
PEDECIBA Informática
Instituto de Computación – Facultad de Ingeniería

Universidad de la República
Montevideo, Uruguay

Tesis de Doctorado
en Informática

Software unit testing techniques:
An empirical study

Diego Vallespir

Marzo 2012

Software unit testing techniques: an empirical study
Vallespir, Diego
ISSN 0797-6410
Tesis de Doctorado en Informática
Reporte Técnico RT 12-06
PEDECIBA
Instituto de Computación – Facultad de Ingeniería
Universidad de la República.
Montevideo, Uruguay, 5 de marzo de 2012

Tesis Doctoral

Software Unit
Testing Techniques:
An Empirical Study

Diego Vallespir

Director de Tesis: Juliana Herbert

Director de Estudios: Álvaro Tasistro

Programa de Doctorado en
Informática

Marzo de 2012

Tesis presentada por Diego Vallespir para aspirar al T́ıtulo de Doctor en
Informática.

Vista y aprobada por Juliana Herbert.

UNIVERSIDAD DE LA REPÚBLICA
FACULTAD DE INGENIERÍA

El tribunal docente integrado por los abajo firmantes aprueba la Tesis
de Investigación:

Software Unit
Testing Techniques:
An Empirical Study

Autor: MSc. Diego Vallespir
Directora de Tesis: PhD. Juliana Herbert
Director Académico: PhD. Álvaro Tasistro
Carrera: Doctorado en Informática - PEDECIBA
Calificación: Aprobado con Mención

TRIBUNAL

PhD. William Nichols (Revisor)

PhD. Eduardo Miranda (Revisor)

PhD. Claudia Pons

PhD. Cristina Cornes

PhD. Omar Viera

Montevideo, 5 de marzo de 2012

To my family and
to the team.

Agradecimientos
[Acknowledgements]

Quiero agradecer primero a las personas que trabajaron conmigo en los
proyectos de investigación que fueron ejecutados durante el desarrollo de esta
tesis: Apa, Cecilia; Ávila, Adriana; Bogado, Carmen; Camilloni, Lućıa; De
León, Stephanie; Grazioli, Fernanda; Herbert, Juliana; Marotta, Adriana;
Marotta, Fernando; Moreno, Silvana; Nichols, William; Robaina, Rosana;
Valverde, Carolina. Muchas gracias por todo el trabajo compartido y por el
esfuerzo realizado.

También quiero agradecer al resto del Grupo de Ingenieŕıa de Software
de la UdelaR por el apoyo brindado. En este sentido agradezco sobre todo
a Jorge Triñanes, con quien varias veces conversé sobre mi trabajo de tesis.

Agradezco a Luis Sierra por su ayuda con LATEX; siempre que tuve dudas
Luis estuvo ah́ı. A Lorena Ibaceta y a Maŕıa Inés Imas por las traducciones
al inglés. A Santiago por el pasaje del formato de los art́ıculos publicados
en la revista 1024 para que quedaran igual en inglés que en español.

A Juliana Herbert por ser la tutora y gúıa de este trabajo de tesis y a
Álvaro Tasistro por ser mi director de estudios.

A Watts Humphrey por plantear la idea inicial del tema de tesis. Aprove-
cho para agradecerle a Watts todo lo que le ha dado a la ingenieŕıa de
software.

Agradezco mucho a mi familia: mi esposa, mis padres, mi hermana y mi
cuñado. Sobre todo a Mari, por acompañar, apoyar y entender.

IX

Resumen en Español

El tamaño y la complejidad del software aumentan cada año. A su vez, el
software cada vez ocupa más lugares en nuestro mundo y en nuestra vida
(casas inteligentes, autos, teléfonos, televisiones, bancos, oficinas, aviones,
etc. contienen una importante porción de software). El desarrollo de soft-
ware es una actividad creativa e intelectual realizada por seres humanos.
Durante un proyecto de software es normal que el equipo de desarrollo
cometa errores; esto se debe a la complejidad actual del software y debido a
la naturaleza humana en si misma. Normalmente estos errores introducen
defectos en el producto de software y cuando el software es utilizado esos
defectos pueden causar fallas. La investigación de cómo construir software
que no contenga defectos ha llevado a desarrollar, entre otras cosas, diversas
y variadas técnicas de pruebas de software. El objetivo de estas técnicas es
detectar defectos antes de que el producto sea usado por los usuarios finales.
Desafortunadamente, es dif́ıcil elegir qué técnicas utilizar. Esto se debe a
que no es suficiente el conocimiento actual que se tiene sobre la efectividad
y el costo de usar cada técnica de pruebas. Una forma de aumentar este
conocimiento es a través de experimentos controlados.

El objetivo general de esta tesis es contribuir al conocimiento de distin-
tas técnicas de pruebas. Más espećıficamente, la intención es conducir una
investigación emṕırica para conocer los resultados de usar distintas técnicas
de pruebas; principalmente en lo que refiera a su efectividad y costo. Este
objetivo general es dividido en dos objetivos particulares. El primero y
principal es el estudio de las siguientes técnicas de pruebas: inspección de
escritorio, partición en clases de equivalencia y análisis de valores ĺımite,
tablas de decisión, trayectorias linealmente independientes, cubrimiento de
condición múltiple, cubrimiento de sentencias, y todos los usos. El segundo
es el estudio de las técnicas de pruebas utilizadas en el Proceso Personal de
Software (Personal Software Process - PSP).

Para conocer la efectividad y el costo de las 7 técnicas de pruebas men-
cionadas, realizamos dos experimentos controlados. Llamamos al primer
experimento Experimento 2008 y al segundo Experimento 2009. Los nom-
bres provienen de los años en los cuales comenzaron los experimentos.

En el análisis de resultados encontramos que la efectividad de todas las
técnicas de pruebas fue baja. Ninguna de las técnicas tuvo más de un 35%

XI

de efectividad. Además, la efectividad de las técnicas se reduce cuando
estas fueron utilizadas en los programas de nuestro experimento en relación
a cuando estas fueron usadas durante el entrenamiento. Esto seguramente
se debe a que es más fácil encontrar defectos en programas triviales que
encontrar defectos en programas complejos.

También realizamos algunos estudios iniciales usando el PSP. Analizamos
el comportamiento de las técnicas de pruebas y el costo de encontrar y cor-
regir defectos usando el PSP. Usamos datos de cursos del PSP que fueron
tomados desde octubre de 2005 hasta enero de 2010. Estos cursos fueron dic-
tados por el Software Engineering Institute (SEI) de la Universidad Carnegie
Mellon o por socios (partners) del SEI.

En este caso encontramos que la revisión de diseño tiene una alta efectivi-
dad (más de un 50%) para remover defectos que fueron inyectados durante
la fase de diseño detallado . También encontramos que, la revisión de código
tienen una alta efectividad (más del 60%) para remover defectos inyectados
durante la fase de codificación.

Finalmente, realizamos otros trabajos de investigación que complemen-
tan la ĺınea de investigación central de esta tesis. Estos trabajos fueron
muy diversos. Estudiamos diferentes propuestas de taxonomı́as de defec-
tos que existen en la literatura, las evaluamos y las comparamos. También
propusimos un marco de comparación de experimentos que buscan evaluar
las técnicas de pruebas. Empaquetamos el Experimento 2008. Por último,
también analizamos la calidad de los datos recolectados por los sujetos del
Experimento 2008.

Durante esta tesis hemos hecho hincapié en usarla como un marco para
la creación del Grupo de Investigación en Ingenieŕıa de Software de nuestra
Universidad. Esto implicó un esfuerzo extra importante pero, gratificante al
mismo tiempo ya que consideramos que hemos avanzado en la consolidación
de este grupo.

Abstract

The size and complexity of the software increase every year. Besides, it
takes up more places in our world and in our life (intelligent houses, cars,
telephones, televisions, banks, offices, aircraft, etc, contain an important
portion of software). Software development is a creative and intellectual ac-
tivity performed by human beings. During a software project it is normal for
the development team to make mistakes, both because of the current com-
plexity of the software and because of human nature itself. Normally these
mistakes end up in defects in the software product and when the software
is being executed these can cause failures. The search of how to develop
software that does not contain defects has led to, among other things, the
development of a varied number of testing techniques. These aim at the
detection of defects before the product is used by the users. Unfortunately,
it is difficult to choose which technique to use, since the knowledge cur-
rently available about the effectiveness and the cost of each of the testing
techniques is not enough. A way of increasing that knowledge is through
controlled experiments.

The general goal of this thesis is to contribute to the knowledge of differ-
ent testing techniques. More specifically, we intend to conduct an empirical
investigation of the results of using them, mainly in what refers to their effec-
tiveness and cost. This general goal is divided into two particular ones. The
first and principal is the study of the following testing techniques: desktop
inspection, equivalence partitioning and boundary-value analysis, decision
table, linearly independent path, multiple condition coverage, sentence cov-
erage and all uses. The second is the study of the Personal Software Process
(PSP) testing techniques.

In order to know the effectiveness and cost of the 7 testing techniques
mentioned we conducted two controlled experiments. We called the first one
Experiment 2008 and the second one Experiment 2009. Their names come
from the years in which we started the experiments.

In the analysis of the results we found that the effectiveness of all the
testing techniques was low. None of the techniques was more than 35%
effective. Besides, the effectiveness of the techniques decreased when they
were used in the experiment programs in relation to when they were used in
the training. This is certainly due to the fact that it is easier to find defects

XIII

in trivial programs than it is to find them in complex ones.
We also conducted some initial studies using the PSP. We analyzed the

behavior of the testing techniques and the cost of finding and fixing defects
in the PSP. We used data from PSP courses taught between October 2005
and January 2010. These courses were taught by the Software Engineering
Institute (SEI) of the Carnegie Mellon University or by SEI partners.

In this case we found that the design review has a high effectiveness
to remove the defects injected during the detailed design phase (more than
50%). On the other hand, the code review has high effectiveness to remove
the defects injected during the code phase (more than 60%).

Finally in the thesis we did research work that complements the central
research line. These works have been very diverse. Different defect tax-
onomies proposed in the literature were studied, evaluated and compared.
A comparison frame of controlled experiments that intend to evaluate ver-
ification techniques was created. A packaging of the Experiment 2008 was
done. The quality of the data collected by the subjects in the Experiment
2008 was evaluated.

During this thesis we have stressed its use as a frame for the creation of
a Software Engineering Research Group in our University. This has involved
an important effort, but it has been gratifying at the same time since we
understand that we have been able to advance in the consolidation of this
group.

Contents

Agradecimientos [Acknowledgements] IX

Resumen XI

Abstract XIII

1 Introduction 1

I Controlled Experiments with Seven Testing Techniques 11

2 Introduction 13

3 Controlled Experiment with a Small Program 15

4 Controlled Experiments to Evaluate Testing Techniques 39

5 Conclusions 71

II Methodological Recommendations 75

6 Introduction 77

7 Methodological Recommendations 79

8 Conclusions 139

III Analysis of Defect Injection and Removal in PSP 141

9 Introduction 143

10 Analysis of Defect Injection and Removal in PSP 145

11 Conclusions 169

XV

IV Conclusions and
Future Work 173

12 Conclusions and Future Work 175

V Appendices 185

A Unit Testing in Java 187

B Conceptos de Ingenieŕıa de Software Emṕırica 209

Chapter 1

Introduction

The size and complexity of the software increase every year. Besides, it
takes up more places in our world and in our life (intelligent houses, cars,
telephones, televisions, banks, offices, aircraft, etc, contain an important
portion of software). Software development is a creative and intellectual ac-
tivity performed by human beings. During a software project it is normal for
the development team to make mistakes, both because of the current com-
plexity of the software and because of human nature itself. Normally these
mistakes end up in defects in the software product and when the software
is being executed these can cause failures. The search of how to develop
software that does not contain defects has led to, among other things, the
development of a varied number of testing techniques. These aim at the
detection of defects before the product is used by the users. Unfortunately,
it is difficult to choose which technique to use, since the knowledge cur-
rently available about the effectiveness and the cost of each of the testing
techniques is not enough. A way of increasing that knowledge is through
controlled experiments. The main topic of this thesis is the study, through
controlled experiments, of the effectiveness and the cost of different unit
testing techniques.

1.1 Motivation

Software development is performed by human teams and while it is being
done they make mistakes. This is due to human nature and also to the
current complexity of software that is developed. Most of these mistakes end
up being defects in some software artifact that is being developed. When the
software is being executed, these defects may lead to failures with serious
negative impacts, among which we can mention the loss of human lives.

Trying to find how to develop software that does not contain defects
has created a diversity of techniques, processes, methods, etc. In particular,
several software testing techniques have been developed. These could be

1

2 Chapter 1. Introduction

classified into static and dynamic. The software product is reviewed by
means of the static techniques without being executed. On the other hand,
the dynamic testing techniques aim at executing the product in different
ways in order to provoke failures in it.

Unfortunately, it is difficult to choose which technique or techniques to
use in a certain software development project since the current knowledge
available about the effectiveness and the cost of each one of them is not
enough. The effectiveness is calculated as the number of defects found ap-
plying a technique divided by the total number of defects of the product
under test. Normally it is expressed in percentage. The cost of a technique
is how much it costs to execute it. It can be measured in time, test cases
developed, the inherent complexity of applying the technique, etc. In this
work we use as a measure of the cost the time it takes to apply the technique.

Both the effectiveness and the cost can vary for the same technique. This
variation may be due to the type of product that is being tested, the type of
defects it presents, the complexity of the product, the individual who applies
the technique, among other reasons. We are far from knowing in such depth
the characteristics of the testing techniques.

One way of analyzing and evaluating the testing techniques is through
controlled experiments. Controlled experiments use a methodical process
to establish a correspondence between certain ideas or theories with real-
ity. Normally they are conducted in a laboratory environment where certain
variables (independent variables) can be controlled while others are observed
(dependent variables). The data collected during the experiment are ana-
lyzed statistically to know more about the topic as well as to accept or reject
certain work hypothesis previously established.

The central topic of this thesis is the study through controlled experi-
ments of the effectiveness and cost of different unit testing techniques. We
studied 7 testing techniques in “isolated form” to know about their effec-
tiveness and cost. Studying the techniques in isolated form implies studying
them out of any software development process. In Appendix B there is
a brief introduction to controlled experiments in software engineering (in
Spanish).

We also want to study the testing techniques in the context of the Per-
sonal Software Process (PSP). In this way we study testing techniques within
a software development process and somehow we get closer to what happens
in the industry. In the next section there is a brief introduction to the PSP.

1.2 Background: The Personal Software Process

“The Personal Software Process is a self-improvement process
that helps you to control, manage, and improve the way you
work.”

1.2. Background: The Personal Software Process 3

Figure 1.1: The PSP phases, scripts, logs and project summary

– W. S. Humphrey, 2005.

The PSP is a software development process for the individual. The pro-
cess helps the engineer to control, manage and improve his work. The PSP
establishes a highly instrumented development process that includes a rig-
orous measurement framework for effort and defects. This process includes
phases that the engineer completes while building the software.

For each software development phase, the PSP has scripts that help
the software engineer to follow the process correctly. The phases include
Planning, Detailed Design, Detailed Design Review, Code, Code Review,
Compile, Unit Test, and Post Mortem. For each phase, the engineer collects
data on the time spent in the development phase and the defects injected
and removed. The defect data include the defect type, the time to find and
fix the defect, the phase in which the defect was injected, and the phase
in which it was removed. Figure 1.1 shows the script, phases, and data
collection used with the PSP.

The PSP is taught through a course. During the course, the engineers
build programs while they are progressively learning PSP planning, develop-
ment, and process assessment practices. For the first exercise, the engineer
starts with a simple, defined process (the baseline process, called PSP 0); as
the class progresses, new process steps and elements are added, from Esti-

4 Chapter 1. Introduction

Figure 1.2: PSP process level introduction during course

mation and Planning to Code Reviews, to Design, and Design Review. As
these elements are added, the process changes. The name of each process
and which elements are added in each one are presented in Figure 1.2. The
PSP 2.1 is the complete PSP process.

A more detailed description of the PSP is presented in the second article
of Chapter 10.

1.3 Research Goals and Methodology

The general goal of this thesis is to contribute to the knowledge of different
testing techniques. More specifically, we intend to conduct an empirical
investigation of the results of using them, mainly in what refers to their
effectiveness and cost.

This general goal is divided into two particular ones. The first is the
study of the following testing techniques: desktop inspection, equivalence
partitioning and boundary-value analysis, decision table, linearly indepen-
dent path, multiple condition coverage, sentence coverage and all uses. The
second is the study of the injection and removal of defects in the PSP.

The testing techniques were chosen to vary between static and dynamic
techniques. Among the dynamic ones black box and white box testing tech-
niques are included. Techniques based on data flow and control flow are

1.4. Controlled Experiments with Seven Testing Techniques 5

included among the white box testing techniques. On the other hand, the
PSP provides naturally an excellent frame for conducting empirical studies
due to the collection of data the engineer makes while using it.

Below we present the goals with the associated research questions:

Goal 1 - Investigate empirically the 7 techniques mentioned.

Research question 1: Which is the effectiveness of each one of those
techniques?

Research question 2: Which is the cost of each one of those techniques?

Goal 2 - Investigate empirically the PSP defect injection and removal.

Research question 3: Which is the effectiveness of the different PSP’s
phases?

Research question 4: Which is the cost of finding and fixing a defect in
the PSP?

In order to answer the first two research questions we used controlled
experiments. The subjects of these experiments were students of Computer
Science of the Universidad de la República. The 7 techniques mentioned
were used by the students in different programs written in Java. This is the
principal goal of the thesis.

In order to answer the research questions 3 and 4 we made an analysis of
the data collected in different courses of the PSP. The courses were taught
between October 2005 and January 2010 by the Software Engineering Insti-
tute (SEI) of the Carnegie Mellon University or by SEI partners. It should
be made clear that our intention for the future is to study the variation in
effectiveness and cost of the PSP unit test phase when the testing techniques
mentioned (except desktop inspection) are used in that phase of the process.
However, in order to conduct this empirical study, first we should have data
concerning how the PSP behaves when no specific technique is applied in
the unit test phase. This is the reason why our second objective is only to
have information about the injection and removal of defects in the PSP.

1.4 Controlled Experiments with Seven Testing
Techniques

In order to know the effectiveness and cost of the 7 testing techniques men-
tioned we conducted two controlled experiments. We called the first one
Experiment 2008 and the second one Experiment 2009. Their names come
from the years in which we started the experiments.

The subjects in both experiments were Computer Science students from
the Universidad de la República in Uruguay. All of them were in fourth or
fifth year (the last one) of their degree.

6 Chapter 1. Introduction

During the experiment the subjects executed testing techniques and col-
lected data about time and defects. Each subject was allotted testing tech-
niques to apply on software programs written in Java. While they were
executing the tests, the subjects recorded the defects they found. This in-
formation is useful to calculate the effectiveness each subject obtained when
applying a technique. They also recorded the time it took them to develop
a set of test cases that satisfies the prescription of the allotted technique.
This data is the cost of applying the technique.

All the subjects were provided with training that aimed at making them
use the allotted technique properly. The training consisted of theoretical-
practical classes both for Experiment 2008 and for Experiment 2009. Dur-
ing the training the subjects learned not only the techniques to use but also
where to record the data they collected (defects and time) during the ex-
periment. In the final part of the training the subjects executed the allotted
techniques on a small program.

The training performed during both experiments was considered an ex-
periment in itself. This was possible due to the execution of the techniques
on the small program. Chapter 3 contains two articles that present the
training of Experiments 2008 and 2009 and the results obtained.

After the training the subjects start the testing task on larger and more
complex programs. In the Experiment 2008 each subject used a different
technique on three different programs. In the Experiment 2009 the subjects
used only one technique on an only program. In the Experiment 2008 the five
techniques mentioned first (out of the seven mentioned) were used, while in
the Experiment 2009 the last two were used. Chapter 4 contains two articles
that present Experiment 2008 and Experiment 2009 in a complete form.

1.5 Complementary Works

We also conducted some research work that complement the main line of re-
search (the study of the effectiveness and cost of different testing techniques)
in different ways. All the complementary works are presented in Part II.

An article that presents and evaluates different taxonomies of software
defects entitled “A Framework to Evaluate Defect Taxonomies” is included.
The evaluation is done through a Comparison Framework we developed as
part of our research. Several experiments that aim at knowing the effective-
ness of the testing techniques segment the results by type of defect. They
aim at knowing how effective a certain technique is for each type of defect.
That is why it is important to know different taxonomies and evaluate them.

Different research groups in different places in the world conduct formal
experiments in software engineering. In particular, many experiments aim at
knowing the cost and effectiveness of different testing techniques. Normally
these experiments are very difficult to compare and to add. The article

1.6. Analysis of Defect Injection and Removal in PSP 7

“Towards a Framework to compare Formal Experiments” presents a first
construction of a framework to compare but above all, to identify the most
important items of an experiment that intends to evaluate different testing
techniques.

Another article included “Construction of a Laboratory Package for a
Software Engineering Experiment” presents a packaging experience of the
Experiment 2008. Packaging an experiment makes it possible, among other
things, for different research groups to replicate it easily (or at least more
easily than if it was not packaged). Besides, packaging is also important since
it provides complete information on the experiment that has been conducted.
It is important to clarify that in the packaging work of the Experiment 2008
I collaborated only providing information about the experiment and making
reviews of the article mentioned. That is to say, that the main research work
was done by the rest of the authors and not by me.

The article “Calidad de los Datos en Experimentos en Ingenieŕıa de
Software. Un Caso de Estudio” [Quality of the data in Software Engineering
Experiments. A Case Study] presents a study on the quality of the data of
the Experiment 2008. This article is presented in Spanish.

Also, Appendix A presents a collection of short articles that deal with
support tools to unit tests. The main topic of these articles is the code
coverage and support through tools to know that coverage. These tools can
be used in the controlled experiments that use white box testing techniques.

1.6 Analysis of Defect Injection and Removal in
PSP

In the controlled experiments we conducted the testing techniques were used
in an isolated form. However, this is not what happens in the software
industry. The techniques are used as part of a software development process
within a project. The process develops a context in which the techniques
are not used in a pure form and probably, due to this, the effectiveness and
cost of the same change.

Consequently, we conducted a study using the PSP. We analyzed the
effectiveness of the PSP phases and the cost of finding and fixing defects
in the PSP. We used data from PSP courses taught between October 2005
and January 2010. These courses were taught by the Software Engineering
Institute (SEI) of the Carnegie Mellon University or by SEI partners.

In the phases design review and code review of the PSP, as their names
indicate, design and code reviews respectively are conducted. These are
done using a checklist and that is why the code review is similar to the
desktop inspection technique we used in the controlled experiments.

The study done using the PSP is presented in Part III. Two articles
are included in it. The first one analyzes the injection and removal of the

8 Chapter 1. Introduction

defects injected during the detailed design phase. The second conducts a
similar analysis but with the defects injected during the code phase.

These two articles contain initial results concerning the behavior of the
injection and removal of defects of the PSP. This will make it possible to have
the necessary basis to later conduct formal experiments using the different
verification techniques mentioned.

1.7 About the Thesis Document

This document is made up by this introduction and five Parts. Parts I, II
and III have an introduction chapter and a conclusions chapter. The central
content of each Part is a compendium of articles most of which have already
been published. Since each article has an introduction and its conclusions
and we want to avoid being repetitive, the introduction and the conclusions
of each Part are very brief.

The state of the art is presented in each article included according to the
topic that is treated in it. Due to this, the thesis does not have a chapter
entitled “State of the Art” or “Related Work” that is global to it.

Part I presents the controlled experiments conducted: Experiment 2008
and Experiment 2009. Part II presents articles that complement the research
on the effectiveness and cost of the testing techniques. Part III presents the
analysis of the effectiveness of the PSP phases and the cost of finding and
removing defects in the PSP. Part IV presents the conclusions and future
work. Finally Part V contains the Appendices.

1.8 Articles that Make Up the Thesis

Below are listed the articles that make up this Thesis in the order they
appear in it:

1. Diego Vallespir, Juliana Herbert; Effectiveness and Cost of Verification
Techniques: Preliminary Conclusions on Five Techniques, Proceedings
of the Mexican International Conference on Computer Science, pp.
264-271, Ciudad de México, México, September, 2009. Published by
IEEE Computer Society Press.

2. Diego Vallespir, Carmen Bogado, Silvana Moreno, Juliana Herbert;
Comparing Verification Techniques: All Uses and Statement Cover-
age, Proceedings of the Ibero-American Symposium on Software Engi-
neering and Knowledge Engineering 2010, pp. 85-95, Mérida, México,
November, 2010.

3. Diego Vallespir, Cecilia Apa, Stephanie De León, Rosana Robaina,
Juliana Herbert; Effectiveness of five verification techniques, Proceed-

1.8. Articles that Make Up the Thesis 9

ings of the XXVIII International Conference of the Chilean Computer
Society, pp. 86-93, Santiago de Chile, Chile, November, 2009.

4. Diego Vallespir, Silvana Moreno, Carmen Bogado, Juliana Herbert; All
Uses and Statement Coverage: A controlled experiment, This article
hasn’t been published yet. Submitted to a Software Engineering Open
Journal.

5. Diego Vallespir, Fernanda Grazioli, Juliana Herbert; A Framework to
Evaluate Defect Taxonomies, Proceedings of the Argentine Congress
of Computer Science 2009, pp. 643-652, San Salvador de Jujuy, Ar-
gentina, October, 2009.

6. Diego Vallespir, Silvana Moreno, Carmen Bogado, Juliana Herbert;
Towards a Framework to Compare Formal Experiments that Evaluate
Testing Techniques, Research in Computing Science, pp. 69-80, ISSN
1870-4069, 2009.

7. Cecilia Apa, Mart́ın Solari, Diego Vallespir, Sira Vegas; Construction
of a Laboratory Package for a Software Engineering Experiment, Pro-
ceedings of the Ibero-American Conference on Software Engineering,
pp. 101-114, Rio de Janeiro, Brazil, April 2011.

8. Carolina Valverde, Adriana Marotta, Diego Vallespir; Calidad de
Datos en Experimentos en Ingenieŕıa de Software Un caso de estudio
[Data quality in Software Engineering Experiments: A Case Study] ,
This article hasn’t been published yet. Submitted to a Regional Con-
ference. Article in Spanish.

9. Diego Vallespir, William Nichols; Analysis of Design Defect Injection
and Removal in PSP, Proceedings of the TSP Symposium 2011: A
Dedication to Excellence, pp. 19-24, Atlanta, GA, United States,
September, 2011.

10. Diego Vallespir, William Nichols; Analysis of Code Defects Injection
and Removal in PSP, This article hasn’t been published yet. Submit-
ted to a Special Issue of a Software Engineering Open Journal.

11. Collection of articles Unit Testing in Java

(a) Adriana Ávila, Lućıa Camilloni, Fernando Marotta, Diego Valle-
spir, Cecilia Apa; Unit Testing in Java: JUnit and TestNG,
Journal Milveinticuatro, Thomas Alva Edison Edition, pp 46-48,
ISSN: 1688-6941, 2010.

(b) Adriana Ávila, Lućıa Camilloni, Diego Vallespir, Cecilia Apa;
Unit Testing in Java: Code Coverage with Clover, Journal Mil-
veinticuatro, Alexander Graham Bell Edition, pp 50-53, ISSN:
1688-6941, 2011.

10 Chapter 1. Introduction

(c) Carmen Bogado, Diego Vallespir; Unit Testing in Java: Code
Coverage with CodeCover, Journal Milveinticuatro, Blaise Pascal
Edition, pp 32-34, ISSN: 1688-6941, 2011.

(d) Diego Vallespir, Fernando Marotta; Unit Testing in Java: Code
Coverage with CoView, Journal Milveinticuatro, Blaise Pascal
Edition, pp 60-62, ISSN: 1688-6941, 2011.

(e) Diego Vallespir, Fernando Marotta, Carmen Bogado; Unit Test-
ing in Java: Code Coverage with CodeCover and CoView, Journal
Milveinticuatro, Antonio Meucci Edition, pp 32-34, ISSN: 1688-
6941, 2011.

(f) Adriana Ávila, Lućıa Camilloni, Diego Vallespir; Unit Testing in
Java: Data Driven with TestNG, Journal Milveinticuatro, Anto-
nio Meucci Edition, pp 60-61, ISSN: 1688-6941, 2011.

12. Cecilia Apa, Rosana Robaina, Stephanie De León, Diego Vallespir;
Conceptos de Ingenieŕıa de Software Emṕırica, Technical Report
PEDECIBA-Informática 10-02. Article in Spanish.

Part I

Controlled Experiments with
Seven Testing Techniques

11

Chapter 2

Introduction

We conducted two controlled experiments in order to evaluate the cost and
the effectiveness of different unit testing techniques. One of the experiments
started in the year 2008 (Experiment 2008) and the other experiment in
2009 (Experiment 2009).

The techniques used in these experiments were: desktop inspection,
equivalence partitioning and boundary-value analysis, decision table, lin-
early independent path, multiple condition coverage, statement coverage
and all uses. In the Experiment 2008 the five first techniques mentioned
above were used, while the other two were used in the 2009 Experiment.

The techniques were chosen in order to vary between static and dynamic
techniques. Among the dynamic ones we used white and black box tech-
niques. Finally, among the white box techniques, we chose techniques based
on control flow and data flow.

The subjects, advanced Computer Science students of the Universidad
de la República in Uruguay, were trained as part of the experiment they
participated in. Thus we try to make sure they have the necessary knowledge
and practice to use the testing techniques properly. Another aim of the
training is to bring all the subjects to the same level.

The training for both experiments has a theoretical part where the sub-
jects learn the testing techniques, and a practical one where the subjects
apply them. In this practical part the subjects use the allotted techniques
on a small Java program.

The training given to the subjects can be taken as a formal experiment
in itself. The articles “Effectiveness and Cost of Verification Techniques:
Preliminary Conclusions on Five Techniques” and “Comparing Verification
Techniques: All Uses and Statement Coverage”, from Chapter 3 “Controlled
Experiments with a Small Program”, present respectively the trainings of
Experiments 2008 and 2009 as formal experiments.

After finishing the training, the subjects used the allotted techniques on
bigger and more complex programs. The articles of Chapter 4 “Controlled

13

14 Chapter 2. Introduction

Experiments to Evaluate Testing Techniques”, present in a complete way
the Experiments 2008 and 2009. The first of the articles, “Effectiveness of
Five Verification Techniques”, presents Experiment 2008. The second, “All
Uses and Statement Coverage: A Controlled Experiment” presents the 2009
Experiment.

Chapter 3

Controlled Experiment with
a Small Program

In this chapter we present the trainings of the Experiments 2008 and 2009
as formal experiments. The first article corresponds to Experiment 2008
and the second to Experiment 2009.

The second article was published in Spanish. This thesis includes a
translation into English. It sticks to the formats of the proceedings of the
conference where it was published. This article is 10 pages long whereas the
original is 11, due to the translation and the format.

The papers included in this chapter are:

Effectiveness and Cost of Verification Techniques: Preliminary
Conclusions on Five Techniques
Diego Vallespir and Juliana Herbert
Proceedings of the Mexican International Conference on Computer Science,
pp. 264-271, Ciudad de México, México, September, 2009. Published by
IEEE Computer Society Press.

Comparing Verification Techniques: All Uses and Statement Cov-
erage
Diego Vallespir, Carmen Bogado, Silvana Moreno and Juliana Herbert
Proceedings of the Ibero-American Symposium on Software Engineering and
Knowledge Engineering 2010, pp. 85-95, Mérida, México, November, 2010.

15

16 Chapter 3. Controlled Experiment with a Small Program

Published by the IEEE Computer Society
10662 Los Vaqueros Circle
P.O. Box 3014
Los Alamitos, CA 90720-1314

IEEE Computer Society Order Number P3882
ISBN 978-0-7695-3882-7
Library of Congress Number 2009935369
BMS Part Number CFP0937I-PRT

Co
m
pu

te
r 21-

25
 S

ep
te

m
be

r,
 M

ex
ic

o
Ci

ty
, 2

00
9

Te
nt

h
M

ex
ic

an
 In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

Sc
ie
nc
e

Published by the IEEE Computer Society
10662 Los Vaqueros Circle
P.O. Box 3014
Los Alamitos, CA 90720-1314

IEEE Computer Society Order Number P3882
ISBN 978-0-7695-3882-7
Library of Congress Number 2009935369
BMS Part Number CFP0937I-PRT

Co
m
pu

te
r 21-

25
 S

ep
te

m
be

r,
 M

ex
ic

o
Ci

ty
, 2

00
9

Te
nt

h
M

ex
ic

an
 In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

Sc
ie
nc
e

17

ARTICLE

Effectiveness and Cost of Verification Techniques:
Preliminary Conclusions on Five Techniques

Diego Vallespir and Juliana Herbert

Proceedings of the Mexican International Conference on Com-
puter Science, pp. 264-271, Ciudad de México, México, Septem-
ber, 2009. Published by IEEE Computer Society Press.

18 Chapter 3. Controlled Experiment with a Small Program

Effectiveness and Cost of Verification Techniques
Preliminary Conclusions on Five Techniques

Diego Vallespir
Instituto de Computación

Facultad de Ingenierı́a, Universidad de la República
Montevideo, Uruguay
dvallesp@fing.edu.uy

Juliana Herbert
Herbert Consulting

Porto Alegre, RS, Brazil
juliana@herbertconsulting.com

Abstract—A group of 17 students applied 5 unit verification
techniques in a simple Java program as training for a formal
experiment. The verification techniques applied are desktop
inspection, equivalence partitioning and boundary-value anal-
ysis, decision table, linearly independent path, and multiple
condition coverage. The first one is a static technique, while
the others are dynamic. JUnit test cases are generated when
dynamic techniques are applied. Both the defects and the
execution time are registered. Execution time is considered as a
cost measure for the techniques. Preliminary results yield three
relevant conclusions. As a first conclusion, performance defects
are not easily found. Secondly, unit verification is rather costly
and the percentage of defects it detects is low. Finally desktop
inspection detects a greater variety of defects than the other
techniques.

Keywords-Unit testing; Testing; Software engineering; Em-
pirical software engineering;

I. INTRODUCTION

It is normal to use a hammer to hammer a nail into a wall.
There are different types of hammers but it is easy to choose
one and even more, a lot of different hammers do the same
job. It is normal to use a software verification technique to
verify a software unit. It is not known which one to choose.

To know which verification technique to choose for unit
testing we must know several things, for example, the cost,
the effectiveness and the efficiency of each technique. Even
more, these things can vary depending on the person who
applies it, the programming language and the application
type (information system, robotics, etc.). Some advances
have been made but we have a long way to go.

Here we define the cost of the technique as the time that
takes its execution, the effectiveness as the percentage of
defect found by the technique and the efficiency as the time
that takes to find a defect.

In [1] the authors examine different experiments on soft-
ware testing: [2], [3], [4], [5], [6], [7], [8], [9], [10], finding
that:

• It seems that some types of faults are not well suited
to some testing techniques.

• The results vary greatly from one study to another.
• When the tester is experienced

– Functional testing is more effective than coverage
all program statements, although the functional
approach takes longer.

– Functional testing is as effective as conditional
testing and consumes less time.

• In some experiments data-flow testing and mutation
testing are equally effective.

• In some other experiments mutation testing performed
better than data-flow testing in terms of effectiveness.

• In all the experiments mutation testing was more ex-
pensive than data-flow testing.

• Changes of programming languages and/or environ-
ments can produce different results in replications of
experiments that are rather old.

• Most programs used in the experiments suffer from at
least one of these two problems:

– They are small and simple.
– The defects are seeded by the researches.

One of their observations is that researchers should publish
more information not only about the number of faults the
techique can remove but also about the types.

We are in the execution phase of an experiment. It uses 4
programs that are built specially for the experiment. We use
2 taxonomies to classify defects, IBM Orthogonal Defect
Classification [11] and Beizer’s Taxonomy [12], therefore
we are able to discuss the results by defect type.

Before an experiment starts, the testers (the subjects
who will execute the verification techniques) need previous
preparation. In our experiment this includes a course on
every technique to be applied, a course on the scripts
to use during execution, a course on IBM’s and Beizer’s
Taxonomies and a training execution of the techniques in a
simple program. This execution serves to adjust the scripts,
to assure that every tester understands the techniques and
to have some ideas of what it can be expected from each
technique. In this paper we present the training phase of the
experiment and the associated results. The results do not
have statistical validity. They are just observations during
the tester’s training and before the execution of the real

2009 Mexican International Conference on Computer Science

978-0-7695-3882-2/09 $26.00 © 2009 IEEE

DOI 10.1109/ENC.2009.11

264

19

experiment.
The most important result is that verification is really

expensive and can find a poor quantity of the defects. As
it was said before, this is the result of a training phase
in an experiment with undergraduate students, thus more
data is needed. However, the results can be still considered
from a software development point of view: quality has to
be built during the construction phase and not during the
testing phase. This is in some way related to PSP and other
Humphrey ideas [13], [14] and to Pair programming ideas
as well [15].

The article is organized as follows. Section II presents
the techniques used in the training, the scripts and the
taxonomies. Section III presents the Java program that is
verified by the testers. The defects that the program contains
are listed in section IV. The results obtained are presented
in section V and the conclusions in section VI.

II. TECHNIQUES, TAXONOMIES AND SCRIPTS

We use the same terminology for the verification tech-
niques as Swebok [16]. The techniques can be divided in
different types: static, tester intuition or experience, specifi-
cation based, code based, fault based and usage based. At
the same time code-based is divided in control flow and data
flow based criteria.

In our experiment we choose 5 testing techniques: desk-
top inspection, equivalence partitioning and boundary-value
analysis (EP), decision table (DT), linearly independent
path (LIP), and multiple condition coverage (MCC). Using
these techniques the static, specification-based and control-
flow based techniques types are covered. Swebok considers
equivalence partitioning and boundary-value analysis as two
separate techniques. Given they are generally used together,
the testers apply them as one.

We could not find literature describing experiments in
which DT, LIP and MCC techniques are applied, neither
could Juristo [17]. So, the experiment we are leading may
be the first one that applies these techniques.

We want to know the effectiveness of the techniques
according to defect types, so a defect taxonomy is necessary.
Various defect taxonomies are presented in the literature.
The IBM Orthogonal Defect Classification (ODC) is the
most used [11]. Other taxonomy of interest is Beizer’s
Defect Taxonomy [12].

ODC allows the defects to be classified in many orthogo-
nal views: defect removal activities, triggers, impact, target,
defect type, qualifier, age and source. In the experiment we
only take into account the defect type and the qualifier. The
defect type can be one of the following: assign/init, check-
ing, algorithm/method, function/class/object, timing/serial,
interface/O.O. messages and relationship. The qualifier can
be: missing, incorrect or extraneous. So, every defect must
be classified in both views, for example, a defect could be
classified as “timing/serial incorrect”.

Beizer’s taxonomy is hierarchical in the sense that each
category is divided in sub-categories and so on. For example,
the category number 3 is “Structural bugs” and is divided
in 3.1 “Control flow and sequencing” and 3.2 “Processing”.
Category 3.1 is divided in several sub-categories more. This
taxonomy presents a lot of different types of defects, so it
may be interesting to use it. By doing this, our knowledge
about the effectiveness of the techniques by defect type will
be highly improved.

The testers follow scripts that provide them with guidance,
thus they are able to execute the technique and register the
data required in the experiment correctly. There are 3 scripts,
one for each type of technique used: static, specification-
based and control-based. These always consist of the same
phases: preparation, design, execution and finish.

In the preparation phase the tester is already able to start
the verification job. In the design one the tester develops
the test cases that achieve the verification technique criteria.
During execution the test cases are executed and the tester
searches for the defects of every case that fails. In the last
phase, the finish, the tester closes the job. In every phase the
tester has to register the time elapsed during the activities
and every defect found. These phases are slightly different
for inspection technique.

III. THE PROGRAM

The program that the testers used in the training is an
uncomplicated and very simple Java program. It is un-
complicated because its function is to order an array of
integers and eliminate every duplicated element. It is simple
because it only consists of two classes, one of these has 18
uncommented LOCs and the other has 19. This program is
used in the training and not in the experiment.

A. Specification and Source Code

Figure 1 shows the collaboration diagram of the two
classes of the program. Each class has a only one public
method with its specification.

Figure 1. UML Collaboration Diagram of the Program

The following presents both the signature and the speci-
fication of the order method of the Orderer class.

public static void order(int[] a)

This method returns the a array ordered from the
lowest to the greatest.
In the case that the array is null or empty it remains
unchanged.

265

20 Chapter 3. Controlled Experiment with a Small Program

For example: a = [1, 3, 5, 3, 3]. After the method is
executed the a array changes to [1, 3, 3, 3, 5]

Parameters
a - array of integer to be ordered

The following is the signature and the specification of the
orderWithoutRep method of the OrdererWithoutRep class.

public static int OrdererWithoutRep(int[] a)

This method returns the a array orderer from the
lowest to the greatest and without repeated integers
from the position 0 to the position “a.length - quantity
of repeated integers - 1”.
The values in the a array from position “a.length
- quantity of repeated integers - 1” to position
“a.length - 1” are unknown.
In the case that the array is null or empty it remains
unchanged and the method returns the value 0.

For example: a = [5, 4, 5, 6, 6, 5]. The quantity
of repeated integers is equal to 3. Number 5 is
repeated twice and number 6 is repeated one.
After this method is executed the a array from
position 0 to position 2 must be: [4, 5, 6]. And the
values in the a array from position 3 to 5 are unknown (do not matter).
The position 2 is calculated as 6− 3− 1. This is
length - quantity of repeated integers - 1.
The method returns the value 3 (quantity of repeated
integers).

Parameters
a array of integers to be ordered

Returns
the quantity of repeated elements

The following is the source code of the Orderer class:
1 public class Orderer {
2
3 public static void order (int[] a){
4 for(int i=a.length-1; i>0; i--){
5 int swapped = 0;
6 int find = 0;
7 for (int j=0; j<i; j++){
8 if (a[j] > a[j+1]){
9 int aux = a[j];
10 a[j+1] = a[j];
11 a[j] = aux;
12 swapped=1;

13 }
14 }
15 if (swapped == 0) {
16 return;
17 }
18 }
19 }
20 }

The following is the source code of the OrdererWith-
outRep class:

1 public class OrdererWithoutRep {
2
3 public static int orderWithoutRep(int[] a){
4 int countElim = 0;
5 Orderer.order(a);
6 for(int i=0; i<a.length-1; i++){
7 if (a[i] == a[i+1]) {
8 move(a, i+1);
9 countElim++;
10 }
11 }
12 return countElim;
13 }
14
15 private static void move(int[] a, int i){
16 for(int j=i; j<a.length-1; j++){
17 a[j]=a[j+1];
18 }
19 }
20 }

IV. DEFECTS

This section presents the defects in the code that are
relevant to our analysis, other defects exist but are of much
less importance.

The defects are classified as Possible Failure (PF) or Not
Failure (NF). The PF defects are those which may produce a
failure during the execution of the program. The NF defects
never produce a failure during execution but may cause other
problems; for example, performance problems or problems
during the software maintenance phase.

The class Orderer has 7 defects to consider. They are
named with uppercase letters from letter A to letter G. From
the class OrdererWithoutRep 6 defects are analyzed, which
are named with lowercase letters from letter a to letter f.

A. Orderer’s Defects

Here we present the defects of the Orderer class. Figure
2 shows the defects in the code with a ellipse around them.
The following presents the description of each defect.
Defect A - PF
The order method starts with a for sentence in line 4: This
sentence access to a array through length. If the array is
null during execution a failure is produced and the program
finishes abruptly. The defect is that a is not checked for
null prior to access it.
Defect B - PF
The order method makes a swap between variables of the
array, this occurs from line 9 to 11 in the code. The swap
is wrong because the value that contains a[j+1] is not

266

21

Figure 2. Defects of the Orderer Class

preserved. A failure due to this defect is shown in Figure
3. This figure presents the state of the array a after the
execution of the inner for.

Figure 3. An Execution of order Method Showing Defect B Occurrence

Defect C - NF
The class has only one method and it is a static one. It is
not reasonable to construct an object of this class. If the
Java compiler does not found a constructor it automatically
creates a parameterless public method by default, allowing
the creation of objects of this class. A private constructor
method is needed in order to avoid this.
Defect D - NF
The variable swapped must be boolean but it is defined as
an int. The variable is defined in line 6.
Defect E - NF
The variable name for the array a is not mnemonic. Replac-
ing the name affects several lines of code.
Defect F - NF
The method has two loops, the outer one starts at line 4.
Line 15 checks the value of swapped and in the case that
it is cero (no changes has been made in the inner loop) the
method returns. This can be avoided by adding the condition
to the outer for. This defect is particular because it could

not be considered a defect on its own.
Defect G - NF
In line 6 the variable find is defined and it is never used
in the program.

B. OrdererWithoutRep Defects
Here we present the defects in the OrdererWithoutRep

class. Figure 4 shows the defects in the code with a ellipse
around them. The following is the description of each defect.

Figure 4. Defects of the OrdererWithoutRep Class

Defect a - PF
The defect is similar to defect A.
Defect b - PF
After calling the method move the index i is incremented
in one, this produces a failure if there are more than 2
equal integers in the array because some of them are not
considered. An execution showing this defect, defect d
and their associated failures are shown in Figure 5. The
interrogation mark in the expected result means that the
value in this position does not matter. This defect can be
removed in different ways. An easy but not very good one
is to decrement i after calling the move method. A better
solution is to add a loop until a different integer appears.

Figure 5. An Execution Showing Defects b and d Occurrences

Defect c - NF
The defect is similar to defect C.
Defect d - PF
When equal elements are found the move method is exe-
cuted, and it leaves repeated elements at the end of the array

267

22 Chapter 3. Controlled Experiment with a Small Program

as a side effect. These last elements are of no importance
and the specification is clear about this. However, these
repeated elements are considered as equal elements causing
an incorrect result in the method orderWithoutRep. This
defect can be removed by changing the line 6 of the method
from:
for(int i=0; i<a.length-1; i++){

to
for(int i=0; i<a.length-1-countElim; i++){

Figure 5 shows this defect and defect b causing failures
during execution. The failure due to defect d fixes the
counter of equal elements. Another example showing a
failure in both results (the a array and the counter) is shown
in Figure 6.

Figure 6. Another Execution Showing Defects b and d Occurrences

Defect e - NF
The defect is similar to defect E.
Defect f - NF
The move method has a for in line 16 that traverses the
array from an initial position (the one that is passed to the
method) to the final position. It is not necessary to traverse
the array until the final position because at the end there are
elements that should not be considered. This is a defect that
affects the performance but not the results. To optimize the
method the line mentioned can be sustituted with the next
one:
for(int j=i; j<a.length-1-countElim; j++){

The variable countElim must be passed to the method.
Table I presents the quantity of defects discriminated by

class, type of defect (PF, NF) and the totals.

Table I
QUANTITY OF DEFECTS BY CLASS, TYPE AND TOTAL

Class/Defect Type PF NF Total
Orderer 2 5 7
OrdererWithoutRep 3 3 6
Total 5 8 13

V. RESULTS

A group of 17 undergraduate students participated of
the testing experience. These were students in the fourth
year of the Computer Engineering career at the Facultad de
Ingeniera of the Universidad de la Repblica. Every student

applied only one testing technique in the program. We
divided the group as follows: 3 students applied desktop
inspections, 4 students applied MCC, 3 students applied LIP,
4 students applied EP and 3 students applied DT.

The results of the testing experience are presented in Table
II. The rows present the defects that the participants detected,
the total number of defects detected by the participants and
the time in minutes that the application of the technique
took them. For inspection technique the defect found by a
participant is marked with an “X”. For the other techniques
appears the time in minutes that takes to find the defect
after a test case fails. The time (last column) means different
things depending on the technique. For inspection technique
it is the time that takes executing the technique, while for
the dynamics techniques it is the time that takes designing
and programming the test cases. Also there are rows that
show subtotals by technique and the last row presents the
sum total.

The results associated to the LIP technique are strange
in the sense that the 3 participants that use this technique
discover only one and the same defect. From a theoretical
point of view of the technique we know that this result
is not “correct”. Different things can cause this situation,
for example, the LIP technique was not understood by the
participants. This and other causes are beyond the scope of
this paper. Due to the described situation the LIP technique
is not considered for the analysis of the results.

It is not possible to have strong or statistically valid
conclusions with this training. Our intention is to make a
preliminary analysis of the results. After the formal experi-
ment finishes we can validate (or not) the preliminary results
of this training phase.

In the next subsections we briefly discuss the cost, the
effectiveness, and the efficiency of every technique. The last
subsection presents a discussion on the IBM and Beizer
taxonomies.

A. The Cost

We consider the time that the execution of each technique
takes as a measure of its cost for the program. The cost of
the inspection technique is the time that takes the inspection.
The cost of the dynamic techniques is the time that takes
designing the test cases plus the time in detecting defects
after a failure. We consider that the time that takes executing
the Junit test cases is cero.

The cost of the techniques varies greatly from one tester
to another and from technique to technique. These variations
could have different explanations. We need to gather more
data to make interesting and valid conclusions about the
variations. We are not sure if this variations depend on the
wrong or right application of the technique or are due to
natural differences in humans beings. However, we can still
make a general analysis of the cost of each technique.

268

23

Table II
DEFECTS DETECTED AND TIME EXPENDED

������Tec.
Def. A B C D E F G a b c d e f TP t

St
at

ic

In
sp

ec
tio

n X X X 3 80
X X X 3 300

X X X X X X 6 240
Tot 2 1 1 0 1 2 0 2 0 1 1 1 0 12

St
at

ic

W
hi

te
bo

x M
C

C
0.08 0.5 0.17 60 4 300

6 10 2 90
5 1 20
5 10 2 90

Tot 1 4 0 0 0 0 1 0 1 0 2 0 0 9

L
IP

5 1 330
X 1 260
10 1 150

Tot 0 3 0 0 0 0 0 0 0 0 0 0 0 3

B
la

ck
bo

x E
P

1 5 1 15 10 5 102
0 0 2 360

5 12 15 3 210
1 1 1 5 4 120

Tot 3 4 0 0 0 0 0 3 1 0 3 0 0 14

D
T

15 7 0 0 4 440
1 3 1 3 150
X X X X X 5 350

Tot 3 3 0 0 0 0 0 3 1 0 2 0 0 12
ST 9 15 1 0 1 2 1 8 3 1 8 1 0 50

The costs of inspection techniques for the 3 testers that
applied the techniques are: 80, 240 and 300 minutes. The
average cost of the inspection is 207 minutes (3.5 hours
approximately). Considering that the program has a total of
37 locs we can conclude that doing desktop inspection in
Java is really expensive; an average of 5.5 minutes/loc.

The costs of the MCC have the same variability. The
minimum time elapsed is 20 minutes and the maximum
is 300 minutes. The average cost of MCC is 125 minutes
(2 hours approximately). Here we have to consider the
conditions that appear in the code as a measure of the
complexity to generate the test cases. Class Orderer has
two nested for with an if in the inner one and an if
in the other. Each decision has only one condition in these
sentences. Class OrdererWithoutRep has two nested loops
too; we are considering the for in the private method
move. In terms of nesting and decisions these classes can
be considered from low to normal complexity. Again, testing
the two classes in 2 hours seems to be rather expensive.

The average costs of the two specification based tech-
niques are: 198 minutes (3.3 hours) for EP and 313 minutes
(5.2 hours approximately) for DT. Considering that the
functionality of the problem is really simple (ordering an
array) we can conclude that testing a program with this
techniques is expensive too.

After a test case fails the tester searches for the defect
that produces it. The time varies a lot from tester to tester
in finding the same defect. We need further data to make
conclusions about the time that is needed to find different

types of defects in unit testing.

B. The Effectiveness

We measure the effectiveness of a technique as the defects
it founds. Table III shows the effectiveness of each technique
for each defect and the total effectiveness for each defect.

As it was mentioned before this is just the training phase
of the experiment so we do not analyze the results in a
statistical way. Nevertheless, we present some results that
can be refuted by experiments later.

PF defects are more easily to find than NF defects.
The PF defects are A, B, a, b and d. Defects A, B, a and
d have more than 50% detection effectiveness, defect b has
a 21% detection effectiveness. The other defects have less
detection effectiveness.

Inspections detect a greater variety of defects than
the other techniques. Among the 3 testers applying the
inspection 9 out of the 13 defects are found. MCC and EP
discover 5 defects with 4 testers and DT discovers 4 different
defects with 3 testers.

Dynamic techniques have problems in founding NF
defects. Using EP and DT the participants did not discover
any of the NP defects. With MCC only one NP defect is
found: G. The reason for this is that dynamic techniques
are based in the execution of the program. So defects that
do not produce a failure are never sought directly. However,
when a test case fails the tester reviews the code to find the
defect that produce the failure, in this review the tester can
find other defects, including a NF defect.

269

24 Chapter 3. Controlled Experiment with a Small Program

Table III
EFFECTIVENESS BY TECHNIQUE IN PERCENTAGE

������Tec.
Def. A B C D E F G a b c d e f

Insp. 67 33 33 0 33 67 0 67 0 33 33 33 0
MCC 25 100 0 0 0 0 25 0 25 0 50 0 0
EP 75 100 0 0 0 0 0 75 25 0 75 0 0
DT 100 100 0 0 0 0 0 100 33 0 67 0 0
All 64 86 7 0 7 14 7 57 21 7 57 7 0

Performance defects are not easily found. Defect f is
the only performance defect of the program and it was not
detected during the experience.

Effectiveness is really low. The effectiveness of each
technique can be calculated as the number of defects found
divided by the number of total defects. This simple experi-
ence presents the following effectiveness: inspections 31%
(12/37), MCC 17% (9/52), EP 27% (14/52) and DT 31%
(12/39). Considering the effectiveness of the “team”, we
have that 14 people verifying a really small program (37
locs) only found 11 defects on a total of 13.

C. The Efficiency

We calculate the efficiency as: Defects Found / Cost.
We use the average of defects found by technique. The
efficiency of each technique is: 1.16 defects/hour for desktop
inspections, 1.08 defects/hour for MCC, 1.06 defects/hour
for EP and 0.77 defects/hour for DT. We can conclude that
it takes too much time to find a defect, for every technique
the cost is about an hour or more.

D. The Defect’s Classification

The testers had to classify each defect in IBM and Beizer
taxonomies. Tables IV and V present the IBM and Beizer
classifications obtained in the experience of each defect. In
this case is considered the LIP technique. In both tables are
presented only those defects that have been found more than
once.

Table IV
CLASSIFICATION WITH IBM

Type Qualifier Defect
A B F a b d

Checking Missing 8 8
Checking Incorrect 6
Assing/Init. Incorrect 1 15
Assing/Init. Missing 1
Algorithm/Method Incorrect 2 1
#Found 9 15 2 8 3 8
Different Clasif. 2 1 1 1 1 3

It is clear that IBM classification works better for the
testers than Beizer classification. At the time of classifying
with IBM, the testers normally classified the same defect
under the same type. On the other hand, when it comes
to Beizer classification it is completely the opposite. Thus,

Table V
CLASSIFICATION WITH BEIZER

Defect Type Defect
A B F a b d

2.1.1 2 1 1
2.4.1 1 1
2.4.3 1 1
2.6. 1
3.1.1 1
3.1.2 1
3.1.4 1 2 1 2
3.2.1 1 1 1 3
3.2.2 1 1 1
3.2.3 6
4.1.3 5
4.2.2 2 2 1
4.2.3 1
4.2.4 1 1
#Found 9 15 2 8 3 8
Different Clasif. 8 5 2 7 3 5

Beizer could be a good taxonomy for presenting the effec-
tiveness by defect type but it seems rather complicated to
testers or developers. IBM seems to be easier to use.

We conclude that it is better if the researchers classify the
defects instead of the testers.

