points inside the body of an specified constructor or method.

18A more exhaustive presentation of pointcut designators can be found on the AspectJ web-
site [aspb].
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• Context Exposure PCDs are those that allow to expose some value in the context
of the join point by binding it to a pointcut parameter. There are three PCDs
in this category: this to bind the current executing object, target to bind the
target object and args to bind the arguments of the join point. As shown in
Listing 2.8, the binding is done by name matching, that is to say, target(shape)
binds the pointcut parameter shape to the target object and args(x,y) binds
both x and y to the arguments of the join point. As a matter of fact, binding
a context value to a parameter also implies restrictions to be imposed. For
instance, in the previous example the target object must be an instance of class
Shape (because shape is declared as being of type Shape in the pointcut header)
and the join point must have two int arguments.

• Conditional check is a PCD that captures join points based on some arbitrary
conditional check. It is specified as if(BooleanExpression). For instance,
if(System.currentTimeMillis() > triggerTime) captures all the join points
occurring after the current time has crossed the triggerTime value.

2.6.3.1 Pointcut Designators and Weaving

In the realm of the weaving process both join points and PCDs can be further de-
scribed. A join point is an execution point thus it has a static correspondent at the
code level, called the join point shadow [MKD02]. A join point may further be dis-
criminated by a dynamically-evaluated condition, called the join point residue [HH04],
in order to determine whether a runtime occurrence of the join point shadow actually
is an expected join point.

The PCDs can be characterized based on the possibility of matching them statically
or dynamically. Statically matched PCDs are those that can be resolved completely
by looking at the program text. For instance, kinded PCDs match only certain kinds
of join points (possibly imposing some signature restriction), which can be matched
against each join point shadow in the code being processed. Also, lexical-structure
based PCDs can be matched against the shadows, since they impose source-code
location restrictions. Dynamically matched PCDs are those that require runtime in-
formation to determine whether they match a candidate join point or not. Such checks
are implemented as residues. AspectJ supports three types of residues [HH04]: con-
trol flow residues for expressing control-flow based crosscutting, instanceOf residues
to do runtime type checking, and if residues to evaluate arbitrary (though static)
boolean expressions. The instanceOf residues are generated as a consequence of the
this, target, and args PCDs, which define matching based on the dynamic type of
the values exposed at a join point.
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2.7 Modeling AspectJ using the Reflex AOP Kernel

There are two main reasons that motivate the present work for developing a case
study on the support of AspectJ dynamic crosscutting mechanism semantics on top
of the Reflex AOP Kernel. On the one hand, AspectJ provides an expressive lan-
guage which includes features like control-flow based join point matching, context
exposure, support for aspects on aspects, aspect precedence specification, join point
reflective information, nested advices (through around advices). Therefore, providing
semantics to AspectJ would put to the test the expressiveness of the Reflex model.
On the other hand, the AspectJ Compiler [aspb] delivers an efficient language im-
plementation. Therefore, the comparison on the performance of programs compiled
using the AspectJ Compiler and programs compiled into Reflex would put to the test
the promise of the PBR model of offering an efficient way to do reflection. These
two reasons, in addition to the fact that AspectJ is a reference amongst the existing
AOLs, make it clear that supporting it represents a big step in the validation of Reflex
as an AOP Kernel.



Chapter 3

Modeling the Kernel Machine

This chapter describes the conception, design and implementation of the heart of
the Reflex Sandbox, the Kernel machine. This machine is used to give an opera-
tional semantics to the Kernel language, which is a reflective extension of a simple
object-oriented language called BASE. The Kernel language in turn embeds the core
constructs of Reflex’s partial behavioral reflection (PBR) model. The Kernel language
and the corresponding machine have been formally written down in Haskell. This,
we claim, has made it possible to express the semantics of the PBR model in a more
abstract and simple way that it is achieved by the informal semantics described in
[TNCC03, Tan04] and the current implementation in Java [RFX]. The Kernel ma-
chine, in addition, can be used to develop theoretical case studies concerning how the
Reflex AOP kernel may support different AOP approaches.

This chapter is organized as follows. Section 3.1 presents the Kernel machine con-
ception and the general aspects of its design. Section 3.2 presents BASE, the base
level language of the Kernel machine, and the development of its corresponding ex-
ecution machine. Finally, Section 3.3 presents the design of the Kernel language,
which extends BASE with the constructions of the PBR model. The definition of the
Kernel machine is also presented. In addition, this section provides a comprehensive
conceptual description of the PBR model in the context of reflective languages.

3.1 Introduction

The Kernel language and its corresponding execution machine are conceived to pro-
vide an abstract, simple and precise way of expressing the semantics of the PBR

53
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model’s core constructs. The only available description of the model is its imple-
mentation in Java [RFX] and the informal semantics in [TNCC03, Tan04], which is
also presented based on the Java language. To avoid difficulties to develop formal
semantics directly from an artifact as complex as Java, we use a simplified base-level
language (BASE) on which the semantics of the reflective constructs of the model are
defined. BASE is a simple yet powerful object-oriented language, which can be seen
as a subset of Java.

The Kernel language, which extends BASE, provides a dedicated syntax for those
constructs of the PBR model. This language-based approach used to express those
constructs, as opposed to the API-based approach followed the Reflex implementation
in Java (see Section 2.4), avoids the unnecessary noise resultant of being limited to
use object-oriented syntax to express them. Therefore, simplifying the presentation
of the model’s constructs.

The Kernel language and its corresponding machine, which is used to give an opera-
tional semantics to the language, have been formally written down in Haskell. This
has made it possible to express the semantics of the PBR model in a more abstract
and precise way that is achieved by the informal semantics in [TNCC03, Tan04]. In
addition, since the Reflex implementation in Java is based on code-transformation
techniques1 from which is difficult to grasp the semantics of the PBR model, the in-
terpreter like implementation of the Kernel machine also offers a simpler description
of the semantics.

The development of the Kernel machine shall be presented in two stages. The first
involves the definition of the BASE language and the development of its correspond-
ing execution machine, called the BASE machine. Then the Kernel language shall be
defined, via an extension to the BASE language, and Kernel machine shall be devel-
oped by extending the BASE machine. The BASE language and BASE machine shall
also be extended in Chapter 4 in order to build the Pointcut and Advice language and
machine, respectively.

The architecture of the machines follows the Pipe and Filter architectural design
pattern [BMR+96], commonly used in compiler design, see the Figure 3.1. It is
structured in two main parts:

The Front End is responsible for performing the lexical and syntactic analysis, both
of them implemented using monadic parser combinators [HM96].

The Back End is responsible for the semantic analysis and the program interpre-
tation. The semantic analysis mainly consists on type-checking the program

1Actually, it is based on Javassist [CN03], a load-time metaobject protocol. Nonetheless, this tool
can be seen as a code-transformation tool.
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before it is executed by the interpreter. In order to simplify the implementa-
tion of the machines, the static type checker shall not be implemented. The
interpreter assumes that the program checks.

Lexical

Analysis

Syntactic

Analysis

Semantic

Analysis

Language

Interpreter

Front End Back End (Machine)

Figure 3.1: Machine Architecture

The interpreters are implemented using monads. Appendix A provides a comprehen-
sive introduction to the Haskell language and to monadic programming. In addition,
it also introduces the state and exception monad (StE), which models the compu-
tations that maintain a state and that may throw exceptions. The monad StE is
used in the interpreter implementation to transparently propagate its state and the
exceptions that may be raised, among the functions that compose the interpreter.

3.2 The BASE Machine

This section gives an overview of the design of the BASE language and its corre-
sponding machine. The BASE language is inspired in the equally named language
presented in the Aspect Sandbox [MKD03b, MKD02]. Basically, the language can be
seen as a subset of Java; it is statically typed, it uses by value parameter passing style
and is statically scoped. It is a class-based object-oriented language supporting sin-
gle inheritance, overriding, sub-typing polymorphism [Bru02] and dynamic method
dispatching, and without interfaces and overloading. The next section presents the
syntax of the language. Section 3.2.2 briefly presents the implementation of its inter-
preter.

3.2.1 Language Syntax

This section exposes the syntax of the BASE language by first giving a short example
of its concrete syntax and then presenting its abstract syntax in terms of Haskell’s
algebraic types. Appendix B presents a complete formulation of the concrete syntax
of the language.
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Listing 3.1 illustrates the implementation in BASE of the Shape and Line classes
of the example introduced in Section 2.4.2.1. Ideally, the Shape class should be
implemented as an abstract class or an interface. However, since neither abstract
classes nor interfaces are supported by the language, it is implemented as a simple
class where the body of the method moveXY is empty. Note that the syntax used
for declaring classes is very similar to that of the Java language. A class is declared
through the keyword class and its members (i.e. fields and methods) are lexically
defined inside it. Note that the method’s parameter names must begin with an #.

class Shape {

void moveXY(int #aX , int #aY){}

}

class Line extends Shape {

Point itsPoint1;

Point itsPoint2;

void init(int #aX1 , int #aY1 , int #aX2 , int #aY2){

itsPoint1 := new Point;

itsPoint1.init(#aX1 , #aY1);

itsPoint2 := new Point;

itsPoint2.init(#aX2 , #aY2);

}

void moveXY(int #aX1 , int #aY1){

itsPoint1.moveXY (#aX1 , #aY1);

itsPoint2.moveXY (#aX1 , #aY1);

}

}

Listing 3.1: BASE Concrete Syntax Example <BASE Code>

The class Line is declared as a subclass of Shape, via the keyword extends. It has
two fields that represent the points at the extremes of the line. Since the language
does not support constructors, an initialization method, called init, is defined. This
method instantiates and initializes its two fields based on the coordinates received as
parameters. A class is instantiated through the operator new followed by the name of
the class. Methods are invoked via the ’.’ operator, just as in Java. BASE does not
make the distinction between statements and expression, everything is an expression.
Although, an expression can be used as an statement by using the ’;’ symbol to
delimit them. For instance, the body of the method init consists of four statement-
like expressions which are executed sequentially. In the cases where a method returns
a value, the value returned by the last statement-like expression in its body is the value
that the method returns. The method moveXY is overridden. The new implementation
invokes the moveXY method of the two Point fields, consequently translating the line.
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The presentation of the abstract syntax is divided in two parts. Firstly, Section 3.2.1.1
presents the declaration language, showing the algebraic types use to represent class
declarations. Then, Section 3.2.1.2 presents the action language, showing the algebraic
types use to represent the valid expressions in the language.

3.2.1.1 Declaration Language

A BASE Program is a collection of class declarations, see Listing 3.2. A class decla-
ration, ClassDecl, consists of the name of the class, the name of the super class and
the list of members (i.e. fields and methods) which are declared lexically inside the
class. Every class in BASE must, directly or indirectly, extend the class Object. The
programmer may specify a super class or the class Object is assumed by default.

type Program = [ClassDecl]

data ClassDecl = Class ClassName SuperClassName [MemberDecl]

data MemberDecl = MthMember MethodDecl |

FldMember FieldDecl

data FieldDecl = Field Type Name

data MethodDecl =

Method ReturnType MethodName [ParameterDecl] ExprBlock

data ParameterDecl = Parameter Type Name

type ExprBlock = [Expr]

Listing 3.2: BASE Declaration Language <Haskell Code>

The fields are declared by giving its type and name. Initialization expressions are
not supported, during class instantiation fields are initialized with default values. A
Type can be a primitive type or a reference type. The supported primitive types
are void, bool, int and string. There are two kinds of reference type: class types
and array types. Class types comprise user-defined types and predefined types (e.g.
Object). An array is an indexed collection of elements. All the elements have the
same Type, usually called the component type [GJSB00]. The array structure, like in
Java [GJSB00], is encapsulated inside an array class. The interpreter automatically
defines a class for each array component type used in the program (see Sections 3.2.2.1
and 3.2.2.2).

The declaration of a method consists of a name, a list of formal parameters, a re-
turn type and a body. The name of the method fully identifies the method inside a
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class, since overloading is not supported. The body is a sequence of expressions (i.e.
ExprBlock), where the value returned by the last expression is the value returned by
the method.

3.2.1.2 Action Language

The expression language, as shown in Listing 3.3, includes the following categories of
expressions:

• Literal expressions. They include literals for string, integer and boolean val-
ues. In addition, the literal NULL is included, which represents the null reference
value. Note that these literals are defined by the data type LiteralExpr not
shown here.

• Primitive expressions. They include arithmetic, boolean, string manipula-
tion and output expressions. Note that these primitive expressions are defined
by the data type PrimitiveExpr not shown here.

• Control expressions. The only control expression supported in the lan-
guage is the if expression. The concrete syntax supports both if-then and
if-then-else styles.

• Variable expressions. The LetE expression declares and initializes a list of
variables. The scope of those variables is the associated expression block. The
expressions VarGetE and VarSetE, allow to get and set the value of a variable,
respectively.

• Object expressions. The NewObjectE expression creates an instance of a
class and initializes it with the default fields values. The MethodCallE expres-
sion performs a method invocation using dynamic method dispatching. The
SuperMethodCallE expression invokes a super class method. The FieldGetE
and FieldSetE expressions provide access to object fields. The InstanceOfE
expression returns true if an object is an instance of certain class (including
array classes). The CastE expression allows to check at runtime if an object is
compatible with the specified type. Usually used to bypass the type system in
order to perform a downcast from a reference of general type to a reference of
a more concrete type.

• Array related expressions. They include expressions to create fixed length
arrays, using default initialization (i.e. NewArrayE) or providing the initializa-
tion expressions (i.e. NewArrayInitE). In addition, it provides expressions to
access (GetArrayByIndexE) or modify (SetArrayByIndexE) an array element
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at certain index. Also, the array class provides methods to obtain the length of
the array and to concatenate two arrays.

The language provides access to the current executing object through the keyword
this. For simplicity, and as an aid to abstraction, object fields are not accessible
from outside of that object’s methods. We will assume that methods are publicly
accessible from outside the object.

3.2.2 Interpreter Implementation

The BASE interpreter shall be presented in two parts. In first place, Section 3.2.2.1
presents the state structure used by the interpreter. Then, Sections 3.2.2.2 and 3.2.2.3
present a brief overview of the program evaluation and expression evaluation func-
tions, respectively.

3.2.2.1 Interpreter State

The data type State, shown in Listing 3.4, represents the state of the interpreter.
It is composed of a variable environment, a class environment, an object store and
an output stream. The variable environment is represented by a stack of activation
records, which binds variable names to values. The values are represented by the
Value data type. A Value can be an object reference (i.e. ValueRef, where ObjectID

data Expr = LiteralE LiteralExpr |

PrimitiveE PrimitiveExpr |

IfE Expr ExprBlock ExprBlock |

LetE [VariableDecl] ExprBlock |

VarGetE Name |

VarSetE Name Expr |

FieldGetE FieldName |

FieldSetE FieldName Expr |

MethodCallE ObjectExpr MethodName [ArgumentExpr] |

SuperMethodCallE MethodName [ArgumentExpr] |

NewObjectE ClassName |

InstanceOfE Type ObjectExpr |

CastE Type ObjectExpr |

NewArrayE Type Int |

NewArrayInitE Type Int [Expr] |

GetArrayByIndexE ObjectExpr Expr |

SetArrayByIndexE ObjectExpr Expr Expr

Listing 3.3: BASE Action Language <Haskell Code>
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is the object identifier), a string, an integer, a boolean, the null value or the void value.
The output stream is represented by a String. Each time a program writes a string
to the output, the string is concatenated at the end of the output String.

data State = CState Environments Stores Output

data Environments = CEnv VariableEnv ClassEnv

data Stores = CSto ObjectStore

type Output = String

data Value = ValueRef ObjectID |

ValueStr String |

ValueInt Int |

ValueBool Bool |

ValueNull |

ValueVoid

Listing 3.4: BASE Interpreter State - State Data Type <Haskell Code>

The class environment is where the definition of the classes in the machine resides. It
is represented by the type ClassEnv, shown in Listing 3.5, which is defined as a list of
ClassDescriptor. A ClassDescriptor models both array and user-defined classes.
An array class, represented by the constructor AClass, consists of: a class name, the
component type, a list of methods for the array and one field. The name of an array
class is obtained by concatenating the array element type name with the string [].
For example, if we have an array of arrays of integers, the name of the array class
would be int[][]2. The class includes a set of hardwired methods like getLength,
concat and toString (overridden from Object). Those methods are implemented
using the BASE language. The only field that an array class may have corresponds
to the array length, which is used by the array methods. All array classes are direct
subclasses of the Object class.

type ClassEnv = [ClassDescriptor]

data ClassDescriptor =

CClass ClassName SuperClassName [MethodDecl] [FieldDecl]

AClass ClassName Type [MethodDecl] FieldDecl

Listing 3.5: BASE Interpreter State - ClassEnv Data Type <Haskell Code>

2The names of user-defined classes cannot contain the symbol []. Therefore, the names of an
user-defined class and array classes cannot crash. Also, a user-defined class cannot extend an array
class.
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The user-defined classes, represented with the constructor CClass, are like the Class-
Decl type used in the AST, but, while ClassDecl only includes methods and fields
lexically defined inside the class, CClass also includes those methods and fields in-
herited. During class loading, the interpreter collects the fields and methods declared
in the class and its super classes, in order to build the ClassDescriptor3. In the
case of method overriding, it keeps the most specific method. The class environment
defines the class namespace, binding each class name to a unique ClassDescriptor.
Note that the structures used in the ClassDescriptor to model methods and fields,
are those defined for the AST.

The object store is where instantiated objects reside. The ObjectStore, shown in
Listing 3.6 is defined using the MapGenerator. This is a polymorphic type that
provides an implementation of a mapping structure, which automatically generates
the identifiers for the elements, i.e. the objects identifiers. The polymorphic type
is parameterized with the identifier type (ObjectID for the object store) and the
element type (ObjectObj for the object store). The ObjectObj data type contains
the instance information. An instance of an array class consists of: its concrete class
name, a value corresponding to the length field and a list with the array elements’
values. An instance of a user-defined class consists of: its concrete class name and
a list with the fields’ values. The list of values holds one value for each field in its
ClassDescriptor, respecting the order defined in the ClassDescriptor.

type ObjectStore = MapGenerator ObjectID ObjectObj

type Object = MapGeneratorPair ObjectID ObjectObj

data ObjectObj = CInstance ClassName [Value] |

AInstance ClassName Value [Value]

Listing 3.6: BASE Interpreter State - ObjectStore datatype <Haskell Code>

The Object type is defined using the MapGeneratorPair data type, which represents
an element of the mapping. An Object contains both its identifier (used to reference
it) and the instance information.

3.2.2.2 Program evaluation

The function runExc, shown in Listing 3.7, receives a Program as input and evaluates
it. The evaluation may end normally or with an error. In the case where the evaluation
ends normally, runExc returns the Value, output and State resultant of the program
evaluation. Otherwise, it returns an exception. There are two activities that are

3This also applies to array classes.
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performed before a program is actually evaluated, namely class loading and array
classes definition. Both activities are done by the function loadProgramStEState
(line 2). Loading the classes requires creating a ClassDescriptor for each class,
which in turn requires collecting the inherited fields and methods from its super classes
(see Section 3.2.2.1). Since BASE does not impose any restriction in the order that
classes must be declared, the classes are first ordered and then loaded. In addition,
loadProgramStEState also transverses the program, collecting all the array classes
that the program uses4 and defines the appropriate ClassDescriptor for them.

1 runExc :: Program -> Exc ((Value , String), State)

2 runExc p = applyStE (do loadProgramStEState p

3 val <- evalExprStEState initExpr

4 out <- getOutputStEState

5 return (val , out))

6 initialState

7 where

8 initExpr = (MethodCallE (NewObjectE "Main") "main" [])

9
10 loadProgramStEState :: Program -> StEState ()

11 ...

Listing 3.7: BASE Program Evaluation Function <Haskell Code>

The type StEState, used for instance in the function loadProgramStEState, is ac-
tually a synonym of StE State, which represents the monads StE (see Appendix A)
that carry a state of type State. As a general naming convention of the present work,
the function names that end with the postfix Exc or StExxx are monadic functions
working with the Exc or StE monads, respectively. The xxx portion of the name, in
the cases where the StE monad is used, is the name of the state’s type propagated by
the monad. For instance, the function loadProgramStEState is a monadic function
defined over the State data type. This naming convention shall also be used for the
Kernel machine and the Pointcut and Advice machine.

The function runExc, besides invoking loadProgramStEState, evaluates the program
using the expression evaluator function evalExprStEState, described in the next
section. The default entry point for a BASE program is the method main of the
class Main, thus, once the program has been loaded, the runExc function invokes the
expression evaluator passing the initExpr expression. initExpr creates an instance
of the Main class and invokes the main method.

The applyStE is the function that actually executes the monadic computation spec-
ified between brackets (lines 2 to 5). Remember that the monad StE is a function
with the following signature s -> Exc (v,s), so applyStE evaluates the monad by

4Note that this activity can be performed statically.
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passing the initial state (initialState) from which the monad must be evaluated.
initialState basically contains an empty variable environment, the class environ-
ment containing the class Object, the empty object store and an empty output.

3.2.2.3 Expression evaluation

The evaluation of the expressions is performed by a monadic evaluator function, called
evalExprStEState, see Listing 3.8. This function is a standard recursive evaluator.
It receives an expression as input (see Listing 3.3) and returns the value resultant of
its evaluation. The function is defined by doing pattern matching over the expression
to evaluate.

evalExprStEState :: Expr -> StEState Value

evalExprStEState e

case e of

(LiteralE l) -> ...

(PrimitiveE p) -> ...

(IfE e b1 b2) -> ...

(LetE vd b) -> ...

(MethodCallE oe n args) -> ...

(NewArrayE t s) -> ...

...

Listing 3.8: BASE Expression Evaluator <Haskell Code>

In order to illustrate the implementation of the evaluator, we will present the evalua-
tion of the MethodCallE expression, see Listing 3.9. In general, the implementation of
the evaluator makes use of several helper functions. For instance, lookupObjectStE-
State is used to obtain the Object structure from its reference and lookupClassStE-
State is used to obtain the ClassDescriptor structure from a class name.

1 case e of

2 (MethodCallE oe n args) ->

3 do ref <- evalExprStEState oe

4 obj <- lookupObjectStEState ref

5 cls <- lookupClassStEState (getObjectClass obj)

6 (Method _ _ _ xp eb) <- lookupClassMethodStEState cls n

7 vals <- mapM (\e -> evalExprStEState e) args

8 createInstanceCallEnvStEState xp vals ref

9 val <- evalExprBlockStEState eb

10 dropEnvStEState

11 return val

Listing 3.9: BASE Expression Evaluator (continued)
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In order to evaluate a method invocation the evalExprStEState function must per-
form the following activities:

• Line 3 to 6. It evaluates the target object expression, which returns a reference
to the target object. Using that reference, it first obtains the corresponding ob-
ject, then the class of the object, and finally, using the lookupClassMethodStE-
State, it obtains the MethodDecl of the invoked method. The MethodDecl is
needed to get access to the parameter list and the body of the method.

• Line 7 to 8. It evaluates the argument expressions, hence obtaining the argu-
ment values. Then, the function createInstanceCallEnvStEState creates a
new environment for the invoked method, binding the formal parameter names
to the argument values and the this object reference to the target object.

• Line 9. It evaluates the body of the method. evalExprBlockStEState evaluates
all the expressions in the body sequentially and returns the value of the last
expression.

• Line 10 and 11. It drops the environment created for the invoked method and
return the value returned from the evaluation of the expression block.

The lookupClassMethodStEState function looks up the method in the ClassDes-
criptor of the target object concrete class. Note that since the ClassDescriptor
already contains the most specific methods, see Section 3.2.2.1, all the method invo-
cations through the MethodCallE expression are performed using dynamic method
dispatching5.

3.3 The Kernel Machine

This section presents the design of the Kernel language and its corresponding execu-
tion machine. The Kernel language embeds the core constructs of the Reflex’s PBR
model. We choose to include, within the language, those PBR model’s constructs that
together are interesting enough to explain the main concepts of the PBR model, and
at the same time expressive enough to provide semantics to a subset of the AspectJ
dynamic crosscutting mechanism. We encourage the eager reader to see Chapter 4
to know which are the constructs of AspectJ to be implemented on top of the Kernel
language, and Chapter 5 for a full explanation of how they are actually implemented.

5We say that the method dispatching mechanism is dynamic because the invoked method is always
determined based on the dynamic type of the target object.
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Next section presents the requirements for the Kernel language by enumerating the
PBR model’s constructs that it must embed. Then based on those requirements
Section 3.3.2 describes the design of the Kernel language, including the presentation
of its concrete and abstract syntax. Section 3.3.3 presents a conceptual description
of the machine operation. Finally, from Section 3.3.4 to the end of the chapter the
implementation of the Kernel machine is described.

3.3.1 Language Requirements

The PBR model’s constructs that must be included in the Kernel language are pre-
sented based on the Reflex implementation model, introduced on Section 2.4.2. Those
constructs are:

Hookset Layer

• Hooksets. Support for primitive and composite hooksets must be provided,
along with the operators for hookset composition.

• Selectors. Both class and operation selectors are required in order to specify
the selection predicates.

• Restrictions. Support for dynamically evaluated restrictions must be provided,
in order to further discriminate operation occurrences of interest.

Link Layer

• Links. Support for links must be included, specifying the binding between hook-
set and metaobjects. The only required link attribute is the control attribute,
including support for BEFORE, AFTER, BEFORE AFTER and AROUND controls. All
links shall be implicitly defined using hookset scope. The runtime representation
of a link is not required, however it must provide a mechanism to access the
metaobject associated to a link.

• Call Descriptors. Support for the specification of the metalevel interface must
be provided, along with a mechanism to specify the information that must be
reified.6

6Note that the open characteristic of the Reflex MOP shall be partially supported, because the
user can specify the metalevel interface, but he cannot specify the operations that the MOP is capable
of reifying.
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Metaobject Layer

• Metaobject. Support for metaobjects must be included, specifying the meta
level behavior.

• Proceed. The proceed mechanism must be supported within metaobjects as-
sociated with the AROUND control, in order to resume execution of the current
operation occurrence. It must also allow to modify of the operation occurrence.

In addition to those constructs just mentioned, the Kernel language shall be designed
to support operations as the unit of decomposition of the base-level language. User
defined operations are not required, only a fixed collection of operations are required.
The operations that must be reified are7: method invocation, method execution, field
get/set and object instantiation.

Finally, link interactions detection and resolution have been left as further work.
Therefore, the language shall not provide any means for the user to specify how to
resolve a link interaction. As a consequence of this decision, there are some con-
structions of AspectJ that shall not be fully supported by the Kernel language (see
Chapter 5).

3.3.2 Language Design

Although the language requirements are presented in terms of the Reflex implementa-
tion model, the language design shall not be limited by it, in the sense that not every
feature shall be modeled strictly as the implementation model is. The implementa-
tion model is actually a realization of the conceptual model of Reflex for the Java
language. Therefore, it embeds some decisions that are most relevant in the context
of Java. Consequently, the designed language shall stand in the middle between those
models, incorporating some concepts of the implementation model but always with
the goal of achieving the most faithful representations of the notions in the conceptual
model in mind. As a result, some of the concepts of the implementation model will
be adapted and others will be discarded. The following sections present the design of
each of the language elements, which together fulfill the established requirements.

3.3.2.1 Operation Support

In the Kernel language, like in Reflex (see Section 2.4), the metalevel is structured
in terms of metaobject reasoning and acting upon reification of base-level language’s

7Note that this list of operations is not arbitrary. Each operation shall reify one or more of the
join point kinds supported by the subset of the AspectJ language, see Chapter 5.
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mechanisms described in terms of operations. An operation takes the form of a class.
The fields of that class hold the representation of the language mechanism described
by the operation. Whereas the methods provide the means to access (i.e. perform
introspection on) and modify (i.e. perform intercession on) such a representation.
The instances of an operation class represent the occurrences of the operation within
a program. Unlike Reflex, the Kernel language shall provide a fixed set of supported
operations, user-defined operations are left out. The operation classes are organized in
a class hierarchy, where at the top of the hierarchy is the Operation class, conceptually
abstract, and the concrete operations are subclasses of it, see Figure 3.2. As a direct
consequence of the hierarchical organization of the operation classes, the language
provides better support for the construction of general programs. For instance, it shall
allow to define selection predicates over an Operation rather than over a concrete
operation class, see Section 3.3.2.2.

whereClass: String
whereMethod: String
whereMethodParTypes: String[]
thisObject: Object
result: Object

Operation

targetClass: String

method: String
methodParTypes: String[]
returnType: String
targetObject: Object
arguments: Object[]

declaringClass: String

MsgSend

class: String

method: String
methodParTypes: String[]
returnType: String
targetObject: Object
arguments: Object[]

declaringClass: String

MsgReceive

targetClass: String

Instantiation

class: String
declaringClass:String
field: String
fieldType: String

FieldGet

class: String
declaringClass:String
field: String
fieldType: String
newValue: Object

FieldSet

Figure 3.2: Operation Support

The reified information encapsulated inside an operation class is conceptually divided
in static and dynamic information. Static information refers to the information di-
rectly available from the program text, which is mainly structural information. For
example, consider the Operation class on Figure 3.2. The class where the operation is
located (whereClass), the method where the operation is located (whereMethod), and
its parameter types (whereMethodParTypes), are static information. The dynamic
information refers to the information that is only available at program evaluation,
usually associated to interpreter state values, like the this object (thisObject) and
result value (result)8 for the Operation class. Unlike Reflex, which provides for each
supported operation a static and a dynamic operation class (see Section 2.4.2.2), the
Kernel language provides only one operation class holding both static and dynamic

8The result value is the value returned by the evaluation of the operation occurrence, which
clearly, is only available once the operation has been evaluated.
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information, indistinctly. The reason is that, since the Kernel machine is implemented
as an interpreter, there is no need to differentiate compilation time from runtime, as
Reflex does. Therefore, from now on when we refer to an operation occurrence in
the context of the Kernel language, we always refer to its runtime occurrence, which
encompasses both static and dynamic information.

The reification of an operation occurrence also requires defining how the structural
information shall be reified, e.g. the classes and methods. Reflex relies on the
Java Reflection API in order to provide the reification of the structural elements,
for instance, the java.lang.Class class represents the reification of a class and the
java.lang.reflect.Method represents the reification of a method. Conversely, the
BASE language does not provide any facility to reify any structural element. Since
structural reflection is out of the scope of this work, we will represent structural in-
formation using strings. Consequently, introspection capabilities will be limited, but
will be enough for our purpose. As shown in Figure 3.2, the structural elements in
the Operation class and the other operations are declared with the String type.

In addition, the reification of an operation occurrence also requires to analyze how
values shall be reified. The reification of a value, as any other reification, requires to
build a representation of it. Since values are first-class elements of the language, they
can be reified as themselves, unlike the structural elements which are not. However,
in order to be able to treat all values uniformly, the values are reified as objects. This
uniform treatment of the values allows, for instance, to represents the arguments
of a method invocation using an simple Object array (see Figure 3.2). Thus, object
reference values are reified as themselves, meanwhile the primitive values are wrapped
into an object during reification. Therefore, the language provides one predefined
wrapper class for each of its primitive types.

As shown in Figure 3.2 the supported operations are: MsgSend reifying the invocation
to a method, MsgReceive reifying the execution of a method, Instantiation reifying
the creation of an object (it does not reifies array instantiation), FieldGet reifying
the access to a field and FieldSet, reifying the modification of a field. Note that
MsgSend and MsgReceive reify the same conceptual language behavior from two dif-
ferent perspectives, caller and callee side, respectively. Just for illustration purposes,
we present a description of the fields of the MsgSend operation (excluding the ones
inherited from the Operation class):

• targetClass is the name of the target class. It is the name of the dynamic type
of the target object, as opposed to the static type i.e. the type of the reference
used to perform the invocation.

• method is the name of the invoked method

• declaringClass is the name of the class that declares the method.
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• methodParTypes is an array containing the names of the method’s formal pa-
rameters’ types.

• returnType is the name of the type returned by the method.

• targetObject is the reference to the invoked object.

• arguments is an array containing the values of the arguments of the invocation.

3.3.2.2 Selector Declaration

In the Reflex conceptual model, hooksets stand for an abstraction of a set of oper-
ation occurrences of interest, while selectors appear in the implementation model as
the mechanism to specify the set of hooks by intension. Actually, the implementation
model supports several mechanisms for selecting operation occurrences of interest,
which differ in terms of the time at which they are bound and evaluated [Tan04].
There are four different mechanisms: class and operation selectors which are stati-
cally bound and evaluated (selection can only be based on static properties of the
operation occurrences), restrictions which are statically bound and dynamically eval-
uated (selection can also be based on dynamic properties), and activation conditions
which are dynamically bound and evaluated9. This decomposition is required to
achieve an efficient and yet flexible implementation of the selection process for Java.
Typically, the later a mechanism is bound and evaluated, the more flexible and the
less efficient it is. In Reflex, the combination of these four mechanisms allows to fully
specify hooksets.

The Kernel machine is meant to formalize the notions behind the Reflex model, rather
than achieve an efficient and flexible implementation of them. Consequently, we adopt
a wider notion of selector, as a construction that allows to fully specify a hookset. A
selector is a parameterized abstraction of a selection predicate, which can be based
on static and dynamic properties of the operation occurrences.

