
ISSN 1688-2784

Universidad de la República
Facultad de Ingenieŕıa

Observation Mechanisms for In-Field
Software-Based Self-Test

Tesis presentada a la Facultad de Ingenieŕıa de la
Universidad de la República por

Julio Pérez Acle

en cumplimiento parcial de los requerimientos
para la obtención del t́ıtulo de
Doctor en Ingenieŕıa Eléctrica.

Director de Tesis
Matteo Sonza Reorda . Politecnico di Torino

Tribunal
Gregory Randall . Universidad de la República
Leticia Bolzani Poehls(Revisor Externo). . . . Pontif́ıcia Universidade
Católica do Rio Grande do Sul
Raoul Velazco (Revisor Externo) TIMA Grenoble

Director Académico
Rafael Canetti . Universidad de la República

Montevideo
Jueves 14 de marzo de 2019

Observation Mechanisms for In-Field Software-Based Self-Test, Julio Pérez Acle.

ISSN 1688-2784

Esta tesis fue preparada en LATEX usando la clase iietesis (v1.1).
Contiene un total de 113 páginas.
Compilada el Monday 5 August, 2019.
http://iie.fing.edu.uy/

http://iie.fing.edu.uy/

Abstract

When electronic systems are used in safety critical applications, as in the space,
avionic, automotive or biomedical areas, it is required to maintain a very low
probability of failures due to faults of any kind. Standards and regulations play
a significant role, forcing companies to devise and adopt solutions able to achieve
predefined targets in terms of dependability. Different techniques can be used to
reduce fault occurrence or to minimize the probability that those faults produce
critical failures (e.g., by introducing redundancy).

Unfortunately, most of these techniques have a severe impact on the cost of
the resulting product and, in some cases, the probability of failures is too large
anyway. Hence, a solution commonly used in several scenarios lies on periodically
performing a test able to detect the occurrence of any fault before it produces
a failure (in-field test). This solution is normally based on forcing the processor
inside the Device Under Test to execute a properly written test program, which is
able to activate possible faults and to make their effects visible in some observable
locations. This approach is also called Software-Based Self-Test, or SBST.

If compared with testing in an end of manufacturing scenario, in-field test-
ing has strong limitations in terms of access to the system inputs and outputs
because Design for Testability structures and testing equipment are usually not
available. As a consequence there are reduced possibilities to activate the faults
and to observe their effects.

This reduced observability particularly affects the ability to detect performance
faults, i.e. faults that modify the timing but not the final value of computations.
This kind of faults are hard to detect by only observing the final content of pre-
defined memory locations, that is the usual test result observation method used
in-field.

Initially, the present work was focused on fault tolerance techniques against
transient faults induced by ionizing radiation, the so called Single Event Upsets
(SEUs). The main contribution of this early stage of the thesis lies in the ex-
perimental validation of the feasibility of achieving a safe system by using an
architecture that combines task-level redundancy with already available IP cores,
thus minimizing the development time. Task execution is replicated and Mem-
ory Protection is used to guarantee that any SEU may affect one and only one
of the replicas. A proof of concept implementation was developed and validated
using fault injection. Results outline the effectiveness of the architecture, and the
overhead analysis shows that the proposed architecture is effective in reducing the

resource occupation with respect to N-modular redundancy, at an affordable cost
in terms of application execution time.

The main part of the thesis is focused on in-field software-based self-test of
permanent faults. A set of observation methods exploiting existing or ad-hoc
hardware is proposed, aimed at obtaining a better coverage, in particular of per-
formance faults. An extensive quantitative evaluation of the proposed methods
is presented, including a comparison with the observation methods traditionally
used in end of manufacturing and in-field testing.

Results show that the proposed methods are a good complement to the tra-
ditionally used final memory content observation. Moreover, they show that an
adequate combination of these complementary methods allows for achieving nearly
the same fault coverage achieved when continuously observing all the processor
outputs, which is an observation method commonly used for production test but
usually not available in-field.

A very interesting by-product of what is described above is a detailed descrip-
tion of how to compute the fault coverage achieved by functional in-field tests
using a conventional fault simulator, a tool that is usually applied in an end of
manufacturing testing scenario.

Finally, another relevant result in the testing area is a method to detect per-
manent faults inside the cache coherence logic integrated in each cache controller
of a multi-core system, based on the concurrent execution of a test program by
the different cores in a coordinated manner. By construction, the method achieves
full fault coverage of the static faults in the addressed logic.

ii

Resumen

Cuando se utilizan sistemas electrónicos en aplicaciones cŕıticas como en las
áreas biomédica, aeroespacial o automotriz, se requiere mantener una muy baja
probabilidad de malfuncionamientos debidos a cualquier tipo de fallas. Los estándares
y normas juegan un papel importante, forzando a los desarrolladores a diseñar y
adoptar soluciones que sean capaces de alcanzar objetivos predefinidos en cuanto
a seguridad y confiabilidad. Pueden utilizarse diferentes técnicas para reducir la
ocurrencia de fallas o para minimizar la probabilidad de que esas fallas produzcan
malfuncionamientos cŕıticos, por ejemplo a través de la incorporación de redun-
dancia.

Lamentablemente, muchas de esas técnicas afectan en gran medida el costo
de los productos y, en algunos casos, la probabilidad de malfuncionamiento sigue
siendo demasiado alta. En consecuencia, una solución usada a menudo en varios
escenarios consiste en realizar periódicamente un test que sea capaz de detectar
la ocurrencia de una falla antes de que esta produzca un mal funcionamiento (test
en campo). En general, esta solución se basa en forzar a un procesador existente
dentro del dispositivo bajo prueba a ejecutar un programa de test que sea capaz
de activar las posibles fallas y de hacer que sus efectos sean visibles en puntos
observables. A esta metodoloǵıa también se la llama auto-test basado en software,
o en inglés Software-Based Self-Test (SBST).

Si se lo compara con un escenario de test de fin de fabricación, el test en campo
tiene fuertes limitaciones en términos de posibilidad de acceso a las entradas y
salidas del sistema, porque usualmente no se dispone de equipamiento de test ni
de la infraestructura de Design for Testability. En consecuencia se tiene menos
posibilidades de activar las fallas y de observar sus efectos.

Esta observabilidad reducida afecta particularmente la habilidad para detectar
fallas de performance, es decir fallas que modifican la temporización pero no el
resultado final de los cálculos. Este tipo de fallas es dif́ıcil de detectar por la sola
observación del contenido final de lugares de memoria, que es el método usual que
se utiliza para observar los resultados de un test en campo.

Inicialmente, el presente trabajo estuvo enfocado en técnicas para tolerar fallas
transitorias inducidas por radiación ionizante, llamadas en inglés Single Event
Upsets (SEUs). La principal contribución de esa etapa inicial de la tesis reside en
la validación experimental de la viabilidad de obtener un sistema seguro, utilizando
una arquitectura que combina redundancia a nivel de tareas con el uso de módulos
hardware (IP cores) ya disponibles, que minimiza en consecuencia el tiempo de

desarrollo. Se replica la ejecución de las tareas y se utiliza protección de memoria
para garantizar que un SEU pueda afectar a lo sumo a una sola de las réplicas. Se
desarrolló una implementación para prueba de concepto que fue validada mediante
inyección de fallas. Los resultados muestran la efectividad de la arquitectura, y el
análisis de los recursos utilizados muestra que la arquitectura propuesta es efectiva
en reducir la ocupación con respecto a la redundancia modular con N réplicas, a
un costo accesible en términos de tiempo de ejecución.

La parte principal de esta tesis se enfoca en el área de auto-test en campo
basado en software para la detección de fallas permanentes. Se propone un con-
junto de métodos de observación utilizando hardware existente o ad-hoc, con el
fin de obtener una mejor cobertura, en particular de las fallas de performance.
Se presenta una extensa evaluación cuantitativa de los métodos propuestos, que
incluye una comparación con los métodos tradicionalmente utilizados en tests de
fin de fabricación y en campo.

Los resultados muestran que los métodos propuestos son un buen complemento
del método tradicionalmente usado que consiste en observar el valor final del con-
tenido de memoria. Además muestran que una adecuada combinación de estos
métodos complementarios permite alcanzar casi los mismos valores de cobertura
de fallas que se obtienen mediante la observación continua de todas las salidas del
procesador, método comúnmente usado en tests de fin de fabricación, pero que
usualmente no está disponible en campo.

Un subproducto muy interesante de lo arriba expuesto es la descripción de-
tallada del procedimiento para calcular la cobertura de fallas lograda mediante
tests funcionales en campo por medio de un simulador de fallas convencional, una
herramienta que usualmente se aplica en escenarios de test de fin de fabricación.

Finalmente, otro resultado relevante en el área de test es un método para detec-
tar fallas permanentes dentro de la lógica de coherencia de cache que está integrada
en el controlador de cache de cada procesador en un sistema multi procesador. El
método está basado en la ejecución de un programa de test en forma coordinada
por parte de los diferentes procesadores. Por construcción, el método cubre com-
pletamente las fallas de la lógica mencionada.

iv

Contents

Abstract i

Resumen iii

I Introduction 1

1 Introduction 3

1.1 Motivation . 3

1.2 Thesis contributions . 5

1.3 Chronology . 6

1.4 Thesis organization . 7

II Fault tolerance – Time redundancy 9

2 Time redundancy fault tolerance 13

2.1 Introduction . 13

2.2 Adopted architecture . 15

2.2.1 Overview . 15

2.2.2 Implementation . 17

2.3 Experimental results . 19

2.4 Chapter conclusions . 22

III Functional test 23

3 Background on Software-Based Self-Test 27

4 Functional Test of the Cache Coherency Logic in Multi-core Sys-
tems 33

4.1 Introduction . 33

4.2 Background . 34

4.3 Proposed approach . 35

4.3.1 Excitation phase . 36

4.3.2 Observation phase . 38

Contents

4.3.3 Analytical performance analysis 38

4.3.4 Optimizing the test in multiple-core systems 39

4.4 Experimental results . 40

4.5 Chapter conclusions . 41

5 Observation Techniques – Survey 43

5.1 Module-Level Observation . 44

5.2 Processor-Level Observation . 45

5.3 System Bus Observation . 45

5.4 Memory Content Observation . 46

5.5 Performance Counters Observation 47

5.6 Debug Interface Observation . 48

6 Observation Techniques – Experimental Results 51

6.1 Test Case #1: Branch Prediction Unit 53

6.1.1 System setup . 54

6.1.2 Results . 58

6.2 Test Case #2: Data Cache Controller 60

6.2.1 System setup . 60

6.2.2 Results . 63

6.3 Analysis of the Results of Test Cases #1 and #2 66

6.4 Test Case #3: Full MIPS-like processor 68

6.4.1 System setup . 68

6.4.2 Results . 69

6.5 Some Lessons Learned . 74

6.5.1 Setting the fault simulator observation times 74

6.5.2 Some comments on migrating a test program from end-of-
manufacturing to in-field test scenario 75

IV Conclusions 77

7 Conclusions 79

7.1 Summary . 79

7.2 Main Contributions . 81

7.2.1 Experimental validation of a time-redundancy fault toler-
ance mechanism . 81

7.2.2 A method to detect faults in the cache coherence logic of a
multi-core system . 81

7.2.3 A survey of test observation methods 82

7.2.4 A set of experimental test cases 82

7.2.5 Use of a conventional fault simulator to assess the effective-
ness of in-field SBST . 82

7.2.6 Examples of coverage variation when changing observation
environment . 83

7.2.7 Performance fault oriented observation methods 83

vi

Contents

7.3 Future Work . 83
7.4 Publication List . 84

Bibliography 87

Glossary 95

List of tables 98

List of figures 100

vii

Esta página ha sido intencionalmente dejada en blanco.

Part I

Introduction

Chapter 1

Introduction

1.1 Motivation

In several domains (e.g., automotive, biomedical, space and aircraft industries)
electronic systems are commonly used in mission- and safety-critical applications.
In these domains, a misbehavior due to a defect affecting the hardware may have
catastrophic effects, including hurting humans and provoking huge economic losses.
Hence, there is a strong push to devise techniques able to minimize the probability
that a misbehavior caused by a defect arises, and to suitably handle it in case it
occurs anyway. When considering the latter point, different solutions have been
proposed, and the best solution depends on the specific constraints of each scenario.
Standards and regulations (e.g., IEC 61508 for generic safety-related industrial
systems [1], ISO 26262 for automotive applications [2], RTCA/DO-254 for avionics
[3]) also play a significant role, forcing companies to devise and adopt solutions
able to achieve some predefined target in terms of dependability.

Most of the electronic systems involved in safety-critical applications include
a microprocessor or a microcontroller. For these systems, it is possible to force
programmable units to run test programs able to reveal the presence of defects by
activating them and propagating their effects up to an observable location (e.g.,
a special memory area). Eventually, the application may trigger suitable actions
to prevent catastrophic consequences, such as turning the system to a safe status,
or reconfiguring it so that the faulty module is not used any more. To minimize
the impact on the system, these test programs are often limited to use the time
periods left idle by the core applications, or run during the start-up/power-off
phases. Such an approach is referred to as Software-Based Self-Test (SBST) [4],
and generically labeled as “functional” as it relies directly on the normal functions
of the system. SBST does not require any specific Design-for-Testability (DfT)
structure, although it may exploit available hardware features, and can be used
to test any processor-based system, whether it is a System-on-Chip (SoC) or a
board. As a major advantage, testing based on SBST can be run at the processor

Chapter 1. Introduction

operational speed, thus allowing the detection of defects which are only activated at
the maximum frequency. For this reason, it is often used during the manufacturing
test phase as a supplement to other techniques to increase the final defect coverage.

SBST is currently adopted in quite different test scenarios, including both end-
of-manufacturing test and in-field test. When applied for end-of-manufacturing
test, automatic test equipments (ATE) can either drive the processor inputs while
it executes the program and observe the outputs, or load a program into the cache
of the processor, force it to execute at full speed, and eventually extract some test
syndrome from a special (hidden) register. Additionally, when in-field SBST is
considered, a common solution lies in storing the test program in a flash memory,
activating its execution when required, and finally checking the content of some
selected memory variables, where the test program stores its results.

When comparing the SBST solutions adopted for end-of-manufacturing test
with those for in-field test, a major difference is that the former can, in some
cases, benefit from full accessibility to the input and output signals of each device
(such a test scenario is called “open loop test” in [5]). On the contrary, in solutions
oriented to in-field testing, the tester cannot be used and existing DfT structures
are in most of the cases not available (e.g., because they have been destroyed
or made inaccessible to better protect the system security, or because they are
not documented by the device providers). Hence, the only feasible solution for
the system company in charge of developing the in-field test is to adopt a purely
functional approach, i.e., without resorting to any DfT features. Additionally, in-
field constraints may be quite severe: for example, the memory area usable by the
test could be limited to a specific size and location, and some faults may become
functionally untestable [6] (i.e., no test stimuli exist for them under the in-field
test scenario). Although untestable faults by definition cannot affect the system
behavior, they may significantly limit the fault coverage that can be achieved, even
using a high-quality test program. Therefore, it is desirable to be able to identify
untestable faults.

The SBST approach is experiencing an increasing success, mainly because it
offers the possibility to the semiconductor company manufacturing the device
(and knowing its internal structure) to develop the test code, grade it in terms
of achieved fault coverage, and pass it to the system company, which eventually
integrates it in the application code. The system company is also in charge of
developing the code responsible for launching the test and retrieving the results it
produced, managing the situations when a fault is detected.

Since the test code is often activated in small chunks, whose execution can
fit in the idle times of the application, it is convenient to organize it in a set of
procedures, composing a Self-Test Library (STL). STLs are currently offered by
several semiconductor and IP companies [7–12].

When developing the code of an STL, special techniques must be followed to
activate the target faults and to make them visible. The latter point is particularly
important, especially because during in-field test the observability of the DUT

4

1.2. Thesis contributions

behavior is necessarily limited. Hence, several solutions can be adopted, possibly
involving the support of existing or ad hoc hardware.