VI. CONCLUSIONS

We present a Java program with its defects and a training
experience during an experiment. The training consists of 17
students applying 5 testing techniques, desktop inspection,
equivalence partitioning and boundary-value analysis, deci-
sion table, linearly independent path, and multiple condition
coverage.

We show the results on the effectiveness and cost of these
techniques. When the formal experiment ends we will be
able to analyze these results with more data.

ACKNOWLEDGMENT

The authors would like to thank Lorena Ibaceta for her
helpful comments on this article.

REFERENCES

[1] A. Moreno, F. Shull, N. Juristo, and S. Vegas, “A look at
25 years of data,” IEEE Software, vol. 26, no. 1, pp. 15–17,
Jan.–Feb. 2009.

[2] P. G. Frankl and S. N. Weiss, “An experimental comparison
of the effectiveness of branch testing and data flow testing,”
IEEE Transactions on Software Engineering, vol. 19, no. 8,
pp. 774–787, Aug. 1993.

270

25

[3] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand, “Ex-
periments on the effectiveness of dataflow- and control-flow-
based test adequacy criteria,” in Proc. ICSE-16. th Interna-
tional Conference on Software Engineering, 16–21 May 1994,
pp. 191–200.

[4] P. G. Frankl and O. Iakounenko, “Further empirical studies
of test effectiveness,” ACM SIGSOFT Software Engineering
Notes, vol. 23, no. 6, pp. 153–162, November 1998.

[5] G. Myers J., “A controlled experiment in program testing
and code walkthroughs/inspections,” Communications of the
ACM, vol. 21, no. 9, pp. 760–768, September 1978.

[6] V. R. Basili and R. W. Selby, “Comparing the effectiveness
of software testing strategies,” IEEE Transactions on Software
Engineering, vol. 13, no. 12, pp. 1278–1296, Dec. 1987.

[7] E. Kamsties and C. M. Lott, “An empirical evaluation of
three defect-detection techniques,” in Proceedings of the Fifth
European Software Engineering Conference, 1995, pp. 362–
383.

[8] M. Wood, M. Roper, A. Brooks, and J. Miller, “Comparing
and combining software defect detection techniques: a repli-
cated empirical study,” ACM SIGSOFT Software Engineering
Notes, vol. 22, no. 6, pp. 262–277, 1997.

[9] A. P. Mathur and W. E. Wong, “Fault detection effectiveness
of mutation and data flow testing,” Software Quality Journal,
vol. 4, pp. 69–83, 1995.

[10] P. G. Frankl, S. N. Weiss, and C. Hu, “All-uses versus mu-
tation testing: An experimental comparison of effectiveness,”
The Journal of Systems and Software, vol. 38, pp. 235–253,
1997.

[11] R. Chillarege, Handbook of Software Reliability Engineering
- Chapter 9. Mcgraw-Hill, April 1996, ch. 9: Orthogonal
Defect Classification.

[12] B. Beizer, Software Testing Techniques, 2nd ed. Van Nos-
trand Reinhold, June 1990.

[13] W. Humphrey, PSP(sm): A Self-Improvement Process for
Software Engineers. Addison-Wesley Professional, March
2005.

[14] ——, A Discipline for Software Engineering. Addison-
Wesley Professional, January 1995.

[15] K. Beck and C. Andres, Extreme Programming Explained:
Embrace Change, 2nd ed. Addison-Wesley Professional,
November 2004.

[16] IEEE/ACM, Software Engineering Body of Knowledge: Iron
Man Version, May 2004.

[17] N. Juristo, A. Moreno, S. Vegas, and M. Solari, “In search
of what we experimentally know about unit testing,” IEEE
Software, vol. 23, no. 6, pp. 72–80, November 2006.

271

26 Chapter 3. Controlled Experiment with a Small Program

27

ARTICLE

Comparing Verification Techniques: All Uses and
Statement Coverage

Diego Vallespir, Carmen Bogado, Silvana Moreno and Juliana
Herbert

Proceedings of the Ibero-American Symposium on Software En-
gineering and Knowledge Engineering 2010, pp. 85-95, Mérida,
México, November, 2010.

28 Chapter 3. Controlled Experiment with a Small Program

Comparing Verification Techniques
All Uses and Statement Coverage

Diego Vallespir1, Carmen Bogado1, Silvana Moreno1, and Juliana Herbert2

1 Instituto de Computación, Universidad de la República
Montevideo, Uruguay.
2 Herbert Consulting

Porto Alegre, RS, Brazil.
dvallesp@fing.edu.uy, {silvanamoren, cmbogado}@gmail.com,

juliana@herbertconsulting.com

Abstract. This article presents a formal experiment that compares the
behavior of the testing techniques Statement Coverage and All uses. The
design of this experiment is typical for a factor with two alternatives.
A total of 21 subjects carry out tests on a single small program. The
results indicate that statistically it is not possible to differentiate between
the effectiveness of both techniques. However, there is enough statistical
evidence to state that the cost of executing All uses is higher than that
of executing Statement coverage, result that we expected to find.

1 Introduction

Software unit testing is strongly established in industry. However, the effective-
ness and cost of each different unit testing techniques is not known with certainty.
This makes the decision of which technique to use hardly trivial.

Many years of empirical research have gone by and yet final results have
not been achieved. In A look at 25 years of data the authors examine in depth
different experiments of software testing reaching the same conclusion [1].

A series of formal experiments are currently being carried out at the Com-
puter Science Institute of the Universidad de la República in order to gather more
precise data in this direction. Four experiments have been finished at present and
this article describes one of them. The results of other experiments of this series
are included in [2, 3].

The experiment hereby described compares the unit testing All uses and
Statement coverage in order to know its cost and effectiveness. The cost is defined
as the time it takes to develop the testing cases in order to comply with the
coverage demanded by the technique. Effectiveness is defined as the number of
defects encountered when executing the technique divided by the number of total
defects of the program being tested.

Section 2 presents the related works. Section 3 presents the program used in
the experiment. The techniques used are presented in section 4. The design of
the experiment and its execution are presented in section 5. The results of the
experiment and the conclusions are presented in section 6. Section 7 contains
future work.

29

86 Vallespir et al

2 Related Work

Several formal experiments were carried out in order to find out the effective-
ness and/or cost of different unit testing techniques. Some experiments that use
techniques based on data flow are presented in this section.

In 1990 Weyuker presents an experiment in order to find out the cost of the
testing techniques based on data flow [4]. The cost is measured as the number
of test cases generated when applying the technique. The following testing tech-
niques are studied: All c-uses ,All p-uses, All uses and All paths definition-use.
The results show that the number of necessary test cases to satisfy those crite-
ria is much lower than the level of the worse case calculated theoretically on a
previous work also by Weyuker [5].

Frank and Weiss present an empirical study in which they compare the effec-
tiveness of the All uses and decision coverage techniques [6]. Nine programs are
used and random test cases are generated for each of them. No human testers
take part in this experiment. Sets of test cases, that meet one or the other cri-
terion, are taken and whether each of these groups detects at least one defect
is evaluated. The results show, with 99% confidence, that the All uses criterion
is more effective in 5 out of the 9 programs. In the other four programs it is
impossible to differentiate.

In 1994, Hutchins and others published an experiment the goal of which is to
compare the effectiveness of a variant of the technique All paths definition-use
and a variant of the Decision coverage technique [7]. The experiment has similar
characteristics to that of Frank and Weiss. However, in this experiment both
test cases automatically generated at random and human verifiers are used. The
results show that there is no statistical evidence indicating that one technique
is more effective than the other.

Li and others carry out an experiment to compare four unit testing tech-
niques: Mutants, All uses, edge-pair coverage and prime path coverage [8]. They
try to find out the effectiveness (measured as the number of defects detected
on the seeded defects) and the cost (measured as the number of test cases it
is necessary to generate in order to meet each testing criterion) The cases were
generated by hand with the help of tools to know the coverage and another one
to generate mutants. The result is that the Mutant technique finds more defects
while the other three are similar. Surprisingly (according to the authors) the
Mutant technique was the one that required the least test cases.

One of the points that we consider weak in these experiments is that they
measure the cost as the number of test cases it is necessary to generate in or-
der to satisfy a certain testing criterion. We believe that the time employed in
developing these cases is a more interesting measure for the cost.

3 The Program

The program used in this experiment is simple and it is written in Java. It re-
ceives an array of integers as a parameter and it gives it back without repeated

30 Chapter 3. Controlled Experiment with a Small Program

Vallespir et al 87

elements and ordered from small to large. It has two classes (Orderer and Or-
dererWithoutRep), one of them contains 18 lines of code with no comments and
the other one contains 19. The interaction between the classes is also simple: the
class OrdererWithoutRep invokes a method of the class Orderer for the array to
be ordered before the repeated elements are eliminated.

Below the signature, specification and source code of the method order of the
class Orderer and the method orderWithoutRep of the class OrdererWithoutRep
are presented

public static void order(int[] a)
The method returns the array ordered from smaller to larger. In case the array
is null or empty, it remains unchanged.
a: entry parameter that contains the integers to be ordered.

public static void order(int[] a){

for(int i=a.length-1; i>0; i--){

int swapped = 0;

int find = 0;

for (int j=0; j<i; j++){

if (a[j] > a[j+1]){

int aux = a[j];

a[j+1] = a[j];

a[j] = aux;

swapped=1;

}

}

if (swapped == 0) {

return;

}

}

}

public static int orderWithoutRep (int[] a)
The method returns the array ordered from smaller to larger and without re-
peated elements from the position 0 to the position a.length - the number of
elements repeated - 1. And from there up to a.length -1 the values are unknown
(that is to say, they are irrelevant).

public static int orderWithoutRep(int[] a){

int countElim = 0;

Orderer.order(a);

for(int i=0; i<a.length-1; i++){

if (a[i] == a[i+1]) {

31

88 Vallespir et al

move(a, i+1);

countElim++;

}

}

return countElim;

}

private static void move(int[] a, int i){

for(int j=i; j<a.length-1; j++){

a[j]=a[j+1];

}

}

Example : a = [5, 4, 5, 6, 6, 5]
Number of repeated elements = 3. Number 5 is repeated twice and 6 one.

The array a (after the method is executed) from the position 0 to the position
2 is [4,5,6]. Position 2 is calculated as 6-3-1. From position 3 to 5 (a.length -1)
the values of a are unknown. In case the array is null or empty, 0 is returned as
the number of repeated elements and array a remains null or emtpy depending
on the case.

In this experiment the defects in the code are classified according to whether
the defect can produce a failure (Possible Failure PF) or not (No Failure NF).
The NF may cause other problems, for instance, performance problems or prob-
lems during the maintenance phase of the software. The class Orderer has 7
defects (A,B,C,D,E,F,G) and OrdererWithoutRep has 6 (a,b,c,d,e,f,). 5 are PF
(A,F,a,b,d) and 8 are NF (C,D,E,F,G,c,e,f)

The detailed description of each one of these defects can be found in [2].

4 The Techniques

Two verification techniques, both white-box, are employed. Statement coverage
(SC) that is based on control flow and All uses (AU) that is based on data flow.

In order to satisfy the SC technique each sentence of the source code must
be executed at least once in the set of test cases made. Since this technique is
widely known, we do not go deeper into it in this article.

The AU technique expresses the coverage of testing in terms of the definition-
use associations of the program. A definition of a variable occurs when a value
is stored in the variable (x := 7). An use of a variable occurs when it is read (or
uses) the value of that variable. This can be either a p-use or a c-use. A p-use
is the use of a variable in a bifurcation of the code (if (x==7)). A c-use is when
the use is not in a bifurcation. For example, in (x := 7 + y) there is a definition
of x and a c-use of y.

A path i1, i2,. . . ,in is definition clear path for the variable x if x is not defined
in the intermediate nodes (i2,. . . ,in−1). A definition d (of a variable x) achieves
a use u (also of the x variable) if there is a definition clear path from d to u.

32 Chapter 3. Controlled Experiment with a Small Program

Vallespir et al 89

AU requires that at least one definition clear path be executed from each
definition d to each achievable use. The classical definitions of the techniques
based on data flow and particularly AU are presented in an article by Rapss and
Weyuker [9].

In Object Oriented languages the basic testing unit is the class. It is necessary
to test its methods in an individual and in a collective way, so as to test the
interactions generated through the sequence of calls originated by the invocation
of a particular method. AU can be applied both for the tests of individual method
belonging to a class and for the methods that interact with other methods of
the same class or of other classes.

The tests of a class in AU can be carried out in two levels: Intra-method
(Intra) and Inter-method (Inter). In Intra, only the method under test is con-
sidered for the code coverage. Therefore, in this case, the methods that interact
with the method under test are not considered at the moment of developing
the test cases. On the other hand, in Inter, the methods that interact with the
method under test are considered for the code coverage.

Two types of definition-use pairs to be tested are identified in relation to
the levels presented previously. The Intra-method Pairs are those which take
place in individual methods and test the data flow limited to such methods. Both
definition and use belong to the method under test. Inter-method Pairs occur
when there is interaction between methods. They are pairs where the definition
belongs to a method and the corresponding use is located in another method
that belongs to the chain of invocations.

In most of the literature that presents techniques based on data flow, the
examples that are given contain simple variables such as integers and Booleans.
However, criteria that normally are not treated should be defined at the moment
of applying these techniques in array or even more difficult in objects.

Establishing these criteria is essential in order to know under which condi-
tions the technique is applied. Different conditions can produce different results
in the effectiveness and cost of AU since in fact, they are different techniques
with the same name. Many of these conditions refer to how the Inter-method
Pairs should be considered. This experiment establishes the conditions for the
application of the AU technique based on what is proposed in [10–12].

5 Design and Conduction of the Experiment

The general considerations of the design and conduction of the experiment are
presented in this section as well as the process followed by the subjects to test
the program.

5.1 General Considerations of the Design and Execution

This experiment comprises two experiences. The first one was carried out with
10 subjects and the second one with 11.These experiences were carried out with
a difference of 3 weeks between each other.

33

90 Vallespir et al

The experimental unit is the presented sorting program. The alternatives
are the techniques to be evaluated: SC and AU. The design of the experiment is
the typical one for experiments of one factor with two alternatives. The choice
of subjects for the different techniques is at random. In order to make a design
as balanced as possible, the same number of subjects is used for each technique
in the first experience and in the second one, one more is used for AU.

The response variables considered in this experiment are the effectiveness
and the cost of the techniques. The effectiveness is described as the number
of defects found over the number of total defects expressed in percentage. The
cost is the time required to apply the technique, which is equivalent to the time
required to design the test cases and codify them in JUnit.

The hypotheses for this experiment are also the traditional in this kind of
experiment. The null hypothesis of effectiveness, hypothesis that we want to
reject, states that the medians of effectiveness of the techniques are the same.
The null hypothesis of cost states that the median of cost of the techniques is the
same. The alternative corresponding hypothesis simply indicates the medians are
different.

The 21 subjects participating in the experiences have similar characteristics
so we consider the group as homogeneous. They are all Computer Engineering
students at the Universidad de la Repblica. They are advanced students in their
fourth or fifth year.

The two experiences take place in three sessions. An initial session for learn-
ing, a training session and a session for individual execution.

The aim of the learning session is for each subject to learn how to use the
Junit tool that they will be using to codify the test cases. This session includes
individual study on the part of the subjects and the setting of an exercise.

The training session has the aim of allowing the subjects to learn the SC
and AU techniques. A theoretical/practical course of 9 hours is conducted during
a day. The guide that the subjects must follow to do the tests and the forms to
register time and defects are also presented in this course.

The individual execution session is also conducted during a whole day,
seven days apart from the training session. In this session the subjects individ-
ually apply the technique allotted to each one, generating the necessary test
cases and executing them. In order to complete the work they follow the guide
provided in the training, registering the time and the defects as indicated in the
same. At the end of the session the subjects hand in the JUnit classes generated,
the grid with the registers of time and defects and the notes they have made in
order to be able to apply the technique (control flow graphs, identified paths,
etc.)

5.2 Process followed by the subjects

The subjects during the individual execution session follow the verification guide
that was introduced and given to them in the training session. This guide estab-
lishes the mini process that must be followed during the verification.

34 Chapter 3. Controlled Experiment with a Small Program

Vallespir et al 91

The guide establishes that both techniques must be executed only as white-
box testing. This means that no black-box testing cases should be generated,
then the coverage achieved must be observed with an adequate tool. Finally,
they must complement with missing cases to reach the coverage. Then each
subject generates their test cases from the source code trying to achieve the
coverage required by the technique assigned (SC or AU). No code coverage tools
are used during the experiment.

The guide establishes that the subjects that must apply AU, must first gen-
erate the cases based in intra-method and then generate the inter-method cases.
There is no other aspect established about how to apply each technique and this
can be chosen by each subject.

Finally the mini process establishes which data must be collected. The sub-
jects must record the total time used in developing and codifying in JUnit the
test cases, each of the defects found and the time used in detecting a defect after
provoking a failure.

6 Results and Discussion

The following data is available from each subject: the defects detected by the
subject, the total time of design and codification of the test cases and the detec-
tion time for each defect. According to the length of the paper only the analysis
of the effectiveness and cost of the techniques (design and codification time) are
included.

6.1 1 Effectiveness of the Techniques

The average effectiveness obtained using the Statement coverage technique was
of 29.2% and the standard deviation was 10.8%. All uses obtained a higher
effectiveness. Its average effectiveness was 34.3% and the standard deviation
was 7.2%.

The nonparametric tests of Mann-Whitney and Kruskal-Wallis are applied
to find out if it is possible to state that AU was more effective than SC with
statistical validity. The null hypothesis states the effectiveness medians are the
same, the alternative hypothesis states that they are different.

H0 : µSC = µAU

H1 : µSC <> µAU

None of the tests rejects H0 with α ≤ 0.1 (habitual value of α with which
we work in our experiments). We understand that more observations are needed
in this respect (only 21 subjects participate in this experiment) to be able to
conclude about the effectiveness with statistical validity. It is also reasonable to
vary the programs used in the experiment and to use more complex ones.

We mentioned before that we have conducted other experiments. One of
them was conducted with the same program used in this one, but with other
subjects and other verification techniques [2]. In those experiments we studied

35

92 Vallespir et al

some qualitative aspects of effectiveness. These aspects can be analyzed for this
experiment or even compare it with the previous ones.

One of the observations of the above mentioned experiment is that the PF
defects are found more easily than the NF. Table 1 presents how effective
the different techniques were concerning each type of defect in this experiment.
This is calculated dividing the number of subjects who found the defect by the
total number of subjects.

Table 1. Percentage of defects detection

Defects
Technique A B C D E F G a b c d e f

Statements 40 100 0 0 0 0 90 20 60 0 70 0 0

All uses 36 100 0 0 0 0 100 36 72 0 100 0 0

Average 38 100 0 0 0 0 95 28 66 0 86 0 0

The defects PF are A, B, a, b and d. The defects found during this experiment
are those plus defect G. The rest of the defects are not detected. Therefore we
can conclude the same as in the previous experiment.

The dynamic techniques search defects by provoking failures. This conclusion
is then quite expected. However, in this experiment the subjects review the code
twice. First they review the code thoroughly to generate a group of test cases
that satisfy the coverage that the assigned technique requires. Then they review
the code for each JUnit failure in order to find the corresponding defect. What
this experiment shows is that the attention of the subjects concentrates only
on the task they are performing. It is difficult for them to detect defects while
they are generating test cases. It is also difficult to detect a defect they are not
looking for.

Considering the previous experiment and the one presented in this article
we obtain the following average effectiveness for each technique: All uses 34.3%,
Individual Inspection (desktop inspection) 31%, Decision Table 31%, Statement
Coverage 29.2%, Equivalence Partitioning 27% y Multiple Condition Coverage
17%.

6.2 Cost of the Techniques

The cost is defined as the time invested in the design and codification in JUnit
of the test cases. The average cost of the AU technique was 328 minutes while
the average cost of SC was 133 minutes. This is to say that on average AU was
almost 2.5 times more costly than SC.

Both Mann-Whitney and Kruskal-Wallis reject the null hypothesis that states
that the cost of both techniques is the same. There is then enough statistical
evidence to state that AU costs more than SC, result that we expected to obtain
given the intrinsic complexity of each one of the techniques.

36 Chapter 3. Controlled Experiment with a Small Program

Vallespir et al 93

As refers to the cost, the most important aspect is that AU costs much more.
However, the gain in effectiveness was not so important.

7 Conclusions

This work presents a formal experiment to compare the SA and AU techniques
as refers to cost and effectiveness. The cost is measured as the time used by
the subject to develop test cases. The effectiveness is defined as the number of
defects found divided by the total number of defects.

Only one program written in Java is used as unit under test. This program
has at least two problems: it is too simple and its defect density is too high. It is
therefore important to conduct other experiments with more complex programs
and a lower defect density.

The design of the experiment is typical of one factor with two alternatives.
In this case it is divided in two experiences, one with 10 subjects (5 apply SC
and 5 apply AU) and another one with 11 subjects (5 apply SC and 6 apply
AU).

The subjects are all advanced students of Computer Engineering at the Uni-
versidad de la República in Uruguay. There are two sessions of leveling and
teaching; learning and training sessions.

During the execution the subjects develop the test cases following a guide
that was introduced and handed out in the training session. The test cases must
be codified in JUnit. The construction of these is exclusively white-box and no
code-coverage tools were used. The coverage must be ensured by the construction
of the test cases.

The results obtained show that the AU technique has a higher effectiveness
than the SC technique; 34.3% is the average effectiveness of AU and 29.2% is the
one of SC. However, the statistical tests do not reject the equality hypothesis in
the effectiveness of both techniques.

We also found that the AU technique is notoriously more costly than the SC
technique; 328 minutes for AU and 133 minutes for SC were needed on average
to develop the test cases. The statistical tests applied show that there is enough
statistical evidence in this experiment to state that AU is more costly than SC.

At the moment we are analyzing data from a new experiment that we have
conducted and also analyzing data from previous experiments from a qualitative
point of view. This new experiment is conducted with a more real program of
1820 lines of code without comments and 14 classes, also developed in Java.

In the near future we are planning to conduct experiments with a higher
population of subjects. We are also interested in finding out the impact of using
code coverage tools concerning both the cost and the effectiveness of white-box
techniques.

References

1. Moreno, A., Shull, F., Juristo, N., Vegas, S.: A look at 25 years of data. IEEE
Software 26(1) (Jan.–Feb. 2009) 15–17

37

94 Vallespir et al

2. Vallespir, D., Herbert, J.: Effectiveness and cost of verification techniques: Prelim-
inary conclusions on five techniques. In: Computer Science (ENC), 2009 Mexican
International Conference on. (2009) 264–271

3. Vallespir, D., Apa, C., De Len, S., Robaina, R., Herbert, J.: Effectiveness of five
verification techniques. In: Proceedings of the XXVIII International Conference of
the Chilean Computer Society. (2009)

4. Weyuker, E.: The cost of data flow testing: An empirical study. IEEE Transactions
on Software Engineering 16 (1990) 121–128

5. Weyuker, E.J.: The complexity of data flow criteria for test data selection. Infor-
mation Processing Letters 19(2) (1984) 103–109

6. Frankl, P.G., Weiss, S.N.: An experimental comparison of the effectiveness of
branch testing and data flow testing. IEEE Transactions on Software Engineering
19(8) (1993) 774–787

7. Hutchins, M., Foster, H., Goradia, T., Ostrand, T.: Experiments on the effec-
tiveness of dataflow- and control-flow-based test adequacy criteria. In: Software
Engineering, 1994. Proceedings. ICSE-16., 16th International Conference on. (16-
21 1994) 191 –200

8. Li, N., Praphamontripong, U., Offutt, J.: An experimental comparison of four unit
test criteria: Mutation, edge-pair, all-uses and prime path coverage. In: Software
Testing, Verification and Validation Workshops, 2009. ICSTW ’09. International
Conference on. (1-4 2009) 220 –229

9. Rapps, S., Weyuker, E.J.: Data flow analysis techniques for test data selection. In:
ICSE ’82: Proceedings of the 6th international conference on Software engineering,
Los Alamitos, CA, USA, IEEE Computer Society Press (1982) 272–278

10. Harrold, M.J., Rothermel, G.: Performing data flow testing on classes. SIGSOFT
Softw. Eng. Notes 19(5) (1994) 154–163

11. Harrold, M.J., Soffa, M.L.: Interprocedual data flow testing. In: TAV3: Proceedings
of the ACM SIGSOFT ’89 third Symposium on Software Testing, Analysis, and
Verification, New York, NY, USA, ACM (1989) 158–167

12. Frankl, P.G., Weyuker, E.J.: An applicable family of data flow testing criteria.
IEEE Transactions on Software Engineering 14(10) (1988) 1483–1498

38 Chapter 3. Controlled Experiment with a Small Program

Chapter 4

Controlled Experiments to
Evaluate Testing Techniques

Experiments 2008 and 2009 are presented in their complete form in this
chapter. The first article corresponds to Experiment 2008 and the second
to Experiment 2009.

The second article was sent to an international journal to be published
and is in the process of being evaluated.

The papers included in this chapter are:

Effectiveness of five verification techniques
Diego Vallespir, Cecilia Apa, Stephanie De León, Rosana Robaina and Ju-
liana Herbert
Proceedings of the XXVIII International Conference of the Chilean Com-
puter Society, pp. 86-93, Santiago de Chile, Chile, November, 2009.

All Uses and Statement Coverage: A controlled experiment
Diego Vallespir, Silvana Moreno, Carmen Bogado and Juliana Herbert
Submitted to a Software Engineering Open Journal. The format is not the
Journal format.

39

40 Chapter 4. Controlled Experiments to Evaluate Testing Techniques

41

ARTICLE

Effectiveness of five verification techniques

Diego Vallespir, Cecilia Apa, Stephanie De León, Rosana Robaina
and Juliana Herbert

Proceedings of the XXVIII International Conference of the
Chilean Computer Society, pp. 86-93, Santiago de Chile, Chile,
November, 2009.

42 Chapter 4. Controlled Experiments to Evaluate Testing Techniques

Effectiveness of Five Verification Techniques
Diego Vallespir, Cecilia Apa, Stephanie De León, Rosana Robaina

Instituto de Computación, Facultad de Ingenierı́a
Universidad de la República,

Montevideo, Uruguay

Juliana Herbert
Herbert Consulting

Porto Alegre, RS, Brazil

Abstract—Here we present a formal experiment in order to
know the effectiveness of 5 different unit testing techniques.
The techniques are: desktop inspection, equivalence partitioning
and boundary-value analysis, decision table, linearly independent
path, and multiple condition coverage. The proposed design is
a one factor with multiple levels one. This is the first formal
experiment we know about that uses decision table, linearly in-
dependent path and multiple condition coverage techniques. The
experiment is executed by 14 testers that apply the techniques
in 4 different programs developed especially for this experiment.
The statistical results show that decision table and equivalence
partitioning techniques are more effective than linearly indepen-
dent path technique.

Keywords-Software engineering; Empirical software engineer-
ing; Testing; Unit testing

I. INTRODUCTION

It is quite common to use a software testing technique to
verify a software unit, but choosing one can be very intricate.

In order to do so in a simpler way, we must know several
things beforehand, for example, the cost, the effectiveness and
the efficiency of each technique. Even more, these things can
vary depending on the person who applies it, the program-
ming language and the application type (information system,
robotics, etc.). Some advances have been made but we have a
long way to go.

Many formal experiments to analyze the behavior of some
unit testing techniques were conducted. The first we know
about is from 1978 [1]. Despite we have several years of
empiric research on the matter, we do not have definite results
yet.

In [2] the authors examine different experiments on software
testing: [3], [4], [5], [1], [6], [7], [8], [9], [10], finding that:

• It seems that some types of faults are not well suited to
some testing techniques.

• The results vary greatly from one study to another.
• When the tester is experienced

– Functional testing is more effective than coverage
of all program statements, although the functional
approach takes longer.

– Functional testing is as effective as conditional test-
ing and takes less time.

• In some experiments data-flow testing and mutation test-
ing are equally effective.

• In some other experiments mutation testing performed
better than data-flow testing in terms of effectiveness.

• In all the experiments mutation testing was more expen-
sive than data-flow testing.

• Changes of programming languages and/or environments
can produce different results in replications of experi-
ments that are rather old.

• Most programs used in the experiments suffer from at
least one of the following two problems:

– They are small and unusually simple.
– The defects are seeded by the researches instead of

looking for naturally occurring ones.
The authors belive that researchers should publish more infor-
mation not only about the number of faults the technique can
remove but also about the types.

We agree with Moreno in the sense that the programs used
in these experiments are unreal, so we decided to make an
experiment with more real programs attacking both mentioned
problems.

Before an experiment begins, the testers (the subjects who
execute the testing techniques) need previous training. In our
experiment this includes a course on every technique to be
applied, a course on the scripts to be used during execution,
and a training execution of the techniques in a simple program.
The results of this training execution are presented in [11].

Our experiment uses 4 programs that are especially built
for the experiment. The programs are of different types.
We propose a balanced design in which 14 testers test the
programs. Every tester except one tests 3 of the 4 programs,
each program with a different technique. Every program is
tested twice with each technique. Having 5 testing techniques
results on each program being tested 10 times by 10 different
testers. In order to compensate for the effect of the learning on
testing, the design changes the order in which the techniques
are applied by the different testers.

The techniques used in the experiment are: desktop inspec-
tion, equivalence partitioning and boundary-value analysis, de-
cision table, linearly independent path, and multiple condition
coverage. This is the first formal experiment we know about
that uses decision table, linearly independent path and multiple
condition coverage techniques. The statistical results show
that decision table and equivalence partitioning techniques are
more effective than linearly independent path technique.

The article is organized as follows. Section II briefly de-
scribes the techniques used in the experiment. In section III
the taxonomies used to classify the defects are presented. The
testers follow specific scripts that provide them with them

86

43

with guidance which are presented in section IV. Section V
focuses on the Java programs that are verified by the testers.
The experiment design is presented in section VI. In section
VII the experiment execution is presented. The results obtained
are presented in section VIII and the conclusions in section
IX.

II. THE TECHNIQUES

We use the same terminology for the verification techniques
as Swebok [12]. The techniques can be divided into different
types: static, tester intuition or experience, specification based,
code based, fault based and usage based. At the same time
code-based is divided into control flow and data flow based
criteria.

In our experiment we used 5 testing techniques: desk-
top inspection, equivalence partitioning and boundary-value
analysis (EP), decision table (DT), linearly independent path
(LIP), and multiple condition coverage (MCC). Using these
techniques, the static, specification-based techniques types as
well as control-flow ones are covered. Usually equivalence
partitioning and boundary-value analysis are considered as two
separate techniques. Given they are generally used together,
they are considered as one technique in the experiment.

The inspection technique consists of examining the code to
find defects. A check-list is used in order to formalize the
inspection. The tester considers the items in the check-list
one by one and checks the code to find a defect associated
with the current item. The check-list used in our experiment
is presented in the Appendix.

The EP and DT techniques are specification-based ones.
Those techniques divide the entrance domain of a program
into classes based on the specified behavior of the program,
unit or system under test. The techniques are different but the
main concept is similar: to divide the entrance into “meta-
test cases” and then choose one test case for each meta-test
case. In order to develop the test cases the tester only uses the
specification of the program. In other words, the tester does
not use the code of the program during test development. This
is the reason why this kind of techniques is also called black-
box testing techniques. The tester executes functions of the
“black-box” and compares the expected result of the test case
with the result obtained in the test case execution.

The LIP and MCC techniques are control flow based
techniques. The LIP technique divides the control flow of the
program into linearly independent paths. The tester analyzes
the code to find those paths. After this step, the tester develops
a set of test data, which ensures the execution of the linearly
independent paths previously found. Once the tester gets the
set of test data, he reads the specification to add the expected
result to each test data, obtaining with this method the test
cases.

The MCC technique criteria determines that every condition
combinations of each decisions of the code must be executed
with the set of test cases. Using only the source code, the tester
first developed the set of test data that covers the criteria. After
that, the proceeding is the same as in LIP technique, which

is to add the expected results to the set of test data using the
specification of the program.

These techniques are defined in several basic software en-
gineering books and basic software testing books, a complete
explanation of them is beyond the scope of this paper.

We could not find literature describing experiments in which
DT, LIP and MCC techniques are applied, neither could Juristo
[13]. Given so, our experiment and the corresponding empiric
results, are the first ones that involve these techniques.

III. DEFECT TAXONOMIES

Since our objective is to find the effectiveness of the
techniques according to defect types, a defect taxonomy is
necessary. Various defect taxonomies are presented in the
literature. The IBM Orthogonal Defect Classification (ODC)
is the most used [14]. Other taxonomy of interest is Beizer’s
Defect Taxonomy [15].

ODC allows the defects to be classified in many orthogo-
nal views: defect removal activities, triggers, impact, target,
defect type, qualifier, age and source. In this experiment
only the defect type and the qualifier are considered. The
defect type can be one of the following: assign/init, checking,
algorithm/method, function/class/object, timing/serial, inter-
face/O.O. messages and relationship. The qualifier can be:
missing, incorrect or extraneous. Therefore, every defect must
be classified in both views; for example, a defect could be
classified as “timing/serial incorrect”.

Beizer’s taxonomy is hierarchical meaning that each cate-
gory is divided into sub-categories and so on. For example, the
category number 3 is “Structural bugs” and is divided into 3.1
“Control flow and sequencing” and 3.2 “Processing”. Category
3.1 is divided into other several sub-categories. This taxonomy
presents a lot of different defect types, so it may be interesting
to use it. By doing this, our knowledge about the effectiveness
of the techniques by defect type will be highly improved.

We are developing and executing experiments at the same
time that we are conducting a research on defect taxonomy.
We are not convinced that Beizer’s taxonomy or ODC are
the best taxonomies for unit defects. Some initial results are
presented in [16].

IV. SCRIPTS

The testers follow scripts that provide them with guidance,
which allows them to execute the technique and correctly
collect and record the data required for the experiment. There
are 3 scripts, one for each type of technique used: static,
specification-based and control-based. The static script con-
sists of three phases: preparation, execution and finish. The
specification-based and control based scripts have four phases:
preparation, design, execution and finish.

After the preparation phase the tester is ready to start the
verification job. In this phase the tester must prepare the testing
environment and all the necessary material in order to start the
testing. This phase consists of the following steps:

• Download the files related to the program to be verified:
specification, design, javadoc and the source code.

87

44 Chapter 4. Controlled Experiments to Evaluate Testing Techniques

• Record the starting date and hour of the work.
• Read and understand the functional specification of the

program.
• Prepare the environment for the testing (only applies for

the dynamic techniques).
In the design phase (only for dynamic techniques) the tester

develops test cases that achieve the testing technique criteria.
This phase is based on the following steps:

• Design of test cases that satisfy the technique.
• Codify the test cases in JUnit.
• Record the total time spent in designing and codifying

the test cases.
• If some defects are found during design, the tester must

register them. The detection time in this case is zero.
During execution, the test cases are executed (or the in-

spection is executed) and the tester searches for the defects of
those cases that fail. According to this phase, the steps are the
following:

• Execution of the test cases or execution of the inspection.
• Record the defects that are found during the testing. In

the case of inspection technique the time to find the defect
is always zero.

In the last phase, the finish, the tester ends the job and
records the finishing date and hour. In every phase the tester
has to register the time elapsed during the activities and every
defect found.

V. THE PROGRAMS

We use 4 programs in the experiment, each of which is
developed especially for this experiment. These programs
differ from the ones found in the experiment literature in two
aspects. First, the defects in the programs are not injected
by the researchers. Second, the programs are more real and
more complex. Given we are considering unit testing instead
of system testing, the programs are real enough for our
experiment.

These are different types of programs and all are codified
in Java. We classify them as

• Accountancy with data base (Accountancy).
• Mathematic.
• Text processor (Parser).
• Document creation from data in a data base (Doc DB).
The accountancy program is a small salary liquidation

program. The program has the following functionalities:
• Add, modify and delete an employee. The employees

have a position in the organization and hours worked per
week.

• Add, modify and delete positions in the organization. The
positions have a base salary.

• Increase the salary (in different forms) of a position.
• Calculate the salary liquidation.

The database used for this program is HSQLDB1.

1http://hsqldb.org/

TABLE I
MEASURES OF THE PROGRAMS

Program LOCs Meth. LOCs #Cl. #Met. #Def.
accountancy 1979 1497 14 153 107
Mathematic 468 375 13 29 50
Parser 828 634 10 64 272
Doc DB 566 362 10 61 32

The mathematic program receives two arrays of real num-
bers of the same size: x1 . . . xn and y1 . . . yn, and a real
number xk. The program calculates the following items:

1) The mathematical correlation between the arrays. The
correlation determines the relationship between two or-
dered sets of numbers.

2) The significance of the correlation.
3) The parameters of the linear regression, β0

and β1, for the pairs of numbers of the form
(x1, y1) , (x2, y2) , . . . , (xn, yn). The linear regression is
a way of approximating a straight line to a set of points.
The equation of the straight line is: y = β0 + β1x.

4) The result yk of using xk with the straight line equation:
yk = β0 + β1xk.

5) The prediction interval of 70% for the value xk.
The parser program is a small text processor. The parser

recognizes a small set of Pascal language. The program
receives a file with a program written in Pascal. It parses the
code and produces a XML file that presents the structures that
are recognized in the code.

The doc db program generates a multiple choice exam from
data in a data base. The questions in the exam are chosen
at random. The document is a Latex one that contains the
questions, the possible answers and the correct one. The data
base used for this program is HSQLDB.

Table I shows some measures for the four programs. The
columns are the locs without comments, executable locs
without comments (method locs), the number of classes, the
number of methods and the number of defects in the program.

We developed a framework to compare formal experiments
and we used it to compare four experiments [17]. Unfortu-
nately, some experiments are not described enough in the
articles in which are presented. However, we can compare locs
and defects. In [6], Basili and Selby (BS) used four programs.
The smallest of 145 locs and the biggest of 365 locs. The
programs have 34 defects in total. In [18], Macdonald and
Miller (MM) used two programs. One of 143 locs and the
other of 147. Each program has 12 defects. In [19], Juristo
and Vegas (JV) used four programs, each of them with 200
locs and 9 defects.

All these experiments have defects injected by the re-
searchers. In BS some defects are injected while some are
not. In JV all the defects are injected. In MM it is not clear
how many of the defects are injected.

Our programs are considerably bigger and more complex.
Actually, we do not inject defects on them, so the defects
are those introduced during the development. Therefore, our

88

45

programs are more real.
As an example, Figure 1 presents the design of the Math-

ematic program. The name of the classes and methods are in
Spanish.

Given we do not inject the defects we must define a
way to find them. Some individuals from our research group
performed testing on the programs and recorded the defects
found. During the experiment 14 students tested the programs
with different techniques. We consider that the union of the
sets of the defects found are an excellent estimation of the
defects of the programs.

VI. EXPERIMENT DESIGN

The objective of the experiment is to study 5 testing tech-
niques in order to evaluate their effectiveness and cost when
used in unit testing. The techniques are: desktop inspection,
equivalence partitioning and boundary-value analysis, decision
table, linearly independent path, and multiple condition cover-
age. The effectiveness is defined as the percentage of defects
found by a technique. The cost is the time that takes to execute
a technique.

The type of our experiment design is one factor with mul-
tiple levels. The factor is testing technique and the levels are
the 5 different techniques. There are 14 subjects (the testers)
and 4 experimental units (the programs). The independent
(response) variables are: the defects found and the time
elapsed during the technique execution.

Table II shows the design of the experiment. For each of
the four programs the table presents the testers who test these
programs and the techniques used. Represented by numbers
from 1 to 3, is the order in which a tester tests these programs;
1 is the first program tested by the tester and 3 corresponds
to the last one. For example, tester number one tests the
accountable program with inspection technique first, then tests
the mathematic program with the MCC technique and the
last program he tests is the data base program with the LIP
technique.

The design has the following characteristics:
• It is a balanced design.
• Each technique is used 8 times.
• Each program is tested 10 times.
• Each program is tested 2 times for each technique.
• Each technique is applied 8 times.
• Every tester except one tests 3 different programs with 3

different techniques.
• Only one technique is used in a program by a tester.

Therefore, the testers never test the same program twice,
which avoids the learning of the defects on the program.

• In order to compensate for the effect of learning on test-
ing, the design changes the order in which the techniques
are applied by different testers.

• The assignment of the set of techniques and programs
previously defined in the design to the testers is com-
pletely at random.

The subjects are students in the 4th and 5th year of the
Computer Engineering career thus we consider them to have

an equal experience in testing.

VII. EXPERIMENT EXECUTION

The execution consists of three phases: courses phase,
training phase and test phase. The courses phase and the
training phase prepare the testers to execute the techniques
and the scripts correctly. In the test phase the design of the
experiment is executed.

The testers participate in 7 different courses during the
courses phase. Every course takes around 2 hours of class.
The courses present the techniques to be used, the scripts and
the tool to record the data.

The training phase is a small experiment on its own [11]. In
this phase the testers test a small program and record the data
in the same way they will do in the test phase. This serves
to assure they are executing the techniques correctly and that
they are recording the data as expected.

The last phase is the execution of the design. The testers get
the program one at a time. When a tester finishes the execution
of a technique in a program the researchers gives him another
program to test.

During execution some testers abandon the experiment. This
clearly impacts on the design and some properties described
are not longer valid. For example, various properties of the
design, mainly regarding the balance, do not hold. However,
we can do a statistical analysis of the data.

VIII. ANALYSIS OF THE RESULTS

Due to the execution problems that arose, we have different
number of samples for each technique. Table III shows every
unitary experiment executed in the experiment. Each row in the
table shows the defects found and the effectiveness of a tester
testing a program with a technique. The total defects of each
program was presented in table I. Remember that we define
effectiveness as the percentage of defects founds divided by
the total defects.

Table IV presents the effectiveness grouped by technique.
This data is used for the descriptive statistics and for the
hypothesis testing.

Table V shows the observations quantity, average and stan-
dard deviation of the effectiveness of each technique. It seems
like DT and Insp technique are more effective than the rest
of the techniques while LIP technique is the less effective.
The standard deviation could be considered as high so it is
probably that we need more observations. This can be obtained
by replication of the experiment.

Due to the few observations we have, we can not make
an analysis about the effectiveness by defect type. Therefore,
it is only presented de total effectiveness of each technique.
The null hypothesis (H0) is that every technique has the same
effectiveness. The alternative hypothesis (H1) is that at least
exists a technique with different effectiveness from the others.

Due to the few observations it is not very reliable to apply
a parametric test. So, we decide to use a non parametric test:
Mann-Whitney test. We compare all the couples of techniques.

89

46 Chapter 4. Controlled Experiments to Evaluate Testing Techniques

Fig. 1. Design of the Mathematic Program

TABLE II
THE EXPERIMENT DESIGN

Contabilidad Matemtico MO-Latex Parser

In
s

C
C

C
M

T
L

I

PE
yA

V
L

T
D

In
s

C
C

C
M

T
L

I

PE
yA

V
L

T
D

In
s

C
C

C
M

T
L

I

PE
yA

V
L

T
D

In
s

C
C

C
M

T
L

I

PE
yA

V
L

T
D

tester 1 1 2 3
tester 2 2 3 1
tester 3 3 1 2
tester 4 1 2 3
tester 5 1 2 3
tester 6 2 3 1
tester 7 3 1 2
tester 8 1 2 3
tester 9 1 2 3
tester 10 2 3 1
tester 11 3 1 2
tester 12 1 2 3
tester 13 1 2 3
tester 14 1

This gives 10 different null and alternative hypothesis. For
example, one is the EP and LIP hypothesis:

H0EP−LIP
: µEP = µLIP (1)

H1EP−LIP
: µEP 6= µLIP (2)

The results of the Mann-Whitney test are presented in table
VI. The columns presents: the techniques to compare, the sta-
tistical U, the the quantities of observation for both techniques
that are being compared and the probability associated.

This results shows that we can only reject two null hypothe-
ses:

H0LIP−DT
: µLIP = µDT .

H0LIP−EP
: µLIP = µEP .

The rejection of the LIP-DT hypothesis is with an α of
1,1% and the rejection of the LIP-EP is with an α of 9%.
We can conclude that for our programs it seems that using
EP technique is more effective than using LIP technique and
that using DT technique is also more effective than using LIP
technique. This has to be validated with replications of this
experiment or by executing other different experiments.

IX. CONCLUSIONS

We present a formal experiment to evaluate testing tech-
nique. One of the contributions is to have 4 programs that are
specially designed for these experiments. These programs are
bigger than other used in similar experiments and the defects

90

47

TABLE III
EFFECTIVENESS FOR EACH UNITARY EXPERIMENT

Program Technique # Def. Found % Effectiveness
Accountancy MCC 3 2.80
Accountancy MCC 7 6.54
Accountancy DT 44 41.12
Accountancy DT 9 8.41
Accountancy EP 21 19.63
Accountancy Insp 5 4.67
Accountancy Insp 7 6.54
Accountancy LIP 8 7.48
Mathematic MCC 5 10
Mathematic MCC 3 6
Mathematic DT 4 8
Mathematic EP 12 24
Mathematic EP 7 14
Mathematic Insp 8 16
Mathematic Insp 23 46
Mathematic LIP 4 8
Mathematic LIP 4 8
Parser MCC 116 42.65
Parser MCC 42 15.44
Parser DT 77 28.31
Parser DT 32 11.76
Parser EP 41 15.07
Parser EP 5 1.84
Parser Insp 46 16.91
Parser Insp 10 3.68
Parser LIP 5 1.84
Doc DB MCC 1 3.13
Doc DB MCC 12 37.5
Doc DB DT 6 18.75
Doc DB DT 8 25
Doc DB EP 4 12.5
Doc DB EP 1 3.13
Doc DB Insp 0 0
Doc DB Insp 19 59.38
Doc DB LIP 3 9.38
Doc DB LIP 3 9.38

TABLE IV
EFFECTIVENESS GROUPED BY TECHNIQUE

MCC Insp EP DT LIP
3.13 0 12.5 18.75 9.38
37.5 59.38 3.13 25 9.38
2.80 6.54 19.63 41.12 7.48
6.54 4.67 14 8.41 8
10 16 24 8 8
6 46 15.07 28.31 1.84

42.65 16.91 1.84 11.76 -
15.44 - - 3.68 -

TABLE V
AVERAGE AND STANDARD DEVIATION OF THE EFFECTIVENESS

MCC Insp EP DT LIP
Observations Quantity 8 8 7 7 6
Average 15.51 19.15 12.88 20.19 7.35
Standard Deviation 15.75 21.81 8.09 12.16 2.81

are not injected by the researches. These characteristic are the
ones that Juristo et al complain about.

Although the execution of the experiment differs from
the initial balanced design, we consider that we obtain two
interesting results. The first one is that this work presents the

TABLE VI
MANN-WHITNEY TEST

U Mann-Whitney (n1;n2) P(U>x)
DT vs. MCC 18.0 (7;8) 0.140
EP vs. MCC 27.5 (7;8) 0.522
Insp vs. EP 26.0 (8;7) 0.389
Insp vs. MCC 28.5 (8;8) 0.360
LIP vs. MCC 20.0 (6;8) 0.331
LIP vs: Insp 21.0 (6;8) 0.377
EP vs. DT 17.0 (7;7) 0.191
Insp vs. DT 20.0 (8;7) 0.198
LIP vs. DT 5.0 (6;7) 0.011
LIP vs. EP 10.5 (6;7) 0.090

first formal experiment that uses DT, LIP and MCC testing
techniques. The second one is that we can reject two null
hypotheses. This means that it seems like DT and EP are more
effective than LIP. Further experiments are needed to validate
these results.

As future work we pretend to design another experiment
using different techniques. One is running at this moment with
sentence coverage and all uses techniques. We also want to
run other experiment with more testers so we can get more
observations, with these observations maybe we can reject
more effectiveness hypotheses, make some conclusions about
the cost of the techniques and make hypotheses that evaluate
effectiveness considering the different types of defects.

Acknowledgment
The authors would like to thank Lorena Ibaceta and
Fernanda Grazioli for their helpful comments on this article.
This work is partially supported by the Programa de
Desarrollo de las Ciencias Básicas (PEDECIBA), Uruguay.

APPENDIX

1) leave an space
• Are descriptive variable and constant names used in

accord with naming conventions?
• Are there variables or attributes with confusingly

similar names?
• Is every variable and attribute correctly typed?
• Is every variable and attribute properly initialized?
• Could any non-local variables be made local?
• Are all for-loop control variables declared in the

loop header?
• Are there literal constants that should be named

constants?
• Are there variables or attributes that should be

constants?
• Are there attributes that should be local variables?
• Do all attributes have appropriate access modifiers

(private, protected, public)?
• Are there static attributes that should be non-static

or vice-versa?
2) leave an space

• Are descriptive method names used in accord with
naming conventions?

91

48 Chapter 4. Controlled Experiments to Evaluate Testing Techniques

• Is every method parameter value checked before
being used?

• For every method: Does it return the correct value
at every method return point?

• Do all methods have appropriate access modifiers
(private, protected, public)?

• Are there static methods that should be non-static
or vice-versa?

3) leave an space
• Does each class have appropriate constructors and

destructors?
• Do any subclasses have common members that

should be in the superclass?
• Can the class inheritance hierarchy be simplified?

4) leave an space
• For every array reference: Is each subscript value

within the defined bounds?
• For every object or array reference: Is the value

certain to be non-null?
5) leave an space

• Are there any computations with mixed data types?
• Is overflow or underflow possible during a compu-

tation?
• For each expressions with more than one operator:

Are the assumptions about order of evaluation and
precedence correct?

• Are parentheses used to avoid ambiguity?
6) leave an space

• For every boolean test: Is the correct condition
checked? Is each boolean expression correct?

• Are the comparison operators correct?
• Has each boolean expression been simplified by

driving negations inward?
• Are there improper and unnoticed side-effects of a

comparison?
• Has an “&” inadvertently been interchanged with a

“&&” or a “|” for a “||”?
7) leave an space

• For each loop: Is the best choice of looping con-
structs used?

• Will all loops terminate?
• When there are multiple exits from a loop, is each

exit necessary and handled properly?
• Does each switch statement have a default case?
• Are missing switch case break statements correct

and marked with a comment?
• Do named break statements send control to the right

place?
• Is the nesting of loops and branches too deep, and

is it correct?
• Can any nested if statements be converted into a

switch statement?
• Are null bodied control structures correct and

marked with braces or comments?

• Are all exceptions handled appropriately?
• Does every method terminate?

8) leave an space
• Have all files been opened before use?
• Are the attributes of the input object consistent with

the use of the file?
• Have all files been closed after use?
• Are there spelling or grammatical errors in any text

printed or displayed?
• Are all I/O exceptions handled in a reasonable way?

9) leave an space
• Are the number, order, types, and values of param-

eters in every method call in agreement with the
called method’s declaration?

• Do the values in units agree (e.g., inches versus
yards)?

• If an object or array is passed, does it get changed,
and changed correctly by the called method?

REFERENCES

[1] G. J. Myers, “A controlled experiment in program testing and code
walkthroughs/inspections,” Communications of the ACM, vol. 21, no. 9,
pp. 760–768, September 1978.

[2] A. Moreno, F. Shull, N. Juristo, and S. Vegas, “A look at 25 years of
data,” IEEE Software, vol. 26, no. 1, pp. 15–17, Jan.–Feb. 2009.

[3] P. G. Frankl and S. N. Weiss, “An experimental comparison of the
effectiveness of branch testing and data flow testing,” IEEE Transactions
on Software Engineering, vol. 19, no. 8, pp. 774–787, Aug. 1993.

[4] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand, “Experiments on the
effectiveness of dataflow- and control-flow-based test adequacy criteria,”
in Proc. ICSE-16. th International Conference on Software Engineering,
16–21 May 1994, pp. 191–200.

[5] P. G. Frankl and O. Iakounenko, “Further empirical studies of test
effectiveness,” ACM SIGSOFT Software Engineering Notes, vol. 23,
no. 6, pp. 153–162, November 1998.

[6] V. R. Basili and R. W. Selby, “Comparing the effectiveness of software
testing strategies,” IEEE Transactions on Software Engineering, vol. 13,
no. 12, pp. 1278–1296, Dec. 1987.

[7] E. Kamsties and C. M. Lott, “An empirical evaluation of three defect-
detection techniques,” in Proceedings of the Fifth European Software
Engineering Conference, 1995, pp. 362–383.

[8] M. Wood, M. Roper, A. Brooks, and J. Miller, “Comparing and
combining software defect detection techniques: a replicated empirical
study,” ACM SIGSOFT Software Engineering Notes, vol. 22, no. 6, pp.
262–277, 1997.

[9] A. P. Mathur and W. E. Wong, “Fault detection effectiveness of mutation
and data flow testing,” Software Quality Journal, vol. 4, pp. 69–83, 1995.

[10] P. G. Frankl, S. N. Weiss, and C. Hu, “All-uses versus mutation testing:
An experimental comparison of effectiveness,” The Journal of Systems
and Software, vol. 38, pp. 235–253, 1997.

[11] D. Vallespir and J. Herbert, “Effectiveness and cost of verification
techniques: Preliminary conclusions on five techniques,” in Proceedings
of the Mexican International Conference in Computer Science, IEEE-
Computer-Society, Ed., 2009.

[12] IEEE/ACM, Software Engineering Body of Knowledge: Iron Man Ver-
sion, May 2004.

[13] N. Juristo, A. Moreno, S. Vegas, and M. Solari, “In search of what we
experimentally know about unit testing,” IEEE Software, vol. 23, no. 6,
pp. 72–80, November 2006.

[14] R. Chillarege, Handbook of Software Reliability Engineering - Chapter
9. Mcgraw-Hill, April 1996, ch. 9: Orthogonal Defect Classification.

[15] B. Beizer, Software Testing Techniques, 2nd ed. Van Nostrand Reinhold,
June 1990.

[16] D. Vallespir, F. Grazioli, and J. Herbert, “A framework to evaluate defect
taxonomies,” in Proceedings of the XV Argentine Congress on Computer
Science, 2009.

92

49

[17] D. Vallespir, S. Moreno, C. Bogado, and J. Herbert, “Towards a
framework to compare formal experiments that evaluate verification
techniques,” in Proceedings of the Mexican International Conference
in Computer Science, 2009.

[18] F. Macdonald and J. Miller, “A comparison of tool-based and paper-
based software inspection,” Empirical Software Engineering, vol. 3,
no. 3, pp. 233–253, 1998.

[19] N. Juristo and S. Vegas, “Functional testing, structural testing, and code
reading: What fault type do they each detect?” Empirical Methods and
Studies in Software Engineering, vol. 2765/2003, pp. 208–232, 2003.

93

50 Chapter 4. Controlled Experiments to Evaluate Testing Techniques

51

ARTICLE

All Uses and Statement Coverage: A controlled ex-
periment

Diego Vallespir, Silvana Moreno, Carmen Bogado and Juliana
Herbert

Submitted to a Software Engineering Open Journal. The format
is not the Journal format.

52 Chapter 4. Controlled Experiments to Evaluate Testing Techniques

All Uses and Statement Coverage
A controlled experiment

Diego Vallespir1, Silvana Moreno1,
Carmen Bogado1, and Juliana Herbert2

1 School of Engineering, Universidad de la República
Julio Herrera y Reissig 565

Montevideo, 11.300, Uruguay
dvallesp@fing.edu.uy,smoreno@fing.edu.uy,cmbogado@gmail.com

2 Herbert Consulting
Porto Alegre, Brazil

juliana@herbertconsulting.com

Abstract. This article presents a controlled experiment that compares
the behavior of the testing techniques Statement Coverage and All Uses.
The design of this experiment is typical for a factor with two alternatives.
A total of 14 subjects carry out tests on a single program. The results
indicate that there is enough statistical evidence to state that the cost of
executing All Uses is higher than that of executing Statement Coverage;
result that we expected to find. However, no statistical differences were
found as regards the effectiveness of the techniques.