In order to introduce them, let’s see an example of a selector that matches all the
operation occurrences within certain class, see Listing 3.10.

selector %inClassSel(String #aName ){

on Operation #op ,

when {#op.getWhereClass () == #aName; }

}

Listing 3.10: Selector Declaration Example <Kernel Code>

9Metaobjects can also be considered as a selection mechanism, dynamically bound and evaluated,
but since they are not meant to perform selection, we leave them out.
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The selectors are class-level declarations, declared using the keyword selector, along
with the following elements:

Selector name is the unique identifier assigned the selector, in the example inClass-
Sel10. Selectors have their own namespace.

List of parameters specifies the parameters that the selector expects to receive.
Those parameters are accessible within the scope of the selection predicate.
The selectors parameters enhance the reutilization of a selector. In the example,
there is only one parameter, the class name.

Operation occurrence specifies a name for the operation occurrence, accessible
within the scope of the selection predicate (i.e. op), and a type restriction
establishing the operations admitted by the selector. The subtyping relation
among operation types gives place to the definition of both generic selectors
admitting any type of operation, like the one in the example, and specialized
selectors admitting just one type of operation, for example replacing Operation
by MsgSend in the example, admitting only method invocations.

Selection Predicate is specified by an expression block whose result must be a
boolean value, true if the selector matches the operation occurrence and false
otherwise. The expressions in the expression block can be defined using the full
power of the expression language.

A selector essentially defines a function of the form

sel : (p1, .., pn) −→ opoccur −→ Bool

where p1, .., pn and opoccur represent the selector parameters and operation occurrence
respectively. Evaluating a selector requires two steps, binding the parameters and
providing the operation occurrence. The first step is performed by the user in order
to fix the meaning of the selection predicate during hookset declaration; to that end
an application operator, so-called apply, is provided by the expression language in
order to bind them (see next section). Selectors with bound parameters are first-
class values of the language, we will call them selector functions. The second step is
triggered by the interpreter in order to check if an operation occurrence is matched
by the selection predicate.

This definition of a selector, proposes a cleaner and more simple mechanism to specify
selection predicates, because overall selection predicate is defined in one place. In

10The identifiers of the constructions introduced by the Kernel machine, i.e. selector, hookset,
link and call, must be preceded by the symbol %.
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contrast with the definition of a selection predicate in Reflex, which usually ends up
spread over several specialized constructions (i.e. restrictions, class selectors, operator
selectors and activation conditions).

It is worth noting that selection predicates, just like selectors - restrictions - activation
conditions in Reflex, are defined using the full power of the expression language.
Therefore, their evaluation may not be decidable, because they may not terminate.
Considering that selector evaluation is triggered by the interpreter during normal base
program execution, decidability would be a nice property to achieve, avoiding bugs
which may be difficult to catch. Furthermore, the fact that most selection predicates
only require checking that the operation occurrence fulfills simple properties (where
no recursion is required), suggest that the design of a decidable language for the
definition of selector predicates should be further studied. However, it is out of the
scope of this work.

3.3.2.3 Hookset Declaration

The language supports the declaration of hooksets in two forms: using a selector
in order to express the set intentionally, so-called primitive hooksets, or by using
standard set composition operators (union, intersection, complement) to compose
already defined hooksets, so-called composite hooksets. Listing 3.11 illustrates them
using an example.

// Occurrences inside Class Composite

hookset %hsInClsComp using {% inClassSel("Composite")}

// Occurrences inside method moveXY

hookset %hsInMthMoveXY using {% inMethodSel("moveXY")}

// Occurrences inside the method moveXY of Composite

hookset %hsInFooBar combine {% hsInClsComp && %hsInMthMoveXY}

// Occurrences outside Composite

hookset %hsNotFoo combine {!% hsInClsComp}

// Occurrences inside Composite and inside every method moveXY

hookset %hsInFoo combine {% hsInClsComp || %hsInMthMoveXY}

Listing 3.11: Hookset Declaration Example <Kernel Code>

The first two are primitive hooksets, defined using the keywords hookset and using.
They consist of a name that identifies the hookset (i.e. hsInClsComp and hsInMth-
MoveXY) and a body that contains a selector function used to define the hookset. The
syntax for the apply operator is similar to a method call. It consists of the name of the
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selector followed by a list of parameters between brackets. Composite hooksets are
defined using the keywords hookset and combine, as in the last three declarations
of the example, and consist of a name and a body containing a hookset composi-
tion expression. The available set operators are: complement (!), intersession (&&)
and union (||). The composition expression specifies the new hookset by combining
other hooksets (specified through their identifiers) with the set operators. Hooksets
identifiers have its own namespace.

The notion of primitive and composite hooksets differs from the ones originally used
in the Reflex implementation model. In Reflex, primitive hooksets select operation
occurrences of the same type, while composite hooksets are the union of various
hooksets. In addition, set combination operators (union, intersection and difference)
are supported among primitive hooksets of the same operation type. In the Kernel
language, we adopt a more uniform approach, where primitive hooksets are hook-
sets defined intensionally (possibly selecting operation occurrences of different types),
whereas composite hooksets are constructed by composing other hooksets. Composi-
tion operators can be applied to compose any of those hooksets.

Quite frequently, primitive hooksets are defined using specific selectors, i.e. selectors
that only exist to specify one hookset (are not meant to be reused). In order to avoid
defining both the selector and the primitive hookset, syntactic sugar is provided for
primitive hookset declaration, which allows defining the selection predicate and the
hookset all at once. The Listing 3.12 shows the definition of the primitive hookset
hsMoveXY that selects all the invocations to the method moveXY.

hookset %hsMoveXY using {

on MsgSend #op ,

when {#op.getMethod () == "moveXY";}

}

Listing 3.12: Embedded Declaration <Kernel Code>

3.3.2.4 Link Declaration

The link is incorporated as a class-level langauge declaration, which binds a hookset
to a metaobject. As shown in Listing 3.13, a link is declared using the keyword
link followed by its name and a body containing the binding specification. The
specification comprises the means to specify: which is the metaobject, which is the
hookset and how the binding must be done. The metaobject is specified by giving an
expression block that, once executed, returns the reference to the metaobject. This
block, the so-called metaobject initialization block, is specified using the keyword to,
see Listing 3.13. The binding hookset-metaobject is characterized by a control value,
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specifying how the control is passed to the metaobject (see Section 2.4.2.4), and a call
descriptor which specifies how to invoke the metaobject and what information must
be reified (see Section 2.4.2.5). There are three keywords, BEFORE, AROUND and AFTER,
that correspond to the three supported control values. The hookset and the binding
design are specified by giving the name of the hookset, the control value and the name
of the call descriptor, using the keywords from, on and with. The example defines
a link that logs all the movements of a shape, using a LogMO metaobject class. The
metaobject is obtained by simply instantiating it and it is associated to the hsMoveXY
hookset using the BEFORE control and the call descriptor callMoveXY, also shown in
Listing 3.13.

link %lnkMoveXY {

from %hsMoveXY on BEFORE with %callMoveXY ,

to { new LogMO; }

}

call %callMoveXY {

from MsgSend #op,

to LogMO #mo ,

do {

let (int #x := (( Integer) #op.getArgument (0)). intValue ();

int #y := (( Integer) #op.getArgument (1)). intValue ();)

in {

#mo.beforeMovingShape (#x, #y);

};

}

}

Listing 3.13: Link and Call Descriptor Declaration <Kernel Code>

The call descriptor is defined using the keyword call followed by its name. The
declaration of a call descriptor encloses an expression block, see Listing 3.13 after the
keyword do, which is responsible for collecting all the information that must be passed
to the metaobject and performing the invocation. The variable environment used to
execute the expression block holds two variable references: one for the operation
occurrence object and one for the metaobject. The user defines the expected type
and name of these two variables by using the keywords from and to, respectively.
Back to the example, the call descriptor specifies that it expects a MsgSend operation
and a metaobject of class LogMO, assigning to them the variable names op and mo,
respectively. The expression block gets the reified values of the two arguments from
the operation occurrence, those of the method moveXY, and invokes the metaobject
method beforeMovingShape passing the two values. Since the metaobject method
expects two int values, the call descriptor must unbox them before invoking the
method.
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Note that the means to specify the binding that we have presented so far, only allows
coarse-grained specification. Reflex allows to bind different control values and call
descriptors to sub-hooksets of the hookset bound to the link (see Section 2.4.2.5).
These fine-grained specification of the binding is very useful under situations like the
following:

• The hookset bound to the link is composite and it requires exposing different
pieces of information for each of its component hooksets.

• The hookset bound to the link is composite and its component hooksets select
different operation types, requiring a specialized (on the operation type) decla-
ration of the call descriptor that extracts the required parameters and performs
the metaobject invocation.

• The link is defined with BEFORE AFTER control, thus performing two reifications,
and requires one call descriptor for specifying each one.

In order to support this fine-grained binding specification, the link may include more
than one hookset-control-call descriptor line it its body. This allows the declaration
of links like lnkFine, see Listing 3.14, where for each hookset hsx a different call
descriptor is associated. Note that the hookset bound to the link is not explicitly
mentioned, we only mention its component hooksets which are hs1 to hsn. The
hookset bound to the link would be the union11 of all the component hooksets. In
addition, we can also modify the declaration of link lnkMoveXY to log point movements
before and after they occur. The new declaration of the link is shown in Listing 3.14,
where for a single hookset (hsMoveXY) we associate two different controls and call
descriptors.

Unlike Reflex, the language does not allow associating control BEFORE AFTER to a
hookset at once. However, this can be done by associating both controls separately
to a hookset. Actually, the language does not restrict the user from associating, in
one link declaration, the controls BEFORE, AROUND and AFTER to the same hookset. It
also does not impose any restriction on associating one hookset with one control and
another hookset, completely different from the first, with another control. In the case
that, for the same control, more that one hookset matches an operation occurrence,
the hookset being first bound lexically, would be the only one that effectively matches
it. Thus, only one reification can be done per-control defined in the link.

In the cases that the call descriptor is associated with the AROUND control, the invoca-
tion to the metaobject method must return a value, replacing the value returned by

11Also note that, for a given composite hookset of the form hs1 && hs2 it does not make any sense
to have different bindings for hs1 and hs2, since they do not match independently. In the case of a
hookset of the form !hs it also does not make sense to specify the binding for hs alone.
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link %lnkFine {

from %hs1 on BEFORE with %call1,

...

from %hsn on BEFORE with %calln,

to { ... }

}

link %lnkMoveXY {

from %hsMoveXY on BEFORE with %callLogBefore ,

from %hsMoveXY on AFTER with %callLogAfter ,

to { new LogMO; }

}

Listing 3.14: Fine-Grained Binding <Kernel Code>

the original operation occurrence. The expression block associated to the call descrip-
tor is expected to return that value. Thus, its last expression must return the value.
Note that the expression block may also alter the value returned by the metaobject
or return a different value, although this is not common.

Reflex provides the RTLink as a runtime representation of a link. If we consider Re-
flex as a language, the RTLink is actually a reification of the the link construction,
which otherwise would be implicit in the language. The RTLink allows to introspect a
defined link, e.g. accessing the associated metaobject(s), and also provides means to
intercede on the defined link, e.g. changing the associated metaobject(s). In the Ker-
nel language, the only reification capability that is provided for the link construction is
accessing its metaobject. This is done by providing a new language expression which
reifies the metaobject of a link, see Section 3.3.2.6. Therefore, we only provide partial
introspection capabilities and no intersession capabilities for the link construction12.

3.3.2.5 Metaobject

The metaobject classes are declared just as any regular class. The only difference is
that metaobjects associated through an AROUND link may use the proceed expression
(see next section), as opposed to regular classes and metaobjects associated with
BEFORE or AFTER controls which cannot use it. The return type of the methods used
to perform the meta-computation, i.e. the ones invoked by the call descriptors, in
the case of BEFORE or AFTER control usually returns void. However, they may be
declared with any type, but the returned value shall be ignored if they are invoked as
a consequence of a reification. The Listing 3.15 shows the implementation of the LogMO

12The reification of the link’s metaobject is included in the language because it is needed in order
to support the control flow constructs of the PA language. For a detailed explanation see Chapter 5.
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used in the previous section. The method beforeMovingShape logs the invocations
to moveXY by printing them to the output and returns void.

class LogMO {

void beforeMovingShape(int #x, int #y){

write "Before moveXY(" ++ $#x ++ ", " ++ $#y ++ ")"; newLine;

}

}

Listing 3.15: Metaobject Declaration <Kernel Code>

In the case of methods associated with the AROUND control, they must be declared
as returning Object, since the methods might be replacing operation occurrences
returning different types.

3.3.2.6 Expression Language

The Kernel language extends the BASE action language (see Section 3.2.1.2) with
four new expressions:

Selector Application . It allows the user to fix the meaning of a selector by bind-
ing its parameters, resulting in a selector function. It is usually used in the
declaration of primitive hooksets. The syntax for the selector apply expression
is shown in the first two hookset declarations of Listing 3.11.

Selector Evaluation It allows to evaluate a selector function using a particular
operation occurrence object. It is commonly used together with the apply ex-
pression, in order to reuse a selector in the declaration of another selector. See
Listing 3.16 for an example. It defines a new selector that matches the op-
erations occurring inside a method of some class. Note that the inClassSel
is reused by first binding its parameter, which is the name of the class to be
selected, and then evaluating it, by passing the operation occurrence object.

selector %inClassMethodSel(String #aCName , String #aMName ){

on Operation #op ,

when {#op.getWhereMethod () == #aMName &&

%inClassSel (# aCName ):(#op); }

}

Listing 3.16: Selector Evaluation <Kernel Code>
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Link Metaobject It allows to access (i.e. reify) the metaobject associated to a de-
fined link. The syntax of the expression is simple: the name of the link followed
by #MO. For example, the expression %lnkMoveXY#MO returns the metaobject of
the link defined in Listing 3.13. Using this construction, it is possible to assign
the same metaobject instance to two or more links, by using the expression at
metaobject specification. In addition, it can be used in order to communicate
among metaobjects or by selectors to check properties that metaobjects must
fulfill.

Proceed It allows AROUND metaobjects to proceed with the execution of the replaced
operation. The proceed can be evaluated alone, proceeding with the original
operation, or it can be evaluated along with an expression block that allows to
alter the operation occurrence. The Listing 3.17 shows an example of the use
of proceed to modify the operation occurrence and proceed with its execution.
The associated expression block has access to an implicit variable, called oper,
which holds a reference to the occurring operation. Through that reference
the expression block may modify the operation occurrence. In the example, it
increments the displacement originally specified by the invocation to moveXY.
Note that since a metaobject can be bound to a hookset that gathers operations
occurrences of different types, the type of the implicit variable is Operation.
Thus, in the example the operation must be casted to the correct operation
type, before invoking setArgument.

class IncMO {

Object incMovement(int #x, int #y){

proceed {

let (Integer #newX := new Integer;

Integer #newY := new Integer ;)

in {

#newX.init(#x + 100);

#newY.init(#y + 100);

(( MsgSend )#oper). setArgument (0, #newX);

(( MsgSend )#oper). setArgument (1, #newY);

};

};

}

}

Listing 3.17: Proceed Modifying the Operation Occurrence <Kernel Code>
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3.3.2.7 Abstract Syntax

A Program in the Kernel language is a list of classes, selectors, hooksets, call descrip-
tors and links declarations. A selector declaration (SelectorDecl), as shown in List-
ing 3.18, consists of a name, a list of parameters and a body (SelectorBody), which
in turn consists of an operation declaration and the selection predicate. A hookset,
represented with the HooksetDecl data type, encompasses the three different types
of possible declarations, which are: PrimSelUse representing a primitive hookset de-
clared using a declared selector, PrimSelDecl representing a primitive hookset with
an embedded selector declaration and Composite, which is a hookset defined through
the combination of other hookset. Each hookset declaration must have a name. The
hookset combinators are represented by HooksetExpr data type, which models a set
combination tree, where nodes are set operators (union, intersection, complement)
and the leafs are declared hooksets (identified by their name).

data SelectorDecl = SelDecl SelectorName [ParameterDecl] SelectorBody

data SelectorBody = CSelBody OperationDecl ExprBlock

data HooksetDecl = PrimSelUse HooksetName SelectorName [ArgumentExpr] |

PrimSelDecl HooksetName SelectorBody |

Composite HooksetName HooksetExpr

data HooksetExpr = HooksetUnionExpr HooksetExpr HooksetExpr |

HooksetInterExpr HooksetExpr HooksetExpr |

HooksetComplExpr HooksetExpr |

HooksetNameExpr HooksetName

Listing 3.18: Selector and Hookset Declaration <Haskell Code>

The call descriptors are represented by the CallDescDecl data type shown on Listing
3.21. It consists of a name, two parameter declarations (specifying the type and the
name of the variables representing the operation occurrence object and the metaob-
ject) and an expression block.

data CallDescDecl = CallDesc CallDescName OperationDecl

ParameterDecl ExprBlock

data LinkDecl = Link LinkName [LinkCallSpec] ExprBlock

data LinkCallSpec = LCallSpec HooksetName Control CallDescName

data Control = CBefore | CAround | CAfter

Listing 3.19: Call Descriptor and Link Declaration <Haskell Code>
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The LinkDecl data type represents a link, consisting of a name, a binding specification
and the metaobject initialization block. The binding specification is given as a list of
LinkCallSpec. The LinkCallSpec data type specifies the binding between a hookset,
a control value (represented by the data type Control) and a call descriptor.

3.3.3 Sketch of the Machine Operation

In order to introduce how the Kernel machine operates, we will do a parallelism with
the model of Reflective Towers proposed by Smith (see Section 2.3.2.2). The Kernel
Interpreter shown in Figure 3.3 represents the level-shift processor of the tower. The
Kernel Interpreter is able to determine (dynamically) when an additional level of
interpretation is required, setup that additional level and resume the interpretation
on it. This is done based on the defined links, once a link matches an operation
occurrence (represented by (1) in the Figure), the operation is reified and the control
is shifted to the metaobject associated to the link (represented by (2)). From the
perspective of the base level computation, metaobjects act as interpreters of the reified
operations, in the sense that they may introspect and intercede over the operation
occurrence, consequently affecting the usual semantics of the operation. For instance,
a metaobject may extend the usual semantics of a method invocation by logging
the invocation occurrence. Therefore, in the context of the tower, the metaobjects
conform a new level of interpretation between the Kernel Interpreter and the user
program. The state of the interpretation level is determined by the state of the
metaobjects residing in it. Since metaobjects are created at link definition time,
during program loading and initialization (see Section 3.3.6), setting up the additional
interpretation level only involves obtaining the reference to the metaobject associated
to the link.

Kernel interpreter
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Kernel interpreter

User Program (lev = 0)
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Kernel interpreter
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Figure 3.3: Kernel Reflective Tower

The degree of introspection (see Section 2.3.2.2), ∆, determine the number of addi-
tional interpretation levels that the tower must have. So far, we have considered the
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situation where ∆ = 1, thus, only one level of interpretation is required. If the pro-
gram requires ∆ > 1, this means that further additional levels of interpretation shall
be required. Setting up an additional level in the tower is done in the same way as
for the first level, the only conceptual difference relies in that the new level represents
a metaobject reifying another metaobject. This is represented by (3) in the Figure.
There is no limitation in the number of levels the tower can have, but that number
must be finite. The ∆ is determined from the link specified in the program.

By taking a more general view of the tower, its exposed behavior is a continuous cycle
of reify-interpret-absorb. Back to Figure 3.3, this cycle occurs:

• Level 1. Reify occurs at (3) in the Figure, whereas the interpret occurs from
(2) up to (5) where the absorb occurs.

• Level 2. Reify occurs at (3), while the interpret occurs from (3) up to (4)
where the absorb occurs. Note that the cycle for Level 2 is immerse in the Level
1 cycle.

Step 1 - Reification. The reification of an operation occurrence can be viewed as a
function, reify, that takes an interpreter structure and transforms it into a program
V alue. In order to introduce this function, we will refer to the interpreter structures
as Ielem, where elem is a structure of the interpreter I.

reify : Ielem −→ V alue

For instance, let’s illustrate how the method call operation, represented by the in-
terpreter structure MethodCallE (see Section 3.2.1.2), is reified. The reification of
the operation results in the construction of an object, of class MsgSend, enclosing a
representation of the operation occurrence.

reify(IMsgSend) = objMsgSend

Note that the reification of the operation is not only limited to its static occurrence
at the program text, but also comprises the particular evaluation of the MethodCallE
expression occurring at runtime, within a particular state of the interpreter execution
(see Section 3.3.2.1). The construction of the object representation also requires
the reification of the elements, static and dynamic, that conform the method call
expression, e.g. target method, target class, target object, this object, arguments,
among others. As mentioned in Section 3.3.2.1 structural elements like classes and
methods will be represented as strings, therefore its reification would be:

reify(Iclass) = getClassName(class)
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reify(Imethod) = getMethodName(method)

returning the string values with the names of both elements. Since this and target
are objects, they can be reified as themselves. There is no need to build any special
representation of them.

reify(Iobjtarget) = objtarget

reify(Iobjthis
) = objthis

The arguments that are objects are also reified as themselves, meanwhile the reifica-
tion of the arguments which are primitive values requires boxing them in a wrapper
class.

isObject(pm) ` reify(Ipm
) = pm

isPrimitive(pm) ` reify(Ipm) = ω(pm)

The reification step, besides building the operation occurrence, comprises the pro-
cess of determining which are the links that match the operation occurrence and the
evaluation of the corresponding call descriptors. The call descriptors actually deter-
mine what is the information required by the metalevel and perform the jump to the
metalevel. This process is explained in more detail at the end of this section.

Step 2 - Interpretation. During interpretation, the actions that metaobjects can
take are restricted by the kind of control offered by the links associated to them.
Metaobjects with BEFORE control have access to the reified information. Since the
reified operation is not executed yet, the return value is not accessible. Metaobjects
with AROUND control replace the operation occurrence, therefore they do not only have
access to the reified operation but they can actually perform a completely different
behavior. The proceed mechanism can also be used to invoke the original operation
occurrence. Metaobjects with AFTER control have access to the reified operation
information, including the value returned by the operation.

The property that makes it possible for metaobjects to affect how the operation
occurrences are interpreted is the causal connection as we will see in what follows.

Step 3 - Absorption. Absorption occurs once the metaobject execution ends and
returns the control to the base level. All the changes performed by metaobjects must
be absorbed by the base level, which may directly or indirectly affect its future com-
putation. The interpreter implementation is responsible of assuring that the base
level resumes its execution in the place it interrupted it and that changes done by the
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metaobjects are causally connected with the system 13 14. The way in which absorp-
tion takes place depends on how the execution control is given to the metaobject, i.e.
the control attribute of its link.

• BEFORE Absorb must execute the reified operation after the metaobject ends its
execution. Metaobject changes must be causally connected.

• AROUND Absorb must reinsert the value returned by the metaobject and continue
with the evaluation that follows the reified operation occurrence. Reinserting
the returned value may imply the unboxing of the value. Metaobject changes
must be causally connected.

• AFTER Absorb must continue the evaluation that follows the reified operation
occurrence. Metaobject changes must be causally connected.

Causal connection. The interpreter implementation is responsible for ensuring the
causal connection between the levels of the tower. Causal connection is a bidirectional
property; link implementation ensures that the metalevel is notified when some be-
havior happened at the base level (see Figure 3.4), thus ensuring that the metalevel
is always up-to-date with the execution of the base level. Note that one level can
be at the same time the base level of the level upwards and metalevel of the level
downwards.

metaobject

link

hookset

hook

object

level 0

level 1

level n

level 2

Figure 3.4: Causal Connection

In addition, the implementation must ensure that actions taken by the metaobject
that affect base computation are causally connected with its base level (actually with
the whole system). The actions that a metaobject may carry on affecting the base
computation are:

13Note that absorption is a rather general concept. There are many different ways in which it can
be understood. In this section we give only one vision of the concept, the one that we will follow.

14This assumes that the reified operations will never alter the ”program counter”.
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• Invoke a method of some object reified in the operation occurrence (e.g. this,
target, a parameter value or the return value). Since those objects are reified
as themselves, any change in its state will be causally connected with the base
level.

• Metaobjects with control around may invoke proceed so as to execute the op-
eration occurrence. In addition, they may alter the operation occurrence (e.g.
by changing a parameter value) before proceeding. As we will see in Section
3.3.5.1, each time an operation occurrence is reified a closure function capable
of executing the operation is generated. This closure is responsible for assuring
causal connection in the execution of the proceed expression.

• Metaobjects with control around may change the value returned by an opera-
tion. During the absorption, the implementation assures that the new return
value will be inserted into the base computation, thus causal connection is as-
sured.

• Perform some action that may affect the state of the interpreter, like writing
to the output or creating a new object. Since the interpreter state is shared
among all the interpretation levels of the tower, these changes are trivially
causal connected.

In order to conclude the overview of the machine, we now illustrate in more detail
the activities immersed in the reification of an operation occurrence. As shown in
Figure 3.5, the reification consists of three phases: selection phase, composition phase
and evaluation phase. The portion of the Kernel machine that is responsible for per-
forming these three phases is what we call the Reflective Core, presented in Section
3.3.7. The occurrence of an operation triggers the selection phase (see Section 3.3.7.2)
responsible for checking which links match the operation occurrence. Thus, for each
LinkCallSpec defined in the link, it checks if its hookset matches the operation oc-
currence, which in turn ends up with the evaluation of the corresponding selectors.
If the operation occurrence is not matched by any link, the execution continues nor-
mally, i.e. the occurrence is evaluated without performing the reification. On the
contrary, if one or more links match the operation occurrence the process passes to
the composition phase (see Section 3.3.7.3). The output of the selection phase is a
list of pairs consisting of a Link and a list with the LinkCallSpec that matches.

In the case where more than one link matches a single operation occurrence, there
is a link interaction (see Section 2.4.3) that must be resolved. The composition
phase, based on the composition specification defined by the user15, tries to resolve

15Note that the current implementation of the Kernel machine supports neither interaction se-
lectors, nor ordering and nesting specifications (see Section 2.4.3). It provides a built-in, always
successful, strategy to solve an interaction.
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Figure 3.5: Selection – Composition – Evaluation/Reification

the interaction. If it successfully resolves it, a reification tree is generated, which
describes the precise order, i.e. sequencing and nesting, in which the reifications must
be performed. In the case it fails to resolve the interaction, it reports the problem
to the user. The evaluation phase (see Section 3.3.7.4), based on the reification tree,
performs the actual reifications (i.e. the reifications from the user’s point of view) by
evaluating the call descriptors, always respecting the order specified by the tree.

3.3.4 State Representation

The state of the Kernel machine extends the state of the BASE machine by incorpo-
rating environments for selectors, hooksets, call descriptors and links, along with a
proceed stack. The State data type for the Kernel machine is shown in Listing 3.20.
Since selector functions (see Section 3.3.2.2) are first-class values in the language, the
Value data type is extended to incorporate them. They are represented by the data
type SelFunction consisting of the name of the selector and a list of arguments.

data State = CState Environments Stores Output

data Environments = CEnv VariableEnv ClassEnv SelectorRep HooksetRep

CallDescRep LinkRep ProceedStack

data Stores = CSto ObjectStore

data Value = ... |

ValueSel SelFunction

data SelFunction = CSelFun Name [Value]

Listing 3.20: Kernel Machine State Representation <Haskell Code>

The selector environment (SelectorRep) and the hookset environment (HooksetRep)
contain the selectors and hooksets defined in the program, respectively. The Call-
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DescRep data type, shown in Listing 3.21, represents the environment containing
the defined call descriptors. The call descriptors are represented by the data type
CallDesc, which contains the same information as the CallDescDecl elements of the
AST. The LinkRep represents the environment containing the defined links, which in
turn are represented by the Link data type. The Link consists of the name of the
link, an ObjectID and the binding specification. The ObjectID is the reference to
the metaobject obtained from the execution of the metaobject initialization block,
performed during program loading (see Section 3.3.6).

type CallDescRep = MapGenerator CallDescName CallDescObj

type CallDesc = MapGeneratorPair CallDescName CallDescObj

data CallDescObj = CDesc OperationDecl ParameterDecl ExprBlock

type LinkRep = MapGenerator LinkName LinkObj

type Link = MapGeneratorPair LinkName LinkObj

data LinkObj = CLink ObjectID [LinkCallSpec]

Listing 3.21: CallDescRep and LinkRep Data Types <Haskell Code>

The proceed stack is a structure used for the implementation of the proceed ex-
pression, represented by the ProceedStack data type shown in Listing 3.22. Before
performing the reification of an operation occurrence matched by an AROUND link, the
reflective core pushes a closure into the proceed stack (of type Object -> StEState
Value) and the reference to the operation occurrence object, both encapsulated by
the ProceedClosure data type. The closure is a function built by the reflective core
capable of continuing with the execution of the reification tree (see Section 3.3.3),
which may imply performing other nested reifications or simply executing the origi-
nal operation occurrence. Later, during the execution of the metaobject (associated
to the AROUND link), if a proceed expression is evaluated, the interpreter pops the
closure from the stack, along with the operation, and executes it. Thus, proceeding
with the remaining of the reification tree. Note that a stack (or similar structure) is
required since: nesting relations among AROUND links require many ProceedClosures
coexisting and we may have AROUND links applying over AROUND metaobjects, which
also requires many ProceedClosures coexisting.

In addition, the variable environment is also extended by incorporating location in-
formation, that is to say, when a new method environment is created during program
evaluation, the variable environment also records to which method the environment
corresponds. This information is later used during operation reification, to reify where
the occurring operation takes place.
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type ProceedStack = Stack ProceedClosure

data ProceedClosure = PClosure (Object -> StEState Value) ObjectID

Listing 3.22: ProceedStack Data Type <Haskell Code>

3.3.5 Implementation Strategy

Introducing reflection into the BASE language where a non-reflective interpreter is
available, gives place to various alternatives (see Section 2.4.2 of [Tan04]). The first is
making the interpreter reflective, for instance, following an approach like the one pre-
sented in [DS01]. They propose a generic reification technique that makes it possible
to build, from a non-reflective metacircular interpreter, a specially-tailored reflec-
tive interpreter in which only the required elements are reflective. This technique is
very attractive, since it presents nice properties of completeness and sound semantics.
However we feel that using it would considerably increase the complexity of the imple-
mentation and may affect the original goal of having an implementation that allows
a more simple transmission of the concepts behind the Reflex model. The second
alternative is to use a strategy like the one that Reflex uses, which introduces hooks
in the program code, as the interception and redirection mechanism. This strategy is
rather oriented to compiled languages and is not aligned with our goal of obtaining
a clear semantics of the Reflex model. The third alternative, which is the one that
we shall use, is to modify the interpreter to create the interception mechanisms. This
approach presents the advantage of having direct access to the internal structures of
the interpreter, which provides greater flexibility and expressiveness. These two prop-
erties are of great value, considering that we want to experiment with new extensions
to the Reflex model.

The interception mechanisms are introduced by modifying the pieces of the interpreter
that are responsible for the interpretation of the supported operations. The intercep-
tion for the MsgSend and MsgReceive modifies the interpretation of the MethodCallE
and SuperMethodCallE expressions; the FieldGet and FieldSet modifie the inter-
pretation of FieldGetE and FieldSetE expressions, respectively; and the Instanti-
ation modifies the NewObjectE expression. Note that Instantiation does not reify
the creation of array objects. In order to exemplify how these modifications are actu-
ally done, the changes introduced to the evaluation of the MethodCallE16 expression
by the MsgSend and MsgReceive operations are presented. The presentation is di-
vided in two parts: the first one presents an operational view of the interception code,
whereas the second presents a conceptual view of it, in terms of the concepts discussed

16In order to simplify the presentation, we focus only on the MethodCallE expression, the
SuperMethodCallE expression requires analogous modifications.
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on Section 3.3.3. The modifications introduced by other operations are analogous.

3.3.5.1 Operational View

Listing 3.23 shows the piece of the Kernel machine interpreter responsible for the
MethodCallE expression evaluation. This code incorporates the interception mecha-
nism to the original evaluation code of the BASE machine, presented in Listing 3.9
of Section 3.2.2.3. From the operational perspective, the interception code has the
following responsibilities. The first is creating the operation occurrence object. Since
for the MethodCallE expression there are two different perspectives, namely caller
side (represented by the MsgSend operation class) and callee side (represented by the
MsgReceive operation class), the interception code must create both objects. The
second responsibility is executing the reflective core, which given an operation object,
performs the process selection–composition–evaluation described at the end of Sec-
tion 3.3.3. The third is building a closure that given the operation object executes
the original operation. Finally, the fourth is to handle type boxing and unboxing of
primitive values.