Concerning observability, some solutions adopted for end-of-manufacturing test
may allow the continuous monitoring by the ATE of all the output signals of the
device under test. On the contrary, with in-field SBST the ATE cannot be used,
and thus the effects of faults are typically observed by checking, at the end of the
test program execution, the values left by the program in some specified memory
locations. This limited observability may significantly reduce the achievable fault
coverage; some specific fault categories are known to be untestable if fault detection
is only based on looking at the final memory content. In particular, faults that
only affect the time behavior of the processor (e.g., by delaying some operation)
found in modules such as Cache Controllers [13] and Branch Prediction Units [14]
cannot be detected in this way. The test of these performance faults [15] can be
successfully faced by resorting to the so-called performance counters existing in
most of the current microprocessors and microcontrollers [16]. Alternatively, one
can resort to special hardware modules that can be added to a processor, able
to monitor the bus during the execution of a test program and then compute a
signature. As a result, re-using any test program developed for high-observability
end-of-manufacturing SBST for in-field SBST may be either very expensive, or
result in a significant drop of the achieved fault coverage. Recently, some papers
specifically focused on the generation of test programs for in-field SBST [17].

Taking into account the panorama presented above, some of the questions that
motivated the work on the present thesis are:

• How to enhance the fault coverage achieved by in-field software-based self-
tests?

• When developing an in-field test, is it possible to reuse the design effort used
to develop a test program for an end of manufacturing scenario? How can
the observability reduction be compensated?

These questions guided the work for the main part of the thesis, presented in
Part III.

As explained in section 1.3 “Chronology”, the area of interest at the beginning
of the work on this thesis was fault tolerance mechanisms. The results obtained
during this initial stage are presented in Part II.

1.2 Thesis contributions
The main contributions of the present thesis are listed below. A more detailed

summary is presented in the conclusions chapter.

• An experimental validation of the feasibility of achieving a low cost safe
system by using a mix of already available IP cores.

5

Chapter 1. Introduction

• A method to detect faults in the cache coherence logic of a multi-core system
using a software-based self-test approach.

• A survey of the different solutions that can be adopted to observe the re-
sults of functional tests, with focus on in-field test of microprocessor based
systems.

• A set of test cases to quantitatively evaluate the benefits and cost of each of
the different observability solutions identified.

• A detailed description of the use of a conventional fault simulator to compute
the fault coverage achieved by a software-based self-test.

• A set of examples showing that the fault coverage obtained with a test
program developed for one observation method may significantly change
when reusing it with a different observation method.

• Several observation methods that provide a good coverage of performance
faults, a class of faults that are poorly covered by in-field test. Quantitative
examples were presented showing that a proper combination of observation
methods allow for achieving in-field nearly the same fault coverage achieved
when using processor level observation, a method commonly used for pro-
duction test but usually not available in-field.

In summary, these are results and information that can be fruitfully used both
by the test engineer and by the designer.

1.3 Chronology
The collaboration with the thesis advisor started with the work on the master

thesis [18], that explored the use of fault injection techniques to evaluate the
effectiveness of the fault tolerance mechanisms added to a system. The master
thesis produced several publications [19–23] and constitutes a relevant background
to the present thesis.

The work has been based in 2-3 month stays of Julio Pérez working with the
thesis advisor group at the Politecnico di Torino, interleaved with less intense
periods working from Montevideo.

At the beginning, the focus was put on low overhead fault tolerance mechanisms
to harden microprocessor systems against single event upsets. First attempts were
based on hardware redundancy but remained unpublished. A second approach
exploiting time redundancy produced a conference publication [24] that is the
basis of the content of chapter 2. All this work was mainly developed during two
stays in Turin, one in 2008 and the other in 2010.

Later, the work was reoriented towards the area of in-field test of microproces-
sor based systems to detect permanent faults. The development of test programs

6

1.4. Thesis organization

for an in-field functional test scenario was addressed during a first stay in Turin
on the second half of 2014. The results of this work were published in a conference
paper [25] and are the basis for chapter 4.

Finally, the work on the observation mechanisms for in-field Software Based
Self Test [26–29] was started during a new stay in Turin on the first half of 2015
and completed later from Montevideo.

1.4 Thesis organization
The only chapter of Part II is chapter 2 “Time redundancy fault tolerance”.

This chapter presents some results of the early work on the present thesis exploiting
time redundancy in order to tolerate soft errors. A low area overhead solution is
presented based on repeating the execution of a task and comparing the results.
Proper memory protection is used to confine the fault effects inside only one of
the task replicas.

The main part of the thesis is presented in Part III “Functional test”.

An introduction to Software-Based Self-Test including a bibliographical revi-
sion is presented in chapter 3.

In chapter 4 “Functional Test of the Cache Coherency Logic in Multi-core
Systems” a method is presented for the test of the cache coherence logic located
inside each one of the cores of a multi-core system. A proper test program is run
in a coordinated way on each of the cores, enabling the in-field detection of faults.
The method was validated and evaluated on a LEON3 multicore system.

In chapter 5 “Observation Techniques – Survey” the different solutions that
can be adopted in practice to support the observation of fault effects when SBST
is adopted for in-field test are presented, with a discussion of the advantages and
limitations of each of them.

In chapter 6 “Observation Techniques – Experimental Results” we use several
test cases to quantitatively evaluate the benefits and cost of each observation
solution: one of the test cases targets the branch prediction unit (BPU) in a
MIPS-like processor based system, another one targets the cache controller logic
in a dual-core LEON3 system, and finally a third test case analyzes the effects on
the different modules inside the above mentioned MIPS-like processor.

Finally, some conclusions are presented in chapter 7 “Conclusions”.

7

Esta página ha sido intencionalmente dejada en blanco.

Part II

Fault tolerance – Time redundancy

Part II presents results obtained during the first stage of the work on the thesis,
devoted to novel fault tolerance mechanisms. During this stage, the emphasis was
on obtaining affordable fault tolerant mechanisms to enable the use of commercial-
off-the-shelf processor cores synthesized on FPGAs for the less critical parts of a
safety-critical system.

The considered faults were the soft errors provoked by SEUs and the assessment
approach was fault injection experiments.

The only chapter in this part essentially consists in the contents of the paper
”Implementing a safe embedded computing system in SRAM-based FPGAs using
IP cores: a case study based on the Altera NIOS-II soft processor” [24]. A low
area overhead solution is presented based on repeating the execution of a task
and comparing between them the replicated results. Proper memory protection is
used to confine the fault effects inside only one of the task replicas. Fault injection
experiments were carried out to assess the proposed approach.

11

Esta página ha sido intencionalmente dejada en blanco.

Chapter 2

Time redundancy fault tolerance

Reconfigurable Field Programmable Gate Arrays (FPGAs) are growing the
attention of developers of mission- and safety-critical applications (e.g., aerospace
ones), as they allow unprecedented levels of performance, which are making these
devices particularly attractive as ASICs replacement, and as they offer the unique
feature of in-the-field reconfiguration. However, the sensitivity of reconfigurable
FPGAs to ionizing radiation mandates the adoption of fault tolerant mitigation
techniques that may impact heavily the FPGA resource usage. In this chapter we
consider time redundancy, that allows avoiding the high overhead that more tra-
ditional approaches like N-modular redundancy introduce, at an affordable cost in
terms of application execution-time overhead. A single processor sequentially exe-
cutes two instances of the same software; the two instances are segregated in their
own memory space through a soft IP core that monitors the processor/memory in-
terface for any violations. Moreover, the IP core checks for any processor functional
interruption by means of a watchdog timer. Fault injection results are reported
showing the characteristics of the proposed approach.

2.1 Introduction

Today reprogrammable Field Programmable Gate Arrays (FPGAs) are in-
creasingly attracting the attention of developers of safety- and mission-critical
applications (e.g., in the aerospace domain) for a number of reasons. First of all,
modern FPGA devices offer an unprecedented level of resources (logic, memory,
interconnection, arithmetic, and processing resources) that make them highly com-
petitive with ASICs in markets where low production volumes and short time to
market are crucial. Secondly, reprogrammable FPGAs offer a competitive advan-
tage with respect to ASICs: when deployed in the field (i.e., in a satellite already
in orbit) their configuration can be changed to improve the functionalities they
provide (e.g., to change a baseband processing algorithm in a software defined ra-
dio system), to correct bugs, to adapt to changing environment conditions, or to

Chapter 2. Time redundancy fault tolerance

implement reconfigurable computing architectures.

Two main technologies are nowadays available for implementing reconfigurable
FPGAs: one based on an SRAM configuration memory, where the information
defining what functions the FPGA implements is stored on-chip using SRAM
memory bits (e.g., Xilinx Virtex devices, and Altera Cyclone devices), and an-
other based on a Flash configuration memory, where the configuration is stored in
floating gate cells (e.g., Actel ProASIC devices). When deploying reprogrammable
devices in a radioactive environment (such as space), particular care must be posed
to the phenomena induced by ionizing radiations, which may impair some func-
tionalities of the circuit the FPGA implements, or even the whole device. In case
of SRAM-based FPGAs, ionizing radiation may induce modifications to the con-
figuration information, provoking Single Event Upsets (SEUs) that remain latched
until a fresh image of the configuration memory is restored. Conversely, Flash-
based FPGAs are immune to configuration memory SEUs. Both SRAM-based
and Flash-based FPGAs suffer from radiation-induced SEUs in the memory ele-
ments hosted by the reconfigurable fabric (flip-flops, and memory arrays). More-
over, in the case radiation affects the FPGA control logic, effects known as Single
Event Functional Interruptions (SEFIs) may be observed, which impair the correct
operation of the FPGA until a reset, or a power cycle is performed [30] [31].

To cope with SEUs and SEFIs designers must employ radiation mitigation
techniques, which consist in introducing some sort of redundancy in the imple-
mented design or system. The most widely used approach is Triple Modular
Redundancy (TMR) [32] [33] that mandates to replicate three times the design
(only its memory elements in case of Flash-based FPGAs, or the entire design in
case of SRAM-based ones, or even the entire FPGA chip in case of system-level
mitigation) and to add majority voters. In case of processor cores implemented on
FPGAs, alternative approaches can be exploited to save FPGA resources at the
cost of increased computing time. In [34], an approach is presented where the pro-
cessor core is duplicated, and a custom IP core manages the concurrent execution
of the same application on the two cores that work synchronously. Although this
approach is effective in reducing the resource overhead with respect to TMR, it
still requires processor duplication.

In this work we investigate the possibility to further reduce the area overhead
by exploiting time redundancy [32]. According to time redundancy, the same ap-
plication is executed twice (three times in case we want to achieve error masking),
and then an acceptance test is executed. If the two results match, one of the two is
forwarded to the user; otherwise, the outputs are discarded, and the computation
repeated. An example of application of this concept to processor-based systems for
space applications can be found in [35], where the tasks executed by a processor
are duplicated, and executed in segregation: each task can access only to its own
memory. A custom companion chip takes care of managing any memory access,
and guarantees the task segregation.

In this chapter we exploit the concept of time redundancy to develop an ar-
chitecture inspired by DMT [35] using a soft processor core aiming at being im-

14

2.2. Adopted architecture

plemented in an SRAM-based FPGA. In order to enforce task segregation, as well
as protection against possible SEFIs of the processor core, we resorted to the pro-
cessor Memory Protection Unit available as soft IP for the selected processor core,
and developed two additional IP cores implementing a watchdog timer and a DMA
controller.

The main contribution of this chapter lies in the experimental validation of the
feasibility of achieving a safe system by using a mix of already available and ad hoc
developed (and highly reusable) IP cores, thus minimizing the development time.
In our work we exploited the Altera NIOS-II [36] as processor core, and the Altera
Memory Protection Unit IP core for memory segregation. Being all the cores
already available, and validated, the design effort is limited to the integration with
a custom watchdog timer and DMA controller. By exploiting already existing cores
a robust system can be obtained, which can be used with a number of different
FPGAs supporting the same cores. As a result, a general architecture is obtained
which is highly portable and reusable.

To assess the effectiveness of the proposed approach, we also performed a set of
fault injection experiments, which show how the SEUs and SEFIs that may affect
the processor are effectively mitigated by our architecture.

The rest of the chapter is organized as follows. Section 2.2 presents the adopted
architecture. Section 2.3 describes the experiments we performed to assess the
soundness of the architecture we developed. Section 2.4 draws some conclusions
and outlines future works.

2.2 Adopted architecture
This section describes the architecture we adopted, and details its implementa-

tion. The architecture is intended for hardening computing intensive applications
executed by a commercial-off-the-shelf processor implemented on SRAM-based
FPGAs. The application is supposed to entail a data acquisition phase during
which an input buffer is filled with the data that has to be processed, followed by
a data processing phase during which an algorithm is applied over the input data
and an output buffer is produced, and finally a data presentation phase during
which the output data is delivered to the user.

2.2.1 Overview

The architecture focuses on providing protection against transient faults in-
duced by ionizing radiation, the so called Single Event Upsets (SEUs), which may
affect the execution of the application by altering the content of processor registers,
or by altering the configuration memory of the FPGA. Two protection mechanisms
are used.

As far as SEUs affecting the processor memory elements (i.e., register file,

15

Chapter 2. Time redundancy fault tolerance
Sequence of operations

Sup I SmartW

Define regions R1, R2

reset watchdog timer
Select R1

Start I1

end

Reset watchdog timer
Select R2

Start I2

end

Reset watchdog timer

Compare

end

loop

Figure 2.1: Sequence of operations.

special purpose registers, and cache memory) are concerned, task-level duplica-
tion is exploited in combination with hardware-assisted consistency check. The
application is executed twice, each time writing the results to different memory
locations; at the end, the two output buffers are compared. In case of mismatch,
the processor undergoes a reset operation, and the whole process is repeated. In
case of successful match, the data presentation phase issues to the user the two
output buffers: the two buffers are sent to provide a protection mechanism against
possible data-transfer errors. In order to guarantee that the two executions of the
application instances are performed independently, so that any SEU may affect
one and only one of the two executions, a special-purpose hardware module, called
smart watchdog, is used. The smart watchdog is implemented in the same FPGA
used for implementing the processor, and it is placed on the process bus between
the processor and the memory hierarchy. It has indeed to snoop for any memory
access directed either toward the cache or the main memory. Moreover, the smart
watchdog must be able to access to the memory space of the processor to perform

16

2.2. Adopted architecture

the consistency check of the two output buffers.

Let us call I1 and I2 the two instances of the application that are executed
sequentially. The processor memory is partitioned in two regions, R1 associated
to I1, and R2 associated to I2. Each instance Ix is allowed to read/write only
within the boundary of Rx; any access outside Rx indicates the occurrence of an
error. The smart watchdog is in charge of monitoring any access the processor
performs, and in case Ix is accessing to an address in Ry with x 6=y a non-maskable
interrupt resulting in the processor reset is activated.

The sequence of operations performed by the processor during the execution
of an application is the following:

1. The processor programs the smart watchdog to define R1 and R2, and resets
the watchdog timer of the smart watchdog.

2. The processor selects R1 and initiates the execution of I1.

3. Upon completion of I1, the processor resets the watchdog timer.

4. The processor selects R2 and initiates the execution of I2.

5. Upon completion of I2, the processor resets the watchdog timer.

6. The smart watchdog performs the consistency check.

7. The processor resets the watchdog timer and repeats from (2).

Any operation resulting in a wrong memory access outside the region associ-
ated to an instance of the application triggers a non-maskable interrupt leading
to processor reset. Moreover, any operation leading to a processor hang (i.e.,
a SEFI) leads to the watchdog expiration, which triggers the processor reset as
well. The smart watchdog is in charge of the consistency check: it performs a
word-by-word comparison of the output buffers computed by the two application
instances. In case of mismatch the processor is reset, otherwise the whole process
is repeated. The comparison is implemented through DMA burst transfers that
read and compare the two output memory buffers.

As far as SEUs in the FPGA configuration memory are concerned, on-line
checking is performed: the configuration memory is constantly read, a checksum
is computed and compared with a known-good value. In case of mismatch, the
FPGA device is reset, a fresh image of the configuration memory is written to the
device, and the whole application is started from scratch.

2.2.2 Implementation

We developed a proof-of-concept implementation of the described architecture
on an Altera Cyclone-II device, using the NIOS-II processor core. For the sake

17

Chapter 2. Time redundancy fault tolerance

of this chapter we focused only on SEUs affecting the processor. The features
provided by Altera devices can be straightforwardly exploited to implement the
protection mechanism against SEUs in the device configuration memory.