Keywords: Empirical Software Engineering, Testing techniques, Test
effectiveness, Test cost

1 Introduction

Software unit testing is strongly established in industry. However, the effective-
ness and cost of each different unit testing technique is not known with certainty.
This makes the decision of which technique to use hardly trivial.

Many years of empirical research have gone by and yet final results have
not been achieved. In A look at 25 years of data the authors examine in depth
different experiments of software testing reaching the same conclusion [8].

A series of formal experiments are currently being carried out at the Com-
puter Science Institute of the School of Engineering of the Universidad de la
República in Uruguay in order to gather more precise data in this direction.
Four experiments have finished at present and this article describes one of them.
The results of other experiments of this series are included in [10–12].

The experiment hereby described compares the unit testing techniques All
Uses (AU) and Statement Coverage (SC) in order to know its cost and its ef-
fectiveness. The cost is defined as the time it takes to develop the test cases
in order to comply with the coverage demanded by the technique. Effectiveness

53

is defined as the number of defects encountered when executing the technique
divided by the number of total defects of the program being tested.

A group of undergraduate students of Computer Science of the Universidad
de la República in Uruguay generate test cases using SC and AU to execute
a program written in Java. These students record the defects found as well
as the time employed in the development of the test cases. We analyzed the
effectiveness and the cost of each subject and we suggested hypothesis tests to
find out whether among the techniques used there are differences of effectiveness
and/or cost.

The rest of the article is organized in the following way: section 2 describes the
techniques that were used in the experiment. Section 3 presents the related work.
The experiment set up is presented in section 4. The results of the experiment
are presented in section 5 and the discussion in section 6. The most important
threats to validity are presented in section 7. The conclusions and future work
are presented in section 8.

2 Background: Sentence Coverage and All Uses

Two testing techniques, both white-box, are employed. SC that is based on
control flow and AU that is based on data flow.

In order to satisfy the prescription of SC technique each sentence of the
source code must be executed at least once when running the tests. Since this
technique is widely known, we do not go deeper into it in this article.

The AU technique expresses the coverage of testing in terms of the definition-
use associations of the program. A definition of a variable occurs when a value
is stored in the variable (x := 7). An use of a variable occurs when it is read (or
uses) the value of that variable. This can be either a p-use or a c-use. A p-use
is the use of a variable in a bifurcation of the code (if (x==7)). A c-use is when
the use is not in a bifurcation. For example, in (y := 7 + x) there is a c-use of
x (there is also a definition of y).

The control flow graph is a representation through a graph of the different
execution paths that can be taken by a program. The nodes of the graph rep-
resent the statements (or code blocks) and the edges the bifurcations (if, for,
while, etc.). We will use ij to refer to a particular node in the graph.

Then, an execution path of the program can be represented as a sequence
of nodes. For example, i1, i4, i7 represent an execution path where node i1 is
executed first, then node i4 and finally node i7.

A definition of a variable x in a node id achieves a use of the same variable
in a node iu, if there is a definition clear path from id to iu in the control flow
graph and the path is executable. A path i1, i2,. . . ,in is a definition clear path
for a variable x if the variable x is not defined in the intermediate nodes of the
path (i2,. . . ,in−1).

AU requires that at least one definition clear path be executed from each
definition (of every variable) to each achievable use (of the same variable).

2

54 Chapter 4. Controlled Experiments to Evaluate Testing Techniques

The classical definitions of the techniques based on data flow and particularly
AU are presented in an article by Rapss and Weyuker [9].

In Object Oriented languages the basic testing unit is the class. It is necessary
to test its methods in an individual and in a collective way, so as to test the
interactions generated through the sequence of calls originated by the invocation
of a particular method. AU can be applied both for the tests of individual method
belonging to a class and for the methods that interact with other methods of
the same class or of other classes.

The tests of a class in AU can be carried out in two levels: Intra-method
(Intra) and Inter-method (Inter). In Intra, only the method under test is con-
sidered for the code coverage. Therefore, in this case, the methods that interact
with the method under test are not considered at the moment of developing
the test cases. On the other hand, in Inter, the methods that interact with the
method under test are considered for the code coverage too.

Two types of definition-use pairs to be tested are identified in relation to
the levels presented previously. The Intra-method Pairs are those which take
place in individual methods and test the data flow limited to such methods.
Both definition and use belong to the method under test.

The Inter-method Pairs occur when there is interaction between methods.
They are pairs where the definition belongs to a method and the corresponding
use is located in another method that belongs to the chain of invocations.

In most of the literature that presents techniques based on data flow, the
examples that are given contain simple variables such as integers and Booleans.
However, criteria that normally are not treated should be defined at the moment
of applying these techniques in arrays or even more difficult in objects.

Establishing these criteria is essential in order to know under which condi-
tions the technique is applied. Different conditions can produce different results
in the effectiveness and cost of AU since in fact, they are different techniques
with the same name. Many of these conditions refer to how the Inter-method
Pairs should be considered. This experiment establishes the conditions for the
application of the AU technique based on what is proposed in [3–5].

3 Related Work

Several formal experiments were carried out in order to find out the effective-
ness and/or cost of different unit testing techniques. Some experiments that use
techniques based on data flow are presented in this section.

In 1990 Weyuker presents an experiment in order to find out the cost of the
testing techniques based on data flow [13]. The cost is measured as the number
of test cases generated when applying the technique. The following testing tech-
niques are studied: All c-uses, All p-uses, All Uses and All Paths Definition-Use.
The results show that the number of necessary test cases to satisfy those crite-
ria is much lower than the level of the worse case calculated theoretically on a
previous work also by Weyuker [14].

3

55

Frank and Weiss present an empirical study in which they compare the effec-
tiveness of the All Uses and Decision Coverage techniques [2]. Nine programs are
used and random test cases are generated for each of them. No human testers
take part in this experiment. Sets of test cases, that meet one or the other cri-
terion, are taken and whether each of these groups detects at least one defect is
evaluated. The results show, with 99% confidence, that the All Uses criterion is
more effective in 5 out of the 9 programs. In the other 4 programs it is impossible
to differentiate.

In 1994, Hutchins and others published an experiment the goal of which is to
compare the effectiveness of a variant of the technique All Paths Definition-Use
and a variant of the Decision Coverage technique [6]. The experiment has similar
characteristics to that of Frank and Weiss. However, in this experiment both test
cases automatically generated at random and human testers are used. The results
show that there is no statistical evidence indicating that one technique is more
effective than the other.

Li and others carry out an experiment to compare four unit testing tech-
niques: Mutants, All Uses, Edge-pair Coverage and Prime Path Coverage [7].
They try to find out the effectiveness (measured as the number of defects de-
tected on the seeded defects) and the cost (measured as the number of test cases
it is necessary to generate in order to meet each testing criterion) The cases were
generated by hand with the help of tools to know the coverage and another one
to generate mutants. The result is that the Mutant technique finds more defects
while the other three are similar. Surprisingly (according to the authors) the
Mutant technique was the one that required the least test cases.

One of the points that we consider weak in these experiments is that they
measure the cost as the number of test cases it is necessary to generate in or-
der to satisfy a certain testing criterion. We believe that the time employed in
developing these cases is a more interesting measure for the cost.

4 Experiment Setup

The design of the experiment and its execution are presented in this section.

4.1 Goals, Hypotheses and Metrics

The aim of our experiment is to evaluate and compare the SC and AU techniques
concerning their effectiveness and cost. To document our goals, hypothesis and
variables we use the GQM approach [1].

Analyze Statement Coverage and All Uses techniques
for the purpose of their evaluation
with respect to their effectiveness and cost
from the viewpoint of the researcher
in the context of a course thought and done especially for this experiment in

4

56 Chapter 4. Controlled Experiments to Evaluate Testing Techniques

the School of Engineering, Universidad de la República of Uruguay.

Since the generic objective is clearly divided in two (effectiveness and cost)
we propose different objectives for each of these options. The viewpoint and the
context do not change as regards the general objective.

Goal 1:
Analyze Statement Coverage and All Uses techniques
for the purpose of their evaluation
with respect to their effectiveness. . .

Goal 2:
Analyze Statement Coverage and All Uses techniques
for the purpose of their evaluation
with respect to their cost. . .

The model to evaluate the effectiveness of each individual is defined as the
number of defects found by that individual divided by the number of total defects
of the program under test.

Effectiveness of the individual =
Number of defects found

Total number of defects of the program

The model to evaluate the cost of executing a technique is defined as the
time in minutes it takes to design and codify the test cases using the technique.

The questions, metrics and hypotheses associated with each goal are the fol-
lowing:

Goal 1:
Q1. Which is the average effectiveness of the individuals when executing a tech-
nique?
H1. The individuals that apply All Uses have a better performance than those
who apply Statement Coverage as regards the average effectiveness.
M1.1. Number of defects found by each subject.
M1.2. Total number of defects in the program under test.

Goal 2:
Q1. Which is the average cost obtained by individuals when executing a tech-
nique?
H1. The individuals that apply All Uses obtain a higher cost than those who
apply Statement Coverage as regards the average of the cost.
M2. Total time of design and codification of test cases by each subject.

The experimental unit of the experiment is a program written in Java
language. Its main feature is payroll accounting. The program is presented in
subsection 4.5.

5

57

The factor is the testing technique. The alternatives of this factor are the
techniques to be evaluated: SC and AU.

The response variables considered in this experiment are the effectiveness
and the cost of the techniques.

The hypotheses for this experiment are also the traditional in this kind
of experiment. The null hypothesis of effectiveness, hypothesis that we want to
reject, states that the medians of effectiveness of the techniques are the same.
The null hypothesis of cost states that the medians of cost of the techniques is
the same. The alternative corresponding hypothesis simply indicates the medians
are different.

4.2 Subjects

The subjects of the experiment are graduate students of Computer Science of the
Universidad de la República of Uruguay. All of them are advanced students since
they are coursing fourth or fifth year. They have passed the course “Program-
ming Workshop” in which Java language is learned and they have completed at
least another three courses in Programming and a course in Object Oriented Pro-
gramming. All of them have completed a Software Engineering course in which,
among other things, different testing techniques are studied. We consider, there-
fore, that the group that participates in the experiment is homogeneous due to
the fact that they are at the same level in their studies and that they have been
provided with the same training as part of the experiment.

The students participate in the experiment in order to get credits for their
studies and this is their motivation. The formal framework is a course in the
degree of Computer Science designed especially for the experiment. Attendance
to the training is mandatory as well as the execution of the testing technique
following the material provided by the researchers. They know that completing
the course successfully depends on following the script provided to apply the
technique correctly and not on the number of defects found.

The students are not aware that they are taking part in an experiment; they
believe they are taking a course with an important component of laboratory
practice.

It is the students who enroll in the course. This course is not mandatory for
the degree they are taking, consequently their participation is voluntary.

4.3 Experimental Materials

The experiment material consists of the Class Diagram of the program under
test, the program user documentation, the program’s Javadoc, an electronic
spreadsheet to record defects and times, a script to conduct the testing activity
and the source code of the program. The script and the program are presented
in independent sections.

The java classes of the program must be tested following the bottom-up
approach during the experiment. The Class Diagram serves this purpose and it

6

58 Chapter 4. Controlled Experiments to Evaluate Testing Techniques

is given to the subjects with a list that specifies the order in which each class
has to be tested.

While the test is being conducted the subjects record the defects they find in
the program as well as the design and JUnit codification time of the test cases.
These data is recorded in the spreadsheet for recording defects and time that
was created for this purpose.

The spreadsheet contains two sheets, the first is presented in figure 1. The
name of the subject, the name of the program under test, the testing technique
being applied, the starting and finishing date, and the design and codification
times of the test cases of each Java class are recorded here.

Fig. 1. Defects and times recording spreadsheet - Sheet 1

In the second sheet, a new row is entered for every defect that is found. The
number of the code line where the defect is and its description is recorded for
each defect found, as well as the name of the class that contains it. Finally, it is
specified whether the defect was found during the design (design and codification
of cases) or during the execution of the test cases.

4.4 Testing Script

The subjects use a script to conduct the tests during the experiment. This script
is presented and explained to the subjects during the training provided as part
of the experiment.

The script is the process that must be followed by the subjects. It is made
up of three phases: Preparation, Design and Execution. The complete script can
be found in Appendix A.

During the Preparation phase the subject must carry out an initial check-up
that guarantees that the tests can be conducted. He must check that he has the
source files to test, a file with the class diagram of the program under test, the
Javadoc of the classes and the spreadsheet to record defects and times that he
will use during the tests.

During the Design phase the subject develops the test cases following the
prescriptions of the testing technique previously assigned. The subject must

7

59

design the test cases following a bottom-up approach. After having designed the
test cases, the subject codifies them in JUnit. In this phase, the time it took to
design and codify the test cases is recorded in the spreadsheet.

The execution of the test cases is conducted during the Execution phase. The
cases must also be executed using a bottom-up approach. The phase ends when
there are no test cases that produce a failure. While there are test cases that
produce failures the subject must:

– Chose one of the cases that produce a failure.
– Find the defect in the program that produces the failure.
– Record the required data in the spreadsheet for each defect found.
– Request the correction of the defect to the research team.
– Run the test case again to confirm that the correction has been made prop-

erly by the research team.

4.5 The Program

The program used in this experiment was built especially for an experiment
conducted in 2008 [10]. This program was developed by a fourth-year student
of Computer Science. The student developed the program using a specification
written by the research team. This specification describes a program to calculate
the salaries for educational staff and non-educational employees in a fictitious
university.

The functionalities of the program are basic as regards the calculation of
salaries. It allows recording employees and their positions. It offers the func-
tionality of reallocating positions, but an employee cannot hold more than one
position (be it educational or non-educational). It makes it possible to raise
salaries in different ways. It also has a functionality of making statements in
which the calculations of all the employees of the system are made generating
their corresponding salary slips. It also provides the possibility of creating the
salary slip for an employee in particular.

The student must develop the program in Java language taking the specifica-
tion as a starting point, making sure only that the program could be compiled.
That is to say, the student was not allowed to conduct any testing on the de-
veloped program. He was also asked not to conduct any type of static review.
Therefore the delivered program only had corrections to the defects detected
during the compilation.

Therefore, the program contains real defects that were not seeded in the code
by the researchers. Besides, since the developer is not allowed to conduct any type
of verification, the program is tested for the first time during the experiment,
situation which we wanted to simulate.

The student that builds the program generates its documentation using
Javadoc. He hands in installation and configuration manuals and a user manual
that covers all the functionalities of the program.

The program has a size of 1820 LOCs (without comments) distributed into
14 classes. It is made up of 5 DataTypes, a class that implements the persistence

8

60 Chapter 4. Controlled Experiments to Evaluate Testing Techniques

of the data, 5 classes that contain the logic, 2 interfaces and a main class that
implements the interface with the user.

The program has a small database (that use the HSQLDB database manager)
to support its functionalities. This database is made up by 8 tables. The subjects
are given a script for the creation of the tables and load of the basic data.

The defects of the program are not totally known since they are not seeded
defects, but they correspond to those that appear during the development. Dur-
ing the 2008 experiment and during the experiment presented in this article,
several subjects conducted tests on the program with different techniques. We
consider that the number of defects that result from the union of the detected de-
fects in both experiments is a good estimate of the total defects of the program.
This number is 187.

4.6 Experiment Design

The design of an experiment corresponds to the design of a factor (testing tech-
nique) with two alternatives (SC and AU). The subjects that participated in the
execution of the experiment are a subgroup of the subjects that participated in
the training; 4 from the first training and 10 from the second. Out of these 14
subjects, 8 apply AU and 6 apply SC.

The subjects in the training could choose freely to participate in the experi-
ment in order to get more academic credits. The final design is not balanced due
to the fact that each subject carried out the practice only with one technique
during the training.

All the subjects use only one technique (the allotted one: CS or AU) on an
only program (the Accounting program).

4.7 Training

The subjects who enroll in the course must go through the training that aims at
ensuring that they have the necessary knowledge and practice to use the SC and
AU techniques correctly. The training is made up of three parts: JUnit Learning
session, Techniques Learning session and Execution session. Figure 2 presents
the different activities in each session.

The aim of the JUnit Learning session is for each subject to learn how to
use the JUnit tool that they will be using to codify the test cases. Each subject
is given a simple program specification and they are asked to implement that
specification in Java and to develop a JUnit class to test its functionality. The
idea is that the subject should study JUnit individually since this tool is not
explained during the training.

This session is done at home by the students and takes a week. Once it
finishes, the students hand in the Java class and the JUnit class with the codified
test cases. These are reviewed by the researchers in order to verify that the
student has acquired the necessary knowledge with JUnit.

Once the JUnit Learning session is finished the Techniques Learning takes
place. This session has the aim of allowing the subjects to learn the SC and

9

61

Fig. 2. Training of the subjects

AU techniques. A theoretical/practical course of 9 hours is conducted during a
day. A theoretical class to explain the testing techniques to be used is given in
the first half of the day. The verification script to be followed when conducting
the tests and the spreadsheet to register times and defects are also explained.
During the second half of the day practical exercises to be solved in groups or
individually are done. These exercises are an intense practice of the techniques
of the experiment.

The Execution session is also conducted during a whole day, seven days apart
from the training session. In this session the subjects individually apply the
technique allotted to each one, generating the necessary test cases and executing
them. This training session is considered also as an experiment in itself [11].

In order to complete the work they follow the script provided in the Tech-
niques Learning session, registering the time and the defects as indicated in the
same. The students who are unable to finish their task during the day have a
week to finish it. At the end of the session the subjects hand in the JUnit classes
generated, the spreadsheet with the registers of time and defects and the notes
they have made in order to be able to apply the technique (control flow graphs,
identified paths, etc.) Once all the deliveries have been done, the research team
reviews them and they are given back individually to each student.

The execution session serves to achieve several objectives. The subjects fa-
miliarize with the verification script they must follow, with the techniques and
with the spreadsheet to use to keep the records. While the work is reviewed, it is

10

62 Chapter 4. Controlled Experiments to Evaluate Testing Techniques

possible to make adjustments and correct the mistakes that the subjects could
be making while applying the technique.

4.8 Operation

The complete training takes place twice with two different groups of subjects.
The first training and the second were carried out some weeks apart from one
another.

10 subjects participated in the first training. 5 used AU technique and the
other 5 applied SC. 11 subjects participated in the second training. 6 used AU
and 5 used SC. The choice of subjects for the different techniques is at random.
Each complete training (the three sessions) took about three weeks.

The experiment with the Accounting program is conducted in 8 one-week
sessions. Each session is allotted a certain number of Java classes to be tested by
the subjects. The choice of classes to be tested each week is made based on the
bottom-up approach and their complexity, and was made by the research team.

The execution of the experiment by the subjects is done at their home. At
the beginning of each week the classes to be tested are sent to them via e-mail.

During the week the subjects report the defects found to the researchers re-
questing their correction. The research team sends the corresponding correction
for each defect. The subjects are not allowed to make the corrections by them-
selves. The purpose of this is that the subjects have the same correction for the
same defects.

It is important to point out that we have no knowledge of other experiments
conducted in which the defects are corrected. The correction of defects during
the experiment simulates better the testing activity in the industry.

Each weekly delivery made by a subject is validated by the research team.
The aim is to make sure that the spreadsheet is complete. It is also controlled
that the test cases handed in codified in JUnit do not fail, which means that all
the defects that produce failure have been corrected.

A form that records the defects of each Java class of the program is completed
using the defects found by the different subjects. It is made taking the defects
form of the 2008 experiment as a starting point. This form is used to keep all
the defects found by all the subjects per class of the program.

5 Results

The results are presented in two parts. The first sub-section considers goal 1: ef-
fectiveness of the techniques. The second considers goal 2: cost of the techniques.

5.1 Effectiveness

In this section we present the descriptive statistics and the hypothesis test for
the effectiveness of the techniques.

11

63

Descriptive Statistics

Figure 3 presents a box and whisker chart of the effectiveness both of the SC
technique and the AU technique. The medians of both techniques are similar,
for SC it is 11% and for AU it is 10%. The distribution of both techniques is a
bit different.

Table 1 presents the number of subjects that used each one of the techniques,
the mean and the standard deviation of the effectiveness. Both the average and
the standard deviation are similar.

Fig. 3. Box and Whisker of the Effective-
ness

No. of Subjects Mean Std. Dev.

SC 6 15.2% 13.9%

AU 8 14.2% 11.6%

Table 1. Mean and Std. Deviation of
the Effectiveness

Hypothesis Testing

The hypothesis test done to compare the effectiveness of the techniques is
presented below. The quantity of observations we have (6 and 8) are too few to
make parametric tests. Therefore, the Mann-Whitney test is applied, since it is
suitable for our experiment design. The null hypothesis that indicates that the
medians of effectiveness of both techniques are the same is proposed, together
with the corresponding alternative hypothesis:

H0 : Mdn ESC = Mdn EAU

H1 : Mdn ESC <> Mdn EAU

The test of Mann-Whitney indicates that it is not possible to reject the null
hypothesis. Therefore, we do not find there is a statistical difference between the
effectiveness of both techniques.

5.2 Cost

In this section we present the descriptive statistics and the hypothesis test for
the cost of the techniques.

Descriptive Statistics

12

64 Chapter 4. Controlled Experiments to Evaluate Testing Techniques

Figure 4 presents a box and a whisker chart of the SC and the AU cost. The
median of SC is 38.5 hours and that of AU is 54.1 hours. The distribution of
both techniques is very different. Although the minimum values are similar, the
percentiles from 25% to 75% are totally different.

Table 2 presents the number of subjects that used each one of the techniques,
the mean and the standard deviation of the cost (in hours). The average of design
hours to design test cases in AU was 50% higher than that of SC. The standard
deviations and the box and whisker chart show that the dispersal of cost in AU
is much higher than that of SC.

Fig. 4. Box and Whisker of the Cost

No. of Subjects Mean Std. Dev.

SC 6 39.8 8.3

AU 8 60.0 27.2

Table 2. Mean and Std. Deviation of
the Cost in Hours

Hypothesis Testing
The Mann Whitney test is used again. The null hypothesis in this case is

that the median of the cost of the techniques is the same:
H0 : Mdn CSC = Mdn CAU
H1 : Mdn CSA <> Mdn CAU
The calculated p value is lower than the α chosen level (0.1), therefore we

conclude that there is statistical evidence that indicates that AU is more expen-
sive than SC.

6 Discussion

In this experiment we expected to find that the effectiveness of the AU technique
is higher than that of SC. However, this could not be proved statistically.

We found that both techniques had a very low effectiveness, the average of
SC being 15.2% and that of AU 14.2%. This effectiveness might be because the
students did not know how to apply the techniques well. This can become more
negative for the more complex technique, in this case AU. We are currently
carrying out a study to know, taking the test cases generated by the subjects as
a starting point, how far the subjects satisfy the prescription of the technique

13

65

they use. This study can help discuss the low effectiveness of both techniques in
our experiment.

On the other hand, as far as the cost analysis is concerned, we found what
we expected to find. The AU technique is more expensive that the SC technique.
As we consider the design and codification time of the test cases as the cost of
the technique, we can conclude that the AU technique is more complex to apply
than SC.

The AU technique presents a greater variability in the cost than the SC
technique. It could be thought from a practical point of view that the costs of
applying SC are kept more under control than the costs of applying AU.

However, this does not have to be so. Our ongoing study that studies the
compliance with the prescription of the technique by the subjects indicates that
those who apply SC normally comply with it while those who apply AU have
a great variability. This could explain the variability of costs; those who apply
AU correctly could be those subjects who have a high application cost. These
are assumptions under analysis at the moment.

7 Threats to Validity

There are various threats to the validity of this experiment. These make it im-
portant to replicate the experiment in order to know if the conclusions can be
generalized. Some of the threats that we consider most important are mentioned
below.

Only 14 subjects participated in the experiment. Thus, we can only use non-
parametric tests. It is necessary to replicate the experiment with more subjects
in order to generalize the findings.

The subjects are all undergraduate students. Although they are all advanced
students and they are carefully trained, they are not professionals in software
development. This might imply that the test cases generated could be “worse”
than those an expert could generate.

Only one program is used in the experiment. Therefore, the obtained results
may be due to the program’s special features and not to the techniques studied.
It is necessary to replicate the experiment with different types of programs in
order to generalize the findings.

The obtained results are only useful for SC and AU. Although in this exper-
iment both techniques show very low effectiveness (about 15%) this cannot be
generalized to the rest of white-box techniques. Future replications must consider
other white-box techniques and include black-box techniques.

8 Conclusions and Future Work

This article presents and empirical study that aims to find out more about the
effectiveness and cost of the SC and AU techniques. As regards the effective-
ness, we could not reject the null hypothesis; therefore we cannot say that one
technique is more effective than the other.

14

66 Chapter 4. Controlled Experiments to Evaluate Testing Techniques

As far as the cost is concerned, although the subjects taking part in the
experiment were few, we can say that the AU technique is more expensive than
the SC technique. It is on average 50% more expensive to execute.

It is necessary to make replications in order to generalize the findings due
to the different threats to the validity of this experiment. In fact, it would be
interesting to increase the number of subjects, vary the testing techniques and
have different programs to test.

If future replications of this experiment show the same result, we could say it
is convenient, concerning the cost-benefit relation of executing white-box tech-
niques, to use simple white-box techniques. The use of complex techniques such
as AU would not be worth while, since their cost is much higher and there are
no differences as regards effectiveness.

As far as future work is concerned, it is our intention to replicate this exper-
iment with the same type of subjects but a bigger number of them. This would
eliminate one of the threats to the validity that were mentioned. In a longer
period we would have more programs to test and finally we would add other
testing techniques.

A The Script

The script for white box testing used in the experiment is presented below. The
script describes the process to conduct the tests by the subjects. It entails three
phases: Preparation, Design and Execution.

Script for white box testing

Step Phases Description
1 Preparation

– Preparation activities for testing.

2 Design

– Design the test cases that satisfy the prescription of
the technique.

– Build the test cases in JUnit.
– Record the required data of the phase.

3 Execution

– Execute the designed test cases.
– Find the defects associated to the cases that produce

failures.
– Record the required data of the phase.

15

67

Script for the Preparation Phase

Preparation Phase: Carry out an initial check-out to guarantee that veri-
fication can be done.

Step Activities Description
1 Verify Files

– Verify that the source files are available.
– Verify that you have the Class Diagram.
– Verify that you have the Javadoc of the classes to test.
– Verify that you have the defect and times spreadsheet.

Script for the Design Phase

Design Phase: Make the design of the test cases satisfying the prescription
of the testing technique to apply. The cases must be designed according to the
bottom-up approach.
Step Activities Description
1 Define the

data test set – Record the starting time of the activity.
– Define for each method the set of input values that

satisfy the prescription of the technique.

2 Define the
expected
results

– Define the expected result (or expected behavior) for
each element of the set of input values and thus make
the test cases.

3 Debuggin

– Eliminate the test cases that cannot be executed (im-
posible paths, etc.). Check if the prescription is still
satisfied. In case it is not go back to step 1 trying to
satisfy it.

4 Codification
of test cases
in JUnit

– Codify all the designed test cases in JUnit.

5 Record of
finishing – Record the design finishing time

16

68 Chapter 4. Controlled Experiments to Evaluate Testing Techniques

Script for the Execution Phase

Execution Phase: Carry out the execution of the designed test cases. The
cases must be executed following the bottom-up approach.

Step Activities Description
1 Execute the

test cases – Execute the test cases

2 Analyze the
obtained
output

– If there was no failure the phase is finished

3 Find defects

– While there are test cases that produce a failure:
• Chose one of the cases that produce a failure.
• Find the defect in the program that produces the

failure.
• Execute step 4.
• Request the correction of the defect to the research

team.
• Run the test case again to confirm that the cor-

rection has been made properly by the research
team.

4 Defect
recording – For each defect found record the following data:

• General description of the defect. It is important
that the description is clear and accurate.

• Name of the file that contains the defect.
• Line in which the defect is. In case the defect is not

on a specific line record 0 (zero). Beware: if the file
that is being tested has been modified compared
to the original (because some defect has been cor-
rected), the line of the original file must be indi-
cated.

• Structure associated to the defect (i.e. IF,FOR,
WHILE, name of the method, etc).If the defect
has no associated line this field must be completed
necessarily.

• Starting line of the structure (mandatory if an as-
sociated structure is indicated).

17

69

References

1. Basili, V., Caldiera, G., Rombach, H.: Goal question metric approach. Encyclope-
dia of Software Engineering pp. 528–532 (1994)

2. Frankl, P.G., Weiss, S.N.: An experimental comparison of the effectiveness of
branch testing and data flow testing. IEEE Transactions on Software Engineer-
ing 19(8), 774–787 (1993)

3. Frankl, P.G., Weyuker, E.J.: An applicable family of data flow testing criteria.
IEEE Transactions on Software Engineering 14(10), 1483–1498 (1988)

4. Harrold, M.J., Rothermel, G.: Performing data flow testing on classes. SIGSOFT
Softw. Eng. Notes 19(5), 154–163 (1994)

5. Harrold, M.J., Soffa, M.L.: Interprocedual data flow testing. In: TAV3: Proceedings
of the ACM SIGSOFT ’89 third Symposium on Software Testing, Analysis, and
Verification. pp. 158–167. ACM, New York, NY, USA (1989)

6. Hutchins, M., Foster, H., Goradia, T., Ostrand, T.: Experiments on the effec-
tiveness of dataflow- and control-flow-based test adequacy criteria. In: Software
Engineering, 1994. Proceedings. ICSE-16., 16th International Conference on. pp.
191 –200 (16-21 1994)

7. Li, N., Praphamontripong, U., Offutt, J.: An experimental comparison of four unit
test criteria: Mutation, edge-pair, all-uses and prime path coverage. In: Software
Testing, Verification and Validation Workshops, 2009. ICSTW ’09. International
Conference on. pp. 220 –229 (1-4 2009)

8. Moreno, A., Shull, F., Juristo, N., Vegas, S.: A look at 25 years of data. IEEE
Software 26(1), 15–17 (Jan–Feb 2009)

9. Rapps, S., Weyuker, E.J.: Data flow analysis techniques for test data selection. In:
ICSE ’82: Proceedings of the 6th international conference on Software engineering.
pp. 272–278. IEEE Computer Society Press, Los Alamitos, CA, USA (1982)

10. Vallespir, D., Apa, C., De Len, S., Robaina, R., Herbert, J.: Effectiveness of five
verification techniques. In: Proceedings of the XXVIII International Conference of
the Chilean Computer Society (2009)

11. Vallespir, D., Bogado, C., Moreno, S., Herbert, J.: Comparing verification tech-
niques: All uses and statement coverage. In: Ibero-American Symposium on Soft-
ware Engineering and Knowledge Engineering. pp. 85–95 (2010)

12. Vallespir, D., Herbert, J.: Effectiveness and cost of verification techniques: Prelim-
inary conclusions on five techniques. In: Computer Science (ENC), 2009 Mexican
International Conference on. pp. 264–271 (2009)

13. Weyuker, E.: The cost of data flow testing: An empirical study. IEEE Transactions
on Software Engineering 16, 121–128 (1990)

14. Weyuker, E.J.: The complexity of data flow criteria for test data selection. Infor-
mation Processing Letters 19(2), 103–109 (1984)

18

70 Chapter 4. Controlled Experiments to Evaluate Testing Techniques

Chapter 5

Conclusions

In this Part the effectiveness and cost of the different testing techniques were
analyzed. In order to do this, two controlled experiments executed in the
School of Engineering of the Universidad de la República in Uruguay were
conducted during 2008 and 2009.

The techniques used in the experiment were: desktop inspection, equiv-
alence partitioning and boundary-value analysis, decision table, linearly in-
dependent path, multiple condition coverage, sentence coverage and all uses.
These techniques combine static and dynamic techniques, white and black
box techniques, as well as techniques based on control flow and data flow.

The subject attended training sessions as part of the experiment. The
aim of the training was that the subjects should learn the techniques and
apply them correctly. The final part of the training consisted in applying
the techniques on a small program. That is why the training could be
analyzed as an experiment in itself. After the training the subjects applied
the allotted technique on larger programs.

The effectiveness of all the techniques was low. None of the techniques
was more than 35% effective in any of the experiments (2008 and 2009)
considering both the application of the techniques on the small program
and on the big ones.

The effectiveness of all the techniques was lower when they were applied
on the programs of the experiment than when they were applied on the
training program. This is surely due to the fact that it is easier to find defects
in trivial programs than in complex ones. Conducting other experiments
combining a greater number of trivial programs with more complex ones
will provide us with more information to enable us to reject or accept this
hypothesis.

In the Experiment 2009 we used only one program and each subject ap-
plied only one technique. This differs from the design of the Experiment
2008 in which each subject applied three techniques on three different pro-
grams and a total of four programs were used. The 2008 experiment was

71

72 Chapter 5. Conclusions

the first controlled experiment in Software Engineering conducted in our
research team. The experiment lasted a little more than a year and it was
exhausting both for the subjects and the research team. The changes in the
design for the Experiment 2009 respond to a learning process in conducting
controlled experiments.

5.1 Relation to Other Results

In “Reviewing 25 years of testing technique experiments” [1] and in “A
look at 25 years of data” [2] the authors study the experiments conducted
to evaluate testing techniques (up to the date of the articles). These two
works present the existing empirical knowledge on the topic, problems found
and research opportunities in the area. We shall discuss the results of our
experiment in the light of these two articles.

In these two articles the authors detect that the majority of the software
programs used in the experiments “suffer from at least one of two problems:
they are small and unusually simple, or the researchers seeded the defects
rather than looking for naturally occurring ones”. In our experiments we
use 4 programs each of which is developed especially for the experiments.
These programs differ from the ones found in the experiment literature in
two aspects. First, the defects in the programs are not injected by the
researchers. Second, the programs are more real and more complex. This
way we try to solve the two problems mentioned.

The authors are more explicit as regards what the programs used in the
experiments are like: “They [the researchers] use relatively small programs,
between 150 and 350 LOC, which are generally toy programs and might not
be representative of industrial software”. The four programs used in our
experiments have the following number of lines of code: 468, 566, 828 and
1820. We believe that our programs are suitable for conducting unit testing
experiments as far as their size and complexity are concerned.

The authors also detect that “it seems that some types of faults are not
well suited to some testing techniques”. The trainings of the 2008 and 2009
Experiments show that the dynamic techniques have problems in finding
NF defects (defects that do not cause failures). Using EP and DT the
participants did not discover any of the NF defects. With MCC, AU and SC
only one NF defect is found. The reason for this is that dynamic techniques
are based on the execution of the program. So defects that do not produce
a failure are never sought directly. However, when a test case fails the tester
reviews the code to find the defect that produces the failure; in this review
the tester can find other defects, including a NF defect. Furthermore, in
the white box techniques the testers review the code thoroughly to develop
a group of test cases that satisfy the coverage that the assigned technique
requires; this is an opportunity to find defects. What this experiment shows

5.1. Relation to Other Results 73

is that the attention of the subjects concentrates only on the task they are
performing. It is difficult for them to detect defects while they are reviewing
the code for developing test cases using white box techniques and it is also
difficult for them to find a defect that is not provoking the failure that they
are trying to solve.

In the 2009 Experiment we did not find statistically valid differences
between the AU technique and the SC technique. The authors state in the
articles mentioned that “there does not appear to be a difference between
all-uses and all-edges testing as regards effectiveness from the statistical
viewpoint, as the number of programs in which one comes out on top of
the other is not statistically significant”. Given that all-edges is a more
demanding technique than SC it is reasonable to expect that if we did not
find statistically valid differences between the effectiveness of AU and SC,
differences will not be found between AU and all-edges either.

The authors also mention that from a practical point of view “all-edges
is easier to satisfy than AU”. Our results indicate with statistical validity
that the cost of using AU is higher than the cost of using SC (50% more
expensive). These results are consistent because in theory all-edges is more
expensive to execute than SC (however, we have not found experiments to
validate this).

The authors also state that the “boundary analysis technique appears
to behave differently compared with different structural testing techniques
(particularly, sentence coverage and condition coverage)”. In the Ex-
periment 2008, which uses the EP technique (equivalence partition and
boundary-value analysis), we do not find statistical evidence in the effective-
ness between EP and the structural MCC technique (it is worth mentioning
that it is the first time the MCC technique has been used in an experiment.)

However, we did find statistical difference in the effectiveness of EP and
the structural LIP technique; EP being more effective than LIP. It must
be borne in mind that the LIP technique was ruled out from the results
analysis of the training of the Experiment 2008 due to the fact that the
subjects probably used it in an incorrect way. In spite of the fact that the
LIP technique was explained again to the subjects to whom it was assigned,
we are uncertain as to how it was used in the 4 programs of the experiment.
Knowing if LIP was used properly requires an analysis of the data that has
not been done yet.

In the Experiment 2008 we used DT (the other black box technique
used). In this experiment there was no statistically valid difference between
the effectiveness of DT and the effectiveness of EP. However, the effectiveness
averages did present differences. DT was more effective than EP, both in
the training and in the experiment.

We have not found formal experiments that use DT in literature. Since
we obtained differences in the effectiveness averages between DT and EP it
seems interesting that the research community should conduct formal ex-

74 Chapter 5. Conclusions

periments that compare both techniques or even resort to using DT instead
of EP in their experiments as a “representative” technique of the black box
techniques.

In the two experiments we conducted we found a high variability between
the subjects that applied the same technique in the same program. This is
consistent with what was found in the review of 25 years of experiments:
“There appears to be a dependence on the subject as regards technique
application time”.

It is important to point out that we have no knowledge of other ex-
periments conducted in which the defects are corrected. The correction of
defects by the researchers during the experiment simulates better the testing
activity in the industry.

5.2 Contributions of the Research

Conducting formal experiments contributes to the empirical knowledge of a
certain area. Our experiments make a contribution in the area of empirical
software engineering and more specifically in the area of formal experiments
that try to evaluate software unit testing techniques.

We also made a contribution studying three testing techniques that had
not been studied before through formal experiments: MCC, LIP y DT.

The construction of 4 more complex programs than those used habitually
in the formal experiments of the area and having real defects (as opposed
to defects injected by the researchers) is a contribution to the material to
conduct formal experiments.

The way the experiment is conducted, making the correction of the de-
fects during the execution of the tests, is a novelty that can be incorporated
by the researchers of the field. It simulates the reality of software unit test-
ing in industry better. However, it is clear that this way of conducting
experiments requires more effort from the research team.

References

[1] Natalia Juristo, Ana M. Moreno, Sira Vegas. 2004. Reviewing 25 Years
of Testing Technique Experiments. Empirical Software Engeneering, 9, 1-2
(March 2004), 7-44.

[2] Natalia Juristo, Ana M. Moreno, Sira Vegas, Forrest Shull. 2009. A Look
at 25 Years of Data. IEEE Software, 26, 1 (January 2009), 15-17.

Part II

Methodological
Recommendations for

Controlled Experiments that
Evaluate Software Testing

Techniques

75

Chapter 6

Introduction

In this Part of the thesis entitled “Methodological Recommendations for
Controlled Experiments that Evaluate Software Testing Techniques” we
present a series of articles that complement in different ways the main line of
research of this thesis: the study of the effectiveness and the cost of different
testing techniques. In this introduction we show the relation between these
complementary works and the central investigation presented in Part I.

This part includes an article that presents and evaluates different tax-
onomies of software defects: “A framework to Evaluate Defect Taxonomies”.
The evaluation is done by means of a Comparison Framework we developed
as part of our research.

Several experiments that aim at knowing the effectiveness of testing tech-
niques segment the results by type of defect. They try to find out how effec-
tive a certain technique is for each type of defect. The article presented in
Part I, “Effectiveness of Five Verification Techniques” explains that ODC
taxonomy and the one proposed by Beizer are used to classify the defects.
However, due to the small number of observations the effectiveness data
discriminated by type of defect could not be analyzed. It is convenient to
know different taxonomies and to evaluate them to decide which to use in
future experiments.

Different research groups in different places in the world conduct for-
mal experiments in software engineering. In particular, many experiments
aim at knowing the cost and effectiveness of different testing techniques.
Normally these experiments are very difficult to compare or to add. The
article “Towards a Framework to Compare Formal Experiments” included
here presents a primary construction of a framework to compare, but above
all to identify, the most important items of a formal experiment the intention
of which is to evaluate different testing techniques.

The next article, “Construction of a Laboratory Package for a Software
Engineering Experiment”, presents a packaging experience of the Experi-
ment 2008. Packaging an experiment provides the possibility, among other

77

78 Chapter 6. Introduction

things, of replicating the experiment easily by different groups of researchers
(or more easily than if it was not packaged). Besides, packaging is also im-
portant since it provides with complete information of the experiment that
has been conducted. It is important to clarify that in the packaging of the
2008 Experiment I only collaborated supplying information about the ex-
periment and reviewing the article mentioned before. In other words, the
main research work was carried out by the rest of the authors and not by
me.

The article “Calidad de los Datos en Experimentos en Ingenieŕıa de
Software. Un Caso de Estudio” [Quality of the data in Software Engineering
Experiments. A Case Study] presents a study on the quality of the data of
the Experiment 2008. This article is presented in Spanish.

Chapter 7

Methodological
Recommendations for
Controlled Experiments that
Evaluate Software Testing
Techniques

The articles included in this chapter are:

A Framework to Evaluate Defect Taxonomies
Diego Vallespir, Fernanda Grazioli and Juliana Herbert
Proceedings of the Argentine Congress of Computer Science 2009, pp. 643-
652, San Salvador de Jujuy, Argentina, October, 2009.

Towards a Framework to Compare Formal Experiments that Eval-
uate Testing Techniques
Diego Vallespir, Silvana Moreno, Carmen Bogado and Juliana Herbert
Research in Computing Science, pp. 69-80, ISSN 1870-4069, 2009.

Construction of a Laboratory Package for a Software Engineering
Experiment
Cecilia Apa, Mart́ın Solari, Diego Vallespir and Sira Vegas
Proceedings of the Ibero-American Conference on Software Engineering, pp.
101-114, Rio de Janeiro, Brazil, April 2011.

Calidad de Datos en Experimentos en Ingenieŕıa de Software: Un
Caso de Estudio
Carolina Valverde, Adriana Marotta and Diego Vallespir
Submitted to a Conference. Article in Spanish.

79

80 Chapter 7. Methodological Recommendations

81

ARTICLE

A Framework to Evaluate Defect Taxonomies

Diego Vallespir, Fernanda Grazioli and Juliana Herbert

Proceedings of the Argentine Congress of Computer Science 2009,
pp. 643-652, San Salvador de Jujuy, Argentina, October, 2009.

82 Chapter 7. Methodological Recommendations

A Framework to Evaluate Defect Taxonomies

Diego Vallespir1, Fernanda Grazioli1, and Juliana Herbert2

1 Instituto de Computación, Facultad de Ingenieŕıa
Universidad de la República, Montevideo, Uruguay.

2 Herbert Consulting
Porto Alegre, RS, Brazil.

dvallesp@fing.edu.uy , fgrazioli@adinet.com.uy,

juliana@herbertconsulting.com

Abstract. This paper presents a framework for evaluate and compare
different defect taxonomies. Six well-known taxonomies are evaluated
with it and the results are showed. We found deficiencies in every tax-
onomy once they are evaluated with the framework.

Key words: Software engineering, Software verification and validation,
Defect taxonomies

1 Introduction

There are different reasons for using defect taxonomies. In software development
they can be used to know which defect types are normally injected, improv-
ing both the verification activity and the software development process. Defect
taxonomies have been used in many ways in empiric software engineering (ESE).

Knowing what defect types are injected, allows to look for them in a partic-
ular way. So, the verification activity could take less time and find more defects.
For example, if 90% of the defects are in the requirements specification, it is pos-
sible to thoroughly verify this specification and reduce the time used in verifying
other software products. In other words, to guide the verification considering the
knowledge about the defects that are injected.

Also, the classification of defects gives an idea of the phases, activities, dis-
ciplines, etc. of the development process where most of the defects are injected.
With this data the software development process can be improved by reducing
the quantity of defects injected during the development.

For example, in ESE the defect taxonomies have been used to study the
impact that different verification techniques have on different defect types. The
goal is to know if different verification techniques find different defect types.
By knowing this it can be possible to optimize the combination of different
verification techniques in order to maximize the number of defects found.

Not only these reasons but many others that have not been exposed here
show the importance of defect taxonomies in software development and in ESE.
Unfortunately, there is not an universally used taxonomy, neither in software

83

development nor in ESE. This situation causes a lot of problems, for example,
it is difficult or even impossible to compare some results between researchers.

A wide variety of taxonomies exists on the industry and in the literature. It
is important to compare them from different points of view, trying to identify
strengths and weaknesses of each one.

In this paper we analyze the most important taxonomies we found: Hewlett-
Packard Taxonomy [1], Kaner, Falk and Nguyen’s Taxonomy [2], Robert Binder’s
Taxonomy [3], IEEE Standard Classification for Software Anomalies [4], Orthog-
onal Defect Classification [5] and Beizer’s Taxonomy [6]. Due to space reasons
the taxonomies are not presented so we must assume they are known.

The paper is organized as follows. Section 2 presents a meta-taxonomy. A
framework for the taxonomies comparison is presented in section 3. The tax-
onomies’ comparison is presented in section 4. Section 5 presents the conclusions
and the future work.

2 Meta Taxonomy

There is a lack of literature on meta taxonomies. We developed our comparison
framework based on a previous work of Freimut [7]. From section 2.1 to 2.3
the Freimut proposal is presented. This proposal is divided in different aspects:
attributes3, structure types and properties.

Section 2.4 presents a taxonomy classification proposed in [8].

2.1 Attributes

A taxonomy is composed of attributes. Each attribute has a set of possible
values. The values represent defect characteristics that must be registered at the
classification moment.

The attributes to be considered must be those that are relevant to a future
analysis. The attributes proposed by Freimut are listed below.

Location It refers to where the defect is located. The amount of detail in the
specification may vary either indicating the system’s high level entity on
which the defect is found (Design, Code) or indicating the name of the
software product it belongs to.

Timing It refers to the project’s phase in which the injection, detection and/or
correction of the defect is produced.

Symptom It refers to what it is observed when a failure is generated or to a
description of the activity that is causing the failure.

End Result It refers to the description of the failure caused by the defect. This
attribute usually contains values such as performance and usability among
others.

Mechanism It refers to how the defect was injected, detected and/or corrected.

3 In the original they are called key elements

84 Chapter 7. Methodological Recommendations

Cause (Error) It refers to the human error that caused the injection of the
defect (communication, lack of time and others).

Severity It refers to how serious the defect or failure is.
Cost It refers to the time and effort devoted to finding and/or correcting a

defect.

Sometimes, the difference between symptom and end result is not clear.
Symptom refers to what it is observed, maybe without knowing what is re-
ally happening, when a failure occurs. On the other hand, end result refers to
what it really happens when the failure occurs.

For example, a simple error message could be a symptom of a failure. Once
the defect (that causes the failure) is found it can be known the real extent of
the effects of the failure (end result). For example, the database is corrupted and
a error message is shown (the same one as in the symptom).

2.2 Structure Types

The existing relationships between the attributes in a taxonomy determine its
structure type.

One of the possible structures is a hierarchy. The values of an attribute in a
certain level are refined by values of attributes in the next level of the hierarchy.
An example is Beizer’s taxonomy [6].

A tree is another structure in which the attributes are not independent. The
choice of a value in an attribute determines the possible values of the following
attributes.

Another possible structure is the orthogonal in which values of each attribute
are assigned independently of the other attributes. An example of this is the ODC
taxonomy [5].

Another structure is the semi-orthogonal. There is no dependence among
some attributes while among others the choice of a value determines the possible
values of another attribute. The HP taxonomy [1] is an example of this.

2.3 Properties

If a taxonomy is not properly defined, problems may arise in order to get correct,
reliable and good quality results. Therefore, the analysis of the results may be
questionable. To avoid these problems, it is desired that taxonomies include the
following requirements and properties.

Mutually exclusive attribute values When choosing the value of an attribute,
only one value is appropriate.

Orthogonal attributes As it was previously explained, orthogonality refers to
the independence between attributes.

Complete attribute values The set of values must be complete for each at-
tribute. This means that when classifying an attribute for a given defect it
is possible to choose an appropriate value for it.

85

Small number of attribute values The set of possible values for each at-
tribute should not be very big. Having a small set of values not only makes
the classification process simpler but also makes it less probable of mistakes.
However, if the taxonomy is meant for a thorough analysis, it is possible
that a bigger set of values may be needed in order to achieve an adequate
precision in the results.

Description of attribute values It is important that all the possible values
are defined clearly and stated with examples of defects that classified under
that value.

2.4 Taxonomy Classification

In [8], it is presented a classification of what they call defect classification sys-
tems. These are divided in three categories: defect taxonomy, root cause analysis
and defect classification.

The defect taxonomies are defects types categorizations. An example is the
Beizer’s taxonomy.

In root cause analysis not only defects are analyzed, but also their cause.
The main goal is to identify the roots of these causes and eliminate them in
order to avoid more defects. This approach is considered rather elaborated, so
the cost/benefit relation is not clear. There are proposals for this in [9] and [10].

The defect classification uses multiple dimensions to classify defects. The goal
is to reduce the costs and maintain the benefits of root cause analysis. Examples
of this are ODC, HP and IEEE taxonomies.

In this paper we use the term taxonomy for any of these classification sys-
tems.

3 Comparison Framework

In this section it is presented our comparison framework. The best way to evalu-
ate taxonomies in a correct and coherent way is to build a framework in which the
characteristics, strengths and deficiencies of each taxonomy can be objectively
and evenly evaluated.

Freimut also made an interesting comparison since he evaluates the attributes
of various taxonomies, including HP, IEEE and ODC. However, as taxonomies
can also be evaluated by their properties it is not enough to achieve our goal.
Besides, this comparison does not include all the taxonomies evaluated here nor
is completely coherent with its definitions.

In order to reach the objective of carrying out a complete and correct the-
oretical balance, we propose the development of a comparison framework. The
framework will consist of two views: Attribute and Property.

The Attribute view takes Freimut’s proposal as the main idea, which is
modified in the framework by the addition of more specific attributes. The target
of this view is to evaluate the capacity of a taxonomy to describe defects. The
description of each attribute of the framework is as follows. The original name

86 Chapter 7. Methodological Recommendations

of those which derive from Freimut’s proposal appears between brackets at the
end of the description. Otherwise appears “new”.

Suspected location It refers to the place where the defect is suspected to be.
(Location)

Real location It refers to the place where the defect really is. (Location)
Failure’s causing phase It refers to the project phase in which occurs the

failure. (Timing)
Injection’s phase It refers to the project phase in which the defect is injected.

(Timing)
Symptom It refers to what is observed when the failure occurs. (Symptom)
Type It refers to the defect type that was detected. (New)
Failure’s causing mechanism It refers to the activity that drives to the fail-

ure. (Mechanism)
Injection’s mechanism It refers to how the defect was injected. (Mechanism)
Correction’s mechanism It refers to the activity that corrected the defect.

(Mechanism)
Failure’s impact It refers to the impact the failure has on the product when

the failure occurs. (End result)
Defect’s impact It refers to the impact the defect has on the project. (End

result)
Cause (Error) It refers to the human error that caused the defect’s injection.

(Cause)
Responsible source It refers to where the product (in which the defect was

injected) was developed (In house, external, etc.). (New)
Re-correction It refers to whether or not the defect was introduced when fixing

a previous defect. (New)
Occurrence’s Probability It refers to the estimated odds in favour of the

failure to occur. (New)
Severity It refers to how serious the failure is. (Severity)
Priority It refers to how fast the defect has to be corrected. (New)
Detection’s cost It refers to the time consumed in the detection of the defect

after the failure appeared. (Cost)
Estimated cost of correction It refers to the estimated time its correction

will take. (Cost)
Real cost of correction It refers to the time consumed in the defect’s correc-

tion. (Cost)

The Property view, is based on the desired properties proposed by Freimut
including as well other properties that we believe are necessary and useful. Below
are described the properties that have not been previously presented and the
possible set of values for each one.

Quality of attribute value’s description It refers to expressing what level
of quality the descriptions of the attributes’ values have. For this property
there are no possible values defined, therefore the existing quality level for
each taxonomy must be expressed.

87

Quality of attribute value’s examples It refers to expressing what level of
quality the examples of attributes’ values have. The possible values for this
property would be “Good”, “Bad” or “No examples contained”.

Classification It refers to the way of classifying taxonomies according to [8].
The possible values for this property would be “Defect taxonomy”, “Root
cause analysis” or “Defect classification”.

Structure It refers to the structure of the taxonomy. The possible values for this
property would be “Hierarchical”, “Tree”, “Orthogonal” or “Semi-Orthogonal”.

Generality’s level It refers to the capacity of a taxonomy to be applied in
different software projects or processes. The possible values for this property
would be “Specific” (can be applied only for particular software), “Interme-
diate” (can be applied only in a phase of software development) or “Generic”
(can be applied in any phase of the development process).

Adaptability It refers to the capacity of expansion and modification of the tax-
onomy depending on the requirements. The possible values for this property
would be “Adaptable”, “Adaptable with terms” or “Non adaptable”.

Learning time It refers to the time it takes to learn how to use certain taxon-
omy. The possible values for this property would be “High”, “Medium” or
“Low”.

Classification time It refers to the time it takes to classify a defect in a tax-
onomy after knowing how to use it. The possible values for this property
would be “High”, “Medium” or “Low”.

The properties proposed in section 2.3 and the possible set of values for each
one are listed below.

Mutually exclusive attribute values “Yes” or “No” are the possible values
for this property.

Orthogonal attributes The possible values for this property would be “Yes”,
“No” and “Does not apply”. The last value applies only when the taxonomy
is composed by one attribute.

Complete attribute values The possible values for this property would be
“Yes”, “Aparent” and “No”.

4 Comparison

The way the attribute view should be used is as follows: for each attribute in the
view, look for a corresponding attribute in the taxonomy under evaluation. Table
1 shows the evaluation of the six taxonomies against the framework’s attribute
view. It is observed that the only attribute included in all taxonomies, is the
defect type.

Binders, Kaner, Beizer an HP classify the defect only when it has been de-
tected. ODC and IEEE carry out the classification once the failure occurs and
also after the defect is detected. IEEE also carries out the classification once the
defect is corrected and when the tracking of the defect is finished.

88 Chapter 7. Methodological Recommendations

Table 1. Taxonomies’ comparison against the Attribute view

Attribute HP Kaner Binder IEEE ODC Beizer

Suspected loca-
tion

Suspected Cause

Real location Origin Source, Actual
Cause

Target

Failure’s causing
phase

Project Phase

Injection’s phase

Symptom Symptom, Prod-
uct Status

Type Type Type Type Type Type Type

Failure’s causing
mechanism

Project Activity Trigger, Activity

Injection’s mecha-
nism

Mode Type Qualifier

Correction’s
mechanism

Corrective Ac-
tion, Resolution

Failure’s impact Customer value,
Mission/Safety

Impact

Defect’s impact Project Cost,
Project Qual-
ity/Reliability,
Project Risk,
Societal

Cause (Error)

Responsible
source

Source, Age

Re-correction Age

Occurrence’s
Probability

Repeatability

Severity Severity

Priority Priority

Detection’s cost

Estimated cost of
correction

Project Schedule

Real cost of cor-
rection

We can observe that there are attributes of the framework that are not con-
templated in any of the taxonomies. The following presents each of them and
the reasons for the addition in the framework.

Injection phase It is interesting to register the phase in which the defect is
injected because that information can be used to prevent the injection from
similar defects in future projects.