1 case e of

2 (MethodCallE oe n args) ->

3 do ref <- evalExprStEState oe

4 obj <- lookupObjectStEState ref

5 cls <- lookupClassStEState (getObjectClass obj)

6 mth@(Method _ rt _ _ _) <- lookupClassMethodStEState cls n

7 vals <- mapM (\e -> evalExprStEState e) args

8 this <- lookupEnvValueStEState "this"

9 op <- newMsgSendStEState this ref mth vals

10 wVal <- RCore.evalStEState op (msClosure mth)

11 unwrapPrimitiveTypeStEState wVal rt

12 where

13 msClosure mth op =

14 do op ’ <- newMsgReceiveFromMsgSendStEState op

15 RCore.evalStEState op ’ (mrClosure mth)

16 mrClosure mth@(Method _ _ _ xp eb) op =

17 do objR <- lookupObjectFieldStEState op "itsThis"

18 argsR <- lookupObjectFieldStEState op "itsArguments"

19 args <- lookupObjectStEState argsR

20 vals <- unwrapArgumentsStEState (getArrayValues args) xp

21 obj <- lookupObjectStEState objR

22 createMthCallEnvStEState mth vals objR

23 val <- evalBlockStEState eb

24 dropEnvStEState

25 wVal <- wrapPrimitiveTypeStEState val

26 return wVal

Listing 3.23: MsgSend Expression Evaluation <Haskell Code>
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The evaluation of the MethodCallE expression involves the following activities:

• Line 3 to 7. The target object and arguments expression are evaluated, and
the method to be invoked is obtained, just as in the original evaluation code of
BASE.

• Line 8 to 9. The operation object representing the caller side perspective of the
MethodCallE expression evaluation is created, using the function newMsgSend-
StEState. The function receives the reference to the this object (obtained at
line 8), the reference of the target object, the MethodDecl to be invoked and
the arguments’ values of the invocation. Based on this information it instan-
tiates the operation object, preforming the boxing of the arguments when it
corresponds (this is presented in detail in the next section).

• Line 10. The reflective core is notified of the occurrence of the operation.
It receives the operation occurrence object and a closure (msClosure). The
reflective core checks if there are any links that match the occurrence, in which
case it performs the reifications, otherwise it evaluates the closure. The closure is
a function with the type Object -> StEState Value which given an operation
object, evaluates the operation occurrence, thus continuing with the execution.

• Line 13 to 15. The closure msClosure passed to the reflective interpreter does
not evaluate the original operation, but it constructs the operation object repre-
senting the callee side perspective using the newMsgReceiveFromMsgSendStE-
State function. The function receives the MsgSend object and builds the cor-
responding MsgReceive object. Note that the MsgSend object will be passed
by the reflective core, once the execution must continue. The reflective core is
invoked again, passing the new operation object and the actual closure capable
of executing the MethodCallE expression.

• Lines 16 to 26. Defines the closure capable of evaluating the MethodCallE
expression. This closure obtains, from the operation object, the state values
required to perform the invocation (lines 17 and 18), i.e. the target object
and the argument values, and actually executes the method. Note that both
closures receive the method to be invoked, along with the operation object,
thus the method is not looked up again before it is executed. This implies that
dynamic binding is not used (again) in order to determine the method to be
invoked17.

In the case of the MethodCallE expression, the boxing and unboxing may be required
by the arguments of the invocation. The boxing of the arguments is performed once

17Also note that we do not check if the target object supports the method. This check must be
done at runtime, but we leave it out in order to simplify the presentation.
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the operation occurrence objects are created. Later, when the mrClosure is evaluated,
in order to evaluate the operation occurrence, the argument values must be unboxed
(line 20) before actually executing the method. Note that type unboxing requires
the type information of the values, in order to unbox them. The value returned by
the reflective core must also be unboxed (line 11), in order to be reinserted into the
base level interpreter. Since the interception code is the one that has access to the
type information, it is always responsible for handling the unboxing of the values.
Actually, the interception code handles all the boxing and unboxing of the values,
while the reflective core always receives and returns values in the boxed form. Note
that since the mrClosure is meant to be invoked by the reflective core, it must box
the result of the method execution before returning (line 25).

3.3.5.2 Conceptual View

In this section we shall present a conceptual analysis of the interception code of
Listing 3.23 in terms of the concepts of reification, interpretation, absorption and
causal connection, presented in Section 3.3.3.

Reification. The reification function, reify (presented in Section 3.3.3), which trans-
forms interpreter elements into program values is partially implemented by the func-
tion newMsgSendStEState (line 9), responsible for transforming an occurrence of the
MethodCallE expression evaluation into an object representation of it. The class
MsgSend, presented in Section 3.3.2.1, defines the concrete representation used to
represent the expression. Therefore, it determines exactly which information must
be reified by newMsgSendStEState. The information to be reified by the function is
divided in program structures and state structures. The program structures are: (1)
the class and method where the operation occurs, obtained from the variable envi-
ronment (see Section 3.3.4); (2) the target class and the invoked method, obtained
from the target object and the MethodDecl received as a parameter. These program
structures are reified following the guidelines of the function reify: the class structure
is represented by a string value with the name of the class, whereas the method struc-
ture is represented by a string value with the name of the method, a string value with
the return type name and an array of string values containing the names of the types
of the method’s formal parameters. The state structures are: the this object, the
target object and the arguments values; all received as parameters. The object values
are reified as themselves while the primitive values are reified into an object wrap-
ping them. The reification of the MsgReceive operation is analogous to the MsgSend
operation.

Once the operation occurrence object has been constructed, the reflective core is
responsible for determining if a reification must really take place (lines 10 and 15),
i.e. if there is any link interested in the operation occurrence.
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Interpretation. The interpretation is performed when the reflective core is invoked
(lines 10 and 15) and at least one link matches the operation occurrence, thus ex-
ecuting the metaobject(s). In case no links match the MsgSend operation or the
MsgReceive operation, no reification occurs and the mrClosure is evaluated.

Absorption & Causal Connection. The causal connection from the base level
to the metalevel is ensured by the implementation since each time a MethodCallE
expression is evaluated, the reflective core is notified (lines 10 and 15), which in turn
triggers the selection phase in order to perform the reifications of the interested links.
In order to clarify how absorption and causal connection are ensured in the other
direction, let’s base our analysis on the control of the link that may be reified:

• BEFORE. The metaobject shall be executed before the closure execution. There-
fore, any changes that it may have performed over an object, e.g. altering a
property of the target object, shall be directly absorbed by the closure execution,
because the identity property in the reification of objects trivially ensures the
causal connection. Once the metalevel closure is evaluated, the changes made
to the target object (obtained from the operation at line 17) will be reflected.

• AROUND. The metaobject replaces the occurrence of the operation, thus the orig-
inal operation shall be only executed if the metaobject uses the proceed ex-
pression. If the metaobject uses the proceed expression, the causal connection
is assured by the closure passed to the reflective core, capable of executing the
operation occurrence. Note that changes made to the operation by proceed are
reflected in the execution of the closure (lines 17 and 18)18. In addition, the
value returned by the metaobject shall be absorbed by the base level interpreter
(lines 10 and 11), which must unbox it before reinserting it in the interpreter.
Also, the identity property of the reification of objets, assures that any other
changes made to other objects by the metaobject are causally connected with
the base level.

• AFTER. The metaobject shall be executed after the closure execution, thus hav-
ing access to the result of the computation. The changes performed by the
metaobject, over some property of the result object or any other objects shall
be causally connected with the base level (because of identity property), and
shall be absorbed by it. The changes over properties of the result value shall
be absorbed at lines (10 and 11), since they will be visible when the value is
reinserted.

Also note that the interception code ensures, by construction, that the base level
interpretation resumes the evaluation at the place where it was interrupted.

18In the case of Reflex, the causal connection on the invocation to proceed is ensured by the Java
Reflection API, since Reflex uses Java reflection to implement the execution of the original operation.
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3.3.6 Program Evaluation

The program evaluation for the Kernel machine is essentially the same as for the
BASE machine (see Section 3.2.2.2). The only differences rely on how the program is
loaded and in the initialState used to evaluate the program.

Loading a Kernel program requires loading the classes (including metaobject classes),
selectors, hooksets, call descriptors and links. The classes are loaded in the same
way as for the BASE machine (see Section 3.2.2.2). The other four constructs are
loaded by registering them in their corresponding environment. In addition, primitive
hooksets and links require using the expression evaluator to evaluate the arguments
of the selector application and the metaobject initialization block, respectively. For
instance, consider the following primitive hookset

hookset %hsWithArgs using {%withArgs(new String[]("int", "int"))}

It selects the operations that have a specific list of parameter types, which is specified
by giving an array with the type names. During program loading, the array instanti-
ation expression is evaluated and the selector function (i.e. SelFunction, see Section
3.3.4), which corresponds to the selector application, is created. The links are loaded
by first evaluating their metaobject initialization block, thus obtaining the reference
to the metaobject, and then creating the correspondent Link which is registered into
the LinkRep environment.

The metaobject initialization block and the arguments of the selector applications are
evaluated with a non-reflective expression evaluator, which means that no operation
reification is performed during its evaluation. The decision of not using the reflective
interpreter is based on assuring that links do not accidentally interfere with each
other, during the program loading. See Section 3.3.7.1 for a detailed explanation of
the reflective and non-reflective evaluators.

The initialState now incorporates a new empty environment for each of the new
environments and an empty proceed stack. The initial class environment, besides
containing the Object class, now also contains the wrapper classes for each primitive
type. Those classes are Integer, Bool, String and Selector.

3.3.7 Reflective Core

The reflective core is notified by the interception code (see Section 3.3.5) when an
operation occurs, receiving the operation occurrence object and a closure capable
of executing the operation occurrence, and is responsible for performing the actual
reification (if it corresponds), that gathers the required information and invokes the
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metaobject. As introduced on Section 3.3.3, performing the reification involves a
process of selection–composition–evaluation. In case there are no links that match
the occurrence, there is no need to perform a reification, thus the closure is evaluated
as to continue with the normal flow of the base level interpreter.

Before presenting the details of each of the phases involved in the reflective core, we
shall review some circularity issues present in most implementations of languages that
incorporate reflective mechanisms, along with its solutions. Since the Kernel machine
is not an exception, we analyze the issues that affect its implementation, along with
its solution.

3.3.7.1 Dealing with circularity

Incorporating reflection into a programming language has the consequence that some
circularities appear in its design and implementation. For example, consider Java
structural reflection, where classes are represented by Class instances. Note that the
class Class is an instance of itself, revealing a circularity. This kind of circularity
is commonly known as a bootstrapping issue and is resolved by creating the Class
instance before the interpreter starts running, in an ad-hoc way, see Appendix C
of [KRB91]. The concept of reflection is inherently circular, therefore, even though
the circularity problems may be annoying, we must live with them. However, these
circularities must be eliminated at the implementation level.

The Kernel machine does not have any bootstrapping issues, however it has another
kind of circularity problem known as metastability issue [KRB91]. Metastability issues
occur when some part of the implementation depends on itself, directly or indirectly,
without base cases, thus conforming a non-well-founded recursion path. For exam-
ple, in the Kernel machine this problem arises during selector evaluation. When an
operation occurs, the Kernel would evaluate all the links to check if they match the
operation occurrence. The evaluation of a link implies the evaluation of its hooksets,
which in turn requires the evaluation of the selection predicates. Since the evalua-
tion of a selection predicate may imply the occurrence of another operation (because
selection predicates are expressed using language expressions), this evaluation may
end in an infinite loop. As explained in [KRB91] this kind of circularities are usually
solved by braking the loop at the implementation level.

This problem is solved by using a non-reflective version of the expression interpreter
in order to evaluate the selection predicates. By non-reflective we mean that it does
not reify any operation occurrence. This is aligned with the way in which Reflex
works, since it does not reify the operations occurring inside: the class and operation
selectors, restrictions and activation conditions. In addition, Reflex also does not reify
any of its instrumentation code, therefore metaobject initialization code and the call
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descriptor generated code are neither reified. Although the metaobject initialization
and the call descriptors do not constitute a metastability issue, we will not reify them
in order to be fully aligned with Reflex.

In Reflex, not reifying the call descriptor only implies ignoring its code. In the Kernel
machine, because of the strategy that we follow to implement hooks, i.e. modifying
the interpreter implementation (see Section 3.3.5.1), we need to know when we must
switch back to the reflective interpreter. Note that if we interpret all the expressions
in the call descriptor with the non-reflective interpreter the metaobjects would also be
interpreted with it. Consequently, the tower would only have a maximum of two levels.
The switch strategy that we use is aligned with how Reflex does it. The first operation
that Reflex reifies upon a reification is the MsgReceive operation, corresponding to
the invocation to the metaobject method. In order to implement this we define
the data type SwitchOn, shown in Listing 3.24 which defines two switch strategies:
NotSwitch which never switches to the reflective interpreter, used for metaobject
initialization and selector evaluation, and the ObjectAccess strategy which switches
when the object referenced by the Value is accessed. Note that evalExprStEState
and evalBlockStESTate receive the switch strategy as a parameter. Therefore, when
the non-reflective interpreter is interpreting a call descriptor it will switch to the
reflective interpreter when the invocation to the metaobject is performed, while the
rest of the expressions are not reified.

data SwitchOn = NotSwitch |

ObjectAccess Value

evalBlockStEState :: SwitchOn -> ExprBlock -> StEState Value

...

evalExprStEState :: SwitchOn -> Expr -> StEState Value

...

Listing 3.24: Non-Reflective Interpreter <Haskell Code>

There is another metastability issue in the Kernel machine that arises during the
creation of an operation. Since operations are objects and object creation operation
is reified, if we reify the operation occurrence object creation it would always end
in a loop. As shown in Section 3.3.5.1 this issue is solved by taking a shortcut in
the creation of those instances; not using language expressions to do so, but directly
creating the instances in the interpreter interns. A more thorough discussion of the
problems associated with implementing reflective languages can be found in [dRS84].
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3.3.7.2 Selection Phase

The selection phase involves finding those links that match a given operation occur-
rence. A link matches an operation occurrence if at least one of its LinkCallSpec
matches it, i.e. its associated hookset matches the operation occurrence. The func-
tion collectLinksStEState, shown in Listing 3.25, collects the Links that match
the operation occurrence received as a parameter, along with the list of LinkCallSpec
matched for each Link. Since more than one LinkCallSpec may match for a given
Link and Control, only the first LinkCallSpec of each Control is matched (follow-
ing the lexical order of definition). Therefore, the list of LinkCallSpec may have at
most three elements, corresponding to the three Control values.

The hookset associated to a LinkCallSpec is evaluated using the function evalHook-
setStEState. In the case of a primitive hookset, it evaluates its selector using
evalSelectorStEState.

For a composite hookset, the union and intersection operators are evaluated using the
|| and && logical operators, respectively, to combine the results of the evaluation of
its components, and the complement operator is evaluated by using the ! operator
to negate the result of the evaluation of its component.

collectLinksStEState :: Object -> StEState [(Link , [LinkCallSpec ])]

...

evalHooksetStEState :: Object -> HooksetName -> StEState Bool

...

evalSelectorStEState :: Object -> SelFunction -> StEState Bool

...

where

nonReflectiveExpr = evalBlockNRStEState newNotSwitch

Listing 3.25: Selection Phase <Haskell Code>

The evalSelectorStEState function receives the operation object and the selector
to be evaluated and proceeds as follows:

• It checks if the type of the operation occurrence is compatible with the operation
type expected by the selector. If an incompatibility is detected, the selector does
not match the operation occurrence.

• It creates a variable environment holding the operation occurrence and the
selector parameters (if any). Note that the selector parameters were evaluated
during program loading, see Section 3.3.6.
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• It evaluates the selection predicate. Note that as explained in Section 3.3.7.1,
the non-reflective version of the expression interpreter must be used to evaluate
the selection predicate, in order to avoid metastability issues. Therefore, the
evaluation is performed using the evalBlockNRStEState interpreter with the
NotSwitch strategy, since none of the expressions in the selector predicate must
be reified. The interpreter returns to the reflective mode, once the evaluation
of the selector predicate ends.

• Finally, it returns the result of the selection predicate evaluation.

3.3.7.3 Composition Phase

As explained in Section 2.4.3, Reflex provides two mechanisms, interaction selectors
and composition rules, to specify how a link interaction must be resolved. The imple-
mentation of those mechanisms in the Kernel machine is left as future work. However,
the current implementation provides a simple built-in strategy to solve a link inter-
action. The concept of link element (presented in Section 2.4.3) is represented, in
the Kernel machine, as a pair (Link, LinkCallSpec). Note that the input to this
phase is a list of (Link, [LinkCallSpec]), where a given Link may have at most
one LinkCallSpec associated for each control value. In other words, list of (Link,
[LinkCallSpec]) gives for each Link the list of link elements that apply. The strat-
egy is simple: first perform the reifications of all the BEFORE link elements, followed
by the sequential reification of all the AROUND link elements and finally the reification
of all the AFTER link elements. The three sequential lists of reifications respect the
lexical order in which the links are defined.

The built-in strategy makes use of a tree like structure, the so-called reification tree,
to express the order in which the reifications must occur. Later, in the evaluation
phase (see next section), this structure is evaluated in order to build the computation
associated with the reification of the current operation occurrence. Even though the
built-in strategy does not make use of nesting, the reification tree allows to express
nesting relations and the evaluation phase is able to evaluate them. This design
decision is meant to simplify the future extensions made to the Kernel machine to
include support for composition rules’ specification.

The reification tree structure is represented by the data type ReifTree, shown in
Listing 3.26. A ReifTree is conformed by nodes, where each node may contain
an arbitrary number of child nodes. A node is associated to a LinkElement which
represents the reification that must be performed by the node. The LinkElement
data type, represents either a link element (LnkElem), whose control is given by its
LinkCallSpec, or represents a null link element (LnkElemNone). The nodes represent
link elements that can nest other link elements, thus the link element associated to a
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node must be either a link element with AROUND control or a null link element. The
link elements that are nested inside a node are: a list of LinkElement with BEFORE
control, a list of child nodes containing link elements with AROUND control (possibly
nesting other link elements) and a list of LinkElement with AFTER control. The root of
the tree can be an AROUND node nesting all the other reifications in the link interaction
or a node with a null link element which acts as a mere container of its nested link
elements.

data ReifTree = RNode LinkElement [LinkElement] [ReifTree] [LinkElement]

data LinkElement = LnkElem Link LinkCallSpec | LnkElemNone

Listing 3.26: Reification Tree Structure <Haskell Code>

In order to illustrate how the reification tree can be used to express the solution
to a link interaction, Figure 3.6 presents five interaction scenarios, along with an
explanation of how they can be successfully resolved using the primitive composition
operators ord and nest. For each scenario we show how a reification tree is built to
represent the solution. Note that bex, arx and afx represent the BEFORE, AROUND and
AFTER link elements of link lx, respectively.

(1) There are two links, l1 and l2, with BEFORE control. Using the ord operator,
the order between its be link elements is specified. The resultant tree is a single
node tree with a null link element associated and it has the two be link elements
in its list of nested BEFORE link elements (respecting the specified order). The
op following the curved arrow represents where the occurring operation shall be
evaluated during the reification tree evaluation.

(2) Now an additional AFTER link element is added to l1 and also an additional
link is added, l3, with AFTER control. Again, using the ord operator, the order
between the be elements and the af elements is specified. The resultant tree is
analogous to the previous but it has the two new af link elements in its list of
nested AFTER link elements (respecting the order).

(3) Now two additional links are added, l4 and l5, with AROUND control. In this
case, suppose that the interaction is resolved only by using the ord operator,
thus the link elements of the previous scenarios keep their order and the order
between two new ar link elements is specified. The resultant tree is analogous
to the previous but now the root node has two child nodes, one for each ar
(respecting the specified order). Both new nodes have no nested link elements.

(4) Now suppose that the composition specification of the previous scenario is
changed and the link elements be2, ar5 and af3 are nested within ar4. The
tree for this scenario has three nodes. The root node contains the be1 (resp.
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af1) in its list of nested BEFORE (resp. AFTER) link elements and has one child
node for ar4. The node corresponding to ar4 contains the be2 (resp. af3) in
its list of nested BEFORE (resp. AFTER) link elements and a child node for ar5,
which in turn does not nest any link element.

(5) The last scenario assumes a specification where the link elements ar4 and ar5

are in sequence. The former nests the two link elements of l1, while the latter
nests those of l2 and l3. The resultant tree has three nodes again. The root
node only nests its two child nodes, whereas the nodes for ar4 and ar5 nest the
correspondent be and af link elements in its lists of nested BEFORE and AFTER
link elements, respectively.

[be ,be ]1 2

op

[ ]be ,be1 2

op

[af ,af ]1 3

[ ]be ,be1 2

op

[ ]af ,af1 3

ar4

[be ]1

op

[af ]1

ar4

[be ]2

[af ]3

ar5

opar4

[be ]1

[af ]1

ar5

[be ]2

[af ]3

op

(1) (2) (3) (4) (5)

ar5 op

Figure 3.6: Link Interaction Scenarios

Although the reification tree is meant to express the order in which a link interaction
is reified, a reification tree is also built in the cases that only one link matches. This
allows the evaluation phase always receive a reification tree, independently of the
number of links.

3.3.7.4 Evaluation Phase

The evaluation phase is responsible for the evaluation of the ReifTree produced by
the composition phase. As a result, it will perform all the reifications specified in the
tree, respecting the order and nest relations among them. Performing a reification
implies gathering the information that must be actually reified, based on the call
descriptor specification, and jumping to the metalevel by invoking the metaobject.

The evaluation of the ReifTree is built on top of three lower level functions: rfySim-
pleStEState, rfyNestStEState and rfyOrdStEState. The first function performs
a simple reification, i.e. reification with BEFORE and AFTER controls, where nesting
relations are not present. The second function is meant to reify the nodes of the
ReifTree where nesting relations are present. The last function allows to reify an
ordered list of reifications which can be formed by simple or nested reifications. Note
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the parallel between the rfyNestStEState and rfyOrdStEState functions with the
two composition operators, ord and nest.

The rfySimpleStEState function is shown in Listing 3.27. Its input is the LinkEle-
ment to be reified along with the operation occurrence object. The function obtains
the reference to the metaobject associated to the link and retrieves, from the state,
the call descriptor associated to the LinkCallSpec. Then it invokes reifyStEState
which actually performs the reification by evaluating the call descriptor expression
block. We will delay the presentation of reifyStEState until the end of this section.
Note that rfySimpleStEState always returns an empty result (i.e. ()), since BEFORE
and AFTER reifications are expected to do so.

rfySimpleStEState :: LinkElement -> Object -> StEState ()

rfySimpleStEState (LnkElem l (LCallSpec _ ctl cdn)) op

| ctl == CBefore || ctl == CAfter =

do cd <- lookupCallDescStEState cdn

reifyStEState (getLinkMO l) (getElementData cd) op

return ()

Listing 3.27: Simple Reifications <Haskell Code>

The rfyNestStEState function is shown in Listing 3.28. In addition to the LinkEle-
ment and the operation object, this function receives a closure function (see Section
3.3.4) which will be executed if the metaobject calls proceed. The closure encapsu-
lates the evaluation of all the reifications nested within the reified node (remember
that AROUND reifications are always represented as a node of the ReifTree), or in
the case no reification is present it encapsulates the execution of the operation oc-
currence. The behavior of rfyNestStEState is very similar to rfySimpleStEState
except that the nesting requires pushing and popping the closure from the proceed
stack before and after performing the reification, respectively. The proceed closure is
built using the function newPClosure passing the received closure and the reference to
the occurring operation. In addition, AROUND reifications expect that the metaobject
returns a value which would replace the value returned from the operation occurrence
execution. Therefore, the value returned by reifyStEState is kept and returned as
the result rfyNestStEState. The relation between the rfyNestStEState and the
evaluation of the proceed expression is presented in the next section.

The rfyOrdStEState function is shown in Listing 3.29. It receives a list of reifications
with the corresponding reification function, rfySimpleStEState or rfyNestStE-
State19, and the operation object. Since these functions actually return different
types of values, () and Value respectively, the rfyOrdStEState function is defined
as polymorphic in the returned value. The monadic map function, mapM, is used in

19Note that the closure parameter must be bound before invoking rfyOrdStEState.
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rfyNestStEState :: (Object -> StEState Value) -> LinkElement ->

Object -> StEState Value

rfyNestStEState clo (LnkElem l (LCallSpec _ CAround cdn)) op =

do pushClosureStEState (newPClosure clo (getObjectReference op))

cd <- lookupCallDescStEState cdn

val <- reifyStEState (getLinkMO l) (getElementData cd) op

popClosureStEState

return val

Listing 3.28: Nested Reification <Haskell Code>

order to perform the reification sequentially, which produces a list with the result of
each reification. The strategy followed after the evaluation of a list of AROUND reifi-
cation is to return the last value. Note that in the case of rfySimpleStEState the
returned value is always empty.

rfyOrdStEState ::[( LinkElement , (LinkElement ->Object ->StEState a))]->

Object -> StEState a

rfyOrdStEState xr op = do xResult <- mapM reify xr

return (last xResult)

where

reify (r, rfunc) = rfunc r op

Listing 3.29: Ordered Reification <Haskell Code>

The closure of an AROUND node is generated by the function genClosureStEState,
shown in Listing 3.30. The function receives the three branches of the node and the
operation occurrence closure, and generates the closure using currying. The function
processes the three reifications in order using rfyOrdStEState: first it processes the
list of BEFORE reifications (lines 5 and 10), then the list of AROUND nodes (lines 6, 11
and 13 to 17) keeping the result in val and finally the list of AFTER reifications (lines
7 and 12). Finally it returns the val value. The function defined in line 11 is respon-
sible for building the appropriate list of AROUND reifications for rfyOrdStEState. It
applies the decomposeNest function to all the ReifTree of the list of AROUND nodes,
which generates a list of pairs where the first element is the actual reification in the
node and the second element is rfyNestStEState function properly bound to the
closure. In order to generate the closure for each of the AROUND nodes it invokes
itself recursively. The setResultStEState function, used at line 17 and defined at
lines 19 to 23, encapsulates the logic of registering the result of the closure execution
in the operation occurrence result field. Thus, it receives a closure and generates
(using partial application) another closure which executes it and updates the field.
In case the list of AROUND nodes is empty, the operation occurrence closure must be
executed. The function chkEmpty, used in line 6 and defined in lines 13 and 14, create
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a pair with the LnkElemNone link element and a function that executes the closure,
executeClosureStEState, when the list is empty.

1 genClosureStEState ::[ LinkElement] -> [ReifTree] -> [LinkElement] ->

2 (Object -> StEState Value) ->

3 Object -> StEState Value

4 genClosureStEState xbe xar xaf clo op =

5 do rfyOrdStEState rxbe op

6 val <- rfyOrdStEState (chkEmpty rxar) op

7 rfyOrdStEState rxaf op

8 return val

9 where

10 rxbe = map (\r -> (r, rfySimpleStEState )) xbe

11 rxar = map decomposeNest xar

12 rxaf = map (\r -> (r, rfySimpleStEState )) xaf

13 chkEmpty [] = [( LnkElemNone , (executeClosureStEState clo))]

14 chkEmpty xar = xar

15 decomposeNest (RNode rf xbe xar xaf) =

16 (rf , rfyNestStEState

17 (setResultStEState (genClosureStEState xbe xar xaf clo )))

18
19 setResultStEState ::( Object ->StEState Value)->Object ->StEState Value

20 setResultStEState closure op =

21 do result <- closure op

22 updateObjectFieldStEState op "itsResult" result

23 return result

Listing 3.30: Closure Generation <Haskell Code>

The function responsible for the evaluation of the ReifTree is rfyTreeStEState,
shown in Listing 3.31. The function is divided in two cases which corresponds to:
a tree where the root node does not perform any reification and a tree where the
root node perform an AROUND reification. The former is reified by generating the
closure and evaluating it by passing the operation object. The latter also generates
the closure, but it nests it in the AROUND reification using rfyNestStEState.

rfyTreeStEState :: (Object -> StEState Value) -> ReifTree ->

Object -> StEState Value

rfyTreeStEState clo (RNode LnkElemNone xbe xar xaf) op =

(genClosureStEState xbe xar xaf clo) op

rfyTreeStEState clo (RNode rf xbe xar xaf) op =

rfyNestStEState (setResultStEState clo ’) rf op

where

clo ’ = genClosureStEState xbe xar xaf clo

Listing 3.31: ReifTree Evaluation <Haskell Code>

Now that the evaluation of the ReifTree has been presented, the presentation of the
reifyStEState function remains and is shown in Listing 3.32. The function receives
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the metaobject, the call descriptor and the operation object, and performs the actual
reification by evaluating the call descriptor’s expression block. The expression block
is evaluated using the non-reflective expression evaluator, see Section 3.3.7.1. The
evaluation is done using the ObjectAccess switch condition, where the object is
the metaobject at the metalevel. Therefore, when the metaobject is invoked, the
evaluation is switched back to the reflective interpreter. Note that before evaluating
the expression block, a variable environment is created, containing the bindings for
the metaobject and the operation occurrences, using the appropriate names defined
in the call descriptor.

reifyStEState :: Value -> CallDescObj -> Object -> StEState Value

reifyStEState mo (CDescriptor (Parameter _ on)

(Parameter _ mon) eb) op =

do env <- getVarEnvStEState

setVarEnvStEState (makeMemberEnv LNone emptyBinds env)

insertEnvStEState mon mo

insertEnvStEState on (getObjectReference op)

val <- nonReflectiveExpr eb

dropEnvStEState

return val

where

nonReflectiveExpr = evalBlockNRStEState (newObjectSwitch mo)

Listing 3.32: Reification Function <Haskell Code>

3.3.7.5 Proceed Evaluation

As mentioned in the previous section, before an AROUND metaobject is evaluated, the
proceed stack contains the appropriate proceed closure (rftNestStEState ensures
this) which once evaluated, continues with the reifications that may be nested within
the metaobject or if there are not reifications left, it evaluates the original operation
occurrence. Listing 3.33 shows the code responsible for the evaluation of a proceed
expression that modifies the current operation before proceeding.

The evaluation of proceed performs the following activities. Firstly, the proceed
closure is popped from the proceed stack (line 3). Then the expression block associated
to the proceed expression is evaluated (lines 5 to 9). This implies the creation of a new
variable environment holding the implicit variable oper (see Section 3.3.2.6), which
has the reference to the current operation occurrence (lines 5 to 7). This reference
is obtained from the proceed closure. Once the environment has been created, it
evaluates the associated expression block (line 8), which may or may not modify
the current operation. Finally, at line 11, the closure gets executed by passing the
operation object obtained at line 10. Since the expression block may have changed the
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1 case e of

2 (ProceedE eb) ->

3 do pc <- topProceedStackStEState

4 opCpy <- lookupObjectStEState (getPClosureOper pc)

5 env <- getVarEnvStEState

6 setVarEnvStEState (makeLocalEnv LNone emptyBinds env)

7 insertEnvStEState "oper" operationType (getPClosureOper pc)

8 evalBlockStEState eb

9 dropEnvStEState

10 op <- lookupObjectStEState (getPClosureOper pc)

11 val <- (getPClosure pc) op

12 updateObjectStEState opCpy

13 return val

Listing 3.33: Proceed Expression Evaluation <Haskell Code>

operation occurrence, the metaobject that gets executed by the closure shall see those
changes. In Reflex, the changes made to the operation occurrence using proceed must
only be visible for those metaobjects nested inside the underlying AROUND metaobject.
Therefore, line 4 makes a copy of the the current operation before evaluating the
proceed’s expression block. Such a copy is later used at line 12, in order to restore
the operation original state once the proceed closure has been evaluated. By doing so,
the changes made by the proceed’s expression block shall only be visible inside the
closure. Note that only the changes made to the operation occurrence object (i.e. field
modifications) are indeed preserved. In case the proceed’s expression block performs
modifications to the state of the elements that conform the operation occurrence
(e.g. changing a property of the this object), those modifications shall be permanent.
Therefore, any metaobject executed after those changes have been made would see
them.

3.3.7.6 Limitations

In the current state of the implementation of the Kernel machine, the selectors are
evaluated only once, at the beginning of the reification process, generating the col-
lection of links used to build the reification tree and perform the reifications. This
behavior imposes some limitations on how links may interact upon the occurrence of
an operation, because the modifications performed by the metaobject of a link that
is evaluated first may affect the applicability of those links that are evaluated later.
As a matter of fact, as a consequence of those modifications some links may come out
and some links may come in of the initial collection of links that apply. For instance,
consider the following scenarios:

• There are two links, Lar with AROUND control and Lbe with BEFORE control,
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and Lbe is nested inside Lar. The proceed expression used by the metaobject
associated to Lar modifies some value of the operation occurrence and as a result
Lbe is not applicable any more.

• There are two links Lbe1 and Lbe2 . The selector of the link Lbe2 depends on the
value of a property (aProp) of the this object to match the operation occurrence.
Meanwhile the metaobject associated to Lbe1 modifies the property aProp. Orig-
inally Lbe1 matches the operation occurrence and Lbe2 does not match it because
the property does not have the required value, however, once the metaobject of
Lbe1 is executed it sets the appropriate value.

The current implementation does not consider possible implicit dependencies that can
be set between the links interacting at a given operation occurrence. For instance, in
the first scenario there is an implicit dependency between the links Lar and Lbe, in the
sense that the changes that Lar performs determines the applicability of Lbe. Similarly,
in the second scenario where the application of Lbe2 depends on the modification done
Lbe1 .