The NIOS-II is a 32 bit, 6-stage pipeline RISC processor. Options include sep-
arated instruction and data cache, and a full Memory Management Unit (MMU)
or a simpler Memory Protection Unit (MPU). The MPU has separated instruction
and data regions. Execution permission can be granted on instruction regions and
read or read/write permissions on data regions, both for user and supervisor ex-
ecution mode. An exception is raised in case of permission violation. Additional
exception conditions relevant from a safety point of view are misaligned memory
accesses and illegal instruction opcode. The MPU, which is available as IP core, is
the building block of our smart watchdog, as described in section 2.2.1 “Overview”.

We developed a system encompassing a NIOS-II (version f) core with a 4
Kbytes instruction cache and a 2KBytes data cache. A smart watchdog is attached
to the processor encompassing the MPU configured with 6 data regions and 4 in-
struction regions, an interval timer used as watchdog timer, and a simple DMA
controller for output buffer comparison. 512KBytes of main memory are attached
to the processor, implemented outside the FPGA device using SRAM chips. Being
based on a combination of already existing IP cores, and some custom-made mod-
ules, the implementation of the system is highly portable, and it can be mapped
on any FPGA device supporting the NIOS-II processor and its MPU. In our im-
plementation we considered Cyclone-II devices, obtaining the resource occupation
figures of Table 2.1.

Table 2.1: Resource occupation

Module
Logic

resources
[#]

Flip-
flops
[#]

Memory
bits
[#]

NIOS-II 2 063 1 549 63 104
MPU 963 729 256

Interval timer and
DMA controller

350 256 128

TOTAL 3 376 2 534 63 488

With respect to a system including only the NIOS-II processor, the imple-
mentation of the proposed architecture leads to the following overheads (due to
the addition of the MPU and smart watchdog): 63% of logic resources, 64% of
flip-flops, and 0.6% of memory bits. It calls the attention the rather high logic
resources usage of the MPU provided by altera, but it is aligned with the resources
usage expected by the Nios documentation. As far as the application execution
time is concerned, the proposed architecture introduces an overhead of 100%, as
two instances of the application have to be executed sequentially. In case the
NIOS-II system is implemented using TMR [32], limiting our analysis to the logic
resources and flip-flops, we can expect logic resource and flip-flop overheads of

18

2.3. Experimental results

at least 200% (not including the resources needed for implementing the majority
voters), and at least a 15% in performance overhead due to majority voters added
on the processor critical paths. These figures are expected to be even higher in
case mitigation techniques for the cache system are considered where the imple-
mentation of a protection scheme such as EDAC is expected to impact heavily on
the memory bit occupation, logic/flip-flop resources and performance. In the case
of the approach presented in [34], we can estimate a logic resource and flip-flop
overhead of at least 100%, and a performance overhead of about 30%. Therefore,
we can state that the adopted approach, when compared to alternative ones, is
effective in reducing the FPGA resource overhead, at a cost of a higher application
execution time.

2.3 Experimental results
To assess the robustness of the proposed architecture, we developed a fault

injection system, and we performed a set of fault injection experiments. For the
sake of this chapter, we focused only on SEUs affecting the processor memory
elements. A total of 100 000 SEUs was injected.

We used a software-based fault injection mechanism: we added a SEU injection
routine to the code running on the processor, and we used an interrupt request
to trigger the injection routine. The mechanism allows injections of SEUs in any
software-accessible location within the processor, including general-purpose reg-
isters, control registers and program counter. SEUs are randomly injected both
in time and space: the injection routine is activated in a randomly-selected clock
cycle during application execution, and a SEU is injected in one randomly selected
bit of a randomly selected register. The fault injection process encompasses the
following operations:

1. The FPGA is configured, a fresh image of the processor memory is down-
loaded, and the processor is reset. Except for the FPGA configuration, this
initialization operation is performed for each fault in order to guarantee that
experiments are independent from each other.

2. Through the debug interface the memory location storing the injection time,
and the injection location (register and bitmask to use) are modified accord-
ing to the fault to be injected.

3. A timer initially set to the injection time is started, and the application
execution is started according to the mechanism described in section 2.2.2
“Implementation”.

4. Upon expiration of the injection-time timer, the application is stopped, and
the SEU injection routine is activated; as a result, the desired fault is inoc-
ulated in the system.

19

Chapter 2. Time redundancy fault tolerance

5. The execution of the application is resumed until its completion.

At the end of the application execution, the two output buffers are analyzed,
and SEUs are classified as follows:

• No effect : The execution completed successfully, the two output buffers
contain the same values and match the results produced by a fault-free
execution. Moreover, the MPU did not trigger the non-maskable interrupt,
and the watchdog timer did not expire.

• Data detection: The execution completed successfully, but the output buffers
produced by the two application instances have different values, while the
smart watchdog signaled the mismatch.

• Exception: The smart watchdog triggered the non-maskable interrupt, sig-
naling that an attempt to access a forbidden memory partition is detected.

• Timeout : The smart watchdog timer exhausted before the end of application
execution.

• Trap: The injected fault triggered one of the processor traps, indicating
that an erroneous situation is detected (e.g., the processor is executing a
misaligned memory access).

• Wrong answer : The execution completed successfully, the two output buffers
are equal but they do not match those produced by a fault-free execution.
Moreover, the MPU did not trigger the non-maskable interrupt, and the
watchdog timer did not expire. This condition corresponds to the case in
which the fault produced a misbehavior, but escaped all the error detection
mechanisms our architecture offers.

In our experiments we considered a data-processing benchmark composed of a
16-tap finite impulse response filter processing 512 samples of a 500Hz tone sam-
pled at 8KHz. The filter is implemented in the direct form, and its coefficients are
chosen to obtain a 1KHz low pass filter. Then, a further processing based on com-
puting the square root of the obtained values is executed. Benchmark execution,
according to the sequence of operations described in section 2.2.2 “Implementa-
tion” lasts for about 8 million clock cycles.

During preliminary injection experiments to tune the system, some faults were
identified that put the processor in a halt state, leading to a SEFI condition de-
tected as timeout. By analyzing these faults, we found that the halt condition
is the result of a fault leading to a jump into an unused code area where the
custom instruction opcode is found (resulting from random initialization of the
memory). The NIOS-II processor has a reserved “custom instruction” opcode to
enable instruction-set extensions through the addition of custom hardware. The
opcode for the custom instruction is predefined and it is not detected as illegal,

20

2.3. Experimental results

even if the processor is not equipped with the custom hardware to execute this
instruction. To avoid this situation we initialized the whole unused memory with
an illegal opcode. In this way, any fault causing a jump to a word in the unused
memory triggers an exception, and thus can be detected.

Once the system has been set up and tuned, we run a preliminary set of fault
injection experiments during which we injected 100 000 SEUs in the processor
program counter. These experiments were useful for getting an initial indication
of the soundness of the approach by considering very critical faults, which may
dramatically harm the health of the system. The classification of fault effects is
presented in Table 2.2.

Table 2.2: Clasification of fault effects

No effect 6 178
Data detection 8 498
Exception 63 110
Timeout 0
Trap 22 161
Wrong answer 53
Total 100 000

From these results we can see that 53 of the injected faults (0.053 %) escaped
the detection mechanisms the architecture embeds. Moreover, by looking in more
details to the results, we observed that the following traps are executed:

• 9 029 illegal opcode traps, indicating the effectiveness of properly initializing
the unused memory, which is likely to allow avoiding the timeout condition;

• 4 448 misaligned data address trap;

• 8 683 misaligned destination address trap;

• 1 supervisor only instruction trap.

The results suggest that the processor already embeds very powerful mecha-
nisms for detecting misbehaviors induced by SEUs.

We also observed that SEU effects are strongly related to the position of the
fault in the Program Counter. All the faults affecting bits 0 or 1 on the Program
Counter (the least significant bits) were detected by misaligned memory access
traps. On the other side, all the faults affecting the highest order bits of the
program counter provoked accesses out of the memory regions configured on the
MPU, and consequently were detected as region violation exceptions. For the
intermediate range of bits, the fault effects gradually change from a majority of no
effect and data detection to a majority of illegal instruction and region violation
exceptions as the affected bit varies from lower to higher order bits.

21

Chapter 2. Time redundancy fault tolerance

2.4 Chapter conclusions
As reprogrammable FPGAs become the devices of choice for developers of

safety- or mission-critical applications operating in radioactive environments, suit-
able mitigation techniques are needed against soft errors originated in the FPGA
devices. In this chapter, we describe an architecture that exploits task-level redun-
dancy in combination with already available IP cores for implementing a processor-
based system robust with respect to SEUs. Preliminary results focusing on the
processor program counter outline the effectiveness of the architecture, and the
overhead analysis shows that the proposed architecture is effective in reducing
the resource occupation with respect to N-modular redundancy, at a moderate
cost in terms of application execution time. The reported results allow a deeper
understanding of the fault behavior and of the effectiveness of the different fault
detection mechanisms.

22

Part III

Functional test

This part introduces the central aspects of the thesis and is organized as follows.

An introduction to Software-Based Self-Test including a bibliographical revi-
sion is presented in chapter 3.

In chapter 4 “Functional Test of the Cache Coherency Logic in Multi-core
Systems” a method is presented for the test of the cache coherence logic located
inside each one of the cores of a multi-core system. A proper test program is run
in a coordinated way on each of the cores, enabling the in-field detection of faults.
The method was validated and evaluated on a LEON3 multicore system.

In chapter 5 “Observation Techniques – Survey” the different solutions that
can be adopted in practice to support the observation of fault effects when SBST
is adopted for in-field test are presented, with a discussion of the advantages and
limitations of each of them.

In chapter 6 “Observation Techniques – Experimental Results” we use several
test cases to quantitatively evaluate the benefits and cost of each observation
solution: one of the test cases targets the branch prediction unit (BPU) in a
MIPS-like processor based system, another one targets the cache controller logic
in a dual-core LEON3 system, and finally a third test case analyzes the effects on
the different modules inside the above mentioned MIPS-like processor.

Even when the concepts and techniques presented here are applicable to other
fault models and scenarios, most of the examples and experimental cases intro-
duced in the following chapters aim to detect permanent stuck-at faults in an
in-field scenario.

25

Esta página ha sido intencionalmente dejada en blanco.

Chapter 3

Background on Software-Based
Self-Test

When electronic systems are used in safety critical applications (e.g., in the
space, avionic, automotive or biomedical areas), we need to guarantee that the
probability of failures due to faults of any kind (unreliability) is lower than a
specified threshold. One of the possible causes of failures are defects affecting the
hardware components. Different techniques can be used to reduce the chance that
hardware defects can occur (e.g., acting on the adopted semiconductor technol-
ogy) or to minimize the probability that they produce critical failures (e.g., by
introducing redundancy).

Unfortunately, most of these techniques have a severe impact on the cost of the
resulting product. In some cases (especially when advanced semiconductor tech-
nologies are used, e.g., to achieve enough performance) the probability of failures
is anyway too large.

Hence, a solution which is commonly used in several scenarios lies on periodi-
cally performing a test able to detect the occurrence of any fault before it produces
a failure (in-field test). This kind of test can resort either to Design for Testability
(DfT) or to functional approaches.

The latter solution is normally based on forcing the CPU inside the Device
Under Test (DUT) to execute a properly written test program, which is able
to activate possible faults and to make their effects visible in some observable
locations (e.g., the data memory). This approach (also called Software-based Self-
test, or SBST [4]) has the advantage of testing the DUT exactly in the same
conditions of the final application, and is more suitable for concurrent in-field test,
since it is less intrusive than DfT. On the other side, SBST solutions may require
a large effort to develop a suitable test program.

The SBST approach is currently experiencing a growing success, mainly be-
cause it offers the possibility (besides the other advantages) to the semiconductor
company manufacturing the device (and knowing its internal structure) to develop

Chapter 3. Background on Software-Based Self-Test

the test code, grade it in terms of achieved Fault Coverage, and pass it to the sys-
tem company, which eventually integrates it in the application code. The system
company is also in charge of developing the code in charge of launching the test
and retrieving the results it produced, managing the situations where a fault is
detected.

Since the test code is often activated in small chunks, whose execution can
fit in the idle times of the application, it is convenient to organize it in a set of
procedures, composing a Self-Test Library (STL). STLs are currently offered by
several semiconductor and IP companies [7] [8] [9] [10] [11] [12].

When developing the code of a STL, special techniques must be followed to
activate the target faults and to make them visible. The latter point is particularly
important, especially because during in-field test the observability of the DUT
behavior is necessarily limited. Hence, several solutions can be adopted, possibly
involving the support of existing or ad hoc hardware [28].

When considering permanent faults that may affect an electronic device (such
as a microprocessor, or a System on Chip), a special class is represented by Perfor-
mance Faults, i.e., those faults which do not affect the results of the computation,
but simply the timing behavior of the DUT. Examples of these faults can be found
in a Branch Prediction Unit (BPU). If the BPU is faulty, it may always produce
a wrong branch prediction. The final result of the program execution will be cor-
rect, but the time required for the execution will be larger. Performance Faults
can be found in other parts of a processor, such as the cache and memory con-
troller. Clearly, the relevance of Performance Faults from a practical point of view
may change depending on the application. Since real-time constraints are often
important, in many cases they cannot be neglected and need to be detected.

Some previous works already dealt with Performance Faults. In particular,
in [16] the authors describe a method to detect them resorting to Performance
Counters, i.e., those hardware structures which are often included in a processor
to count the occurrence of internal events (e.g., cache misses, or wrong branch
predictions), mainly to support the manufacturer in assessing the correct behavior
of the design. In [37] a method to estimate the impact of performance faults on
different performance-related modules in a CPU is proposed. Performance counters
and their usage for testing purposes are revisited in section 5.5.

The term Software-Based Self-Test (SBST) was first proposed by Chen and
Dey in [38], but the approach itself has been proposed few years before under the
name “Native Mode Functional Test” in [39] and [5]. SBST broadly identifies all
test methodologies based on forcing a microprocessor/microcontroller to execute a
program and checking the results to detect the presence of possible defects affecting
the hardware. Indeed, the pioneering idea of testing a microprocessor with a
program dates back to 1980. In [40], Thatte and Abraham devised fault models and
procedures for building test programs able to detect permanent defects in different
functional units of a simple processor. A wide adoption of their methodology was
hindered by the difficulties in automating the generation of such test programs,

28

especially when targeting complex processors.

In general, the usage of SBST requires:

1. Generating a suitable test program. This is typically a hard job, which is
still mainly performed by hand. Moreover, the complexity and effectiveness
of this task depends on the adopted metric, which in turn depends on the
available information: in some cases, both RTL and gate-level models of
the target system are available, while in others functional information is
available, only. For the purpose of this work, we assume that the gate-level
netlist is available unless it is explicitly stated, and it is possible to compute
the fault coverage achieved by the generated test program with respect to
the most common structural fault models (e.g., stuck-at). In chapter 4
“Functional Test of the Cache Coherency Logic in Multi-core Systems” the
development of a test program targeting some specific faults is addressed.

2. Creating an environment to support its execution. Once the test program
is available, it must be stored in some memory accessible by the processor,
the processor must be triggered to execute it at the due time, and the re-
sults produced by the processor during its execution must be observed. In
chapters 5 and 6 we specifically focus on the last issue.

Nowadays, the complexity of processors has significantly increased; the micro-
architectural details play a fundamental role, and devices cannot be accurately
modeled using information about the Instruction Set Architecture (ISA) alone.
However, SBST is becoming more and more important: it commonly supplements
other kinds of tests, as functional programs may detect unmodeled defects that
escape to traditional structural tests (the so-called “collateral coverage” [41]). By
definition, the functional approach tests the system in its operational mode, with-
out activating a test mode and without reconfiguring the system; hence, it is
guaranteed not to cause overtesting (or overkilling). Moreover, several producers
exploit functional stimuli to validate their design or to run post-silicon verification.

In some cases, test programs are generated pseudo-randomly [42], possibly
using simulation feedback, and may even use some hardware support to make
more efficient the test phase [43].

Amongst the several recent works focusing on SBST, some aim at developing
algorithms to generate effective test programs for common modules starting from
the knowledge of its ISA alone (e.g., for an OpenSPARC T1 processor [44] or a
MIPS-like ISA [14]), eventually combined with RTL description (e.g., [45] for two
different implementations of the MIPS ISA). Others focus on the possible automa-
tion of the test program generation procedure (e.g., [46] using a LEON2 proces-
sor, [17] using miniMIPS). The possible usage of SBST for diagnostic purposes
has also been explored (e.g., [47] using an 8-bit accumulator-based microproces-
sor, and [48] for transition-delay faults in an i8051-compatible microcontroller).
Finally, a number of works study how to apply SBST for in-field test (e.g., [49] for
a MIPS architecture processor).