89

Cause (Error) It is interesting to register which was the human error that led
to the defect. By being aware of the problem, defects in future projects can
be avoided. Some results of root cause analysis studies give possible values
for this attribute. For example, in [9], a Cause attribute is proposed with
the values Education, Communication and Tools. In [10] an attribute that
captures different types of causes is proposed: Human causes, Project causes,
Revision Causes.

Detection’s cost It is interesting because a costs’ analysis could be made de-
pending on the different defect types. This allows to estimate changes in the
project’s schedule.

Real cost of correction Such as the detection’s cost, its registration is inter-
esting for a future analysis of costs.

Table 2 presents the comparison of the six taxonomies against the frame-
work’s property view.

In HP, Kaner, IEEE and ODC taxonomies the values for an attribute are
mutually exclusive. However, in Binder and Beizer’s taxonomies, the set of values
for an attribute does not present this property, which can generate inconsistent
data since a defect could be classified in different ways.

Observing the orthogonality of attributes, this property is not classified by
Kaner, Binder or Beizer’s taxonomies because these constituted of only one at-
tribute. For IEEE and ODC, this property is fulfilled since the value of each
attribute is completely independent of the values of the other attributes. How-
ever, for HP this does not apply because the values of the Type attribute depends
on the value chosen for the Origin attribute.

The property of having a complete set of attribute values is a difficult one to
demonstrate. The Beizer is the only taxonomy that fulfills this property due to a
special value that means “others”. This value is used when a defect characteristic
does not correspond to any of the other values.

Regarding the quality of the descriptions and examples of the values of an
attribute, a variation among the different taxonomies is observed. Anyhow, the
HP, IEEE and ODC taxonomies can be grouped under a level of good quality
since they present complete and clear descriptions, also they include concise
examples. On the other hand, Kaner, Binder and Beizer’s taxonomies can be
grouped under a level of bad quality given their attributes are ambiguous or
incomplete and they do not have descriptions or examples.

Regarding the learning time, the taxonomies that are considered easily un-
derstandable were grouped with “Low”, either because of the clarity and no am-
biguity of its presentation, and/or because the taxonomies have a small amount
of attributes. The taxonomies presented by Binder and Beizer were tagged with
a “High” value. Although they are composed by only one attribute, many pos-
sible values exist for it. This, added to vague descriptions and examples of poor
quality, result in a longer learning time than the other group. The taxonomy
presented by IEEE is also considered to have “High” learning time because it
contains such a large amount of attributes that they have to be studied and
understood.

90 Chapter 7. Methodological Recommendations

Table 2. Taxonomies’ comparisons against the Property view

Property HP Kaner Binder IEEE ODC Beizer

Mutually
exclusive
attribute
values

Yes Yes No Yes Yes No

Orthogonal
attributes

No Does not
apply

Does not
apply

Yes Yes Does not
apply

Complete at-
tribute values

Aparent Aparent Aparent Aparent Aparent Yes

Quality of at-
tribute value’s
description

Good:
clear de-
scriptions,
no ambigu-
ities

Bad: not
all val-
ues are
explained

Values
are not
described

Good:
clear de-
scriptions,
no ambigu-
ities

Good:
clear de-
scriptions,
no ambigu-
ities

Bad: su-
perficial
description,
ambiguous
in some
cases

Quality of at-
tribute value’s
examples

Good No ex-
amples
contained

No ex-
amples
contained

Good Good Bad

Classification Defect
classifica-
tion

Defect
Taxonomy

Defect
Taxonomy

Defect
classifica-
tion

Defect
classifica-
tion

Defect Tax-
onomy

Structure Semi-
Orthogonal

Does not
apply

Does not
apply

Orthogonal
and Hier-
archical

Orthogonal Hierarchical

Generality’s
level

Generic Generic Specific Generic Generic Generic

Adaptability Adaptable Adaptable Adaptable Adaptable Adaptable Adaptable

Learning time Low Low High High Low High

Classification
time

Low Low High High Low High

The proposed reasoning for the time of classification is analogue. Those tax-
onomies, with no ambiguous descriptions, good examples and/or few attributes
to classify, are grouped under the value “Low”. The taxonomies with higher
amount of attributes as well as those that are not clearly defined or exemplified,
take a longer time for the user to classify because of a lack of certainty among
two or more values, are considered to have a “High” time of classification.

It is clear that classifying time as “High”, “Medium” or “Low” is subjective,
with the connotations that it implies. In the future, an average of the times of
learning and classification could be calculated for each taxonomy, and then be
able to formulate a better comparison, more representative of the reality.

It is observed that the amount of attributes, the quality of the descriptions’
values of the attributes and the quality of the examples presented in each tax-
onomy; significantly influence both the learning and the classification times of
the taxonomy.

91

5 Conclusions

We developed and presented an original comparison framework for defect tax-
onomies. This framework extends and improves Freimut ideas. It contains two
relevant views: attribute and property. The first view is useful to evaluate those
defects’ characteristics that are considered for a given taxonomy. The second
view is useful to evaluate desired properties each taxonomy should have.

Using the framework we evaluate and compare six well-known taxonomies.
The results show that each taxonomy considers different characteristics of a de-
fect. Some of them are more complete, from an attribute point of view, than
others. However, those less complete have a bigger set of values for their at-
tributes, for example, Beizer and Binder. The analysis also shows that there are
differences in the properties among the taxonomies.

As a future work it is important to: analyze the impact of whether having
or not a specific framework’s attribute in a taxonomy, analyze the values pro-
posed in each taxonomy for each attribute, analyze if different test levels (unit,
integration, system) require different taxonomies and finally analyze the way
taxonomies have been used in the industry. We are currently working on these
last two points.

References

1. Grady, R.B.: Practical Software Metrics For Project Management and Process
Improvement. Hewlett-Packard (1992)

2. Kaner, C., Falk, J., Nguyen, H.Q.: Testing Computer Software (2nd. Edition).
International Thomson Computer Press (1999)

3. Binder, R.V.: Testing Object-oriented Systems Models, Patterns, and Tools.
Addison-Wesley (1999)

4. IEEE: IEEE 1044-1993 Standard Classification for Software Anomalies. Institute
of Electrical and Electronics Engineers (1993)

5. Chillarege, R.: Handbook of Software Reliability Engineering. IEEE Computer
Society Press, McGraw-Hill Book Company (1996)

6. Beizer, B.: Software Testing Techniques, Second Edition. Van Nostrand Reinhold
Co. (1990)

7. Freimut, B.: Developing and using defect classification schemes. Technical report,
Fraunhofer IESE (2001)

8. Wagner, S.: Defect Classifications and Defect Types Revisited. Technische Uni-
versitt Mnchen (2008)

9. Mays, R.G., Jones, C.L., Holloway, G.J., Studinski, D.: Experiences with defect
prevention. IBM SYSTEMS JOURNAL (1990)

10. Leszak, M., Perry, D.E., Stoll, D.: A case study in root cause defect analysis.
Proceedings of the 22nd international conference on Software engineering (2000)

92 Chapter 7. Methodological Recommendations

93

ARTICLE

Towards a Framework to Compare Formal Experi-
ments that Evaluate Testing Techniques

Diego Vallespir, Silvana Moreno, Carmen Bogado and Juliana
Herbert

Research in Computing Science, pp. 69-80, ISSN 1870-4069, 2009.

94 Chapter 7. Methodological Recommendations

Towards a Framework
to Compare Formal Experiments
that Evaluate Testing Techniques

Diego Vallespir1, Silvana Moreno1,
Carmen Bogado1, and Juliana Herbert2

1 Instituto de Computación, Facultad de Ingenieŕıa
Universidad de la República, Montevideo, Uruguay.

2 Herbert Consulting
Porto Alegre, RS, Brazil.

dvallesp@fing.edu.uy , {silvanamoren, cmbogado}@gmail.com,
juliana@herbertconsulting.com

Abstract. There are many formal experiments to evaluate the perfor-
mance of different software testing techniques. The first we know about
is from 1978 [1].The most recent one is currently under execution and
some initial results have already been obtained [2]. Having a compari-
son framework of experiments is necessary in order to be able to formally
compare them and make progress on the construction of new experiments
based on previous ones. This paper presents a comparison framework and
four known formal experiments are compared.

1 Introduction

It is normal to use a hammer to hammer a nail into a wall. There are many
types of hammers but it is easy to choose one and even more, a lot of hammers
do the same job. It is normal to use a software testing technique to verify a
software unit. Unfortunately, it is not known which one to choose nor if different
techniques perform the same way for the same task.

The performance of each technique (cost, effectiveness and efficiency) has to
be known at the time of choosing a testing technique. But to obtain this kind of
knowledge is not easy given the variability of their performance, which depends
on the subject that applies it, the programming language and the application
type that is being tested (information system, robotics, etc). Some advances have
been made but there is still a long way to go.

There are many formal experiments to study the performance of different
software testing techniques. The first we know about is from 1978 [1]. The most
recent one is currently under execution and some initial results have already
been obtained [2].

Many years of empiric investigation in the subject have gone by though there
are not definite results yet. In A look at 25 years of data, the authors have reached
the same conclusion after studying various experiments on software testing [3].

c©A. Buchmann (Ed.)
Advances in Computer Science and Applications.
Research in Computer Science 43, 2009, pp. 69-80

95

70 Vallespir D., Moreno S., Bogado C. and Herbert J.

Also, they found that it is really difficult to compare different experiments,
however, they do not present any solution to it.

Having a comparison framework of experiments is necessary in order to be
able to formally compare them and make progress on the construction of new ex-
periments based on previous ones. This paper presents a comparison framework
and takes four known formal experiments as example: [4], [5], [6], [7].

2 Comparison Framework

In this section we present what we consider the most relevant characteristics to
make a comparison of formal experiments to evaluate testing techniques. First
of all, it is interesting to compare the goals to know in which aspects and up to
which level the experiments can be compared. In second place, it is possible to
identify the chosen factors for the experiment and the alternatives for each one.
These are also compared together with the identification of the set of parameters
in each experiment.

As subjects are a basic component in Software Engineering experiments, it
is interesting to compare their main characteristics such us experience, abilities
and motivation.

Given the experiments to be compared refer to the application of testing
techniques, it is relevant to compare particular aspects of this kind of experi-
ments, for example: the defect classification used, the size, and language of each
program together with their number of defects. Making a comparison focused
on the chosen design for each experiment is of main importance. This includes
the time the experiment takes, the distribution of the subjects, the guidelines
followed for the assignment of the set of techniques and programs, the division
of the experiments into sessions, the number of unitary experiments in which
each subject participates, etc. A comparison of the way in which each design
is applied, thus, the process followed in each experiment, is also made. The re-
sponse variables chosen by the authors of the different experiments are identified.
Finally, the similarities and differences between the conclusions are studied.

3 Articles Comparison.

In this section we make a comparative analysis using the framework presented
in the previous section along with some known experiments conducted by, Basili
and Selby (B-S) [4], Kamsties and Lott (K-L) [5], Macdonald and Miller (M-M)
[6], and Juristo and Vega (J-V) [7].

Every experiment have a goal in common, which is to evaluate both the
efficiency and effectiveness of verification techniques meant for defect detection.
In order to conduct that evaluation the subjects must execute a series of testing
techniques on programs or fractions of code.

B-S carried out an experiment in 1987, later, in 1995 K-L carried out another
basing on the preceding from B-S. However, it is far from being a replication as

96 Chapter 7. Methodological Recommendations

Towards a Framework to Compare Formal Experiments . . . 71

they differ on the language used as well as on the verification process as they
incorporated defect detection once the failures were found. In 1997 M-M carried
out a new experiment, though it varies from B-S’s and K-L’s ones. Finally, in
2001, J-V conducted a first experiment basing on B-S’s and K-L’s ones, and a
second experiment basing on the same experiments as before and the experienced
gained due to their first experiment.

The factors considered in each experiment are listed below in Table 1.

Table 1. Factors

Factor B-S K-L M-M J-V(1) J-V(2)

Technique
√ √ √ √

Program
√ √ √ √ √

Subjects experience
√

Application order
√

Defect type
√ √

Inspection Method
√

Program version
√

In the studies B-S, K-L and J-V conducted, the same testing techniques are
used as alternatives to the technique factor, these are: code reading, functional
testing and structural testing. The authors M-M apply the code reading tech-
nique with two different approaches: inspections based on paper and inspections
based on software tools. Not only they have in common the technique, but also
they have in common the program as a factor. Each experiment has also factors
that differ from the ones in the other experiments: B-S consider the experience
of the subjects, K-L the order in which the techniques are applied, M-M the
inspection method, J-V consider the defect type in both experiments, and in the
last one add the program version.

The parameters considered in each experiment are shown in Table 2.

Table 2. Parameters

Parameter B-S K-L M-M J-V(1) J-V(2)

Language
√ √ √ √ √

Program size
√ √ √ √ √

Defects
√ √ √ √ √

Subjects
√ √ √ √

Every experiment sets its parameters, such us the program size, the language
in which these are programmed and their defects. Subjects are considered as
parameter by K-L, J-V y M-M, while for B-S they are a factor, given the different
levels of experience in their design.

97

72 Vallespir D., Moreno S., Bogado C. and Herbert J.

The characteristics of the programs used in the experiments are presented in
Table 3.

Table 3. Characteristics of the programs

Characteristics B-S K-L M-M J-V(1) J-V(2)

Quantity of pro-
grams

4 3 2 4 3

Program size(LOCS) 169, 145, 147
y 365

set of func-
tions from 10
to 30

147 and
143

200 200

Quantity of defects 34 in whole not specified 12 for each
program

9 for each
program

7 for each
program

Language Fortran and
Simpl-T

C C++ C C

All the programs to be tested are considered small in every experiment (con-
tain less than 500 LOCS); the development language used by K-L and J-V is C,
by M-M is C++ and the one used by B-S is Fortran and Simpl-T. The number
of defects in J-V’s first experiment is 9, and in the second one is 7, while in
M-M’s is 12. In those experiments the number of defects is the same for every
program. The four programs used by B-S differ on their quantity of defects, a
total of 34. In the case of K-L, the number of defects is not specified.

The main characteristics of the subjects are presented in Table 4.

Table 4. Characteristics of the subjects

Characteristics B-S K-L M-M J-V(1) J-V(2)

Quantity 74 50 43 196 46

Experience 8 advanced,
24 interme-
diate, 42
junior

only one
level con-
sidered

only one
level con-
sidered

only one
level con-
sidered

only one
level con-
sidered

Experience level Students from
the University
of Maryland,
Programming
professionals
from NASA
and Sciences
Corporation

3rd and
4th grade
students

3rd grade
students

5th grade
students

5th grade
students

The studies level as well as the experience of the subjects vary greatly from
experiment to experiment. In B-S’s experiment, subjects with different levels of
experience (advanced, intermediate and junior) are chosen in order to be repre-

98 Chapter 7. Methodological Recommendations

Towards a Framework to Compare Formal Experiments . . . 73

sentative of different levels of knowledge of reality. While in K-L’s the subjects
are students in third and fourth year from the University of Kaiserslautern. They
have some experience in C, but even so, they have a previous training in the us-
age of techniques and language. This previous training is also put into practice
in both J-V’s experiments, who choose inexperienced students in the fifth year
from the Computer Sciences School, Polytechnic University of Madrid. The sub-
jects involved in M-M’s experiment are in the third year of the career, have a
solid basis on Scheme, C++ and Eiffel programming, are highly motivated by
the experience given it is associated with a major class project and therefore
they are graded on their work.

Some design decisions related to each experiment are shown in Table 5.

Both B-S and K-L used the same classification scheme for defects, J-V a sub-
classification from that scheme while M-M did not classified any defect found.
The scheme used is that proposed in Basili’s article, in which defects are clas-
sified as omission and commission at a first level. The commission defects are
those which appear as a result of an incorrect segment of existing code. Omission
defects are those which result when the programmer omits including an entity.
Besides, the classification system is divided to distinguish the defect types: ini-
tialization, calculation, control, interface, data and cosmetics. According to the
designs, all the authors decide to make a training prior to the experiment in order
to present the subjects with the techniques to be used. The B-S’s experiment is
divided in 5 sessions. The first one is training, the following three consist of the
experiment itself and a follow-up session. K-L’s and M-M’s experiments consist
of two experiment sessions after a training phase. J-V organize the experiment
in five sessions: the training session and four execution ones. All through B-S’s
experiment four programs are used, but in each session three out of the four
are tested, thus there is a combination of programs never tested. In the case of
K-L’s, M-M’s and J-V’s experiments all the programs are tested in every ses-
sion. In K-L’s are three programs, in M-M’s two, and four and three in J-V’s
experiments, respectively.

Table 6 presents the characteristics of the process followed in each experi-
ment.

The total number of subjects in B-S’s experiment is 72, divided in: 8 ad-
vanced, 24 intermediate and 42 junior. At the same time they are organized as
follows: 29 in the first session, 13 in the second and 32 in the third one. In the
first two sessions only subjects with intermediate and junior levels participate,
while in the third session advanced subjects are also involved. In K-L’s fewer
subjects are involved: 27 in the first session and 23 different subjects in the sec-
ond one. The number of subjects in M-M’s experiment is close to K-L’s: 43. In
this case they are organized in two sessions: 22 and 21 subjects respectively. At
the same time they are divided in working groups: six groups of three subjects
and one of four in the first session, and seven groups of three subjects in the
second one. The total number of subjects in J-V’s first experiment rises to 196,
organized in 8 groups of 12 subjects (four groups apply structural techniques
and the other four apply functional techniques), and four groups of 25 subjects

99

74 Vallespir D., Moreno S., Bogado C. and Herbert J.

Table 5. Design decisions

Exp Techniques Defect classification Response variables

B-S Functional testing,
Structural testing
and Code reading

Defined by Basili Number and percentage of de-
fects detected, total time of
detection and defect detec-
tion rate. For functional testing
and Structural testing: num-
ber of executions, CPU time
consumed, maximum coverage
of sentences obtained, time of
connection used, number and
percentage of defects observ-
able from the data, and per-
centage of defects observable
from the data that are actually
found by the subjects.

K-L Functional testing,
Structural testing
and Code reading

Defined by Basili. Each time motivation. Lan-
guage abilities. Working time.
Abilities applying defect detec-
tion techniques. Time spent on
each step. Number of failures
revealed. Number of failures
observed. Total number of de-
fects detected. Number of de-
fects detected by chance. Num-
ber of defects detected by ap-
plying the techniques.

M-M Code Reading Does not classify For each subject and group the
number of defects correctly de-
tected and the number of false
positives are registered. The
gains and losses on inspections
made in groups. Frequency of
detection for each defect, both
on the inspections based on pa-
per and on the tool based ones.

J-V(1) Functional testing,
Structural testing
and Code reading

Subclassified by
Basili (types consid-
ered: initialization,
control and cosmet-
ics)

For each defect number of sub-
jects that generate a test case
able to detect the defect.

J-V(2) Functional testing,
Structural testing
and Code reading

Idem experiment 1 Number of subjects that gener-
ate a test case able to detect
the defect.

(apply code reading). In the second experiment the subjects are 46, divided in
six groups from 7 to 8 subjects.

100 Chapter 7. Methodological Recommendations

Towards a Framework to Compare Formal Experiments . . . 75

In the process followed by Basili, three out of the four programs are used
in each phase, and every subject uses the three techniques and tests the three
programs. In each phase every subject tests the same program on the same day.
The K-L’s experiment consists of two internal replications, for which three days
of a week are settled. Each day a different program is tested by applying the
three techniques. The first day participate 23 students, the second 19 and the
third day 15. The inspection process of M-M’s experiment takes two sessions. The
first session is of individual detection and the second is when the consolidation is
achieved after working in groups. The experiment is conducted for a period of 10
weeks. During the first six weeks the students are trained. During the remaining
four the experiment is performed. The inspection consists of inspecting the source
code using a check list, considering the specification of the program.

In M-M’s every subject applies both inspections and works on the two pro-
grams. In J-V’s first experiment a session is carried out each day using one
program, and each of the three groups execute a different technique from the
three possible ones. The intention of J-V’s design is to eliminate the validity
threat of the learning, while for K-L the intention is to minimize this threat
by assigning the subjects each technique and program only once. In the second
experiment of J-V the design is adapted so all the subjects apply every tech-
nique. It is organized in three days, and each day only one program and all the
techniques are executed. Each of these is executed by two different groups.

The general conclusions reached in each experiment are presented in Table
7.

The complementary conclusions reached in each experiment are presented in
Table 8.

Both B-S and K-L reached the conclusion that code reading technique is as
effective as structural and functional testings when it comes to the number of
defects detected. They also concluded that subjects were more efficient when ap-
plying functional testing. M-M concluded that there is no big difference between
inspections based on paper and those based on the tool, either it is individual or
working in group. With regard to J-V’s first experiment, they concluded that the
number of subjects that detect a defect depends not only on the program used
but also on the technique applied and the defect itself. In addition to this, code
reading technique is less sensitive to defect hiding than the other techniques.
Functional testing behaves better than the structural testing technique in most
cases, but the cases in which the two techniques behave identically, or one better
than the other, occur indistinctly for each defect type. According to their sec-
ond experiment, they concluded that regardless of the defect type, code reading
technique is not as effective as functional and structural techniques. Another
conclusion is that functional and structural techniques behave identically. The
addition of the program version in this last experiment has an impact on the
number of subjects that finds a defect. More subjects develop test cases that
detect the defects in a version while fewer do it in the other, regardless of the
program, technique and defect.

101

76 Vallespir D., Moreno S., Bogado C. and Herbert J.

4 Comments on the Articles.

In most of the cases, the defects present on the programs are injected in the code.
In comparison with the real practice of the industry, we consider this practice
tends to make the conditions in which the experiment is executed less credible.

The differences between the abilities and experience of the subjects are con-
sidered only by B-S, as the level of experience is considered a factor. In the rest
of the experiments the level of experience is homogenized by similar amounts
of training, and students with similar characteristics are chosen (for example:
in the same year of the career, or course). We think B-S’s choice allows us to
gather information more specific on the impact that the differences between sub-
jects and the number of defects that these detect has. This type of information
cannot be obtained from the other experiments. It is important to consider that
classifying the subjects according to their level of abilities is not always possible,
in order to do so the subjects have to be adequately classified.

One aspect in common to all the experiments is the intention of minimizing
the risk of information to be shared among the subjects. Several strategies are
applied such us to organize the subjects so they work on the same program on
the same day.

5 Conclusions

This paper presents a comparison framework for formal experiments intended to
study the effectiveness, cost and efficiency of different testing techniques. This
framework is developed in order to provide formality when comparing different
experiments. These comparisons are not trivial due to the great variability of
the characteristics of the experiments.

In addition to this, the application of the framework in four formal experi-
ments is presented. The application of the framework is the comparison of each of
these experiments itself. As a result, a better understanding of the more relevant
aspects of every experiment is achieved, and can be easily compared consider-
ing various relevant aspects. However, the framework needs refining and other
characteristics of the experiments should be added. For this kind of experiments,
some aspects should also be detailed, such us the techniques applied.

A refining of the framework is currently underway. The intention is not only
to improve the comparison framework, but also to be able to count with a group
of basic characteristics that any researcher should determine when conducting
a formal experiment. If all these characteristics were clearly described by each
researcher in every report after performing an experiment, more general conclu-
sions could be achieved and it would be easier to replicate experiments.

Determining the best technique according to the case is far from being done,
however, many formal experiments that have already been conducted in addition
to others under execution contain lots of important information. The framework
presented shares light on how to analyze the information gathered in a precise
way.

102 Chapter 7. Methodological Recommendations

Towards a Framework to Compare Formal Experiments . . . 77

Table 6. Characteristics of the process

Exp Organization of the
subjects

Training Process

B-S 8 advanced, 24 inter-
mediate and 42 ju-
nior. First session 29,
Second 13 and third
32.

The first session con-
sists of the initial
training. Subjects are
presented with simi-
lar types of trainings.

In each phase, three out of the
four programs are used, and ev-
ery subject applies the three
techniques and tests the three
programs. Each phase consists
of 5 sessions: an initial train-
ing, three testing sessions and a
follow-up session. In each phase
every subject tests the same
program on the same day.

K-L First replication:
27 subjects. Second
replication: 23 stu-
dents the first day,
19 the second and 15
the third day

The subjects are pre-
sented with the test-
ing techniques and
trained prior to the
execution

The experiment consists of two
internal replications, which are
conducted in three settled days
out of a week. Each day a dif-
ferent program is tested with
the three techniques. The same
guidelines as in the training
were used.

M-M Session 1 consists of
six groups of three
subjects and one of
four, while session
2 consists of seven
groups of three sub-
jects.

During the first six
weeks of the experi-
ment the subjects are
trained

The process of inspection takes
two sessions. The first one is
of individual detection and the
second consists of working in
groups to reach consolidation.
The experiment is conducted for
10 weeks, during the last four
the inspections are executed.
These consist of inspecting the
source code using a check list,
considering the specification of
the program.

J-V(1) Consists of 8 groups
of 12 subjects (4 test
with structural tech-
niques and the other
four with functional
techniques), and 4
groups of 25 subjects
(testing with code
reading)

During the initial ses-
sion the training is
conducted

The experiment is organized in
5 sessions, during the last four
the testing of the programs is
performed. Each day a session
is executed, each of the three
groups execute a program with
a different technique from the
three available ones.

J-V(2) Consists of six groups
from seven to eight
subjects

The design is changed so ev-
ery group execute all the tech-
niques. It is organized in three
days, and each day only one pro-
gram and all the techniques are
executed. Each of these is exe-
cuted by two different groups.

103

78 Vallespir D., Moreno S., Bogado C. and Herbert J.

Table 7. General Conclusions of the authors

Exp General conclusion

B-S According to the number of defects detected and
the associated cost, code reading technique is as
effective as functional and structural testings. The
efficiency, effectiveness and cost depend on the
type of software under test.

K-L When detecting defects, any technique can be as
effective as the others, if time is not considered
an important aspect and every subject lacks of
experience in the language as well as in the three
techniques under study.

M-M There is no big difference between inspections
based on paper and those based on the tool, either
it is individual or working in group.

J-V(1) The number of subjects that detect a defect de-
pends not only on the program used but also on
the technique applied and the defect itself. Some
defects behave better when certain programs are
used as well as defects that do so when certain
techniques are applied.

J-V(2) Code reading always behaves worse than the func-
tional and structural techniques, indistinctly for
the defect type. With regard to functional and
structural techniques, they both behave identi-
cally. The program version influences on the num-
ber of subjects that detect a defect.

104 Chapter 7. Methodological Recommendations

Towards a Framework to Compare Formal Experiments . . . 79

Table 8. Complementary Conclusions of the authors

Exp Complementary conclusions

B-S The advanced subjects detected more defects and
were more efficient when applying code reading
than functional and structural testing. Besides,
the number of defects found with functional test-
ing was larger than with structural testing. Inter-
mediate and junior subjects were almost as effi-
cient and effective when applying the three tech-
niques. Code reading technique detected more in-
terface defects than did either of the other tech-
niques, while functional testing did so with control
defects. When applying code reading, the subjects
gave the most accurate estimates, while functional
testers gave the least accurate estimates.

K-L Subjects were more efficient when applying func-
tional testing.

M-M Significant differences are not found between both
methods as to the number of false positives found,
nor in the gained or lost cost due to the meetings.

J-V(1) Code reading technique is less sensitive to de-
fect hiding than the other techniques. Functional
testing behaves better than the structural testing
technique in most cases, but the cases in which the
two techniques behave identically, or one better
than the other, occur indistinctly for each defect
type.

J-V(2) The number of subjects that detect a defect by
applying the reading technique does not depend
on the observability of the defect. More subjects
develop test cases which detect more defects with
one version than with the other, regardless of the
program, the technique and the defect.

105

80 Vallespir D., Moreno S., Bogado C. and Herbert J.

References

1. Myers, G.J.: A controlled experiment in program testing and code walk-
throughs/inspections. Communications of the ACM 21(9) (September 1978) 760–
768

2. Vallespir, D., Herbert, J.: Effectiveness and cost of verification techniques: Prelim-
inary conclusions on five techniques. In: Proceedings of the Mexican International
Conference in Computer Science. (2009)

3. Moreno, A., Shull, F., Juristo, N., Vegas, S.: A look at 25 years of data. IEEE
Software 26(1) (Jan.–Feb. 2009) 15–17

4. Basili, V.R., Selby, R.W.: Comparing the effectiveness of software testing strategies.
IEEE Transactions on software engineering 13(12) (1987) 1278–1296

5. Kamsties, E., Lott, C.M.: An empirical evaluation of three defect-detection tech-
niques. In: Proceedings of the Fifth European Software Engineering Conference.
(1995) 362–383

6. Macdonald, F., Miller, J.: A comparison of tool-based and paper-based software
inspection. Empirical Software Engineering 3(3) (1998) 233–253

7. Juristo, N., Vegas, S.: Functional testing, structural testing, and code reading:
What fault type do they each detect? Empirical Methods and Studies in Software
Engineering 2765/2003 (2003) 208–232

106 Chapter 7. Methodological Recommendations

XIV Congreso Iberoamericano en "Software Engineering"
&

XIV Workshop en Ingeniería de Requisitos

XIV Congresso Ibero-Americano em Engenharia de Software
&

XIV Workshop em Engenharia de Requisitos

XIV Ibero-American Conference on Software Engineering
&

XIV Workshop on Requirements Engineering

Editores

107

ARTICLE

Construction of a Laboratory Package for a Soft-
ware Engineering Experiment

Cecilia Apa, Mart́ın Solari, Diego Vallespir and Sira Vegas

Proceedings of the Ibero-American Conference on Software Engi-
neering, pp. 101-114, Rio de Janeiro, Brazil, April 2011.

108 Chapter 7. Methodological Recommendations

CIbSE 2011 • WER 2011 101

Construction of a Laboratory Package
for a Software Engineering Experiment

Cecilia Apa1, Mart́ın Solari2, Diego Vallespir1, and Sira Vegas3

1 Universidad de la República, Uruguay
2 Universidad ORT, Uruguay

3 Universidad Politécnica de Madrid, España
ceapa@fing.edu.uy,martin.solari@ort.edu.uy,

dvallesp@fing.edu.uy,svegas@fi.upm.es

Abstract. This work presents the construction of a laboratory package
for a controlled software engineering experiment. A laboratory package
is the container of the knowledge and materials necessary to replicate an
experiment. Its construction was based on the use of a generic proposal of
laboratory packages. The study has two objectives: to obtain a package
instance for a concrete experiment and to validate the generic proposal.
The defined instantiation process has made it possible to gather the
incidents and generate lessons learned. This case study is added as a
validation point of the proposal. It is concluded that the proposal is
feasible to instantiate a software engineering experiment, and complete to
cover the activities of the experimental process. The reviews carried out
made it possible to obtain a more adequate package for the experiment
and to improve the generic proposal for future instantiations.

Keywords: Empirical Software Engineering, Case Study, Experimenta-
tion, Laboratory Package, Controlled Experiment.

1 Introducción

Experimentation is one of the means used in the frame of scientific method
to obtain evidence regarding theoretical conjectures. An experiment involves
the creation of a controlled environment where a phenomenon can be observed
repeatedly [6]. Thus it is possible to isolate the essential mechanisms that have
influence on it to identify cause-effect relationships.

In Software Engineering (hereafter SE) experimentation is a research method
used to contrast in real situations the theoretical affirmations about techniques
and tools [11]. Although empirical methods are used by the SE scientific com-
munity, there is still a great number of affirmations that are not supported by
evidence. For example, it is common to read affirmations that indicate that a
certain technique is better than another despite the fact that it has not been
proved except for a particular case. This situation requires that the use of ex-
periments in SE be increased and deepened looking for effective and efficient
methods to conduct them [15].

109

102 Rio de Janeiro, Brasil, Abril de 2011

An experiment must be replicated in order to allow the researcher to become
more confident about its results. Within a line of research a replication chain
is performed and new hypotheses are constructed in order for knowledge to
evolve. Replications make it possible to confirm that the results of an experiment
have not been random or influenced by researchers. Replications also allow the
introduction of variations in the context to extend the scope of the results and
explore new variables [12].

Experiments can be organized in families to give coherence to the replications
and improve the use of research resources. This concept was defined and put into
practice by Basili and others [4]. A family of experiments is a set of experiments
and their replications which share the same research objective. The experiments
that belong to the family may have a similar design and share materials between
replications.

The replications of a family of experiments can be done in several places and
be conducted by different researchers. Conducting an experiment is a complex
task that demands specific knowledge, as well as material and human resources.
In order to facilitate this job, suitable tools to knowledge transfer and to support
the experimental process must be used [21].

One of the tools used to support experiment replication are the Laboratory
Packages (hereafter LP). LP organize the knowledge concerning an experiment
and the necessary materials to conduct it [8]. The LP allow the transfer of
knowledge between different researchers and are a long term support of the
research line. Although there are different proposals, the problem concerning
what the LP should contain remains unsolved. A LP proposal of structure and
content is validated in this study by means of its instantiation in a concrete
experiment.

The experiment conducted to construct the LP was designed and conducted
by the Software Engineering Group (GrIS) of the Computer Science Institute
of the School of Engineering of the Universidad de la República of Uruguay
(hereafter InCo Experiment). This experiment has been replicated twice, in the
years 2008 and 2009. The objective of this experiment is to know the effectiveness
and cost of some unit verification techniques [18–20].

In order to pack the family of experiments (comprised of the base experiment
and its replications) a LP generic proposal for SE experiments is used [17]. The
LP proposal is undergoing an evaluation process and this case is a new point
for its validation. Therefore, this study serves a double purpose: instantiate the
knowledge concerning the InCo experiment in a LP and add a validation point
for the LP generic proposal using a concrete experiment.

2 Related Work

In a broad sense, any piece of written information and materials related to
an experiment can be considered an LP. However, the term LP usually refers
to the materials that are especially prepared to facilitate the replication. The

110 Chapter 7. Methodological Recommendations

CIbSE 2011 • WER 2011 103

LP are oriented towards encouraging and supporting replications, encapsulating
materials, methods and experiences related to SE experiments [4].

It is not possible to be thorough about all the experiments in SE that have
used this tool. However, some relevant works related to LP are collected in this
section. The works considered make specific proposals or analyze their use in
replication of experiments in SE.

Brooks and other researchers promote the replication as a necessary step for
the evolution of knowledge [5]. On the other hand, it must be pointed out that
the construction of LP is a hard task for the researcher. Even so, they said that
without LP suitably constructed and documented, cumulative and systematic
empirical research would be difficult to achieve.

Basili and others conducted an important experience for the development of
the concept of family of experiments through replicated experiments on code
reading techniques [3]. Several research groups from different countries partici-
pated in the research project. An LP was constructed within this frame so that
the experiment could be replicated and the techniques transmitted among the
members of an experimentation net.

In the same research line the specific problem of knowledge transfer was ap-
proached. A model is proposed to capture the tacit knowledge the researchers
possess of the experiment and the importance of having an LP to prevent in-
cidents in the replication process. It is said that in order to transmit the tacit
knowledge effectively it is necessary to go beyond the simple description of the
operational material; the LP must include valid design alternatives and ground-
ing of the experimental processes [14]. In that study a LP proposal, validated
with a specific experiment, is made.

The problems posed by the use of communication instruments by researchers
were approached by Juristo and others by comparing several replications. Dif-
ferent communication mechanisms and instruments were applied in each replica-
tion: meetings, subsequent consultations and different types of LP. The conclu-
sions of the study indicate that a way of achieving successful replications is to
have a detailed LP supported by a minimal process of communication between
the researchers [10].

It is usual for scientific communities to propose specific guidelines for the
publication of the results of controlled experiments. Empirical SE is no exception
and the guidelines presented by Jedlitschka and Pfahl are a common reference
for the publication of results [9]. A structured description of the experiment is
promoted in that proposal so as to facilitate understanding. These guidelines
must be taken into account for the construction of a LP adding other elements
necessary to make a replication.

Mendonça and others use a dynamic approach to improve the LP by using
observational studies [13]. They suggest studying the LP during the process of
performing the replication itself. According to the authors, the experimental
process must include the packaging of the experience and the conduction of a
pilot study with the LP. Thus an improved LP, that facilitates the replication
of the experiment in the future, is produced.

111

104 Rio de Janeiro, Brasil, Abril de 2011

The state of practice with LP can be studied directly in cases where there is
a LP available for an experiment. In the classification made by Solari and Vegas
[16] several published LP of experiments in SE are compared and the following
deficiencies are identified:

– The LP focus mainly on the operational material (for example programs,
forms) and not on replication activities such as planning and analysis.

– Except for one of the analyzed cases, the information concerning the repli-
cations performed and the evolution of the experimental research are not
included.

– There is not a uniform structure and different formats are used to organize
the content.

To summarize, there has been a significant improvement in the issue of man-
aging families of experiments and performing replications. However, as regards
practice, deficiencies can be observed that can be solved with a LP proposal.
As far as we know, there is not a LP proposal other than the one used in this
study which covers all the phases of the experimental process and that makes it
possible to organize SE experiment materials efficiently in the same structure.

3 Description of the Package Proposal

The LP proposal is an answer to the problems raised for the replications of SE
experiments. The first objective of a LP is to facilitate the performance of a
replication. However, this is not a final objective of experimental research, but a
step towards the evolution of the body of knowledge of the field. The LP proposal
also takes into consideration the rest of the activities involved in experimental
research and an efficient use of the resources available.

Several knowledge transfer processes between researchers take place when a
replication is made. The replicator must be capable of reproducing the experi-
ment conditions, adapting the design to the restrictions of the place, analyzing
the results and aggregate them to the previous results. An error in one of these
activities might render the research carried out useless.

One of the practical problems that is a motivation for developing our pro-
posal is the organization of the materials used in the experiments. These include
an heterogeneous and complex set of SE artifacts, as well as descriptions for car-
rying out the experiment and the results of previous replications. It is common
for these materials to be dispersed in different formats and medium. The LP
proposal provides a framework so as to organize the materials in only one body
of information.

Performing a replication is an expensive process that requires human and
material resources from the research team and the place where it is carried
out. An important part of the effort for performing a replication is invested in
understanding the experiment and preparing its operation. The LP proposal
considers capturing knowledge in order to optimize the use of these resources.

112 Chapter 7. Methodological Recommendations

CIbSE 2011 • WER 2011 105

For example, the proposal includes a list of activities necessary to carry out a
replication and the estimated effort for each one.

Given the evolutionary nature of experimental research, the LP must be a
flexible instrument. It must incorporate the material from different versions of
the experiment as well as the descriptions of each replication and the results
that are obtained. The LP must help the researcher to be acquainted with the
evolution of the research line and to adapt the replication to the place where it
is going to be performed.

To summarize, the LP proposal tries to consider the following challenges:

– Transfer SE and experimental knowledge to make a replication.
– Organize the material in one body of information.
– Optimize the use of research resources.
– Facilitate the adaptation of the experiment to the context.
– Make it possible to aggregate the results and the evolution of the research.

The LP proposal consists of three elements: a generic description of the struc-
ture that must have a specific LP, a template and a check list of the content.
Thus, it can be used as a guideline in the process of organizing the knowledge
and the materials of a SE experiment. In [17] a detailed description of it is made.

The proposed structure divides the LP in several inter-related modules that
are outlined in figure 1. Each of the modules supports an activity of the experi-
mental research process. When structuring the content, the fact that the LP is a
technical document that can be read in a non-linear way and used for different
purposes has been taken into account. The module with the greatest level of

Fig. 1. Modules of the LP proposal.

abstraction is that of the theory of the experiment, which sets the theoretical

113

106 Rio de Janeiro, Brasil, Abril de 2011

frame for conducting the experiment and the interpretation of the results. In the
module education the materials used for training the subjects that are going to
take part in the experiment are collected. The general aspects of the experiment
and the instructions for replicating it are defined in the module experiment.
This module is organized according to the activities of the replication process:
planning, experimental design, operation and analysis. Apart from the instruc-
tions for each activity, operational material and the necessary tools to replicate
the experiment are included.

The structure also considers the evolutionary dynamics of experimental re-
search. In the module evolution a summary of the studies carried out is done.
This module serves the purpose of establishing the relationships between the
versions of the experiment and its replications as well as to see the evolution of
the experiment family as a whole. The modules replications and aggregations
contain the information of each study of the experiment family.

Since it is a technical operational document, the LP must satisfy certain
content quality criteria. In order to achieve these quality standards a check list
that is used in the reviews of the LP is included. The aspects considered in
the review are: orientation to the task, organization of the operational material,
support of the experimental process, format and writing style.

4 Study Case: InCo Experiment

This section describes the instantiation of the LP generic proposal for the InCo
experiment, indicating the process followed and the incidents registered. The
discussion section presents the lessons learned about the instantiation of the LP.

The process used for the instantiation of LP, which consists of 6 activities, is
shown in figure 2. The study of the LP proposal, in which its structure and each
one of its elements is analyzed, is the necessary first step to be able to generate
the LP. Then the available sources of information are identified and a decision
is made as to which of them will be considered. The documentation implies
the generation of the LP document and the required adjoining material. After a
version of the LP is generated, it is necessary to verify and validate it. During the
whole process consultation and monitoring activities of the progress are carried
out and there are reviews of the intermediate results. The maintenance activity
follows the release of the LP, where the LP must be updated as the research
evolves.

Three roles participated in this process: the instantiator of the LP, the author
of the LP proposal and the responsible researcher. The instantiator of the LP
is in charge of generating the LP document and the additional material which
may be necessary. The author of the LP proposal participates in the verification,
consultation and monitoring activities, focusing on the use of the LP proposal.
The responsible researcher participates in the validation of the result, from the
point of view of the experiment, as refers to the completeness and adequation of
the information documented.

114 Chapter 7. Methodological Recommendations

CIbSE 2011 • WER 2011 107

Fig. 2. LP Instantiation Process

4.1 LP Instantiation

The effort required for the study of the LP proposal varies depending on the
knowledge the instantiator of the LP has about the experiment and empirical
SE concepts. In our case the instantiator of the LP had the necessary knowledge
about empirical SE and was part of the research team which carried out the InCo
experiment. However, it was still necessary to clarify doubts through meetings
with the author of the LP proposal, in which there was consultation about
the objective of each LP component and the level of detail necessary for each
objective.

In all, there were 10 monitoring meetings during the construction of the LP,
in which everything documented up to that moment was reviewed and doubts
were clarified. The construction of the LP was therefore carried out through an
iterative and incremental process. The summary of the meetings held during the
instantiation are detailed in table 1.

Table 1. Consultation meetings during the LP instantiation

Meeting Phase Observations

1, 2, 3 Study of the LP
proposal

Clarifying doubts about the template, the
information required and the priority elements
to be included.

4, 5, 6, 7 Identification of
Information
Sources

Review of the documented LP, specific doubts.

8, 9 y 10 Verification and
Validation

Corrections derived from the Verification and
external Validation of the draft versions of the
LP.

At the moment of identifying the sources of information and the elements to
be included, we decided to use the replication corresponding to the year 2008.

115

108 Rio de Janeiro, Brasil, Abril de 2011

The purpose is to construct a generic base of the experiment which will be
flexible to the incorporation of more replications. The aggregation section is not
documented as we do not have studies of that kind up to the moment.

Tools and support material included in the LP proposal are used throughout
the process of instantiation. The activity of documentation of LP is guided by
the template that indicates the objective of each element to be documented and
what information is needed for that element. Specific guides of nomenclature
and versioning are used for the generation of additional material. Check lists
focusing on the usability of LP are used in the review activities.

The evaluation activities for the InCo LP were conducted from two points of
view: verification of the structure as refers the LP proposal and validation of the
content as refers the experiment. The details of each one of them are included
in chart 2, indicating the role that carried out the activity, the state of the LP
for that revision and whether tools were used for that activity.

Table 2. LP Evaluation Activities

Activity Role Tools Details

Verification 1 Author of the
LP Proposal

LP template Early verification of the structure and
clarification about the use of the
sections

Verification 2 Author of the
LP Proposal

Verification
check list

Verification of the structure and
content according to the LP Proposal

Validation 1 Responsible
Researcher

- Validation of the content of the LP
from the point of view of the
experiment

The maintenance activity is not included in this study case. However, it is
planned that after the release of the first stable version of the LP the maintenance
activity will evolve as the research advances. As it is an evolving work document,
it is normal for the LP to have pending sections. The current version can be
obtained in the web page of the GrIS 4.

4.2 Incidents Registered During Instantiation

Throughout the instantiation process problems and unexpected circumstances
arose and had to be solved. The most important ones are detailed here.

An additional effort in the documentation activity was needed for the adap-
tation of the different information sources available. The information sources
considered for this experiment are of a very varied nature: final thesis projects,

4 http://www.fing.edu.uy/inco/grupos/gris/wiki/uploads/Reports/PaqueteLab-
ExpeInCo.pdf

116 Chapter 7. Methodological Recommendations

CIbSE 2011 • WER 2011 109

technical reports, text documents, spreadsheets, databases, emails and the tacit
knowledge the researchers have about the experiment.

In some cases the passing of information from the sources to the LP was direct
and in others it was necessary to restructure, enlarge or summarize the infor-
mation. In the cases in which the only source of information was the knowledge
and experience of the researcher, it was necessary to generate all the documen-
tation. The sources of information for each element of the LP are described in
table 3. The percentage of reuse is calculated through an approximation of the
documentation generated against the documentation from the existing one.

Table 3. Information Sources for the LP Elements

Element Information Sources % Reuse

Theory Final thesis projects, technical reports, tacit
knowledge

70%

Experiment Final thesis projects, electronic mails, databases,
other documents, tacit knowledge

60%

2008
Replication

Final thesis projects, tacit knowledge 90%

Education Final thesis projects, theoretical presentation
slides

80%

Depending on the source of information more or less restructuring of the data
or generation of the documentation was needed. Most of the information was
obtained reutilizing the documentation of two final thesis projects that detail the
design and execution of the 2008 replication [7, 1] and a technical report which
describes the general concepts of empirical SE [2]. This information required little
or moderate restructuring in both cases. The biggest problems at the moment
of processing these sources of information were:

– Large volumes of information: The final thesis projects have about 100 pages
each and the technical report 22.

– Repeated information: Both final thesis projects describe the 2008 replication
and information about empirical SE and concepts presented in the technical
report are repeated.

– Different target audience: the information is not oriented to a replicator but
to an academic committee who evaluates the knowledge of the students as
refers to the work completed.

More effort was needed to restructure and adapt the information obtained
form other documents to the objectives of the LP element to which it was des-
tined. The biggest adaptation and restructuring effort was to change the target
audience: most of the information was destined to the researchers (who had a
tacit knowledge about the experiment) or to the subjects of the experiment and
not to a replicator.

117

110 Rio de Janeiro, Brasil, Abril de 2011

At the time of the instantiation there was not a specific order as to how to
document the LP elements or about which were critical or mandatory. In some
cases, this meant that effort was put in documenting secondary elements.This
problem was detected and corrected early, thanks to the meetings in which the
doubts were clarified with the author of the LP proposal.

In those cases in which there was not a documented source of information it
was necessary for the responsible researcher and the assistant researchers to be
available for consultation. It was necessary to consult the responsible researcher
about the general paradigm framing the experiment, the state of the art and par-
ticular aspects of the study. It was also necessary to consult assistant researchers
about operational details and running of the experiment sessions.

A greater effort was needed to generalize the experimental design than to
carry out a LP comprising only one replication. When the experiment was con-
ceived, the information needed for the first replication (2008) was documented,
losing the focus of a general and flexible design. What was particularly not taken
into account, was a generic experimental design with potential specific designs
(for example: varying the number of alternatives, groups, factors, etc.). It was
then necessary to generalize the specific design of the 2008 replication to include
it in the LP. Although generalizing the design implied an additional effort, this
was considered necessary to minimize the impact of incorporating other replica-
tions.

Documenting operational aspects after the execution of the experiment also
required an additional effort to what had been planned. While the replication was
performed, no attention was paid to documenting instructions for conducting the
sessions, incidents, operational notes or instructions for the statistical analysis.
This documentation had to be generated during the instantiation.

4.3 Discusion

This section deals with the lessons learned and the experience conducted is ana-
lyzed from two different points of view: (1) obtain a LP for the InCo experiment
and (2) validate the LP proposal.

As refers to the first point of view, the principal incidents of the LP instan-
tiation for the InCo experiment were detailed in the previous section:

– Adaptation of the sources to a different target audience.
– Difficulty in extracting the tacit knowledge.
– Additional effort to generalize experimental design from a replication.
– Documentation of the operation was scarce or wrongly focused.

One of the causes for the problems mentioned was the ignorance of the neces-
sary information for a future replicator the researcher had at the time of conceiv-
ing and conducting the experiment. Documenting this information more than a
year after the experiment was conducted requires more effort than doing it dur-
ing the experiment. There is a high probability of loss of information, being this
information highly useful for the future replicator, especially a novice. The effort
invested in the generation of the InCo LP is detailed in table 4.

118 Chapter 7. Methodological Recommendations

CIbSE 2011 • WER 2011 111

Table 4. LP construction effort

Activity Effort (hours)

Study of the LP proposal 8.0

Monitoring and control meetings 11.5

Documentation 44.0

Generation of attached material 6.5

Total effort 70.0

Although it is strongly recommended that the LP should be generated from
the early stages and throughout the conduction of the experiment, it is also
beneficial to do it in later stages. It allows a post-mortem analysis of the exper-
iment, improving the documentation generated and allowing the reflection on
aspects that had not been previously considered. This generates a compendium
of lessons learned that will help to improve the results in the future replications,
with less effort and more precision.

The reviews that were carried out parallel to the instantiation process were
useful to improve the final result. One of the objectives was to obtain a LP ade-
quate for the experiment. Another objective was to adhere to the LP proposal.
These reviews collaborated in improving the quality of the instantiated LP for
the InCo experiment and provided improvement suggestions for the LP proposal.

The cases that showed deviation from the proposed structure were analyzed
to decide whether they corresponded to the experiment or not. Of the 35 sec-
tions and sub-sections of the proposal, 7 were not used or remained pending of
completion, either because there was not information at the time, or because
they were not critical sections. Four unplanned sections were added to the orig-
inal structure. For this reason, it is considered that most of the proposal was
adequate to the InCo experiment.

From the point of view of the LP generic proposal validation this study case
has been useful to confirm the following aspects:

– Viability: it was possible to instantiate a LP for a concrete experiment.
– Completeness: the LP obtained covers all the activities of the experimental

process.
– Acceptation: the result is potentially usable in replications and improvement

of the previous organization of the material.

Comparing the result obtained with the original proposal it is observed that
there have not been significant changes in the structure. This is also explained
because the experiment used in this case is relatively similar to the ones used in
the previous series of evaluations that originated the proposal. However, because
it is a validation, it is desirable to identify which the potential improvements are
in order to have feed back and improve the original proposal.

The most significant aggregations to the LP were two: a section about exper-
imental theory and the description of the context parameters. Both changes were
evaluated during the instantiation process and are considered appropriate to be

119

112 Rio de Janeiro, Brasil, Abril de 2011

incorporated to the proposal. The only module that was not used was the one of
aggregations. There are not studies of this kind for this family of experiments,
but it is considered appropriate to allow for space in the structure for secondary
studies in the future.

During the instantiation process, the principal source of doubts was the repli-
cations section. It was not clear in the LP proposal if the objective of the section
was to describe the replications that had been performed up to the moment,
or to prepare the section in order to document the future replications of the
experiment. Both things are necessary, and for that reason an extension of the
explanations of the LP proposal is done, in order to clarify the use of this section.

A suggestion made was to prioritize the elements of the LP generic proposal,
to distinguish the obligatory ones from the optional ones. At the moment of
performing a replication, certain information is strictly necessary, while other
information adds context. It has also been suggested marking the elements ap-
plicable to different kinds of empirical studies in the LP structure, not only to
controlled experiments. Both suggestions are considered appropriate in order to
enrich the LP generic proposal.

The validation allowed the confirmation that the LP proposal is adequate
in general terms for controlled experiments. However, it is observed that mod-
ifications to the structure may be needed in order to use it for another kind
of empirical studies (for example: quasi-experiments or study cases). In studies
conducted without a complete control of the variables, the sections related to
the experimental design and statistical analysis must be restructured. On the
other hand the theoretical or educational aspects could remain without changes
in these cases.

5 Conclusions

This work shows a study case of the construction of a LP for a controlled SE
experiment. The objective of the study was to validate a LP generic proposal
for experiment families, as well as to obtain a LP instance for the concrete
experiment.

A defined process which included activities to review, verify and validate
the results was followed in order to carry out the LP instance. The total effort
for carrying out the LP was of 70 hours. Ten monitoring meetings were held
between the author of the LP proposal and the researcher responsible for the
instantiation.

As a result of the study, the viability and completeness of the LP proposal has
been confirmed. A document containing in one structure the different activities of
the experimental process and the knowledge related to the experiment, has been
obtained. Through the external validation of the instantiated LP, its acceptance
for future use in replications has been corroborated. The process applied provides
a list of learned lessons about the instantiation of experiments and suggestions
to improve the LP proposal in the future.

120 Chapter 7. Methodological Recommendations

CIbSE 2011 • WER 2011 113

It has also been observed that it is possible to instantiate a LP sometime after
the experiment was conducted. However, we strongly recommend compiling the
necessary information during the process of experimentation. The structure of
the LP proposal can be used as a guide to collect this knowledge while conducting
the experiment.

The incorporation of the 2009 replication of the InCo experiment is pending
for future work. This incorporation will allow the evaluation of the impact of the
proposal at the time of aggregating this information to a LP already instantiated.

Another future line for this research is the validation of the LP for other
empirical studies and for scenarios of use progressively different from the InCo.
For example, the instantiation of LP for quasi-experiments and other empirical
studies must be studied. The use of LP in a different context from that of the
replication, for example the aggregation of results of various replications must
also be considered.