A possible solution to this issues may consist of extending the selector construct
to provide two different type of conditions. One condition to be evaluated before
composition takes place, that is to say, the type of selection provided by the current
implementation. And another condition to be evaluated after composition takes place,
just before its associated link is actually reified. For instance, consider the extended
selector defined in Listing 3.34. This type of selector can be used in the definition
of link Lbe2 of the second scenario, in order to solve the issue there presented. The
selector initially matches all the occurrences of operations inside the Point class, and
it delays the check of the property value until the reification is about to be performed.
Therefore, the associated link will be initially included in the list of selected links,
and finally would be applied only if its postComposition condition is fulfilled.

selector %selPointAt(int #aXVal ){

on Operation #op ,

when

preComposition { #op.getWhereClass () == "Point"; }

postComposition {

if (#op.getThis () instanceOf Point) then {

(Point )#op.getThis ()). getX() == #aXVal;

} else {

False;

};

}

}

Listing 3.34: Selector Declaration Extension <Kernel Code>
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This type of selector allows to define weaker conditions in order to decide if the link
must be initially included into the reification tree. Those conditions usually depend
on the static information of the operation occurrence, which cannot be altered by
metaobjects. Those parts of the condition that indeed depend on dynamic information
and whose results may be affected by changes done by other metaobjects, are checked
by the postComposition condition20.

In depth study of this limitation and the elaboration of a solution for it are left as
further work.

20Note that this approach is similar to the one currently used by Reflex, having hooksets that
check on the static occurrence of the operations and restrictions that further refine the selection by
checking on the dynamic occurrence.



Chapter 4

Modeling the Pointcut and
Advice Machine

This chapter presents the development of a machine that characterizes the AspectJ ap-
proach to AOP. This machine is used to give an operational semantics to the Pointcut
and Advice (PA) language, which is an aspect-oriented extension to BASE. The PA
language embeds the core constructions of AspectJ’s dynamic crosscutting mecha-
nism. The PA and Kernel machines together provide a concise theoretical framework
to study how the Reflex AOP kernel can provide semantics to AspectJ. Furthermore,
the comparison between the two machines reveals the abstraction gap that exists
among them and points out the problems that a compiler, from the PA language to
the Kernel language must deal with. In addition, having both machines permits to
test such a compiler using the Reflex Sandbox testing environment.

This chapter is organized as follows. Section 4.1 further motivates and presents the
subset of the AspectJ language included in the PA language. Section 4.2 presents the
concrete and abstract syntax of the PA language. Finally, Section 4.3 presents the
design and implementation of the PA machine.

4.1 Introduction

The Aspect Sandbox project (see Section 2.2.2.1) in its quest for a better understand-
ing of the semantics of aspect-oriented languages, has studied the join point model
used by AspectJ’s dynamic crosscutting mechanism, the so-called pointcut and ad-
vice model. In order to expose the semantics of this model, the ASB has designed

105
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a tiny aspect-oriented language, the PA language, and its correspondent interpreter
(in Scheme) that gives an operational semantics to the language. The PA language
has sufficient features to faithfully represent the AspectJ approach to AOP. Inspired
on this language, an aspect-oriented extension to the BASE language (see Section
3.2.1) has been designed. This extended language, which is also called PA language,
incorporates all the aspect-oriented constructs of the ASB’s PA language. Those
constructs are1:

• Pointcut Definition. The pointcut designators for most relevant join point
kinds have been included, namely call, execution, get, set, instantiation
and aexecution (advice execution). In addition, context exposure specification,
PCDs combinators, control-flow PCDs and user-defined PCD are supported.

• Advice Definition. The three fundamental advice kinds are supported, namely
before, after and around. The use of the proceed expression (including context
modification) within an around advice is also supported.

Note that advice precedence2 is out of the scope of the PA language. Therefore, upon
an advice interaction, the order in which advices are executed shall be determined by
an ad-hoc strategy. In addition, neither the aspect construct nor pattern-based PCD
definition are supported by the PA language.

4.2 Language Syntax

The syntax of the language is presented via the description of its abstract and concrete
syntax. The abstract syntax is presented in terms of Haskell’s algebraic types. The
concrete syntax shall be briefly introduced through an example. For a complete
formulation of the PA language syntax see Appendix B.

4.2.1 Abstract Syntax

The language incorporates two new class-level constructions: the pointcut definition
and the advice definition. A PA Program is a list of definitions with no particular
order, see the Listing 4.1.

These two new constructions are presented in the following two sections.
1Actually, various of the features here mentioned (e.g. advice-execution join point kind, proceed

with context modification), are actually not available in the implementation of the ASB, available
online at [asb], but are mentioned in the papers related to the ASB [WKD04].

2Actually, in AspectJ it is called aspect precedence.
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type Program = [Definition]

data Definition = ClassDef ClassDecl |

PointcutDef PointcutDecl |

AdviceDef AdviceDecl

Listing 4.1: PA Language Programs <Haskell Code>

4.2.1.1 Pointcut Definition

A pointcut definition consists of a name, a list of parameters and a pointcut designator
(PCD). See Listing 4.2. A pointcut defines a new user-defined pointcut designator. The
PCD specifies the set of join points that the pointcut selects. The list of parameters
are the data that the pointcut exposes from the execution context of its selected join
points. The PCD also specifies the binding between the selected join points data and
the pointcut parameters.

data PointcutDecl = Pointcut Name [ParameterDecl] PCD

Listing 4.2: Pointcut Declaration <Haskell Code>

The Listing 4.3 shows the primitive PCDs and combinators provided by the language.
Each of the first six PCDs match join points of a particular kind, which are method-
call, method-execution, advice-execution, object-instantiation, field-get and field-set,
respectively. These PCDs are commonly known as kinded PCDs. Each of them im-
poses restrictions over the specific join point kind. Note that we do no provide support
for patterns in pointcut definitions. The CWithinPCD and MWithinPCD allow to match
join points inside a particular class and method, respectively. The ThisPCD binds
the current executing object to the specified parameter, imposing the restriction that
the object must be an instance of the parameter type. The TargetPCD is analogous
but for the target object. The ArgsPCD binds the join point arguments to specified
parameters, imposing that each argument must be compatible with the correspondent
parameter type.

The NamedPCD allows to reference a user-defined PCD, binding each parameter. The
types of the correspondent parameters must be equal. The CFlowPCD and CFlowBelow-
PCD are context sensitive PCDs, they impose control flow restrictions over the join
point. The AndPCD, OrPCD and NotPCD are logical operators to combine or negate
PCDs.
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data PCD = MCallPCD ReturnType MethodName [Type] |

MExecPCD ReturnType MethodName [Type] |

AExecPCD |

NewPCD ClassName |

FGetPCD FieldName |

FSetPCD FieldName |

CWithinPCD Type |

MWithinPCD MethodName |

ThisPCD ParameterName |

TargetPCD ParameterName |

ArgsPCD [ParameterName] |

NamedPCD Name [ParameterName] |

CFlowPCD PCD |

CFlowBelowPCD PCD |

AndPCD PCD PCD |

OrPCD PCD PCD |

NotPCD PCD

Listing 4.3: Pointcut Designator Language <Haskell Code>

4.2.1.2 Advice Definition

The language provides support for Before, Around and After advices, see Listing
4.4. Each advice must be bound to a pointcut, which can be defined inline or using
a named pointcut, specifying at which join points the advice must be executed. The
pointcut must also bound all the advice parameters. The expression block of each
advice, the so-called body of the advice, expresses its behavior.

data AdviceDecl = Before [ParameterDecl] PCD ExprBlock |

Around ReturnType [ParameterDecl] PCD ExprBlock |

After [ParameterDecl] PCD ExprBlock

Listing 4.4: Advice Definition <Haskell Code>

Before and After advices cannot return any value, while Around advices can. The
return type of an Around advice must be compatible with the value returned by each
of the join points that the associated pointcut may match. The body of an Around
may make use of the proceed expression3, which executes the computation of the
original join point. The proceed expression takes as its arguments the arguments
of the underlying Around advice, and returns whatever type the Around advice is
declared to return.

3The action language of BASE is extended with the new expression ProceedCallE

[ArgumentExpr].
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4.2.2 Concrete Syntax Example

The example shown in Listing 4.5 illustrates the pointcut and advice definition con-
crete syntax. The example is based on the Shape Editor example presented in Section
2.4.2.1. The concrete syntax of the language is similar to the one of the AspectJ
language. Pointcuts are defined using the keyword pointcut along with its name,
parameters and body. The addShape pointcut selects the executions of the method
addShape inside the class Composite. The addPoint pointcut combines the addShape
pointcut with the args PCD, thus selecting only the executions that add a Point and
also exposing the Point as a pointcut parameter. The moveXY pointcut selects all the
invocations to the method moveXY, exposing their arguments and the target Shape.
The last pointcut definition selects all the executions of the method moveXY within
the class Composite.

pointcut addShape (): execute(void addshape(Shape)) &&

within(Composite );

pointcut addPoint(Point #aPoint ): addShape () && args(# aPoint );

pointcut moveXY(int #aX , int #aY, Shape #aShape ):

call(void moveXY(int ,int)) &&

args(#aX, #aY) && target (# aShape );

pointcut compositeMoveXY ():

execute(void moveXY(int ,int)) && within(Composite );

after(Point #aPoint ): addPoint (# aPoint) {

write "The point" ++ $#aPoint ++ " was added to a composite.";

}

void around(Shape #aShape , int #aX , int #aY):

moveXY (#aX, #aY , #aShape) && cflow(compositeMoveXY ()) {

write "Moving shape " ++ $#aShape ++ " inside a composite."

proceed (#aShape , #aX + 10, #aY + 10);

}

Listing 4.5: PA Language Concrete Syntax Example <PA Code>

The example also includes the definition of an after and an around advice, defined
using the keywords after and around, respectively. The after advice logs all the
points added into a composite shape. It is associated to the pointcut addPoint,
binding its only parameter. The around advice selects all the invocations to moveXY
which are direct or indirect consequence of an invocation to the moveXY method in a
composite shape, which is achieved by selecting the join points of the moveXY pointcut
which are in the control flow of the execution of the pointcut compositeMoveXY. Note
that the advice returns void, since method moveXY does so. The body of the advice
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invokes proceed, modifying the parameters of moveXY by adding ten to each.

4.3 Machine Implementation

In order to support the new aspect-oriented language constructions, the implementa-
tion of the BASE machine is extended by:

• The definition of structures to represent join points, enclosing the information
of a point in the execution of the program where advices may be executed. This
shall be presented in the next section.

• The implementation of the weaver, responsible for matching the occurring join
points against the PCDs associated to advices and performing the actual weav-
ing, i.e. evaluating the advices that match the occurring join point. In addition,
the appropriate support for the proceed expression must be included. This shall
be presented in Section 4.3.3.

• The extension of the machine state, in order to incorporate some structures used
to implement the control flow relations and the proceed expression, besides of
the usual structures used to represent the defined pointcut and advices. This
shall be presented in Section 4.3.2.

4.3.1 Join Point Representation

Listing 4.6 shows the data type JoinPoint which represents a dynamic join point.
There are six different kinds of join points:

• CallJP representing a method call, enclosing: the this and target object ref-
erences, the MethodDecl (see Section 3.2.1.1) representing the method being
called and the list of arguments to the call.

• MExecJP representing a method execution, enclosing: the this object reference,
the MethodDecl of the method being executed and the arguments to the method
execution.

• FGetJP representing a access to a field, enclosing: the this object reference4 and
the field name.

• FSetJP representing the modification of a field, enclosing: the this object refer-
ence, the name of the field and the new value for the field.

4Remember that fields are only visible from the object that contains them.
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• InstJP representing the instantiation of an object, enclosing: the this object
reference and the name of the class being instantiated. Note that this join point
does not represent array instantiation.

• AExecJP representing the execution of an advice, enclosing the context exposed
parameters passed to the advice.

data JoinPoint = CallJP This Target MethodDecl [Value] |

MExecJP This MethodDecl [Value] |

FGetJP This FieldName |

FSetJP This FieldName Value |

InstJP This ClassName |

AExecJP [Value]

Listing 4.6: Join Point Representation <Haskell Code>

The types This and Target are synonyms of the type Value (see Section 3.2.2.1).
Those values hold the reference to the this and target objects, respectively.

4.3.2 State Representation

The state of the PA machine extends the state of the BASE machine with two new
environments, one holding the user-defined pointcuts and the other holding the defined
advices. The State data type for the PA machine is shown in Listing 4.7.

data Environments = CEnv VariableEnv ClassEnv AdviceRep PointcutRep

JoinPointStack ProceedStack

data Stores = CSto ObjectStore

data State = CState Environments Stores Output

Listing 4.7: PA Machine State <Haskell Code>

In addition, the state is extended with the join point stack and the proceed stack.
The former is similar to a stack of method invocations, but keeping track of the join
points that have occurred in the control flow of the current join point; used in order
to match cflow and cflowbelow PCDs. As pointed out in [MKD02], using stack
of join points in order to mach control flow restrictions offers an straightforward but
inefficient implementation for matching context sensitive pointcuts, however, since we
are more interested in obtaining a clear implementation than a efficient one, we use
the straightforward approach.
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The proceed stack holds the closure function used to execute the original join point
(or the remaining advices) upon the evaluation of a proceed expression inside an
around advice. Closures are represented by the ProceedClosure data type shown in
Listing 4.8 which holds a function that receives the arguments passed to the proceed
expression and returns the value resulting from executing the original join point. Since
around advices may be executed nested inside others around advices or may be acting
over a join point inside the control flow of another around advice, a stack structure
is used in order to hold the coexisting closures, see the ProceedStack in Listing 4.8.

data ProceedClosure = PClosure ([ Value] -> StEState Value)

type ProceedStack = Stack ProceedClosure

Listing 4.8: Proceed Stack <Haskell Code>

The variable environment is also extended by incorporating location information (like
for the Kernel machine, see Section 3.3.4). Therefore, the variable environment cre-
ated for the method execution holds the MethodDecl data type of the executing
method. This is used in order to match the within and withincode PCDs.

4.3.3 Weaver Implementation

The program interpretation function of the PA machine acts as a weaver, it first
separate the advices and pointcuts declarations from the rest of the program, i.e.
an ordinary BASE program, and then proceeds with the normal interpretation of
the BASE program, simultaneously checking when the advices must be executed and
executing them. The program interpreter for the BASE machine, shown in Section
3.2.2.2, is extended in order to load the advice and pointcut declarations into the
corresponding environments, AdviceRep and PointcutRep respectively, see Section
4.3.2. The rest of the program is loaded and interpreted as before. In addition, the
pieces of the expression interpreter function where the supported join points occur
(except for the advice execution) are modified in order to create the appropriate join
point structure and to check whether any advice declaration matches the join point,
in which case they are executed.

The CallJP and MExecJP join points require the modification of the interpreta-
tion code for the MethodCallE and SuperMethodCallE expressions. The FGetJP,
FSetJP and InstJP join points require the modification of the interpretation code for
FieldGetE, FieldSetE and NewObjectE expressions, respectively. The AExecJP does
not require the modification of any piece of the expression interpreter, it is handled
apart and shall be presented in Section 4.3.5. In order to illustrate how the expression
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interpreter is modified, Listing 4.9 shows the piece of interpreter corresponding to the
MethodCallE expression, enclosing the CallJP and MExecJP join points5.

1 case e of

2 (MethodCallE oe n args) ->

3 do ref <- evalExprStEState oe

4 obj <- lookupObjectStEState ref

5 cls <- lookupClassStEState (getObjectClass obj)

6 mth <- mthLookup cls mn

7 vals <- mapM (\e -> evalExprStEState e) args

8 this <- lookupEnvValueStEState "this" ValueNull

9 evalStEState (CallJP this ref mth vals) mcClosure

10 where

11 mcClosure (CallJP _ ref mth vals) =

12 evalStEState (MExecJP ref mth vals) meClosure

13 meClosure (MExecJP ref mth@(Method _ rt _ _ eb) vals) =

14 do obj <- lookupObjectStEState ref

15 createMthCallEnvStEState mth vals ref

16 val <- evalBlockStEState eb

17 dropEnvStEState

18 return val

Listing 4.9: Expression Interpreter <Haskell Code>

The modification introduced by the weaver to the expression evaluator follows a simi-
lar structure of that used for the interception code in the Kernel machine, see Section
3.3.5.1. It creates the join point structure for the occurring join point, in this case
CallJP (line 9), and passes it to the function evalStEState (line 9) which is re-
sponsible for the evaluation of the advices that match the join point (if any). The
evalStEState function also receives a closure function (mcClosure) which, once eval-
uated, continues with the original execution. In this case, continuing with the original
execution means creating the structure for the MExecJP join point (line 12) and pass-
ing it to the evalStEState which starts again the matching and evaluation of the
advices (lines 12). The second execution of evalStEState receives the meClosure
closure function which, once executed, performs the method execution (lines 13 to
18). Note that both mcClosure and meClosure take the values from the received join
point to create the MExecJP and execute the method respectively, thus assimilating
any changes made to the join point by around advices.

The function evalStEState, shown in Listing 4.10, performs two activities: collecting
all the advices that match the received join point and performing the weaving of
those advices with the closure received as a parameter. The advices are collected
by the function adviceMatchStEState at line 3, which iterates over all the defined

5Note that the SuperMethodCallE expression also comprehends those join points. It requires
analogous modifications.
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advices, testing if its associated pointcut matches the join point. The function, besides
collecting the advices, also groups them by advice kind. See Section 4.3.4 for a detailed
explanation of how the pointcut matching is done. The advice weaving, see lines 5 to 9,
involves coordinating the evaluation of the matched advices with the evaluation of the
original join point. Since more than one advice may have matched the join point and
the language does not provide means to specify the order (e.g. like aspect precedence
in AspectJ) in which they must be evaluated, a default strategy is provided. The
strategy6 executes the around advices first, then the before advices, followed by the
original join point and finally the after advices. The around advices are nested one
inside the other so that the advice lexically declared later is nested inside the advices
declared earlier. Besides, the last around advice to be evaluated nests the evaluation
of the before advices, the current join point and the after advices. The advice weaving
is divided in three cases:

• No advice matches the join point (line 6), thus advice weaving is not required. In
this case, the closure function is executed in order to continue with the original
computation.

• Only before and/or after advices match the join point (line 7). In this case, the
weaveBeAf function is executed which first evaluates all the before advices, then
the closure and finally the after advices. The advices are evaluated using the
evalAdviceStEState explained on Section 4.3.5. Note that the before and after
advices do not return any value, therefore the result of the closure evaluation is
returned as the result of the overall computation.

• There are one or more around advices that match the join point (line 8), along
with other before and/or after advices. In this case, the evalAroundStEState
function is used to weave all the around advices. It receives the list of around ad-
vices, the join point and a closure function to be executed when the last around
advice executes proceed. The closure function is built using the weaveBeAf
function, thus weaving the before and after advices.

Note that evalStEState is also responsible of keeping updated the join point stack.
It does so by pushing the join point into the stack before executing the weaved join
point and popping it after its execution ends. Also note that advice matching only
occurs once, when the evalStEState is invoked.

6It is the same strategy used in the Pointcut and Advice model implementation of the ASB, see
[asb].
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1 evalStEState ::JoinPoint ->(JoinPoint ->StEState Value)->StEState Value

2 evalStEState jp closure =

3 do (mBe , mAr , mAf) <- adviceMatchStEState jp

4 pushJPStackStEState jp

5 val <- case (mBe , mAr , mAf) of

6 ([], [], []) -> closure jp

7 (xBe , [], xAf) -> weaveBeAf xBe xAf jp

8 (xBe , xAr , xAf) ->

9 evalAroundsStEState xAr jp (weaveBeAf xBe xAf)

10 popJPStackStEState

11 return val

12 where

13 weaveBeAf xBe xAf jp =

14 do foldM (\_ -> evalAdviceStEState jp) () xBe

15 val <- closure jp

16 foldM (\_ -> evalAdviceStEState jp) () xAf

17 return val

Listing 4.10: Join Point Evaluation <Haskell Code>

4.3.4 Pointcut Match

Matching a pointcut is a twofold activity, it requires both testing if it matches the join
point and binding its parameters to the join point context. A parameter can be bound
to the this object, the target object or one of the arguments of either: the current
join point (i.e. the one being matched) or a join point in its control flow. Therefore
binding a parameter requires determining which value is associated to each pointcut
parameter, however the fact that the language supports the proceed expression with
context modification complicates performing those bindings for two reasons:

• An around advice may nest the execution of the advice associated to the pointcut
being matched and may modify, using proceed, the context of the current join
point. Since those changes must be visible for the nested advice, the real binding
of the parameters to the values must be delayed until the nested advice is about
to execute. Note that a pointcut is matched only once for each join point and
is matched before any advice gets executed.

• The proceed expression takes as its arguments, the arguments to the under-
lying around advice, which in turn are bound to values in the context of the
current join point. Therefore, once the proceed expression is evaluated, the as-
sociated closure must be capable of modifying the context values corresponding
to each argument. Performing such a modification requires some sort of map-
ping between each argument and the corresponding context value of the current
join point. Note that this mapping can only be determined from the pointcut
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associated to the around advice.

In order to overcome these two difficulties, the binding shall not be expressed as a
pair associating a parameter name to a value, but as a triplet (see the element of the
list CtxBind on Listing 4.11) associating a parameter name with two functions: one
that, given the current join point, returns the bound value (CtxGetter) and another
that, given the current join point and the new value, returns the modified join point
(CtxGetter). Note that, as explained in [WKD04], modifying an advice parameter
corresponding to a context value of a join point other that the current join point, i.e.
a join point in the control flow, does not have any clear meaning, since that refers
to an expression that has already been evaluated. In response to this issue, only the
parameters corresponding to the current join point can be modified, any attempt to
modify another parameter is ignored. This explains why the CtxSetter only receives
the current join point. The CtxSetter function corresponding to a parameter bound
to a value in the control flow of the current join point always returns the same join
point. In addition, note that CtxGetter function only receives the current join point,
because the values obtained from a control flow relation can be bound at pointcut
matching time, since they cannot be changed by a proceed expression.

type CtxGetter = JoinPoint -> Value

type CtxSetter = JoinPoint -> Value -> JoinPoint

type CtxBind = [( ParameterName , CtxGetter , CtxSetter )]

Listing 4.11: Context Exposure Bindings <Haskell Code>

The pointcut matching is performed by the function pcMatchStEState, partially
shown in Listings 4.12 and 4.13, which receives the current join point, the PCD to
be matched against and the list of parameters of the pointcut that encloses the PCD.
In addition, it receives a boolean flag which states if the PCD is inside a cflow or
cflowbelow PCD. The function is simply a case-based test to see whether the given
PCD matches the join point. If not, it returns False and an empty set of bindings,
otherwise it returns True and a list with the bindings generated by the PCD. The first
two cases in Listing 4.12 illustrate how the CallJP join point is matched by MCallPCD
and TargetPCD. The former involves testing if the return type, method name and
parameter types are equal7. If they are, the matching is successful and no bindings
are generated. Note that MCallPCD only matches join points of method-call kind, thus
this case is the only one involving MCallPCD. The latter involves obtaining the type
of the parameter referenced by TargetPCD and testing if the type is compatible with

7Note that the AspectJ’s wildcard + [aspa] is not supported by the PA language, thus subtypes
are not matched by the call PCD.
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the target object. If it is, the matching is successful and it must generate the binding
for the parameter. If the TargetPCD is not inside a control flow PCD, the binding is
generated with two functions: ctxGetTarget that given a join point returns its target
object reference and ctxSetTarget that, given a join point and target object refer-
ence, returns the modified join point. On the opposite, if the TargetPCD is inside a
control flow PCD, the target object reference never changes, therefore the value of the
target object can be bound in advance by using a constant function (ctxGetConst)
that always returns it. Meanwhile, the setter function ctxSetID is the identity, i.e.
always returns the received join point without modifications. The last two cases in
Listing 4.12 illustrate how the CWithinPCD is matched. Since advice executions are
not lexically enclosed within any class, the first case states that CWithinPCD never
matches them. The second case contemplates the rest of the join points, which can
be lexically enclosed within a class. It is implemented by using the location informa-
tion, available at the variable environment (see Section 4.3.2), to obtain the class in
which the join point lexically occurs. This behavior is implemented by the function
pcMatchCWithinStEState not shown here.

pcMatchStEState :: JoinPoint -> PCD -> [ParameterDecl] -> Bool ->

StEState (Bool , CtxBind)

pcMatchStEState jp pcd xp inCFlow =

case (jp, pcd) of

(CallJP _ _ (Method _ rt mn xp _) _, MCallPCD rt ’ mn’ xt) ->

return ((mn == mn ’) && (rt == rt ’) && (( getTypes xp) == xt),

emptyCtxBinds)

(CallJP _ ta _ _, TargetPCD pn) ->

do (Parameter pt _) <- return (findParam pn xp)

match <- testCompatTypeStEState pt ta

case (match , inCFlow) of

(False , _) -> return (False , emptyCtxBinds)

(_, False) -> return (True , [(pn , ctxGetTarget , ctxSetTarget )])

(_, True) -> return (True , [(pn , ctxGetConst ta , ctxSetID )])

(AExecJP _, CWithinPCD _) -> return (False , emptyCtxBinds)

(_, CWithinPCD cls) ->

do s <- getVarEnvStEState

pcMatchCWithinStEState s cls

(..., ...) -> ...

Listing 4.12: Pointcut Matching <Haskell Code>

The first two cases shown in Listing 4.13 illustrate how the control-flow PCDs are
matched. In order to test the control-flow restriction they get the join point stack,
from the state, and iterate over it looking for a join point that matches its en-
closed PCD using the function pcMatchCFlowStEState. Note that CFlowPCD and
CFlowBelowPCD are almost equal. The only difference is that CFlowPCD considers
the current join point as a candidate to be matched by its enclosed PCD. Function
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pcMatchCFlowStEState (not shown here) uses pcMatchStEState in order to test each
of the join points in the given stack, setting the control flow flag to True. If a join
point is matched, it returns the value same as pcMatchStEState, i.e. a pair with
the True value and the list of generated bindings, otherwise it returns False and an
empty list of bindings.

case (jp, pcd) of

(jp , CFlowPCD pcd) ->

do s <- getJPStackStEState

pcMatchCFlowStEState (pushS s jp) pcd xp

(_, CFlowBelowPCD pcd) ->

do s <- getJPStackStEState

pcMatchCFlowStEState s pcd xp

(jp , AndPCD left right) ->

do (mL, bndL) <- pcMatchStEState jp left xp inCFlow

(mR , bndR) <- pcMatchStEState jp right xp inCFlow

if (mL && mR)

then return (True , bndL ++ bndR)

else return (False , emptyCtxBinds)

(jp , OrPCD left right) ->s

do (m, bnd) <- pcMatchStEState jp left xp cf

if m

then return (True , bnd)

else pcMatchStEState jp right xp inCFlow

(jp , NotPCD pcd) ->

do (m, []) <- pcMatchStEState jp pcd xp cf

return (!m, emptyCtxBinds)

Listing 4.13: Pointcut Matching (continued)

The last three cases of Listing 4.13 illustrate how the PCD combinator operators are
matched. The AndPCD requires matching the two enclosed PCDs, in the case that
both match the current join point, the returned list of bindings is the concatenation
of the bindings generated by each of them. The OrPCD first tests the left PCD, if
it successfully matches the join point it returns that the matching is successful along
with the list of bindings generated by the left PCD, otherwise it returns the result
of the matching of the right PCD. The NotPCD tests its enclosed PCD, which must
always return an empty list of bindings, since, as mentioned in [aspa], negating a PCD
which binds one or more parameters does not make any sense. The NotPCD returns
the negation of the testing result, along with a empty list of bindings.

The weaver function adviceMatchStEState, introduced in Section 4.3.3, is the one
that uses the pcMatchStEState to test if the pointcut associated to each advice
matches the occurring join point. The result of the adviceMatchStEState function
is a triplet with three lists, one for each advice kind, each containing pairs of the
form (AdviceDecl, CtxBind). Each pair contains the AdviceDecl of a matched
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advice along with the list of bindings generated by its associated pointcut. Since the
list of bindings returned by the pcMatchStEState may not follow the order defined
by the list of parameters of the pointcut, adviceMatchStEState sorts the list before
returning it. Next section presents how these advices are actually weaved and explains
how the context information is used to obtain the parameters expected by the advice.

4.3.5 Advice Evaluation

The function evalAdviceStEState, shown in Listing 4.14, is in charge of the evalua-
tion of before and after advices. The function receives the current join point (i.e. the
one that causes the evaluation of the advice) and a pair with: the advice to evaluate
and the parameter bindings for the advice. The evaluation of an advice, including the
around advice (shown in Listing 4.15), entails the creation of the AExecJP join point
structure before actually evaluating the advice and invoking the evalStEState in
order to weave the new join point occurrence. For evalAdviceStEState, this occurs
at line 3, the aeClosure function that evalStEState receives is the function that
actually evaluates the advice.

1 evalAdviceStEState :: JoinPoint -> (AdviceDecl , CtxBind) -> StEState ()

2 evalAdviceStEState jp (ad, bn) =

3 do evalStEState (AExecJP (calcBindingValues jp bn)) aeClosure

4 return ()

5 where

6 aeClosure (AExecJP xv) =

7 do env <- getVarEnvStEState

8 setVarEnvStEState (makeMemberEnv LNone emptyBinds env)

9 foldM bindParameter () (zip (getAdviceParameters ad) xv)

10 val <- evalBlockStEState (getAdviceBody ad)

11 dropEnvStEState

12 return val

Listing 4.14: Before and After Advice Evaluation <Haskell Code>

The creation of the AExecJP join point requires calculating the values bound to each
advice parameter (i.e. its arguments). Remember that the CtxBind provides only
a getter function capable of obtaining the value, not the real value. The function
calcBindingValues calculates those values by applying each of the getter functions
to the current join point. If the aeClosure is finally evaluated, remember that an
around advice may replace it and may not proceed, it evaluates the advice by: creating
a variable environment containing the advice arguments (lines 7 to 9), evaluating its
expression block (line 10) and returning the result of the evaluation (only required
to fulfill the type of the closure, since it expects a Value to be returned). Note
that any changes made to the advice arguments (i.e. by an around advice using
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proceed) are assimilated by aeClosure, because it takes those arguments from the
received join point. Since the before and after advices do not return any value, the
evalAdviceStEState always returns an empty result (line 4).

The around advices are evaluated by the function evalAroundsStEState shown in
Listing 4.15. Conversely to evalAdviceStEState which only evaluates one advice,
evalAroundsStEState evaluates the list of all around advices that match the current
join point, nesting them one inside the other, like a chain, as explained in Section
4.3.3. It receives the list of advices with its corresponding parameter bindings, the
current join point and the closure function to be nested by the last around advice in
the chain. The function chain of advices is constructed recursively, when the advice
at the head of the list is evaluated (by the equation at line 4), a proceed closure is
generated for it (lines 16 to 18) which, once evaluated, proceeds with the evaluation
of the tail of the list, thus continuing recursively until no more around advices are
left, so executing the closure (line 3).

1 evalAroundsStEState ::[( AdviceDecl , CtxBind )] -> JoinPoint ->

2 (JoinPoint -> StEState Value) -> StEState Value

3 evalAroundsStEState [] jp closure = closure jp

4 evalAroundsStEState ((( Around _ xp _ eb), bn):xAr) jp closure =

5 evalStEState (AExecJP (calcBindingValues jp bn)) aeClosure

6 where

7 aeClosure (AExecJP xv) =

8 do env <- getVarEnvStEState

9 setVarEnvStEState (makeMemberEnv LNone emptyBinds env)

10 foldM bindParameter () (zip xp xv)

11 pushPStackStEState (newPClosure (proceedClosure jp))

12 val <- evalBlockStEState eb

13 popPStackStEState

14 dropEnvStEState

15 return val

16 proceedClosure jp xv =

17 do val <- evalAroundsStEState xAr (applyArgs jp xv) closure

18 return val

19 applyArgs jp xv =

20 foldl (\jp (v,setter) -> setter jp v ) jp

21 (zip xv (map (\(_,_,setter) -> setter) bn))

Listing 4.15: Around Advices Evaluation <Haskell Code>

As for the other advice kinds, before actually evaluating the advice the AExecJP is gen-
erated and passed to evalStEState, along with the aeClosure. Once the aeClosure
is evaluated, it evaluates the advice almost in the same way as evalAdviceStEState
does, except that the proceed closure must be pushed to the proceed stack (line 11) be-
fore evaluating the body of the advice and popped after the evaluation ends (line 13).
The proceed closure is generated by the function proceedClosure passing to it the
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current join point (using partial application). Once the proceed closure is evaluated,
as a consequence of the evaluation of proceed in the advice body, proceedClosure
receives the proceed arguments, thus it gets evaluated. Before proceeding with the
evaluation of the tail of the list, it must apply the changes that the proceed may have
done over the current join point. This is done by the function applyArgs which, for
each argument, applies the corresponding setter function to the current join point,
therefore obtaining the modified join point.

The evaluation of the ProceedCallE expression, done by the expression evaluator
(evalExprStEState), simply requires: obtaining the proceed closure from the stack,
evaluating the arguments expressions, i.e. the proceed arguments, and evaluating
the closure.
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Chapter 5

Compiling to the Kernel
Machine

This chapter presents the first and most fundamental step in the validation of the
support for the AspectJ language by the Reflex AOP kernel: providing semantics for
a subset of AspectJ’s dynamic crosscutting mechanism. To that end, a theoretical case
study is presented, describing the development of a compiler from the PA language
to the Kernel language. This study supplies the foundations for understanding how
the Reflex AOP kernel can be used to provide semantics to AspectJ. In addition, a
practical case study is presented, which involves the implementation of a compiler in
Java that transforms AspectJ programs into Reflex programs. Furthermore, micro-
benchmarks are provided to show that reasonable efficiency levels can be achieved.
These case studies together constitute the first serious empirical validation of the
aptitudes of the Reflex model to be an AOP kernel for Java.