29

Chapter 3. Background on Software-Based Self-Test

In this last domain, regulations and standards mandate the adoption of effec-
tive solutions to early detect permanent faults, and SBST has the big advantage
that it does not require access to any systematic DfT solution (such as scan or
BIST), whose usage details are often considered as proprietary by the manufac-
turer. SBST can be used not only to test the CPU, but also the other components
in a microcontroller or SoC: for example, several works addressed its adoption
for the test of peripherals [50], memories [51] (possibly implementing transparent
test [52]) and cache memories [53] [54]. SBST usage can also be extended to the
test of multi-core systems [55]. In some cases, the usage of existing hardware
resources introduced for non-test-related purposes (e.g., for debug, design valida-
tion, performance assessment) allows significantly reducing the size and duration
of SBST test programs [56].

Moreover, SBST can more easily match the constraints of the environment
where the processor is employed. When adopted for in-field test, SBST typically
means activating a test program either at the system power-on, or during the ap-
plication idle times. In the latter case, additional constraints about the duration
of the test exist, due to the limited duration of the available time slots. Unfortu-
nately, the constraints posed by the application environment may severely impair
the effectiveness of the method when applied to test a processor. When functional
test is used for end-of-manufacturing test, processor inputs and outputs can often
be fully controlled and observed by an ATE. Nevertheless, during in-field test some
parts of the processor (e.g., the test and debug structures) might not be accessible
by the test procedure, thus resulting in untestable faults [6], i.e., faults for which
no input stimuli exists, able to detect them. In other words, some parts of a proces-
sor which are not used anymore during the operational phase may contain faults,
which cannot be tested in this phase, but are also guaranteed not to affect the
system behavior. Besides, not all the processor inputs may be freely controllable
in the in-field scenario: for example, activating the reset signal is hardly possible,
and thus the test of the reset logic is prevented. More in general, possible Con-
trol/Status input signals coming from other devices may be hard to control [5].
Finally, observability during SBST in-field test could be limited, since only the
produced results (e.g., in memory) can be observed. The set of faults which can-
not be tested in the in-field environment due to these additional constraints are
known as functionally untestable faults [6]. As previously mentioned, it is impor-
tant to be able to identify untestable faults, since they limit the achievable fault
coverage.

In the following chapters several aspects of Software-Based Self-Test are pre-
sented. The chapter 4 presents an example of the development of a functional test
in an in-field scenario. A method to test the cache coherency logic embedded in
each processor’s cache in a multiprocessor system is presented together with an
evaluation of its cost in terms of execution time.

Then we focus on the observability issue: firstly, in chapter 5 “Observation
Techniques – Survey” we describe in detail different observation solutions that can
be adopted for SBST in-field test, comparing them with the ideal case in which

30

all the outputs of the module under test (or of the processor) are continuously
observable during the test. Secondly, in chapter 6 “Observation Techniques –
Experimental Results” we use several test cases to quantitatively evaluate the loss
in fault coverage that stems from the adoption of the different solutions.

31

Esta página ha sido intencionalmente dejada en blanco.

Chapter 4

Functional Test of the Cache Coherency
Logic in Multi-core Systems

Multi-core systems are becoming particularly common, due to the high perfor-
mance they can deliver. Their performance strongly depends on the availability of
effective cache controllers, able to guarantee (among others) the coherence of the
caches of the different cores.

Here, a method is proposed for the test of the cache coherence logic existing
within each core in a multi-core system, resorting to a functional approach; this
means that the method is based on the generation of a suitable test program, to
be run in a coordinated manner on the cores composing the system. The method
is able to detect hardware defects affecting this logic. The method was validated
and evaluated on a LEON3 multicore system. Most of the content of the present
chapter was already published in a conference paper [25].

4.1 Introduction
Multi-core systems are increasingly popular in the applications where high

performance is required, due to the interesting mix of performance, flexibility
and power they offer. However, the complexity of the devices implementing such
multi-core systems, combined with the increased susceptibility to faults of new
technologies, asks for new techniques able to effectively detect possible faults af-
fecting their hardware structure, both at the end of the manufacturing process,
and during the operational life (in-field test).

A common solution lies on resorting to Design for Testability (DfT) techniques,
such as scan test or Logic BIST. However, these techniques may sometimes be in-
adequate: firstly, these solutions may often not be exploited during the operational
life, for example because they require an external tester (not available for in-field
testing); secondly, because IP producers tend not to disclose details about the DfT
architectures, avoiding to impair IP protection; thirdly, because sometimes DfT

Chapter 4. Functional Test of the Cache Coherency Logic in Multi-core
Systems

is inadequate to achieve sufficient defect coverage, that can only be obtained by
running the test in the same operating conditions (e.g., in terms of speed) and
configuration of the application. For all these reasons, a functional test approach
based on developing suitable test programs to be executed by each core and on
observing the results produced is a suitable solution. As mentioned before, this
approach is also known as Software-Based Self-Test (SBST) [4].

Caches are one of the most critical components within multi-core systems,
since their behavior can seriously affect the performance of the whole system.
Previous papers [53] [57] [58] already described how their data and tag parts can
be effectively tested resorting to a SBST approach. In some cases, their test can
be made easier by exploiting the special instructions provided by some Instruction
Set Architectures to directly access their content [59].

Additionally, multi-core systems require proper coherence protocols, able to
guarantee that the content of the caches of the different cores is always up-to-
date, so that each time a processor accesses a piece of data, it always accesses
a correct and coherent value. Validation of cache-coherent multiprocessors is a
challenging task, often performed through extensive simulation of randomly gen-
erated sequences of operations [60] [61]. On the other side, it is also crucial to
check whether any hardware defect affects the cache coherence logic. In [62] the
focus was on the test of the coherence logic of a cache controller implementing the
Modified-Exclusive-Shared-Invalid (MESI) protocol. In that paper, it was only
considered the logic corresponding to the Finite State Machine implementing the
protocol, neglecting the rest of the involved control circuitry.

The purpose in the present chapter is to propose a method to generate a proper
test program to be run on a multi-core system in order to check whether the
circuitry implementing the cache coherence protocol is affected by any hardware
fault. The test program is derived from the functional specifications of the circuitry
under evaluation only, and can therefore be reused on any circuit implementing
the same coherence protocol. Interestingly, since the proposed technique is based
on a test program, it is well suited to be adopted by system companies for both
Incoming Inspection [63], and in-field test (since it is possible to activate the test
at any time during the operational phase).

In order to practically validate our approach and to better quantify its cost in
terms of memory occupation and execution time, some experimental results were
gathered using a multi-core system based on the LEON3 processor [64].

4.2 Background

Nowadays, multi-core systems usually include multi-level caches. Each cache
has a corresponding cache controller, implementing not only the functions required
to properly operate the cache by itself, but also to guarantee the coherence of the
shared data allocated at a given time on the different processors’ caches.

34

4.3. Proposed approach

In particular, the Cache Coherence Logic (CCL) mainly aims at avoiding the
case in which two copies of the same memory block allocated in two different
caches do not contain the same values. To avoid this problem, several mechanisms
exist. One of the most popular, which is considered here, is based on spying the
addresses flowing on the bus (snooping), so that a block in a cache is invalidated if
the value of the same block has been changed in another processor cache. Hence, a
key role in the cache coherence logic is played by the Validity Bit (VB) associated
to each cache line. The VB is substituted by several bits when the adopted cache
coherence protocol is more complex, like in the case of the MESI protocol [65].

In this chapter, we consider a Cache Coherence Logic implementing a simpler
protocol, such as the one adopted for the data cache of the LEON3 processor
core [64]. In such a case a Validity Bit is associated to every cache line; in addition,
the cache implements the write-through, no allocate mechanism. If the processor
is used in a multi-core configuration, the cache coherence logic continuously snoops
the bus transfers: if another processor executes a write operation on a block which
is also stored in the local cache memory, the block is invalidated (i.e., VB is forced
to 0) thus forcing every further access to the block to access the memory. VB is
forced to 1 each time a new block is uploaded into the cache memory.

Based on the above discussion, the CCL is mainly composed of the following
elements:

• the VBs (one for each cache line);

• a set of comparators, whose inputs are the external address bus and the tag
fields associated to the cache set corresponding to the address currently on
the bus (one for each of the possible ways a given block can be stored in a
set associative cache);

• some control logic, able for example to interact with the bus and understand
when to sample the address value during a memory write operation.

In the next section we will propose an algorithm able to test these three pieces
of circuitry by executing a proper test program and checking the system behavior.

4.3 Proposed approach
It is described here the algorithm proposed to test the cache coherence logic

in a multi-core system; for the sake of simplicity the usage of the algorithm in
a dual-core system where each core includes a direct mapped cache is initially
discussed. These assumptions will be removed in section 4.3.4 “Optimizing the test
in multiple-core systems”. It is also assumed that a previous test has been run, able
to test the cache itself including the cache controller circuitry not corresponding
to the coherence logic.

35

Chapter 4. Functional Test of the Cache Coherency Logic in Multi-core
Systems

The algorithm targets stuck-at faults. The test of the targeted logic requires
first exciting each fault, and then observing the fault effects. We will deal with
the two issues separately. It is important to note that the basic function of the
CCL is to invalidate a given cache line when another processor executes a write
operation on the memory block it stores, i.e., to properly modify the value of the
corresponding VB. Hence, observing the effect of any fault in the CCL once it has
been excited means observing the value of the corresponding VB.

In order to perform this set of operations, in the following the different memory
operations involved in the CCL testing are described. They require the use of two
processor cores: P0 and P1. P0 is the target processor core whose CCL we want
to test, whereas P1 is a support processor intended to execute operations that
invalidate the data in the P0 cache module.

4.3.1 Excitation phase

We first need to check whether any stuck-at fault exists, affecting the VBs.

In the following, the required operations developed for this purpose are de-
tailed. Every step details the processor required to execute the listed operations
and the expected behavior in the targeted cache:

0. P0 - cache flush; all validity bits are initialized to 0;

1. P0 - upload each cache line with a known block (thus turning all VBs to 1);
for every line a read operation is performed and a cache miss is expected;

2. P0 - access the block which was uploaded in each line in the previous step,
checking that a hit is triggered; if not, the corresponding VB is affected by
a stuck-at-0;

3. P1 - invalidate the P0 cache (thus turning all VBs in P0 to 0);

4. P0 - access the block which was uploaded in each line. In the absence of
faults, all VBs turn back to 1, and a cache miss is expected; if not, the
corresponding VB is affected by a stuck-at-1.

Each of the above steps (except step 0) consists of nS read or write operations,
being nS the number of sets in the cache (equal to the total number of cache
lines in a direct mapped cache), each operation accessing to a memory location
which is supposed to be stored in a different cache line. Details about the rules
to compute these addresses can be found in [53]. Hence, the above steps require
4.nS instructions, plus the cache invalidation instruction (flush in the case of the
LEON3 assembly code).

Secondly, we need to check whether the CCL is affected by any fault. In a
direct mapped cache, the CCL is basically composed of a comparator; each time a
processor core accesses the memory, this comparator compares the tag portion of

36

4.3. Proposed approach

A B
10…00 00…00
01...00 00…00

… …
00…10 00…00
00…01 00…00
00…00 00…00
01…11 11…11
10…11 11…11

… …
11…01 11…11
11…10 11…11
11…11 11…11

CMP

A B
T T

T vectors

T vectors

1 vector

1 vector

Figure 4.1: Comparator schema and test patterns.

the address on the bus with the content of the tag field of the corresponding cache
line. For testing the comparator we can exploit the algorithm proposed in [66].
Calling T the number of bits in the tag field, such an algorithm specifies a set
of 2.T+2 input vectors that should be applied to the 2.T comparator inputs (as
shown in Figure 4.1), guaranteeing that they allow achieving full stuck-at fault
coverage, independently of the specific comparator implementation.

Applying each of these test patterns to a comparator in the CCL requires the
following steps:

1. P0 - upload in a suitable cache line a memory block, so that the value of
the tag field matches the required value (input B); this can be achieved by
executing a read access to a suitable location in memory;

2. P1 - execute a write operation on the block uploaded at the previous step;
this implies that the required value is written to the bus, and thus applied
to the A input of the comparator.

The first step can be ommited when the value of input B is the same as in the
previous test pattern, because the tag value remains unchanged in the allocated
cache line. Depending on the test vector, the comparator is expected to produce
a match or mismatch; correspondingly, the related VB in P0’s cache is forced to 0
or left at 1. The full sequence is shown below, detailing for each item the expected
activity on the shared bus:

• P0 reads a value from an address with the tag field equal to all zeroes. This
uploads a memory block to a cache line and sets the value of comparator’s
B input for the first T+1 test patterns (1 read transfer).

37

Chapter 4. Functional Test of the Cache Coherency Logic in Multi-core
Systems

• P1 produces T write transfers to the proper addresses to provide the A
values for the first T test patterns. The comparator is expected not to
match, maintaining the validity bit set (T write transfers).

• P0 reads again the initial value, a cache hit is expected (no activity).

• P1 writes to the memory block, providing the A value for test pattern num-
ber T+1. A comparator match is expected, thus making P0 to invalidate
the corresponding cache line and force the VB to 0 (1 write transfer).

• P0 reads again, but now a miss is expected (1 read transfer).

• The whole sequence is repeated for an all ones tag value.

The algorithm can be easily extended to a core including an nL ways set
associative cache. In this case the CCL includes nL comparators, and the algorithm
should be repeated to test each of them.

4.3.2 Observation phase

The above algorithms allow forcing a known VB to 0 or 1. In order to observe
whether the target VB holds the expected value or not, the test program should
execute an access to the block stored in the corresponding cache line. If this triggers
a hit, it means that the VB holds the value 1, otherwise (miss) the VB holds the
value 0. Most of the faults affecting the CCL can be labeled as performance faults,
i.e., they do not affect the correctness of the result produced by the test program,
but rather its performance [67].

In order to observe whether a given memory access triggers a hit or miss we
can adopt different techniques, based on the hardware mechanisms available:

• performance counters existing in the processor, devoted to count the number
of hit and miss situations triggered by a given program [16] [68]

• an internal timer, devoted to measure the test program execution time

• the debug infrastructure usually provided by the processor, able to trace and
communicate to the outside the bus activity for a given period [69]

• an ad hoc module added to the system and in charge of monitoring the bus
activity [70]

4.3.3 Analytical performance analysis

The main component of the test time required by the algorithm is related to
memory accesses. Their number can be estimated as shown below.

38

4.3. Proposed approach

Some of the transfers needed for the execution of the test are cache hits and
consequently internal to a core, while others are cache misses and will compete
with the other processors to access the bus. In both cases the amount of necessary
data transfers depends on the number of cores ncpu, the number of tag bits T
(which affects the size of the required comparator), and the number of sets nS in
the cache, assuming it is direct mapped. The activity in the external shared bus
corresponds to all the write accesses and the missed read accesses. The number of
transfers required by the complete test are:

Nshared = [nS ∗ (2rd + 1wr)] + [T ∗ 2wr + 4rd + 2wr]

The terms into the first bracket correspond to the test of the validity bits while
the second bracket corresponds to the test of the comparator logic.

The internal transfers (read accesses resulting in a cache hit) on each core are:

Ninternal = (nS + 2) ∗ rd

4.3.4 Optimizing the test in multiple-core systems

In the previous sub-sections we described how to test the possible stuck-at
faults affecting the CCL of a target processor core, using a second core as a support.

In the case of an ncpu-core system some parallelism can be exploited. A first
approach consists in using each processor to support the test of the following one.
Processor P0 plays the role of support processor for P1, P1 for P2, and so on.
This approach was the one used to obtain the experimental results presented in
the next section. The total number of transfers in the shared bus is multiplied by
ncpu.

Nshared = ncpu ∗ ([nS ∗ (2rd + 1wr)] + [T ∗ 2wr + 4rd + 2wr])

The total duration of the algorithm will depend on the performance of the bus.
In an ideal scenario where there is no bus contention, the test duration will remain
constant, equal to T1 the duration of the algorithm for testing a single core. On
the other side, if the memory bus access is saturated the execution time will be
dominated by the memory accesses and will increase linearly with the number of
processors ncpu*T1.