References

1. Apa, C.: Diseño y Ejecución de un Experimento con 5 Técnicas de Verificación Uni-
taria. Tesis de fin de carrera, Facultad de Ingenieŕıa, Universidad de la República,
Uruguay (2009)

2. Apa, C., Robaina, R., De León, S., Vallespir, D.: Conceptos de ingenieŕıa de soft-
ware emṕırica. Reporte técnico 10-02 InCo PEDECIBA-Informática 0797–6410,
Facultad de Ingenieŕıa, Universidad de la República, Uruguay (2010)

3. Basili, V.R.: Evolving and packaging reading technologies. Journal of Systems and
Software 38(1), 3–12 (1997)

4. Basili, V.R., Shull, F., Lanubile, F.: Building knowledge through families of exper-
iments. IEEE Transactions on Software Engineering 25(4), 456–473 (1999)

5. Brooks, A., Daly, J., Miller, J., Roper, M., Wood, M.: Replication of experimen-
tal results in software engineering. Tech. rep., International Software Enginnering
Research Network (ISERN) (1996)

6. Campbell, D.T., Stanley, J.: Experimental and Quasi-Experimental Designs for
Research. Wadsworth Publishing (1963)

7. De León, S., Robaina, R.: Análisis de la Efectividad y el Costo de 5 Técnicas
de Verificación. Tesis de fin de carrera, Facultad de Ingenieŕıa, Universidad de la
República, Uruguay (2009)

8. Green, B., Basili, V., Green, S., Laitenberger, O., Lanubile, F., Shull, F., Sorum-
gard, S., Zelkowitz, M.: Packaging researcher experience to assist replication of
experiments. Tech. rep., International Software Enginnering Research Network (IS-
ERN) (1996)

9. Jedlitschka, A., Pfahl, D.: Reporting guidelines for controlled experiments in soft-
ware engineering. In: ACM/IEEE International Symposium on Empirical Software
Engineering (2005)

10. Juristo, N., Moreno, A., Vegas, S., Solari, M.: In search of what we experimentally
know about unit testing. IEEE Software 23(6), 72–80 (2006)

11. Juristo, N., Moreno, A.M.: Basics of Software Engineering Experimentation.
Springer (2001)

12. Juristo, N., Vegas, S.: Using differences among replications of software engineering
experiments to gain knowledge. Empirical Software Engineering and Measurement
pp. 356–366 (2009)

121

114 Rio de Janeiro, Brasil, Abril de 2011

13. Mendonça, M., Cruzes, D., Dias, J., de Oliveira, M.C.F.: Using observational pilot
studies to test and improve lab packages. In: ACM/IEEE International Symposium
on Empirical Software Engineering (2006)

14. Shull, F., Basili, V., Carver, J., Maldonado, J.C., Travassos, G.H., Mendonca, M.:
Replicating software engineering experiments: addressing the tacit knowledge prob-
lem. In: ACM/IEEE International Symposium on Empirical Software Engineering.
Nara, Japón (2002)

15. Shull, F., Singer, J., Sjoberg, D.I.K. (eds.): Guide to Advanced Empirical Software
Engineering. Springer, London (2008)

16. Solari, M., Vegas, S.: Classifying and analysing replication packages for software
engineering experimentation. In: 7th International Conference on Product Focused
Software Process Improvement (PROFES 2006) - Workshop Series in Empirical
Software Engineering (WSESE). Amsterdam, Paises Bajos (2006)

17. Solari, M.: Propuesta de paquete de laboratorio. Borrador en proceso de validación,
Universidad ORT Uruguay (2010), http://www.ort.edu.uy/fi/publicaciones/
ingsoft/investigacion/publicados/DesarrolloPropuestaPL.pdf

18. Vallespir, D., Apa, C., De León, S., Robaina, R., Herbert, J.: Effectiveness of
five verification techniques. In: XXVIII International Conference of the Chilean
Computer Society (October 2009)

19. Vallespir, D., Bogado, C., Moreno, S., Herbert, J.: Comparando las técnicas de
verificación todos los usos y cubrimiento de sentencias. In: Jornadas Iberoameri-
canas de Ingenieŕıa del Software e Ingenieŕıa del Conocimiento. Mérida, Yucatán,
México (2010)

20. Vallespir, D., Herbert, J.: Effectiveness and cost of verification techniques: Pre-
liminary conclusions on five techniques. In: Mexican International Conference on
Computer Science. pp. 264–271. Ciudad de México (México) (September 2009)

21. Vegas, S., Juristo, N., Moreno, A., Solari, M., Letelier, P.: Analysis of the influence
of communication between researchers on experiment replication. In: ACM/IEEE
International Symposium on Empirical Software Engineering (2006)

122 Chapter 7. Methodological Recommendations

123

ARTICLE

Calidad de Datos en Experimentos en Ingenieŕıa de
Software: Un Caso de Estudio

Carolina Valverde, Adriana Marotta and Diego Vallespir

Submitted to a Conference. Article in Spanish.

124 Chapter 7. Methodological Recommendations

Calidad de Datos en Experimentos en
Ingenieŕıa de Software

Un caso de estudio

Carolina Valverde, Adriana Marotta y Diego Vallespir

Facultad de Ingenieŕıa, Universidad de la República
{mvalverde,amarotta,dvallesp}@fing.edu.uy

Resumen Este trabajo presenta un estudio de la calidad de los datos
de un experimento controlado en ingenieŕıa de software. Se presentan los
tipos de errores que es posible encontrar en un experimento de estas ca-
racteŕısticas basándose en un caso de estudio. Para cada uno de los tipos
de errores definimos errores concretos que pueden tener los datos, defini-
mos cómo medirlos (de forma manual o automática) en la base de datos
del experimento y ejecutamos las mediciones. Los resultados de este caso
de estudio indican que los investigadores que realizan experimentos en
ingenieŕıa de software deben analizar la calidad de los datos del experi-
mento antes de realizar los análisis estad́ısticos del mismo. De esta forma
los resultados del experimento reflejarán más fielmente la realidad.

1. Introducción

Los datos que mantiene una organización (información) son fundamentales
para el funcionamiento de la misma. El análisis de esos datos influye directa-
mente en la toma de decisiones. Lamentablemente, los datos pueden contener
errores. Esto provoca que el análisis brinde resultados incorrectos y entonces
que las decisiones sean las equivocadas. La disciplina Calidad de Datos estu-
dia la calidad de los datos y propone formas de medir la misma y de realizar
limpiezas (correcciones) en los datos de mala calidad.

La Ingenieŕıa de Software Emṕırica busca, a partir de la experimentación,
conocer si ciertos supuestos sobre el desarrollo de software son reales. Durante el
proceso de experimentación se genera gran cantidad de datos. Sobre estos datos
se realizan análisis estad́ısticos y estudios comparativos. Por último, se establecen
resultados y conclusiones que surgen del propio análisis realizado sobre los datos.

Se debe tener en cuenta que los datos de los experimentos pueden ser de mala
calidad. Esto provoca que los resultados del mismo sean cuestionables. Incluso,
si la calidad de los datos está comprometida en un alto porcentaje de los datos,
o con un error “grande” en un pequeño porcentaje de los mismos, los resultados
del experimento pueden ser incorrectos. En ese caso se puede incluso validar una
realidad que no existe.

En la Facultad de Ingenieŕıa, de la Universidad de la República en Uruguay,
realizamos un experimento controlado para evaluar la efectividad y costo de

125

distintas técnicas de pruebas unitarias. Distintos estudiantes de la Facultad par-
ticiparon en el experimento. Estos aplicaron ciertas técnicas de pruebas sobre
distintos programas. Mientras realizaban las pruebas registraban datos como el
tiempo que les llevó ejecutar la técnica y cuáles fueron los defectos detectados
[8].

En este art́ıculo presentamos un estudio de la calidad de los datos recolectados
por los sujetos durante dicho experimento. El objetivo es conocer la calidad de
los mismos y poder realizar una limpieza de datos que luego permita que los
resultados de los análisis estad́ısticos del experimento sean más confiables. Para
ello, se identifican y miden los errores que contienen los datos bajo estudio, para
luego aplicar las limpiezas correspondientes.

La Figura 1 presenta el trabajo completo que fue realizado. Luego de ejecu-
tado el experimento se identificaron los posibles tipos de errores de los datos.
Para cada tipo de error se identificaron errores espećıficos que fueron medidos y
registrados. Luego se realizó la limpieza y migración. Este art́ıculo presenta los
tipos de errores, errores y la medición realizada en la base de datos del caso de
estudio.

Figura 1. Etapas del estudio realizado.

El aporte de este trabajo es haber identificado y medido los tipos de erro-
res que se pueden encontrar en experimentos en ingenieŕıa de software. Más en
particular en experimentos que estudian la efectividad y costo de las técnicas de
pruebas. Mostramos que los datos de los experimentos (obviamente) contienen
errores y que estos deben ser limpiados antes de realizar cualquier análisis es-
tad́ıstico. No encontramos en la literatura otros estudios de Calidad de Datos en
experimentos en ingenieŕıa de software, por lo que este caso de estudio aporta
también como un estudio inicial en este sentido.

2. Calidad de Datos

Los datos constituyen un recurso muy valioso para las organizaciones al ser
utilizados principalmente para la toma de decisiones. Estos pueden ser alma-
cenados, comunicados o sometidos a algún proceso o transformación, siendo en

126 Chapter 7. Methodological Recommendations

todos los casos de suma importancia para garantizar la sobrevivencia y éxito de
las organizaciones.

La calidad de datos es objeto de estudio de diferentes áreas, tal es el caso de
la estad́ıstica, gestión o computación. A medida que su importancia se hace más
evidente se incrementan las investigaciones e intenciones de mejora en la calidad
de los datos que una organización utiliza.

La mala calidad de los datos influye de manera significativa y profunda en
la efectividad y eficiencia de las organizaciones aśı como en todo el negocio,
llevando en algunos casos a pérdidas multimillonarias [1]. Cada d́ıa se hace más
notoria la importancia y necesidad en distintos contextos de un nivel de calidad
adecuado para los datos. Por esto, es importante lograr identificar las causas
por las cuales ciertos datos son de mala calidad, para eliminar, o en su defecto
mejorar, la problemática de ráız.

2.1. Dimensiones y Factores de Calidad de Datos

Existen distintos aspectos que hacen a la calidad de datos. Estos aspectos
son conocidos normalmente como dimensiones de calidad. En los trabajos del
área de Calidad de Datos se propone gran variedad de conjuntos de dimensiones
y de definiciones para las mismas [5,6,7,9]. Sin embargo existe un núcleo de
dimensiones que es compartido por la mayoŕıa de las propuestas. Este trabajo
se basa fuertemente en la propuesta de Batini y Scannapieco [1], que reúne estas
dimensiones consensuadas.

En este trabajo utilizamos una abstracción de la calidad de datos, presenta-
da en [4], donde además de las dimensiones se definen otros conceptos para la
clasificación y el manejo de la misma. Estos conceptos son el de factor, métrica
y método de medición.

Una dimensión de calidad captura una faceta (a alto nivel) de la calidad de
los datos. Por otra parte, un factor de calidad representa un aspecto particu-
lar de una dimensión de calidad. Una dimensión puede ser entendida como un
agrupamiento de factores que tienen el mismo propósito de calidad.

Una métrica es un instrumento que define la forma de medir un factor de
calidad. Un mismo factor de calidad puede medirse con diferentes métricas. A
su vez, un método de medición es un proceso que implementa una métrica. Se
pueden utilizar distintos métodos de medición para una misma métrica.

Normalmente, los datos se encuentran en algún repositorio de datos, siendo
de los más usados las bases de datos relacionales. En nuestro caso de estudio
los datos se encuentran en una base de datos relacional y por eso es de especial
interés para este trabajo considerar las mediciones de la calidad de los datos es
ese tipo de repositorio.

Las mediciones en una base de datos relacional se pueden realizar a varios
niveles: celda, tupla, tabla, e incluso a nivel de la base de datos entera. En
definitiva, se pueden considerar distintos niveles de granularidad para evaluar
la calidad de los datos. Por esto se definen funciones de agregación, las cuales
miden un conjunto de datos. Por ejemplo, es posible obtener la medida de una
tupla a partir de la medida de exactitud de cada una de sus celdas.

127

A continuación se presentan las dimensiones y factores de calidad utilizadas
en este trabajo. De la propuesta de Batini y Scannapieco [1], no se considera la
dimensión frescura relacionada con el tiempo y la vigencia de los datos, ya que
no tiene aplicabilidad en este caso de estudio. Esto se debe a que los datos del
experimento se consideran “frescos” y no resulta de interés medir si los mismos se
encuentran vigentes, el momento en que fueron recolectados es un dato conocido.

Dimensión: Exactitud

La exactitud indica que tan precisos, válidos y libre de errores están los datos.
Establece si existe una correcta y precisa asociación entre los estados del sistema
de información y los objetos del mundo real.

Existen tres factores de exactitud: exactitud semántica, exactitud sintáctica y
precisión. La exactitud semántica se refiere a la cercańıa que existe entre un valor
v y un valor real v’. Interesa medir que tan bien se encuentran representados los
estados del mundo real en el sistema de información.

La exactitud sintáctica se refiere a la cercańıa entre un valor v y los elementos
de un dominio D. Interesa saber si v corresponde a algún valor válido de D, sin
importar si ese valor corresponde a uno del mundo real.

La precisión, por otra parte, se refiere al nivel de detalle de los datos.

Dimensión: Completitud

La completitud indica si el sistema de información contiene todos los datos
de interés, y si los mismos cuentan con el alcance y profundidad que sea reque-
rido. Establece la capacidad del sistema de información de representar todos los
estados significativos de una realidad dada.

Existen dos factores de la completitud: cobertura y densidad. La cobertura
se refiere a la porción de datos de la realidad que se encuentran contenidos en el
sistema de información.

La densidad se refiere a la cantidad de información contenida y faltante acerca
de las entidades del sistema de información.

En un modelo relacional la completitud se caracteriza principalmente por los
valores nulos, cuyo significado a pesar de ser variado, es importante conocer. Un
nulo puede indicar que dicho valor no existe, que existe pero no se conoce, o que
no se sabe si existe en el mundo real.

Dimensión: Consistencia

Esta dimensión hace referencia al cumplimiento de las reglas semánticas que
son definidas sobre los datos. La inconsistencia de los datos se hace presente
cuando existe más de un estado del sistema de información asociado al mismo
objeto de la realidad.

Las restricciones de integridad, por otra parte, definen propiedades que deben
cumplirse por todas las instancias de un esquema relacional. Se distinguen tres
tipos de restricciones de integridad, las cuales se corresponden con los factores
de esta dimensión.

Las restricciones de dominio, se refieren a la satisfacción de reglas sobre el
contenido de los atributos de una relación. Las restricciones intra-relacionales, se
refieren a la satisfacción de reglas sobre uno o varios atributos de una relación.

128 Chapter 7. Methodological Recommendations

Las restricciones inter-relacionales, se refieren a la satisfacción de reglas sobre
atributos de distintas relaciones.
Dimensión: Unicidad

La unicidad indica el nivel de duplicación de los datos. La duplicación ocurre
cuando un objeto del mundo real se encuentra presente más de una vez, esto es,
varias tuplas representan exactamente el mismo objeto. Distinguimos entonces
dos factores de la dimensión Unicidad:

Duplicación: la misma entidad aparece repetida de manera exacta.
Contradicción: la misma entidad aparece repetida con contradicciones.

3. Caso de Estudio: Experimento Controlado

La experimentación en ingenieŕıa de software refiere a la correspondencia de
las suposiciones, asunciones, especulaciones y creencias acerca del software con
hechos de la realidad. Para establecer estas correspondencias la experimentación
usa procedimientos metódicos para intentar validar, o rechazar, ciertas hipótesis.

Dentro de la experimentación se encuentran los experimentos controlados.
Estos permiten comparar dos o más “conceptos”. Por ejemplo, se puede realizar
un experimento controlado en ingenieŕıa de software para comparar dos o más
técnicas de pruebas, dos o más procesos de software, técnicas de diseño, etc.

En estos experimentos se recolectan datos provenientes de diversas fuentes.
Los datos luego son analizados con técnicas estad́ısticas para rechazar/aceptar
las hipótesis planteadas. Por ejemplo, que cierta técnica de pruebas es más efec-
tiva que cierta otra técnica.

En ingenieŕıa de software gran parte de los datos que se recolectan durante
un experimento es generada por humanos. Por ende, estos datos están propensos
a contener errores y su calidad siempre debe estar en duda.

Durante 2008 y 2009 en la Facultad de Ingenieŕıa, Universidad de la Repúbli-
ca en Uruguay realizamos un experimento controlado para evaluar la efectividad
y costo de distintas técnicas de pruebas unitarias [8]. Este experimento lo utiliza-
mos como caso de estudio para conocer la calidad de los datos en los experimentos
controlados en ingenieŕıa de software.

Los sujetos que participaron del experimento realizaron pruebas utilizando
distintas técnicas sobre distintos programas. Todos son estudiantes avanzados de
la carrera Ingenieŕıa en Computación ya que se encontraban en cuarto o quinto
año (último año) de la carrera.

Los sujetos deb́ıan probar los programas en busca de defectos. Un defecto es
una anomaĺıa en el código fuente. Cuando un sujeto encontraba un defecto deb́ıa
registrar los datos del mismo.

Entro otros datos los defectos se clasificaron según dos taxonomı́as: ODC
[3] y una propuesta por Beizer [2]. La taxonomı́a de ODC es una clasificación
ortogonal de defectos, los defectos se clasifican según categoŕıas que son ortogo-
nales entre śı, mientras que Beizer es una taxonomı́a jerárquica. La clasificación
de los defectos en las dos taxonomı́as se usó en el experimento para calcular la
efectividad de cada técnica de pruebas respecto al tipo de defecto.

129

Los sujetos usan una Gúıa de Pruebas para realizar su trabajo en el experi-
mento. Esta gúıa explica detalladamente cómo se deben diseñar y ejecutar las
pruebas aśı como también cómo se debe realizar la recolección de datos (defec-
tos encontrados, tiempo utilizado en las pruebas, etc.). La gúıa fue desarrollada
por el equipo de investigación exclusivamente para este experimento. Los inves-
tigadores presentaron la gúıa a los sujetos durante una clase teórica previa al
comienzo de la ejecución del experimento.

Cada experimento unitario (llamado Experiencia de Pruebas) consistió de un
sujeto aplicando una técnica de prueba a un programa. El diseño del experimento
distribuye a los 14 participantes en 40 experiencias de pruebas, cada una con un
programa y una técnica de verificación a ejecutar.

De esta manera, cada sujeto aplicó distintas técnicas a distintos programas,
y registró en la herramienta para registro de defectos y tiempos, los siguientes
datos: fecha y hora de comienzo y finalización, tiempo de diseño de casos de
prueba y de ejecución de la experiencia, y defectos encontrados.

Para cada uno de los defectos los sujetos deb́ıan registrar, entre otros, los
siguientes datos: nombre de archivo y número de ĺınea de código donde se en-
cuentra el defecto, clasificación del defecto en ODC y Beizer, tiempo que le
llevó detectar el defecto, descripción del defecto.

Para la recolección de estos datos se utilizó una herramienta disponible v́ıa
web llamada Grillo, la cual fue construida a medida para la recolección de da-
tos del experimento. Sus principales funcionalidades son gestionar datos de las
entidades: usuarios, técnicas de pruebas, experiencias y registro de defectos.

En Grillo se cargaron todos los experimentos unitarios. Dicha herramienta
centraliza el registro de los defectos para todas las experiencias de verificación
en una misma base de datos, y permite tener un control y seguimiento de las
mismas.

Cada sujeto contaba con un usuario en la herramienta mediante el cual ac-
ced́ıa a las experiencias que teńıa asignadas, y registraba los datos requeridos. La
herramienta es una aplicación web y la arquitectura está basada en un modelo
cliente-servidor. Como sistema gestor de Base de Datos se utiliza HSQLDB.

En la Figura 2 se muestra el esquema de la base de datos de la herramienta
Grillo, donde se almacenan los datos cuya calidad será analizada.

4. Definición de Tipos de Errores en los Datos

En esta sección se presentan los tipos de errores que se identificaron para el
caso de estudio, para las dimensiones y factores de la calidad de datos. Un tipo
de error define conceptualmente un error genérico en la calidad de los datos,
para determinada dimensión y factor de calidad.

La Figura 3 muestra la relación que existe entre dimensiones, factores, tipos
de errores y errores, y cómo se aplican estos conceptos en un caso particular.
Mientras que la definición de dimensión y factor de calidad es general y resulta
aplicable en cualquier contexto, los tipos de errores y errores son espećıficos y

130 Chapter 7. Methodological Recommendations

Figura 2. Esquema de la base de datos del experimento y tipos de errores

Figura 3. Relación entre Dimensiones, Factores, Tipos de Errores y Errores.

131

definidos para este caso de estudio, y en particular para Ingenieŕıa de Softwa-
re Emṕırica. Es por ello que los tipos de errores aqúı presentados podŕıan ser
reutilizados en otras experiencias emṕıricas.

Para identificar los tipos de errores realizamos una exploración de la herra-
mienta Grillo y un análisis de la estructura de la base de datos que contiene los
datos que registraron los sujetos.

A continuación se describen brevemente los tipos de errores identificados.
Por motivos de espacio, solo presentamos un tipo de error para cada factor
de calidad. Para todos los casos, la medida del error es booleana: se indica si el
objeto medido contiene o no un dato erróneo. Los errores se miden, en la mayoŕıa
de los casos, mediante la definición y ejecución de consultas SQL.

Las dimensiones de calidad de datos que se miden son: Exactitud, Completi-
tud, Consistencia y Unicidad. En la Tabla 1 se muestran, para cada dimensión
y factor, los tipos de errores que identificamos para el caso de estudio.

Cuadro 1. Tipos de errores.

Dimensión Factor Tipo de error Identificador

Exactitud Exactitud sintáctica Valor fuera de rango E1
Estandarización E2

Exactitud semántica Registro inexistente E3
Defecto mal registrado E4
Valor fuera de referencial E5

Completitud Densidad Valor nulo E6
Clasificación de defecto E7

Consistencia Integridad intra-relación Reglas de integridad intra-relación E8
Valor único E9

Integridad referencial Referencia inválida E10

Unicidad Duplicación Registro duplicado E11
Contradicción Registro contradictorio E12

En la Figura 2 se presenta sobre qué objetos de la base se aplica cada tipo
de error, indicado mediante su identificador. Las referencias de la figura indican
a qué dimensión corresponde cada tipo de error aśı como su granularidad.
Valor fuera de rango

Los tiempos y ĺıneas de código registradas debeŕıan situarse dentro de un
rango, previamente definido como válido. El valor de un tiempo que se encuentra
fuera de ese rango podŕıa ser un valor anómalo, y hacer variar incorrectamente
los resultados y conclusiones obtenidas al analizar los datos del experimento (por
ejemplo, cuánto se tardó en promedio en detectar un defecto de tipo X).

Se establecen criterios para determinar apropiadamente el rango a considerar
para evaluar los valores, y se identifican los outliers mediante consultas en SQL.
Es importante considerar, sin embargo, que si un valor cae fuera del rango deter-
minado no significa necesariamente que dicho valor sea erróneo. El hecho de que
existan valores anómalos pero correctos es parte de toda experiencia emṕırica.

132 Chapter 7. Methodological Recommendations

El rango tiene su mı́nimo en 0 y a priori no se podŕıa definir un valor máximo
con certeza. Para ello se determina un intervalo considerando el valor medio y
la desviación estándar de los tiempos registrados. Los valores fuera del rango [0,
media + 2 x desviación estándar] se considerarán candidatos a contener errores,
y por lo tanto serán analizados de manera aislada. Este rango se establece de
forma arbitraria y su validez debe ser analizada en futuros trabajos. Sin embargo,
sirve para tener una aproximación de cuáles son los datos con posibles problemas
de calidad.

De la misma manera, un valor fuera de rango en las ĺıneas de código no
permitiŕıa identificar, por ejemplo, cuáles son los registros de defectos que co-
rresponden al mismo defecto de la realidad. Por otra parte, para el caso de las
ĺıneas de código se definirá un rango que tiene su mı́nimo en 1 y máximo igual
a la cantidad de ĺıneas que el archivo posee.

Registro inexistente

En este caso se identifican aquellos registros (tuplas) que se encuentran al-
macenados en la base de datos, pero que no se corresponden con ningún objeto
de la realidad. Los registros inexistentes no debeŕıan formar parte de la base ya
que no reflejan la realidad.

Se analizan dos casos. Los registros de defectos, que corresponden a defectos
detectados en el código y registrados en la herramienta, pero que no se identifican
con ningún defecto real. Y los archivos, que corresponden al registro de archivos
(.java) que no forman parte del experimento en cuestión.

Valor nulo

Interesa conocer qué información fue registrada y cuál fue omitida. Para
aquella información que fue omitida, interesa conocer la causa de la omisión, y
en caso que sea posible, determinar el valor que debeŕıa tomar en lugar de nulo.

Se identifican los campos que admiten nulos, pero debeŕıan en la realidad
contener algún valor distinto de vaćıo (el hecho de que admitan nulos es un error
en el diseño de la base de datos).

El motivo de omisión de los campos podŕıa ser que el Verificador no ingresa
el valor (por omisión accidental o por no saber determinarlo), o por un error en
el manejo de los datos (de la aplicación web o de la base) que ocasiona que el
valor ingresado no se almacene correctamente.

Reglas de integridad intra-relación

Se definen un conjunto de reglas sobre los atributos que deben ser satisfechas
en la base bajo estudio. El hecho de que alguna de estas reglas sea violada, afecta
la consistencia de los datos y por lo tanto cualquier análisis que se lleve a cabo
a partir de estos.

Referencia inválida

Es necesario considerar la satisfacción de reglas entre atributos de distintas
tablas. Instanciando esto a los datos bajo estudio, se identifican referencias hacia
determinadas tuplas que no existen en la base del experimento, y por lo tanto
resultan ser referencias inválidas.

Registro duplicado

133

Se identifica este tipo de error cuando existen dos o más registros que apa-
recen repetidos de manera exacta. Existen dos situaciones:

Cuando contienen el mismo valor en la clave y demás atributos (o en su
defecto valores nulos). Este caso se contempla con controles del SGBD.
A pesar de contener distinta clave primaria, hacen referencia al mismo objeto
de la realidad y contienen los mismos datos en los campos que se definan.
Para este caso se verifica que no existan registros repetidos (según el criterio
definido) en la base bajo estudio.

Registro contradictorio
Se identifica este tipo de error cuando existen dos o más registros que apa-

recen repetidos de manera contradictoria. Esto significa que contienen distinto
valor en la clave y/o demás atributos (o en su defecto valores nulos), a pesar de
que hacen referencia al mismo objeto de la realidad.

El ejemplo más claro de este tipo de error es tener dos clasificaciones distintas
dentro de una misma taxonomı́a, asociadas al mismo defecto. Es decir, un defecto
debe estar clasificado de una única manera según una misma taxonomı́a.

5. Ejemplo de Error

A modo de ejemplo en esta sección se presenta cómo se realizó la medición
de un error en particular. De esta forma se puede entender el trabajo realizado
para cada uno de los errores.

Un error es la aplicación de un tipo de error (dentro de los identificados en la
sección anterior) sobre un atributo, tupla y/o tabla espećıfica, dependiendo de
su granularidad. Este concepto se puede apreciar en la Figura 3. Una vez más
nos referimos a un error en los datos respecto a la evaluación de su calidad.

Por otra parte, utilizamos el término instancia de error cuando a partir de
la medición se detecta la presencia de algún dato erróneo sobre un objeto de la
base (celda, tupla o tabla), de acuerdo a la granularidad definida.

La gran mayoŕıa de los errores identificados fueron medidos, aunque existen
algunas pocas excepciones correspondientes a mediciones manuales que no fueron
ejecutadas.

Presentamos como ejemplo el error “Valor fuera de rango en el tiempo de
detección de defectos”.

El tipo de error Valor fuera de rango se mide sobre los tiempos y ĺıneas
de código. En particular, se presenta la medición realizada sobre el tiempo de
detección de defectos.

Los sujetos deben ingresar en la herramienta Grillo el tiempo que les lleva
detectar cada defecto en el código. Tanto el cálculo del tiempo como su ingreso
en la herramienta se realizan de manera manual, lo que puede ocasionar que se
introduzcan errores en los datos. Resulta interesante medir cuáles son los tiempos
que se alejan de manera significativa del rango considerado como válido, y por
lo tanto son candidatos a contener errores.

134 Chapter 7. Methodological Recommendations

La forma de medir este error consiste en establecer un rango al que debe per-
tenecer el valor de cada tiempo, y verificarlo mediante la ejecución de consultas
SQL.

Para obtener el rango dentro del cual deben situarse los valores de los tiempos
de detección de defectos, se calcula el promedio y desviación estándar discrimi-
nando por tipo de defecto.

El rango de valores válidos para este registro es [0, promedio + 2 x desv.
estándar]. El menor tiempo en el cual un sujeto puede detectar un defecto es en
cero minutos; por esto es el valor mı́nimo del rango. El tiempo máximo del rango
debe ser un valor que estad́ısticamente nos presente, en los registros que tengan
valores por encima del mismo, registros con una alta probabilidad de contener
un error. Es decir, los registros por encima del valor máximo son registros que
probablemente estén mal. Este valor fue establecido en el promedio más dos
veces la desviación estándar. Consideramos que cualquier registro que supere
dicho valor es “sospechoso” y debe ser analizado.

Detectamos 21 registros (instancias de error) que contienen valores en el tiem-
po de detección de defectos fuera de dicho rango, de un total de 1009 registros de
defectos. Vale destacar que se identificó la existencia de dos registros de defectos
cuyo valor es casi seis veces mayor en comparación al máximo definido.

6. Resultados y Discusión

La aplicación de cada uno de los 12 tipos de errores identificados, sobre las
tablas y atributos de la base, da como resultado un total de 55 errores. Para 38
de ellos, se ejecutó la medición de manera automática mediante sentencias SQL,
y para un caso particular, se incluyeron algoritmos programados en Java.

La medición de 6 errores se realizó de manera manual por no ser posible
su automatización. En todos los casos estas mediciones corresponden a verifi-
caciones contra otras fuentes de datos no persistidas. Por ejemplo, consultas a
responsables del experimento.

Los 11 errores restantes aún no han sido medidos. Para el tipo de error
valor fuera de rango, no se cuenta con la cantidad de información suficiente
para calcular promedios y desviaciones estándar que resulten significativos del
total. Por otra parte, para medir la correctitud semántica sobre los registros
de defectos es necesario identificar aquellos que no existen en el código, o que
tienen valores en algún campo que no se corresponde con la realidad. Para ello
se deben verificar manualmente los 1009 registros de defectos existentes, lo cual
no se realizó aún por el esfuerzo que tiene asociada dicha verificación.

Los resultados de las mediciones indicaron que, de los 44 errores que fueron
medidos, 18 contienen al menos una instancia de error (objeto de la base de
datos para el cual se detecta la presencia de algún dato erróneo como resultado
de las mediciones).

En total se identificaron un total de 7591 instancias con errores sobre las
celdas y/o tuplas de la base. Una misma celda o tupla puede contener diferen-
tes errores (de entre los 18 presentes), y en este caso se miden como instancias

135

diferentes. Sin embargo, si consideramos la cantidad de tuplas de la base que con-
tienen algún error (una tupla podŕıa contener instancias de errores diferentes),
obtenemos un total de 6906 tuplas con errores.

El Cuadro 2 muestra la cantidad de errores que fueron identificados por tipo
de error

Cuadro 2. Cantidad de errores por tipo de error.

Tipo de
Error

Valor fuera
de rango

Estandariza
ción

Registro
inexistente

Defecto
mal regis-
trado

Valor fuera
de referen-
cial

Valor nulo

Cantidad
de Erro-
res

5 5 2 8 6 10

Tipo de
Error

Clasificación
de defectos

Regla de
integridad
intra-
relación

Valor único Referencia
inválida

Registro
duplicado

Registro
contradic-
torio

Cantidad
de Erro-
res

2 5 3 3 3 3

En el Cuadro 3 se muestra cuáles son los 18 errores que contienen al menos
una instancia de error, estableciendo a qué tipo de error corresponden, y sobre
qué objeto de la base (tabla y atributo) se aplica. Además se indica, para cada
error, el porcentaje de instancias con error de la cantidad de instancias totales
que fueron medidas.

Encontramos distinta cantidad (en porcentaje) de instancias con error en
los datos medidos. Los datos de clasificación de defectos en las taxonomı́as pre-
sentó un problema para los sujetos del experimento. Esto se desprende de que
existe un alto porcentaje de instancias con error en los objetos de la base que
están vinculados a los datos de clasificación de defectos.

El Cuadro 4 muestra el porcentaje de tuplas erróneas para las tablas sobre
las cuales se identifica la existencia de al menos una instancia de error. Una tupla
errónea puede contener más de una instancia de error diferente.

Ya mencionamos que la clasificación de defectos realizada por los sujetos
contiene muchas instancias con errores. En el Cuadro 4 también se puede ver
que otras tablas también tiene una cantidad importante de instancias con error;
varias de ellas alrededor del 10 %. Este porcentaje indica que es neceario una
limpiza de los datos para garantizar que el análisis estad́ıstico de los datos del
experimento sea sobre datos válidos. Caso contrario los resultados, y las conclu-
siones, del experimento pueden incluso no corresponderse con la realidad (y este
es justamente el objetivo de los experimentos controlados, estudiar y conocer la
realidad).

136 Chapter 7. Methodological Recommendations

Cuadro 3. Errores con al menos una instancia errónea.

Tipo de error Objeto % de ins-
tancias con
error

Valor fuera de rango Registro Defecto.time deteccion 2,1 %
Registro Defecto.linea 0,8 %
Registro Defecto.linea estructura 0,3 %

Registro inexistente Archivo 2,1 %

Valor fuera de refe-
rencial

Registro Taxonomia 38,4 %

Valor nulo Experimento.time ejecucion 6,8 %
Registro Taxonomia.taxonomia id 13,7 %
Registro Taxonomia.valor categoria id 0,02 %
Experimento.time casos (técnica dinámica) 6,8 %

Clasificación de de-
fectos

Registro Defecto (para ODC) 0,3 %

Regla de integridad
intra-relación

Registro Defecto.time deteccion 8,9 %

Experimento.time ejecucion 4,5 %

Referencia inválida Registro Taxonomia.registro id 4,9 %
Valor Categoria.categoria padre 10 %

Registro duplicado Registro Taxonomia (para ODC) 17,6 %

Registro contradicto-
rio

Archivo Software 8,3 %

Registro Taxonomia (para ODC) 1,5 %
Registro Taxonomia (para Beizer) 0,7 %

Cuadro 4. Tuplas con error por tabla.

Tabla % de tuplas con error por tabla

Archivo 2 %

Archivo Software 8 %

Experimento 11 %

Valor Categoria 10 %

Registro Defecto 12 %

Registro Taxonomia 52 %

137

7. Conclusiones

En este trabajo presentamos una investigación de la calidad de los datos
de un experimento controlado en ingenieŕıa de software. Presentamos tipos de
errores y errores asociados a un caso de estudio y los resultados de medirlos.

Detectamos 55 errores diferentes de los cuales pudimos medir 44. 38 fueron
medidos de forma automática y 6 de forma manual. Los restantes 11 no se
pudieron medir por diferentes motivos.

De los 44 errores medidos encontramos que 18 tienen al menos una instancia
de error. Esto quiere decir que existen datos que consideramos erróneos en la
base de datos para esos 18 errores.

El porcentaje de instancias con error sobre instancias totales medidas indica
que los datos debeŕıan limpiarse antes de realizar análisis estad́ısticos del ex-
perimento. Es decir, realizar análisis estad́ısticos sin la limpieza de estos datos
puede provocar resultados y conclusiones inválidas del experimento.

Uno de los aportes de este trabajo es haber realizado un estudio novedoso:
estudiar la calidad de datos de un experimento de ingenieŕıa de software. So-
bre todo, este trabajo muestra que los investigadores que realizan experimentos
controlados deben tener en cuanta la calidad de los datos de sus experimentos
antes de realizar los análisis estad́ısticos.

Desde la perspectiva del área Calidad de Datos, este trabajo muestra una
aplicación de las técnicas de medición de calidad y de limpieza de datos a un
dominio particular, donde fue necesario seleccionar las dimensiones de calidad
adecuadas y definir las métricas y procedimientos correspondientes para obtener
los resultados esperados.

Referencias

1. Batini, C., Scannapieco, M.: Data Quality: Concepts, Methodologies and Techni-
ques. Springer-Verlag Berlin Heidelberg (2006)

2. Beizer, B.: Software Testing Techniques, Second Edition. Van Nostrand Reinhold
Co. (1990)

3. Chillarege, R.: Handbook of Software Reliability Engineering. IEEE Computer So-
ciety Press, McGraw-Hill Book Company (1996)

4. Etcheverry, L., Peralta, V., Bouzeghoub, M.: Qbox-foundation: a metadata platform
for quality measurement. In: 4th Data and Knowledge Quality Workshop (2008)

5. Lee, Y.W., Strong, D.M., Kahn, B.K., Wang, R.Y.: Aimq: a methodology for infor-
mation quality assessment. Inf. Manage. 40, 133–146 (2002)

6. Neely, M.P.: The product approach to data quality and fitness for use: A framework
for analysis. In: Proceedings of the 10th International Conference on Information
Quality MIT (2005)

7. Strong, D.M., Lee, Y.W., Wang, R.Y.: Data quality in context. Commun. ACM 40,
103–110 (1997)

8. Vallespir, D., Apa, C., De León, S., Robaina, R., Herbert, J.: Effectiveness of five
verification techniques. In: Proceedings of the XXVIII International Conference of
the Chilean Computer Society (2009)

9. Wang, R.Y., Reddy, M.P., Kon, H.B.: Toward quality data: an attribute-based ap-
proach. Decis. Support Syst. 13, 349–372 (1995)

138 Chapter 7. Methodological Recommendations

Chapter 8

Conclusions

The works presented in this part complement the central investigation of this
thesis. The work of analysis of taxonomies presents a study and comparison
of different defects taxonomies. The results of this work are interesting in
themselves beyond the central research topic of this thesis. As far as the
research line is concerned, we have planned to conduct experiments that
study the effectiveness of the techniques segmented by type of defect both
in a generic frame as in the frame of the PSP. The study of taxonomies
will help determine how and with which taxonomy to classify the defects of
future experiments.

The framework of comparison of experiments that evaluates testing tech-
niques needs to be improved and extended. One of the most important con-
clusions of this work is that the researchers present in very different forms
the experiments conducted and take into consideration different aspects of
the same. This makes experimental replication very difficult. The article
that presents the packaging of the Experiment 2008, makes it clear that a
normalized packaging helps replication.

The last article of this Part presents the importance of data quality in
software engineering experiments. Namely, it shows the importance of con-
ducting a process of data cleansing before performing statistical analyses.

139

140 Chapter 8. Conclusions

Part III

Analysis of Defect Injection
and Removal in PSP

141

Chapter 9

Introduction

Controlled experiments that study the effectiveness and the cost of different
testing techniques were presented in Part I. Those experiments study the
techniques without controlling for the process of which they are part. To
evaluate the influence of the overall development process on the techniques
studied we need first to establish a baseline against which to compare.

In this Part the effectiveness of the PSP phases and the cost to find and
fix defects having the PSP as a context are analyzed. Further research is
described in the Future Work part. We used data from PSP courses taught
between October 2005 and January 2010. These courses were taught by the
Software Engineering Institute (SEI) of the Carnegie Mellon University or
by SEI partners.

The Personal Software Process (PSP) is a software development process
for an individual. This process guides the engineer from the planning of
a small software program to its unit testing. It is made up of different
phases: planning, detailed design, detailed design review, code, code review,
compile, unit testing and postmortem. During the process the engineer
records, among other things, the time employed in each phase as well as the
data concerning the defects he finds and fix. The second article of this Part
presents a description of the PSP in section 2.

The PSP is taught to the engineers through a theoretical and practical
course. In it the engineers develop different software programs using the
process. These courses are an excellent source of data of the use of the PSP.

Design reviews and code reviews are conducted using a checklist therefore
the code review is similar to the desktop inspection technique presented in
Part I. The checklists are created by the engineers themselves so that the
items refer to the defects they normally inject during the development.

This Part is made up by two articles. The first one analyzes the injection
and removal of defects injected during the detailed design phase. The second
one makes a similar analysis but with the defects injected during the code
phase.

143

144 Chapter 9. Introduction

Chapter 10

Analysis of Defect Injection
and Removal in PSP

The papers included in this chapter are:

Analysis of Design Defects Injection and Removal in PSP
Diego Vallespir and William Nichols
Proceedings of the TSP Symposium 2011: A Dedication to Excellence, pp.
19-24, Atlanta, GA, United States, September, 2011

Analysis of Code Defects Injection and Removal in PSP
Diego Vallespir and William Nichols
Submitted to a Special Issue of a Software Engineering Open Journal.

145

146 Chapter 10. Analysis of Defect Injection and Removal in PSP

www.sei.cmu.edu/tspsymposium

6th Annual Software Engineering Institute (SEI)
Team Software Process (TSP) Symposium

September 19-22, 2011 • Georgia Tech Hotel and Conference Center • Atlanta, Georgia

TSP SYMPOSIUM 2011
A Dedication to Excellence

Thank You

Thanks to the TSP Symposium 2011 Program Committee
Timothy Chick
Software Engineering Institute, TSP Symposium 2011 Technical Chair
Senior Member of Technical Staff, SEI Software Engineering Process
Management Program

Lana Cagle, U.S. Navy
Barry Dwolatzky, Johannesburg Centre for Software Engineering
João Pascoal Faria, Faculdade de Engenharia da Universidade do Porto
Bill Nichols, Software Engineering Institute
David Saint-Amand, U.S. Navy
Rafael Salazar, Tec de Monterrey
Kathy Smith, HP Enterprise Services
David Webb, U.S. Air Force

Thanks to the TSP Symposium 2011 Planning Committee
Bob Rosenstein, SEI Conferences, Events, and Trade Shows Manager
Michele Falce, SEPM Technical Event Coordinator
Ruth Gregg, TSP Symposium Lead Event Planner
Brittney Osikowicz, Public Relations Coordinator

Thanks to the SEI Partner Network Staff
Lisa Masciantonio, SEI Partner Network Manager
Tracey Kelly
Kay Vinay

Thanks to the SEI Communication Design,
Web Communication, and Customer Relations Staff
Karen Balistreri
Jeff Balmert
Deen Blash
Jeff Federoff
Maureen Fechik
David Gregg
Shane McGraw
Bill McSteen
Anna Mosesso
Melissa Neely
Daniel Pipitone
Trish Schreiber
Lizann Stelmach
Cat Zaccardi

Thank you to the Atlanta SPIN for its warm welcome and hospitality.

Be sure to bookmark www.sei.cmu.edu/tspsymposium to get this
year’s proceedings and for information on future TSP events hosted
by the SEI.

Upcoming SEI
Conferences
and Events

Visit www.sei.cmu.edu/events/
to get the latest information
on upcoming conferences
and events.

October 24-26, 2011
CMMI Workshop 2011
Minneapolis, Minnesota

November 2-3, 2011
SEPG Latin America 2011
Lima, Peru

March 12-15, 2012
SEPG North America 2012
Reaching New Levels of Excellence
Albuquerque, New Mexico

June 5-7, 2012
SEPG Europe 2012
¡A Passion for Process!
Madrid, Spain

August 2012
SEPG Asia-Pacific 2012
Melbourne, Australia

147

ARTICLE

Analysis of Design Defect Injection and Removal in
PSP

Diego Vallespir and William R. Nichols

Proceedings of the TSP Symposium 2011: A Dedication to Excel-
lence, pp. 19-24, Atlanta, GA, United States, September, 2011.

148 Chapter 10. Analysis of Defect Injection and Removal in PSP

TSP SYMPOSIUM 2011 | A Dedication to Excellence 19

Analysis of Design Defect Injection and
Removal in PSP

Diego Vallespir, Universidad de la Republic
William Nichols, Software Engineering Institute

1.1 INTRODUCTION

A primary goal of software process improvement is to make soft-
ware development more effective and efficient. One way of doing
that is to understand the role of defects in the process and make
informed decisions about avoiding defect creation or committing the
effort necessary to find and fix the defects that escape development
phases. Through examination of a large amount of data generated
during Personal Software Process (PSP) classes, we can show how
many defects are injected during design, what types of defects are
injected, and how they are detected and removed in later develop-
ment phases. We can use this information to teach developers how
to define and improve their own processes, and thus make the prod-
uct development more effective and efficient.

“The Personal Software Process (PSP) is a self-improvement
process that helps you to control, manage, and improve the way
you work” [Humphrey 05]. This process includes phases that you
complete while building the software: plan, detailed design, de-
tailed design review, code, code review, compile, unit test, and post
mortem. For each phase, the engineer collects data on the time spent
in the development phase and data about the defects injected and
removed. The defect data include the defect type, the time to find and
fix the defect, the phase in which the defect was injected, and the
phase in which it was removed.

During the Personal Software Process course, the engineers build
programs while progressively learning PSP planning, develop-
ment, and process assessment practices. For the first exercise, the
engineer starts with a simple, defined process (the baseline process,
called PSP0); as the class progresses, new process steps and ele-
ments are added, from estimation and planning to code reviews, to
design, and design review.

In this article, we present an analysis of defects injected during the
design phase of the PSP programs 6, 7, and 8 (all developed using
PSP2.1). In PSP2.1, students conceptualize program design prior to
coding and record the design decisions using functional, logical,
operational, and state templates. Students then perform a checklist-
based personal review of the design to identify and remove design
defects before beginning to write code.

In this analysis, we focused on defects injected during the design
phase because these data had not been specifically studied before.
Previous studies did not have all the defect data, such as defect
types and individual defect times; they had only summaries. Our
analysis of the complete data available from individual defect logs
shows not only that the defects injected during design are the most
expensive to remove in test but also these are easy to remove in the
review phases. The difference is striking: it costs five times more to
remove a defect in test than it does to remove that same defect dur-
ing review.

To show this, we observed how defects injected during design
escaped into each subsequent phase of the PSP and how the cost
to remove was affected by defect type and phase. We describe
the different defects types injected during design and how these
defect types compare with respect to the “find and fix” time. From
this analysis, we show that “function” defects are the most com-
mon design phase defect, that personal design review is an effective
removal activity, and that finding and fixing design defects in review
is substantially less expensive than removal in test.

Some other articles study software quality improvement using PSP
[Paulk 10] [Wholin 98] [Rombach 08] [Paulk 06] [Hayes 97] [Fergu-
son 97]. In the context of PSP, quality is measured as defect density
(defects/KLOC). Our study differs from these others in that we focus
on design defects, consider the defect type, and do not consider
defect density. Instead, we focus on the characteristics of the de-
fects introduced in design. Our findings resulted from analyses of the
defect types injected, how they proceeded through the process until
they were found and removed, and cost of removal in subsequent
development phases.

1.2 THE DATA SET

We used data from the eight program version of PSP for Engineers I
and II taught between October 2005 and January 2010. These courses
were taught by the Software Engineering Institute (SEI) at Carnegie
Mellon University or by SEI partners, including a number of different
instructors in multiple countries.

This study is limited to only consider the final three programs of
the 2006 version of the PSP course (programs 6, 7, and 8). In these
programs, the students apply the complete PSP process, using all
process elements and techniques. Specifically, these exercises
include the use of design templates and design reviews. Of course,
not all of these techniques are necessarily applied well because the
students are in a learning process.

We began with the 133 students who completed all programming
exercises. From this we made several cuts to remove errors and
questionable data and to select the data most likely to have compa-
rable design and coding characteristics.

Because of data errors, we removed data from three students. John-
son and Disney reviewed the quality of the PSP data [Johnson 1999].
Their analysis showed that 5% of the data was incorrect; however,
many or most of those errors in their data were due to calculations
the students made. Because our data were collected with direct
entry into a MS Access tool, which then performed all calculations
automatically, the lower amount (2.3%) of data removed is lower than
the percentage reported by Johnson and Disney but seems reason-
able.

We next reduced the data set to separate programming languages
with more common design and coding characteristics. As we analyze
the design defects, it seems reasonable to consider only languages
with similar characteristics that might affect code size, modularity,
subroutine interfacing, and module logic. The students used a num-
ber of different program languages, as shown in Figure 1.

149

20 TSP SYMPOSIUM 2011 | A Dedication to Excellence

 SOFTWARE ENGINEERING INSTITUTE | 3

Figure 1: Quantity of students by program languages

The most common language used was Java. To increase the data set size, we decided to include
the data generated by students who used Java, C#, C++, and C. This group of languages uses simi-
lar syntax, subprogram, and data constructs. For the simple programs produced in the PSP course,
we judged that these were most likely to have similar modularization, interface, and data design
considerations. This cut reduced our data to that generated by the programming efforts of 94 stu-
dents.

Because our intent was to analyze defects injected in the design phase, we removed from consid-
eration any data for which design defects were not recorded. From the 94 data sets remaining, two
recorded no defects and 11 recorded no defects injected during design. Our data set for this analy-
sis was, therefore, reduced to 92 engineers or 83 engineers depending upon the specific analysis
performed. In the following sections we present the types of defects that were injected in the de-
sign phase, when the defects were removed, and the effort required to find and fix these defects.

1.3 WHERE THE DEFECTS ARE INJECTED

The first goal of our analysis was to better understand where defects were injected. We expected
injections to be dominated by the design and code phases of course, because they are the construc-
tion phases in PSP. We began by explicitly documenting the phase injection percentages.

This analysis studied the defect injection and removal performance of individuals and the perfor-
mance variation among them. We included the 92 engineers who recorded defects. We began by
computing the phase data for each individual and then computed the following statistics of the
distribution of individuals:

• an estimate of the mean percentage of defects injected by phase

• the 95% confidence interval for that mean (to characterize the standard error on the
mean)

• the standard deviation of the distribution to characterize the spread among individuals

For each phase and for each individual, we calculated the percentage of defects injected in each
PSP phase. The distribution statistics are shown in Table 1.

Figure 1: Quantity of students by program languages

The most common language used was Java. To increase the data set
size, we decided to include the data generated by students who used
Java, C#, C++, and C. This group of languages uses similar syntax,
subprogram, and data constructs. For the simple programs produced
in the PSP course, we judged that these were most likely to have
similar modularization, interface, and data design considerations.
This cut reduced our data to that generated by the programming ef-
forts of 94 students.

Because our intent was to analyze defects injected in the design
phase, we removed from consideration any data for which design
defects were not recorded. From the 94 data sets remaining, two re-
corded no defects and 11 recorded no defects injected during design.
Our data set for this analysis was, therefore, reduced to 92 engineers
or 83 engineers depending upon the specific analysis performed.
In the following sections we present the types of defects that were
injected in the design phase, when the defects were removed, and
the effort required to find and fix these defects.

1.3 WHERE THE DEFECTS ARE INJECTED

The first goal of our analysis was to better understand where defects
were injected. We expected injections to be dominated by the design
and code phases of course, because they are the construction
phases in PSP. We began by explicitly documenting the phase injec-
tion percentages.

This analysis studied the defect injection and removal performance
of individuals and the performance variation among them. We includ-
ed the 92 engineers who recorded defects. We began by computing
the phase data for each individual and then computed the following
statistics of the distribution of individuals:
•	 an	estimate	of	the	mean	percentage	of	defects	injected	by	phase	

•	 the	95%	confidence	interval	for	that	mean	(to	characterize	the	
standard error on the mean)

•	 the	standard	deviation	of	the	distribution	to	characterize	the	
spread among individuals

For each phase and for each individual, we calculated the percent-
age of defects injected in each PSP phase. The distribution statistics
are shown in Table 1.

DLD DLDR Code CR Comp UT

Mean 46.4 0.4 52.4 0.3 0.03 0.5

Lower 40.8 0.2 46.7 0.0 0.0 0.2

Upper 52.0 0.7 58.1 0.7 0.09 0.9

Std. dev. 27.2 1.7 27.4 1.8 0.3 1.8

Table 1: Mean lower, upper confidence interval values and std.
dev. of the % of defects injected by phase

The design and code phases have similar injection percentages
both on average and in the spread. Their mean of the percentage
of defects injected is near 50% with lower and upper confidence
interval bounds between 40% and 58%. Both standard deviations are
around 27% with. So, in the average of this population, roughly half
of the defects were injected in the design phase and the other half of
the defects were injected in the code phase. On average, the defect
potential of these phases appears to be very similar. The standard
deviation shows, however, that the variability between individuals is
substantial. Nonetheless, as we expected, in the average almost 99%
of the defects were injected in the design and code phases with only
around 1% of the defects injected in the other phases.

The design review, code review, compile, and unit test phases also
have similar average defect potentials. The average in all these
cases is less than 0.5% and their standard deviations are small,
the largest being 1.8% in code review and unit testing. This shows
that during verification activities in PSP the percentage of defects
injected is low but not zero. From time to time, developers inject de-
fects while correcting other defects. We will study these secondary
injections in a later study.

The variability between individuals and the similarity between the
code and design phase is also presented in Figure 2. Note that the
range in both phases is from 0% to 100% (all possible values). The
25th percentile is 26.34 for design and 35.78 for code, the median is
45.80 for design and 52.08 for code, and the 75th percentile is 64.22 for
design and 71.56 for code.

Despite a high variability between individuals, this analysis shows
that the great majority of defects are injected in the design and code
phases. Slightly more defects are injected during code than during
design, but the difference is not statistically significant. We could,
therefore, focus on the defects injected in the design and code
phases. In this article, we discuss only the defects injected in the
design phase.

150 Chapter 10. Analysis of Defect Injection and Removal in PSP

TSP SYMPOSIUM 2011 | A Dedication to Excellence 21

 SOFTWARE ENGINEERING INSTITUTE | 5

Figure 2: Percentage of defects injected by phase (box and whisker chart)

1.4 ANALYSIS OF DESIGN DEFECTS

From the 94 engineers in our data set there were 11 who recorded no injected defects during de-
sign. Our data set for analysis of the design defects was, therefore, reduced to 83 engineers. In the
following sections we discuss the types of defects that are injected in the design phase, when
those defects are removed, and the effort required to find and fix the defects.

1.4.1 Defect types Injected during Design

To improve the detection of design defects we first wanted to know which types of defects were
injected during the design phase. Table 2 shows the mean of the percentage of the different defect
types injected. It also presents the lower and upper bound of the 95% confidence interval for the
mean (a measure of the standard error) and the standard deviation of the distribution.

 Docs. Syn. Build Assign. Inter. Check Data Func. Syst. Env.

Mean 6.9 6.0 0.1 12.6 10.0 4.6 9.8 46.6 0.2 3.1

Lower 3.3 2.5 0.0 8.2 5.1 1.6 6.3 39.7 0.0 0.9

Upper 10.5 9.5 0.3 17.0 15.0 7.6 13.3 53.5 0.6 5.3

Std. dev. 16.6 16.0 0.8 20.2 22.5 13.8 16.0 31.5 1.7 10.1

Table 2: Percentage of defect types injected during design

We divided these defect types into three categories. The first is “almost not defects of this type.”
In this category we found system and build/package defects. It is clear that during the PSP course
these types of defects were almost never injected. This may be due to the PSP course exercises
rather than the PSP. Because the exercises are small, taking only a few hours, and contain few
components, and make few external library references, build packages are usually quite simple.
We expect to find more defects of these types in the Team Software Process in industrial scale
projects. A second category is “few defects;” most of the other defect types (all except Function
type) are in this category. The percentage of defects in this category ranged from 3.1% to 12.6%.

Figure 2: Percentage of defects injected by phase
(box and whisker chart)

1.4 ANALYSIS OF DESIGN DEFECTS

From the 94 engineers in our data set there were 11 who recorded no
injected defects during design. Our data set for analysis of the design
defects was, therefore, reduced to 83 engineers. In the following sec-
tions we discuss the types of defects that are injected in the design
phase, when those defects are removed, and the effort required to
find and fix the defects.

1.4.1 Defect types Injected during Design

To improve the detection of design defects we first wanted to know
which types of defects were injected during the design phase. Table
2 shows the mean of the percentage of the different defect types
injected. It also presents the lower and upper bound of the 95% confi-
dence interval for the mean (a measure of the standard error) and the
standard deviation of the distribution.

We divided these defect types into three categories. The first is
“almost not defects of this type.” In this category we found system
and build/package defects. It is clear that during the PSP course these
types of defects were almost never injected. This may be due to the
PSP course exercises rather than the PSP. Because the exercises
are small, taking only a few hours, and contain few components, and
make few external library references, build packages are usually quite
simple. We expect to find more defects of these types in the Team
Software Process in industrial scale projects. A second category is
“few defects;” most of the other defect types (all except Function type)
are in this category. The percentage of defects in this category ranged
from 3.1% to 12.6%.

Docs. Syn. Build Assign. Inter. Check Data Func. Syst. Env.

Mean 6.9 6.0 0.1 12.6 10.0 4.6 9.8 46.6 0.2 3.1

Lower 3.3 2.5 0.0 8.2 5.1 1.6 6.3 39.7 0.0 0.9

Upper 10.5 9.5 0.3 17.0 15.0 7.6 13.3 53.5 0.6 5.3

Std. dev. 16.6 16.0 0.8 20.2 22.5 13.8 16.0 31.5 1.7 10.1

Table 2: Percentage of defect types injected during design

The last category, “many defects,” includes only one type of defect:
function. The great majority of defects injected during design were
of the Function type. This type of defect was almost half of all the
defects injected during Design. This is an observation familiar to PSP
instructors, but not previously reported for a sizable data set.