This chapter is organized as follows. Section 5.1 explains what it means to provide
semantics to an aspect-oriented language using reflection. Also, it briefly describes
the differences between the two compilers. The compiler implemented in the Reflex
Sandbox (RSB) is presented in Sections 5.2 and 5.3. The former discusses, based
on examples, how the constructions in the Kernel language can be used to provide
semantics to those in the PA language. The latter presents the actual implementation
of the compiler in Haskell. Section 5.4 presents the compiler from AspectJ to Reflex
by explaining the main differences with the one implemented in the RSB. In addition,
that section also explains how some advanced issues, like composition, are addressed
by the compiler. Finally, Section 5.5 presents the Java implementation of this com-
piler, as a plugin for the Reflex’s plugin architecture. Also, it presents benchmarks
validating the implementation and the design of a reflective API for AspectJ.

123
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5.1 Introduction

Aspect-Oriented Programming (AOP) is deeply connected with the work of compu-
tational reflection and metaobject protocols, as pointed out in [KLM+97] and studied
in [KLLH03]. A reflective system provides a base language and one (or more) meta-
languages that provide control over the semantics of the base language. For instance,
in the Kernel machine the base- and meta- languages are the BASE language and the
language composed by the reflective extensions introduced through the Kernel lan-
guage, respectively. Those reflective extensions provide views of the computation that
no one BASE language component could ever see, e.g. the operation occurrences scat-
tered among various base level objects. As pointed out in [TN04a], aspect-oriented
(AO) techniques offer principled ways to do reflection, hiding from the user most of
the complexity associated to the implementation of reflective systems by providing
high-level languages in order to express the semantic alterations over the base lan-
guage. For instance, in the PA machine the AO mechanisms introduced by the PA
language (i.e. the aspect language), allow to express semantic alterations over pro-
grams written in the BASE language. Note that the distinction made for the Kernel
machine, between base- and meta- languages, is also valid for Reflex, where Java
is the base language and Reflex’s reflective extensions compose the meta-language.
Similarly, the AO mechanisms of AspectJ compose the aspect language affecting the
semantics of programs written in Java.

In this context, the two compilation processes here described shall transform an AO
program into a reflective program as follows. The base level portion of the program
is left intact. Meanwhile, the semantic alterations defined via the aspect language
portion of the program are expressed in terms of the reflective mechanisms offered by
the meta-language. Therefore, the compilers are functions of the following form:

compilerPA−Kernel : ProgramPA −→ ProgramKernel

compilerAspectJ−Reflex : ProgramAspectJ −→ ProgramReflex

The main difference between the two compilers, besides the obvious difference in the
origin and target languages, is that the compilerPA−Kernel works with interpreted
languages, while the compilerAspectJ−Reflex works with compiled languages. Reflex
for Java is specially tailored for a compiled environment; hence it provides constructs
to represent both static properties, fixed at compilation time1, and dynamic prop-
erties whose evaluation is delayed until runtime. The compilerAspectJ−Reflex takes
full advantage of these constructs to represents AspectJ’s shadows and residues (see
Section 2.6.3.1), in order to achieve efficiency. The PA and Kernel languages do not

1Actually, in the case of Reflex this occurs at load-time (see Section 2.4). However the same
distinction applies.
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distinguish between static and dynamic properties, everything is performed at run-
time. Consequently, the compilerPA−Kernel does not have to differentiate between
these two property types.

In addition, there is another difference in terms of the features of the AspectJ language
supported by each compiler. Since the Kernel machine has been designed to only
support part of the Reflex model constructs, not every PA program can be compiled
into a Kernel program. The compilerAspectJ−Reflex does consider all the constructs
of the Reflex model. Therefore, it supports the compilation of all the AO constructs
defined in the PA language, except for some PCDs that were not included in order
to simplify the implementation. In addition, that compiler supports some interesting
features of the AspectJ language, like aspect composition and join point reflective
information.

5.2 Conceptual Overview

At first glance, there are several similarities between the concepts in the two machines,
from which an initial correspondence can be grasped: join points shall correspond to
operation occurrences, pointcuts shall correspond to hooksets and advices shall cor-
respond to metaobjects. The operational behavior of both machines is essentially the
same, once a join point occurs (resp. an operation occurrence) the pointcuts (resp.
hooksets) match it and perform the behavior defined by the advices (resp. metaob-
jects). Since the primary subject of matter of an advice is affecting the execution
semantics of another program, it clearly fits into a metaobject. Note that for each
join point kind supported by the PA machine, the Kernel machine must provide an
operation capable of reifying it.

In order to get a clear intuition of the conceptual correspondence of the pointcut
and advice constructions, the next two sections shall further analyze them. The
presentation is informal, example-based and does not enter into details. The example
used is the Shape Editor System, presented in Section 2.4.2.1.

5.2.1 Pointcuts

The pointcuts move and movePoint, shown in Listing 5.1, are implemented using
a primitive hookset with a selector defined over the MsgReceive operation. The
selection predicate simply selects the operation occurrences that match the restric-
tions imposed by the pointcut designators, based on the information exposed by the
MsgReceive class (see Section 3.3.2.1). For instance, the selector for the movePoint
pointcut requires checking that the operation occurrence has the specified method
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signature (i.e. the returnType is void, the method is moveXY and methodParTypes
contains two int parameters) and that it is occurring within the Point class (i.e.
whereClass is Point).

pointcut move (): execution(void moveXY(int , int))

pointcut movePoint (): move() && within(Point)

pointcut moveSinglePoint (): movePoint () && !cflowbelow(move ())

pointcut moveSinglePointArgs(int x, int y):

moveSinglePoint () && args(x, y)

Listing 5.1: PA Pointcut Examples <PA Code>

The pointcut designators related to control flow, cflow and cflowbelow, allow picking
out join points based on whether they are in a particular control flow relationship with
other join points. For example, the pointcut moveSinglePoint imposes an additional
restriction to the movePoint pointcut, which is that selected join points must not
be within the control flow of the move PCD, in other words, stand-alone Points not
included inside a Line or Composite shape. Note that this pointcut definition implies
the definition of two nested pointcuts: the pointcut inside the cflowbelow (move) and
the pointcut affected by a control flow restriction (movePoint).

To be able to determine whether movePoint is matched in the control flow of move, we
first need to expose the control flow information of move: this is done using the notion
of event collectors [TN04b]. Event collectors gather execution events to expose parts
of a program execution (nesting, sequences, etc.), under any structure (counter, stack,
tree, DAGs, graphs, etc.), for dynamic introspection. In particular they are used to
expose control flow information. Indeed, event collectors are just like metaobjects,
except that their purpose is only to expose elements of program execution, rather
than to affect program execution. Consequently, mapping a control flow PCD implies
two separate tasks:

• defining a separate link for an event collector exposing control flow information
of the pointcut passed as argument to cflowbelow;

• defining a control flow condition that checks the exposed control flow informa-
tion. This check is included in the selection predicate of the hookset that models
the moveSinglePoint pointcut.

The pointcuts that expose context information require, besides of a hookset selecting
the appropriate operation occurrences, a call descriptor which gathers the appro-
priate context information and passes it to the metaobject during the reification.
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For example, the pointcut moveSinglePointArgs exposes the two parameters of the
method moveXY, thus, there is an associated call descriptor which gets the two param-
eter values from the operation occurrence object and passes them to the associated
metaobject during reification.

5.2.2 Advices

In the PA language, the advice construction has the dual responsibility of defining
the advice behavior and binding it to a pointcut definition. Meanwhile, in the Ker-
nel language those two responsibilities correspond to a metaobject definition and a
link definition, respectively. For instance, consider the advice definition in Listing
5.2. The advice logs all the movements of stand-alone points, including the two pa-
rameters exposed by the pointcut moveSinglePointArgs. The advice behavior is
encapsulated inside a method of a metaobject class, which receives the same param-
eters of the advice definition. The binding between an instance of the metaobject
class and the hookset that represents moveSinglePointArgs is done through a link.
The link associates the hookset with AFTER control value (corresponding to the advice
kind) and a call descriptor, which in this example must get the two parameters from
the MsgReceive operation occurrence and invoke the advice method at the metaob-
ject. The link also includes the metaobject instantiation block (see Section 3.3.2.4),
which simply instantiates the metaobject.

after(int x, int y): moveSinglePointArgs(x, y) {

write "Point moved: " ++ x ++ ", " ++ y;

}

Listing 5.2: PA Advice Example <PA Code>

Since moveSinglePointArgs is affected by a control flow restriction over the pointcut
move, an additional link is required. This link binds the hookset corresponding to
the pointcut move to an event collector metaobject. Such a metaobject is a simple
counter that keeps track of entries and exits in the hookset. Therefore the link would
associate the hookset twice, one with control BEFORE invoking the enter method at
the metaobject and one with control AFTER invoking the exit method.

5.3 Compilation

The compiler is implemented as a multi-staged process, which is illustrated in Figure
5.1. The boxes in the figure represent the different stages of the process. The stages
are presented according to their order of execution, i.e. stages at the left of the figure
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are executed before stages at the right. The dashed strip at the bottom of the figure
shows which stage produces each part of the resultant program. The compilation
function is implemented using the StE monad (see Section A.2) in order to propagate
a state among the stages. The state is used to store the different parts of the resultant
Kernel program, as they are generated, and also to store intermediate structures used
by the compilation process.

state

Core
Intermediate

Representation

Advice

Generation

Kernel Constructions

Generation

Pointcut

Reduction

pointcuts

advices

state state state

ProgramPA

advices

stages

standard

classes
advices MOs

hooksets + call descriptors +

links + cflow MOs
Program =Kernel

state

Figure 5.1: Compilation process

The stages involved are:

Compiler Core: it is responsible for coordinating all the stages of the compilation
process, converting all the standard classes in the PA program into classes of
the Kernel program and assembling the the resultant Kernel program, once
all the stages have been performed. The standard classes do not require any
special transformation but converting from the PA language AST to the Kernel
language AST.

Pointcut Intermediate Representation: it transforms each declared pointcut into
an intermediate structure which expresses the semantics of the pointcut in terms
of elements closer to the Kernel language, e.g. operation types, restrictions over
the fields of those operations and field reification requirements for those op-
erations. This intermediate structure conforms a common schema to express
both the predefined PCDs of the PA language and the user-defined PCDs, over
which the rest of the stages base their work. The state stores those intermedi-
ate structures for later use. The construction of these intermediate structures
is explained in detail in Section 5.3.1.1.

Advice Generation: it is responsible for generating the metaobject representing
each advice and performing the reduction of the pointcuts associated to the
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advices. The generated metaobject and the reduced pointcut are stored in the
state. Section 5.3.2 gives a detailed description of how the metaobjects are
generated.

Pointcut Reduction: it is responsible for transforming the intermediate structure
that represents a pointcut into an semantically equivalent structure, which is
more suitable for the generation of the hooksets and call descriptors used to rep-
resent the pointcut. The motivation for this stage relies on the fact that pointcut
predicates intermix the join point matching predicate and the context exposure
requirements (so does the initial pointcut intermediate structure), which makes
it difficult to extract the hooksets and call descriptors definitions from them.
See next section for deeper analysis of the motivations for this stage and the
detailed description of the reduction algorithm.

Kernel Constructions Generation: it is responsible for generating the links re-
quired for each advice, along with the required hooksets and call descriptors.
These Kernel constructions are generated based on the advice definition and
the reduced intermediate structure of the pointcut bound to the advice. In
addition, for each pointcut that has a control flow restriction, it also generates
the appropriate event collector metaobject along with its link, hooksets and call
descriptors. See Section 5.3.3 for a detailed description.

5.3.1 Pointcuts

The pointcut construction plays a dual role in the PA language by specifying both
the matching predicate and the context exposure requirements. Conversely, in the
Kernel language these two roles are handled independently by the hooksets and call
descriptors, respectively. As mentioned in Section 5.2.1, in order to generate the
hookset(s) and call descriptor(s) from a pointcut definition, the compiler must de-
compose it. Such a decomposition implies, on the one hand, expressing the matching
predicate in terms of restrictions over the fields of the operation types it matches, and
on the other hand, expressing the context exposure requirements in terms of fields
of those operations that must be reified. The major issue regarding the compilation
of a pointcut is determining how many hooksets and call descriptors are required to
represent a given pointcut. As initially presented in Section 5.3.1, a single primitive
hookset and a single call descriptor should be enough. However, this is not always the
most appropriate solution, because a pointcut may define different context exposure
requirements for subsets of the join points it matches. In order to illustrate this, con-
sider pointcut bar shown in Listing 5.3. It selects two join point subsets, one of MCall
join points and the other of MExec join points, and imposes different context exposure
requirements for them. The MCall subset binds the moveXY parameters in the natural
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order, while the MExec subset binds them in the reverse order. Also consider pointcut
foo, which selects two join point subsets, one enclosing the MCall occurring inside
lines and the other occurring inside composite shapes. For both subsets it imposes
context exposure requirements analogous to those of the bar pointcut.

pointcut bar(int #aX , int #aY):

call(void moveXY(int ,int)) && args(#aX , #aY) ||

execute(void moveXY(int ,int)) && args(#aY , #aX)

pointcut foo(int #aX , int #aY):

call(void moveXY(int ,int)) && args(#aX , #aY) && within(Line) ||

call(void moveXY(int ,int)) && args(#aY , #aX) && within(Composite)

Listing 5.3: Pointcut Examples <PA Code>

Note that representing the bar pointcut with only one hookset is possible, but is far
from being an elegant solution. The selector of this hookset would have to be defined
over the Operation class, since the pointcut selects both MsgSend and MsgReceive
operation types. The selector predicate would have to check which is the type of
operation object (i.e. using instanceOf) and cast the operation object into the
appropriate operation class in order to check the restrictions2. In the same way, using
only one call descriptor (for the context exposure requirement)3, would have to also
check on the type of the operation in order to gather the exposed parameters; or even
worst, in pointcuts like foo it would have to reevaluate the selector to decide how
context exposure should be done. In order to achieve a more elegant solution and
take full advantage of the Kernel language, a pointcut usually shall be represented
with a composite hookset, which is composed by a collection of primitive hooksets.
Each primitive hookset selects occurrences of only one operation type (avoiding the
instanceOf issues). Also, each primitive hookset has an associated call descriptor
specifying its context exposure requirements (avoiding the instanceOf and selector
re-evaluation issues). For example, Figure 5.2 illustrates how pointcuts bar and foo
are represented using this approach. Pointcut bar requires two hooksets, one selecting
the method invocations and the other the executions, along with their corresponding
call descriptors specifying how the arguments must be exposed for them. The foo
pointcut is analogous, but the two hooksets select the method invocations inside the
Line and Composite shapes, respectively.

The next section presents the intermediate structure used by the compiler to represent
the decomposition of a pointcut. Section 5.3.1.2 explains the pointcut reduction
process, which allows to extract the required hooksets and call descriptors form the

2At least, for those restrictions that require using getter methods not defined in the Operation

class.
3Actually, it would be one call descriptor for each advice defined over the pointcut.
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hsMCall hsMExec

cdMExec

bar

cdMCall

hsMCall(Line) hsMCall(Composite)

cdMCall(Composite)

foo

cdMCall(Line)

Figure 5.2: bar and foo Pointcut Representation

intermediate structure of a pointcut. Such a process is illustrated in Section 5.3.1.3.
Finally, Section 5.3.1.4 discusses how the order in which the PA machine evaluates
a pointcut may affect parameter bindings and informally shows that the compiler
indeed preserves such an order.

5.3.1.1 Pointcut Representation

The intermediate structure of a pointcut allows to express the semantics of the point-
cut declaration using the Kernel langauge vocabulary rather that the PA language
vocabulary, i.e. it expresses a pointcut in terms of: operation types to be selected
rather than join point kinds, restrictions over those operation types rather that over
the join point kinds and context exposure requirements over those operation types
rather that over the join point kinds. The intermediate structure consists of the
pointcut name, the list of parameters exposed to the context and the body of the
pointcut represented through the data type RTree Trip shown in Listing 5.4. The
data type RTree Trip expresses the semantics of the pointcut in terms of a tree with
logical operators as nodes and Trip data types as leafs. The Trip data type is meant
to express a selection predicate in terms of Kernel language operation types and a
list of values to be reified upon the matching of the selection predicate. The name
of the data type Trip is an abbreviation for triplet and comes from the fact that a
PCD can be decomposed in three main elements: a restriction over the kind of the
join point, restrictions over the data exposed by that join point kind and context
exposure requirements.

The intermediate structure is built based on the PointcutDecl structure used by the
PA language to represent a pointcut (see Section 4.2.1.1). Its name and parameters
are those of the PointcutDecl data type. The body of the pointcut, which in the PA
machine is represented by a tree where the nodes are PCD combinators and the leafs
are PCDs, is transformed into an isomorphic RTree Trip tree by:
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data RTree r = RTAnd (RTree r) (RTree r) |

RTOr (RTree r) (RTree r) |

RTNot (RTree r) |

RTLeaf r

data Trip = TKinded Kind [Res] [Ctx] |

TUnKinded [Res] [Ctx] |

TNone

Listing 5.4: Pointcut Representation <Haskell Code>

• representing the AndPCD, OrPCD and NotPCD logical combinators (see Section
4.2.1.1) with the RTAnd, RTOr and RTNot tree constructors, respectively.

• representing the PCDs at the leafs with the RTLeaf tree constructor, each of
them containing a Trip element expressing the matching predicate and context
exposure requirements of the corresponding PCD.4

For example, Listing 5.5 illustrates the transformation of a simple pointcut body. The
pointcut selects all the advices and method executions that fulfill some criteria (not
shown here) and binds their arguments to the pointcut arguments. The isomorphic
tree is built by replacing the logical combinators in the nodes, as previously mentioned,
and replacing the PCD in the leafs as follows. The kinded PCDs, like AExecPCD and
MExecPCD, are represented with TKinded leafs. This type of leafs represent selec-
tion predicates defined over an operation of certain type. The unkinded PCDs, like
ArgsPCD, are replaced by TUnKinded leafs, which represent selection predicates that
can be matched against any operation type.

AndPCD RTAnd

(OrPCD (RTOr

(AExecPCD) =⇒ (RTLeaf (TKinded ...))

(MExecPCD ...)) (RTLeaf (TKinded ...)))

(ArgsPCD ...) (RTLeaf (TUnKinded ...))

Listing 5.5: Pointcut Representation Example <Haskell Code>

The TNone triplet shown in Listing 5.4 is not used during the construction of the
pointcut representation, it shall be used by the pointcut reduction process. It is
meant to model selection predicates that never match any operation occurrence. For

4In the implementation there is an extra constructor for the Trip data type, TReference. It is
used to represent a reference to a user-defined pointcut inside a pointcut declaration, similar to the
NamedPCD used in the PA machine (see on Section 4.2.1.1). Since presenting it does not offer any new
interesting notion, we shall omit it.
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instance, consider a pointcut definition like call(..) && execute(..) that never
matches any join point, because a join point cannot have two kinds at the same time.
See the next section for a detailed explanation.

The selection predicate of a T(Un)Kinded triplet is represented by a list of restrictions
to impose over the operation type(s) it selects, where a restriction is represented by
the data type Res, see Listing 5.4. The specification of which values must be exposed
to the context for a T(Un)Kinded triplet is represented by a list of Ctx data types,
where each element of the list specifies a value that must be reified upon the selection
of an operation occurrence, see Listing the 5.4.

data Kind = MsgSend | MsgReceive | FieldGet | FieldSet |

Instantiation | MsgReceiveMO

data OField = FRetType | FName | FParams | FWhereCN | FWhereMN |

FThis | FTarget | FArgs

data Res = RField OField (RTree ResCond) |

RGeneral (RTree ResCond)

data ResCond = RCInsOf Type | RCName Name | RCType Type |

RCList [ResCond] | RCCFlow Bool PCName

data Ctx = CtxThis ParPos | CtxTarget ParPos | CtxArg ParPos ArgPos |

CtxCFlow ParPos PCName ParPos

Listing 5.6: Pointcut Representation (continued)

Listing 5.6 shows all the data types related to the definition of the T(Un)Kinded
triplets, which are:

Kind Data Type: it represents the kinds over which a TKinded triplet may be de-
fined, expressed in terms of Kernel operation types. The PA machine supports
six different kinds of join points that can be matched by a pointcut, which are:
MCall, MExec, FGet, FSet, Inst and AExec (see Section 4.3.1). For these kinds,
the Kernel machine provides an operation capable of reifying them. The first five
join point kinds are reified by the: MsgSend, MsgReceive, FieldGet, FieldSet
and Instantiation operation, respectively. Since advices are compiled into
methods, the advice execution is also reified by the MsgReceive operation, but
restricted to those methods generated for the advices defined in the PA program.
The MsgReceiveMO is a fictitious operation type, representing the MsgReceive
operation restricted to the advice methods.

OField Data Type: it represents the fields of the five supported operation types
required in order to express all the restrictions that the PCDs of the PA language
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may impose. Each operation type supports a subset of those fields. For instance,
the MsgSend operation supports all of them, whereas Instantiation supports
only: FName for the name of the class to be instantiated, FWhereCN and FWhereMN
for the name of the class and method where the operation occurs and FThis for
the this object.

Res Data Type: it represents the restrictions that a triplet may impose. A re-
striction can be either a field restriction or general restriction. The former is
represented by the constructor RField and corresponds to a restriction defined
over a field. It consists of an OField value, representing the field that it restricts,
and a condition represented by the RTree ResCond data type5. The latter is
represented by the constructor RGeneral and corresponds to a restriction that is
not related to any field. Actually, the only restrictions that fit in that category
are the control flow restrictions. Those restrictions only consist of a condition
represented by the RTree ResCond data type.

ResCond Data Type: it represents the different types of conditions that the PCDs
of the PA language may impose. The RCInsOf condition is applied over the fields
that hold operation’s dynamic information, i.e. FThis, FTarget and FArgs. The
RCName is applied over the field FName, e.g. to restrict the name of a method or
field. The RCType is applied over the field FRetType, e.g. to restrict the return
type of a method. The RCList is applied in combination with the RCType and
RCInsOf to restrict the type of the formal parameters of a method (FParams) and
the type of its actual arguments (FArgs), respectively. The RCCFlow represents
a control flow restriction, where the boolean value states if it corresponds to a
cflow or cflowbelow, and the PCName is the name of the nested pointcut.

Ctx Data Type: it specifies the different pieces of information that can be exposed
form the context of a join point. Those pieces of information can be: the this
object, the target object, an argument value and a value exposed by an event col-
lector metaobject. The first parameter of each constructor in Ctx (i.e. ParPos)
states the binding to a parameter of the underlying pointcut, by giving its po-
sition. For instance, consider a pointcut with a signature like moveXY(Shape
shape, int x, int y), CtxTarget 0 would state that the parameter at po-
sition zero (i.e. shape) is bound to the target object. The second parameter
of the CtxArg specifies the index of the argument in the captured join point.
For instance, CtxArg 1 0 would state that the second parameter of the point-
cut moveXY is bound to the first argument of the join point. Finally, CtxCFlow
specifies a binding between a parameter of the underling pointcut (i.e. the first
ParPos) and a parameter of the nested pointcut, where the nested pointcut is

5Note that the RTree ResCond represents a logical expression tree, which may combine various
individual conditions. The definition of the polymorphic type RTree is shown in Listing 5.4.
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identified by its name (i.e. PCName) and the parameter by its position (i.e. the
second ParPos).

Listing 5.7 shows three examples of the generation of the RTree Trip for a pointcut.
In order to simplify the presentation, we do not include all the type constructors
needed. In the first example, the conversion of the call PCD produces a TKinded
triplet defined over the MsgSend operation, along with three restrictions: one for the
return type, one for the name of the method and one for the type of the formal pa-
rameters of the method. Since the call PCD does not bind any pointcut parameters,
the Ctx list is empty. The conversion of the second example produces a TUnKinded
triple with one restriction imposing that the this object must be an instance of the
Point class. Also, it specifies that the this object must be bound to the first param-
eter of the pointcut. The third example also produces a TUnKinded triple imposing a
control flow restriction over the pointcut inPoint and exposes the first parameter of
the inPoint pointcut as its first parameter.

pointcut callmoveXY (): call(void moveXY(int , int)) =⇒
TKinded MsgSend [RField FRetType (RCType void)

RField FName (RCName "moveXY")

RField FParams (RCList [RCType int , RCType int ])] []

pointcut inPoint (Point aPoint ): this(aPoint) =⇒
TUnKinded [RField FThis (RCInsOf Point )] [CtxThis 0]

pointcut inCFlowPoint (Point aPoint ): cflow(inPoint(aPoint )) =⇒
TUnKinded [RGeneral (RCCFlow False "inPoint")]

[CtxCFlow 0 "inPoint" 0]

Listing 5.7: Pointcut Representation Generation Example

In the rest of this chapter we shall use the term pointcut intermediate structure to
refer indistinctly to both the whole intermediate structure of a pointcut (contain-
ing the pointcut name, parameters and RTree Trip) and the structure RTree Trip
representing its body.

5.3.1.2 Pointcut Reduction

The pointcut reduction process is meant to transform a RTree Trip representing a
pointcut into another RTree Trip that preserves the semantics of the pointcut and
where all its nodes are RTOr (union) operators and the leafs are TKinded elements.
Each TKinded leaf represents a subset of the join points matched by the pointcut.
Also, the join points of each subset are all of the same kind and all of them share the
same context exposure requirements. In other words, the set of join points matched
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by a pointcut, let’s call it S, is decomposed into subsets containing the same kind
of join points, let’s call those subsets Ski

where ki is the kind of the subset, thus
S = Sk1 ∪ ... ∪ Skn

. In addition, those subsets are further decomposed into sub-
sets containing the join point with the same context exposure requirements, let’s call
those subsets Ski,cej where cej represents a particular way of binding the pointcut
parameters, thus Ski = Ski,ce1 ∪ ... ∪ Ski,cemi

. From the point of view of the RTree
Trip generated by the reduction process, each Ski,cej

represents a TKinded leaf in
that tree, enclosing: the kind, the restrictions over that kind and context exposure
requirements. The ∪ operators represents the the RTOr nodes of the tree. The leafs of
the resultant tree contains the information required by the compiler in order to gen-
erate the primitive hooksets and call descriptors that together represent the reduced
pointcut. The algorithm described here illustrates only one approach to perform-
ing such a decomposition, it does not aim to be the best approach. Improving this
algorithm is left as further work.

The reduction algorithm is pretty straightforward. It consists in three steps which
are performed sequentially. Those steps are:

Not Reduction The first step of the algorithm eliminates all the RTNot nodes from
the tree. The algorithm walks through the tree looking for RTNot rt nodes, which are
replaced by the tree resulting from the negation of its nested tree (rt). The negation
of a tree involves the following cases:

• Trees of the form RTAnd rt1 rt2 and RTOr rt1 rt2 are negated by applying
De Morgan Laws, resulting in RTOr rt′1 rt′2 and RTAnd rt′1 rt′2, respectively,
where rt′i is the negation of rti.

• Trees of the form RTNot rt are negated to rt.

• The leafs of the tree are negated by negating its Trip element. The Trip
at this point can be either TKinded or TUnKinded, since the TNone may only
appear as the result of the composition of two Trip elements and composition
is performed once the RTNot elements have been eliminated. A TKinded leaf
represents the set of join points of certain kind (ki) which fulfill the specified
restrictions (r1...rn), consequently the negation of the TKinded leaf is the tree
that express the complement of that set. The complement tree must match all
the join points which are not of kind ki and all the join points of kind ki that
do not fulfill at least one of the restrictions r1...rn. The former is represented
by one TKinded element for each supported kind, with the exception of ki, with
an empty set of restrictions. The latter is represented by n TKinded elements
of kind ki, where the TKinded number i has only one restriction, which is the
negation of ri. The complement tree is the union of all these TKinded elements,
thus it is RTOr Trip tree containing them. The negation of a TUnKinded leaf
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is analogous, but it only imposes a collection of restrictions, r1...rn, thus its
complement tree includes n TUnkinded leafs, where the TUnKinded number i
has the negation of ri as its only restriction.

And Reduction Once all the RTNot nodes have been eliminated, the algorithm goes
through the tree once more, now looking for RTAnd rt1 rt2 nodes and replacing
them with the tree resultant from composing its two child nodes. The composition of
the two child nodes is done by first performing the and reduction over the two child
trees, let’s call those reduced trees rt′1 and rt′2 respectively, and then performing
the distributive composition of the two reduced trees. Note that at this point of
the algorithm rt′1 and rt′2 can be either an RTOr tree or a leaf. The distributive
composition is performed by flattening rt′1 and rt′2, and distributively composing the
leafs of the two lists, resulting in a list of composed leafs. Once that list has been
calculated, it is transformed back intro the RTOr tree representing the and reduction
of RTAnd rt1 rt2. The composition of two leafs is performed by composing the two
Trip elements, Listing 5.8 shows the tripCompose function responsible for performing
such a composition.

1 tripCompose :: Trip -> Trip -> Trip

2 tripCompose t t’ =

3 case (t, t’) of

4 (TKinded k xr xc, TKinded k’ xr’ xc ’)

5 | (k /= k’) -> TNone

6 | otherwise -> TKinded k (resCompose xr xr ’) (xc ++ xc ’)

7 (TUnKinded xr xc, TUnKinded xr ’ xc ’) ->

8 TUnKinded (resCompose xr xr ’) (xc ++ xc ’)

9 (TKinded k xr xc, TUnKinded xr ’ xc ’)

10 | (support k xr ’) -> TKinded k (resCompose xr xr ’) (xc ++ xc ’)

11 | otherwise -> TNone

12 (TNone , _) -> TNone

13 (_, TNone) -> TNone

14 (t, t’) -> tripCompose t’ t

Listing 5.8: Trip Composition <Haskell Code>

The composition of two TKinded elements of different kinds (line 5) results in TNone,
since a join point cannot be of two different kinds at the same time. In the case that
the kinds are equal (line 6), the composition results in a TKinded where both the
lists of restrictions and the list of context exposure requirements are merged6. The
function resCompose merges both list of restrictions by grouping restrictions of the
same type. The composition of two TUnKinded always results in a TUnKinded element
where the two lists of restrictions and the two lists of context exposure requirements

6Note that the merging is performed by concatenating both lists. Once a pointcut is fully-reduced,
the compiler checks that each parameter is bound exactly once.
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are merged respectively, see lines 7 and 8. As shown in lines 9 to 11, the composi-
tion of a TKinded and a TUnKinded elements has two cases. The first is when the
restrictions imposed by the TUnKinded elements xr’ are supported by the kind k,
in which case the composition is done as previously mentioned. The second is when
one or more of those restrictions are not supported by the kind, which results in a
TNone triplet. For instance, consider the pointcut fget(..) && args(..), since the
argument restriction is not supported by the field get kind, we know in advance that
the composition of both PCDs would never select a join point.

Homogenization Once the algorithm reduces all the RTAnd nodes, the following
tasks are done:

• All the TNone leafs are eliminated, since they represents empty set of join points
in a tree where all the nodes are union operators.

• All the TUnKinded xr xc leafs that may remain in the tree are expressed in
terms of TKinded elements. Hence, for each supported kind ki that supports
all the xr restrictions a triplet of the form TKinded ki xr xc is formed. The
triplet TUnKinded xr xc is expressed as the union of those TKinded triplets.

5.3.1.3 Illustration

In order to illustrate the reduction process, consider the pointcut moveFromComp
shown in Listing 5.9. It selects all the invocations to the method moveXY made over
a Point, which are performed either from a Composite shape or in the control flow
of an invocation to moveXY on a Composite shape. In addition, it exposes both the
Composite and the Point shapes. Note that the pointcut moveFromComp is somehow
redundant in the sense that if we remove the this(c) PCD, the pointcut would select
the same set of join points7. Nonetheless, we define it in that way in order to better
illustrate the reduction process. Also, in the next section we use it to show how the
order of evaluation of the pointcut may affect the parameters’ binding.

pointcut compMove(Composite c):

execution(void moveXY(int , int)) && this(c);

pointcut moveFromComp(Composite c, Point p):

call(void moveXY(int , int)) && target(p) &&

(this(c) || cflow(compMove(c)));

Listing 5.9: Pointcut Reduction Example - Declaration <PA Code>

7Assuming that the Shape Editor example is closed.
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Listing 5.10 shows the intermediate representation of the pointcut moveFromComp
(lines 1 to 4) and how this representation is reduced (lines 5 to 13). With the purpose
of simplifying the example presentation, the restrictions and context exposure require-
ments are abbreviated. For instance, TargetPoint represents a RCInsOf restriction
over the target object and CFlowc represents that the parameter c is bound to the
parameter exposed by the compMove pointcut. Since the pointcut does not include
any ! operators, the not reduction returns an identical tree. The and reduction is
divided in two steps. The first step, on lines 6 to 8, reduces the innermost RTAnd
node, which implies distributively composing the TUnKinded element corresponding
to the target PCD with the two TUnKinded leafs of the RTOr tree. The result is
another RTOr tree holding the result of such a composition. The second step, on lines
10 to 13, reduces the remaining RTAnd by distributively composing the TKinded ele-
ment with the two TUnKinded elements. The result is an RTOr tree where the left leaf
selects the invocations to moveXY performed directly from a Composite shape, while
the right branch selects those in the control flow of the pointcut compMove. Since the
tree resulting from the and reduction is already homogenized, the homogenization step
returns an identical tree. Note that the two TKinded leafs exhibit the two different
forms in which parameters are bound by the pointcut moveFromComp.