A second approach that saves some memory transfers uses only two support
processors. For example, processor P0 plays the role of support processor for
P1 and all the other odd numbered processors, and P1 for P0 and all the even
numbered processors. This approach limits the number of processors doing write
operations to 2 instead of ncpu, and consequently reduces the bus traffic. The
resulting total number of transfers in the shared bus is:

39

Chapter 4. Functional Test of the Cache Coherency Logic in Multi-core
Systems

Nshared = [ncpu ∗ nS ∗ 2rd + 2wr] + [ncpu ∗ 4rd + 2 ∗ T ∗ 2wr + 2 ∗ 2wr]

4.4 Experimental results
The approach effectiveness has been experimentally evaluated in a multi-core

system based on the freely available LEON3 processor by Aeroflex Gaisler [64].

A multi-core system was implemented including a minimum set of memory
cores, plus a configurable number of LEON3 processors. Every processor core
is instantiated with separate data and instruction caches. The configuration for
the data caches used in our test was 1 way (direct mapped), 1Kbyte/way, 16
bytes/line. As mentioned, the data cache implements the write-through policy,
with no-allocate on a write miss.

The test program on each processor requires the execution of 317 assembly
language instructions for the VB test and 412 instructions for the Comparator
test part, plus some loop instructions for synchronization. For every processor
core, the compiled test program requires about 1KB of code memory.

The execution times for both parts of the test (VB and Comparator) are re-
ported in Figure 4.2 for systems with 2 to 8 processors. VB test corresponds to
the solid line, and Comparator test to the dashed one. All values are expressed
in number of clock cycles. These values show that the effects of bus and memory
contention do impact more significantly on the VB test, where the execution time
grows more quickly with the number of cores. In the Comparator test the execu-
tion time grows more slowly, due to the higher amount of parallelization that our
algorithm achieves.

Figure 4.2: Test programs execution time (clock cycles) vs. number of cores.

40

4.5. Chapter conclusions

In order to validate the correctness of the proposed algorithm we analyzed the
LEON3 data cache controller RTL source code to identify the parts of it which
implement the snoop mechanism. The whole system was then simulated at the
RT level using the Mentor Graphics ModelSim tool to check that the algorithm
behavior is the expected one.

On the other hand, it was not possible to identify the cache controller logic as
a piece of circuit separated from the rest of the cache controller at the gate level.
For this reason it was not possible to obtain a list of the faults associated to the
cache coherency logic and as a consequence no fault simulation experiments were
performed.

The prototype implementation that was evaluated does not include a mecha-
nism to observe if a given memory access produces a cache hit or a cache miss. A
final implementation must include such a mechanism and depending on the chosen
mechanism it may introduce some area or configuration time overheads.

4.5 Chapter conclusions
In this chapter we propose a method to detect possible faults affecting the hard-

ware that implements the cache coherence logic integrated in each cache controller
of a multi-core system.

The method is based on a functional approach, i.e., on the execution of a
carefully written test program executed by different cores in a coordinated manner.
The method achieves by construction a full fault coverage of the static faults in
the main components of the addressed logic, namely the validity bits and address
tag comparator; it is suitable to be used both during end-of-manufacturing test
and for in-field test (e.g., when safety-critical systems are considered).

We experimentally evaluated the proposed approach on a system integrating
a variable number of LEON3 cores, showing its cost in terms of execution time,
which grows linearly (and slowly) with the number of cores.

41

Esta página ha sido intencionalmente dejada en blanco.

Chapter 5

Observation Techniques – Survey

The main purpose of this chapter is to survey the different solutions that can
be adopted in practice to support the observation of fault effects when SBST is
adopted for in-field test, discussing the advantages and limitations of each of them.
In the next chapter we use several test cases to quantitatively evaluate the benefits
and cost of each observation solution: one targets the branch prediction unit (BPU)
in a MIPS-like processor based system, another one targets the cache controller
logic in a dual-core LEON3 system, and finally a third test case analyze the effects
on the different modules inside the above mentioned MIPS-like processor.

A comparison of the fault coverage obtained using two different observation
methods is presented in [71]. However, to the best of our knowledge, the present
work and its associated papers [26] [28] are the first report of extensive experimen-
tal results to compare the fault coverage that can be achieved with the different
observation methods, thus allowing the reader to have a better understanding of
the advantages and disadvantages provided by the different solutions. These two
chapters also outline some techniques to compute fault coverage figures related to
the usage of an SBST approach with different observation mechanisms.

In the following, the main solutions that can be adopted to observe the effects
of possible faults during in-field SBST testing of a processor-based system are
described, namely: module-level, processor-level, system bus, memory content,
performance counters, and debug interface. The above list also includes a few
solutions that only represent ideal solutions taken as reference, although they can
hardly be adopted during in-field SBST. The scope of the present work is limited to
bare metal systems, i.e., solutions that would require the presence of an Operating
System (e.g., based on monitoring its performance, or analyzing the event logs)
were not considered.

It is assumed that the targeted faults are those inside a given module within
the processor. For every solution, the adopted mechanism as well as the main
advantages and disadvantages are detailed, and a preliminary analysis about the
forecasted coverage is reported. Figure 5.1 summarizes some of the considered
observation solutions, referring to the architecture of a simple processor-based

Chapter 5. Observation Techniques – Survey

system.

Figure 5.1: Generic system under test: the observation points adopted by the first four of the
techniques described in the text are highlighted.

5.1 Module-Level Observation

When a generic module inside the processor is considered for the test, the ideal
level of observability is the boundary of such a module, i.e., it is assumed that all
the output ports are available for observation.

The test program is supposed to be able to properly stimulate the input ports
of the considered module, to excite the faults and then to propagate them towards
the module output ports, which are test observation points.

This observation solution can be adopted during simulation and fault simula-
tion processes. However, when working on real chips, for a number of reasons it is
hardly feasible neither in-field nor, in most cases, at end-of-manufacturing. These
reasons are, firstly, that the module output ports usually do not coincide with the
circuit pinout, and even if they do, it is normally not affordable to continuously
observe the circuit behavior without resorting to additional hardware; secondly,
when an instrument is attached to the observation points, the observed signals can
only be read in test mode through a dedicated tester.

Therefore, this solution is introduced here only as a reference, because it es-
tablishes an upper bound to the fault coverage figure obtainable through SBST
test approaches.

44

5.2. Processor-Level Observation

5.2 Processor-Level Observation

This solution assumes that fault effects can be observed at the processor level,
i.e., that all the processor outputs can be continuously monitored. While module-
level observation is very specific and may be not feasible in practice, observation
at processor-level represents one of the scenarios that are sometimes adopted for
end-of-manufacturing test. Considering an internal module which has to be tested,
the test program must not only propagate the fault effects up to the module output
ports, but must be able to propagate them also to the processor output ports.

According to these considerations, the observability we can get with this so-
lution is generally lower than the one obtained at module-level. In most of the
cases, propagating the faulty behavior requires an additional effort in order to
reach the processor outputs. In the case of a functional testing approach based
on test programs, this additional effort may imply the addition in the code of
specific instructions able to propagate the fault effects to the processor outputs.
As an example, faults within an arithmetic unit can be easily activated by execut-
ing suitable arithmetic instructions (thus propagating their effects on the module
outputs), and can then be made observable on the processor outputs via store in-
structions that propagate the result of the arithmetic operation up to the processor
output ports.

Faults may also exist that, even with the addition of instructions, cannot be
observed on the processor outputs. This situation may happen when the processor
design includes some redundant circuitry, for example left from previous releases
or included for future extensions of the design. Clearly, the related faults can be
classified as untestable. However, the identification of untestable faults may often
represent a relevant problem.

Due to the need of constant monitoring of all the processor outputs, this obser-
vation solution requires the use of an ATE and thus, cannot be adopted by in-field
SBST.

5.3 System Bus Observation

This solution mandates that the control, data and address signals of the system
bus are continuously monitored. When comparing this solution with the previous
one, all the processor outputs not related with the system bus are excluded from
observation.

End-of-manufacturing scenarios may offer a high level of observability when
the constant monitoring of the output ports of the processor is possible. Such
a powerful scenario is not representative of an observation mechanism for in-field
testing. However, more and more processors (especially for embedded systems) are
equipped with specific components in charge of monitoring the interconnections
between the processor and the memory subsystem, in some cases including external

45

Chapter 5. Observation Techniques – Survey

caches. Examples of such modules are MISRs attached to the bus, which update
a signature every time new data are going to be written to the memory. This so-
lution has been adopted by commercial microcontrollers, e.g., from Freescale [72].
In other cases, dedicated programmable embedded cores are in charge of tracing
specific bus transactions (e.g., ARM [73]) and of storing a history of processor
execution in a local memory, which is accessible through a dedicated port (e.g.,
for debug purposes). An example of IP core specially devised for SoC testing is
described and demonstrated for a processor compliant with the SPARC v8 ar-
chitecture in [74]. The presence of caches significantly limit the amount of data
flowing through the bus, and hence the number of faults whose effects can be
observed by observing it.

SBST programs using this observation method should include specific sequences
of instructions that permit the propagation of the fault effects up to the system
bus.

As an example, let us consider the faults affecting the circuitry that supports
an external coprocessor. If the external coprocessor is connected to the processor
with dedicated ports, the effects of such faults –propagated up to this interface in
the original program– need to be read back from the coprocessor and stored to the
system memory in order to become observable in the system bus. This solution
adds complexity to the test program and is not always feasible. In case of faults
whose effects can only be observed on non-functional output signals and never read
back, the fault coverage reduction cannot be recovered, thus resulting in general
in a potentially less-effective observation mechanism.

Also, if an SBST program developed for processor-level observation is evaluated
resorting to this observation solution, a significant fault coverage reduction could
be observed. This fault coverage loss is motivated by the reduction of the observed
signals, as they are a subset of the output signals of the processor.

5.4 Memory Content Observation

According to this solution, a fault is marked as detected if the content of the
system memory is different than the expected one at the end of the execution of
the SBST program.

All the previously presented observation mechanisms rely on the fact that some
output ports of the circuit can be constantly monitored, e.g., by a dedicated tester
which is physically connected to test points or to the interface with on-board
instruments. This is not the usual case of SBST in general. In a manufacturing
at-speed SBST scenario, the functional program is often uploaded in the system
memory (e.g., a cache, or a dedicated flash) and run at-speed, storing its responses
in some available memory elements, such as internal registers, caches, or main
memory, and hence permitting a low-cost tester to access them at the end of the
execution. Similarly, during in-field SBST, at the end of the test program run the

46

5.5. Performance Counters Observation

processor itself or another module (e.g., another processor) may perform an access
to the specific memory cells in order to compare their values with the expected
ones.

According to the presented scenario, this observation mechanism assumes that
the test program collects in some way the information about test results and saves
this information in the system memory. The information collected by the test
program may be compacted by the test program itself and then (at the end of the
test process) saved in few selected memory cells. Alternatively, the information
saved by the program may be written to a set of memory cells, according to the
targeted module characteristics as described in [75] for a MIPS-like processor and
an industrial System-on-Chip.

Since the test results correspond to the values generated by the test program,
which are checked only at the end of the test program execution without taking
into account when these results are produced, some performance faults may es-
cape when using this observation mechanism. For example, in the case of Branch
Prediction Units, some performance faults may not modify the final test program
results, but only delay the actual execution time [16], e.g., by turning a correctly
predicted branch into a mispredicted one.

5.5 Performance Counters Observation
Performance Counters (PeCs) measure the number of occurrences of different

internal events, making their observation easier from the outside. They exist in
many processors, mainly for design validation, performance evaluation and to sup-
port silicon debug. Their values can normally be accessed via software. Hence, a
test program may read the value of a given PeC, execute a sequence of instructions
exercising a given module, and then read again the value of the PeC comparing it
to the expected one. Possible differences may allow the detection of faults inside
the module.

The most common types of PeCs include those that count internal events
related to:

• caches, counting the number of miss and hit events;

• Branch Prediction Units (BPUs), counting the number of correctly or incor-
rectly predicted branches;

• pipeline stages, counting the different types of stalls;

• Memory Management Units (MMUs), counting the number of hit/miss ac-
cesses to the TLB;

• exception units, counting the number of triggered exceptions, often divided
by type;

47

Chapter 5. Observation Techniques – Survey

• bus interfaces, counting the number of performed bus transfers, also often
divided by type.

These counters are already quite common in general-purpose high performance
processors, and their adoption is growing in microcontrollers for embedded appli-
cations.

The usage of these counters as part of the observation mechanism adopted by a
testing procedure was proposed in several works, such as [16] [14] that use variants
of the MIPS architecture, or [76] [59] working with the OpenSPARC T1 proces-
sor. The PeCs have also been proposed as feedback in automatic test program
generation [77] and in [54] to simplify the test programs aimed at detecting faults
in caches. They are crucial for the detection of some specific types of faults, such
as performance faults. Moreover, they can facilitate the test of faults belonging to
some modules, such as Branch Prediction Units, Cache Controllers, TLBs. They
may also be used to support the test of specific modules within the pipeline, such
as those controlling the activation of stalls.

Regarding observability issues, the PeCs may provide deeper details on inter-
nal events affecting the module that may not reach the output ports, and allow
the detection of several performance faults. Thus, exploitation of PeCs and prop-
agation of performance values to system memory increases observability and may
represent a valuable solution during in-field SBST.

5.6 Debug Interface Observation
The features currently provided by many processors in order to support the

debug of the software can also be used for test purposes. Examples of such debug
interfaces are the vendor independent standard Nexus IEEE-ISTO 5001 [78] [79]
extensively used in U.S. automotive applications, and the ARM CoreSight On-
chip Trace and Debug Architecture [80], widely adopted by various chip vendors
in devices based on ARM Cortex-A, Cortex-M and Cortex-R cores.

These features often allow accessing to some information about the internal
behavior of the processor during its normal operation (and without slowing it
down). They typically allow tracing the sequence of instructions executed by the
processor, either by writing them to ad hoc external interfaces that can be accessed
on-the-fly or by storing them in a special memory buffer.

When trying to use these features to observe in-field test results, some difficul-
ties arise: on one hand the mentioned special memory buffer usually has a reduced
capacity, limiting its usage to very short test programs; on the other hand, the
on-the-fly monitoring of the flow of data produced by the debug interface can only
be done resorting to ad hoc hardware.

Although such ad hoc hardware is usually not available in a typical in-field
test scenario, it may be added if some programmable hardware is available on the

48

5.6. Debug Interface Observation

board or on-chip. This possibility becomes particularly attractive in the case of
SoC platforms provided by FPGA vendors, often equipped with ARM processors
and the abovementioned ARM CoreSight Architecture, i.e. the Zynq-7000 SoC
platform by Xilinx or the SoC variants of the Cyclone V family by Altera. On
these platforms, the ad hoc port provided by the debug interface is connected to
the FPGA fabric, so that an on-the-fly monitor can be added with a moderate
effort.

A scenario similar to the one described above was proposed in [81] [82], where
other test oriented instrumentation is provided by a module mapped on an avail-
able on-board FPGA. A scheme for on-the-fly monitoring of the execution trace
data is presented in [83] and its effectiveness to detect control flow errors, i.e. faults
that modify the normal program execution flow, is experimentally evaluated via
fault injection on miniMIPS and LEON3 systems.

To better understand the possible uses of the debug features for test purposes,
a brief description of the ARM CoreSight Architecture is included here.

According to the CoreSight Architecture, every configurable CoreSight compo-
nent contains a set of memory-mapped registers that are accessible from external
debug equipment and from the application software. The CoreSight components
can be classified in:

• Access and Control components. They allow to access memory and mem-
ory mapped registers, including the configuration registers of the CoreSight
system. The ARM Debug Access Port (DAP) provides a bridge between a
reliable low pin count external interface referred as the Debug Port (DP)
and on-chip memory and memory-mapped registers through different ac-
cess ports (AP) connected to the system buses. The Debug Port can be for
example a JTAG port. Each Access Port implements a master port that
interfaces to one of the standard memory-mapped interfaces, such as APB
(ARM Peripheral Bus), AHB (Advanced High-performance Bus) and AXI
(Advanced eXtensible Interface).