The lower, upper, and standard deviation data show again the high
variability between individuals. This can also be observed in Figure
3; the box and whisker chart shows many observations as outliers.
Also, it can be seen that the function defect type goes from 0% to
100% and that the 25 percentile is 21% and the 75 percentile is 70%.

6 | SOFTWARE ENGINEERING INSTITUTE

The last category, “many defects,” includes only one type of defect: function. The great majority
of defects injected during design were of the Function type. This type of defect was almost half of
all the defects injected during Design. This is an observation familiar to PSP instructors, but not
previously reported for a sizable data set.

The lower, upper, and standard deviation data show again the high variability between individu-
als. This can also be observed in Figure 3; the box and whisker chart shows many observations as
outliers. Also, it can be seen that the function defect type goes from 0% to 100% and that the 25
percentile is 21% and the 75 percentile is 70%.

Figure 3: Box and whisker of the percentage of defects injected during design

1.4.2 When Are the Defects Injected During Design Removed?

Our analysis indicated the subsequent phases during which the design defects were removed.
While our data set was larger than any previously studied, it remained too small for us to examine
the removals based on defect type. Still, for each engineer who injected design defects, we identi-
fied the phases in which the engineers found the defects, then, for every phase, we determined the
percentage of the defects that were found in that phase.

Table 3 shows the mean (with 95% confidence interval) and standard deviation for the different
phases. The 95% confidence interval is bounded by 45.8% and 61.0%. As previously shown, the
standard deviation was high, indicating the high variability between individuals. From this we
learned that approximately 50% of the defects injected during Design were found in the detailed
level design review (DLDR) phase.

 DLDR Code CR Comp UT

Mean 53.4 9.6 8.9 2.5 25.7

Lower 45.8 5.7 5.2 0.0 19.3

Upper 61.0 13.4 12.5 5.2 32.0

Figure 3: Box and whisker of the percentage of defects injected
during design

1.4.2 When Are the Defects Injected During Design Removed?

Our analysis indicated the subsequent phases during which the de-
sign defects were removed. While our data set was larger than any
previously studied, it remained too small for us to examine the remov-
als based on defect type. Still, for each engineer who injected design
defects, we identified the phases in which the engineers found the
defects, then, for every phase, we determined the percentage of the
defects that were found in that phase.

151

22 TSP SYMPOSIUM 2011 | A Dedication to Excellence

Table 3 shows the mean (with 95% confidence interval) and standard
deviation for the different phases. The 95% confidence interval is
bounded by 45.8% and 61.0%. As previously shown, the standard
deviation was high, indicating the high variability between individuals.
From this we learned that approximately 50% of the defects injected
during Design were found in the detailed level design review (DLDR)
phase.

DLDR Code CR Comp UT

Mean 53.4 9.6 8.9 2.5 25.7

Lower 45.8 5.7 5.2 0.0 19.3

Upper 61.0 13.4 12.5 5.2 32.0

Std. dev. 34.8 17.5 16.7 12.3 29.2

Table 3: Phases where are founded the design defects
(percentage)

Figure 4 shows the box and whisker charts displaying the percentage
of defects found in the different phases and the histogram for the de-
fects founds in DLDR. Figure 4 also shows the high variability between
individuals in the percentage of defects found during DLDR and UT.

Code and code review have a similar percentage of defects that were
injected during design. Approximately 10% of the defects were found
and removed in each of those phases. Approximately 2.5% of the
design defects were found during the compile phase; it is likely that
the defects found in compile were pseudo-code defects. And finally,
around 25% of the defects were found in unit test (UT). This means
that in the PSP accounting, one of every four defects injected during
design escapes all phases prior to UT. We know, of course, that not
all the defects that escape into UT are found in UT. UT will not have
a 100% yield; therefore the percentage of defects found in each of
these phases is smaller than reported while the actual percentage of
escapes into UT is a lower limit. An estimate or measurement of the
UT yield will be necessary to revise these phase estimates.

 SOFTWARE ENGINEERING INSTITUTE | 7

Std. dev. 34.8 17.5 16.7 12.3 29.2

Table 3: Phases where are founded the design defects (percentage)

Figure 4 shows the box and whisker charts displaying the percentage of defects found in the dif-
ferent phases and the histogram for the defects founds in DLDR. Figure 4 also shows the high
variability between individuals in the percentage of defects found during DLDR and UT.

Code and code review have a similar percentage of defects that were injected during design. Ap-
proximately 10% of the defects were found and removed in each of those phases. Approximately
2.5% of the design defects were found during the compile phase; it is likely that the defects found
in compile were pseudo-code defects. And finally, around 25% of the defects were found in unit
test (UT). This means that in the PSP accounting, one of every four defects injected during design
escapes all phases prior to UT. We know, of course, that not all the defects that escape into UT
are found in UT. UT will not have a 100% yield; therefore the percentage of defects found in each
of these phases is smaller than reported while the actual percentage of escapes into UT is a lower
limit. An estimate or measurement of the UT yield will be necessary to revise these phase esti-
mates.

Figure 4: In which phase are the design defects found? – Variability between individuals

1.4.3 Cost to Remove the Defects Injected in Design

What is the cost and variation in cost (in minutes) to find and fix the defects that are injected dur-
ing design? First, we analyze the differences in cost segmented by the removal phase. Second, we
study the differences in cost segmented by defect type.

It would also be interesting to segment and analyze both the removal phase and the defect type
jointly. Unfortunately, because of limited sample size after a two dimensional segmentation, we
cannot perform that analysis with statistical significance.

1.4.3.1 Phase Removal Cost

What is the cost, in each removal phase, to find and fix a defect injected in design? Design defects
can be removed in the detailed level design review (DLDR), code, code review (CR), compile,

Figure 4: In which phase are the design defects found?
– Variability between individuals

1.4.3 Cost to Remove the Defects Injected in Design

What is the cost and variation in cost (in minutes) to find and fix the
defects that are injected during design? First, we analyze the differ-
ences in cost segmented by the removal phase. Second, we study the
differences in cost segmented by defect type.

It would also be interesting to segment and analyze both the removal
phase and the defect type jointly. Unfortunately, because of limited
sample size after a two dimensional segmentation, we cannot per-
form that analysis with statistical significance.

1.4.3.1 Phase Removal Cost

What is the cost, in each removal phase, to find and fix a defect
injected in design? Design defects can be removed in the detailed
level design review (DLDR), code, code review (CR), compile, and
unit test (UT) phases. For each engineer, we calculated the average
task time of removing a design defect in each of the different phases.
Because some engineers did not remove design defects in one or
more phases, our sample size varied by phase. We had data from 67
engineers for DLDR, 29 each for code and CR, six for compile, and 55
for UT. We excluded the cost of finding design defects in the Comp
phase because we had insufficient data for that phase.

Table 4 shows the mean, lower and upper 95% confidence interval,
and the standard deviation for the find and fix time (in minutes) for de-
sign defects in each of the studied phases. We might have expected
an increased cost in each phase but this is not what the data showed.

DLDR CODE CR UT

Mean 5.3 5.1 4.2 23.0

Lower 3.7 2.5 2.6 11.6

Upper 6.9 7.6 5.7 34.3

Std. dev. 6.6 6.7 4.1 42.0

Table 4: Cost of find and fix defects injected in design segment-
ed by phase removed

152 Chapter 10. Analysis of Defect Injection and Removal in PSP

TSP SYMPOSIUM 2011 | A Dedication to Excellence 23

Rather, the “find and fix” cost remained almost constant during
DLDR, code, and CR; in fact, the cost decreased a little in these phas-
es, though the differences were not statistically significant. Further
analysis will be needed to determine which of the defect finds in code
and code review escaped through design and an effective (as opposed
to ineffective) design review. Regardless, any defect discovered in
these phases is essentially found by an inspection process where the
“fix” time is short because the root cause has been identified.

We are not stating here that the cost of finding and fixing a design de-
fect during DLDR, code, and CR is necessarily the same. We are stating
that using PSP, the design defects that are removed during DLDR cost
approximately the same as removing the ones that escape from design
into code and those that escape from design into CR.

As we expected, the average cost of finding a design defect during UT
is much higher than in the other phases by almost a factor of 5.

We also found a high variability among individual engineers. This vari-
ability can be seen in the box and whisker chart in Figure 5. We tested
for normal distribution after log transformation of find and fix times for
DLDR, code, CR, and UT and all are consistent (p> 0.05 using a Kol-
morov-Smirnov and Shapiro-Wilk test) with a log-normal distribution.
This test is primarily useful to verify that we can apply regression to the
transformed data; however, understanding the distribution also helped
to characterize the asymmetry and long tailed nature of the variation.
That is, the log-normality affirmed our intuition that some defects found
in test required far more than the average effort to fix, making test time
highly variable. We also observed that the both the mean and variation
of rework cost in the DLDR, code, and CR phases were significantly
lower than UT in both the statistical sense and the practical sense.

 SOFTWARE ENGINEERING INSTITUTE | 9

Figure 5: Box and whisker of the cost of find and fix a design defect segmented by phase removed

1.4.3.2 Defect Removal by Type

What is the find and fix cost, per defect type, of defects injected during detailed design? As we
mentioned before, we had few build/package and system defects injected during design. As a re-
sult, we didn’t have enough data for a statistically significant analysis of the cost of removing the-
se two types of defects. However, we were able to analyze the remaining defect types.

Table 5 presents the mean, lower, and upper 95% confidence interval and the standard deviation
for the find and fix cost of design defects, segmented by type. The cost, in minutes, for “find and
fix” fell into three groups:

• a group that has a mean near 5 minutes: Documentation, Syntax, Interface, Checking

• a group, composed only of Assignment defects, that has a mean near 7 minutes

• a group that has a mean near 10 minutes: Data, Functions, Environment

The confidence interval of the second group is sufficiently wide that it is not clearly distinct from
either of the other two groups, falling more or less in between. More data would help to clarify
this grouping. We want to emphasize that the third group, including data, functions, and environ-
ment, takes twice the time to find and fix the defects than the documentation, syntax, interface and
checking types of the first group.

 Docs. Syn. Assign. Inter. Check Data Func. Env.
Mean 5.6 4.3 7.3 5.4 4.9 11.0 9.3 10.5

Lower 3.6 1.8 1.9 2.5 2.2 2.2 6.9 3.0

Upper 7.6 6.7 12.7 8.2 7.5 19.8 11.7 17.9

Std. dev. 4.1 3.7 16.3 7.3 5.2 25.6 10.1 11.7

Table 5: Cost of find and fix defects injected in design discriminated by defect type

Figure 5: Box and whisker of the cost of find and fix a design
defect segmented by phase removed

1.4.3.2 Defect Removal by Type

What is the find and fix cost, per defect type, of defects injected
during detailed design? As we mentioned before, we had few build/
package and system defects injected during design. As a result, we
didn’t have enough data for a statistically significant analysis of the
cost of removing these two types of defects. However, we were able
to analyze the remaining defect types.

Table 5 presents the mean, lower, and upper 95% confidence interval
and the standard deviation for the find and fix cost of design defects,
segmented by type. The cost, in minutes, for “find and fix” fell into
three groups:

•	 a	group	that	has	a	mean	near	5	minutes:	Documentation,	Syntax,	
Interface, Checking

•	 a	group,	composed	only	of	Assignment	defects,	that	has	a	mean	
near 7 minutes

•	 a	group	that	has	a	mean	near	10	minutes:	Data,	Functions,	Environ-
ment

The confidence interval of the second group is sufficiently wide that it
is not clearly distinct from either of the other two groups, falling more
or less in between. More data would help to clarify this grouping.
We want to emphasize that the third group, including data, functions,
and environment, takes twice the time to find and fix the defects than
the documentation, syntax, interface and checking types of the first
group.

Docs. Syn. Assign. Inter. Check Data Func. Env.

Mean 5.6 4.3 7.3 5.4 4.9 11.0 9.3 10.5

Lower 3.6 1.8 1.9 2.5 2.2 2.2 6.9 3.0

Upper 7.6 6.7 12.7 8.2 7.5 19.8 11.7 17.9

Std.
dev.

4.1 3.7 16.3 7.3 5.2 25.6 10.1 11.7

Table 5: Cost of find and fix defects injected in design discrimi-
nated by defect type

As in the other cases, the variation among individual developers was
high. This can be seen using the standard deviation, as well as the
box and whisker chart that is presented in Figure 6.

153

24 TSP SYMPOSIUM 2011 | A Dedication to Excellence

10 | SOFTWARE ENGINEERING INSTITUTE

As in the other cases, the variation among individual developers was high. This can be seen using
the standard deviation, as well as the box and whisker chart that is presented in Figure 6.

Figure 6: Box and whisker of the cost of find and fix a defect segmented by defect type

1.5 CONCLUSIONS AND FUTURE WORK

In this analysis, we considered the work of 92 software engineers who, during PSP course work,
developed programs in the Java, C, C#, or C++ programming languages. In each of our analyses,
we observe that there exists a high variation in range of performance among individuals; we show
this variability using standard deviation and box and whisker charts to display the median, quar-
tiles, and range. After considering this variation, we focused our analysis on the defects injected
during design. Our analysis showed that most common design defects (46%) are of type function.
This type belongs to the group of the most costly defects to find and fix. Data and environment
defect types are in the same cost group category as Function.

In addition, the analysis showed that build/package and systems defects were seldom injected in
the design phase. We interpreted this as a consequence of the small programs developed during
the course, rather than as a characteristic of PSP as a development discipline.

In the final three PSP course exercises, defects were injected roughly equally in the design and
code phases; that is, nearly half of the defects were injected in design. Half of the design defects
were found early through appraisal during the detailed design review (DLDR). However, around
25% were discovered during unit test, where defect find and fix is almost five times more expen-
sive in time.

While this analysis provided insights into the injection and removal profile of design defects with
greater specificity than previously possible, a larger data set would allow us to consider more de-
tail, such as the costs of defects discriminated by defect type in addition to removal phase. A more
complete analysis, including a study about the defects injected during the code phase, may enable
us to analyze improvement opportunities to achieve better process yields.

Figure 6: Box and whisker of the cost of find and fix a defect
segmented by defect type

1.5 CONCLUSIONS AND FUTURE WORK

In this analysis, we considered the work of 92 software engineers
who, during PSP course work, developed programs in the Java, C, C#,
or C++ programming languages. In each of our analyses, we observe
that there exists a high variation in range of performance among
individuals; we show this variability using standard deviation and box
and whisker charts to display the median, quartiles, and range. After
considering this variation, we focused our analysis on the defects in-
jected during design. Our analysis showed that most common design
defects (46%) are of type function. This type belongs to the group of
the most costly defects to find and fix. Data and environment defect
types are in the same cost group category as Function.

In addition, the analysis showed that build/package and systems
defects were seldom injected in the design phase. We interpreted
this as a consequence of the small programs developed during the
course, rather than as a characteristic of PSP as a development
discipline.

In the final three PSP course exercises, defects were injected
roughly equally in the design and code phases; that is, nearly half of
the defects were injected in design. Half of the design defects were
found early through appraisal during the detailed design review
(DLDR). However, around 25% were discovered during unit test,
where defect find and fix is almost five times more expensive in time.

While this analysis provided insights into the injection and removal
profile of design defects with greater specificity than previously
possible, a larger data set would allow us to consider more detail,
such as the costs of defects discriminated by defect type in addition
to removal phase. A more complete analysis, including a study about
the defects injected during the code phase, may enable us to analyze
improvement opportunities to achieve better process yields.

In future analysis, we will examine the relationship between design
and code activities and the defects found in the downstream phases.
In particular, we want to determine how variation in design and
design review affects defect leakage into these later phases. During
a related analysis, we will examine the effects of design and design
review on secondary defects injected in the unit test phase.

1.6 REFERENCES/BIBLIOGRAPHY

[Ferguson 97]
Ferguson, Pat; Humphrey, Watts S.; Khajenoori, Soheil; Macke,
Susan; Matvya, Annette. Results of Applying the Personal Software
Process, Computer, vol. 30, no. 5, pp. 24—31, 1997.

[Hayes 97]
Hayes, Will; Over, James. The Personal Software Process: An Empiri-
cal Study of the Impact of PSP on Individual Engineers, Technical
Report, Carnegie Mellon University, Software Engineering Institute,
no. 97-001, 1997.

[Humphrey 05]
Humphrey, Watts S. PSP A Self-Improvement Process for Software
Engineers, Addison-Wesley, 2005.

[Johnson 99]
Johnson, Philip M.; Disney, Anne M. A Critical Analysis of PSP Data
Quality: Results from a Case Study, Empirical Software Engineering,
vol. 4, no. 4, 317—349, 1999.

[Paulk 06]
Paulk, Mark C. Factors Affecting Personal Software Quality, Cross-
Talk: The Journal of Defense Software Engineering, vol. 19, no. 3, pp.
9—13, 2006

[Paulk 10]
Paulk, Mark C. The Impact of Process Discipline on Personal Soft-
ware Quality and Productivity, Software Quality Professional, vol. 12,
no. 2, pp. 15—19, 2010.

[Rombach 08]
Rombach, Dieter; Munch, Jurgen; Ocampo, Alexis; Humphrey, Watts
S.; Burton, Dan. Teaching disciplined software development, The
Journal of Systems and Software, vol. 81, no. 5, pp. 747—763, 2008.

[Wholin 98]
Wohlin, C.; Wesslen, A. Understanding software defect detection in
the Personal Software Process, Proceedings of the Ninth Internation-
al Symposium on Software Reliability Engineering, pp. 49—58, 1998.

154 Chapter 10. Analysis of Defect Injection and Removal in PSP

155

ARTICLE

Analysis of Code Defect Injection and Removal in
PSP

Diego Vallespir and William Nichols

Submitted to a Special Issue of a Software Engineering Open
Journal. The format is not the Journal one.

156 Chapter 10. Analysis of Defect Injection and Removal in PSP

SUBMITTED TO AN OPEN JOURNAL IN SOFT. ENG., VOL. XX, NO. XX, 2012 1

Analysis of Code Defect Injection
and Removal in PSP

Diego Vallespir, William Richard Nichols

Abstract—Defects are the primary source of rework during software development. Late rework often consumes 40
percent or more of project duration and resources. By examining all defects injected and removed during development
projects, we may learn how to prevent or remove defects at less cost. The Personal Software Process (PSP) course
provides a rich source of data describing developer effort and defects in a rigorously measured environment. In this
report, the authors examine defects injected in the coding phase and later removed by developers using the full PSP2.1
process. The authors report the frequency of defect injections by type, the removal cost by type, and the phases in
which defects of a given type are removed. Because the PSP process begins at detailed design and ends at unit
test, some results may not generalize to a production development environment. Nonetheless, the authors report the
significant findings that defects found in unit test are seven times more expensive to remove than those found earlier in
the development, that approximately a quarter of all injections escape into unit test, and that escapes are dominated by
defects that may have resulted from designing during the coding phase.

1 INTRODUCTION

A primary goal of software process improve-
ment is to make software development more ef-
fective and efficient. Because defects require re-
work, one path to performance improvement is
to quantitatively understand the role of defects
in the process. We can then make informed
decisions about preventing defect injection or
committing the effort necessary to remove the
injected defects. The Personal Software Pro-
cess (PSP) establishes a highly instrumented
development process that includes a rigorous
measurement framework for effort and defects.
After examining a large amount of data gen-
erated during PSP instruction classes, we can
describe how many defects are injected during
PSP Code phase, the types of defects injected,
when they are detected, and the effort required
to remove them. We have found that even us-
ing a rigorous PSP development process, nearly
a quarter of all defects injected will escape
into unit test. Moreover, finding and remov-

• D. Vallespir is with the Facultad de Ingenierı́a, Universidad de la
República, Montevideo, Uruguay.
E-mail: dvallesp@fing.edu.uy

• W. R. Nichols is with the Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA, United Stetes.
E-mail: wrn@sei.cmu.edu

ing defects in unit test required seven times
as much effort as removal in earlier phases.
The purpose of this study is not to measure
the effectiveness of PSP training, but rather to
characterize the defects developers inject and
must subsequently remove. By examining the
characteristics of defect injections and escapes,
we might teach developers how to define and
improve their own processes, and thus make
the product development more effective and
efficient.

“The Personal Software Process (PSP) is a
self-improvement process that helps you to
control, manage, and improve the way you
work” [1]. This process includes phases that
you complete while building the software. For
each phase, the engineer collects data on the
time spent in the development phase and data
about the defects injected and removed.

During the Personal Software Process course,
the engineers build programs while they pro-
gressively learn the PSP. The number of exer-
cises of the PSP course version we analyze is
eight. In this article, we present an analysis of
defects injected during the Code phase of the
last three PSP programs (6, 7, and 8); when
building these programs the engineers used the
complete PSP.

We focused on defects injected during the

157

SUBMITTED TO AN OPEN JOURNAL IN SOFT. ENG., VOL. XX, NO. XX, 2012 2

Code phase because these data had not been
specifically studied before. Recently we made
a similar analysis but focused on the defects in-
jected during design phase of PSP [2]. Previous
studies did not have all the defect data, such as
defect types and individual defect times; they
had only summaries.

Our analysis of the complete data available
from individual defect logs shows not only
that the defects injected during Code are more
expensive to remove in Test than in previous
phases of the process but also these are easy
to remove in the Code Review phase. The dif-
ference is striking: it costs seven times more to
remove a defect in Test than it does to remove
a defect during Code Review.

To show this, we observed how defects in-
jected during Code escaped into each subse-
quent phase of the PSP and how the cost to
remove them was affected by defect type and
phase. We describe the different defect types
injected during Code and how these defect
types compare with respect to the “find and
fix” time. From this analysis, we show that
“Syntax” type of defects are the most com-
mon Code phase defect (around 40% of all
the defects), that personal Code Review is an
effective removal activity, and that finding and
fixing Code defects in Code Review phase is
substantially less expensive than removal in
Test phase.

Some other articles study software quality
improvement using PSP [3], [4], [5], [6], [7],
[8]. In the context of PSP, quality is measured
as defect density (defects/KLOC). Our study
differs from all these others in that we focus on
code defects, consider the defect type, and do
not consider defect density. Instead, we focus
on the characteristics of the defects introduced
in code. Our findings resulted from analyses of
the defect types injected, how they proceeded
through the process until they were found and
removed, and cost of removal in subsequent
development phases. In the literature, we do
not know of any other article that has the
characteristics of our research.

2 THE PERSONAL SOFTWARE PRO-
CESS AND THE COLLECTION OF DATA

For each software development phase, the PSP
has scripts that help the software engineer to
follow the process correctly. The phases include
Planning, Detailed Design, Detailed Design Re-
view, Code, Code Review, Compile, Unit Test,
and Post Mortem. For each phase, the engineer
collects data on the time spent in the devel-
opment phase and the defects injected and
removed. The defect data include the defect
type, the time to find and fix the defect, the
phase in which the defect was injected, and the
phase in which it was removed. Fig. 1 shows
the guidance, phases, and data collection used
with the PSP.

Some clarifications are needed to under-
stand the measurement framework. The phases
should not be confused with the activity being
performed. Students are asked to write sub-
stantial amounts of code, on the scale of a
small module, before proceeding through to
review, compile and test. Once a block of code
has passed into a phase, all time is logged in
that phase, regardless of the developer activ-
ity. For example, a failure in test will require
some coding and a compile, but this time is
logged as “Unit Test” phase. By performing a
personal review prior to compiling, the compile
can serve as an independent check of review
effectiveness. We expect the compiler to remove
the simple and inexpensive defects; however, if
the review was effective the compile should be
clean. When a defect is found, data recorded
includes the phase of removal, the direct effort
required to find and remove that defect, the
phase in which it was injected, and the defect
type.

The PSP defines 10 types of defects to be
used during the course. Table 1 presents these
types of defects together with a brief descrip-
tion of which defects should be registered for
each type.

The time to find and fix a defect is the time
it takes to find it, correct it and then verify
that the correction made is right. In the Design
Review and Code Review phases the time to
find a defect is zero, since finding a defect is
direct in a review. However, the time to correct

158 Chapter 10. Analysis of Defect Injection and Removal in PSP

SUBMITTED TO AN OPEN JOURNAL IN SOFT. ENG., VOL. XX, NO. XX, 2012 3

Fig. 1. The PSP phases, scripts, logs and project summary

TABLE 1
Defect types in PSP

Defect Type Possible Defects for the Type
Documentation Comments, messages
Syntax Spelling, punctuation, typos, instruction formats
Build/Package Change management, library, version control
Assignment Declaration, duplicate names, scope, limits
Interface Procedure calls and references, I/O, user formats
Checking Error messages, inadequate checks
Data Structure, content
Function Logic, pointers, loops, recursion, computation, function defects
System Configuration, timing, memory
Environment Design, compile, test, or other support system problems

it and check that the correction is right depends
on how complex the correction is.

On the other hand, both in the Compile and
the Unit Test phases, finding a defect is an in-
direct activity. First, there will be a compilation
error or a test case that fails. Taking that failure
as a starting point (compilation or test) what
causes it (the defect) must be found in order to
make the correction and verify if it is right.

During the Personal Software Process course,
the engineers build programs while progres-
sively learning PSP planning, development,
and process assessment practices. For the first
exercise, the engineer starts with a simple,
defined process (the baseline process, called

PSP 0); as the class progresses, new process
steps and elements are added, from Estimation
and Planning to Code Reviews, to Design, and
Design Review. As these elements are added,
the process changes. The name of each process
and which elements are added in each one are
presented in Fig. 2. The PSP 2.1 is the complete
PSP process.

In this article, we present an analysis of
defects injected during the Code phase of the
PSP, in programs 6, 7, and 8 (all developed
using PSP 2.1, the complete PSP). In PSP 2.1,
students conceptualize program design prior
to coding and record the design decisions us-
ing functional, logical, operational, and state

159

SUBMITTED TO AN OPEN JOURNAL IN SOFT. ENG., VOL. XX, NO. XX, 2012 4

Fig. 2. PSP process level introduction during
course

templates. Students then perform a checklist-
based personal review of the design to identify
and remove design defects before beginning to
write code. After coding students perform a
check-list based personal review of the code.
After the review they compile the code and
finally they make unit testing.

3 THE DATA SET

We used data from the eight program version
of the PSP course (PSP for Engineers I and
II) taught between October 2005 and January
2010. These courses were taught by the Soft-
ware Engineering Institute (SEI) at Carnegie
Mellon University or by SEI partners, including
a number of different instructors in multiple
countries.

This study is limited to only consider the
final three programs of the PSP course (pro-
grams 6, 7, and 8). In these programs, the
students apply the complete PSP process, using
all process elements and techniques. Of course,
not all of these techniques are necessarily ap-
plied well because the students are in a learn-
ing process.

This constitutes a threat to the validity of
this study in the sense that different (and pos-

sibly better) results can be expected when the
engineer continues using PSP in his working
environment after taking the course. This is
due to the fact that the engineer continues to
assimilate the techniques and the elements of
the process after having finished learning the
PSP.

We began with the 133 students who com-
pleted all programming exercises of the men-
tioned courses. From this we made several cuts
to remove errors and questionable data and to
select the data most likely to have comparable
design and coding characteristics.

Because of data errors, we removed data
from three students. Johnson and Disney re-
viewed the quality of the PSP data [9]. Their
analysis showed that 5% of the data was in-
correct; however, many or most of those errors
in their data were due to process calculations
the students made. Process calculations are cal-
culations made to obtain the values of certain
derived measures the process uses to make
estimates for the next program, such as the
defects injected per hour in a certain phase or
calculating the alpha and beta parameters for a
linear regression that relates the estimated size
to the real size of the program.

Because our data were collected with direct
entry into a Microsoft Access tool, which then
performed all process calculations automati-
cally, the lower amount (2.3%) of data removed
is lower than the percentage reported by John-
son and Disney but seems reasonable.

We next reduced the data set to separate
programming languages with more common
design and coding characteristics. As we an-
alyze the code defects, it seems reasonable to
consider only languages with similar character-
istics that might affect code size, modularity,
subroutine interfacing, and module logic. The
students used a number of different program
languages, as shown in Fig. 3.

The most common language used was Java.
To increase the data set size, we decided to
include the data generated by students who
used Java, C#, C++, and C. This group of lan-
guages uses similar syntax, subprogram, and
data constructs. For the simple programs pro-
duced in the PSP course, we judged that these
were most likely to have similar modulariza-

160 Chapter 10. Analysis of Defect Injection and Removal in PSP

SUBMITTED TO AN OPEN JOURNAL IN SOFT. ENG., VOL. XX, NO. XX, 2012 5

Fig. 3. Quantity of students by program lan-
guages

tion, interface, and data design considerations.
This cut reduced our data to 94 subjects.

Because our intent was to analyze defects,
we removed from consideration any data for
which defects were not recorded. From the 94
engineers remaining, two recorded no defects
at all in the three programs considered. Our
data set for this analysis was, therefore, re-
duced to 92 engineers. In the following sections
we present the types of defects that were in-
jected in the code phase, when the defects were
removed, and the effort required to find and fix
these defects.

All our analysis studied the defect injec-
tion and removal performance of individuals
and the performance range of variation among
them. It should be clear that this is different
from analyzing the behavior of a team. That
is to say, we wanted to characterize the work
of individual programmers, which is why we
calculated individual performance for each one
of the subjects. After obtaining the performance
of each subject, we calculated an estimate of the
mean percentage, the 95% confidence interval
for that mean (to characterize the standard
error on the mean), and the standard deviation
of the distribution to characterize the spread
among individuals. For these calculations, as it
has already been mentioned, only programs 6,
7 and 8 of the PSP course were used in order
to consider the complete PSP.

For this study we included the 92 engineers
who recorded defects. In several cases, the
number of engineers included varies, and in

TABLE 2
Mean lower, upper confidence interval values

and standard deviation of the % of defects
injected by phase

DLD DLDR Code CR Comp UT
Mean 46.4 0.4 52.4 0.3 0.03 0.5
Lower 40.8 0.2 46.7 0.0 0.00 0.2
Upper 52.0 0.7 58.1 0.7 0.09 0.9
Std. dev. 27.2 1.7 27.4 1.8 0.30 1.8

each of these cases the motive for varying is
documented.

4 WHERE THE DEFECTS ARE IN-
JECTED

The first goal of our analysis was to better
understand where defects were injected. We
expected injections to be dominated by the De-
sign and Code phases of course, because they
are the construction phases in PSP. We began
by explicitly documenting the phase injection
percentages that occur during the PSP course.

For each PSP phase and for each individ-
ual, we calculated the percentage of defects
injected. The distribution statistics are shown
in Table 2.

The Design and Code phases have similar in-
jection percentages both on average and in the
spread. Their mean of the percentage of defects
injected is near 50% with lower and upper CI
bounds between 40% and 58%. Both standard
deviations are around 27% with. So, in the
average of this population, roughly half of the
defects were injected in the Design phase and
the other half of the defects were injected in the
Code phase. On average, the defect potential of
these phases appears to be very similar. The
standard deviation shows, however, that the
variability between individuals is substantial.
Nonetheless, as we expected, in the average
almost 99% of the defects were injected in the
Design and Code phases with only around 1%
of the defects injected in the other phases.

The Design Review, Code Review, Compile,
and Unit Test phases also have similar average
defect potentials. The average in all these cases
is less than 0.5% and their standard deviations

161

SUBMITTED TO AN OPEN JOURNAL IN SOFT. ENG., VOL. XX, NO. XX, 2012 6

Fig. 4. Percentage of defects injected by phase
(box and whisker chart)

are small, the largest being 1.8% in Code Re-
view and Unit Testing. This shows that dur-
ing verification activities in PSP the percentage
of defects injected is low but not zero. From
time to time, developers inject defects while
correcting other defects. We will study these
secondary injections in a later study.

The variability between individuals and the
similarity between the Code and Design phase
is also presented in Fig. 4. Note that the range
in both phases is from 0% to 100% (all possible
values). The 25th percentile is 26.34 for Design
and 35.78 for Code, the median is 45.80 for De-
sign and 52.08 for Code, and the 75th percentile
is 64.22 for Design and 71.56 for Code.

Despite a high variability between individu-
als, this analysis shows that the great majority
of defects are injected in the Design and Code
phases. Slightly more defects are injected dur-
ing Code than during Design, but the differ-
ence is not statistically significant. We could,
therefore, focus on the defects injected in the
Design and Code phases. In this article, we
discuss only the defects injected in the Code
phase.

5 ANALYSIS OF CODE DEFECTS

From the 92 engineers in our data set there
were four whose records of injected defects (in-
jected during Code) were uncertain regarding

their correctness and therefore were dismissed
for this analysis. Also, eight engineers did not
record defects in the Code phase, so they were
dismissed, as well.

Our data set for analysis of the code de-
fects was, therefore, reduced to 80 engineers.
In the following sections we discuss the types
of defects that are injected in the Code phase,
when those defects are removed, and the effort
required to find and fix the defects.

5.1 Defect Types Injected during the Code
Phase

To improve the detection of code defects we
first wanted to know which types of defects
were injected during the Code phase. Table
3 shows the mean of the percentage of the
different defect types injected. It also presents
the lower and upper bound of the 95% confi-
dence interval for the mean (a measure of the
standard error) and the standard deviation of
the distribution.

None of the engineers registered System type
defects injected during the Code phase. The
Mean D. line presents what was found in our
previous work of analysis of the defects in-
jected during the Design phase, so these results
could be comparable.

When seeking improvement opportunities a
Pareto sort can be used identify the most fre-
quent or most expensive types. These types
can then be the focus for future improvement
efforts. For the following analysis we sorted
defects by frequency, and then segmented these
defect types into three categories of increasing
frequency. The first grouping is “very few”
defects of this type. In the “very few” cat-
egory we found System, Build/Package and
Environment type of defects. In our previous
work, in which the defects injected in the
design phase were studied, we found within
this category the System and Build/Package
defect types but not the Environment type of
defect. Considering this work and the previous
work, it is clear that, during the PSP course,
the build/package and system types of defects
were seldom injected. This may be due to the
PSP course exercises rather than the PSP. Be-
cause the exercises are small, taking only a few

162 Chapter 10. Analysis of Defect Injection and Removal in PSP

SUBMITTED TO AN OPEN JOURNAL IN SOFT. ENG., VOL. XX, NO. XX, 2012 7

TABLE 3
Percentage of defect types injected during code

Docs. Syn. Build Assign. Inter. Check Data Func. Syst. Env.
Mean 3.8 40.3 0.6 14.0 5.5 2.7 5.8 26.4 0 0.9
Mean D. 6.9 6.0 0.1 12.6 10.0 4.6 9.8 46.6 0.2 3.1
Lower 1.5 33.7 0.0 9.9 3.1 1.0 3.1 19.9 0 0.0
Upper 6.0 46.9 1.1 18.1 8.0 4.4 8.6 32.8 0 1.7
Std. dev. 10.1 29.5 2.5 18.4 11.1 7.4 12.4 29.1 0 3.9

hours, contain few components, and make few
external library references, build packages are
usually quite simple. We expect to find more
defects of these types in the Team Software
Process [10], [11] in industrial scale projects.

A second grouping is “few defects;” most
of the other defect types (all except Syntax
and Function types) are in this category. The
percentage of defects in this category ranged
from 2.7% to 14.0%. In our previous work both
Syntax and Environment defect types were in
this category. It is reasonable that, when ana-
lyzing the design defects mentioned, we find
few Syntax defects and that the percentage of
these defects in relation to the rest of the other
types of defects increases when the defects
injected during the Code phase are analyzed.
It is natural that when coding, more Syntax
defects are made than when designing, even if
the design contains pseudocode, as in the case
of the PSP.

The third and final grouping, “many de-
fects,” includes the Syntax and Function types
of defects. The Syntax defects injected during
Code are around 40% of the total defects and
the Function defects are around 26%. Approxi-
mately two out of three injected defects during
the Code phase are of one of these two types.

As mentioned earlier, one out of four (26.4%)
defects injected during the Code phase is a
Function type of defect. This is an opportunity
for improvement for the PSP, since this type of
defect should be injected (and as far as possible
removed) before reaching Code phase. The fact
that there is such an important injection in
percentage of this type of defect indicates prob-
lems in the Design and Design Review phases.
PSP incorporates a detailed pseudocode in the
Design phase using the Logic Template. Due
to this, it is in this phase where the Func-

Fig. 5. Box and whisker of the percentage of
defects injected during code)

tion type defects should be injected, and then
they should be removed in the Design Review
phase.

The lower, upper, and standard deviation
data show again the high variability between
individuals. This can also be observed in Fig. 5;
the box and whisker chart shows many obser-
vations as outliers. The high variability among
individuals is repeated in every analysis con-
ducted, both in this work and in the previous
work, which studied the defects injected in the
Design phase. A detailed analysis of developer
variability is beyond the scope of this report.

5.2 When Are the Defects Injected During
Code Removed?
Our analysis indicated the subsequent phases
during which the Code defects were removed.
While our data set was large, it remained too
small for us to examine the removals based on
defect type. Still, for each engineer who injected

163

SUBMITTED TO AN OPEN JOURNAL IN SOFT. ENG., VOL. XX, NO. XX, 2012 8

TABLE 4
Phases where the code defects are found

(percentage)

CODE DEFECTS
CR Comp UT

Mean 62.0 16.6 21.4
Lower 55.0 11.7 15.4
Upper 69.0 21.6 27.3
Std. dev. 31.3 22.4 26.9

defects in the Code phase, we identified the
phases in which the engineer found the defects;
then, for every phase, we determined the per-
centage of the defects that were found in that
phase.

Table 4 shows the mean (with 95% con-
fidence interval) and standard deviation for
the different phases. As previously shown, the
standard deviation was high, indicating the
high variability between individuals. From this
we learned that 62% of the defects injected
during Code were found in the Code Review
phase in average.

In our previous analysis, we found that
around 50% of the defects injected during the
Design phase were detected in the Design Re-
view phase. This indicates that for the defects
injected in both the Design and Code phases,
the following Review phases are highly effec-
tive.

On the other hand, in the previous study
we also found that around 25% of the defects
injected in the Design phase are detected only
in Unit Test. This happens in 21.4% of the cases,
based on our analysis of defects injected in
the Code phase. This indicates that a relatively
high percentage of defects manage to escape
from the different detection phases and reach
Unit Test.

We also know, of course, that not all the
defects that escape into Unit Test are found
in Unit Test. This phase will not have a 100%
yield. (That is, we will not find all the defects
that are in a given unit when it arrives at Unit
Test). Therefore the percentage of defects found
in each of these phases is smaller than reported,
while the actual percentage of escapes into Unit
Test is a lower limit. An estimate or measure-
ment of the Unit Test yield will be necessary to

Fig. 6. which phase are the code defects found?
- Variability between individuals

revise these phase estimates.
Fig. 6 shows the box and whisker charts

displaying the percentage of defects found in
the different phases. Figure 6 also shows the
high variability between individuals in the per-
centage of defects found during Code Review,
Compile, and Unit Test phases. This variabil-
ity among individuals was also found in the
previous study.

5.3 Cost to Remove the Defects Injected in
Code
What is the cost and variation in cost (in
minutes) to find and fix the defects that are
injected during Code? First, we analyze the
differences in cost, segmented by the removal
phase. Second, we study the differences in cost
segmented by defect type.

It would also be interesting to segment and
analyze both the removal phase and the defect
type jointly. Unfortunately, because of limited
sample size after a two dimensional segmen-
tation, we cannot perform that analysis with
statistical significance.

5.3.1 Phase Removal Cost
What is the cost, in each removal phase, to
find and fix a defect injected in Code? Code
defects can be removed in PSP in the Code
Review (CR), Compile, and Unit Test phases.

164 Chapter 10. Analysis of Defect Injection and Removal in PSP

SUBMITTED TO AN OPEN JOURNAL IN SOFT. ENG., VOL. XX, NO. XX, 2012 9

TABLE 5
Cost of find and fix defects injected in design

segmented by phase removed

CODE DEFECTS
CR Comp UT

Mean 1.9 1.5 14.4
Lower 1.5 1.1 9.8
Upper 2.3 1.9 19.0
Std. dev. 1.9 1.3 16.4

For each engineer, we calculated the average
task time of removing a design defect in each
of the different phases. Because some engineers
did not remove code defects in one or more
phases, our sample size varied by phase. We
had data from 72 engineers for Code Review,
44 for Compile, and 51 for Unit Test.

Table 5 shows the mean, lower, and upper
95% confidence intervals, and the standard de-
viation for the find and fix time (in minutes)
for Code defects in each of the studied phases.

As we expected, the average cost of finding
Code defects during Unit Test is much higher
than in the other phases by a factor of 7. We
are not stating here that the cost of finding and
fixing a particular Code defect during Unit Test
is 7 times higher that finding and fixing the
same particular Code defect in Code Review
or Compile. We are stating that using PSP, the
code defects that are removed during Unit Test
cost 7 times more than the ones that were
removed in Code Review and Compile (these
are different defects).

In our previous study we also found that the
Design injection defects “find and fix” times in
Design Review and Code Review are a factor of
five smaller than the “find and fix” time in Unit
Test .We also found that the defects injected
in Design and removed in Unit Test have an
average “find and fix” time of 23 minutes.
Considering the two analyses, these are the
defects that are most costly to remove. Defects
injected in Code and removed in Unit Test
follow with an average of 14.4 minutes. Testing,
even at the unit test level, is consistently more
a more expensive defect removal activity than
alternative verification activities.

We also found high variability among indi-

Fig. 7. Box and whisker of the cost of find and
fix a code defect segmented by phase removed

vidual engineers. This variability can be seen
in the box and whisker chart in Fig. 7. We
tested for normal distribution after log trans-
formation of “find and fix” times for Code
Review, Compile, and Unit Test. Only Unit Test
is consistent (p ¿ 0.05 using Shapiro-Wilk test)
with a log-normal distribution. The test for nor-
mality is primarily useful to verify that we can
apply regression analysis to the transformed
data; however, understanding the distribution
also helped to characterize the asymmetry and
long tailed nature of the variation. The log-
normality confirmed our intuition that some
defects found in Unit Test required far more
than the average effort to fix, making Unit Test
time highly variable. We observe that both the
mean and variation of rework cost in the Code
Review and Compile phases were significantly
lower than Unit Test in both the statistical sense
and the practical sense.

5.3.2 Defect Removal by Type
What is the “find and fix” cost, per defect
type, of defects injected during code? We did
not have enough data for a statistically sig-
nificant analysis of the cost of removing the
Build/Package, Checking, System, and Envi-
ronment types of defects. However, we were
able to analyze the remaining defect types.

Table 6 presents the mean, lower, and up-
per 95% confidence interval and the standard

165

SUBMITTED TO AN OPEN JOURNAL IN SOFT. ENG., VOL. XX, NO. XX, 2012 10

TABLE 6
Cost of find and fix defects injected in code

segmented by defect type

Docs. Syn. Assign. Inter. Data Func.
Mean 3.4 1.9 2.7 2.3 12.2 9.4
Lower 1.3 1.4 1.8 1.4 0.0 6.8
Upper 5.4 2.3 3.7 3.3 27.2 12.1
Std. dev. 4.2 2.0 3.1 2.2 32.9 10.7

Fig. 8. Box and whisker of the cost of find and
fix a defect segmented by defect type

deviation for categorized by defect type then
sorted by the find and fix cost of Code defects.
For prioritization, the cost, in minutes, for “find
and fix” fell into three groups:

• A group that has a mean around 2-3 min-
utes: Documentation, Syntax, Assignment
and Interface

• A group, composed only of Function de-
fects, that has a mean around 9 minutes

• A group, composed only of Data defects,
that has a mean around 12 minutes

Function type defects (injected during Code
phase) take three times longer to find and fix
than Documentation, Syntax, Assignment, and
Interface defects. Data type defects take four
times as much time.

As in the other cases, the variation among
individual developers was high. This can be
seen using the standard deviation, as well as
the box and whisker chart that is presented in
Fig. 8.

6 LIMITATIONS OF THIS WORK

There are several considerations that limit the
ability to generalize this work: the limited life
cycle of the PSP course, the lack of a production
environment, that students are still learning
process, and the nature of the exercises. Be-
cause the PSP life cycle begins in Detailed De-
sign and ends in Unit Test we do not observe all
types of defects and specifically do not observe
requirements defects or those that would be
found in the late testing such as Integration
Test, System Test, and Acceptance Test. This
also implies that finds in Unit Test are only a
lower estimate of the actual escapes into Unit
Test. Defects such as build and environment or
requirements injections are not considered.

The second consideration is that the PSP
exercises do not build production code. Code
is not intended to be “bullet proofed” or pro-
duction ready. This is most likely to affect the
rigor of Unit Test. Students often run only
the minimum tests specified. This will likely
lead to fewer defects being found and higher
overall development rates, For example, coding
rates are typically much higher than found
in industry. Also excluded is the production
practice of peer inspections.

A third consideration is that, students using
PSP are still learning techniques of design and
personal review. The results after gaining expe-
rience may differ from those found during this
course.

Finally, the problems, though modestly chal-
lenging, do not represent a broad range of
development problems.

7 CONCLUSIONS AND FUTURE WORK

In this analysis, we considered the work of
92 software engineers who, during PSP course
work, developed programs in the Java, C, C#,
or C++ programming languages. In each of
our analyses, we observed that there exists a
high variation in range of performance among
individuals; we show this variability using
standard deviation and box and whisker charts
to display the median, quartiles, and range.

After considering this variation, we focused
our analysis on the defects injected during
Code. Our analysis showed that most common

166 Chapter 10. Analysis of Defect Injection and Removal in PSP

SUBMITTED TO AN OPEN JOURNAL IN SOFT. ENG., VOL. XX, NO. XX, 2012 11

Code defects (40%) are of type Syntax. This
type of defect is the cheapest to find and fix
(1.9 minutes). The types of defects injected in
Code that are most expensive to correct are the
Data (12.2 minutes) and Function (9.4 minutes).

In addition, the analysis showed that Build-
Package, Systems and Environment defects
were seldom injected in the Code phase. We
interpreted this as a consequence of the small
programs developed during the course, rather
than as a characteristic of PSP as a development
discipline.

We found that defects were injected roughly
equally in the Design and Code phases; that
is, around half of the defects were injected in
Code. 62% of the Code defects were found
early through appraisal during the Code Re-
view phase. However, around 21% were dis-
covered during Unit Test, where defect find
and fix is almost seven times more expensive
in time.

While this analysis provided insights into
the injection and removal profile of Code de-
fects with greater specificity than previously
possible, a larger data set would allow us to
consider more detail, such as the costs of de-
fects discriminated by defect type in addition
to removal phase. A more complete analysis
may enable us to analyze improvement oppor-
tunities to achieve better process yields. In fu-
ture analysis, we will examine the relationship
between Design and Code activities and the
defects found in the downstream phases.

REFERENCES

[1] W. S. Humphrey, PSP A Self-Improvement Process for Soft-
ware Engineers. Addison-Wesley, 2005.

[2] D. Vallespir and W. R. Nichols, “Analysis of design de-
fects injection and removal in psp,” in Proceedings of the
TSP Symposium 2011: A dedication to excellence, 2011, pp.
19–25.

[3] M. C. Paulk, “The impact of process discipline on per-
sonal software quality and productivity,” Software Quality
Professional, vol. 12, no. 2, pp. 15–19, 2010.

[4] C. Wohlin and A. Wesslen, “Understanding software
defect detection in the personal software process,” in
Proceedings of the Ninth International Symposium on Software
Reliability Engineering, 1998, pp. 49–58.

[5] D. Rombach, J. Munch, A. Ocampo, W. S. Humphrey, and
D. Burton, “Teaching disciplined software development,”
The Journal of Systems and Software, vol. 81, no. 5, pp. 747–
763, 2008.

[6] M. C. Paulk, “Factors affecting personal software qual-
ity,” CrossTalk: The Journal of Defense Software Engineering,
vol. 19, no. 3, pp. 9–13, 2006.

[7] W. Hayes and J. Over, “The personal software process: An
empirical study of the impact of psp on individual engi-
neers,” Software Engineering Institute, Carnegie Mellon
University, Tech. Rep. 97-001, 1997.

[8] P. Ferguson, W. S. Humphrey, S. Khajenoori, S. Macke,
and A. Matvya, “Results of applying the personal soft-
ware process,” Computer, vol. 30, no. 5, pp. 24–31, 1997.

[9] M. P. Johnson and A. M. Disney, “A critical analysis of
psp data quality: Results from a case study,” Empirical
Software Engineering, vol. 4, no. 4, pp. 317–349, 1999.

[10] W. S. Humphrey, “The team software process,” Software
Engineering Institute, Carnegie Mellon University, Tech.
Rep. 2000-023, 2000.

[11] ——, TSP: Coaching Development Teams. Addison-Wesley,
2006.

167

168 Chapter 10. Analysis of Defect Injection and Removal in PSP

Chapter 11

Conclusions

The effectiveness of the different PSP phases was analyzed in this part. The
phases considered are: design review, code review, compile and unit testing.
The reviews use a checklist and unit testing has not defined which technique
to use; which technique to use is a decision of the engineer.

The design review has a high effectiveness for the removal of the defects
injected during the detailed design phase (more than 50%). On the other
hand, the review of the code has a high effectiveness for the removal of the
defects injected during the code phase (more than 60%).

The result obtained in the code review in PSP differs from the one ob-
tained in the Experiment 2008 with the desktop inspection technique. The
desktop inspection technique is comparable to the technique used in the
code review phase of the PSP since both techniques review the code using
a checklist. The results of the desktop inspection were close to 30% when
a small program was used and close to 20% when the large program was
used. This represents half and one third of the effectiveness of what the
code review in PSP presented.

There may be many reasons why these differences existed. Knowing
what they are implies that more experiments must be conducted especially
in order to find these reasons. Anyway, below we present some of the reasons
for this, in our opinion:

• Practice makes perfect ; in the Experiment 2008 the subjects used the
technique only twice (training and execution) while in the PSP course
it is used several times. During the PSP course the code review tech-
nique is taught and explained very carefully. Besides, this technique
is improved as the engineer developed the exercises of the course and
also from the comments and corrections made by the instructor about
the use of the technique.

• Knowledge of the code or even that it is the code developed by the
reviewer himself, may have an impact on the effectiveness of a review.

169

170 Chapter 11. Conclusions

The program reviewed in the Experiment 2008 was not developed by
the person who reviews it. Besides, the moment in which the review
is performed is the first time he has contact with the program. On the
other hand, the person who reviews the code in PSP is the developer
himself.

• The checklists adapted to the defects the person who developed the
program usually injects is normally a success factor in the review. The
checklist used during the Experiment 2008 is a generic checklist that
was given to all the subjects. On the other hand, the checklist used in
the PSP is created by the engineer himself from the defects he himself
injected in the first exercises of the course.

These possible reasons can help design experiments that try to reject them
or accept them.

We also found that the cost of finding and fixing defects in unit testing is
several times more expensive than finding and fixing defects in the previous
phases. For the defects injected during the design, the cost is five times
higher and for the defects injected in code, the cost is 7 times higher. Besides,
on average, the defects that are most expensive to remove are the ones
injected in design and removed in unit testing.

To show how expensive the “escape” of defects is from where they are
injected to the unit test phase we give an example. Some data will be used
in an approximate form and a simplification of the problem will be done.

Example: A developer using the PSP injects 100 defects in total (100
detectable defects in the use of the PSP, that is to say, defects that are
found in integration tests or in system test are not considered). Using the
statistical data we found, 47 will be injected during the Design phase and
53 during the Code phase.

The 47 defects of the Design phase will be found and fixed in the following
phases and in the following quantities: 25 in Design Review, 5 in Code, 4
in Code Review, 1 in Compile, and 12 in Unit Test. For each one of these
phases we have an average cost to find and fix these defects. Multiplying the
number of defects that are found in each phase by the average time you get
the time (expressed in minutes) that is employed in each phase to remove
the defects injected in design: 133 in Design Review, 26 in Code, 17 in Code
Review, 1 in Compile1, 276 in Unit Test.

Making the same type of calculation with the 53 defects injected in Code
the following is obtained: 33 are found in Code Review, 9 in Compile and
11 in Unit Test. The times in minutes used in each phase to find and fix
them is: 63 in Code Review, 14 in Compile and 158 in Unit Test.

1Considering one minute the removal time in Compile which is an approximate value
since there were not enough data to obtain it with statistical validity

171

Figure 11.1: Time used per phase to detect and correct 100 defects.

Figure 11.1 shows the total cost (in minutes) of finding and fixing 100
defects in PSP per phase in which they are detected. The find and fix cost
of the defects that get to Unit Test represent 63% of the total cost of finding
and fixing all these defects. Looking for ways of finding a larger number
of defects before Unit Test may imply a substantial reduction in the time
employed in the detection and correction of defects. It is clear that waiting
to reach Unit Testing or basing on it as the method of defect detection can
be a bad idea.

It is important to clarify that the calculations of the costs of the tech-
niques in Part I are different from the calculations in the articles of this
Part. The costs in the first Part are related to the use of the technique.
They measure, in minutes, how long it takes to execute the testing tech-
nique used by a subject. The cost analyzed in the context of the PSP is the
cost of finding and fixing defects; independently from the total cost of the
technique that was used.

Finally it is worth mentioning that the number of subjects of the exper-
iments of the first Part and of this Part is very different. The PSP courses
have been taught for a long time in several parts of the world. Thanks to
this there is an important amount of data available ready to be analyzed.

172 Chapter 11. Conclusions

Part IV

Conclusions and
Future Work

173

Chapter 12

Conclusions and Future
Work

This chapter includes three sections: conclusions, contributions of the re-
search and future work.

12.1 Conclusions

The development of software is an intellectual and creative activity per-
formed by human beings. During this activity, as it is natural because of
our human condition, mistakes are made. These become defects in different
software products that may later cause failures during the execution of the
software by the users.

In this context software testing is extremely important. Testing aims at
detecting defects before the product is used by the users. Unfortunately,
knowledge about the effectiveness and cost of the testing techniques is not
enough. The fact that we do not have this information makes it difficult
to choose the best testing strategy that combines different techniques (of
different types) at different moments of the software development process.

The general goal of this thesis is to contribute to the knowledge of
different testing techniques. Our principal goal is:

Goal 1 - Investigate empirically 7 particular testing techniques: desktop
inspection (DI), equivalence partitioning and boundary-value analysis (EP),
decision table (DT), linearly independent path (LIP), multiple condition
coverage (MCC), statement coverage (SC) and all uses (AU).

Research question 1: Which is the effectiveness of each one of those
techniques?

Research question 2: Which is the cost of each one of those techniques?

175

176 Chapter 12. Conclusions and Future Work

In this work we study empirically these testing techniques in an isolated
form. These techniques combine static and dynamic techniques, white and
black box techniques, as well as techniques based on control flow and data
flow.

In order to study them, two controlled experiments were conducted:
the 2008 and 2009 Experiments. These experiments were conducted in the
frame of courses at the Computer Science Institute of the Universidad de la
República designed especially to execute them. The subjects of the experi-
ments were all Computer Science students.

In “Reviewing 25 years of testing technique experiments” [1] and in “A
look at 25 years of data” [2] the authors detect that the majority of the
software programs used in the experiments “suffer from at least one of two
problems: they are small and unusually simple, or the researchers seeded the
defects rather than looking for naturally occurring ones”. In our experiments
we use 4 programs each of which is developed especially for the experiments.
These programs differ from the ones found in the experiment literature in
two aspects. First, the defects in the programs are not injected by the
researchers. Second, the programs are more real and more complex. This
way we try to solve the two problems mentioned.

The authors are more explicit as regards what the programs used in the
experiments are like: “They [the researchers] use relatively small programs,
between 150 and 350 LOC, which are generally toy programs and might not
be representative of industrial software”. The four programs used in our
experiments have the following number of lines of code: 468, 566, 828 and
1820. We believe that our programs are suitable for conducting unit testing
experiments as far as their size, complexity and similarity with the software
development industry are concerned.