1 RTAnd (TKinded MsgSend [RetTypevoid, NamemoveXY , Argsint,int] [])

2 (RTAnd (TUnKinded [TargetPoint] [Targetp])

3 (RTOr (TUnKinded [ThisComposite] [Thisc])

4 (TUnKinded [CFlowcompMove] [CFlowc])))

5 =⇒redAnd−Step1

6 RTAnd (TKinded MsgSend [RetTypevoid, NamemoveXY , Argsint,int] [])

7 (RTOr (TUnKinded [ThisComposite, TargetPoint] [Thisc, Targetp])

8 (TUnKinded [CFlowcompMove, TargetPoint] [CFlowc, Targetp]))

9 =⇒redAnd−Step2

10 RTOr (TKinded MsgSend [RetTypevoid, NamemoveXY , Argsint,int,

11 ThisComposite, TargetPoint] [Thisc, Targetp])

12 (TKinded MsgSend [RetTypevoid, NamemoveXY , Argsint,int,

13 CFlowcompMove, TargetPoint] [CFlowc, Targetp])

Listing 5.10: Pointcut Reduction Example - Process <Haskell Code>

5.3.1.4 Pointcut Evaluation Order

The order in which the PA machine evaluates the PCD combinators, involved in a
pointcut definition, has semantic effects in the bindings it generates. For instance,
consider the pointcut moveFromComp defined in the previous section and a join point
representing an invocation to the method moveXY on a Point object, which is per-
formed from inside the method moveXY of a Composite object. Such a join point is
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matched by moveFromComp and its two parameters, c and p, are bound to the this
object and the target object, respectively. However, if we swap the two PCDs of the
|| combinator (i.e. alter the order), the join point would also be matched, but pa-
rameter c would be bound to the Composite object exposed by compMove. In the case
of moveFromComp, such a swap would not have any semantic effects that can be per-
ceived by the user, because in both definitions of the pointcut, c would be bound to the
same object. However, in a pointcut like foo(Composite c):this(c) || target(c)
it does have a semantic impact. From the point of view of our compiler, preserving
the order in which the parameters must be bound is crucial to ensure that both the
original pointcut and the compiled version bind the same pieces of information.

Figure 5.3 illustrates how the pointcut moveFormComp gets compiled. The tree on the
left side of the figure represents the AST of its definition. The one in the middle is the
RTree Trip used by the compiler to represent the pointcut definition. Since this tree
is isomorphic to the pointcut’s AST, it preserves the order specified in the pointcut
definition. Finally, the tree on the right side is the reduced RTree Trip. Based on
the reduced tree, the compiler generates the corresponding hookset and call descriptor
for each leaf. Those elements are used in the definition of the corresponding link,
preserving the order defined by the reduced tree.

&&

&&call(..)

target(p) ||

this(c) cflow(cm(c))

moveFromComp(Component c, Point p):

RTAnd

RTAndTKinded

ms [..] []

TUnKinded

[..] [p ]ta

RTOr

TUnKinded

[..] [c ]th

TUnKinded

[..][c ]cf

RTOr

TKinded

ms [..] [c ,p ]cf ta

TKinded

ms [..] [c ,p ]th ta

Isomorphic
RTree Trip Reduction

Evaluation Order

link mFC {

from hs on ... with cd ,

from hs on ... with cd

}

1 1

2 2

Figure 5.3: Pointcut Evaluation Order

Note that the reduced tree would be evaluated by the Kernel machine following the
same order used by the PA machine. That is to say, the RTOr first tries to match
the operation with the left branch, and if it fails, it tries with the right branch (see
the pcMatch function in Section 4.3.4). Since both matching functions, pcMatch and
link evaluation, evaluate the tree following the same order, it remains to analyze
if the reduction of the tree does indeed preserve the order in which parameters are
bound.

In order to analyze this, let’s analyze if each of the three steps of the reduction process
preserves such an order.
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• Not reduction transforms the negated sub-tree, which does not bind any pa-
rameter (remember that AspectJ explicitly forbids the negation of a parameter
binding, see Section 4.3.4), into a semantically equivalent tree matching the
same join points. From the point of view of the matching algorithm, this does
not affect the parameters’ bindings, since a branch that is expected to return a
boolean value plus an empty list of bindings is replaced by another one doing
the same.

• And reduction transforms a tree of the form RTAnd bleft bright, where the bleft

and bright branches have already been and-reduced, into a RTOr tree. Such a
tree represents the union of the distributive composition of the leafs of bleft

with the leafs of bright. Such a composition is performed in the following
way. In first place, the RTOr trees of both branches are flattened preserving
the order (i.e. the nodes in the left branch are before the ones in the right
branch). Therefore, the two branches have the form left=∪[Ll

1, .., L
l
n] and

right=∪[Lr
1, .., L

r
m]. Secondly, both lists are composed, resulting in the follow-

ing list ∪[Ll
1 ·Lr

1, .., L
l
1 ·Lr

m, .., Ll
n ·Lr

1, .., L
l
n ·Lr

m], where · is the leaf composition
operator. Finally, the resulting list is transformed back into an RTOr tree, once
again preserving the order. Note that the pcMatch function of the PA machine,
would evaluate the tree RTAnd bleft bright as follows. First, it evaluates Ll

1.
If Ll

1 matches then bleft has been matched, hence it continues by evaluating
Lr

1. If Lr
1 matches, then bright has been matched, hence it ends returning those

bindings of Ll
1 · Lr

1. If Lr
1 does not match, it continues with Lr

2 up to Lr
m. If

Ll
1 does not match, it continues with Ll

2 up to Ll
n. Indeed, this is exactly the

order in which parameters are bound as a result of the distributive composition,
hence and reduction does preserve the order. See Listing 5.10 for an example of
how and reduction applied to pointcut moveFromComp preserves such an order.

• Homogenization reduction performs well-localized transformations over the and-
reduced tree resultant from the previous step. By well-localized we mean that
it replaces TUnkinded elements by RTOr trees with TKinded leafs, having the
same context exposure requirements. Therefore, it does not alter the order in
which parameters are bound. In addition, it also removes the TNone leafs, also
preserving the order of the RTree Trip.

5.3.2 Advice Metaobject Generation

The behavior that an advice defines is compiled into a metaobject class containing
a single method holding it. The metaobject class is an standard BASE class. The
generation of the methods for the before and after advices is straightforward (see
next section), while for around advices it also implies the compilation of the proceed
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expression that may be immersed in its body (see Section 5.3.2.2).

5.3.2.1 Before and After Advices

A before or after advice is compiled into a method that has the same parameters and
body as the advices declaration. Since advices are nameless, the compiler generates
the name of the method. The return type of the method is void, because neither
advice kind returns a value. Listing 5.12 shows an example of the compilation of a
after advice.

after(int x, int y): class AdvMO {

moveSinglePointArgs(x,y){ void adv(int x, int y){

write "Point moved: " ++ x ++ =⇒ write "Point moved: " ++ ...;

", " ++ y; }

} }

Listing 5.11: Advice Compilation Example <PA/Kernel Code>

5.3.2.2 Around Advices

The compilation of an around advice has to deal with two additional tasks: proceed
expression generation and boxing/unboxing of primitive types. Both tasks are dis-
cussed in what follows. In addition, note that the generated method shall be associ-
ated to a link with AROUND control, hence its return type must be Object (see Section
3.3.2.5).

Proceed expression As explained in Section 4.3.4, the PA machine uses a mapping,
represented by the internal machine structure CtxBind, in order to perform the modi-
fications to the context of the current join point during the evaluation of the proceed
expression. Such a mapping states, for each argument that the proceed expression
receives, which value in the context must be modified. Even though the Kernel ma-
chine provides the proceed expression in order to continue with the evaluation of the
original operation occurrence (the original join point), it does not provide any built-in
mechanism to know which fields of the operation occurrence must be modified before
proceeding with the operation occurrence evaluation. This difference in the level of
abstraction of both proceed expressions implies that the compiler must handle the
mapping explicitly in the generated Kernel code.

Since the PA proceed expression takes as its arguments those passed to the underly-
ing around advice, the mapping specification can be inferred from the RTree Trip of
the associated pointcut. As explained in Section 5.3.1.2, each leaf of the reduced tree
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contains the specification of the values that must be reified to the advice metaob-
ject. Consequently, each leaf encloses the knowledge of which piece of information
is represented by each reified value. The compilation of the proceed embodies two
activities. On the one hand, the call descriptor generated for each leaf of the reduced
tree must build a structure holding the mapping specification for the set of operations
occurrences it selects and it also must pass the structure as an additional parameter
to the advice method. On the other hand, each PA proceed expression inside the
advice must be replaced by the appropriate Kernel proceed expression, which based
on the mapping specification performs the appropriate modification to the operation
occurrence before proceeding. Figure 5.4 graphically illustrates how the mapping is
generated and passed to the metaobject. The dashed ovals and lines represent the
hookset and the call descriptor generated for each leaf of the RTree Trip, respectively.
Once an operation is selected by one of the hooksets, its associated call descriptor,
besides reifying the corresponding values, generates the mapping structure and passes
it to the advice metaobject. The mapping structure is modeled as an array of integers
that specifies, for each parameter, which piece of context information it represents.

advMethod(p , ..., p , int[] map)1 n Advice Metaobject

Link

Primitive Hooksets

Composite Hookset

Call Descriptors

Mapping Generation

Figure 5.4: proceed Mapping

Listing 5.12 illustrates the generation of the advice method for an around advice that
make use of proceed. The advice is bound to the pointcut moveFromComp, presented in
Section 5.3.1.3. Once the advice gets executed, it logs the moveXY call before and after
invoking proceed. Note that the proceed expression changes the Composite shape by
calling the c.getParent(). Assume that such a method returns the Composite shape
that contains the c shape. The generated method receives, besides the two parameters
of the advice, the mapping array. As mentioned in Section 5.3.1.3, moveFromComp
defines two forms of binding c: if the moveXY call occurs inside the Composite shape,
c is bound to the this object, and if the call occurs in the control flow of the method
Composite.moveXY, c is bound to the value exposed by an event collector. Meanwhile,
p is always bound with the target object. The generated proceed expression, based
on the map argument, performs the changes to the operation occurrence (available
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through the oper implicit variable, see Section 3.3.2.6) using the setter methods.
Note that based on the map argument, the proceed expression determines whether
the c parameter represents the this object, in which case it modifies the operation
occurrence using setThis, or if it represents the event collector value, in which case
no modification is performed8. In the case of p, there is no need to use the mapping,
since it is always bound to the target object. Actually, the setTarget can be removed
from Listing 5.12, since it does not alter the operation occurrence. However, we leave
it for illustration purposes.

void around(Composite c, Point p): moveFromComp(c,p){

write "Before: Moving " ++ p ++ " from inside " ++ c;

proceed(c.getParent (),p);

write "After: Moving " ++ p ++ " from inside " ++ c;

}

=⇒
class advMO {

Object adv(Composite c, Point p, int[] map){

write ...;

proceed{

if (map [0] == THISconst) oper.setThis(c.getParent ());

oper.setTarget(p);

}; write ...; null;

}

}

Listing 5.12: proceed Generation Pseudocode <PA/Kernel Code>

Boxing and Unboxing There are two situations in which the compiler must deal
with boxing and unboxing. On the one hand, when at least one parameter of the
advice is of a primitive type and the advice encloses a proceed invocation, those
parameters must be boxed before performing the operation occurrence modification.
On the other hand, when the return type of the advice is a primitive type, the value
returned by the proceed expression may need to be unboxed. For instance, consider
an around advice declared with int as its return type and that its body encloses
an expression like proceed(..) + 1;. Since the proceed in the Kernel machine
returns an object, the int value it returns must be unboxed in order to perform the
arithmetic operation. In addition, since the return type of an around advice is Object
the value returned by the advice may also need to be boxed. For instance, consider
an advice like int around()..{..; 1;}. The 1 must be boxed before returning.

8Remember that values exposed through the control flow relation cannot be modified by the
proceed expression, see Section 4.3.4.
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5.3.3 Kernel Constructions Generation

The generation of the Kernel constructions required for an advice is straightforward:
a hookset and a call descriptor is generated for each TKinded Kind [Res] [Ctx]
of the RTree Trip tree, and a link is generated binding the hooksets to the advice
metaobject.

Hookset The hooksets are generated using primitive hooksets with an embedded
selector declaration (see Section 3.3.2.2). The selector only admits operation
occurrences of the type specified by the Kind of the corresponding triplet. Each
Res in the list is converted into an expression imposing its restriction. The se-
lection predicate of the selector is an expression that denotes the and of all the
expressions generated for the Res list. The RField restrictions produce expres-
sions checking some condition over the operation occurrence. The generation of
the expressions for the control flow restrictions (i.e. RGeneral restrictions) is
explained in the next section.

Call Descriptor In the call descriptor definition, the expected type of the operation
occurrence and the metaobject are obtained from the Kind and the associated
advice metaobject, respectively. The body of the call descriptor is generated by
generating an expression that is capable of obtaining the value corresponding
to each Ctx, and invoking the advice method passing those values. In addition,
for around advices, the mapping array may also be generated and passed as
an extra argument to the advice method. The next section explains how the
values exposed by an event collector metaobject can be obtained from the call
descriptors.

Link The binding specification of the link is generated by associating each pair
hookset-call descriptor with the control value corresponding to the kind of the
advice being generated. The bindings must be generated respecting the order
defined by the RTree Trip, as explained in Section 5.3.1.4. The metaobject
initialization block of the link simply instantiates the advice metaobject.

In addition, if the pointcut associated to the advice has control flow restrictions, for
each different restriction an event collector metaobject must be generated, along with
its corresponding hooksets, call descriptors and link. This is explained in the next
section.

5.3.3.1 Control Flow Restrictions

The compilation of a control flow restriction requires an event collector metaobject to
be setup for the nested pointcut, exposing the control flow information; and for the
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pointcut containing the control flow restriction, its hooksets must check whether or
not the operation is in the control flow of the event collector and its call descriptors
must obtain from the event collector the values exposed by the nested pointcut.

The event collector metaobject is setup in such a way that it is notified before and
after the occurrence of an operation matched by its nested pointcut. Since the nested
pointcut may expose context information, there are two different implementations
for the event collector metaobject: counter and stack based. Listing 5.13 shows an
example of the code for both implementations. The counter based implementation
is used when the nested pointcut does not expose any information from the context.
Its implementation is based on a counter which is incremented (i.e. method enter)
before the execution of the operation occurrence and decremented after (i.e. method
exit) the execution. The event collector exposes the control flow information through
the method isInside, thus when a hookset wants to check if the operation occur-
rence being matched is inside the control flow its nested pointcut, it simply invokes
this method. The stack based implementation is used when the nested pointcut ex-
poses information from the context of the join point. The enter method receives the
exposed values as its arguments and pushes them into the stack. Actually, in the
StackBased implementation shown in Listing 5.13 there is one stack, implemented as
an array, for each exposed value (i.e. p1 to pn). The free variable holds the top of
the n stacks. Besides providing the method isInside, exposing the information of
being inside the control flow of its nested pointcut, this implementation also provides
methods for accessing the context exposed values at the top of the stack, i.e. getP1
to getPN.

class CounterBased { class StackBased {

int counter; T1[] p1; ... Tn[] pn; int free;

void init (){ counter :=0; } void init (){ p1 := new T1[MAX]; ...}

void enter (){ void enter(T1[] a1 ... Tn[] an){

counter := counter + 1; p1[free] := a1; ... pn[free] := an;

} free := free + 1;

void exit (){ }

counter := counter - 1; void exit (){ free := free - 1; }

} bool isInside (){ free > 0; }

bool isInside (){ T1 getP1 (){ p1[free - 1]; }

counter > 0; ...

} Tn getPN (){ pn[free - 1]; }

} }

Listing 5.13: Event Collector Metaobject Class <Kernel Code>

The generation of the link for the event collector is similar to the advice link genera-
tion. First its nested pointcut must be reduced. Then the hooksets and call descrip-
tors must be generated for the reduced intermediate structure. Since the link binds
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the hooksets with BEFORE and AFTER controls, the call descriptor to be bound with
BEFORE control must invoke the enter method passing the context exposure informa-
tion (if any), and the call descriptor to be bound with AFTER control must invoke the
exit method. Finally, the binding specification and metaobject initialization block
of the link are generated. The metaobject initialization block must instantiate the
corresponding event collector metaobject and invoke the init method (see Listing
5.13) in order initialize it.

As the reader may have noticed, up to this point we have not made any explicit
distinction on how cflow and cflowbelow restrictions are implemented. The semantic
difference between these two restrictions relies on the way in which they are composed
in relation with the affected advice link. As mentioned in Section 4.3.4 the only
difference between the cflow and cflowbelow is that the former considers the current
join point as a candidate to be matched, while the latter does not. This semantic
difference is illustrated in Figure 5.5. The link of the affected advice is represented
Ladv. The first and third cases consider that the kind of the advice is before or after,
while the second and fourth consider that the kind is around. The event collector
link is Lcflow (not shown in the Figure) and it is always associated with BEFORE
and AFTER controls. The first two cases show how the two links, Ladv and Lcflow,
are composed to represent a cflow restriction. Note that in both cases becflow and
afcflow surround the link Ladv, thus the enter method of the event collector shall be
invoked before checking the restriction. Meanwhile, in the last two cases becflow and
afcflow are wrapped inside the link elements of Ladv, thus the restriction is checked
before invoking the enter method, representing the semantics for the cflowbelow
restriction.

[be ,be ]adv cflow

op

cflow

[af ]cflow,afadv

[be ,be ]cflow adv

op

[af ]adv,afcflow

[be ]cflow

op

[ ]afcflow

aradv

[be ]cflow

op

[af ]cflow

aradv

(1) (2) (3) (4)

L ={be }|adv adv {af }adv L ={ar }adv adv L ={be }|adv adv {af }adv L ={ar }adv adv

cflowbelow

Figure 5.5: Control Flow Semantics

The current state of the Kernel machine does not allow to provide appropriate sup-
port for control flow restrictions in the cases that there is a link interaction between
the control flow link and the advice link. The reasons are two: the lack of link
composition specification and the implicit dependency limitation explained in Section
3.3.7.6. The former does not allow to appropriately differentiate between the cflow
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and cflowbelow semantics, because the appropriate link composition rules cannot be
specified. The latter does not allow to state the dependency that exists between the
links Lcflow and Ladv. Therefore, in the context of an interaction scenario like the
one described in the first case of Listing 5.5 and where the event collector is empty
(i.e. the counter is zero or the stack is empty), the link Ladv would never be selected,
because the selector of Ladv is evaluated before the enter method is actually invoked
by becflow. This problem can be easily solved with the extension to the selector con-
struction shown in Section 3.3.7.6, because the invocation to the isInside method
could be done as a post-composition activity.

An alternative solution to the implicit dependency issue using the constructions avail-
able in the current implementation of the Kernel machine would be to differ the
isInside check up to the call descriptor evaluation, i.e. doing it post-composition.
Even though this solves the problem, it is extremely ad-hoc, therefore we do not use
it for the compilation.

Providing an appropriate solution for the two issues mentioned is left as a future
work. Once the implicit dependency limitation has been solved and the support for
the specification of composition rules has been included, the solution to this issues is
straightforward. As it is presented in Section 5.4, these two problems are solved in
the context of the compilation from AspectJ to Reflex.

The expression required in order to check from a hookset that an operation occurrence
is inside the control flow of an event collector must get a reference to the event collector
metaobject (using the linkName#MO) and then invoke the isInside method over the
metaobject. In the case of a call descriptor, the expression required in order to
get a value exposed by an event collector metaobject must also get the metaobject
reference and then invoke the appropriate getPX() method. Note that the number of
the parameter (i.e. the X) is obtained from the corresponding CtxCFlow element.

5.3.3.2 Advice Execution

As presented in Section 4.3.1 the PA machine provides internal support for the advice
execution join points, through the AExec join point constructor. The PA interpreter
is in charge of constructing the AExec join point before evaluating an advice and per-
forming the usual match-evaluate process for the join point. On the other hand, the
Kernel machine does not provide any built-in mechanism to know whether an opera-
tion occurrence corresponds to either an object at the base or meta level. Therefore,
the compilation process is responsible for providing the information of when a method
execution represents a simple method or an advice method.

The hooksets generated for the TKinded triples with kind MsgReceiveMO are defined
using the MsgReceive operation and require an additional restriction besides those



5.3. COMPILATION 149

imposed by the list of Res elements, which is that the executed method must be
one of the methods generated for the advices. Note that, since the user may impose
argument restrictions over the advice execution (using the args PCD), special care
must be taken when generating the expression that checks that restriction on around
advices, because their advice methods may include the additional parameter for the
proceed mapping which must be ignored.

The fact that MsgReceive operation is used for reifying two different join points of the
PA language, i.e. methods and advice executions, implies that the compiler must also
ensure that the operation occurrences representing ”standard” method executions are
never selected by the hooksets generated for a TKinded triple with kind MsgReceive.
Therefore the selection predicate of those hooksets must explicitly exclude the advice
methods.

5.3.4 Limitations

There are some design decisions regarding the compilation process and the Kernel
machine which do not allow to achieve a faithful representation of the PA language
semantics under some circumstances. Those limitations on the support of the PA
language semantics are presented next.

Visibility of the pointcut predicate. In order to express the semantics of a point-
cut predicate, the compilation process must ensure that there is a bijective correspon-
dence between the set of join points matched by a pointcut predicate and the set of
operation occurrences selected by the hooksets representing the pointcut predicate.
There is an issue in the compilation process, regarding the synthetic code introduced
during the compilation, that makes it impossible for that correspondence to hold. By
synthetic code here we mean, code inserted by the compiler, at the base or meta level,
in order to support some high-level feature that the PA language supports internally
and the Kernel language does not. Since this code resides at base or meta objects, it
is a potential candidate to be reified and selected by a compiled pointcut predicate.
This gives rise to a semantic difference. Those pieces of code are the event collector
metaobject classes, the proceed expression blocks (e.g. invoking the setters methods
of the operation object), the primitive type boxing/unboxing expressions included in
the around advices.

A possible solution to this issue consists in imposing additional restrictions to the
hooksets generated for the pointcuts, in order to exclude any operation originated
by those pieces of code. The implementation of such a solution is easy, it requires
generating a hookset that captures the operation occurrences related to synthetic
code and composes it with all the other generated hooksets. Such a hookset has
to include the following operation occurrences: those whose where class is an event
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collector, those which invoke a method over an operation class, those that instantiate
a wrapper class and those which invoke a method of a wrapper class.

However, we believe that this solution, as any other solution that could be elaborated
with the current implementation of the Kernel machine is ad-hoc. We believe that
the Kernel machine should be extended to provide explicit mechanisms that facilitate
dealing with this abstraction gap between the PA language and the Kernel language,
giving place for a more general and principled approach to solve this kind of issues.
Furthermore, in the general case, each aspect-language compiled into the Kernel ma-
chine must be unaware of the synthetic code used for its compilation and also for the
one generated during the compilation of other aspect-languages. Therefore, this issue
is left as a limitation of the current compiler and the elaboration of a mechanism to
manage the abstraction gap is left as future work. In Section 5.4.4 we shall come back
to this limitation, but in the context of the AspectJ to Reflex compiler.

Control flow. The semantics of control flow restrictions cannot be appropriately
provided when there is an interaction between the advice link and the event collector
link. The causes for this limitation are two. In first place, the hookset associated
to the advice link includes the check of whether or not the current operation is in
the control flow of the event collector. Since the event collector link also matches
the same operation occurrence, the result of such a check depends on the execution
of the event collector. However, since hooksets are evaluated prior the reification of
all links, and hence prior to the execution of the event collector, this dependency
cannot be correctly specified. In second place, the semantic difference between cflow
and cflowbelow cannot be achieved, because link composition specification is not
supported by the Kernel machine. See Section 5.3.3.1 for a detailed description of
this limitation of the compilation process.

Advice composition. Neither the PA language nor the Kernel language are designed
to provide support for composition specification. Both the PA machine and the Kernel
machine provide a built-in strategy for composing advices and links, respectively,
when an interaction is detected. However, those two strategies were not designed to
be compatible. Therefore, when multiple advices match a join point, the order in
which they are executed by the PA machine and the Kernel machine may differ.

5.4 Compiling AspectJ to Reflex

The compilation process for the AspectJ language essentially involves the same ac-
tivities that the one for the PA language. In order to simplify the compiler imple-
mentation, only some of the PCDs included in the PA language are supported, i.e.
call, execute, within, args, this, target, cflow and cflowbelow. The three
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advice kinds supported by the PA language are supported9, besides the aspect con-
struction present in AspectJ. Only singleton aspects are supported. Since Reflex
supports the specification of composition rules and does not have the implicit depen-
dency limitation, the control flow PCDs shall be completely supported. In addition,
AspectJ inner-aspect precedence rules shall be also supported by the generation of
the corresponding advice composition rules. Finally, access to the thisJoinPoint
and thisJoinPointStaticPart implicit variables from the advice’s body is also sup-
ported.

The presentation of the compiler for AspectJ shall be done following the same struc-
ture used for the PA language. Since both compilers are very similar, only the main
differences between the two shall be mentioned.

5.4.1 Conceptual Overview Reviewed

Conceptually, the correspondence between AspectJ constructions and Reflex con-
structions is analogous to the correspondence between the PA-Kernel languages. The
main differences relies in how pointcuts can be efficiently implemented in a compiled
environment and in that AspectJ has the notion of aspect rather than isolated advices.

5.4.1.1 Pointcuts

As shown in Section 2.6.3.1, pointcut designators may impose statically- and dynami-
cally-matched restrictions over join points. In the AspectJ terminology, statically-
matched restrictions are responsible for the selection of the join point shadows matched
by the pointcut, meanwhile dynamically-matched restrictions are evaluated at runtime
by residues [HH04]. In order to achieve efficiency, the mapping must make explicit
the difference between static restrictions, which must be matched at compile-time,
and dynamic restriction.

Let’s us first consider static restrictions, with the simple user-defined pointcut des-
ignator move on Listing 5.1410. Note that the call PCD can entirely be matched
statically, based on the program text. In other words, it is fully determined by its
shadow. In Reflex vocabulary, a join point shadow is a hook. By extension, a pointcut
shadow is a hookset. Therefore the pointcut move is mapped to a primitive hookset
defined over the MsgSend operation, with a class selector that selects all classes and
an operation selector that only selects the methods with the signature of moveXY.

9However, the after returning and after throwing advice kinds included in the AspectJ language,
are not supported.

10Note that we slightly change the pointcuts in the example, with respect to the ones in Listing
5.1, in order to better illustrate residues. Now they select the invocation (join point kind call) of
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pointcut move (): call(void *. moveXY(int , int))

pointcut movePoint (): move() && target(Point)

pointcut moveSinglePoint (): movePoint () && !cflowbelow(move ())

pointcut moveSinglePointArgs(int x, int y):

moveSinglePoint () && args(x, y)

Listing 5.14: AspectJ-Reflex Pointcut Examples <AspectJ Code>

Now consider the pointcut movePoint. It adds the restriction that the target object
of the call to moveXY must be of type Point. Such a restriction cannot be completely
resolved statically (although a static analysis of concrete types could partially help).
In the program text, it is only possible to select calls that are done on an object
whose declared type is either Point, or any super or sub-class of it. Since the con-
crete type of a variable is only determined at runtime, this pointcut requires a residue
that dynamically checks the type of the target of a call (via instanceOf). In Re-
flex, residues are represented by associating a restriction (see Section 2.4.2.5) to the
hookset. Therefore, movePoint is mapped with a hookset, determining the pointcut
shadow, and a restriction which receives the target object and checks if it is instance
of the Point class. Note that the hookset for the movePoint is the same of that of
the pointcut move, the only thing that changes are the dynamic restrictions defined
over it.

Control flow relations are handled as presented in Section 5.2.1, but now, a restriction
is responsible for checking that the join point is inside the control flow of another
pointcut. So, back in the example, the pointcut moveSinglePoint is represented
by the hookset of the pointcut move plus a restriction that checks the two residues,
instanceOf and cflow.

Context information is exposed using call descriptors (see Section 2.4.2.5). In the
example, the pointcut moveSinglePointArgs requires a call descriptor specifying
that the two parameters of method moveXY must be passed to the metaobject. This
is done by getting the Parameter objects from the MsgSend parameter pool.

Actually, restrictions and call descriptors were not present in earlier versions of the
Reflex model. Without them, the mapping requires that all the join point information
be reified to the metaobject, which was responsible for checking the residues, extract-
ing the required parameters and performing the advice’s behavior. Clearly, this was
far from being efficient, besides obfuscating the mapping. Therefore, in [RTN04] we
introduce these two small but effective extensions to the Reflex model, which allows

the method moveXY on stand-alone points.
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to achieve a more efficient and clear mapping.

5.4.1.2 Aspects

An aspect may contain any legal Java class member, plus multiple advices. It is
mapped as a metaobject class, containing the same Java class members of the aspect
and one additional method for each advice. Since we only support singleton aspects,
the metaobject class follows the singleton pattern [GHJV95]. For instance, the aspect
MovingPoint defined in Listing 5.15 is mapped to a class, named MovingPointMO,
with one method with the same parameters that the after advice has. Since advices
are nameless, a name is generated for them. Figure 5.6 shows a graphical illustration
of the mapping.

aspect MovingPoint {

after(int x, int y): moveSinglePointArgs(x, y) {

System.out.println("Point moved: " + x + ", " + y);

}

}

Listing 5.15: AspectJ-Reflex Aspect Example <AspectJ Code>

As for the PA-Kernel mapping, the binding is performing using a link. The link
binds the hookset corresponding to move pointcut, i.e. moveHookset in Figure 5.6, to
the aspect metaobject, using AFTER control attribute. It also associates a restriction
to check the two residues required by the pointcut moveSinglePointArgs and a call
descriptor that specifies the advice method to be invoked along with the parameters to
reify. The event collector metaobject is much like the one of the PA-Kernel mapping.

base level

metalevel
c

isInside() instanceOf(Point)

c

MovingPointMO (Aspect)

MoveCFlowMO (Event collector)

moveHookset

moveSinglePointArgs residue

link

Figure 5.6: AspectJ-Reflex: Conceptual Mapping

Note that in the Figure, both metaobjects are linked to the same hookset. The
only difference relies in the restrictions imposed for the MovingPointMO to check the
residues.
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5.4.2 Compilation Reviewed

The compilation process for AspectJ involves the same conceptual activities as the
one for the PA language presented in Section 5.3. The main differences are related
to how the pointcuts and aspects (including advices) are compiled. These differences
shall be reviewed in the rest of this section. In addition, note that the output of the
compilation process is a set of Java classes, which includes: class selectors, operation
selectors, aspect classes, event collector classes and a Reflex configuration class (see
Section 2.4.2.2). The configuration class shall include the definitions of hooksets,
links, hookset restrictions and call descriptors.

Pointcuts The pointcuts are represented using a structure similar to the RTree Trip,
but with the difference that the list of restrictions is divided in two lists: one for static
restrictions and one for dynamic restrictions. Therefore, during the construction
of the structure each PCD is expressed in terms of four elements, namely a kind
restriction, a list of static restrictions, a list of dynamic restrictions and a list of
context exposure requirements. This four-element representation of a PCD is called
a quadruple, conversely to the triplet used for the PA language.

The only difference between the pointcut reduction process presented in Section
5.3.1.2 and the one used here is in how the quadruples are negated and composed.
The complement of a quadruple of the form (ki, {rs

1,..,r
s
n}, {rd

1,..,r
d
m},{}) now

must select those operations which are not of kind ki and those operations which are
of kind ki that do not fulfill one of the static restrictions {rs

1,..,r
s
n} or one of the

dynamic restrictions {rd
1,..,r

d
m}. The difference between the composition of the

triplets and the composition of quadruples is that now, static and dynamic restric-
tions must be composed separately. The rest of the reduction process is exactly the
same as that of the PA language.

Once the intermediate structure has been reduced, a primitive hookset and a hookset
restriction (for the residues) are generated for each quadruple. The primitive hookset
is generated based on the kind and the list of static restrictions of the quadruple.
A class selector and an operation selector are generated for each hookset. The class
selector encloses those parts of the static restrictions related to the class where the op-
eration occurs, while the operation selector encloses the rest of the static restrictions.
The remaining list of dynamic restrictions is checked using a hookset restriction. The
hookset restriction is generated by creating a Java static method, which receives as
parameters those pieces of information over which the dynamic restrictions are estab-
lished (i.e. this object, target object or an argument), and whose body encloses the
expressions to check the dynamic restrictions. In addition, the hookset restrictions are
bound to the associated hookset and appropriately configured to receive the required
parameters using the call descriptor mechanism (see Section 2.4.2.5).
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Aspects An aspect is compiled into a Java class implementing the interface BMeta-
object (see Section 2.4.2.6) and containing all the standard Java members defined in
the aspect. The advices are compiled in the same way as for the PA language, thus
the aspect class contains an additional method for each advice. If there is at least
one around advice that uses the proceed statement, the aspect class must also extend
the ProceedMO class11 (see Section 2.4.2.6). The proceed statement is compiled by:
generating an additional method in the aspect class which receives those parameters
to the underlying advice and replacing the proceed statement by an invocation to
that method. The mapping specification is represented by an array of integers, like
for the PA language (see Section 5.3.2.2), and passed to the around advice as an
additional parameter. The method generated for the proceed also receives the map-
ping specification, and is responsible for modifying the operation occurrence (based
on the mapping), performing the boxing of the parameters (if they are primitive) and
invoking the proceed method of Reflex (see Section 2.4.2.6).