• Trace source components. Trace information is generated by different com-
ponents that are masters of the AMBA trace bus (ATB). The Program
(PTM) [84] and Embedded (ETM) Trace Macrocells generate trace data
containing information of the software running on the processor. The In-
strumentation (ITM) and System (STM) Trace Macrocells allow the soft-
ware developer to explicitly insert trace points into the software to ease
application-level trace and debug (e.g., print type debug). The AHB Trace
Macrocell (HTM) provides tracing of AHB buses. The Fabric Trace Monitor
(FTM) is a Xilinx specific trace Macrocell that complies with the CoreSight
architecture specification and enables to trace data generated inside the pro-
grammable logic (FPGA) of the Zynq-7000 SoC.

• Trace link components. The interconnection components include the ATB
Funnel to merge trace data from multiple sources (PTM, FTM and ITM)

49

Chapter 5. Observation Techniques – Survey

into a single stream driving an ATB bus, and the ATB Replicator that
duplicates the trace stream onto two output ATB master ports, which can
be connected to trace sink components.

• Trace sink components. There are two types of trace sink components in the
Zynq-7000 device. The Embedded Trace Buffer (ETB) is an on-chip storage
module with limited size (4KB) which enables short-window real-time and
full-speed tracing. The Trace Port Interface Unit (TPIU) allows the trace
packages to be output to the FPGA part or to chip output pins for on-the-fly
processing.

The block diagram of a CoreSight System typical implementation is shown in
Figure 5.2.

Figure 5.2: Example CoreSight system (source [85]).

The trace source components like the Program Trace Macrocell can report sev-
eral relevant information about the test program execution, including, for example,
taken/not-taken branch decisions, the target PC address of branch instructions,
cycle accurate information between two branch instructions and the exception sta-
tus of the processor [84].

50

Chapter 6

Observation Techniques – Experimental
Results

In this section, we present some experimental figures aimed at assessing the
fault detection abilities of the different observation mechanisms described in the
previous section. The observation solutions are denoted as follows:

• S1: module-level observation

• S2: processor-level observation

• S3: system bus observation

• S4: memory content observation

• S5: performance counters observation

• S6: debug interface observation

Three test cases were considered, using different processor-based systems: a
single core MIPS-like processor system (Test cases #1 and #3) and a multicore
Leon3 processor system (Test case #2). For two of the test cases (#1 and #2)
a module was selected within the processor and a test program was produced,
targeting the faults inside the selected module. The selected modules were the
Branch Prediction Unit in test case #1 and the data cache controller in test case
#2. They were chosen because they are known to produce performance faults, a
kind of fault that is hard to detect using the traditional memory content observa-
tion method. For test case #3 the test program targets the faults inside all the
internal modules of the processor.

Observation solution S6 was considered only on the test cases based on the
MIPS-like processor (Test Cases #1 and #3). Also, in these two test cases a sec-
ond performance counter mechanism consisting of a simple timer was considered,
denoted as S5*.

Chapter 6. Observation Techniques – Experimental Results

For every considered observation solution (S1-S5 in Test Case #2, S1-S6 in
the others), a fault simulation campaign was run in order to determine whether
a fault produce a difference in the observed outputs if compared with the golden
run (i.e., the simulation of the system in a fault free condition). A commercial
fault simulator was carefully setup in order to mimic the described observation
solutions targeting the stuck-at faults in the selected modules. In some cases, it
was necessary to introduce some slight modifications to the system, oriented to
replicate during the fault simulation campaign the observation methods employed
in every experiment. In the fault simulation experiments performed for a given
test case, the same test program was used for all the different observation methods.

52

6.1. Test Case #1: Branch Prediction Unit

6.1 Test Case #1: Branch Prediction Unit

For this test case we considered a MIPS-like processor based on the RT-level
VHDL description available at [86]. This processor is a 32 bits core composed of:

• a pipeline with 5 stages: address calculation (PF), instruction extraction
(EI), instruction decoding (DI), execution (EX) and memory access (MEM);

• a System Coprocessor, responsible for the management of interrupts and
exceptions;

• a Register Forwarding and Pipeline Interlocking unit, dealing with data
hazards among the pipeline stages;

• a Branch Prediction unit (BPU), implementing a Branch Target Buffer;

• a Register Bank, consisting of thirty two 32-bit registers.

In this case we considered the faults belonging to the Branch Prediction Unit
(BPU), which is a commonly used solution for decreasing the negative impact of
branches on the performance of pipelined architectures. One of the most widely
used implementations of a BPU is based on the Branch Target Buffer (BTB), i.e.,
a data structure consisting of a set of entries, each one containing:

• the address of a branch instruction;

• the expected target address in case the branch is predicted as taken;

• possibly, one or more bits, storing the prediction (taken, or not taken).

During the instruction fetch cycle and providing that the instruction is a branch
instruction, the processor core is able to anticipate the branch outcome by access-
ing the BTB. In case of a correct prediction, the processor can fetch the correct
instruction during the next clock cycle. Figure 6.1 shows the BPU inputs and
outputs and their connections to the related pipeline stages of the MIPS-like pro-
cessor.

This module is particularly interesting, due to the fact that faults affecting
it do not always cause the generation of erroneous results, but often impact the
processor behavior by simply slowing down the system, i.e., increasing the number
of mispredictions and possibly causing the system not to match the expected target
in terms of performance. Such faults are also referred to as performance faults and
can be tested by using some properly devised performance counters.

53

Chapter 6. Observation Techniques – Experimental Results

PF EI DI EX MEM

BPU

addr[] addr[]
bra

addr[]
addresse[]
bra

clear (to DI, EI and EX)

bra_adr[]
bra_cmd
bra_bad

To PF

Figure 6.1: Branch Prediction unit and related pipeline stages of the MIPS-like processor.

6.1.1 System setup

Minor changes were done to the processor design, mainly to correct a bug
affecting the Branch Prediction Unit. The VHDL description was synthesized
using the Synopsys Design Compiler with a technology library developed in-house.
Both the technology library development and the changes to the processor design
were available at the beginning of the present work. The complete processor area
is 41 959 equivalent gates and 2 112 equivalent D flip flops, and is described in
3 131 lines of VHDL code, while the BPU accounts for 4 248 equivalent gates, 283
equivalent D flip flops and 274 VHDL lines. The considered fault list consists of the
single stuck-at faults inside the BPU. It has a total of 27 354 faults, corresponding
to about 10% of the stuck-at faults inside the whole processor (268 424 faults). No
undetectable faults were marked as such by the fault simulation tool.

With the purpose of testing the Branch Prediction Unit, a functional test pro-
gram was manually developed following the algorithm described in [14]; it occupies
308 bytes of ROM memory, and its execution requires 5 229 clock cycles. The pro-
gram is a sequence of taken and not taken branches, suitably crafted to exercise
each entry of the BTB memory, and each bit of the associated comparator used
to determine if the address of a branch instruction being processed matches with
the one stored in the table entry. A signature that compacts the sequence of the
executed branch addresses is produced and written to memory at the end of the
test. Using this test program, we ran several fault simulation experiments aimed
at assessing the effectiveness of the different observation mechanisms when ad-
dressing single stuck-at faults. Fault simulation experiments were performed using
Synopsys TetraMAX, which is a well-known tool used for manufacturing-testing-
oriented fault simulation. A proper framework based on TetraMAX was devised
in order to evaluate the considered observation solutions.

Figure 6.2 shows the interface of the MIPS-like processor. In order to con-

54

6.1. Test Case #1: Branch Prediction Unit

processor ram_add[]

ram_data[]

ram_r_w

ram_req

ram_ack

it_mat

clock

reset

Figure 6.2: MIPS-like processor external interface.

sider a realistic scenario, the synthesized processor was embedded together with
a RAM memory and a ROM memory containing the program code. For the sake
of simplicity, no peripheral cores were included in the system, thus no external
interrupts could have been raised during the simulation experiments.

More in details, a proper module wrapping the processor was added to the
system and used as the top module in TetraMAX fault simulations. This wrapper
has a double purpose: on one hand, it contains all the elements required by the
different observation mechanisms, while exporting the different sets of observed
signals as primary outputs of the wrapper as described below. On the other hand,
it allows the inclusion of the program memory inside the system that is fault
simulated by TetraMAX, hence giving a much closer match between the simulated
and real behaviors in the presence of faults.

The wrapper includes a RAM memory used by the Memory Content obser-
vation mechanism and additional logic aimed at implementing the Performance
Counters and Debug Interface observation mechanisms described in the previous
section. Two different performance counters are implemented: the first one ob-
tains the test duration by capturing the value of a simple timer at the end of the
test program execution; the second one is able to count the occurrences of incor-
rectly predicted branches by means of one of the outputs of the Branch Prediction
Unit (the clear signal shown in Figure 6.1) which is activated each time a wrong
prediction is detected. In order to emulate a solution based on debug interface ob-
servation, a set of internal signals produced by the execution stage of the pipeline
were exported up to the wrapper interface as described below.

The wrapper is shown in Figure 6.3 and has the following characteristics:

• Two blocks of memory are used; the ROM memory contains the test program
code, while the RAM memory is initialized before the simulation and receives
the test program results at the end of execution;

• the clock and reset primary input signals are applied to the processor by the
wrapper; at the system reset, the value of the processor’s Program Counter

55

Chapter 6. Observation Techniques – Experimental Results

corresponds to the first available address in the ROM memory;

• a second read port was added to the RAM memory to support the mem-
ory content observation mechanism. Using the additional address inputs
(spy addr) and data outputs (spy dout), the memory content is observed
without interfering with the normal memory access operations performed
by the test program;

• internal signals were exported up to the wrapper boundary in order to sup-
port module level and debug interface observation mechanisms;

• a timer register and a counter were added to emulate the two performance
counter observation methods considered. The timer register is enabled at
the end of the test to capture the value of a timer input t in provided by the
testbench; the Perf cnt counter increments each time an incorrect branch
prediction arises.

Figure 6.3: BPU’s test case: experimental environment and considered observation solutions.

The fault simulation experiments were driven by a Value Change Dump (VCD)
file produced via logic simulation by means of a test-bench surrounding the wrap-
per, which represents the top module in the TetraMAX simulations. The VCD file
provides the proper stimuli to the wrapper’s primary inputs: ck, reset, spy addr
(to select the RAM location observed at spy dout) and t in (the timer signal pro-
vided by the testbench). In detail, the reset signal was only triggered as soon as

56

6.1. Test Case #1: Branch Prediction Unit

the simulation was started and then remained inactive until the end. At the end
of the test program execution, the spy addr value continuously scans the memory
interval between the first and the last address of the RAM zone to be observed
through spy dout. The enable signal of the Timer register is decoded from a mem-
ory write operation added at the end of the test program in order to capture the
value of time at the end of execution.

During the fault simulation campaigns, TetraMAX was provided with the same
fault list for all of the performed experiments (consisting of all the stuck-at faults
on the BPU). The different observation solutions (also shown in Figure 6.3) are
described below. It must be remembered here that the first three solutions are
usually not feasible in an in-field scenario. Solutions S4 to S6 can be implemented
in-field by a few instructions at the end of the test program that read the final
value of the observed magnitude and compare the read value with the expected
one. Instead, in order to assess the fault coverage using a fault simulation tool like
TetraMAX, the final value of the observed signal must be presented as a primary
output of the top entity being simulated, i.e. the wrapper, and the fault simulator
must be instructed to only observe this primary output, and to observe it only at
the end of the experiment. Each solution was implemented as follows:

• S1: the primary outputs of the Branch Prediction module (the predicted
address, and other few control signals shown in detail in Figure 6.1 and
grouped as predict out in Figure 6.3) are observed during the whole simula-
tion. To make this possible, the processor interface was modified to export
the outputs of the internal Branch Prediction module up to the wrapper
interface.

• S2: the sub-set of signals composed of all the original processor outputs is
observed during the whole simulation (the memory data, address and control
interface signals detailed in Figure 6.2 and labeled as bus in Figure 6.3).

• S3: the original processor outputs related to the system bus are observed
during the whole simulation. This solution is identical to S2 in this case
study because all the outputs of the MIPS-like processor are system bus
related.

• S4: the content of the memory area where the test program is expected to
write is observed at the end of the test program execution; this is imple-
mented using the wrapper. More in details, the fault simulation experiment
is set up so that upon the test program completion, the observation is en-
abled on the outputs spy dout, while the inputs spy addr sweep the RAM
memory interval devoted to save the program results. Two words are enough
for the present example because a signature is used to compact the test pro-
gram results.

• S5: incorrectly predicted branches performance counter. Upon the test pro-
gram completion, the TetraMAX fault simulation experiment enables the ob-

57

Chapter 6. Observation Techniques – Experimental Results

servation of the primary outputs corresponding to the Performance Counter
value (pc out in Figure 6.3).

• S5*: timer performance counter. In a way similar to the previous solution,
upon the test program completion the observation of the primary outputs
corresponding to the Timer register is enabled (treg out in Figure 6.3).

• S6: a set of internal signals produced by the execution stage of the pipeline is
exported up to the wrapper interface. The exported signals are the address
(instr adr) and opcode (instr) of the instruction being executed, along with
two control signals indicating that an instruction is effectively being executed
(instr adr valid) and that it is a branch instruction (instr bra). The set of
signals is grouped as debug out in Figure 6.3, and the observation is enabled
only at the instants that a branch instruction is executed in the non-faulty
execution run (golden run).

In the case of solution S6, the aim is to emulate the observation of a signature
that compresses the sequence of branch instruction information on each branch
execution. In the real system the signature can be computed by ad-hoc hardware as
described in section 5.6 “Debug Interface Observation”. Note that the observation
instants are fixed according to the golden run timing, independently of the actual
timing of the faulty execution. So, if the fault produces timing modification only,
i.e. if it is a performance fault, in most of the cases the observed signal values at
the fixed observation instants will differ from the golden run values, and hence the
fault is detected by the test. In other words, the experiment results ressemble the
results of a real system in which the abovementioned signature includes not only
addresses and taken/not taken information, but also a timestamp.

6.1.2 Results

Class S1 S2/S3 S4 S5 S4+S5 S5*/
(S4+S5*)

S6/
(S4+S6)

Detected 21 631 21 614 11 259 19 902 19 902 19 861 20 201
Not Detected 5 723 5 740 16 095 7 452 7 452 7 493 7 153
fc [%] 79.08 79.02 41.16 72.76 72.76 72.61 73.85
fc/fc(S1) [%] 100.00 99.92 52.05 92.01 92.01 91.82 93.39

Table 6.1: BPU’s test case: fault simulation results

The fault simulation results for the Branch Prediction Unit of the MIPS-like
processor are reported in Table 6.1. As explained above, for this processor the
observed signals in mechanisms S2 and S3 are exactly the same. For this reason
a single column labeled as S2/S3 is shown in Table 6.1. About 79% of the total
faults in the module were detected by exploiting the observation mechanism S1:

58

6.1. Test Case #1: Branch Prediction Unit

this represents the maximum achievable fault coverage, given the test program we
considered. Only a few of these faults were not propagated through the system
bus (S2/S3). This happens because the test program used in the experiments was
carefully developed focusing on the end-of-manufacturing scenario; thus, a small
minority of the faults detected by S1 were marked as not observed by TetraMAX
in the S2/S3 scenario.

On the contrary, a significant fault coverage drop can be noticed when moving
from S2/S3 to S4, when the content of the main memory is observed at the end
of the test program execution. In this case, only 41% of faults are marked as
detected, meaning that about a half of the faults that were propagated by the test
program to the system bus (experiment S2/S3) were not consistently saved in the
main memory, turning them into not observable in a typical in-field scenario. As
described in the introduction, part of these faults are masked, however, those of
them that are not performance faults may become observable if correctly propa-
gated up to the system memory. Thus, this result could be improved by the test
engineer in charge of test program, if this scenario had to be targeted.

The interesting result concerns the experiment which used the Performance
Counter (S5): in this case we have about 73% of detected faults, meaning that
only 6% of faults were not observable with respect to the results of processor-
level observation (S2/S3). Since the Performance Counter is tightly related to
the module under consideration, its effectiveness was very high, providing a good
example of how resources existing in real processors can be exploited for in-field
testing. This result also suggests that in the present case, performance faults
are by far the most important factor contributing to the coverage reduction from
S2/S3 to S4.

Similar good results were obtained for the Timer (S5*) and Debug Interface
(S6) solutions, being S6 slightly better. As in the case of solution S5, the infor-
mation provided by the Debug Interface (the time and address of each branch
instruction) is also tightly related to the Branch Prediction module. The results
also show that the Timer is a good alternative to observe the faults escaping S4,
which seems reasonable as most of these faults are presumably performance faults.