The subject attended training sessions as part of the experiment. The
aim of the training was that the subjects should learn the techniques and
apply them correctly. The final part of the training consisted in applying
the techniques on a small program. That is why the training could be
analyzed as an experiment in itself. After the training the subjects applied
the allotted technique on larger programs.

In the analysis of the results we found that the effectiveness of all the
testing techniques was low. None of the techniques was more than 35%
effective. This indicates that quality has to be built during the construction
phase and not during the testing phase.

Besides, the effectiveness of the techniques decreased when they were
used in the experiment programs in relation to when they were used in the
training. This is certainly due to the fact that it is easier to find defects
in trivial programs than it is to find them in complex ones. Conducting
other experiments combining a greater number of trivial programs with more
complex ones will provide us with more information to enable us to reject
or accept this hypothesis.

12.1. Conclusions 177

The training of the Experiment 2008 shows that DI detects a greater
variety of defects than the other techniques. Among the 3 testers applying
the inspection 9 out of the 13 defects of the software program used in the
training are found. This analysis was not repeated in the formal Experiment
2008.

We also found that dynamic techniques have problems in finding NF
defects; defects that do not provoke a failure during execution. Using EP
and DT the participants did not discover any of the NF defects. With MCC,
SC and AU only one NF defect is found. The reason for this is that dynamic
techniques are based on the execution of the program. So defects that do not
produce a failure are never sought directly. In the two articles mentioned
the authors find that “it seems that some types of faults are not well suited
to some testing techniques”.

The conclusion that dynamic techniques have problems with NF defects
is quite expected. However, in our experiment the subjects review the code
twice when using white box techniques and once when using black box tech-
niques. First they review the code thoroughly to generate a group of test
cases that satisfy the coverage that the assigned technique requires (the sub-
jects that have allotted a white box technique). Then they review the code
for each JUnit failure in order to find the corresponding defect. What this
experiment shows is that the attention of the subjects concentrates only on
the task they are performing. It is difficult for them to detect defects while
they are generating test cases. It is also difficult to detect a defect they are
not looking for.

In “Reviewing 25 years of testing technique experiments” and in “A look
at 25 years of data” the authors study the experiments conducted to evaluate
testing techniques (up to the date of the articles). These two works present
the existing empirical knowledge on the topic, problems found and research
opportunities in the area. We shall discuss the results of our experiment in
the light of these two articles.

In the 2009 Experiment we did not find statistically valid differences
between the AU technique and the SC technique. The authors state in the
articles mentioned that “there does not appear to be a difference between
all-uses and all-edges testing as regards effectiveness from the statistical
viewpoint, as the number of programs in which one comes out on top of
the other is not statistically significant”. Given that all-edges is a more
demanding technique than SC it is reasonable to expect that if we did not
find statistically valid differences between the effectiveness of AU and SC,
differences will not be found between AU and all-edges either.

The authors also mention that from a practical point of view “all-edges
is easier to satisfy than AU”. Our results indicate with statistical validity
that the cost of using AU is higher than the cost of using SC (50% more
expensive). These results are consistent because in theory all-edges is more
expensive to execute than SC (however, we have not found experiments to

178 Chapter 12. Conclusions and Future Work

validate this).
The authors also state that the “boundary analysis technique appears

to behave differently compared with different structural testing techniques
(particularly, sentence coverage and condition coverage)”. In the Ex-
periment 2008, which uses the EP technique (equivalence partition and
boundary-value analysis), we do not find statistical evidence in the effective-
ness between EP and the structural MCC technique (it is worth mentioning
that it is the first time the MCC technique has been used in an experiment.)

However, we did find statistical difference in the effectiveness of EP and
the structural LIP technique; EP being more effective than LIP. It must
be borne in mind that the LIP technique was ruled out from the results
analysis of the training of the Experiment 2008 due to the fact that the
subjects probably used it in an incorrect way. In spite of the fact that the
LIP technique was explained again to the subjects to whom it was assigned,
we are uncertain as to how it was used in the 4 programs of the experiment.
Knowing if LIP was used properly requires an analysis of the data that has
not been done yet.

In the Experiment 2008 we used DT (the other black box technique
used). In this experiment there was no statistically valid difference between
the effectiveness of DT and the effectiveness of EP. However, the effectiveness
averages did present differences. DT was more effective than EP, both in
the training and in the experiment.

We have not found formal experiments that use DT in literature. Since
we obtained differences in the effectiveness averages between DT and EP it
seems interesting that the research community should conduct formal ex-
periments that compare both techniques or even resort to using DT instead
of EP in their experiments as a “representative” technique of the black box
techniques.

In the two experiments we conducted we found a high variability between
the subjects that applied the same technique in the same program. This is
consistent with what was found in the review of 25 years of experiments:
“There appears to be a dependence on the subject as regards technique
application time”.

It is important to point out that we have no knowledge of other ex-
periments conducted in which the defects are corrected. The correction of
defects by the researchers during the experiment simulates better the testing
activity in the industry.

We also did research work that complements the central research line.
These works have been very diverse and were presented in Part II. All of
them aim at contributing in some lateral way to the central line of investi-
gation.

The work of analysis of taxonomies presents a study and comparison
of different defects taxonomies. The results of this work are interesting in
themselves beyond the central research topic of this thesis. As far as the

12.1. Conclusions 179

research line is concerned, we have planned to conduct experiments that
study the effectiveness of the techniques segmented by type of defect both
in a generic frame as in the frame of the PSP. The study of taxonomies
will help determine how and with which taxonomy to classify the defects of
future experiments.

The framework of comparison of experiments that evaluates testing tech-
niques needs to be improved and extended. One of the most important
conclusions of this work is that the researchers present the experiments con-
ducted in very different forms and take into consideration different aspects
of the same. This makes experimental replication very difficult. The article
that presents the packaging of the Experiment 2008, makes it clear that a
normalized packaging helps replication.

The last article of Part II presents the importance of data quality in
software engineering experiments. Namely, it shows the importance of con-
ducting a process of data cleansing before performing statistical analyses.

The second goal of this thesis is to make an initial study of the injection
and removal of defects in the PSP. These studies are incipient and represent
a research line that we are starting. They will serve as a basis to later make
studies of the effectiveness and cost of the different testing techniques used
in the PSP unit phase test.

Goal 2 - Investigate empirically the PSP defect injection and removal.

Research question 3: Which is the effectiveness of the different PSP’s
phases?

Research question 4: Which is the cost of finding and fixing a defect in
the PSP?

In order to answer these research questions we analyzed data of the PSP
courses to know the effectiveness of the phases of the process: design review,
code review, compile and unit testing. In order to make this analysis we used
data from the PSP courses taught between October 2005 and January 2010.
These courses were taught by the Software Engineering Institute (SEI) of
the Carnegie Mellon University or by SEI partners.

We found that the design review has a high effectiveness to remove the
defects injected during the detailed design phase (more than 50%). On the
other hand, the code review has high effectiveness to remove the defects
injected during the code phase (more than 60%). This contrasts with what
was found in the Experiment 2008 with the desktop inspection technique.
It would be interesting to conduct experiments in order to find the reasons
for these differences. Some possible causes were presented in Chapter 11.

We also found that the cost of finding and fixing defects in unit
testing is several times more expensive than finding and fixing defects
in the previous phases. For the defects injected during the design, the

180 Chapter 12. Conclusions and Future Work

cost is five times higher and for the defects injected in code, the cost
is 7 times higher. Besides, on average, the defects that are most ex-
pensive to remove are the ones injected in design and removed in unit
testing. We also show that the find and fix cost of the defects that get to
Unit Test represent 63% of the total cost of finding and fixing all the defects.

The controlled experiments were the first experiments in software engi-
neering in the Universidad de la República. Thus an important milestone
is established for the Software Engineering Group of the University. Our
future research work takes place within the frame of empirical software en-
gineering. In fact, this thesis marks the line of research of the Software
Engineering Group of the Computer Science Institute of the Universidad de
la República.

During this thesis we have stressed its use as a frame for the creation of
the Software Engineering Group as a research group. This has involved an
important effort, but it has been gratifying at the same time since we believe
that we have been able to advance in the consolidation of this group. We
have formed a group of people who want to carry out research in software
engineering in Uruguay, but also with international contacts in Brazil and
the United States. All of them appear as co-authors in the articles included
in the thesis.

12.2 Contributions of the Research

Contributions to the main research line

• We give insight into the effectiveness and cost of 7 different testing
techniques, varying from dynamics to statics and from white box to
black box techniques. Also we use data flow and control flow based
techniques in the white box ones.

• The construction of 4 more complex programs than those used habit-
ually in the formal experiments of the area and having real defects (as
opposed to defects injected by the researchers) is a contribution to the
material to conduct formal experiments. Also, when the programs are
tested by the subjects, it is also the first time they are tested (like in
“real life”). The 4 programs are available for the research community.

• In the experiments we simulate the correction of defects, activity nor-
mally conducted in the software industry during unit testing. This
is a novelty in the experiments conducted in the area; therefore it
contributes to the way of executing them.

• We use 3 techniques that we do not find were used in experiments
before: DT, LIP and MCC. So, our experiments are the first ones

12.3. Future Work 181

using these techniques.

• We present a comparison framework for comparing defect taxonomies.
We made a deep analysis of different defect taxonomies that are pro-
posed in the literature and we evaluate them using the proposed frame-
work.

• We show that it is not easy to compare formal experiments and we
present a first draft version of a framework in order to make this
comparison easier.

• We study the data quality of one of the experiments. We did not find
in the literature other studies like this one, at least not using a formal
approach using the Data Quality discipline. We believe that every
experiment must use this kind of analysis and data cleansing before
making the statistical analysis.

Contributions related to PSP data analysis

• We present a new analysis of the PSP courses data. This new analysis
considers the defects types and the behavior of the different phases of
the PSP regarding the effectiveness divided by defect type. This was
not studied before.

• We gain knowledge about the cost of finding and fixing defects that
were injected during design and code in the PSP.

• A minor contribution is that we made a software product that loads
the individual data bases of PSP students into a single data base. This
enables us to manage the data of the different PSP courses better and
makes it possible to make statistical analysis in an easier way.

12.3 Future Work

“A team is a group of people who share a common goal. They
must all be committed to this goal and must all have a common
framework to guide them as they work to achieve the goal. (. . .)

Teams derive their power from the way the members coop-
eratively work to achieve their goals. While it is essential to
have trained and capable individuals on the team, the team’s
true power comes from its composite performance. This does
not mean that the skill and ability of the members is not im-
portant, but that teams are most effective when their members
cooperatively use all of their talents and skills to do their work.
(. . .)

182 Chapter 12. Conclusions and Future Work

The self-directed team is the most powerfull tool humankind
has devised for addressing challenging tasks.”

– W. S. Humphrey, 2005.

In this section we present specifically what research work we are con-
ducting at the moment and which is planned to be done.

We do not have plans to replicate the experiments of Part I in the way
they were performed. In other words, building a particular and ad hoc course
for conducting the experiment. However, we are building new courses for
the new post-graduate degree of the School of Engineering “Specialization
in Software Engineering”. In some of these courses the students do labo-
ratory works. These could be used as controlled experiments. The course
“Software Inspections” that we will teach with Fernanda Grazioli could serve
the purpose of conducting controlled experiments with desktop inspection
technique and also with software Inspections. Lućıa Camilloni, Cecilia Apa
and I are preparing a software unit testing course where the students will
work with black and white box techniques developing test cases in JUnit.
This laboratory can be used also as a controlled experiment, both for the
analysis of the effectiveness and cost and for the analysis of satisfaction of
the techniques.

In a research work we are finishing now we have detected that the sub-
jects manage to satisfy the SC criterion but not the AU criterion. This is
almost finished and an article written together with Natalia Juristo, Carmen
Bogado and Silvana Moreno is in a draft version: “Do the Testers Satisfy
the Technique Prescription? An Empirical Study”. Using the same data we
want to know whether when the subjects use the SC testing technique they
also satisfy other coverage criteria. The research questions should be the
following: When the testers use the SC technique, do they also manage to
satisfy decision coverage, loops coverage, etc? We are conducting this work
together with Carmen Bogado.

We have planned, together with William Nichols, to study from the
practical point of view of software engineering, the results presented in Part
III. It will present both for the professional who uses the PSP and for
the practitioner in general, the enormous differences we found between the
reviews and the unit tests.

William Nichols and I have also planned to replicate the study conducted
having a larger number of PSP courses. Different PSP courses have had
different support tools for the collection of the data of the engineers: paper,
electronic spreadsheets and Microsoft Access. The analyses we performed
were restricted to courses that used Microsoft Access. In order to make the
analysis, a prototype was built that reads each student’s Microsoft Access
files automatically and uploads them to a unified database. At present
Rosana Robaina is building a tool that will enable us to read both the

12.3. Future Work 183

records of the electronic spreadsheets and the Microsoft Access to later save
them in the unified database. This would make it possible to replicate the
study with a much larger number of courses.

Carolina Valverde, Fernanda Grazioli, Adriana Marotta and myself are
carrying out a study of the data quality of the PSP courses. The same
concepts and steps applied in the study of the data quality of the Experiment
2008 are being applied for this study.

Silvana Moreno is making an adaptation of the PSP so that it can be
used together with formal methods, in her master thesis whose tutor is
Alvaro Tasistro. In particular, the study is being conducted considering
Java programming language and the JML modeling language. Together with
the two of them we are finishing an article for the journal Milveinticuatro
that presents the JML using the merge example of the unit testing articles
published in that same journal.

It has been planned for a more distant future to add white box unit
tests to the PSP and study the impacts of effectiveness and cost in the PSP
process.

In a more distant future we intend to try to estimate the number of
remaining defects after the Unit Test phase in the PSP. Thus it would be
possible to estimate the effectiveness of each one of the phases of the PSP.

References

[1] Natalia Juristo, Ana M. Moreno, Sira Vegas. 2004. Reviewing 25 Years
of Testing Technique Experiments. Empirical Software Engeneering, 9, 1-2
(March 2004), 7-44.

[2] Natalia Juristo, Ana M. Moreno, Sira Vegas, Forrest Shull. 2009. A Look
at 25 Years of Data. IEEE Software, 26, 1 (January 2009), 15-17.

184 Chapter 12. Conclusions and Future Work

Part V

Appendices

185

Appendix A

Unit Testing in Java

This appendix deal with software tools for unit tests. The main topic is
code coverage and the support through tools to find that coverage.

The experiments presented in Part I include white box testing tech-
niques: Multiple Condition Coverage, Linearly Independent Path, Sentence
Coverage and All Uses. During these experiments no code coverage tools
were used. It is interesting to replicate the experiments conducted adding
the use of code coverage tools when white box techniques are used. This
was the main reason to start studying the existing tools for Java.

The PSP has a Unit Testing phase. The process does not define which
unit tests to use; this is decided by the engineer that is using the PSP. It
is in our interest to conduct experiments that add white box unit tests to
the PSP. In this context the engineer would use tools to know the achieved
coverage.

The articles on the tools for unit testing in Java were all published in
different editions of the Milveinticuatro Journal, journal for divulging infor-
mation on different topics and mainly in information technology in Uruguay.
Publishing in this journal was seen as an opportunity to approach the soft-
ware industry by the Software Engineering Group spreading the work we
did.

187

188 Appendix A. Unit Testing in Java

E
di

ci
ón

 T
h

om
as

 A
lv

a
E

di
so

n

ISSN: 1688-6941 ISSN: 1688-6941

Ed
ic

ió
n

A
nt

on
io

 M
eu

cc
i

01000001 01101110 01110100 01101111 01101110 01101001 01101111
01001101 01100101 01110101 01100011 01100011 01101001

189

ARTICLES

Unit Testing in Java:

- JUnit and TestNG
Adriana Ávila, Lućıa Camilloni, Fernando Marotta, Diego Valle-
spir and Cecilia Apa
Journal Milveinticuatro, Thomas Alva Edison Edition, pp 46-48,
ISSN: 1688-6941, 2010.

- Code Coverage with Clover
Adriana Ávila, Lućıa Camilloni, Diego Vallespir and Cecilia Apa
Journal Milveinticuatro, Alexander Graham Bell Edition, pp 50-
53, ISSN: 1688-6941, 2011.

- Code Coverage with CodeCover
Carmen Bogado and Diego Vallespir
Journal Milveinticuatro, Blaise Pascal Edition, pp 32-34, ISSN:
1688-6941, 2011.

- Code Coverage with CoView
Diego Vallespir and Fernando Marotta
Journal Milveinticuatro, Blaise Pascal Edition, pp 60-62, ISSN:
1688-6941, 2011.

- Code Coverage with CodeCover and CoView
Diego Vallespir, Fernando Marotta and Carmen Bogado
Journal Milveinticuatro, Antonio Meucci Edition, pp 32-34, ISSN:
1688-6941, 2011.

- Data Driven with TestNG
Adriana Ávila, Lućıa Camilloni and Diego Vallespir
Journal Milveinticuatro, Antonio Meucci Edition, pp 60-61, ISSN:
1688-6941, 2011.

190 Appendix A. Unit Testing in Java

I
n the last few years unit tests have become very important
in the development of software. These tests aim at find-
ing out the way software units work at an early stage. One
of the reasons why these tests are better known and more

used now is the incorporation of agile methodologies such as
Scrum and XP.
Several aspects must be considered when unit testing is in-
corporated to the development of software: The following are
some of them:

-What a software unit is
-Who designs and conducts the tests, how and when this is done
-When the unit can be released (release criterion)
-Which measurements (metrical) must be used
-What tools to use

The introduction of unit testing in an organization can be a fail-
ure if these and other aspects are not taken into consideration.
Probably, the greatest risk run with unit testing is “falling” in a
code-fix cycle. This type of cycle takes place normally when you
depend only on unit testing to construct quality units. All that
is achieved in such cases is low quality “mended” units. This
discussion was presented in the article “TSP/PSP in Uruguay”
published in this journal in its Isaac Newton volume.
Some of the factors to be considered when introducing unit
testing in an organization will be presented in this article and a
brief presentation of two drivers (tools to run the test) for Java
language, JUnit and TestNG will be made.

Who, how and when

Although there are different approaches and some develop-
ment processes propose variations, usually unit tests are con-
ducted by the same person who builds the unit. Knowledge of
the unit as a consequence of having built it makes it easier to
find the defects quickly after the failure of a test. However, there
are different variants. For example, the design of the tests is
made by a different person from the one who developed the
unit: but the execution and correction of the defects are carried
out by the developer.

When introducing unit tests in an organization it is also impor-
tant to consider how they are going to be conducted. This en-
tails the definition of the strategy and the unit tests techniques
to be used. An interesting approach would be to combine black
box and white box techniques.
Black box techniques are tests developed from the specification
of the unit to test. In these, the important thing is to test the
functionality that the unit must have.
White box techniques is based on the code of the unit. The
most important thing about these tests is being able to cover
(execute) certain statements and conditions of the code.
There are different black box and white box techniques. The
introduction of unit testing in an organization must be done
with a clear definition of which techniques are going to be used.
Without this definition different units built by different develop-
ers will have significant differences in the quality of the released
unit.

Unit Testing in Java:
JUnit and TestNG

1464

m i l v e i n t i c u a t r o

They are very important since they are used as a frame
for many other software tools.

191

1474

One of the most important things to define is when the tests
are going to be designed and conducted. It is now when it is
defined whether the organization is going to do code-fix or
not. It is a bad idea to depend on unit testing; several empirical
studies indicate that its effectiveness is approximately 50%. This
means that if 4 defects are detected during these tests (and are
corrected), the unit will have approximately four more defects
when it is released.

Luckily, it is very easy not to depend on these tests and take the
most advantage of them: review before testing. The moment
to conduct a unit test is always after being sure that what has
been constructed is a good quality unit. In order to do this, it is
necessary to design the unit, review the design, codify the unit
and review the code in a static way. Then, unit tests will be a
validation of the fact that what has been constructed is a quality
unit, detecting and correcting very few defects while testing.
Unfortunately, dependence on unit testing is a common mistake
in the software development industry today.

Driver

A driver is a software part created to simulate the invocation to
the unit which you wish to test. It is what provides the data of
the test cases to the software unit being tested and checks the
actual versus expected results.
JUnit and TestNG are two of the most used drivers in Java lan-
guage.

m i l v e i n t i c u a t r o

JUnit and TestNG

JUnit is a framework created by Erich Gamma and Kent Beck
used to automate unit testing in Java language. Testing in JUnit
is conducted through test cases that are written in Java classes.
One of the most useful aspects of JUnit is that the test cases
are defined to be conducted at any time; therefore it is simple
to check, after making modifications to the program, whether
those changes have not introduced new defects. This is known
as regression testing.
TestNG is a framework created by Cedric Beust also to test soft-
ware written in Java language. Its aim is to cover a wide variety
of needs existing in the different types of tests, from unit tests
to integration tests.

This tool was created based on JUnit and NUnit (for.NET), but
introducing new features that make it more powerful and easy
to use. Among the features of this tool are : annotations, JDK
5, flexible configuration of tests, software for testing using the
data-driven approach, support for parameter passage, and al-
lows to define parallelism at testing level.

Figure 1 and figure 2 show how test cases in JUnit and TestNG
respectively are generated; you will see the immense similar-
ity in the way of codifying the test. The method under test is
the merge method. This method receives two arrays of integers
(each one ordered from smaller to larger) and returns an array
that is the ordered union of the elements of both arrays. The
method signature is the following:

192 Appendix A. Unit Testing in Java

Both JUnit and TestNG have great importance since they are
used as frameworks for many other software tools for unit test-
ing; for example coverage, mutant and data-driven tools.
Although both perform the function of a driver, TestNG adds at
least three features that JUnit does not have. They are:

-It makes it possible to pass Java Objects as parameters of test
cases through the support to the tests that use the data-driven
approach.

-It makes it possible to define test groups, which provides great
flexibility when conducting the tests.
-It makes it possible to define dependence between tests. It is
possible to indicate which tests it does not make any sense to
conduct when others fail.

We shall present in subsequent articles code coverage and da-
ta-driven tools.

Figure 1 – Example in JUnit

Figure 2 - Example in TestNG

Adriana Ávila
Lucía Camilloni

Fernando Marotta
Diego Vallespir

Cecilia Apa

Software Engineering Group, UdelaR
gris@fing.edu.uy

1484

m i l v e i n t i c u a t r o

193

A
defective path in the source code, or even a defect
in one statement, can cause an irreparable tragedy
when it is executed. Knowing which parts of the code
are executed by the software tests helps to prevent

a problem when the system is in the production environment.
Luckily, for some time now, there have been automated tools
capable of providing information about the code that has been
tested.

In the first part of this article, published in last year’s issue of this
journal, we presented basic concepts of unit testing and JUnit
and TestNG drivers. In this second part we shall deal with code
coverage at unit level and we shall present the Clover tool.
Combining different types of techniques makes it possible to
increase the effectiveness in the detection of software defects.
Personal reviews, inspections, black box and white box tests are
combined to develop software products close to cero defect.

White box techniques use the source code structure to define
the test cases. Different techniques focus on different structures
of the code. For example, the statement coverage technique
is based on obtaining a set of test cases capable of executing
all the statements of the code under test. They use a measure
called code coverage, which indicates the percentage of the
code covered by the test. The code coverage depends on the
specific technique being used. For example, statement cover-
age indicates the percentage of statements executed during
the tests, and linearly independent paths indicate the percent-
age of paths covered of the total of paths that are linearly in-
dependent.

Trying to find out the cost-benefit relation of these techniques
is a current topic of research. Therefore, the election of one of
these techniques or the selection of a unit testing strategy is
hardly trivial.

Coverage tool - Clover

Clover is a tool that measures statement and decision coverage
achieved by a set of test cases. This tool can be used in an inte-
grated way both with JUnit and TestNG.
It provides assistance in the development of software in order
to be able to comply with the decision coverage during the
tests. For example, it colors the statements to indicate the cov-
erage obtained. At the same time, it generates reports that help
determine at a global level the coverage obtained, making it
possible to know quickly which of the classes that have not been
tested in depth are more likely to present defects. The tool is
easy to use and has a friendly graphic interface.

A simple example

The following example will be useful both to present the deci-
sion coverage using the Clover tool and to introduce the cover-
age of linearly independent paths and the Coview tool in the
third part of this article.
The merge method is shown in Figure 1. This method receives
two arrays of integer numbers ordered from smaller to larger.
The method “takes” the elements of the two arrays and returns
another array with those elements ordered from smaller to larg-
er.

Unit Testing in Java:
Code Coverage with Clover

1505

m i l v e i n t i c u a t r o

Combining different types of techniques makes it possible to
increase effectiveness in the detection of defects in software.

194 Appendix A. Unit Testing in Java

1515

Figure 2-a presents a test case in which the elements of the first
array are all smaller than those of the second array. Figure 2-b
presents another test case in which the elements of the arrays
passed must be interspersed. Both cases are codified in JUnit
and make up the set of test cases of our example.

m i l v e i n t i c u a t r o

Figure 2a -Test case testmerge1

Figure 2b - Test case testmerge2 Figure 1 - Merge method source code

195

Execution using Clover

By executing only the test case testmerge1 75% decision cov-
erage is obtained. In the merge method there are 4 decisions:
a while, an if and 2 fors. Each one of these decisions can take
either value false or value true. The testmerge1 case achieves in
its execution that the while, as well as the second for take both
the value true and false. However, the if and the first for take
only true and false respectively. That is to say, 6 of the 8 possi-
bilities of the 4 decisions are executed, and this represents 75%.
Clover paints the executed statements to help visualize which
code still needs to be covered. The green color indicates that
the statement was executed and its result coincides with the
expected one. The red color (pink, in fact) indicates that the
statement has not been executed in the tests.
The decisions are painted in green when they have been ex-
ecuted with both their true values and are not painted in the
opposite case. Those colors provide a quick visualization of the
code which has not been covered by the tests.

Figure 3 presents the code painted by Clover after executing
the test case testmerge1. It is easy to see the statements that
were not executed and the decisions that were only covered
partially (if and first for).
Carrying on with the example, we execute the second test case:
testmerge2. Thus we attempt to satisfy the decision criterion.
When the second test case is executed using Clover certain
lines are colored in yellow. Clover uses that color to show state-
ments that were only executed by test cases that fail. That is to
say, test cases whose expected results are different from the
actual results. Anyway, it is always convenient to observe the
JUnit or TestNG results before corroborating the code cover-
age; only when test cases do not fail it is interesting to observe
the coverage. The code after executing both test cases is pre-
sented in Figure 4.

The defect that causes the failure in the test case testmerge2
is in the statement following the else. The statement c[k] = a[j];
must be changed for c[k] = b[j];
After correcting this defect the test cases are run again and all
the code is painted green. The code has been covered in 100%
of the decision criterion!

1525

m i l v e i n t i c u a t r o

Figure 3 - Coverage after testmerge1

Figure 4 - Coverage after both cases

196 Appendix A. Unit Testing in Java

Adriana Ávila
Lucía Camilloni
Diego Vallespir

Cecilia Apa

Software Engineering Group, UdelaR
gris@fing.edu.uy

1535

m i l v e i n t i c u a t r o

Good use of the code coverage

The code coverage gives us a good idea of the portions of code
executed. However, it is not reasonable to rely only on these
tests. A reasonable strategy is the application of personal re-
views before starting the tests; this way, the quality of the prod-
uct will increase.

It is also advisable to think first about black box tests that cover
the different features of the unit, class or method being tested.
After conducting these tests and correcting the defects, it is
possible to examine the code coverage.

If the code has not been covered as it was defined in the strat-
egy, new test cases will be generated in order to achieve that
coverage. This unit verification strategy (personal reviews, black
box tests, white box tests) will provide a better quality product
than a strategy only based on one type of technique.

197

Unit Testing in Java:
Code Coverage with CodeCover

2326

m i l v e i n t i c u a t r o

I
n the previous issue of this journal we saw how to conduct
unit tests using Clover as a code coverage tool. Clover pro-
vides information about statement and decision coverage
but not about how the loops (while, for, do-while) of the

method under test have been covered.
The loops are an important source of defects in the programs
and for this reason they have to be built, reviewed and tested
carefully. In this article we will present loop coverage and the
CodeCover tool that supports it.

Loop Coverage

The different loop coverage criteria define the way in which the
loops have to be executed when conducting the tests. For a
certain execution a loop may not be executed, may be execut-
ed once only or may be executed several times. These are the
cases the loop criterion demands be exercised during the tests.
It must be pointed out that for the do-while type of loop, the
case of non-execution is excluded since the same is impossible.
For example, a method that carries out a search of an element
in an array can contain a while that goes through the array until
this finishes or until the element has been found: while (index <
array.length && !found) {
The three cases demanded by the loop coverage criterion can
be fulfilled in the following way:
Not executing the loop - The test case to be used is one where
the array is empty.

Executing the loop only once - Two different cases can be used:
an array with only one element that is not the one searched for
or an array whose first element is the desired one.
Executing the loop more than once - Two different cases can
also be used: an array containing the desired element but which
is not in the first position or an array that does not contain the
desired element and that is more than 1 in length.

Then, for this example, at least three test cases are necessary in
order to satisfy the loop coverage criterion.
There are different types of loop coverage and they differ in
how each one of them demands covering the so-called nested
loops .A loop is nested when it is inside another loop. The nest-
ed loops and their coverage are out of the scope of this article.

Measurement of loop coverage with CodeCover

CodeCover is a code coverage tool that provides information
about different types of coverage; one of these is loop cover-
age.
For each loop of a method of a class in Java, CodeCover will
define different coverable items. These match up with the dif-
ferent possibilities already analyzed of the loops: the loop is not
executed at all, it is executed only once and it is repeated sev-
eral times. The total coverage percentage after executing a set
of test cases is calculated by dividing the numbered of covered
coverable items by the total number of coverable items.
In order to visualize in an easy way the coverage achieved after
executing the tests, CodeCover highlights the code with dif-
ferent colors. Each loop of the code is painted indicating if all,
some or none of the coverable items it contains were covered.
This is useful for identifying the test cases that still need to be
conducted to fulfill the coverage.

Green is used to indicate that all the items in the loop were cov-
ered, yellow for partial coverage (at least an item was covered
but not all) and red if none of the items were covered.
In the cases in which the coverage of a certain loop is not done
completely (yellow), it is possible to check the detail of the cov-
erable items that were not covered by the set of test cases.

This information is useful to construct new test cases that lead
to satisfy 100% of the coverage.

CodeCover is a code coverage tool that provides information
about different types of coverage.

198 Appendix A. Unit Testing in Java

Unit Testing in Java:
Code Coverage with CodeCover

An easy example

In Figure 1 the merge method is presented; the same method
used as an example in the previous article (taking the correct-
ed version as a starting point). It receives two arrays of integer
numbers ordered from smaller to larger. The method “takes”
the elements of the two arrays and comes up with another array
with those elements arranged from smaller to larger.

Execution using CodeCover

The same test cases presented in the previous article are used
with CodeCover. Figure 3.a presents a test case in which the
elements of the first array are all smaller than those of the sec-
ond array. Figure 3.b presents another test case in which the
elements of the two arrays must be interspersed. Both cases
are codified in JUnit and make up the set of test cases of our
example.
The merge method contains 3 loops (1 while and 2 for) that de-
termine 9 coverable items. We will refer to the coverable items
as Zero, One and Many for the cases in which the loop is not
executed, is executed once and is executed several times re-
spectively.

When executing the two test cases 55.6% coverage is obtained.
This corresponds to the execution of 5 of the 9 items.

In figure 2 the highlighted code that corresponds to the ex-
ecution of these cases using CodeCover is shown. It can be
observed that the loops (while and for) within the method are
painted in yellow; this indicated that all the loops have only a
partial coverage of the coverable items.

m i l v e i n t i c u a t r o

2336

Figure 1 – Merge method

Figure 2 – CodeCover Coverage

199

2346

m i l v e i n t i c u a t r o

of array b (In case b is empty, any array with at least two element
serves for array a). This implies going out of the while without
having ordered those elements in the array c and therefore the
first for will be covered at least twice.

Item One of the second for – Test case in which array b has in
its last position a larger element than that of the last position of
array a (in case the array a were empty b can be any array with
an only element). Besides, in case it has more than one element,
the element in the position before the last of b must be smaller
than that of the last position of a. A case like this implies getting
out of the while with only one element to be ordered in array c,
this element being the last of b and therefore the second for will
be covered only once.
In order to achieve 100% of the coverage it is necessary to add
test cases that satisfy the types of cases described. The cas-
es presented in figure 4 satisfy this requirement. Thus, these
cases, executed as a set together with the other two before
mentioned, manage to cover the 9 coverable items defined by
CodeCover, achieving 100% loop coverage.

When executing the four test cases CodeCover indicates with
green on the while and the 2 for that the coverage has been
achieved satisfactorily!

Carmen Bogado
Diego Vallespir

Software Engineering Group, UdelaR
gris@fing.edu.uy

The while has only been covered in the item Many. For the first
for, the items Zero and One have been covered. On the con-
trary, for the second for the items covered are Zero and Many.
This indicates that in order to satisfy the loop coverage it is nec-
essary to have test cases in which the items Zero and One of the
while, Many of the first for and the item One of the second for
are executed.
The next step to achieve 100% of the coverage is to analyze the
type of test cases that are necessary to satisfy each one of the
items that have not been covered.

Item Zero of the While – Test case in which at least one of the
arrays is empty. In this way, the decision becomes false and the
while is never entered.

Item One of the While – Test case in which a[0] is smaller than
b[0] and the array a is equal in length to 1; obviously array b has
to be at least 1 in length. The opposite case is also useful. This
implies entering only once the while.
Item Many of the first for – Test case in which array a has in the
end at least two elements that are larger than the last element

Figure 3.a – Test case testmerge1

Figure 3.b – Test case testmerge2

Figure 4 – Test cases added

200 Appendix A. Unit Testing in Java

I
n the previous article we used the CoCover tool to know
the coverage achieved by a set of test cases at cycle level
in the code. This coverage does not provide information
about the paths of the code that could be covered when

executing the tests.

In this article we present the coverage of Linearly Independent
Paths (LIP) without dealing with theoretical details, and the Co-
View tool, which presents visually which of these paths were
executed during the tests.

Linearly Independent Paths
A path represents an execution flow from the beginning of a
method (or program) till its end. The possible paths depend on
the existing bifurcations in the code (if, while, for, etc.) that di-
rect the execution flow in “one direction or another”. A method
with N decisions (if, for instance) and without cycles (loops) has
potentially 2^N paths. If it also has cycles, the paths could be in-
finite. From the point of view of the code coverage it is normally
impossible to cover this number of paths, or it is too expensive.
A way of limiting the number of paths to cover during the tests
is by using the LIP criterion. The LIP set is the set with the least
number of paths that can generate any other path of the meth-
od by means of a linear combination of the same (this derives
from linear algebra). It is for this reason that the criterion is inter-
esting from the point of view of unit testing. The formal defini-
tion of the LIP set is not covered in this article.

A way of knowing the number of LIP of a method is by count-
ing the number of “zones” in which the flow control graph is
divided (graph that indicates the possible paths of a method).
This number is called cyclomatic complexity of a method.

A simple example
We use the merge method presented in the previous articles as
an example. In Figure 1 the flow control graph of this method is
presented and the “zones” in which it is divided are listed; this
indicates that the method has a cyclomatic complexity equal to
6. The zone numbered as 6 is the external one.

Unit Testing in Java:
Code Coverage with CoView

2606

m i l v e i n t i c u a t r o

CoView determines the linearly independent paths and
presents them in the development environment coloring
the code.

Figure 1 – Flow control graph of the merge method

201

2616

The flow control graph presents the while of the merge method
divided in two (W1 and W2) in which each W is one of the con-
ditions of the while (W1 is i<a.length and W2 is j<b.length). F1
corresponds to the first for of the code and F2 to the second.
Normally the bifurcations are represented with a rhombus as
the figure shows. The sequential statements are represented
with a rectangle.

How are the linearly independent paths determined?
As we explained, cyclomatic complexity indicates the number of
paths necessary to obtain the LIP sets but not which those paths
are. There are different methods to obtain this set, and some
are more complex than others. We are only going to present the
method used by the CoView tool.
The method used by CoView is the following:
1. The first path to add to the LIP set is the path whose condi-
tions are all True. For example, with 5 conditions as in our ex-
ample, this path is represented as the path TTTTT.
2. The other paths are derived simply changing each one of
those values in True for a value in False. In our case there are 5
more paths.

The set of LIP that CoView derives in our examples is the follow-
ing {TTTTT, FTTTT, TFTTT, TTFTT, TTTFT, TTTTF}.

Analyzing the LIP set with CoView
CoView determines the linearly independent paths and presents
them in the development environment coloring the code. Given
a path, the conditions that become True in that path are colored
in green, and those that become False, in red. The statements
that are not conditions are colored in grey if they are executed
in the path, and if they are not executed, they remain in white.

m i l v e i n t i c u a t r o

Figure 2 and Figure 3 show the way in which CoView presents
the path TTTTT, and the path TTTFT. Both images are using Co-
View in the Eclipse development environment.

public int[] merge (int[] a, int [] b) {
 int i = 0;
 int j = 0;
 int k = 0;
 int c[] = new int[a.length + b.length];
 while(i < a.length && j < b.length){
 if(a[i] < b[j]){
 c[k] = a[i];
 k++;
 i++;
 }
 else{
 c[k] = b[j];
 k++;
 j++;
 }
 }
 for (int iter=i; iter<a.length; iter++){
 c[k] = a[iter];
 k++;
 }
 for (int iter=j; iter<b.length; iter++){
 c[k] = b[iter];
 k++;
 }
 return c;
}

Figure 2 – Path TTTTT of the LIP set that CoView determines

202 Appendix A. Unit Testing in Java

Execution using CoView
We use the same four test cases we used in the previous article
in order to test the merge method.
When executing these test cases CoView indicates that only 1
of the 6 paths of the LIP set have been executed. Given this re-
sult, and aiming at achieving 100% coverage, it is necessary to
generate test cases so as to cover the paths of the LIP set that
have not been covered.
In order to generate these test cases we analyzed the 6 paths
generated by CoView. This analysis shows that several of these
paths are impossible to execute. That is to say, that no test case
can cover the flow control graph during its execution as indi-
cated by the path.

Diego Vallespir
Fernando Marotta

Software Engineering Group, UdelaR
gris@fing.edu.uy

2626

m i l v e i n t i c u a t r o

Let us take the path of Figure 2 as an example (TTTTT). This
path indicates that it is enter the while with i<a.length and with
j<b.length (the path indicates the while becomes true). Then,
to cover the path, a[i] must be smaller than b[j] (the if be-
comes true). When returning to the decision of the while it is
not necessary to execute the body, and that is why one of the
two conditions is false; then, either i is not smaller than a.length
or j is not smaller than b.length. This indicates that at least one
of the two fors of the end will be impossible to execute. In this
way it is shown that the path TTTTT cannot be executed with
any test case since the fact that the two fors execute their body
will never occur.

Analyzing non-executable paths
Since the set of LIP determined by CoView contains non-exe-
cutable paths, it will not be possible to achieve 100% coverage.
However, not satisfying the coverage becomes a secondary
concern. Why are there non-executable paths in the code? Is
there any way this can be solved?
In our next article we will present a new algorithm for merge
that solves the problem of having so many non-executable
paths and we will study the coverage achieved with different
criteria, including de criterion LIP.

In this article we saw how using the LIP coverage we managed
to detect that the merge method has many non-executable
paths. Discovering non-executable paths is a good reason to
think of a new algorithmic solution. To conclude, we must clarify
two things. Firstly, it is not necessary to use the LIP criterion
to analyze the non-executable paths of an algorithm; it can be
done simply analyzing the flow control graph directly. Secondly,
it is not always possible to get an algorithm without non-exe-
cutable paths.

public int[] merge (int[] a, int [] b) {
 int i = 0;
 int j = 0;
 int k = 0;
 int c[] = new int[a.length + b.length];
 while(i < a.length && j < b.length){
 if(a[i] < b[j]){
 c[k] = a[i];
 k++;
 i++;
 }
 else{
 c[k] = b[j];
 k++;
 j++;
 }
 }
 for (int iter=i; iter<a.length; iter++){
 c[k] = a[iter];
 k++;
 }
 for (int iter=j; iter<b.length; iter++){
 c[k] = b[iter];
 k++;
 }
 return c;
}

Figure 3 – Path TTTFT of the LIP set that CoView determines

203

Unit Testing in Java
Code coverage with CodeCover

and CoView

2327

m i l v e i n t i c u a t r o

I
n the previous article we presented the CoView tool and
discovered that the merge method of our example contains
many non-executable paths.
Analyzing that method we discovered that when getting out

of the while the condition of the array whose last element is
smaller than that of the other array becomes false. That is to say,
if the element a[length-1] is smaller than the element b[length-1]
then you will go out of the while because the condition i<a.
length will be false; the other case is the opposite.
This indicates that from the moment one enters the method it
will be possible to know which array will not be covered after
the while has been executed. Based on this knowledge we de-
veloped a new merge method presented in Figure 1.

Test cases
The same four test cases of the previous articles are executed
and the cycle coverage and the coverage of the Linearly Inde-
pendent Paths of the new merge method are observed. Table
1 presents these four test cases. The two entry arrays (first and
last) and the expected result when executing the test are pre-
sented.

Cycle Coverage with CodeCover
The merge method contains two cycles. Both cycles are of the
do-while type, that is why each one contains two coverable
items, resulting in a total of four coverable items. The coverable
items are the execution options of the cycles. Each do-while
cycle can be executed only once or more than once during the
execution of a test case (these are interesting cases and differ-
ent from the point of view of the tests).

In the previous merge method there were nine coverable items.
That is why, from the point of view of the cycle coverage, the
new method presents less complexity.

Table 2 presents which items are covered by each test case.
The set of test cases made up by the presented cases achieves
complete cycle coverage.

Figure 1 – New merge method

Table 1 – The four initial test cases

The CoView tool presents the LIP paths in an exact and unam-
biguous form.

Test
Cases

Input Expected Result

First Last

CP 1 {1, 2, 3, 4, 5, 6} {7, 8, 9, 10, 11} {1, 2, 3, 4, 5, 6, 7, 8, 9,

10,11}

CP 2 {1, 2, 5, 11} {3, 4, 8, 10} {1, 2, 3, 4, 5, 8, 10, 11}

CP 3 {} {8} {8}

CP 4 {4, 5} {3} {3, 4, 5}

204 Appendix A. Unit Testing in Java

Linearly Independent Paths with CoView
Figure 2 presents the control flow graph of the merge method
and the 7 zones into which it is divided. The number of zones
is the cyclomatic number and therefore the number of Linearly
Independent Paths (LIP).

The CoView tool generates a set of LIP automatically. Each
bifurcation of the code (if, while, do-while, etc.) can take the
values True or False. These are the bifurcations that determine
each path of the code.

The merge method has 6 bifurcations; 3 if at the beginning, a
first do-while, an if inside the first do-while and another do-while
at the end. The paths will be represented with the values (True
or False) these bifurcations take during its execution.
The paths determined by the tool are the following:

m i l v e i n t i c u a t r o

2337

Table 2 – Cycle coverage with the 4 initial cases

Figure 2 – Control flow graph of the merge method

First do-while of the method Second do-while of the

method

Test cases Item One Item Many Item One Item Many

CP 1 X Covers X Covers

CP 2 X Covers Covers X

CP 3 X X X X

CP 4 Covers X X Cubre

Total Set of
Test Cases

Covers Covers Covers Covers

return first; return last;

Zone 1

Zone 2

Zone 3

Zone 7

Zone 6

Zone 5

Zone 4

205

2347

m i l v e i n t i c u a t r o

Then, in order to achieve 100% LIP coverage, an analysis of each
one of the 6 paths that were not covered has to be carried out
and a test case for each one of those paths must be generated.
For example, for the FT _ path we must generate a case in which
the array named first must not be empty and the array named
last must be empty. The expected result of this case must be the
same as the first array.
In order to achieve 100% coverage of LIP this type of analysis
for each of the paths yet to be covered is performed and the 6
necessary test cases are generated.

The path FFTTFT is not executable. We let the reader identify
the reason why this is so and find a way of changing the merge
method so that it allows us to have all executable paths (if pos-
sible).
The CoView tool makes it possible to select paths to be ex-
cluded from the criterion. For example, in this case it is reason-
able to exclude from the criterion the non-executable path. In
this way, 100% of the executable LIPs are covered with the test
cases presented.

In this article we presented a new merge method that only con-
tains a non-executable LIP and 4 items for the cycle tests. From
the point of view of the LIP and the cycle tests this method is
better than the previous one.
We also presented a set of tests that manage to cover 100% of
both the cycle criterion with the CodeCover tool and the LIP
criterion with the CoView tool.

Diego Vallespir
Fernando Marotta

Carmen Bogado

Software Engineering Group, UdelaR
gris@fing.edu.uy

T_, FT_, FFTTTT, FFFTTT, FFTFTT, FFTTFT, FFTTTF. The bifurca-
tions in the first two paths are incomplete, due to the fact that in
those cases the method is leaved without executing the rest of
the bifurcations. These two cases occur in the first two if.

In Figure 1 the path FFTTTT is presented as an example. The
tool shows the bifurcations that take the value true in green,
those that take the value false in red and in grey the statements
that are executed on the path.
The way of identifying a path that we have just presented is re-
ally a simplification. In the example FFTTTT the bodies of both
do-while are executed twice. In the second execution of the
first do-while, the internal if is evaluated in false. We know this
looking at Figure 1 since the lines of the code of the else are
colored in grey but the condition of the internal if to the do-
while is colored in green.
We also know it because CoView presents the path in another
way; in this case it is determined in an exact and unambiguous
form. We present the same path as Figure 1 (FFTTTT) with this
new notation.

Format: [line code number][decision]:[evaluate in]

[2] first.length==0 : FALSE
[4] last length==0 : FALSE
[6] first[first.length-1]>last[last.length-1] : TRUE
[17] last[iLast]<first[iFirst] : TRUE
[26] iFirst<first.length : TRUE
[17] last[iLast]<first[iFirst] : FALSE
[26] iFirst<first.length : FALSE
[31] iLast<last.length : TRUE
[31] iLast<last.length : FALSE

The path to cover is totally determined with this notation. In
the example it is shown that the line of code 17 (the if inside
the while) is evaluated once in true and the second time it is
executed it is evaluated in false (as we had already determined
previously analyzing Figure 1).

Coverage of LIP with test cases.
When executing our set of 4 test cases only the T_ path is cov-
ered. This path is covered with test case number 3.

Table 3 – Test cases to cover LIP

Test
Case

Input Expected Result

First Last

FT_ {1, 2, 3} {} {1, 2, 3}

FFTTTT {1, 3, 4} {2} {1, 2, 3, 4}

FFFTTT {2} {1, 3, 4} {1, 2, 3, 4}

FFTFTT {3, 4} {1, 2} {1, 2, 3, 4}

FFTTFT The path determined is non-executable

FFTTTF {1, 3} {2} {1, 2, 3}

206 Appendix A. Unit Testing in Java

W
hile conducting unit tests it is common to work
with similar test cases where the only difference
between them is the test data used. In this article
we present the approach based on Data-Driven;

this approach allows us to separate the logic of the test from
its data.
In the previous article we presented a new version of the merge
method and a test set with 9 test cases. These test cases are the
example in this article.

Data-Driven approach.
The approach of the tests based on Data-Driven aims at the sep-
aration of the logic of the test from its scenario. Thus it makes
it possible to use the same logic with different sets of test cases
(input data and expected results). These data are kept (and then
when the tests are executed they are obtained) from a source of
external data such as an XML file or an electronic spreadsheet.
At the moment when the tests that use Data-Driven are going
to be executed, the first data of the data file is taken, the test is
conducted with that data and the obtained results are verified.
The same is done successively for all the items in the file.

TestNG tool
The TestNG tool is a software framework for unit and integra-
tion testing in Java. It was created based on JUnit and NUnit
(for .NET), but introducing new functionality that try to make it
more powerful and easy to use.

One of its functions is to provide software for tests that use
Data-Driven. The tool requires that a method that will be the
container of the test data be defined. It is not possible to input
the test data directly from an external data source. Although
this limits the tool, it is relatively simple to create a method that
translates the data of an external file to the method required
by TestNG.

Using the Data-Driven approach with the merge method
The use of this approach with the TestNG tool for the merge
method is presented below. This method receives two arrays of
integers (each one arranged from smaller to larger) and returns
an array that is the ordered union of the elements of both ar-
rays. The signature of the method is the following:
public int[] merge(int [] a, int [] b)

Using the notation @dataProvider it is pointed out that a meth-
od is a data supplier for a test case. The method must return
an Object[][] where each Object[] can be assigned to a list of
parameters of the test case.
The data container for the 9 test cases defined in the previous
article is shown in Figure 1. The 9 Object[] created at the end
of the method as part of the array of arrays of objects are the 9
input data and expected results for the test cases.

Unit Testing in Java
Data-Driven with TestNG

2607

m i l v e i n t i c u a t r o

The approach of the tests based on Data-Driven aims at
the separation of the logic of the test from its scenario.

207

2617

m i l v e i n t i c u a t r o

In Figure 2 the logic of the test case is presented. In the first line
of the same, it is stated that the data of the test are going to be
provided by the DataProvider named data through the use of a
notation of TestNG. In short, in our example, the same case will
be executed with 9 different scenarios provided by the defined
DataProvider.

As you can see, when the test cases are defined using the Data-
Driven approach, more neatness is achieved in the test cases,
thus facilitating their maintenance. Now the execution of the
cases can be found in only one place and separated from the
input data and the expected results.

Figure 2 – Test Case

Adriana Ávila
Lucía Camilloni
Diego Vallespir

Software Engineering Group, UdelaR
gris@fing.edu.uy

208 Appendix A. Unit Testing in Java

Appendix B

Conceptos de Ingenieŕıa de
Software Emṕırica

En este Apéndice se incluye un Reporte Técnico que introduce a la ingenieŕıa
de software emṕırica.

209

210 Appendix B. Conceptos de Ingenieŕıa de Software Emṕırica

PEDECIBA Informática
Instituto de Computación – Facultad de Ingeniería

Universidad de la República
Montevideo, Uruguay

Reporte Técnico RT 10-02

Conceptos de Ingeniería de Software
Empírica

Cecilia Apa, Rosana Robaina, Stephanie de León, Diego Vallespir

2010

211

Conceptos de Ingeniería de Software Empírica
Apa, Cecilia; Robaina, Rosana; León, Stephanie de; Vallespir, Diego
ISSN 0797-6410
Reporte Técnico RT 10-02
PEDECIBA
Instituto de Computación – Facultad de Ingeniería
Universidad de la República
Montevideo, Uruguay, 2010

212 Appendix B. Conceptos de Ingenieŕıa de Software Emṕırica

Conceptos de Ingeniería de Software Empírica

Cecilia Apa, Rosana Robaina, Stephanie de León, Diego Vallespir
Grupo de Ingeniería de Software

Instituto de Computación
{ceapa, rrobaina, sdeleon, dvallesp}@fing.edu.uy

12 de marzo de 2010

Abstract

En este artículo se presentan conceptos teóricos básicos de la Ingeniería de Software Empírica, así como
también técnicas y herramientas de experimentación. La experimentación es un método que se usa para corres-
ponder ideas o teorías con la realidad, proporcionando evidencia que soporte las hipótesis o suposiciones que
se creen válidas. La experimentación en la Ingeniería de Software no ha alcanzado aún la madurez que tiene la
experimentación en otras disciplinas (por ejemplo, biología, química, sociología). Sin embargo, en los últimos
años ésta área en la Ingeniería de Software ha cobrado gran importancia y su actividad ha sido creciente.

Aquí se presenta un proceso para realizar experimentos formales. Este proceso es el que sigue el Grupo de
Ingeniería de Software de esta Facultad para realizar sus experimentos formales.

213

Índice

1. Introducción 1

2. Enfoques y Estrategias 1

3. Experimentos Formales 2
3.1. Terminología . 2
3.2. Principios generales de diseño . 4
3.3. Tipos de Diseño . 5

3.3.1. Diseño de un solo factor (One-Factor Design) . 5

4. Proceso Experimental 6
4.1. Definición . 6
4.2. Planificación . 7
4.3. Evaluación de la Validez . 8
4.4. Operación . 9
4.5. Análisis e Interpretación . 10

4.5.1. Estadística Descriptiva . 11
4.5.2. Reducción del Conjunto de Datos . 12
4.5.3. Pruebas de Hipótesis . 13

4.6. Presentación y Empaquetado . 15

II | InCo/Pedeciba-2010 TR:10-02

214 Appendix B. Conceptos de Ingenieŕıa de Software Emṕırica

Índice de figuras

1. Componentes en un experimento de Ingeniería de Software . 4
2. Visión general del Proceso Experimental . 6
3. Fase de Definición del Experimento . 7
4. Fase de Planificación del Experimento . 7
5. Fase de Operación del Experimento . 9
6. Fase de Análisis e Interpretación de los Datos del Experimento 11

Instituto de Computación | III

215

Índice de cuadros

1. Estadísticas descriptivas de la Efectividad . 14

IV | InCo/Pedeciba-2010 TR:10-02

216 Appendix B. Conceptos de Ingenieŕıa de Software Emṕırica

1. Introducción

El Grupo de Ingeniería de Software (GrIS) del Instituto de Computación, Facultad de Ingeniería, Universidad
de la República se encuentra realizando experimentos formales para conocer el comportamiento de distintas
técnicas de verificación [10, 8, 9, 7]. Además, hace varios años que se realizan pruebas de procesos de desarrollo
de software en el marco de una asignatura llamada Proyecto de Ingeniería de Software [6]. Si bien estas pruebas
no son formales, es interesante en un futuro formalizarlas.

Para poder realizar experimentos formales se deben conocer los conceptos, las técnicas y las herramientas
normalmente usadas en la Ingeniería de Software Empírica (ISE). Esta área, relativamente nueva de la Ingeniería
de Software (IS), ha causado un impacto considerable en la comunidad científica y en la industria, teniendo su
propia revista internacional (Empirical Software Engineering: An International Journal)1 desde el año 1996.

Este reporte tiene como objetivo presentar los conceptos fundamentales de ISE. Se pretende que este docu-
mento sea utilizado por Proyectos de Grado de la carrera Ingeniería en Computación que se encuentran realizando
trabajos de ISE con el GrIS. Distintos estudiantes de Proyecto de Grado se encuentran trabajando con nosotros
en estos temas y parece razonable tener un documento que sea común a todos estos proyectos. De esta manera
los estudiantes pueden usar este documento como punto de partida para comprender la ISE. Además, pueden
incluir este documento como parte de su informe de proyecto evitando tener un enfoque distinto de la ISE en
cada Proyecto de Grado.

Este reporte se basa casi completamente en los libros Experimentation in Software Engineering: An Intro-
duction [11], Basics of Software Engineering Experimentation [2] y Software Metrics - A Rigorous And Practical
Approach [1].

En la sección 2 se presentan los distintos enfoques y estrategias de la ISE. Una de estas estrategias es la de
experimentos formales, estos se describen en la sección 3. Por último, en la sección 4 se describe un proceso para
llevar adelante un experimento formal.

2. Enfoques y Estrategias

La ISE utiliza métodos y técnicas experimentales como instrumentos para la investigación. La evidencia
empírica proporciona un soporte para la evaluación y validación de atributos (p.e. costo, eficiencia, calidad)
en varios tipos de elementos de Ingeniería de Software (p.e. productos, procesos, técnicas, etc.). Se basa en la
experimentación como método para corresponder ideas o teorías con la realidad, la cual refiere a mostrar con
hechos las especulaciones, suposiciones y creencias sobre la construcción de software.