For each defined aspect, AspectJ provides the static method aspectOf which allows
to obtain a reference to the aspect. In order to support it, the aspectOf method is
added to the generated aspect class and, once executed, it returns the only instance
available for the aspect.

Link Definition The definition of the link for an advice requires creating a compos-
ite hookset containing the union of all the primitive hooksets corresponding to the
associated pointcut (note that a link in Reflex is defined over only one hookset) and
specifying how to obtain the associated metaobject. The metaobject is obtained by
querying a metaobject factory (see Section 2.4.2.4) which in turn invokes the aspectOf
method of the metaobject class to obtain the reference. In addition, the appropriate
control and scope must be specified. The control is specified based on the advice
kind, while the scope is always GLOBAL. In addition to this, a call descriptor must be
created for each primitive hookset specifying the name of the advice method and the
parameters that must be passed (obtained from the operation parameter pool).

The control flow restrictions are implemented as explained in Section 5.3.3.1, with the
difference that the isInside method is now checked from the hookset restriction and
not from the hookset. Section 5.4.3.1 explains how the composition rules are defined
in order to distinguish between cflow and cflowbelow restrictions.

11Note that this implies that the aspect cannot extend another aspect or class. This limitation
is resolved in a later version of Reflex, which does not require that the aspect class extend the
ProceedMO class.
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5.4.3 Advanced Features

5.4.3.1 Composition

The compiler also generates the composition specification to differentiate between
cflow and cflowbelow restrictions, and establish how the links of the advices in a
single aspect must be composed, in order to respect the AspectJ semantics.

As explained in Section 5.3.3.1 the semantics of the cflow PCD states that the event
collector link (Lcflow) must enclose (wrap) the execution of the link of the affected
advice (Ladv), consequently considering the current operation occurrence as a can-
didate for the selection. This composition semantics is specified using the composi-
tion rule wrap(Lcflow, Ladv), as presented in Section 2.4.3. On the other hand, the
cflowbelow PCD requires the opposite specification, the Ladv link must wrap the
Lcflow link, in order to exclude the current operation occurrence from the selection,
thus it is specified using the composition rule wrap(Ladv, Lcflow). Therefore, the
compiler shall generate the appropriate wrap rule for each pair of links related by a
control flow restriction.

Since the Lcflow link may also depend on other control flow restrictions, the compo-
sition specification must also define how the Ladv link must be composed with those
other links, over which it indirectly depends on. For instance, consider the pointcut
definition shown in Figure 5.7, where the nested pointcut in the advice definition is
affected by a cflowbelow restriction. The figure also illustrates how the three partic-
ipant links must be composed in the case an interaction is detected. The composition
specification includes the definition of the rules: wrap(Lcflow, Lcflowbelow) to com-
pose the two event collector links and wrap({Lcflow, Lcflowbelow}, Ladv) to compose
those two links with the advice link. Note that the advice link is composed in the
same way (i.e. using the same rule) with: the links from which it directly depends
(i.e. Lcflow) and the links over which it indirectly depends (i.e. Lcflowbelow).

[be , ,be ]cflow advbecflowbelow

op

[af ]afcflowcflowbelow,

pointuct p(): call(..) && cflowbelow(q())

before(): call(..) && cflow(p()) {..}

Figure 5.7: Multiple Nested Control Flow Restrictions

Reflex defines the notion of linkset [Tan04] to represent a set of links which are con-
ceptually related. In addition, it allows to define composition rules between two
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linksets, meaning that the rule is applied distributively between the links in both
sets, or between a link and a linkset, meaning that the rule is applied between the
link and each link in the linkset. The linkset enhances the level of abstraction in
which composition can be specified, since the entities of the aspect language can be
encapsulated in linksets, consisting in one link or several links (i.e. the cflow restric-
tion of Figure 5.7), and the composition can be specified in terms of aspect language
entities (represented through linksets) rather that individual links. For instance, the
cflow restriction in the figure can be encapsulated in the linkset Ls

cflow = {Lcflow,
Lcflowbelow}, and composed with the advice link using the rule wrap(Ls

cflow, Ladv).

In the cases where more than one advice is defined inside a single aspect and two
or more of those advices match a join point, AspectJ semantics establishes that the
advice that appears first lexically inside the aspect must execute first [Lad03]. For
instance, Listing 5.16 shows part of the definition of an aspect that includes five
advices, all of them defined over the same pointcut, and also shows the order in
which they are expected to be executed. The first before advice is followed by the
around advice, which in turn is followed by the second after advice, due to their lexical
ordering. The second before advice must be executed after the around advice, but
before the current join point, because of the nature of the before advice, thus it is
nested inside the around advice. Likewise, the first after advice must be executed
before the around advice, but after the current join point, thus it is also nested inside
the around advice.

after (): somePointcut (){af1} be1

before (): somePointcut (){be1} ar1

around (): somePointcut (){ar1} =⇒ be2 jp

before (): somePointcut (){be2} af1

after (): somePointcut (){af2} af2

Listing 5.16: Advice Execution Order

In order to specify the desired composition behavior for advices, composition rules
must be defined between each pair of advices defined in the same aspect. Note that
it is not possible to know in advance which advice links will interact, hence the
complete specification must be defined. In order to illustrate the required composition
specification, consider an aspect definition containing n advices, where (Ls

1,.., Ls
n) is

the list of linksets of those advices respecting the lexical order of definition. Therefore,
for each pair (Ls

i, Ls
j), i < j means that the advice i is lexically declared before the

advice j. Each linkset includes any event collector link over which the advice depends
on (directly or indirectly), besides the advice link itself. The composition specification
consists on the following rules:
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∀ Ls
i , Ls

j | 1 <= i < n and i < j <= n

if (isAfter Ls
i ) or (isAfter Ls

j) −→ wrap(Ls
j , Ls

i )

otherwise −→ wrap(Ls
i , Ls

j)

Where isAfter determines if the advice link enclosed in the given linkset has AFTER
control. In order to grasp the underlying intuition behind those rules, consider how
they are applied to the following cases:

• There are two before advices. There is only one rule, wrap(Ls
1, Ls

2), which
states that the first advice must be executed first.

• There are two around advices. There is only one rule, wrap(Ls
1, Ls

2), which
states that the first advice must nest the second, thus Ls

1 is executed before Ls
2.

• There are two after advices. There is only one rule, wrap(Ls
2, Ls

1), that wraps
the first advice inside the second, thus the first declared after advice executes
first.

• Consider the example at Listing 5.16, the before advice declared after the around
advice shall be nested inside the around advice. The after advice declared
before the around advice also gets nested inside it. Meanwhile the before and
after advice declared before and after the around advice respectively, wrap the
execution of the around advice.

Finally, there is an inefficiency issue related to the compilation of the control flow
restriction that is worth being discussed. The issue occurs when there are more than
one advice affected by a control flow restriction over the same pointcut. In order to
illustrate this, consider the aspect definition shown at the bottom of the Figure 5.8.
Note that both advices include a control flow restriction over the pointcut q(). In
the current compiler implementation, two independent event collector metaobjects
are defined, one for each control flow restriction, and both collecting the same infor-
mation; besides defining the appropriate composition rules. This is illustrated by the
reification tree at the left side of Figure 5.8, which exemplifies the scenario where the
four links involved are interacting upon a single operation occurrence. This imple-
mentation faithfully represents the semantics of the aspect definition, however it is
not the optimal implementation.

The optimal implementation should have only one event collector exposing two meth-
ods: isInside, which considers all the collected join points in order to respond (i.e.
including the current join point), and isInsideBelow, which does not consider the
current join point in order to respond. By current join point we mean the join point
from where the query to the event collector is performed. The optimal implementa-
tion is illustrated by the reification tree in the middle of Figure 5.8. Note that the
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[be , ]cflow becflowbelow,be ,be1 2

op

[af ]cflowbelow cflow,af

pointcut q(): call(..) ... before(): call(..) && cflow(q){..} before(): call(..) && cflowbelow(q){..}

[be ]cflow,be ,be1 2

op

[ ]afcflow

isInside()

isInsideBelow()

[ ]be2

op

[]

isInside()

isInsideBelow()

Current Implementation Optimal Implementation The Limitation

Figure 5.8: Control Flow Efficiency Issue

event collector wraps the execution of the two advice links hence capturing the join
point before the restrictions of both links are evaluated. In the interaction scenario
where the four links are present, the isInsideBelow method could be implemented as
(counter - 1) < 0, thus it does not consider the current join point. However, such
an implementation is not correct, since in the scenario where the be2 link element
is not interacting with the event collector link (shown by the tree at the right side
of Figure 5.8), the isInsideBelow method still substracts one to the counter. Note
that the event collector does not have to exclude the current join point, since such a
join point was not matched by its associated pointcut. Therefore, in order to solve
this problem there are (at lest) two alternatives. The first relies on implementing the
isInsideBelow is such a way that it can check if the current join point is part of
its collected join points, in order to determine if it must be excluded or not. This
requires some sort of hook reification12 facility, not supported by Reflex, which allows
to check if the control flow link is present in the hook that is invoking isInsideBelow.
The second alternative uses different restrictions, for different interaction scenarios.
For instance as it is illustrated in tree at the right side of Figure 5.8, when be1 is not
interacting with the control flow link it could use the isInside method instead of the
isInsideBelow. However, this solution is also not supported by Reflex, since it does
not support the definition of different restrictions for different interaction scenarios,
in other words, only one restriction can be attached to a link and it must be the same
for all the scenarios. The study of this inefficiency issue and its solution is left as
future work.

12Remember, the hook is the piece of code responsible for performing the reification. When more
than one link applies for the same program point, the hook performs the reification for all of them,
respecting the composition specification.
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5.4.3.2 Join Point Reflective Information

AspectJ provides three implicit references which provide reflective information about
the current join point, which can be used from the body of any advice. These three
implicit references are:

• thisJoinPoint provides reflective information about the static part (i.e., the
signature of the join point) and the dynamic part (e.g., the values of the argu-
ments) of the current join point.

• thisJoinPointStaticPart is similar to thisJoinPoint but only provides re-
flective information about the static part of the current join point.

• thisEnclosingJoinPointStaticPart provides reflective information about the
static part of the enclosing join point, that is to say, the method (or constructor,
or advice, or static initializer) in which the current join point has occurred.

These instances essentially collect all the current join point context information, plus
the reflective static information describing the actual signature of the join point and
expose it by implementing a set of interfaces defined by AspectJ.

As seen in Section 2.4.2.5, parameters specified in MOP descriptors give access to con-
text information of a hook, thus making handling the dynamic part of thisJoinPoint
easy. In addition to this, when parameters are resolved at generation time, they have
access to the static information of operation occurrences, which includes where the oc-
currence is located, thereby making it possible to compute thisJoinPointStaticPart
and thisEnclosingJoinPointStaticPart.

Therefore, providing access to these variables in the context of the compiler simply
implies providing (1) a set of classes that implement the interfaces defined by AspectJ,
and (2) three parameters (one for each instance) that instantiate such classes with
the necessary information. These parameters are passed as additional parameters
to the advice body, exactly as is done for AspectJ in [HH04], without having to
transform advice bodies. The actual implementation of the compiler only supports
the thisJoinPoint and thisJoinPointStaticPart implicit references.

5.4.4 Limitations Reviewed

In this Section we will review the limitations mentioned in Section 5.3.4, since some
of them have been overcome in the context of the compiler from AspectJ to Reflex.

Visibility of the pointcut predicate. The limitation regarding the synthetic code
generated by the compiler still remains. However, here we shall analyze some features
of Reflex that may help in solving it in the near future.
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Reflex provides a mechanism to exclude entire classes from the BLS phase (see Section
2.4.3), that is to say, those classes are invisible for all links defined in the kernel.
This mechanism can partially help in hiding the synthetic code generated during
the compilation process. For instance, operation occurrences inside event collector
classes can be made invisible for the pointcut predicates. However, this mechanism is
too coarse-grained in order to deal with, for instance the primitive type boxing and
unboxing expressions included in the compilation of around advices.

In Reflex, the load-time reflective API (e.g. the one used by selectors in order to
introspect the base level code) is based on interfaces. Such a design decision allows
to provide implementations of the API that are ”Reflex aware” in the sense that they
hide synthetic members and expressions generated by Reflex [Tan04]. For instance,
Reflex can ensure that modifications done during both application of structural links
and installation of behavioral links are not seen by other links. This mechanism used
by Reflex to hide its own synthetic code, seems to be a promising mechanism to
be reused for hiding the synthetic code generated the compilation of aspect-oriented
languages (AOLs), like AspectJ. However, the current implementation of Reflex only
offers a limited possibility of customization for such an API, which does not fulfill the
needs of our AspectJ compiler.

In [Tan05] the author studies the design of metalevel facilities (e.g. reflective APIs)
in the context of the Reflex AOP kernel. He motivates the need for having a reflective
API for all the languages involves in the AOP kernel, e.g. AOLs, Kernel language
and the Java language. In addition, he brings to the fore the importance of using
a mirror-based approach in order to design reflective APIs. Mirrors [BU04] provide
a principled way of designing the APIs. In [BU04] the authors suggest that encap-
sulation and stratification are two important principles for the design of such APIs.
Encapsulation suggests that their implementation must be encapsulated behind inter-
faces. Stratification suggests that the reflective APIs must be separate from base-level
functionality (in contrast to approaches like Java, where the access to reflective en-
tities is provided by base entities themselves, e.g. o.getClass()). Together, these
two principles allow to provide different implementations of the reflective APIs for
different usage scenarios of those APIs. Therefore, offering an interesting framework
for the definition of a high-customizable reflective API for hiding synthetic code.

Control flow. The control flow restrictions are now fully supported, including those
cases where the advice link and the event collector link are interacting upon the occur-
rence of an operation. Since the control flow residue is implemented as a restriction,
and so it is outside the hookset, it does not affect the interaction detection and reso-
lution. Therefore, upon the static occurrence of the operation both links are matched
(through their hooksets) and composed appropriately. Then, upon the runtime oc-
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currence of the operation, the event collector gets executed first 13, hence collecting
the operation occurrence, and then the advice’s restriction is evaluated. As a result,
the dependency that exists between the two links is correctly implemented, in con-
trast to the compilerPA−Kernel which cannot do this due to the implicit dependency
limitation of the Kernel machine (see Section 3.3.7.6). In addition, Reflex provides
support for link composition specification, thus the cflow and cflowbelow PCD are
appropriately compiled by the definition of the corresponding composition rules, as
explained in Section 5.4.3.1.

Advice precedence. The advice precedence is now partially supported, because
the compiler generates the composition rules required to represent the inner-aspect
precedence rules, as defined by AspectJ. However, if an interaction between advices
defined in different aspects occurs, the order in which they are executed may differ. In
order to also overcome inter-aspect advice composition issue, support for the AspectJ
declare precedence construct [Lad03] must be included. Extending the compiler
to support such a construct should be easy, but it is left as future work.

5.5 Implementation of the AspectJ Plugin

The AspectJ Plugin (AJP) is a plugin for the Reflex AOP kernel that implements
the compilation process previously described, along with the necessary components
to execute a compiled AspectJ program in the kernel. The plugin also experiments
in providing metalevel facilities to introspect an AspectJ program in the kernel (see
Section 5.5.3).

5.5.1 Reflex Plugins Architecture

The plugin architecture of Reflex [Tan04] is meant to bridge the abstraction gap
between the aspect languages and the kernel core constructions. In order to add
support for a new AO language (domain specific or general purpose), a plugin must
be provided to translate those constructions of the AO language into low-level kernel
constructions (e.g. metaobjects, links, hookset, composition rules).

As illustrated in Figure 5.9, the different plugins allow the aspect programmer to
implement the aspects in the language that best suite his needs, without knowing
about the low-level kernel constructions used to implement them. In addition to the
generation of the low-level constructions, the plugin also generates a linkset contain-
ing the set of links required to represents each defined aspect14. For instance, in

13Note that we are assuming a cflow restriction.
14Additional linksets may also be defined to represents lower-level constructions of the aspect
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Figure 5.9 linkset A represents the two B-Links required to represent aspect A, while
linkset C represents the B-Link and S-Link required to represent aspect C. Specially
tailored languages can be designed in order to specify the composition of heteroge-
neous aspect languages (e.g. the P3 plugin’s language), expressing the composition
in terms of linksets, thus being obliviouss to the particular implementation details of
the composed languages.

A B C D

A B C

b(A ) b(A ) b(B) b(C)1 2 s(C) c(B, C) c(A, B)

B-Links S-Links Rules

aspects

plugins

linksets

links and rules

P1 P2 P3

Figure 5.9: Reflex Plugins Architecture

The plugins can work in two different modes: offline and online. The offline mode
is meant to perform activities which are too expensive to be done on each execution
of the kernel. For instance, the compilation of an AspectJ program involves the gen-
eration of several implementation elements, like metaobject classes, selector classes,
event collector classes, configuration files. The generation of those elements is a typ-
ical activity to be done offline. The online mode is meant to configure the Kernel to
execute the aspect program.

5.5.2 AspectJ Plugin Architecture

The compilation process that transforms the AspectJ program into a Reflex program
is performed offline. Interestingly, the compiler is implemented by using Reflex to
transparently change the behavior of the standard AspectJ Compiler (AJC) so that
the intermediate representation is transformed to a Reflex program. Figure 5.10
illustrates the metalevel architecture used in the design of the plugin. At the base
level resides the compiler, responsible for: parsing the AspectJ program, performing
the semantic analysis and transforming the program into a Reflex program. Both the
parsing and the semantic analysis are delegated to the AJC. At the metalevel resides

language, e.g. advices in AspectJ.
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the AspectJ Bind component, responsible for synchronizing the AST structure built
by the AJC with the Intermediate Model component at the base level.

Intermediate

Model

Compiler

Core

AspectJ

Bind

AspectJ

Compiler

Generator

Base Level

Meta Level

AspectJ

PluginOffline

Dependency Causal Connection (metalink)Component Reflex Startup

Figure 5.10: AspectJ Plugin Architecture (Offline mode)

Once the AspectJ Plugin component is executed, it sets up the metaobjects of the
AspectJ Bind component and executes the Compiler Core. Those metaobjects are
configured to reify some key points of the AJC compilation process, in order to ob-
tain the AST structures corresponding to the aspects defined in the program, check
if the compilation ends successfully or ends with errors, and stop the AJC from actu-
ally performing the weaving of the AspectJ program. The Compiler Core component
coordinates the compilation process, which consists in invoking the AJC to parse the
programs, checking possible errors that may happen during the AJC execution, in-
voking the AspectJ Bind component to generate the intermediate model and invoking
the Generator to create the resultant Reflex program.

The online mode of the AJP is responsible for setting up the program in the kernel
for its execution. In addition, it generates all the required information for supporting
the reflective API provided by the plugin, explained in the next section.

5.5.3 Plugin Reflective API

The AJP provides a reflective API for the AspectJ language, offering introspection
capabilities for programs compiled through the plugin. Through the API, the pro-
gram entities are accessed using the appropriate high-level constructions (e.g. aspect,
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advices), as opposed to the low-level Kernel constructions (e.g. metaobjects, links)
used for implementing those entities in the Kernel. Furthermore, the API also pro-
vides access to the linksets used to represent those aspects or advices in the Kernel,
hence providing traceability between those high-level constructions and the Kernel
constructions.

One interesting use of the API is composition of heterogeneous aspect languages. For
instance, consider that the aspect D of the plugin P3, shown in Figure 5.9, specifies the
composition in terms of explicit references to the aspect-level constructions defined
in the languages A and B. On the one hand, if P1 and P2 do not have a reflective
API for their language, they usually end up defining their own convention for naming
the linksets that represent those aspect-level constructions. P3 must be aware of
those conventions in order to find those linksets and use them to specify the required
composition rules. Furthermore, if both plugins do provide a reflective API, the P3
plugin, making use of both reflective APIs, can obtain a reification of those aspect-
level constructions mentioned by D, navigating through aspect language constructions
(as opposite to Kernel constructions). Once P3 finds the constructions mentioned by
D, it can access their associated linksets and use them to specify composition.

The AJP reflective API consists of a collection of interfaces that encapsulates the
most relevant concepts of the language. Listing 5.17 illustrates an example of the use
of the API. Firstly, a reference to the AspectJAPI is obtained by querying the Kernel
to get the plugin’s API and using it to get the reference to the reflective API. The
reification of an aspect construction can be obtained based on the aspect name (i.e.
using the getAspect method) or by iterating over all the defined aspects (not shown
here). The Aspect interface allows, for instance, to obtain a reference to the aspect
object (similar to the aspectOf method in AspectJ) or getting a list of its defined
advices. The Advice interface allows, for instance, to access the kind of the advice
or its declared parameters (neither shown here). The last two lines of Listing 5.17
show how to access the linkset associated to an aspect or an advice. In addition, if
the advice involves control flow restrictions, the Advice interface also provides means
to introspect them.

AJPAPI ajp = (AJPAPI) API.plugins (). getPluginAPI("AJP");

AspectJAPI theAPI = ajp.languageAPI ();

Aspect theFooAspect = theAPI.getAspect("Foo");

Foo theAspect = (Foo) theFooAspect.getAspectObject ();

Advice theFstAdvice = theFooAspect.getAdvices (). get (0);

Linkset theFooLinkset = theFooAspect.getLinkset ();

Linkset theFstAdvLinkset = theFstAdvice.getLinkset ();

Listing 5.17: AspectJ Reflective API <Java Code>
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The current reflective API of the AJP is limited. It is meant to be only a proof of
concept of the relevance of having a reflective API for the aspect languages. There
are many issues regarding the API definition that must be reviewed:

• The current API intermixes the constructions of AspectJ with the Kernel con-
structions used for its implementation (e.g. links, linksets). A redesign of the
API following the guidelines presented in [Tan05], based on the notion of mir-
rors, will enhance its clarity. The API should be divided in two APIs: one
encapsulating only AspectJ language constructions, while the other allows to
reify those constructions in terms of the Kernel constructions. This latter API
provides cross-language facilities, that is to say, it provides a view of the reifi-
cation of a construct of one language (i.e. the aspect language), but expressed
in terms how it is implemented in another language (i.e. the Kernel language).

• Providing fine-grained introspection capabilities for both APIs. For instance,
the AspectJ language API could include pointcut introspection capabilities,
while the cross-language API could provide access to each of the Kernel con-
structions used to implement the different parts of the pointcut.

• Extending it with intercessive facilities (see Section 2.3.2.1) of the AspectJ API
could be interesting as well as the study of the applications of such new possi-
bilities.

5.5.4 Preliminary Benchmarks

We report on the performance of programs compiled using the AJC (ajc 1.2) and
programs translated by the AJP. The benchmarks were run on a Pentium III 1.1GHz
with 512MB of memory, running Windows XP and Java 1.4.2 05 (HotSpot client VM).
We allocated a large heap size in order to limit the number of garbage collections. We
benchmarked specific features of AspectJ’s dynamic crosscutting in programs based
on a simple shape editor example as presented in Section 2.4.2.1, applying a logging
aspect in different scenarios (Table 5.1). The two first sets of test cases consist in
applying a before advice with and without context information, respectively. For
each, three features are tested: first without residues, and then using an instanceOf
residue and a cflow residue. When using residues, scenarios where residues match and
do not match are measured. The last set of test cases is based on the use of an around
advice, to which a composite shape and two integers are passed as parameters, in three
different scenarios: 1) the advice always calls proceed; 2) the advice calls proceed
half of the time, otherwise it reorders the shapes contained in the given composite
shape; 3) proceed is never called, the advice always performs the reordering.
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Features Scenario AJC AJP ∆

before (w/o context)
no residue 1542 1705 10%
instanceOf match 1185 1305 10%

no match 868 894 2%
cflow match 841 951 13%

no match 998 1218 22%

before (w/ context)
no residue 4533 4616 1%
instanceOf match 3241 3034 -6%

no match 884 904 2%
cflow match 10295 11102 7%

no match 697 647 -7%

around (w/ context)
around always proceed 3404 5721 68%

half proceed 4416 6349 43%
never proceed 5711 6990 22%

Table 5.1: Execution time (in ms) and overhead of the AspectJ plugin (AJP) vs.
standard AspectJ (AJC).

The results were obtained by performing five measurements in each scenario, discard-
ing the best and worst cases and taking the average of the remaining three measure-
ments. The third and fourth columns in Table 5.1 show the average execution time
using AJC and AJP, respectively. The last column shows the relative overhead of
AJP.

The test cases related to the before advice show a very reasonable overhead of AJP
(less than 10%), in particular when considering that our implementation is more
prototypical than production quality. Test cases with context exposure demonstrate
particularly good performance of AJP, even slightly better than AJC in some cases.
The most important overhead (up to 22%) in the case of cflow without context seems
to be due to better HotSpot optimizations for AJC, since AJP shows much better
performance when running these scenarios in interpreted mode (up to 29% better
than AJC).

Execution of the around advice however shows a significant (though still acceptable)
overhead. This overhead is not mainly due to advice inlining done by AJC, since
it is not significantly reduced when running the scenarios without inlining. This
strongly suggests that the major cause of inefficiency is the use of standard reflective
method invocations to implement proceed, whereas AJC generates specific stubs for
each join point shadow [HH04]. These results motivated the development of a similar
implementation strategy for the proceed in Reflex, which has been already integrated
into Reflex [RFX]. However, such a development was carried on after this thesis thus
the benchmarks for the new implementation strategy are not included here.
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Chapter 6

Conclusions and Future Work

6.1 Summary and Conclusions

In this work, a formal development, using the Haskell language, of the Reflex model
for partial behavioral reflection (PBR) has been presented. This development em-
bodies the design of the Kernel language and its correspondent abstract execution
machine. For the Kernel language, a dedicated syntax for the constructions of the
PBR model has been designed, as opposed to the object-oriented syntax used for its
implementation in Java [RFX]. This new syntax eases the presentation of the con-
structions in the model, along with enhancing its readability. The Kernel language
and the corresponding machine have been formally written down in Haskell. This,
we claim, has made it possible to express the semantics of the PBR model in a more
abstract and simple way than it is achieved by the informal semantics described in
[TNCC03, Tan04] and the current implementation in Java [RFX]. Furthermore, a
conceptual explanation of the PBR model in terms of the reflective tower [Smi82] has
been presented, which further clarifies the underlying concepts of the PBR model.
In addition, the implementation of the Kernel machine has reported on a concrete
experience of the development of a language containing behavioral reflection features,
along with the description of the problems (i.e. bootstrapping and meta-stability
issues, see Section 3.3.7.1) and their solution encountered during its development.

Not surprisingly, the PBR model is expressive enough to provide semantics for the
kind of dynamic crosscutting offered by the AspectJ language, a reference amongst
the existing AOP approaches. This is not surprising because conceptually, any form
of behavioral reflection can cover dynamic crosscutting. The real challenge is to do so
in a natural and efficient manner. In this direction, two compilers have been imple-
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mented. The compiler implemented within the Reflex Sandbox (RSB) has provided
the foundations for understanding the transformation required in order to bridge the
underlying abstraction gap between the AspectJ language and the Reflex model. The
compiler implemented in Java has shown that the transformation is feasible in an
industrial environment. This compiler has been implemented as a plugin for the
Reflex’s plugin architecture, the so-called AspectJ Plugin (AJP). Preliminary bench-
marks have been done to compare the performance of programs compiled with the
AspectJ Compiler [aspb] and programs compiled by the AJP. The results have shown
that the performance of Reflex is close to that of AspectJ on dynamic crosscutting.
These results are encouraging since the AJP is a proof of concept implementation,
meanwhile the AspectJ Compiler is a production quality tool. In addition, this work
deepens the understanding of the relation between reflection and AOP by showing
how the essential part of AspectJ, an efficient AOP language implemented without
resorting to reflection, could actually be supported by reflection in an efficient way.

Since the Kernel machine has been designed to only support part of the Reflex’s
PBR model, not every construction in the PA language can be compiled into the
Kernel language. In particular, link composition specification and link dependency
specification (see Section 3.3.7.6) have not been included in the Kernel machine. As
a consequence, the control flow constructions of the PA language cannot be com-
piled under some particular conditions (i.e. when the control flow link is interacting
with the advice link). On the other hand, the Java implementation of the compiler,
transforming AspectJ programs into Reflex programs, does consider the whole Reflex
model. Therefore, it supports the compilation of the control flow constructions under
all circumstances. In addition, it also supports inner-aspect precedence rules, hence
aspect composition is partially supported, and join point reflective information.

The development of the Kernel machine and the two compilers made it possible to
identify three limitations of the Reflex model. The first limitation, presented in Sec-
tions 5.3.4 and 5.4.4, is the lack of an appropriate centralized mechanism to hide the
synthetic code generated during the compilation of an aspect language into the AOP
Kernel. As a consequence, each compiler needs to develop its own ad-hoc mecha-
nism to hide synthetic code from its selection mechanism (e.g. pointcut in AspectJ).
However, such an ad-hoc mechanism only partially solves the problem since other
languages in the Kernel may still be seeing the code. The second and third limita-
tion, both presented in Section 5.4.3.1, are the lack of a hook reification facility, which
allows to introspect the links that are involved in a hook, and the impossibility to de-
fine hookset restrictions whose applicability depends on the link interaction scenario
in which they are involved, respectively. Finding a solution for any of these two lim-
itations would allow to overcome the inefficiency issues presented in Section 5.4.3.1,
regarding the compilation of control flow restrictions. In addition, the results of the
benchmarks presented in Section 5.5.4 have suggested that the proceed statement
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should be implemented without using the Java reflective API. In order to enhance its
performance an approach like in [HH04], which is based on stub generations, should be
adopted. This enhancement has been included in the current Reflex implementation
available in [RFX].

In addition, in [RTN04] we have presented two small but effective extensions to the
Reflex model, namely hookset restrictions and call descriptors. The hookset restric-
tions allow a better representation of AspectJ residues (see Section 2.6.3.1), since
before their inclusion in the Reflex model, residues must be checked at the metalevel.
This has the bad property of forcing reification even in cases where the residues reject
a particular occurrence. And reification is a major source of overhead in reflective
systems. The call descriptors allow to specify precisely which information must be
passed to the metaobject. Without using call descriptors, all the operation occurrence
information must be passed to the metaobject, which is highly inefficient.

Finally, the RSB has been developed, providing an environment for Reflex where
theoretical studies can be carried out. In the RSB, new extensions to the Reflex
model can be prototyped and their semantics exposed in an abstract and simple way.
In addition, other aspect-oriented languages can be defined, and their correspondent
execution machines implemented, within the RSB in order to study their compilation
into the Kernel machine. Through the testing environment (see Appendix C) those
execution machines and compilers can be tested to check if they behave as expected.

6.2 Related work

Historically, reflection is at the heart of AOP [KLM+97], which can be seen as a
disciplined and principled way of doing metaprogramming. [Sul01, KLLH03] are
two works that study the relation between reflection and AOP. In [Sul01] the author
presents a short conceptual description of how reflection can be used to support AOP.
In [KLLH03] the authors explore the relation and interactions between reflection and
AOP. They show the tradeoffs of implementing AOP with reflection and, reciprocally,
to implement reflection via AOP. A result of this study is that a metaobject protocol
should be expressive enough to enable AOP, while AOP makes it possible to apply
reflection more selectively. We have gone one step further [Tan04, RTN04] by actually
showing that an essential part of an efficient AOP language, AspectJ, implemented
without resorting to reflection, could actually be supported by refection in an efficient
way, thanks to the PBR model, which provides high-selectivity. Furthermore, we have
implemented a compiler that automatically translates AspectJ programs into Reflex
programs.

The Aspect Sandbox (ASB) [asb] was a project that aimed to provide concise models
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for AOP for theoretical studies, where the semantics of the models can be cleanly
defined, and to provide a tool for prototyping alternative AOP semantics. The ASB
essentially consists on a series of interpreters, characterizing different models for AOP,
implemented in Scheme. Several works have been developed in the context of this
project, for instance: [MKD03b] describes a common frame of reference in order
to characterize the most fundamental AOP approaches, [MKD02, MKD03a] explain
the weaving strategy for the core features of the AspectJ’s dynamic crosscutting
mechanism and [WKD04] presents a denotational semantics for the core constructions
of AspectJ’s dynamic crosscutting mechanism. The RSB shares the same motivations
of the ASB. However, we aim to provide a concise model for an AOP kernel, where
different AOP approaches can be supported. In addition, we are interested in studying
how those different AOP approaches can be compiled into the AOP kernel, rather than
studying how the weaving of an AOP approach can be achieved.