Further analysis on the fault lists of the different experiments showed that all
the faults that were detected for S4 were also included in the detected fault list of
S5, S5* and S6. Consequently the results of combining S4 and each one of the other
three solutions are identical to the results obtained with only the other solution.
For example, the results of solution S5 and the combination of solutions S4+S5 are
the same. That is the reason for the double label (for example S6/(S4+S6)) in the
rightmost columns in Table 6.1. As discussed above, the Performance Counters
can usually be accessed as a system peripheral, thus its values can be read by the
test program itself at the end of its execution, and then used to update the test
signature. Therefore, in a typical in-field scenario, the adoption of solutions like
S5 or S5* allows achieving high fault coverage, with the minor additional effort of
the Performance Counters reset and reading operations.

59

Chapter 6. Observation Techniques – Experimental Results

6.2 Test Case #2: Data Cache Controller
The second test case corresponds to a multi-core system based on the LEON3

processor, whose synthesizable VHDL model is freely-available for research pur-
poses under GNU GPL license at [64], as part of the GRLIB IP library [87]. The
LEON3 processor is a highly configurable 32-bit core compliant with the SPARC
V8 architecture and is composed of:

• a pipeline with 7 stages;

• AMBA-2.0 AHB bus interface;

• separate instruction and data caches, which can be configured in several
ways;

• several optional components: high-performance, fully pipelined IEEE-754
Floating-Point Unit; Memory Management Unit; Debug Support Unit with
instruction and data trace buffer.

LEON3 data cache can include data cache coherency features based on the
snooping technique. Data cache snooping is of high importance for multiproces-
sor systems. The purpose of this logic is to keep the data cache synchronized
with external memory and other caches, avoiding any data inconsistency. This
task is accomplished by monitoring the write accesses on the AMBA AHB bus to
cacheable memory locations: if another AHB master writes to a cacheable location
that is currently cached in the data cache, the corresponding cache line is marked
as invalid.

In this case, the considered faults where those belonging to the controller mod-
ule of the data cache. As in test case #1, some of the faults inside the selected
module may cause the processor to produce correct results but delayed in time,
i.e. they are performance faults.

6.2.1 System setup

The GRLIB IP library provided by Cobham Gaisler AB was exploited in order
to create the Symmetric Multi-Processor (SMP) embedded platform depicted in
Figure 6.4. Note that this platform permits to exercise the data cache coherency
logic. Briefly, the system included:

• two LEON3 processors, referred to as core0 and core1 in the figure, each
one attached to the AMBA-2.0 AHB bus as master;

• a bank of SDRAM memory, and a ROM memory loaded with the program;

• an interrupt controller;

60

6.2. Test Case #2: Data Cache Controller

• a 16-bit GPIO port.

Both instruction and data caches in LEON3 processors were configured as 1-
way, 1 Kbyte, 16 bytes/line. The data cache policy is always write-through, with
no cache allocation on a write miss. The snoop mechanism was enabled to assure
cache coherency.

Figure 6.4: Data Cache Controller test case: dual-core system under test and considered
observation solutions.

The whole two core system was simulated without faults to obtain the patterns
applied to the system during fault simulation. The internal module under analysis
was in all the cases the data cache controller of core0 (dc ctrl in Figure 6.4),
and the considered faults were the stuck-at faults inside it. In order to minimize
computation effort, only part of the system was included in each fault simulation
experiment. For solution S1, the top module of the system in the fault simulation
experiments was the data cache controller of core0, denoted as dc ctrl in Figure 6.4.
For solution S5 it was also included the performance counters module described
below, while for the rest of the observation mechanisms the fault simulated system
includes the complete core0 processor.

In order to better assess the observation solution based on performance coun-
ters, the system was enriched by adding some of the performance counters usually
available on commercial processors. For this purpose, a new block was designed,
called PerfCnt in Figure 6.4, fed by a subset of the data cache controller ports.
The set of performance counters implemented by the block can be classified in the
following two groups:

61

Chapter 6. Observation Techniques – Experimental Results

1. AMBA bus events: a group of 5 counters triggered on the occurrence of
specific bus transfers (write, read, byte, half word, and word transfers).
These counters take their inputs from the connections between the data
cache controller and the AMBA AHB interface.

2. Cache operation events: 3 counters for cache read hit, cache write, and cache
line invalidation because of snoop events. The inputs of these counters come
from signals connecting the data cache controller with the cache memory
and the integer unit.

The whole system was synthesized with Synopsys Design Compiler using the
Synopsys SAED32 standard cells library [88], one of the libraries provided in the
synthesis toolkit of the processor. The complete Leon3 processor core is described
in 9 578 VHDL code lines. Each of the two instances of the Leon3 processor
core occupies 155 568 equivalent gates, and 23 784 equivalent D flip flops. As
mentioned before, the module under analysis is the data cache controller in core0
processor, which is described in 1 669 VHDL lines, and occupies 6 380 equivalent
gates and 339 equivalent D flip flops. The fault list used during fault simulation
experiments consists of all the possible single stuck-at faults affecting the module
under analysis, which totalize 23 958 faults, a fraction of the 715 838 stuck-at
faults of the whole processor core.

For the purpose of this set of experiments, a test program was created based
on the techniques described in [13] and [25], aimed at detecting faults affecting
different specific functionalities inside the data cache controller. One of these
functionalities is the snooping logic, whose basic function is to invalidate a given
cache line when another processor executes a write operation on the memory block
it stores. The part of the test that targets the snooping logic runs concurrently on
both processors, as described in [25] and in 4.3 “Proposed approach”. It consists
of a sequence of memory accesses exciting the inputs of the address comparators
used to detect the cache line invalidation condition and verifying whether the
corresponding validity bit is modified accordingly. The rest of the test program
runs only on core0. It includes a section targeted to the replacement logic [13]
and the programs provided by Cobham Gaisler AB to verify the functionalities of
the cache controller. The test program was written in C language except for some
small sections which are written at the assembly level; its execution time is about
300k clock cycles, and its code occupies about 26 000 bytes.

To allow a fair comparison, the test program was exactly the same in all the
experiments. Each time, a sub-set of the outputs was selected and made observable
by TetraMAX in order to mimic the different observation methods presented in
chapter 5 “Observation Techniques – Survey”. As mentioned above, the top mod-
ule in the fault simulation runs was the data cache controller inside core0 (dc ctrl)
for solution S1, the same plus the performance counters block for solution S5, and
the core0 processor in the rest of the cases. For each of the considered solutions,
the sub-set of observed signals is listed below, as well as the observation points
(also shown in Figure 6.4):

62

6.2. Test Case #2: Data Cache Controller

• S1: the sub-set of primary outputs corresponding to all the output ports of
the data cache controller (dc ctrl module) is observed during the whole test
program execution.

• S2: the sub-set related to all the outputs of the core0 processor is observed
during the whole test program execution. This sub-set includes the AMBA
AHB bus interface outputs described in the next paragraph, the outputs
to an external debug support unit (DSU3) and the outputs to an external
interrupt controller (IRQMP) that also manages the startup sequence of the
multiple processors.

• S3: the sub-set related to the outputs of the core0 processor that are con-
nected to the AMBA AHB bus is observed during the whole test program
execution. It includes the 32 bit address bus, the 32 bit data bus and the
full set of control signals of an AMBA AHB master interface.

• S4: the final signature computed by the test program out of the data written
in memory is observed at the end of the test program execution.

• S5: the primary outputs corresponding to the PerfCnt module are observed
at the end of the test program execution (outputs of the eight counters
described above).

A problem arises with solution S4. The memory was left outside the model of
the system provided to the fault simulator, and consequently we cannot observe
the final memory value. Instead what was done was to observe the data bus
in the moments a write transfer is done at the AMBA bus. As explained in
subsection 6.5.1 “Setting the fault simulator observation times”, this approach is
not totally correct and may produce optimistic results.

6.2.2 Results

Table 6.2: Data Cache Controller’s test case: fault simulation results

Class S1 S2 S3 S4 S5 S4+S5

Detected (DT) 12 112 8 517 8 516 7 511 2 479 7 796
Not Detected (ND) 9 726 9 627 9 628 10 633 17 483 17 483
Undetectable (UD) 2 120 5 814 5 814 5 814 3 996 3 996
fc [%] 50.56 35.55 35.55 31.35 10.35 32.54
fc/fc(S1) [%] 100.00 68.07 68.06 60.03 19.81 64.37

The fault simulation results for the data cache controller module of the LEON3
processor are summarized in Table 6.2. The gathered results show, as expected,
quite different fault coverage figures when the different observation mechanisms are
adopted. The limited fault coverage achieved by the different solutions (including

63

Chapter 6. Observation Techniques – Experimental Results

S1) is mainly due to the high amount of redundancy (hence, untestability) existing
in the considered implementation of the Data Cache Controller module, which
could not be removed by the synthesis tool. This redundancy stems from the high
flexibility of the LEON3 cache system, which can be configured at compile time
to implement different cache solutions, not only in terms of cache size, but also
of cache replacement and writing mechanism (e.g., write-back or write-through).
Unfortunately, after configuration the VHDL code contains unused structures that
are not always removed by the synthesis tool, leading to redundancy. TetraMAX is
partially able to identify untestable faults and classify them as Undetectable (UD)
under different situations: during the net-list compile, because they are located
on circuitry with no connectivity to an externally observable point, or because
the fault effect is blocked from propagating to an observable point due to tied
logic; alternatively, during the fault simulation, when some faults are proved to
be untestable since they are located on redundant circuitry, by means of formal
analysis. However, part of the faults, which cannot be tested in a functional
manner, escape from the analysis of testability made by TetraMAX, and simply
result as part of the Not Detected (ND) set.

In order to consider that there is a high percentage of untestable faults, the
bottom row in Table 6.2 shows the fault coverages expressed as a percentage of the
one obtained with solution S1. It can be seen that the number of faults detected
by solutions S2 and S3 is almost 70% of the one detected by solution S1, meaning
that a significant amount of faults that are observable at module-level are not
propagated up to the processor output signals.

Interestingly, solution S2 covers only one fault more than solution S3. This
was partly expected, because the data cache controller module is strongly memory
related. A more appreciable coverage difference between solutions S2 and S3 can
be expected for a non-memory related module. Such a difference may be produced
because the fault effects are not properly propagated to the system bus by the test
program (e.g. a coprocessor module), or because the fault only affects resources
that cannot be read back in a controlled way by the test program (e.g., an interrupt
controller).

The provided results also show that the number of faults detected by S4 is
about 88% of the number of faults covered by S3, and the number of faults covered
by S5 is only one third of the number of faults covered by S4. However, it is
important to analyze the intersections and differences between the sets of faults
detected by S4 and S5.

As mentioned in the previous sections, in an in-field SBST approach solutions
S4 and S5 are the only practically feasible ones, since they do not require the use
of any additional hardware devices. Figure 6.5 schematically shows the effect of
adding the results obtained by S4 and S5. S5 provides 285 additional detected
faults, about 3.8% of the number of faults detected by S4 alone. S4 and S5
combined detect 91.5% of the faults covered by S3. Remarkably, there are some
faults (104) covered by S5 and S3 that are not detected by solution S4; these faults
are associated to the group of performance counters related to AMBA bus events

64

6.2. Test Case #2: Data Cache Controller

Figure 6.5: Data Cache Controller’s test case: sets of faults detected by the different obser-
vation solutions.

(see the previous sub-section). This group of faults shows a contribution of S5
which partly compensates the loss in fault coverage moving from S3 to S4.

Additionally, there is another set of faults (181 faults) covered only by S5 that
escape the test not only by S4 but also by S3. This means that during the execu-
tion of the test program the effect of these faults is unobservable at the bus level,
but modifies the behavior of the second group of performance counters (cache oper-
ation events, described in the previous sub-section). The considered test program
is successful in exciting these faults but is not able to produce observable modifi-
cations at the bus level. The observation of the performance counters contributes
to the overall coverage by making these faults observable.

65

Chapter 6. Observation Techniques – Experimental Results

6.3 Analysis of the Results of Test Cases #1 and #2
Experimental results successfully confirmed some a-priori considerations on

the implemented observation solutions. Considering solutions S1 to S5, it can be
stated by construction that, for a given test program, the higher coverage is the one
obtained resorting to solution S1. Module level observation S1 offers the highest
observability even if it can hardly be implemented in a real scenario. For all the
other solutions except S6, the observed signals are a subset or a transformation of
the signals observed in S1. So, for example in test case #2, if the effect of a fault
inside the dc ctrl module is observable at the AMBA bus level (S3), it can also be
observed on the dc ctrl ports (S1).

In a similar way, the following inclusion relationships (also summarized in
Figure 6.5) can be assured between the sets of detected faults and between the sets
of undetectable faults in the different solutions. The name in parentheses identifies
the solution and the two letter code denotes the fault class (DT: detected, UD:
undetectable).

DT (S1) ⊇ DT (S2) ⊇ DT (S3) ⊇ DT (S4) (6.1)

UD(S1) ⊆ UD(S2) ⊆ UD(S3) ⊆ UD(S4) (6.2)

DT (S1) ⊇ DT (S5) (6.3)

UD(S1) ⊆ UD(S5) (6.4)

All these relationships were verified in both test cases by analyzing the detailed
fault lists for each of the observation solutions.

An additional experiment was performed in test case #2 trying to understand
how much the final fault coverage can be enhanced if a larger set of performance
counters is used. In this experiment, the data cache controller subset of signals
used as inputs by the performance counters module was observed during the whole
experiment. Denoting by S* this new observation mechanism, the following exten-
sions to the above inclusion relationships can be stated:

DT (S1) ⊇ DT (S∗) ⊇ DT (S5) (6.5)

UD(S1) ⊆ UD(S∗) ⊆ UD(S5) (6.6)

In other words, all the faults detected by S5 are also detected by S*, and this
remains true even if the internal design of the PerfCnt module is modified, as long
as it has the same inputs. So, the coverage obtained by solution S* is an upper
bound to the coverage that can be obtained with the same test program by any
design of the PerfCnt module with the same inputs. The results for test case #2
show that solution S* adds 511 new detected faults with respect to S4. Another
interesting result from this new fault simulation experiment is that, when observing

66

6.3. Analysis of the Results of Test Cases #1 and #2

the performance counters inputs, the set of undetectable faults is identical to the
one obtained with S1. This means that the same faults detected by S1 could be
potentially detected by adding new Performance Counters and devising a suitable
input sequence.

Finally, it is interesting to compare the coverage results of combining S4 and
S5 in both test cases. In the Branch Prediction Unit case there are two points to
highlight: S5 provides a very good coverage (92% of the coverage obtained by S1)
and the set of faults covered by S4 is completely included in the set of faults covered
by S5 as shown in Figure 6.6. This is explained because the misbehaviors produced
by the faults inside the Branch Prediction Unit naturally affect performance, and
modify the count of incorrectly predicted branches, but most of them do not affect
the result of calculations and therefore they do not affect the final signature value.

Figure 6.6: Branch Prediction Unit’s test case #1: sets of faults detected by the different
observation solutions.

On the other hand, for the Data Cache Controller test case, the performance
counters observation was introduced aiming to cover the faults that turn a hit into
a miss, or vice versa. The relatively low coverage obtained in solution S5 suggests
that, in the complete cache controller, an important amount of faults exist that
do not produce this kind of hit/miss permutation, and therefore modify neither
the count of AMBA bus transfers, nor the count of hits/misses. Fortunately,
these faults affect the processed results and can be exposed by a proper signature
as shown by S4. Interestingly, by exploiting contemporarily solutions S4 and S5
(rightmost column in Table 6.2), the obtained results are similar to those obtained
by observing the processor’s primary outputs as in one of the end-of-manufacturing
testing scenarios.

67

Chapter 6. Observation Techniques – Experimental Results

6.4 Test Case #3: Full MIPS-like processor
An additional test case was developed with the goal of evaluating how the

chosen observation mechanism solution differently affects each of the internal pro-
cessor modules. Also, the attention is focused on showing some figures to quan-
titatively assess their presence in the different parts of a pipelined CPU module.
The reported analysis can be precious for the test engineer to cleverly decide which
observation mechanisms have to be implemented, and for the designer of a CPU or
SoC to judge whether it is worth to add some special hardware to support SBST
code development.