Se pueden distinguir dos enfoques diferentes al realizar una investigación empírica: el enfoque cualitativo y
el cuantitativo. El enfoque cualitativo se basa en estudiar la naturaleza del objeto y en interpretar un fenómeno
a partir de la concepción que las personas tienen del mismo. Los datos que se obtienen de estas investigaciones
están principalmente compuestos por texto, gráficas e imágenes, entre otros.

El enfoque cuantitativo se corresponde con encontrar una relación numérica entre dos o más grupos. Se
basa en cuantificar una relación o comparar variables o alternativas bajo estudio. Los datos que se obtienen en
este tipo de estudios son siempre valores numéricos, lo que permite realizar comparaciones y análisis estadístico.

Es posible utilizar los enfoques cualitativos y cuantitativos para investigar el mismo tema, pero cada enfo-
que responde a diferentes interrogantes. Se puede considerar que estos enfoques son complementarios más que
competitivos, ya que el enfoque cualitativo puede ser usado como base para definir la hipótesis que luego puede
ser correspondida cuantitativamente con la realidad. Cabe destacar que las investigaciones cuantitativas pueden
obtener resultados más justificables y formales que los cualitativos.

Hay 3 tipos principales de técnicas o estrategias para la investigación empírica: las encuestas, los casos de
estudio y los experimentos.

Las encuestas se utilizan o bien cuando una técnica o herramienta ya ha sido usada o antes de comenzar
a hacerlo. Son estudios retrospectivos de las relaciones y los resultados de una situación. Se puede realizar este
tipo de investigación cuando una técnica, o herramienta ya ha sido utilizada o antes de que ésta sea introducida.
Las encuestas son realizadas sobre una muestra representativa de la población, y luego los resultados son gene-

1http://www.springer.com/computer/programming/journal/10664

Instituto de Computación | 1

217

ralizados al resto de la población. El ámbito donde son más usadas es en ciencias sociales, por ejemplo, para
determinar cómo la población va a votar en la siguiente elección.

En la Ingeniería de Software Empírica las encuestas se utilizan de forma similar, se obtiene un conjunto de
datos de un evento que ha ocurrido para determinar cómo reacciona la población frente a una técnica, herramienta
o método particular, o para determinar relaciones o tendencias. En un estudio es fundamental seleccionar correc-
tamente las variables a estudiar, pues de ellas dependen los resultados que se pueden obtener. Si los resultados
no permiten concluir sobre los objetivos del estudio se han elegido mal las variables.

Una de las características más relevantes de las encuestas es que proveen un gran número de variables para
estudiar. Esto hace posible construir una variedad de modelos y luego seleccionar el que mejor se ajusta a los pro-
pósitos de la investigación, evitando tener que especular cuáles son las variables más relevantes. Dependiendo del
diseño de la investigación (cuestionario) las encuestas pueden ser clasificadas como cualitativas o cuantitativas.

Los casos de estudio son métodos observacionales, se basan en la observación de una actividad o proyecto
durante su curso. Son utilizados para monitorear proyectos, o actividades y para investigar entidades o fenómenos
en un período específico.

En un caso de estudio se identifican los factores clave que pueden afectar la salida de una actividad, y se
documentan las entradas, las limitaciones, los recursos y las salidas. El nivel de control de la ejecución es menor
en los casos de estudio que en los experimentos. Esto se debe principalmente a que en los casos de estudio no se
controla, sólo se observa, contrario a lo que ocurre en los experimentos.

Los casos de estudio son muy útiles en el área de Ingeniería de Software, se usan en la evaluación industrial
de métodos y herramientas. Además, son fáciles de planificar aunque los resultados son difíciles de generalizar
y comprender. Los casos de estudio no manipulan las variables, sino que éstas son determinadas por la situación
que se está investigando.

Al igual que las encuestas, los casos de estudio pueden ser clasificados como cualitativos o cuantitativos
dependiendo de lo que se quiera investigar del proyecto en curso.

Los experimentos son generalmente ejecutados en un ambiente de laboratorio, el cual brinda un alto grado
de control. El objetivo en un experimento es manipular una o más variables y controlar el resto. Un experimento
es una técnica formal, rigurosa y controlada de llevar a cabo una investigación.

En las secciones siguientes se profundiza en los experimentos formales como técnica de investigación.

3. Experimentos Formales

Como se mencionó anteriormente, los experimentos son una técnica de investigación en la cual se quiere
tener un mejor control del estudio y del entorno en el que éste se lleva a cabo.

Los experimentos son apropiados para investigar distintos aspectos de la IS, como ser: confirmar teorías,
explorar relaciones, evaluar la exactitud de los modelos y validar medidas. Tienen un alto costo respecto de las
otras técnicas de investigación, pero a cambio ofrecen un control total de la ejecución y son de fácil replicación.

3.1. Terminología

En esta sección se presentan los términos más comunmente usados en diseño experimental. Se usan dos
ejemplos de experimentos a lo largo de esta sección para introducir dichos términos.

En el primer ejemplo se tiene un experimento en el campo de la medicina, mediante el cual se quiere conocer
la efectividad de los analgésicos en las personas entre 20 y 40 años de edad, llamado «Efec-Analgésicos».

En el segundo ejemplo, se quiere conocer la efectividad de 5 técnicas de verificación sobre un conjunto de
programas, llamado «Efec-Técnicas».

Los objetos sobre los cuales se ejecuta el experimento son llamados Unidades Experimentales u objetos
experimentales. La unidad experimental en un experimento de Ingeniería de Software podría llegar a ser el
proyecto de software como un todo o cualquier producto intermedio durante el proceso.

Para Efec-Analgésicos se tiene que la unidad experimental es un grupo de personas entre 20 y 40 años de
edad, en ese grupo de personas es en donde se observa el efecto de los analgésicos. En el ejemplo de Efec-
Técnicas, se tiene que la unidad experimental es el conjunto de programas sobre los cuales se aplican las técnicas

2 | InCo/Pedeciba-2010 TR:10-02

218 Appendix B. Conceptos de Ingenieŕıa de Software Emṕırica

de verificación.
Aquellas personas que aplican los métodos o técnicas a las unidades experimentales se les llama Sujetos

Experimentales. A diferencia de otras disciplinas, en la IS los sujetos experimentales tienen un importante
efecto en los resultados del experimento, por lo tanto es una variable que debe ser cuidadosamente considerada.

En Efec-Analgésicos los sujetos son aquellas personas que administran los analgésicos a ser consumidos
por los pacientes (enfermeros por ejemplo). Cómo los enfermeros administran los analgésicos a los pacientes no
es algo que se espere vaya a afectar el experimento. La forma en que un enfermero administra un analgésico a un
paciente es poco probable que sea diferente a la de otro, y aunque lo fuera, no se espera que afecte los resultados
del experimento.

En Efec-Técnicas los sujetos pueden ser ingenieros que aplican la técnica en un conjunto particular de
programas (unidad experimental). En este caso, los resultados del experimento podrían diferir mucho de acuerdo
a la formación y experiencia de los ingenieros, así como también la forma en que las técnicas son aplicadas,
incluso el estado de ánimo del verificador podría influir en los resultados.

El resultado de un experimento es llamado Variable de Respuesta. Este resultado debe ser cuantitativo. Una
variable de respuesta puede ser cualquier característica de un proyecto, fase, producto o recurso que es medida
para verificar los efectos de las variaciones que se provocan de una aplicación a otra. En ocasiones, a una variable
de respuesta se le llama también variable dependiente.

En Efec-Analgésicos la efectividad podría ser medida en el grado de alivio del dolor en un determinado lapso
de tiempo, o bien qué tan rápido el analgésico alivia el dolor. En ambos casos, la variable debe ser expresada
cuantitativamente. En el primer caso se podría tener una escala, en la cual cada valor signifique un grado de alivio
del dolor, en el segundo caso, el lapso de tiempo en que el analgésico es efectivo, se podría medir en minutos.

Para Efec-Técnicas la efectividad podría ser medida de acuerdo a la cantidad de defectos que encuentra la
técnica sobre la cantidad de defectos totales del software verificado.

Un Parámetro es cualquier característica que permanezca invariable a lo largo del experimento. Son ca-
racterísticas que no influyen o que no se desea que influyan en el resultado del experimento o en la variable
de respuesta. Los resultados del experimento serán particulares a las condiciones definidas por los parámetros.
El conocimiento resultante podrá ser generalizado solamente considerando los parámetros como variables en
sucesivos experimentos y estudiando su impacto en las variables de respuesta.

En el ejemplo de Efec-Analgésicos se tiene que el rango de edades (entre 20 y 40 años de edad) es un
parámetro del experimento, los resultados serán particulares para el rango establecido.

En Efec-Técnicas un parámetro posible es el tamaño del software a ser verificado (por ejemplo: que tenga
entre 200 y 500 LOCs). Otro parámetro para este experimento podría ser la experiencia de los verificadores, en
este caso se podría fijar la experiencia en un determinado nivel.

Cada característica del desarrollo de software a ser estudiada que afecta a las variables de respuesta se deno-
mina Factor. Cada factor tiene varias alternativas posibles. Lo que se estudia, es la influencia de las alternativas
en los valores de las variables de respuesta. Los factores de un experimento son cualquier característica que es
intencionalmente modificada durante el experimento y que afecta su resultado.

El factor en Efec-Analgésicos es «los analgésicos», en Efec-Técnicas tenemos que el factor es «las técnicas
de verificación». Para ambos casos el factor se varía intencionalmente (se varía el tipo de analgésico o tipo de
técnica de verificación) para ver cómo afecta en la efectividad.

Los posibles valores de los factores en cada unidad experimental son llamados Alternativas o niveles. En
algunos casos también se les llama tratamientos.

Las alternativas de Efec-Analgésicos son los distintos tipos de analgésicos que se estudian en el experimento
(p.e. Aspirina, Zolben, etc). De igual forma, para Efec-Técnicas las distintas alternativas son los 5 tipos distintos
de técnicas que se estudian.

El intento de ajustar determinadas características de un experimento a un valor constante no es siempre
posible. Es inevitable y a veces indeseable tener variaciones de un experimento a otro. Éstas variaciones son
conocidas como Bloqueo de Variables y dan lugar a un determinado tipo de diseño experimental, llamado block
design.

Una variable indeseada para Efec-Analgésicos podría ser el «umbral del dolor». Si se aplica una alternativa
de analgésico a personas con umbral del dolor alto y otra alternativa a personas con umbral del dolor bajo, se

Instituto de Computación | 3

219

tendría una variación indeseada, ya que la efectividad que se mida de los distintos tipos de analgésico va a variar
no solamente por el tipo de analgésico administrado sino por el nivel de umbral del dolor del paciente al cual se
lo administra.

En el caso de Efec-Técnicas, podría resultar que la experiencia de los verificadores resultase una variación
indeseada si no se la tiene en cuenta previamente. Una forma de bloquear la experiencia en verificación podría
ser dividir a los participantes en dos grupos: uno de verificadores experientes y otro sin experiencia.

Cada ejecución del experimento que se realiza en una unidad experimental es llamada experimento unitario
o experimento elemental. Lo que significa que cada aplicación de una combinación de alternativas de factores
por un sujeto experimental en una unidad experimental es un experimento elemental.

Un experimento elemental es cada terna <analgésicoi, enfermeroj , pacientek> para el ejemplo de Efec-
Analgésicos. Para el ejemplo de Efec-Técnicas sería la terna <técnicai, verificadorj , softwarek>.

La figura 1 ilustra la interacción entre los distintos tipos de componentes de un experimento.

Sujetos

Parámetros

(características
fijas)

Resultados

(variable de
respuesta)

Factor

(variable
independientes)

Alternativas

Variables no

deseadas

Conclusiones

Compuesto de

Restringe

Análisis

Unidades

Experimentales

Experimento

Bloqueo

Figura 1. Componentes en un experimento de Ingeniería de Software

3.2. Principios generales de diseño

Muchos aspectos deben ser tenidos en cuenta cuando se diseña un experimento. Los principios generales de
diseño son: aleatoriedad, bloqueo y balance. A continuación se describe en qué consiste cada principio.

Aleatoriedad: el principio de aleatoriedad es uno de los principios de diseño más importantes. Todos los
métodos de análisis estadístico requieren que las observaciones sean de variables independientes aleatorias. Por
consiguiente, tanto las alternativas de los factores como los sujetos tienen que ser elegidos de forma aleatoria, ya
que los sujetos tienen un impacto crítico en el valor de las variables de respuesta.

La aleatoriedad que se puede aplicar a un experimento también depende del tipo de diseño que se haya
elegido. Por ejemplo, si se tienen dos factores A y B, cada uno con dos posibles alternativas (a1, a2, b1 y b2),
las alternativas deben ser combinadas de la siguiente forma: a1b1, a1b2, a2b1, a2b2, ya que cuando se tienen dos
factores se quiere observar el efecto de cada alternativa por separado y de la interacción entre ambas.

Esta combinación de alternativas es especificada por el tipo de diseño experimental que se eligió. Sin embar-
go, las cuatro combinaciones deben ser asignadas de forma aleatoria a los proyectos y sujetos, y es ahí en donde
la aleatoriedad se aplica.

Bloqueo: la técnica de bloqueo se usa cuando se tienen factores que probablemente tengan efectos indesea-
dos en las variables de respuesta y éstos efectos son conocidos y controlables.

Como se mencionaba en el ejemplo de Efec-Técnicas en la sección anterior, algunos verificadores podrían
tener experiencia en el uso de las técnicas de verificación y otros no. Entonces, para minimizar el efecto de la

4 | InCo/Pedeciba-2010 TR:10-02

220 Appendix B. Conceptos de Ingenieŕıa de Software Emṕırica

experiencia, se agrupan a los participantes en dos grupos, uno con verificadores experientes y otro sin experiencia.
Balance: el balance es deseable ya que simplifica y fortalece el análisis estadístico de los datos, aunque

no es necesario. Tomando como ejemplo el experimento de Efec-Analgésicos nuevamente, sería deseable que la
cantidad de personas a las cuales se les administra Zolben sea igual a la cantidad de personas que se les administra
Aspirina.

3.3. Tipos de Diseño

En el proceso del diseño experimental, primero se debe decidir (basándose en los objetivos del experimento)
a qué factores y alternativas estarán sujetas las unidades experimentales y qué parámetros deben ser establecidos.
Luego, se debe examinar si existe la posibilidad de que algunos de los parámetros no pueda mantenerse en un
valor constante, en ese caso se debe tener en cuenta cualquier variación indeseable. Finalmente, se debe elegir
qué variables de respuesta serán medidas y cuáles serán los objetos y sujetos experimentales.

Teniendo establecidos los parámetros, factores, variables de bloqueo y variables de respuesta, se debe ele-
gir el tipo de diseño experimental, en el cual se establece cuántas combinaciones de experimentos unitarios y
alternativas deben haber.

Los distintos tipos de diseño experimental dependen del objetivo del experimento, del número de factores,
de las alternativas de los factores y de la cantidad de variaciones indeseadas, entre otros.

Los tipos de diseño experimental se dividen en diseños de un solo factor y diseños de múltiples factores. A
continuación se profundiza en los experimentos de un solo factor.

3.3.1. Diseño de un solo factor (One-Factor Design)

Para experimentos con un solo factor existen distintos tipos de diseños estándar, los principales son: los
completamente aleatorios y los aleatorios con comparación por pares.

Los diseños completamente aleatorios son los tipos de diseño más simples, en los cuales se intenta compa-
rar dos o más alternativas aplicadas a un determinado número de unidades experimentales, en donde cada unidad
experimental se ve afectada una única vez, y por ende, por una sola alternativa. La asignación de las alternativas
a los experimentos debe ser de forma aleatoria para asegurar la validez del análisis de datos.

Tomando como ejemplo Efec-Técnicas y suponiendo que el conjunto de programas sobre el cual se quiere
conocer la efectividad de las técnicas lo componen diez programas distintos, se tendría que asignar las técnicas
y los ingenieros de forma aleatoria a los programas que se vayan a verificar.

Una posible asignación aleatoria sería tener en una bolsa los nombres de todas las técnicas de verificación a
aplicar, en donde la primera que se extraiga se aplique al programa P1, la segunda a P2 y así hasta el programa
P10. Luego de tener las duplas Programa-Técnica, efectuar la misma asignación aleatoria con los participantes:
el primer participante extraído se lo asigna la dupla (P1, Tx), el segundo a la dupla (P2, Ty), y así sucesivamente.

El análisis estadístico que se puede hacer a este tipo de experimentos varía según si se aplican 2 o más
alternativas para el factor.

Los diseños aleatorios con comparación por pares tienen como objetivo encontrar cuál es la mejor alter-
nativa respecto de una determinada variable de respuesta. Estos tipos de diseño tienen la particularidad de que
las alternativas se aplican al mismo experimento, instanciado en más de una unidad experimental.

Para el experimento de Efec-Técnicas no sería una buena decisión que cada ingeniero verificara 2 veces el
mismo programa. En la segunda instancia de verificación, el ingeniero posee conocimiento tanto de los defectos
del programa como de la tarea de verificar propiamente dicha (aunque sea con una técnica distinta). Por esto,
para comparar las dos técnicas, ambas tienen que ser aplicadas por primera vez por ingenieros distintos, pero con
similares características (ya que encontrar uno igual es imposible). La alternativa que debe aplicar cada ingeniero
al programa debe ser asignada de forma aleatoria y no debe verificar un mismo programa más de una vez.

En este tipo de diseños se bloquean cierto tipo de variables que representan restricciones en la aleatoriedad
que se le puede dar. Tomando como ejemplo nuevamente a Efec-Técnicas, si un verificador sin experiencia aplica
más de una técnica durante el experimento, no sería deseable asignar al azar la técnica que cada verificador aplica
en cada verificación.

Instituto de Computación | 5

221

Existe un efecto de aprendizaje en el cual, luego de que un verificador ejecutó una verificación, éste generó
conocimiento sobre la verificación en sí, independientemente de la técnica que haya aplicado, y éste conocimiento
influye significativamente en la segunda instancia de verificación que vaya a aplicar. Por tanto, la aleatoriedad en
el orden de la asignación de técnicas en este ejemplo no es del todo deseable.

4. Proceso Experimental

Como se mencionó anteriormente, los experimentos son una técnica de investigación en la cual se quiere
tener un mejor control del estudio y del entorno en el que éste se lleva a cabo.

Los experimentos son apropiados para investigar distintos aspectos de la IS, como ser: confirmar teorías,
explorar relaciones, evaluar la exactitud de los modelos y validar medidas. Tienen un alto costo respecto de las
otras técnicas de investigación, pero a cambio ofrecen un control total de la ejecución y son de fácil replicación.

El proceso para llevar a cabo un experimento está formado por varias fases: definición, planificación, opera-
ción, análisis e interpretación y presentación.

La primer fase es la de definición, en donde se define el experimento en términos del problema, objetivos
y metas. La siguiente fase es la planificación, en la cual se determina el diseño del experimento. En la fase de
operación se ejecuta el diseño del experimento, en donde se recolectan los datos que serán analizados poste-
riormente en la fase de análisis e interpretación. En esta última fase, conceptos estadísticos son aplicados para
analizar los datos. Por último, se muestran los resultados obtenidos en la fase de presentación.

En la figura 2 se muestra una visión general de todo el proceso. Cada una de las fases que lo componen se
detallan a continuación.

Proceso Experimental

Definición

Planificación

Operación

Análisis e

Interpretación

Presentación y

Empaquetado

Idea

Experimental

Conclusiones

Figura 2. Visión general del Proceso Experimental

4.1. Definición

En la fase de Definición se determinan las bases del experimento, que se ilustra en la figura 3. Para ello
se debe definir el problema que se quiere resolver, propósito del experimento y los objetivos y metas del
mismo.

Para el planteo del objetivo del experimento se debe definir el objeto de estudio, que es la entidad que va a
ser estudiada en el experimento. Puede ser un producto, proceso, recurso u otro. También se debe establecer el
propósito: la intención del experimento. Por ejemplo, evaluar diferentes técnicas de verificación.

Se debe definir además el foco de calidad, que refiere al efecto primario que esta bajo estudio, ejemplos son
la efectividad y el costo de las técnicas de verificación. El propósito y el foco de calidad son las bases para las
hipótesis del experimento.

6 | InCo/Pedeciba-2010 TR:10-02

222 Appendix B. Conceptos de Ingenieŕıa de Software Emṕırica

Definición del Experimento

Definir el

Experimento

Idea

Experimental

Definición del

Experimento

Figura 3. Fase de Definición del Experimento

Otro aspecto que debe estar presente es la perspectiva, que refiere al punto de vista con que los resultados
obtenidos son interpretados. Por ejemplo, los resultados de la comparación de técnicas de verificación pueden
verse desde la perspectiva de un experimentador, de un investigador o de un profesional. Un experimentador verá
el estudio como una demostración de como una técnica de verificación puede ser evaluada. Un investigador puede
ver el estudio como una base empírica para refinar teorías sobre la verificación de software, enfocándose en los
datos que apoyan o refutan estas teorías. Un profesional puede ver el estudio como una fuente de información
sobre qué técnicas de verificación deberían aplicarse en la práctica.

Junto con los aspectos mencionados se debe definir el contexto, que es el ambiente en el que se ejecuta el
experimento. En este punto se deben definir los sujetos que van a llevar a cabo el experimento y los artefactos que
son utilizados en la ejecución del mismo. Se puede caracterizar el contexto de un experimento según el número
de sujetos y objetos definidos en él: un solo objeto y un solo sujeto, un solo sujeto a través de muchos objetos,
un solo objeto a través de un conjunto de sujetos, o un conjunto de sujetos y un conjunto de objetos.

4.2. Planificación

La planificación es la fase en la que se define como se va a llevar a cabo el experimento. Esta fase consta de
las etapas: selección del contexto, formulación de las hipótesis, elección de las variables, selección de los sujetos,
diseño del experimento, instrumentación y evaluación de la validez, que se muestran en la figura 4.

Planificación del Experimento

Selección del

Contexto
Formulación de

las hipótesis
Elección de las

variables

Selección de

los sujetos

Diseño del

Experimento

Definición del

Experimento

Instrumenta-

ción

Evaluación de

la Validez

Diseño del

Experimento

Figura 4. Fase de Planificación del Experimento

La etapa de selección del contexto es la etapa inicial de la planificación. En esta etapa se amplía el contexto
definido en la etapa de Definición, especificando claramente las características del ambiente donde ejecuta el
experimento. Se define si el experimento se va a realizar en un proyecto real (en línea, on-line) o en un labora-
torio (fuera de línea, off-line), características de los sujetos y si el problema es «real» (problema existente en la
industria) o «de juguete». También se debe definir si el experimento es válido para un contexto específico o para
un dominio general de la Ingeniería de Software.

Instituto de Computación | 7

223

Una vez que los objetivos están claramente definidos se pueden transformar en una hipótesis formal. La for-
mulación de las hipótesis es una fase muy importante dentro de la etapa de planificación, ya que la verificación
de la misma es la base para el análisis estadístico. En esta fase se formaliza la definición del experimento en la
hipótesis.

Usualmente se definen dos hipótesis, la hipótesis nula y la hipótesis alternativa. La hipótesis nula, denotada
H0, asume que no hay una diferencia significativa entre las alternativas, con respecto a las variables dependientes
que se están midiendo. Establece que si hay diferencias entre las observaciones realizadas, éstas son por casua-
lidad, no producto de la alternativa aplicada. Esta hipótesis se asume verdadera hasta que los datos demuestren
lo contrario, por lo que el foco del experimento está puesto en rechazarla. Un ejemplo de hipótesis nula es: «No
hay diferencia en la cantidad de defectos encontrados por las técnicas de verificación».

En cambio la hipótesis alternativa, denotada H1, afirma que existe una diferencia significativa entre las
alternativas con respecto a las variables dependientes. Establece que las diferencias encontradas son producto de
la aplicación de las alternativas. Ésta es la hipótesis a probar, para esto se debe determinar que los datos obtenidos
son lo suficientemente convincentes para desechar la hipótesis nula y aceptar la hipótesis alternativa. Un ejemplo
de hipótesis alternativa es, si se están comparando dos técnicas de verificación, decir que una encuentra más
defectos que la otra. En caso de haber más de una hipótesis alternativa se denotan secuencialmente: H1, H2, H3,
. . . , Hn.

Una vez definida la hipótesis, se debe identificar qué variables afectan a la/s alternativa/s. Luego de identifi-
cadas las variables se debe decidir el control a ejercer sobre las mismas.

La selección de las variables dependientes como la de las independientes están relacionadas, por lo que
en muchos casos se realizan en simultáneo. Seleccionar estas variables es una tarea muy compleja, que en oca-
siones implica conocer muy bien el dominio. Es importante definir las variables independientes y analizar sus
características, para así investigar y controlar los efectos que ejercen sobre las variables dependientes. Se deben
identificar las variables independientes que se pueden controlar y las que no. Además, se deben identificar las
variables dependientes, mediante las cuales se mide el efecto de las alternativas. Generalmente hay sólo una
variable dependiente y se deriva de la hipótesis.

Otro aspecto importante al llevar a cabo un experimento es la selección de los sujetos. Para poder generalizar
los resultados al resto de la población, la selección debe ser una muestra representativa de la misma. Cuanto más
grande es la muestra, menor es el error al generalizar los datos. Existen dos tipos de muestras que se pueden
seleccionar: la probabilística, donde se conoce la probabilidad de seleccionar cada sujeto; y la no-probabilística,
donde esta probabilidad es desconocida.

Luego de definir el contexto, formalizar las hipótesis, y seleccionar las variables y los sujetos, se debe
diseñar el experimento. Es muy importante planear y diseñar cuidadosamente el experimento, para que los
datos obtenidos puedan ser interpretados mediante la aplicación de métodos de análisis estadísticos.

Para comenzar a diseñar un experimento se debe elegir el diseño adecuado. Se debe planificar y diseñar el
conjunto de las combinaciones de alternativas, sujetos y objetos, que conforman los experimentos unitarios. Se
describe cómo estos experimentos unitarios deben ser organizados y ejecutados.

La elección del diseño del experimento afecta el análisis estadístico y viceversa, por lo que al elegir el
diseño del experimento se debe tener en cuenta qué análisis estadístico es el mejor para rechazar la hipótesis nula
y aceptar la alternativa.

Luego de diseñar el experimento y antes de la ejecución es necesario contar con todo lo necesario para
la correcta ejecución del mismo. La instrumentación involucra, de ser necesario, capacitación a los sujetos,
preparación de los artefactos, construcción de guías, descripción de procesos, planillas y herramientas. También
implica configurar el hardware, mecanismos de consultas y experiencias piloto, entre otros. La finalidad de esta
fase es proveer todo lo necesario para la realización y monitorización del experimento.

4.3. Evaluación de la Validez

Una pregunta fundamental antes de pasar a ejecutar el experimento es cuán válidos serían los resultados.
Existen cuatro categorías de amenazas a la validez: validez de la conclusión, validez interna, validez del cons-
tructo y validez externa.

Las amenazas que afectan la validez de la conclusión refieren a las conclusiones estadísticas. Amenazas que

8 | InCo/Pedeciba-2010 TR:10-02

224 Appendix B. Conceptos de Ingenieŕıa de Software Emṕırica

afecten la capacidad de determinar si existe una relación entre la alternativa y el resultado, y si las conclusiones
obtenidas al respecto son válidas. Ejemplos de estas son la elección de los métodos estadísticos, y la elección del
tamaño de la muestra, entre otros.

Las amenazas que influyen en la validez interna son aquellas referidas a observar relaciones entre la alter-
nativa y el resultado que sean producto de la casualidad y no del resultado de la aplicación de un factor. Esta
«casualidad» es provocada por elementos desconocidos que influyen sobre los resultados sin el conocimiento
de los investigadores. Es decir, la validez interna se basa en asegurar que la alternativa en cuestión produce los
resultados observados.

La validez del constructo indica cómo una medición se relaciona con otras de acuerdo con la teoría o
hipótesis que concierne a los conceptos que se están midiendo. Un ejemplo se puede observar al momento de
seleccionar los sujetos en un experimento. Si se utiliza como medida de la experiencia del sujeto el número
de cursos que tiene aprobados en la universidad, no se está utilizando una buena medida de la experiencia. En
cambio, una buena medida puede ser utilizar la cantidad de años de experiencia en la industria o una combinación
de ambas cosas.

La validez externa está relacionada con la habilidad para generalizar los resultados. Se ve afectada por
el diseño del experimento. Los tres riesgos principales que tiene la validez externa son: tener los participantes
equivocados como sujetos, ejecutar el experimento en un ambiente erróneo y realizar el experimento en un
momento que afecte los resultados.

4.4. Operación

Luego de diseñar y planificar el experimento, éste debe ser ejecutado para recolectar los datos que se quieren
analizar. La operación del experimento consiste en tres etapas: preparación, ejecución y la validación de los datos,
que se muestran en la figura 5.

Operación del Experimento

Preparación

Ejecución

Validación de

los Datos

Diseño del

Experimento

Datos

Experimentales

Figura 5. Fase de Operación del Experimento

En la etapa de preparación se seleccionan los sujetos y se preparan los artefactos a ser utilizados.
Es muy importante que los sujetos estén motivados y dispuestos a realizar las actividades que les sean

asignadas, ya sea que tengan conocimiento o no de su participación en el experimento. Se debe intentar obtener
consentimiento por parte de los participantes, que deben estar de acuerdo con los objetivos de la investigación.
Los resultados obtenidos pueden volverse inválidos si los sujetos al momento que deciden participar no saben lo
que tienen que hacer o tienen un concepto erróneo.

Es importante considerar la sensibilidad de los resultados que se obtienen de los sujetos, por ejemplo: es
importante asegurar a los participantes que los resultados obtenidos sobre su rendimiento se mantienen en secreto
y no se usarán para perjudicarlos en ningún sentido. Se debe tener en cuenta también los incentivos, ya que
ayudan a motivar a los sujetos, pero se corre el riesgo de que participen sólo por el incentivo, lo que puede ser
perjudicial para el experimento. En caso de no tener otra alternativa que no sea engañar a los sujetos, se debe
procurar explicar y revelar el engaño lo más temprano posible.

Como se vio en la instrumentación, para que los sujetos comiencen la ejecución es necesario tener prontos
todos los instrumentos, formularios, herramientas, guías y otros artefactos que sean necesarios para la ejecución
del experimento. Muchas veces se debe preparar un conjunto de instrumentos especial para cada sujeto y otras
se utiliza el mismo conjunto de artefactos para todos los sujetos.

Existen muchas formas distintas de ejecutar los experimentos, la duración varía desde días hasta años.

Instituto de Computación | 9

225

Los datos pueden ser recolectados de las siguientes formas:

Manualmente mediante el llenado de formularios por parte de los sujetos.

Manualmente soportado por herramientas.

Mediante entrevistas.

Automáticamente por herramientas.

La primera es la forma más común y no requiere mucho esfuerzo por parte del experimentador. Tanto en los
formularios como en los métodos soportados por herramientas no es posible identificar inconsistencias o defectos
hasta que no se recolecte la información, o hasta que los sujetos los descubran. En las entrevistas, el contacto con
los sujetos es mucho mayor permitiendo una mejor comunicación con ellos durante la recolección de datos. Éste
método es el que requiere mas esfuerzo por parte del investigador.

Un aspecto muy importante a la hora de ejecutar los experimentos es el ambiente de ejecución, tanto si
el experimento se realiza dentro de un proyecto de desarrollo común o si se crea un ambiente ficticio para su
ejecución. En el primer caso el experimento no debería afectar el proyecto más de lo necesario, ya que la razón
de realizar el experimento dentro de un proyecto es ver los efectos de las alternativas en el ambiente del proyecto.
Si el experimento cambia demasiado el ambiente del proyecto, éstos efectos se perderían.

Cuando se obtienen los datos, se debe chequear que fueron recolectados correctamente y que son razonables.
Algunas fuentes de error son que los sujetos llenen mal sus planillas, o no recolecten los datos seriamente, lo
que hace que se descarten datos. Es importante revisar que los sujetos hagan un trabajo serio y responsable y que
apliquen las alternativas en el orden correcto, en otras palabras: que el experimento sea ejecutado en la forma en
que fue planificado. De lo contrario los resultados podrían ser inválidos.

4.5. Análisis e Interpretación

Luego de que finaliza la ejecución del experimento y se cuenta con los datos recolectados, comienza la fase
de análisis de los mismos conforme a los objetivos planteados.

Un aspecto importante a considerar en el análisis de los datos es la escala de medida. La escala de medida
utilizada para recolectar los datos restringe el tipo de cálculos estadísticos que se pueden realizar. Una medida es
un mapeo de un atributo de una entidad a un valor de medida, por lo general un valor numérico. Las entidades
son objetos que se observan en la realidad, por ejemplo, una técnica de verificación.

El propósito de mapear los atributos en un valor de medida es caracterizar y manipular los atributos for-
malmente. La medida seleccionada debe ser válida, por tanto, no debe violar ninguna propiedad necesaria del
atributo que mide, y debe ser una caracterización matemática adecuada del atributo.

El mapeo de un atributo a un valor de medida puede realizarse de varias formas. Cada tipo de mapeo posible
de un atributo se conoce como escala. Los tipos más comunes de escala son:

Escala Nominal.- Es la menos poderosa de las escalas. Solo mapea el atributo de la entidad en un nombre
o símbolo. El mapeo puede verse como una clasificación de las entidades acorde al atributo. Ejemplos de
escala nominal son clasificaciones, etiquetados, entre otras.

Escala Ordinal.- La escala ordinal categoriza las entidades según un criterio de ordenación. Es más pode-
rosa que la escala nominal. Ejemplos de criterios de ordenación son «mayor que», «mejor que» y «más
complejo». Ejemplos de escala nominal son grados, complejidad del software, entre otras.

Escala de intervalo.- La escala de intervalo se utiliza cuando la diferencia entre dos medidas es significativa,
pero no el valor en si mismo. Este tipo de escala ordena los valores de la misma forma que la escala ordinal,
pero existe la noción de «distancia relativa» entre dos entidades. Esta escala es más poderosa que la ordinal.
Ejemplos de escala de intervalo son la temperatura medida en Celsius o Fahrenheit.

Escala ratio (cociente de dos números).- Si existe un valor cero significativo y la división entre dos medidas
es significativa, se puede utilizar una escala ratio. Ejemplos de escala ratio son distancia, temperatura
medida en Kelvin, etc.

10 | InCo/Pedeciba-2010 TR:10-02

226 Appendix B. Conceptos de Ingenieŕıa de Software Emṕırica

Después de obtener los datos es necesario interpretarlos para llegar a conclusiones válidas. La interpretación
se realiza en tres etapas: caracterizar el conjunto de datos usando estadística descriptiva, reducción del conjunto
de datos y realización de las pruebas de hipótesis que se ilustran en la figura 6.

Análisis e Interpretación de los Datos

Estadísticas

Descriptivas

Reducción del

Conjunto de Datos

Test de

Hipótesis

Datos

Experimentales

Conclusiones

Figura 6. Fase de Análisis e Interpretación de los Datos del Experimento

4.5.1. Estadística Descriptiva

La estadística descriptiva se utiliza antes de la prueba de hipótesis, para entender mejor la naturaleza de
los datos y para identificar datos falsos o anormales. Los aspectos principales que se examinan son: la tendencia
central, la dispersión y la dependencia. A continuación se presentan las medidas más comunes de cada uno de
estos aspectos. Para ello se asume que existen x1 . . . xn muestras.

Las medidas de tendencia central indican «el medio» de un conjunto de datos. Entre las medidas más
comunes se encuentran: la media aritmética, la mediana y la moda.

La media aritmética se conoce como el promedio, y se calcula sumando todas las muestras y dividiendo el
total por el número de muestras:

x̄ = 1
n

n∑

i=1
xi (1)

La media, denotada x̄, resume en un valor las características de una variable teniendo en cuenta a todos los
casos. Es significativa para las escalas de intervalo y ratio.

La mediana, denotada x̃, representa el valor medio de un conjunto de datos, tal que el número de muestras
que son mayores que la mediana es el mismo que el número de muestras que son menores que la mediana. Se
calcula ordenando las muestras en orden ascendente o descendente, y seleccionando la observación del medio.
Este cálculo está bien definido si n es impar. Si n es par, la mediana se define como la media aritmética de los
dos valores medios. Esta medida es significativa para las escalas ordinal, de intervalo y ratio.

La moda representa la muestra más común. Se calcula contando el número de muestras para cada valor único
y seleccionando el valor con más cantidad. La moda esta bien definida si hay solo un valor más común que los
otros. Si este no es el caso, se calcula como la mediana de las muestras más comunes. La moda es significativa
para las escalas nominal, ordinal, de intervalo y ratio.

La media aritmética y la mediana son iguales si la distribución de las muestras es simétrica. Si la distribución
es simétrica y tiene un único valor máximo, las tres medidas son iguales.

Las medidas de tendencia central no proveen información sobre la dispersión del conjunto de datos. Cuanto
mayor es la dispersión, más variables son las muestras, cuanto menor es la dispersión, más homogéneas a la
media son las muestras.

Las medidas de dispersión miden el nivel de desviación de la tendencia central, o sea, que tan diseminados
o concentrados están los datos respecto al valor central. Entre las principales medidas de dispersión están: la
varianza, la desviación estándar, el rango y el coeficiente de variación.

La varianza (s2) que presenta una distribución respecto de su media se calcula como la media de las desvia-
ciones de las muestras respecto a la media aritmética. Dado que la suma de las desviaciones es siempre cero, se
toman las desviaciones al cuadrado:

Instituto de Computación | 11

227

s2 = 1
n− 1

n∑

i=1
(xi − x̄)2 (2)

Se divide por n− 1 y no por n, porque dividir por n− 1 provee a la varianza de propiedades convenientes.
La varianza es significativa para las escalas de intervalo y ratio.

La desviación estándar, denotada s, se de
ne como la raíz cuadrada de la varianza:

s =

√√√√ 1
n− 1

n∑

i=1
(xi − x̄)2 (3)

A menudo esta medida se prefiere sobre la varianza porque tiene las mismas dimensiones (unidad de medida)
que los valores de las muestras. En cambio, la varianza se mide en unidades cuadráticas. La desviación estándar
es significativa para las escalas de intervalo y ratio.

La dispersión también se puede expresar como un porcentaje de la media. Este valor se llama coeficiente de
variación, y se calcula como:

100 · s
x̄

(4)

Esta medida no tiene dimensión y es significativa para la escala ratio. Permite comparar la dispersión o
variabilidad de dos o más grupos.

El rango de un conjunto de datos es la distancia entre el valor máximo y el mínimo:

range = xmax − xmin (5)

Es una medida significativa para las escalas de intervalo y ratio. Cuando el conjunto de datos consiste en
muestras relacionadas de a pares (xi; yi) de dos variables, X e Y, puede ser interesante examinar la dependencia
entre estas variables. Las principales medidas de dependencia son: regresión lineal, covarianza y el coeficiente
de correlación lineal.

4.5.2. Reducción del Conjunto de Datos

Para las pruebas de hipótesis se utilizan métodos estadísticos. El resultado de aplicar estos métodos depende
de la calidad de los datos. Si los datos no representan lo que se cree, las conclusiones que se derivan de los
resultados de los métodos son incorrectas. Errores en el conjunto de datos pueden ocurrir por un error sistemático,
o por lo que se conoce en estadística con el nombre de outlier. Un outlier es un dato mucho más grande o mucho
más chico de lo que se puede esperar observando el resto de los datos.

Las estadísticas descriptivas se ven fuertemente influenciadas por aquellas observaciones que su valor dista
significativamente del resto de los valores recolectados. Estas observaciones llevan el nombre de outliers.

Los outliers influencian las medidas de dispersión, aumentando la variabilidad de lo que se está midiendo. En
algunos casos se realiza un análisis acerca de estos valores que difieren mucho de la media y se decide quitarlos
de los datos a analizar porque no son representativos de la población, ya que fueron causados por algún tipo de
anomalía: errores de medición, variaciones no deseadas en las características de los sujetos, entre otras.

Quitar outliers requiere de un análisis pormenorizado, por quitar outliers se demoró en detectar el agujero
de la capa de ozono. 2

Una vez identificado un outlier se debe identificar su origen para decidir qué hacer con él. Si se debe a un
evento raro o extraño que no volverá a ocurrir, el punto puede ser excluido. Si se debe a un evento extraño que

2En 1985 los científicos británicos anunciaron un agujero en la capa de ozono sobre el polo sur. El reporte fue descartado ya que
observaciones más completas, obtenidas por instrumentos satelitales, no mostraban nada inusual. Luego, un análisis más exhaustivo reveló
que las lecturas de ozono en el polo sur eran tan bajas que el programa que las analizaba las había suprimido automáticamente como outliers
en forma equivocada.

12 | InCo/Pedeciba-2010 TR:10-02

228 Appendix B. Conceptos de Ingenieŕıa de Software Emṕırica

puede volver a ocurrir, no es aconsejable excluir el valor del análisis, pues tiene información relevante. Si se debe
a una variable que no fue considerada, debería ser considerado para basar los cálculos y modelos también en esta
variable.

4.5.3. Pruebas de Hipótesis

El objetivo de la prueba de hipótesis es ver si es posible rechazar cierta hipótesis nula H0. Si la hipótesis
nula no es rechazada, no se puede decir nada sobre los resultados. En cambio, si es rechazada, se puede declarar
que la hipótesis es falsa con una significancia dada (α). Este nivel de significancia también es denominado nivel
de riesgo o probabilidad de error, ya que se corre el riesgo de rechazar la hipótesis nula cuando en realidad es
verdadera. Este nivel está bajo el control del experimentador.

Para probar H0 se define una unidad de prueba t y un área crítica C, la cual es parte del área sobre la que
varía t. A partir de estas definiciones se formula la prueba de significancia de la siguiente forma:

Si t ∈ C, rechazar H0

Si t /∈ C, no rechazar H0

Por ejemplo, un experimentador observa la cantidad de defectos detectados por LOC de una técnica de
verificación desconocida bajo determinadas condiciones, y quiere probar que no es la técnica B, de la cual sabe
que en las mismas condiciones (programa, verificador, etc.) detecta 1 defecto cada 20 LOC. El experimentador
sabe que también pueden haber otras técnicas que detecten 1 defecto cada 20 LOC. A partir de esto se define
la hipótesis nula: “H0: La técnica observada es la B”. En este ejemplo, la unidad de prueba t es cada cuantos
LOC se detecta un defecto y el área crítica es C = {1, 2, 3, . . . , 19, 21, 22, . . .}. La prueba de significancia es: si
t ≤ 19 o t ≥ 21, rechazar H0, de lo contrario no rechazar H0.

Si se observa que t = 20, la hipótesis no puede ser rechazada ni se pueden derivar conclusiones, pues pueden
haber otras técnicas que detecten un defecto cada 20 LOC.

El área crítica, C, puede tener distintas formas, lo más común es que tenga forma de intervalo, por ejemplo:
t ≤ a o t ≥ b. Si C consiste en uno de estos intervalos es unilateral. Si consiste de dos intervalos (t ≤ a, t ≥ b,
donde a < b), es bilateral.

Hay varios métodos estadísticos, de aquí en adelante denotados tests, que pueden utilizarse para evaluar los
resultados de un experimento, más específicamente para determinar si se rechaza la hipótesis nula. Cuando se
lleva a cabo un test es posible calcular el menor valor de significancia posible (denotado p-valor) con el cual es
posible rechazar la hipótesis nula. Se rechaza la hipótesis nula si el p-valor asociado al resultado observado es
menor o igual que el nivel de significancia establecido.

Las siguientes son tres probabilidades importantes para la prueba de hipótesis:

α = P (cometer el error tipo I) = P (rechazar H0|H0 es verdadera). Es la probabilidad de rechazar H0
cuando es verdadera.

β = P (cometer el error tipo II) = P (no rechazar H0|H0 es falsa). Es la probabilidad de no rechazar H0
cuando es falsa.

Poder = 1−β = P (rechazar H0|H0 es falsa). El poder de prueba es la probabilidad de rechazar H0 cuando
es falsa.

El experimentador debería elegir un test con un poder de prueba tan alto como sea posible. Hay varios
factores que afectan el poder de un test. Primero, el test en sí mismo puede ser más o menos efectivo. Segundo,
la cantidad de muestras: mayor cantidad de muestras equivale a un poder de prueba más alto. Otro aspecto es la
selección de una hipótesis alternativa unilaterial o bilateral. Una hipótesis unilateral da un poder mayor que una
bilateral.

La probabilidad de cometer un error tipo I se puede controlar y reducir. Si la probabilidad es muy pequeña,
sólo se rechazará la hipótesis nula si se obtiene evidencia muy contundente en contra de esta hipótesis. La
probabilidad máxima de cometer un error tipo I se conoce como la significancia de la prueba (α).

Instituto de Computación | 13

229

Los valores de uso más común para la significancia de una prueba son 0.01, 0.05 y 0.10. La significancia es
en ocasiones presentada como un porcentaje, tal como 1 %, 5 % o 10 %. Esto quiere decir que el experimentador
está dispuesto a permitir una probabilidad de 0.01, 0.05, o 0.10 de rechazar la hipótesis nula cuando es cierta, o
sea, de cometer un error tipo I.

El valor de la significancia es seleccionado antes de comenzar a hacer el experimento en una de varias
formas.

El valor de α puede estar establecido en el área de investigación, por ejemplo: se puede obtener de artículos
que se publican en revistas científicas. Otra forma de seleccionarlo es que sencillamente sea impuesto por la
persona o compañía para la cual se trabaja. Finalmente, puede ser seleccionado tomando en cuenta el costo de
cometer un error tipo I. Mientras más alto el costo, más pequeña debe ser la probabilidad α de cometer un error
tipo I. El valor usual de α en las ciencias naturales y sociales es de 0.05. En Ingeniería de Software, el valor de α
aún no se encuentra establecido.

Existen dos tipos de tests: paramétricos y no paramétricos. Los tests paramétricos están basados en un
modelo que involucra una distribución específica. En la mayoría de los casos, se asume que algunos de los
parámetros involucrados en un test paramétrico están normalmente distribuidos. Los tests paramétricos también
requieren que los parámetros puedan ser medidos al menos en una escala de intervalo. Si los parámetros no
pueden medirse en al menos una escala de intervalo, generalmente no se puede utilizar un test paramétrico. En
este caso hay un amplio rango de tests no paramétricos disponible.

Los tests no paramétricos no asumen lo mismo respecto a la distribución de los parámetros, son más
generales que los paramétricos. Un test no paramétrico se puede utilizar en vez de un test paramétrico, pero el
caso inverso no siempre puede darse.

En la elección entre un test paramétrico y un test no paramétrico hay dos aspectos a considerar:

Aplicabilidad.- Es importante que las suposiciones en cuanto a las distribuciones de parámetros y las que
conciernen a las escalas sean realistas.

Poder.- El poder de los tests paramétricos es generalmente mayor que el de los tests no paramétricos.
Por lo tanto, los test paramétricos requieren menos datos (experimentos más pequeños), que los tests no
paramétricos, siempre que sean aplicables.

Aunque es un riesgo utilizar tests paramétricos cuando no se cuenta con las condiciones requeridas, en
algunos casos vale la pena tomar el riesgo. Algunas simulaciones han mostrado que los tests paramétricos son
bastante robustos a las desviaciones de las pre-condiciones (escala de intervalo), mientras las desviaciones no
sean demasiado grandes.

En el caso de las pruebas paramétricas, se exige que la distribución de la muestra se aproxime a una normal.
Para poder utilizar aproximación normal se requiere un tamaño mínimo de la muestra, dependiendo del p(value)
que se requiera [5]. En el cuadro 1 se muestran los tamaños mínimos de muestra para los distintos p(value).

p(value) Tamaño mínimo de muestra
0.50 n = 30

0.40 ó 0.60 n = 50
0.30 ó 0.70 n = 80
0.20 ó 0.80 n = 200
0.10 ó 0.90 n = 600

Cuadro 1. Estadísticas descriptivas de la Efectividad

Los test paramétricos más usados en experimentos de Ingeniería de Software son:

ANOVA (ANalysis Of VAriance) [11].

ANOM (ANalysis Of Means) [4].

14 | InCo/Pedeciba-2010 TR:10-02

230 Appendix B. Conceptos de Ingenieŕıa de Software Emṕırica

Ambos tests (ANOVA y ANOM), pueden utilizarse para diseños de un solo factor con múltiples alternativas.
En ambos test la hipótesis nula refiere a la igualdad de las medias (como es habitual en los test paramétricos):

H0 : x̄1 = x̄2 = . . . = x̄I

En ANOVA, la variación en la respuesta se divide en la variación entre los diferentes niveles del factor (los
diferentes tratamientos) y la variación entre individuos dentro de cada nivel. El objetivo principal del ANOVA es
contrastar si existen diferencias entre las diferentes medias de los niveles de las variables (factores).

En el caso de ANOM, este test no solamente responde a la pregunta de si hay o no diferencias entre las
alternativas, sino que cuando hay diferencias, también dice cuáles alternativas son mejores y cuáles peores.

Los test no paramétricos más usado son:

Kruskal Wallis.

Mann-Whitney.

En el caso de los test no paramétricos, la hipótesis nula refiere a la igualdad de las medianas:
H0 : x̃1 = x̃2 = . . . = x̃I

Rechazar H0 significa que existe evidencia estadística como para afirmar de que hay diferencias entre las
alternativas. En el caso de que hubiera más de dos alternativas, para conocer cuál es la alternativa que difiere es
necesario comparar las alternativas de a dos.

En el caso de Kruskal Wallis, a pesar de no requerir una distribución normal para las muestras, sus resultados
se pueden ver afectados por lo que se le llama «heterocedasticidad» de los datos. Cuando una muestra presenta
datos heterocedásticos (no presentan homocedasticidad) el test de Kruskal Wallis podría dar un resultado no
significativo (no rechazando H0), aunque haya una diferencia real entre las muestras (debería rechazar H0).

Para probar la homocedasticidad de los datos se suele utilizar el test de Levene. Las hipótesis del test de
Levene son:

H0 : σ1 = σ2 = . . . = σk donde σa es la varianza de la muestra a.

H1 : σi 6= σj = . . . = σk para al menos un par de muestras (i, j), donde σa es la varianza de la muestra
a.

Para poder aplicar ANOVA, y en algunos casos Kruskal-Wallis, es necesario que el test de Levene no sea
significativo (no se rechaza H0), o sea, que las varianzas de las muestras sean similares o iguales. Esto prueba la
homocedasticidad de los datos.

Una vez que se prueba que al menos dos de las k muestras provienen de poblaciones distintas (datos hetero-
cedásticos) se puede aplicar, entre otros, el test de Mann-Whitney para comparar las muestras dos a dos.

Si se presume que una alternativa puede ser mejor o peor que el resto, esto quiere decir que hay un «ordena-
miento» entre ellas, lo aconsejable es realizar un test de ordenamiento. Algunos test de ordenamiento son:

Jonckheere-Terpstra Test. [3]

Test para alternativas ordenadas L. [3]

Para los test de ordenamiento, las hipótesis que se plantean son las siguientes:
H0 : x̃1 = x̃2 = . . . = x̃I

H1 : x̃1 ≤ x̃2 ≤ . . . ≤ x̃I (con al menos una desigualdad estricta)

4.6. Presentación y Empaquetado

En la presentación y el empaquetado de un experimento es esencial no olvidar aspectos e información ne-
cesaria para que otros puedan replicar o tomar ventaja del experimento y del conocimiento ganado durante su
ejecución.

Instituto de Computación | 15

231

El esquema de reporte de un experimento generalmente cuenta con los siguientes títulos: Introducción,
Definición del Problema, Planificación del Experimento, Operación del Experimento, Análisis de Datos, Inter-
pretación de los Resultados, Discusión y Conclusiones, y Apéndice.

En la Introducción se realiza una introducción al área y los objetivos de la investigación. En la Definición
del Problema se describe en mayor profundidad el trasfondo de la investigación, incluyendo las razones para
realizarla. En la Planificación del Experimento se detalla el contexto del experimento incluyendo las hipótesis,
que se derivan de la definición del problema, las variables que se deben medir (tanto independientes como de-
pendientes), la estrategia de medida y análisis de datos, los sujetos que participaran de la investigación y las
amenazas a la validez.

En la Operación del Experimento se describe como preparar la ejecución del mismo, incluyendo aspectos
que permitan facilitar la replicación y descripciones que indiquen cómo se llevaron a cabo las actividades. Debe
incluirse la preparación de los sujetos, cómo se recolectaron los datos y cómo se realizó la ejecución.

En el Análisis de Datos se describen los cálculos y los modelos de análisis específicos utilizados. Se debe
incluir información, como por ejemplo, tamaño de la muestra, niveles de significancia y métodos estadísticos
utilizados, para que el lector conozca los pre-requisitos para el análisis. En la Interpretación de los Resultados
se rechaza la hipótesis nula o se concluye que no puede ser rechazada. Aquí se resume cómo utilizar los datos
obtenidos en el experimento. La interpretación debe realizarse haciendo referencia a la validez. También se deben
describir los factores que puedan tener un impacto sobre los resultados.

Finalmente, en Discusión y Conclusiones se presentan las conclusiones y los hallazgos como un resumen de
todo el experimento, junto con los resultados, problemas y desviaciones respecto al plan. También se incluyen
ideas sobre trabajos a futuro. Los resultados deberían ser comparados con los obtenidos por trabajos anteriores,
de manera de identificar similitudes y diferencias. La información que no es vital para la presentación se incluye
en el Apéndice. Esto puede ser, por ejemplo, los datos recavados y más información sobre sujetos y objetos. Si
la intención es generar un paquete de laboratorio, el material utilizado en el experimento puede ser proveído en
el apéndice.

Referencias

[1] N. E. Fenton and S. L. Pfleeger. Software Metrics: A Rigorous and Practical Approach, Revised. Course Technology,
February 1998. 1

[2] N. Juristo and A. M. Moreno. Basics of Software Engineering Experimentation. Kluwer Academic Publishers, 2001. 1
[3] E. J. Martínez. Notas del curso de posgrado maestría en estadística matemática. Facultad de Ciencias Exactas y

Naturales, Universidad de Buenos Aires, 2004. 4.5.3
[4] P. Nelson, M. Coffin, and K. Copeland. Introductory statistics for engineering experimentation. Elsevier Science,

California, 2003. 4.5.3
[5] M. Spiegel. Estadística - 2da Edición. Mc.Graw-Hill, Madrid, 1991. 4.5.3
[6] J. Triñanes. Construcción de un banco de pruebas de modelos de proceso. In Jornadas Iberoamericanas de Ingeniería

de Software e Ingeniería del Conocimiento, 2004. 1
[7] D. Vallespir, C. Apa, S. De León, R. Robaina, and J. Herbert. Effectiveness of five verification techniques. In IEEE-

Computer-Society, editor, Proceedings of the International Conference of the Chilean Computer Society, 2009. 1
[8] D. Vallespir, F. Grazioli, and J. Herbert. A framework to evaluate defect taxonomies. In Proceedings of the XV Argentine

Congress on Computer Science, 2009. 1
[9] D. Vallespir and J. Herbert. Effectiveness and cost of verification techniques: Preliminary conclusions on five techni-

ques. In IEEE-Computer-Society, editor, Proceedings of the Mexican International Conference in Computer Science,
2009. 1

[10] D. Vallespir, S. Moreno, C. Bogado, and J. Herbert. Towards a framework to compare formal experiments that evaluate
verification techniques. In Proceedings of the Mexican International Conference in Computer Science, 2009. 1

[11] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén. Experimentation in software engineering:
an introduction. Kluwer Academic Publishers, Norwell, MA, USA, 2000. 1, 4.5.3

16 | InCo/Pedeciba-2010 TR:10-02

232 Appendix B. Conceptos de Ingenieŕıa de Software Emṕırica