The Event-Based AOP (EAOP) project [DMS01, DFS02, DS02] also has the moti-
vation of building a test-bed for AOP to study the expressiveness of the mechanisms
provided for AO language definition. To that end, they propose a new model for
AOP based on a monitor that pattern-matches a stream of events from the program
execution, and applies aspect code when a match is detected. Using that model, in
[DMS01] they propose a formal framework for AOP, using the Haskell language, in
order to clearly expose the semantics of its AOP approach. In addition, they also
present an implementation of that framework in the Java language. In [DT04] the
authors have also used Haskell in order to express the formal semantics of an extension
to the pointcut language of AspectJ for control-flow.

The AspectBench Compiler (abc) [ACH+05] is an extensible AspectJ compiler that
facilitates easy experimentation with new language features and implementation tech-
niques. The compiler is designed with extensibility as its primary goal, and also aims
for an optimized implementation of the AspectJ language and its extensions. It al-
lows to handle a wide variety of extensions, including frontend scanner and parser,
the type checker, the weaver, and potentially requiring sophisticated program anal-
ysis to ensure correctness and efficiency. The motivation of the abc compiler is to
facilitate the research of the AOP design space, which is the same goal that moti-
vates us to build the RSB. However, the RSB is oriented to the study of such a space
by the construction of an AOP kernel supporting a wide range of AOP languages
and language features. In addition, the RSB is advocated to a more formal study of
those languages and features, by using a simplified environment that facilitates the
definition of their semantics. At the Java level, and through the implementation of
plugins for Reflex, we also take care of implementation techniques and efficiency, but
we do not provide support for language compilation activities, like parsing or type
checking. Those activities must be completely resolved by the plugin programmer.
In Reflex, optimization techniques are also limited to the possibilities offered by the
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kernel. Josh [CN04] is an open-implementation of an AspectJ-like language, which is
close in spirit to abc.

6.3 Future Work

An important topic for further work is experimenting with several aspect-oriented
languages interacting in the AOP Kernel. This is a challenging and multi-faceted
issue. One facet of this issue embodies the development of the compilers for those
languages for which the RSB promise to be a tool of great value. Another interesting
facet is related to the definition of a mechanism to specify the appropriate levels of
isolation between the different languages. In [TN04a] the authors presents a first step
in this direction by suggesting that an AOP kernel should have a collaboration protocol
to control the visibility of structural changes among aspects. For instance, such a
mechanism may allow hiding, from other aspects, all the methods that an aspect may
add to a class. Such a mechanism is useful but yet limited. For instance, consider
the synthetic code issue, presented in Section 5.3.4. Hiding synthetic code requires
a fine-grained mechanism, since we cannot assume that such a code would always
correspond to a method or a class, but can also be an expression. Such a mechanism
must also be flexible, allowing to specify the code that is visible and the code that
is not. As explained in [Tan05] and briefly mentioned in Section 5.4.4, an interesting
approach to solve this issue is providing an extra level of indirection between the
selectors and the actual operations occurring during the program execution. In the
middle, there is a highly-customizable mechanism that allows to specify whether an
operation is visible or not. As suggested in [Tan05], in Reflex for Java this mechanism
could be implemented by the load-time reflective API that it uses. However, this facet
must be further analyzed; in particular, it is not clear how the visibility requirements
should be specified. Once more, the RSB offers an attractive reduced environment for
studying this facet. Yet another interesting facet is to further experiment with defining
reflective APIs for those languages, in order to have high-level views of the aspect-
oriented programs. These APIs provide an interesting approach for the specification
of composition between heterogeneous aspects (see Section 5.5.3).

Finally, in order to experiment with more complex environments, like the interaction
of several aspect languages, the Kernel machine must be extended to support other
features of the Reflex model. In particular, providing support for link composition,
including interaction selectors and composition rules specification, is mandatory in
order to further experiment on the support of aspect languages. The composition
specification is a very complex and delicate topic. It embodies the algorithm that,
given a composition specification and a set of links that apply, generates the corre-
spondent reification tree. Since the user may specify rules that contradict other rules,
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it requires a mechanism to detect those contradictions and report them, as clearly as
possible and hopefully at rule definition time (as opposed to rule application time),
to the user. Therefore, providing a formal semantics for the composition specifica-
tion would be very useful. In addition, the implicit dependency problem presented in
Section 3.3.7.6, which causes that some links come in while others come out of the
reification tree during its evaluation, must be further studied.



Appendix A

Introduction to Haskell

This appendix presents a short introduction to the Haskell language and to monadic
programming using Haskell.

This appendix is organized as follows. Section A.1 presents the Haskell language and
review its main constructions. Section A.2 introduces monadic programming and
presents two main monads used in this thesis, namely the exception and the exception
and state monads.

A.1 The Haskell Language

Haskell is a general purpose, purely functional programming language [Tho99, HF92].
By being purely functional, function evaluation is side-effects free. The language
supports recursive functions and algebraic data types, as well as lazy evaluation.

Algebraic data types definition are introduced by the keyword data followed by the
name of the type, an equal symbol and then the constructors of the type being defined.
The name of both the type and the constructors must begin with capital letters.
Constructors may receive parameters and they define a function that can be used to
create instances of the defined type. The Listing A.1 shows the definition of a data
type for a list of integers.

data ListInt = Nil |

Cons Int ListInt

Listing A.1: Haskell Algebraic Data Types <Haskell Code>
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The type definition provides two constructors, Nil and Cons. Nil is a constructor
that returns an empty list. Cons is a constructor that given an integer and a list builds
a new list. Notice that the type is defined using recursion. Haskell also incorporates
polymorphic types, i.e. types that are universally qualified in some way over all types.
This allows the definition of families of types, rather than a single type, which can be
used later to define general functions over those families. For instance, we may define
the family of types for lists of a, see Listing A.2.

data List a = Nil |

Cons a (List a)

type ListInt = List Int

Listing A.2: Haskell Polymorphic Types <Haskell Code>

In the definition, the type name, List, is followed by a type variable which represents
the type of the elements of the list. In the general case of polymorphic type definition,
the name of the type may be followed by a list of type variables. Those type variables
can be used in the type constructors, e.g. Cons. The declaration of the polymorphic
type List a defines a type constructor, named List, which can be used to construct
types of the family of types it defines. The last line of the Listing A.2 defines the type
”list of integers”, by fixing the type variable to the type Int. In addition, it uses the
keyword type to define a synonym, named ListInt, for the type of lists of integer.

Functions in Haskell are usually defined by a series of equations, which in turn are
defined using pattern matching and guards on the input values of the function. For
instance, consider the factorial function in Listing A.3 defined using two equations.
The first, using pattern matching, states the value of fac 0. The second, using
pattern matching and a guard, states how the fac n is calculated recursively. Notice
that the name of the functions must begin with a lower-case letter.

fac :: Integer -> Integer

fac 0 = 1

fac n | n>0 = n * fac (n-1)

Listing A.3: Haskell Function Definition <Haskell Code>

The first line in the example declares the type signature of the function. This decla-
ration is not mandatory, since Haskell can infer its signature; but it is a good practice
to include it for documentation purposes. The functions defined over polymorphic
types are called polymorphic functions. Functions like map, foldl and foldr over
lists that define standard recursion patterns are examples of polymorphic functions.
The Listing A.4 shows the implementation of the map function. The polymorphic
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type for Lists in Haskell is specified using the syntax [a] to represent List a. The
[] represents the empty list and the infix operator ”:” to add its first argument to
its second argument (a list). The list 1:(2:(3:[])) can be specified using the short-
hand [1,2,3]. The map function takes a function (from a->b) and a list (of a) as
arguments and applies the function to all the elements in the list, returning a list of
b.

map :: (a->b) -> [a] -> [b]

map f [] = []

map f (x:xs) = f x : map f xs

inc n = n + 1

map inc [1,2,3] => [2,3,4]

Listing A.4: Haskell Polymorphic Function <Haskell Code>

map can be used over lists of any type a. For instance, in the example, it is used to
increment all the elements of a list of integers. In addition, functions can be defined
as anonymous, using the lambda notation, e.g. the inc can be defined as
n -> n + 1.

Haskell provides modules as an aid to modularization. A module consists of a number
of definitions (e.g. types, functions), with a clearly defined interface stating what the
module exports to other modules.

A.2 Monadic Programming

Monads came into the functional programming world as a convenient way to model
side-effects in a purely functional programming language. In Haskell, one of the main
applications of the concept of monad is to model the IO System, where interaction
with the outside world is required.

A monad is a way to structure computations in terms of values and sequences of
computations using those values. They are a useful tool for structuring functional
programs, which is the precise reason why we will use them in the development of
the machines. In order to introduce them we will present the development of the
exception monad which encapsulates computations that may throw exceptions.

A monad is defined by the following triple (M, return, >>=) where M is a type
constructor for the monad and, return and >>= are two functions defined over the
monad. In the case of the exception monad, the type constructor for the monad is
Exc as shown in Listing A.5. Exc a represents the computations that may return a
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value of type a, represented by the constructor Val, or that may end up with an error,
represented by the constructor Error. The constructor Error encapsulate a String
that describes the exception that occurs.

data Exc a = Error String |

Val a

instance Monad Exc where

return = Val

(Error x) >>= _ = (Error x)

(Val x) >>= f = f x

raiseE :: String -> Exc a

raiseE str = Error str

Listing A.5: Exception Monad <Haskell Code>

In Haskell, the functions that apply over the monadic computation are defined as a
type class, called Monad. Therefore, any user defined monad must1 be an instance
of the class Monad, providing the implementation for those operators. The two main
functions that must be defined over monads are:

• The function return, which receives a value of type a and returns computation
that, once executed, returns that value. In the Listing A.5, return is defined
with the constructor Val, that given a value it returns Exc a. This operator
does not perform any other action.

• The infix operator >>=, also known as the binding operator. The signature of the
operator is M a -> (a -> M b) -> M b. This operator allows to specify how
two computations are composed in a monad. In the Listing A.5, the operator
receives computation Exc a and a function a -> Exc b. On the one hand, if
the computation is an Error the error should be propagated, so it returns the
Error. On the other hand, if the computation does not return an error, it
should apply the function, consequently returning the new Exc b computation.

Haskell provides the do notation in order to simplify programming with monads.
In short, the do notation allows to write monadic computations using a pseudo-
imperative style with named variables. The Listing A.6 shows the implementation of
an interpreter for a tiny language to make integer divisions. In line 6 the keyword
do specifies that we want to perform a sequence of monadic computations. The

1Actually, defining a monad does not require the definition of an instance of the Monad class, but
it is convenient to have it, in order take advantage of various Haskell features such as the do notation
that we will introduce shortly.
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sequence is conformed by three computations: two evalExc (lines 6 and 7) and the
if expression (lines 8-10). The operator <- used in lines 6 and 7 automatically binds
the result of the evaluation of the terms t and u, to the variables x and y respectively.
Then the if expression at lines 8-10 checks if the divisor is 0, in which case it raises
an exception (using the raiseE function defined in Listing A.5), otherwise it performs
the division and returns the value.

1 data Term = Con Int | Div Term Term

2
3 evalExc :: Term -> Exc Int

4 evalExc (Con x) = return x

5 evalExc (Div t u) =

6 do x <- evalExc t

7 y <- evalExc u

8 if y == 0

9 then raiseE "division by zero"

10 else return (div x y)

Listing A.6: Example of the Exception Monad <Haskell Code>

The do notation is nothing else than a shortcut to the use of the >>= operator to bind
the computations. The do expression at Listing A.6 can be specified using the bind
operator as follows:

evalExc t >>=

\x -> evalExc u >>=

\y -> if y == 0

then raiseE "division by zero"

else return (div x y)

Note that using the do notation greatly simplifies programming with monads. Also
note that the binding operator of the exception monad encapsulates all the excep-
tion propagation logic. Consequently, we obtain a cleaner code in the interpreter
implementation.

Now that we have introduced the basic concepts behind monads, we will present a
more complex monad, the State and Exception monad, which models the computa-
tions that maintain state and that may throw exceptions. This monad is crucial for
the implementation of the machines. The Listing A.7 shows the implementation of
the monad. The polymorphic type defined for this monad is StE s a, where s is
a type variable representing the type of the state maintained and a is the type of
values returned by the computations. StE s a has a unique constructor containing
a function that given the initial state it performs the monad computation and may
return an exception or a pair with the resultant value and state.

The return function preserves the state and inserts the new returned value. The
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1 data StE s a = MkStE (s -> Exc (a, s))

2
3 funOfStE :: StE s a -> (s -> Exc (a, s))

4 funOfStE (MkStE f) = f

5
6 instance Monad (StE s) where

7 return x = MkStE (\s -> return (x, s))

8 (MkStE f) >>= g =

9 MkStE (\s -> (f s) >>=

10 (\(v, s’) -> (funOfStE (g v)) s’))

11
12 raiseStE :: String -> StE s a

13 raiseStE str = MkStE (\_ -> raiseE str)

14
15 getStE :: StE s s

16 getStE = MkStE (\s -> return(s, s))

17
18 putStE :: s -> StE s ()

19 putStE st = MkStE (\_ -> return ((), st))

Listing A.7: State and Exception Monad <Haskell Code>

>>= operator builds a function that sequentially apply the functions f:: s -> Exc
(a, s) and g:: a-> StE s a. So, >>= applies f over the initial state (s) returning
a new pair (v, s’); the value is passed to g and evaluated in the state s’. Thus
composing both computations.

In addition to the monad definition, the Listing A.7 shows the following functions:
raiseStE that throws an exception in the StE monad, getStE that returns the state
maintained by the monad and putStE that sets the state maintained with the monad.
Note that the user of the monad StE does not have to deal with state maintenance and
exception propagation logic, the binding operator handles it. When the user requires
accessing or updating the state, it simply uses the getStE and putStE functions.
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Concrete Syntax

This appendix presents the concrete syntax of the three languages described in this
thesis, namely BASE, Kernel and PA languages.

This appendix is organized as follows. Section B.1 presents the concrete syntax for
the BASE language. Section B.2 and B.3 present two extensions to the BASE syntax
in order to define the Kernel and PA langauge syntaxes, respectively.

B.1 BASE Concrete Syntax

The description of the concrete syntax of the BASE language is specified using Backus-
Naur Form (BNF). The terminals, i.e. keywords and symbols, are underlined in order
to improve clarity. For any symbol α, we write: (α)? to say that α is optional, (α)*
to denote 0 or more repetitions of α, and (α)+ to denote 1 or more repetitions of α.

<program> −→ (<class>)*
<class> −→ class <ident> (extends <ident>)?

{ (<member>)* }
<member> −→ <field> | <method>
<field> −→ <type> <ident> ;
<method> −→ <type> <ident> ( <parameters> ) { <exprBlock> }
<parameters> −→ (<parameter> (,<parameter>)?)*
<parameter> −→ <type> <ident>
<exprBlock> −→ (<expr> ;)*
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<expr> −→ <literal> | <primitive> | <if> | <let> |
<varGet> | <varSet> | <fieldGet> |
<fieldSet> | <call> | <superCall> |
<newObject> | <instanceOf> | <cast> |
<newArray> | <newArrayInit> | <getArrayByIdx> |
<setArrayByIdx> | ( <expr> )

<literal> −→ " <characters> " | <number> | True | False |
NULL

<primitive> −→ <expr> <opArith> <expr> |
<expr> <opBoolBin> <expr> | <opLgcUni> <expr> |
write <expr> | newLine | $ <expr> |
<expr> ++ <expr>

<opArith> −→ + | - | * | /
<opBoolBin> −→ == | < | > | <opLgcBin>
<opLgcBin> −→ || | &&
<opLgcUni> −→ !
<if> −→ if ( <expr> ) { <exprBlock> }

(else { <exprBlock> })?
<let> −→ let ( <variables> ) in { <exprBlock> }
<variables> −→ (<type> <ident> := <expr> ;)+
<varGet> −→ # <ident>
<varSet> −→ # <ident> := <expr>
<fieldGet> −→ <ident>
<fieldSet> −→ <ident> := <expr>
<call> −→ <ident> ( <arguments> ) |

<expr>.<ident> ( <arguments> )
<arguments> −→ (<expr> (,<expr>)?)*
<superCall> −→ super.<ident> ( <arguments> )
<newObject> −→ new <ident>
<instanceOf> −→ <expr> instanceOf <type>
<cast> −→ ( <type> ) <expr>
<newArray> −→ new <ident> ([])+ [ <expr> ]
<newArrayInit> −→ new <ident> ([])+ ( <arguments> )
<getArrayByIdx> −→ <expr> [ <expr> ]
<setArrayByIdx> −→ <expr> [ <expr> ] := <expr>
<type> −→ void | int | bool | string | <ident> |

<ident> ([])+
<ident> −→ <letter> (<letter> | <digit>)*
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B.2 Kernel Language

The concrete syntax of the Kernel language is described by extending BASE language
concrete syntax. The −→ arrow represents a new production. The ↪→ arrow represents
the extension of a BASE language production, by adding new cases. The 7−→ arrow
represents a production that is overwritten.

<program> 7−→ (<class> | <selector> | <hookset> |
<calldescriptor> | <link>)*

<selector> −→ selector <ident> ( <parameters> ) {
<selectorbody> }

<selectorbody> −→ on <operType> <ident> ,
when { <exprBlock> }

<hookset> −→ <primitive> | <composite>
<primitive> −→ hookset <kIdent> using { <selectorApply> } |

hookset <kIdent> { <selectorBody> }
<composite> −→ hookset <kIdent> combine { <combineExpr> }
<combineExpr> −→ <combineExpr> <opLgcBin> <combineExpr> |

<opLgcUni> <combineExpr> | <kIdent> |
( <combineExpr> )

<calldescriptor> −→ call <kIdent> {
from <operType> <ident> ,
to <classType> <ident> ,
do { <exprBlock> } }

<link> −→ link <kIdent> {
(<callSpec> ,)+
to { <exprBlock> } }

<callSpec> −→ from <kIdent> on <control> with <kIdent>
<control> −→ BEFORE | AROUND | AFTER
<expr> ↪→ <selectorApply> | <selectorEval> | <proceed> |

<linkMO>
<selectorApply> −→ <kIdent> ( <arguments> )
<selectorEval> −→ <expr> : ( <expr> )
<proceed> −→ proceed | proceed { <exprBlock> }
<linkMO> −→ <kIdent> #MO
<kIdent> −→ % <ident>
<operType> −→ <ident>
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B.3 PA Language

The concrete syntax of the PA language is described by extending the BASE language,
as explained in the previous section.

<program> 7−→ (<class> | <pointcut> | <advice>)*
<pointcut> −→ pointcut <ident> <parameters> : <pcd> ;
<pcd> −→ call ( <methodPattern> ) |

execute ( <methodPattern> ) |
aexecute () |
new (<ident>) |
get (<ident>) |
set (<ident>) |
within (<type>) |
withincode (<ident>) |
this (<ident>) |
target (<ident>) |
args (<idents>) |
<ident> (<idents>) |
cflow (<pcd>) |
cflowbelow (<pcd>) |
<pcd> <opLgcBin> <pcd> |
<opLgcUni> <pcd>

<methodPattern> −→ <type> <ident> (<types>)
<idents> −→ (<ident> (,<ident>)?)*
<types> −→ (<type> (,<type>)?)*
<advice> −→ before (<parameters>) : <pcd> { <exprBlock> } |

<type> around (<parameters>) : <pcd>
{ <exprBlock> } |
after (<parameters>) : <pcd> { <exprBlock> }

<expr> ↪→ proceed (<arguments>)
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Test Environment

This appendix describes the testing environment provided by the Reflex Sandbox.
Through this environment, case-based testing can be performed in order to check
that the machines behaves as expected. The tests can be performed on a per-machine
or an inter-machine basis. The latter is oriented to test on a relationship that exists
between two machines, e.g. testing the compilation between the PA machine to the
Kernel machine.

This appendix is organized as follows. Section C.1 introduces an abstract representa-
tion of the machines on which the test environment bases its definition. Sections C.2
and C.3 describe the testing environment to perform single machine and inter-machine
testing, respectively.

C.1 Machine Abstraction

In the test environment, tests are defined over an abstract representation of a machine,
which corresponds to the data type Machine, shown in Listing C.1. Machine is a
polymorphic data type defined over three type variables: p is the type it uses represent
a program, s is the type it uses to represent the state and v is the type it uses to
represent the values. A Machine consists of:

• a name used by the tests environment to render the output of a test suite
execution.

• an initial state in which each test shall start its execution.
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• a parser used by the test environment to parse the programs to be executed
in the machine. It is represented by the function type String -> Exc p.

• an interpreter that given a program and an initial state, evaluates the program
an returns it result.

data Machine p s v = CMachine Name s (String -> Exc p)

(p -> s -> Exc ((v, Output), s))

class (Show p, Show s, Show v) => IMachine p s v where

getMachineName :: (Machine p s v) -> Name

initialState :: (Machine p s v) -> s

parse :: (Machine p s v) -> String -> Exc p

execute :: (Machine p s v) -> String -> s -> Exc ((v, Output), s)

executeAST :: (Machine p s v) -> p -> s -> Exc ((v, Output), s)

Listing C.1: Machine Abstraction <Haskell Code>

In addition, a Haskell type class (IMachine) is defined enclosing the most relevant
functions to manipulate the abstract representation of the machine. Those func-
tions provide direct access to the elements that compose the machine, except for the
execute function that, given the program text, first parses the program, and then
executes it.

C.2 Per-Machine Testing

The test environment provides the data type TestSuite, shown in Listing C.2, to rep-
resent a collection of tests that must be carried on over a single machine. TestSuite is
also a polymorphic type defined over those type variables of the abstract machine be-
ing tested. A TestSuite consists of: a machine over which the test shall be performed
and a list of test cases. A TestCase essentially specifies a program, given through the
name of the file that contains it, and a test condition. The test environment, based
on a TestCase, parses the program, executes it and tests the validity of the condition
in order to determine whether the test succeeds or fails. There are three different
kinds of tests. The OutputTC test case checks that the program ends its execution
normally (i.e. without exceptions), and also, that the output and returned value are
as expected. That is to say, the output of the execution is equal to its component
element Output and that the function v -> Bool returns True when it is evaluated
with the returned value. The ExceptionTC test case checks that the program ends
its execution with an exception and that the String of the exception returns True
once tested with the function String -> Bool. The OutStateTC test case is similar
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to OutputTC, but it also imposes a condition over the state of the machine, through
the function s -> Bool.

data TestSuite p s v = CSuite (Machine p s v) [TestCase p s v]

data TestCase p s v =

OutputTC (Machine p s v) FileName Output (v -> Bool) |

ExceptionTC (Machine p s v) FileName (String -> Bool) |

OutStateTC (Machine p s v) FileName Output (v -> Bool) (s->Bool)

Listing C.2: Per-Machine TestSuite <Haskell Code>

The ITestSuite type class defines the functions in order to build a test suite and
to run it. The function makeTestSuite receives a machine and returns a test suite
for it, with an empty set of test cases. The three add*Test functions allow to add
new test cases to a given TestSuite. Finally, the runTestSuite function, given the
TestSuite, executes each of the test cases for that machine, outputting the results
of the tests in the standard output.

class (IMachine p s v) => ITestSuite p s v where

makeTestSuite :: (Machine p s v) -> (TestSuite p s v)

addOutputTest :: (TestSuite p s v) -> FileName -> Output ->

(v -> Bool) -> (TestSuite p s v)

addExceptionTest :: (TestSuite p s v) -> FileName ->

(String -> Bool) -> (TestSuite p s v)

addOutStateTest :: (TestSuite p s v) -> FileName -> Output ->

(v -> Bool) -> (s -> Bool) -> (TestSuite p s v)

runTestSuite :: (TestSuite p s v) -> IO ()

Listing C.3: Per-Machine TestSuite - Type Class <Haskell Code>

Note that the ITestSuite type class provides the implementation of the five functions
shown in the listing, however we do not show them here.

C.2.1 Using the Test Environment

Listing C.4 illustrates the construction of a test suite for the Kernel machine. In
order to be able to test a machine, an abstract representation of it must be built. This
requires defining the appropriate instance of the type class IMachine and building the
Machine data value that represents the machine. For instance, the first line declares an
instance of IMachine for the Kernel machine. Note that since the type class IMachine
provides a default implementation for all its functions (not shown here), the instance
does not require to implement any. The function getKernelMachine builds the data
value for the Kernel machine, using its initial state, parser and interpreter.
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instance IMachine Program State Value

getKernelMachine :: Machine Program State Value

getKernelMachine = CMachine "Kernel Machine" initialState

parseProgram runInState

instance ITestSuite Program State Value

testMachine :: IO ()

testMachine = runTestSuite (addTests initial)

where

initial = makeTestSuite getKernelMachine

addTests :: TestSuite Program State Value -> TestSuite Program State Value

addTests ts = foldl add ts tests

where

add suite (fn, o, f) = addOutputTest suite fn o f

tests = [(( rootDirectory ++ "Fib.rsb"),

"Before executing Fib with 3\n" ++

"Before executing Fib with 2\n" ++

"Before executing Fib with 1\n" ++

"Before executing Fib with 0\n" ++

"Before executing Fib with 1\nfib (3) is 2", isVoid ),..]

Listing C.4: Per-Machine TestSuite - Example <Haskell Code>

In addition, the instance for the ITestSuite must also be defined for the Kernel
machine. Again, no function must be implemented by the instance (ITestSuite
provides a default implementation for all its functions, not shown here). The function
testMachine builds the test suite, using makeTestSuite and getKernelMachine.
Also, it adds the test cases using addTests and runs the tests. addTests adds a list
of OutputTC to the test suite. The test case shown in the listing corresponds to a
program that calculates the fibonacci numbers and defines a link to log all the calls to
the method fib. The test case is specified by giving the name of the file containing
the program, along with the expected output and return value. In conclusion, once
testMachine gets executed, all the tests would be performed and the output would
be printed in the standard output.

C.3 Inter-Machine Testing

The inter-machine testing facility offers the possibility of testing a relationship that
exists between two machines. As shown in Figure C.1, such a relationship is speci-
fied through two functions: compilation and comparison. The compilation functions
transforms a program in one machine, the so-called origin machine, into a program
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in the other, the so-called destination machine. Once both programs gets executed in
their respective machine, the comparison functions checks that the relationship holds
between the results of the execution.

Machine A
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tio

n

Machine B

ProgramB
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E
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c
u
tio

n

Compilation

Comparison

Figure C.1: Inter-Machine Testing

This testing facility is particulary useful to test the compilers that transforms aspect-
oriented programs into Kernel programs. For instance, the compiler that transforms
PA programs to Kernel programs, presented in Chapter 5, has been tested using this
facility. In addition, it can be also used, for instance to test the relationship between
two implementations of the Kernel machine, which may define two alternative seman-
tics or even have different features. By performing inter-machine testings between
the two Kernel machines, we can test that they behaves as expected, that is to say,
in some test cases they have the same semantic effects while in other they differ.

The next section presents how this relationship is abstractly modeled in Haskell.
Then, Section C.3.2 presents the definition of a test suite for inter-machine testing,
which allows to define test cases to check the relationship. Finally, Section C.3.3
illustrates the use of this testing facility.

C.3.1 Relationship Abstraction

The relationship is represented using the data type MachineRel and the type class
IMachineRel, both shown in Listing C.5. MachineRel is a polymorphic type defined
over six type variables, representing the types of the programs, state and value of
both machines. The data type encloses the name of the relation and the abstract
representations for both machines. The first three functions of IMachineRel provide
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access to those elements of MachineRel. compile is the compilation function, shown
in Figure C.1, which transforms a program of the origin machine (po) into a program
in the target machine (pd). Also, it defines the compareMachines function, that
given the results of the execution of the two machines compares them and determines
whether the test succeeds or fails. If it fails, the function errorRelMessage is called
in order to generate the error message.

data MachineRel po so vo pd sd vd =

CMRel Name (Machine po so vo) (Machine pd sd vd)

class (IMachine po so vo , IMachine pd sd vd) =>

IMachineRel po so vo pd sd vd where

getMachineRelName :: (MachineRel po so vo pd sd vd) -> Name

originMachine :: (MachineRel po so vo pd sd vd) ->

(Machine po so vo)

targetMachine :: (MachineRel po so vo pd sd vd) ->

(Machine pd sd vd)

compile :: (MachineRel po so vo pd sd vd) -> po -> Exc pd

compareMachines :: (MachineRel po so vo pd sd vd) ->

Exc ((vo , Output), so) ->

Exc ((vd , Output), sd) -> Bool

errorRelMessage :: (MachineRel po so vo pd sd vd) ->

(po , Exc ((vo , Output), so)) ->

(pd , Exc ((vd , Output), sd)) -> String

Listing C.5: Relationship Abstraction <Haskell Code>

C.3.2 Test Suite

The test suites are represents through the data type TestSuite1 shown in Listing C.6,
which consists of a relationship (MachineRel) on which the tests shall be performed
and a list of test cases. A test case is specified only by giving the program (through a
FileName) of the origin machine that must be tested, conversely to a per-machine test
case that also encloses a condition. Note that the success condition is already specified
in the function compareMachines presented in the previous section. The ITestSuite2

type class provides the functions: makeTestSuite to build a test suite base on a
relationship, addTestFile to add new test cases to the suite and runTestSuite to
actually run the test suite. Once runTestSuite is executed, it performs the following
tasks. In first place, it loads the program and parses it using the parse function

1Note that the data type’s module-level name is equal to the TestSuite data type presented in
Section C.2. However, the full-qualified names (not shown here) of both data types, and the data
types themselves, are different.

2This type class is also different from the one presented in Section C.2 (ITestSuite), as well as
its full-qualified name (not shown here).
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of the origin machine (see Section C.1). The result of the parsing is a program of
type po. In second place, using the compile function it transforms the po into a pd
program of the destination machine. In third place, both programs get executed in
their respective machines. Finally, the results of the programs are compared using
the compareMachines to determine if the test was successful.

data TestSuite po so vo pd sd vd =

CSuite (MachineRel po so vo pd sd vd) [FileName]

class (IMachineRel po so vo pd sd vd) =>

ITestSuite po so vo pd sd vd where

makeTestSuite :: (MachineRel po so vo pd sd vd) ->

(TestSuite po so vo pd sd vd)

addTestFile :: (TestSuite po so vo pd sd vd) -> FileName ->

(TestSuite po so vo pd sd vd)

runTestSuite :: (TestSuite po so vo pd sd vd) -> IO()

Listing C.6: Inter-Machine Test Suite <Haskell Code>

C.3.3 Using the Test Environment

Listings C.7 and C.8 show how the compiler form the PA machine and the Kernel
machine is tested using inter-machine testing. In first place, Listing C.7 shows the
definition of the relationship between both machines. It defines a Haskell instance of
the type class IMachineRel providing the implementations for the compile, compare-
Machines and errorRelMessage functions. The compile function calls the compiler
presented in Section 5.3, here characterized by the function compileStEState, passing
the PA machine program. The applyStE function executes the compilation process
by passing the initialState to the monad StE (see Section 3.2.2.2 for an explanation
of applyStE), resulting in the correspondent Kernel program. The compareMachines
compares the results by checking that if both executions end with exceptions, they
must have the same error message, and if both executions end normally, the output
and the returned values must correspond. The function compareResults (not shown
here) performs those comparisons. Finally, if the results do not correspond, the
function errorRelMessage generates the appropriate string that is used by the test
environment to report the error.

Listing C.8 shows the construction of a test suite that tests two programs, one that
makes use of a before advice and another that makes use of an around advice calling
proceed. In order to use the testing environment, an instance of ITestSuite is
defined for the relationship. The function testCompiler creates the test suite, using
makeTestSuite and getMachineRel. getMachineRel generates the MachineRel data
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instance IMachineRel PA.Program PA.State PA.Value

Ker.Program Ker.State Ker.Value where

compile ms pr =

elimE compilate okBehavior errorBehavior

where

compilate = applyStE (compileStEState pr) Compiler.initialState

okBehavior (pr ’, _) = return pr ’

errorBehavior msg = raiseE msg

compareMachines ms outO outD

| (isErrorE outO) && (isErrorE outD) =

(getErrorMsgE outO) == (getErrorMsgE outD)

| (isOkE outO) && (isOkE outD) =

compareResults (fst (getValueE outO)) (fst (getValueE outD))

| otherwise = False

errorRelMessage ms (pO , outO) (pD , outD) =

(show pD) ++ "\n\n" ++ "PA Machine\n" ++ (showResult outO) ++

"\n\nKernel Machine\n" ++ (showResult outD)

where

showResult res

| isErrorE res =

"Exception result: " ++ (getErrorMsgE res)

| otherwise =

"Normal result: \n\n" ++ "Value: \n\n" ++

(show (fst (fst (getValueE res )))) ++

"\n\nOutput: \n\n" ++ (snd (fst (getValueE res )))

Listing C.7: PA Machine to Kernel Machine - Example <Haskell Code>

value containing the relationship name and the two abstract machines involved in it.
testCompiler also adds the two test cases and runs them.

instance ITestSuite PA.Program PA.State PA.Value

Ker.Program Ker.State Ker.Value where

testCompiler :: IO ()

testCompiler = runTestSuite suite

where

suite = foldl addTestFile initial testList

initial = makeTestSuite getMachineRel

testList = [testBefore , testProceed]

testBefore = rootDirectory ++ "Before.rsb"

testProceed = rootDirectory ++ "AroundProceed.rsb"

getMachineRel :: MachineRel PA.Program ... Ker.Program ...

getMachineRel = CMSupport "PA to Kernel Compilation"

getPAMachine getKernelMachine

Listing C.8: PA Machine to Kernel Machine - Example (continued)
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