The test case was initially developed to evaluate an existing observation solu-
tion based on debug interface observation and was later enriched with additional
observation methods. The preliminary results were presented together with the de-
bug interface observation solution in [27]. This observation solution consists of an
on-the-fly monitor developed by Boyang Du, which exploits the already introduced
ARM CoreSight Architecture [89] features that are available in the Zynq-7000 SoC
platform by Xilinx [90]. The monitor is implemented in the FPGA part of the Xil-
inx chip. It observes the output of CoreSight’s Trace Port Interface Unit (TPIU)
and produces a compressed signature of the branch execution trace; the signature
can be read at the end of the test program execution.

As a gate level model of the ARM hard core processor inside the Xilinx chip is
not publicly available, it is not possible to evaluate the fault coverage obtained by
such a scheme in the Zynq-700 SoC platform. To assess the effectiveness of this
observation method, the already presented MIPS-like processor was used in an
experimental setup identical to the one described in Test Case #1. As mentioned
above, the Debug Interface observation solution was first introduced for Test Case
#3. To do so, proper outputs were added to mimic the information available at the
Trace Port Interface Unit in the original CoreSight system in the Zynq-700 SoC
platform. Afterwards, the experiments for this observation solution were replicated
for Test Case #1.

6.4.1 System setup

As in the other test cases, Synopsys TetraMAX was used to perform the fault
simulation experiments to assess the fault coverage achievable with the different
observation mechanisms.

The main differences between Test Cases #3 and #1 are two. First, in Test
Case #3 the target faults are the stuck-at faults in the whole processor (268 424
faults), not only the faults inside the Branch Prediction module. Second, accord-
ingly a different test program was used.

The test program used in Test Case #3 was manually developed by a test
engineer knowing the netlist of the processor, targeting the maximization of the
stuck-at fault coverage for the whole processor when using processor level obser-

68

6.4. Test Case #3: Full MIPS-like processor

vation (S2). Some quick modifications were done to assure that the memory write
operations included in the test program are accessing RAM space and not ROM or
unused parts of the memory space, so that a proper comparison can be done with
the solution based on observing the final memory contents (S4). The test program
was written in assembly language. The size and duration of this test program are
1 576 bytes and 19 298 clock cycles, respectively.

The observation mechanisms were identical to the ones described in Test Case
#1. Solution S1 (module-level observation) is less meaningful in the present test
case due to the fact that the test program was developed to obtain a good coverage
in the whole processor, not only in the Branch Prediction Unit as was the case in
Test Case #1. The observation mechanisms were described in detail for Test Case
#1 and are summarized below for clarity.

• S1: module-level observation. Branch Prediction Unit outputs.

• S2/S3: processor/system bus observation. Identical in the present test case.

• S4: memory content observation. Memory content at the end of test.

• S5: performance counters observation. Branch prediction unit related per-
formance counters observed at the end of test.

• S5*: Timer. Test duration obtained by triggering a timer register at the end
of the test.

• S6: debug interface observation.

6.4.2 Results

Table 6.3 reports the number of detected (DT), possibly detected (PT), not
detected (ND) and undetectable (UD) faults (out of the total of 268 424 faults)
identified using each of the different observation mechanisms.

Table 6.3: Full MIPS-like processor test case: fault simulation results

S1 S2/S3 S4 S5 S5* S6
DT 48 964 240 471 231 895 46 688 46 089 49 161
PT 152 995 1 953 1 104 1 104 180
ND 216 879 24 529 32 147 218 203 218 802 216 654
UD 2 429 2 429 2 429 2 429 2 429 2 429

total 268 424 268 424 268 424 268 424 268 424 268 424
tc 18.41 % 90.40 % 87.18 % 17.55 % 17.33 % 18.48 %
fc 18.24 % 89.59 % 86.39 % 17.39 % 17.17 % 18.31 %

It is worth noting that a non-negligible percentage of the faults in the MIPS-
like processor (2 429 of 268 424 according to TetraMAX in the present work)

69

Chapter 6. Observation Techniques – Experimental Results

are undetectable, and thus never produce any misbehavior. A high percentage of
untestable faults (3 291 of 111 398) has also been reported by [17]. The table
presents both the Fault Coverage including all the faults (fc = detected faults / all
faults) and the Test Coverage that excludes the undetectable faults (tc = detected
faults / detectable faults).

The TetraMAX results presented in Table 6.3 also include some Possibly De-
tected (PT) faults. This kind of faults usually correspond to portions of the circuit
that for any reason produce unknown (X) values in the simulation results. Such
a fault will be activated or not, depending on the actual value taken by the node
during test execution. As this actual value is unknown at simulation time, the
fault is labeled as Possibly Detected. To consider the worst case, all the faults
labeled as PT will be considered as Not Detected when computing coverage or in
other words, using the TetraMAX terminology, the partial credit (percentage of
Possibly Detected faults assumed as Detected) will be set to 0.

The results in Table 6.3 show a very good performance of the Memory Content
observation method S4. Only about 3% of coverage reduction is produced when
changing from S3 (90.40 %) to S4 (87.18 %), showing that the test program was
able not only to propagate the fault effects up to the system bus, but also in most
of the cases to preserve this effect as a difference in the final memory content.
To compensate this coverage reduction, performance counter and debug interface
observation methods can be used.

Table 6.4 shows the coverage obtained when combining the memory content
observation solution (S4) with each of the solutions proposed here (S5, S5* and
S6). The most interesting result is that the addition of these solutions allow a
significant increase in the achievable Fault Coverage.

Table 6.4: Combining S4, S5, S5* and S6

S4 S4+S5 S4+S5* S4+S6 S4+S5+S5*+S6
DT 231 895 238 018 238 046 240 384 240 488

incr. - 6 123 6 151 8 489 8 593
tc 87.18 % 89.48 % 89.49 % 90.37 % 90.41 %
fc 86.39 % 88.67 % 88.68 % 89.55 % 89.59 %

For example, a significant amount (8 489) of the faults detected by S6 is pos-
sibly detected (880) or not detected (7 609) by S4. Hence, the total number of
faults combining the two mechanisms (reported in the S4+S6 column) is higher
than both of them, getting very close to what we can observe with processor-
level observation (S3), which is not usable in an in-field test scenario. This result
can be explained by recalling that the dbgm branch mechanism allows accessing
information about the internal behavior of the processor.

Similar results are obtained using any of the two performance counter based
solutions S5 and S5*. The observation solution based on counting incorrect branch
predictions (S5) provides 6 123 faults not detected by S4, most of them (5 061)

70

6.4. Test Case #3: Full MIPS-like processor

from inside the Branch Prediction Unit. The timer based observation solution
(S5*) adds 6 151 not detected by S4.

Figure 6.7: Full MIPS-like processor test case: sets of faults detected by the different obser-
vation methods.

The rightmost column in Table 6.4 presents the obtained coverage when com-
bining all the observation methods (S4, S5, S5* and S6). Note that the results
(240 488 faults detected, 90.41 % test coverage) are even better than the obtained
with System Bus observation (240 471 faults detected, 90.40 % test coverage).
This is explained because the proposed observation methods provide information
from internal signals, not available at the processor outputs. Figure 6.7 shows
the relation between the sets of faults detected by each method. The proposed
methods add a total of 8 593 faults not detected by Memory Content observation
(S4), 1 210 of which also escape to the System Bus observation method (S3).

Table 6.5: MIPS-like processor internal modules description

Faults [%] Description
u1 pf 2 244 0.84 Address calculation stage
u2 ei 1 876 0.70 Instruction extraction stage
u3 di 8 468 3.15 Instruction decoding stage
u4 ex 165 876 61.80 Execution stage
u5 mem 3 394 1.26 Memory access stage
u6 renvoi 3 964 1.48 Bypass unit
u7 banc 45 274 16.87 Register bank
u8 syscop 8 524 3.18 System coprocessor
u9 bus ctrl 1 422 0.53 Bus controller
u10 predict 27 354 10.19 Branch prediction
interconnect 28 0.01 Connections between modules

whole circuit 268 424 100.00

In order to better assess each observation method strengths and weaknesses,
the detection and coverage data was obtained for each internal module of the

71

Chapter 6. Observation Techniques – Experimental Results

MIPS-like processor. Table 6.5 lists the internal modules along with the amount
of possible stuck-at faults in the module. The execution stage is by far the biggest
module with about 60 % of the faults, followed by the register bank (a 32x32
register bank with two read and one write ports) with about 17 % and the Branch
prediction unit with 10 % of them.

In Table 6.6 the column labeled S2/S3 presents the fault coverage (detected
/ total module faults) obtained for each module using the Processor level obser-
vation method, i.e. the one for which the test program was originally developed.
This column shows that the test program best performances are obtained for the
Execution unit (97.11 %) and the Register bank (96.27 %). These are the bigger
modules and consequently have the bigger impact on the obtained overall cover-
age. On the other hand, the poorer performances are for the Address calculation
(51.34 %) and Memory access (53.42 %) stages and for the Branch prediction unit
(57.49 %), being the former the one that influences the most on overall coverage
due to its greater size.

Table 6.6: Fault coverage of the different internal modules

S2/S3 S4 S5 S5* S6
Faults fc [%] coverage relative to S3 [%]

u1 pf 2 244 51.34 36.8 70.2 70.1 99.0
u2 ei 1 876 72.87 88.3 85.8 85.5 96.1
u3 di 8 468 71.76 90.5 81.1 79.5 95.1
u4 ex 165 876 97.11 99.7 6.0 6.1 6.5
u5 mem 3 394 53.42 95.7 65.7 66.0 65.7
u6 renvoi 3 964 79.06 94.5 72.1 69.6 71.9
u7 banc 45 274 96.27 99.9 26.2 25.1 26.2
u8 syscop 8 524 63.96 100.0 1.0 1.0 1.0
u9 bus ctrl 1 422 75.67 72.7 41.8 43.0 44.1
u10 predict 27 354 57.49 61.3 93.4 93.4 95.8
interconnect 28 25.00 100.0 100.0 100.0 185.7
whole circuit 268 424 89.59 96.4 19.4 19.2 20.4

The next column labeled S4 presents the percentage of the faults detected by
S3 that are also detected by S4. Note that as stated in section 6.3 “Analysis of the
Results of Test Cases #1 and #2”, all the faults detected by S4 are also detected
by S3. This column shows that in the modules that are well covered by S3, like the
Execution stage and the Register bank, the Memory Content observation method
S4 covers almost all the faults covered by S3. It also covers the same faults covered
by S3 in the Coprocessor system and the connections between modules. However,
it has a poor performance in modules like the Address calculation stage (36.8 %
of the faults covered by S3), the Branch Prediction unit (61.3 %) and the Bus
controller unit (72.7 %).

The rightmost three columns in Table 6.6 present the coverage obtained by

72

6.4. Test Case #3: Full MIPS-like processor

Table 6.7: Fault coverage increment when adding other observation methods to Memory
content observation

S5 S5* S6 all S5 S5* S6 all
[# of faults] [% of module faults]

u1 pf 490 489 716 716 21.8 21.8 31.9 31.9
u2 ei 5 5 113 113 0.3 0.3 6.0 6.0
u3 di 255 250 1 113 1 117 3.0 3.0 13.1 13.2
u4 ex 126 176 860 936 0.1 0.1 0.5 0.6
u5 mem 15 19 16 20 0.4 0.6 0.5 0.6
u6 renvoi 165 139 159 165 4.2 3.5 4.0 4.2
u7 banc 0 0 39 39 0.0 0.0 0.1 0.1
u8 syscop 0 0 0 0 0.0 0.0 0.0 0.0
u9 bus ctrl 6 16 30 40 0.4 1.1 2.1 2.8
u10 predict 5 061 5 057 5 437 5 441 18.5 18.5 19.9 19.9
interconnect 0 0 6 6 0.0 0.0 21.4 21.4

whole circuit 6 123 6 151 8 489 8 593 2.3 2.3 3.2 3.2

S5, S5* and S6, also as a percentage of the faults detected by S3. But unlike the
case of S4, observation methods S5, S5* and S6 include signals not observed by S3
and hence they allow the detection of faults uncovered by S3. As a consequence
the figures in these three columns can be greater than 100 % as is the case in
interconnect row using observation method S6. The results show that these new
methods are complementary with S4 as they perform better than S4 in modules like
the Address calculation stage and the Branch prediction unit where S4 coverage
is bad.

Finally, Table 6.7 shows the coverage increment obtained by adding each of
S5, S5* and S6 to the Memory content observation method S4, detailed by mod-
ule. The coverage increments are presented both as the amount of faults and
as a percentage of the module faults. The rightmost column shows the coverage
increment when adding all the three methods. The main contributions to the cov-
erage enhancement come from the Branch Prediction unit, and from the Decode
instruction, Execution and Address calculation stages. A slightly better perfor-
mance is observed in S6 if compared with S5 and S5*, produced mainly by the
better performance in the instruction decoding and execution stages.

73

Chapter 6. Observation Techniques – Experimental Results

6.5 Some Lessons Learned

6.5.1 Setting the fault simulator observation times

The fault simulator used to assess the fault coverage in all of the three Test
Cases was TetraMAX by Synopsys. To run the fault simulation experiment the
simulator must be provided with a model of the system, the waveforms to be
applied to the primary inputs of the system and the list of the faults that are
to be simulated. It is also necessary to indicate which of the primary outputs of
the system must be observed to detect a difference between the normal and faulty
behavior of the system, and when must these indicated outputs be observed.

Regarding the last point (i.e. when to observe the outputs) the used simu-
lator accepts two options: either setting periodic observation, hence allowing to
emulate the observation of the outputs at each clock, or setting the observation
synchronized with the rising or falling edge of another signal. Configuration is
done through the set patterns command, using the parameter -strobe period to
set periodic observation (for example -strobe period { 200 ns }) or any of the pa-
rameters -strobe falling or -strobe rising to set observation synchronized with a
signal (for example -strobe falling write pulse signal). In both cases an offset can
be configured to delay the starting of the outputs observation using the parameter
-strobe offset (for example -strobe offset {3000000 ns}). The offset parameter can
be used to delay the outputs observation until the finalization of the test program
execution.

During the early stages of the work on observation techniques, It was assumed
that when using the -strobe variants of the command the calculation of the ob-
servation instants is performed independently during the simulation of each fault.
In other words, It was assumed that for each fault the edge position of the strobe
signal is determined according to the faulty behavior of the system affected by the
fault being simulated.

However, what the fault simulator does is to set the observation instants ac-
cording to the edge positions of the strobe signal in the fault free system, and
consequently uses the same observation instants for all the faults.

Following the incorrect assumption described above, we attempted to use the
strobe mechanism to observe the values written to memory by our system. This
was used to obtain an estimation of the signature of the values written to memory
for S4 observation method in Test Case #2, and in the observation method denoted
as mem in the preliminary results of Test Case #3 published in [27].

For Test Cases #1 and #3 the problem was fixed later by including the memory
into the system simulated by the fault simulator. In this way the final memory con-
tent can be observed as described in section 6.1“Test Case #1: Branch Prediction
Unit”.

In Test Case #2 this was not possible because of the bigger sizes of both the
memory and the whole system. Consequently the coverage values corresponding

74

6.5. Some Lessons Learned

to observation method S4 may be optimistic because in the presence of a fault
affecting the timing the data buses are sampled in the instant that the transfer
is done in the fault free system, instead of sampling it when the transfer is really
done in the system affected by the fault.

6.5.2 Some comments on migrating a test program from end-of-
manufacturing to in-field test scenario

The present section shows an example of the inconveniences that can happen
when porting a test program conceived for end-of-manufacturing test to an in-field
test scenario. The development of a test program requires an important effort from
a test engineer. Consequently, if a test program was already developed, there is a
strong pressure to adapt and reuse this existing program instead of developing a
totally new one. This is true even if the new scenario is not exactly the same for
which the test program was originally developed.

As already mentioned, this was the situation in the test program for Test Case
#3. It was developed for an end of manufacturing scenario, assuming full observ-
ability over all the processor outputs. When adapting it to be used in a memory
content observation solution, the test program was examined to identify all the
instructions that write information to memory. A total of about 50 memory store
instructions were identified. The target address in each one of these instructions
was modified to assure that it writes its data in a different address in RAM, thus
avoiding the attempt to write data to ROM or unused parts of the memory space,
and avoiding also overwriting the values written by another part of the program.
The coverage results of this initial version of the modified test program are shown
in Table 6.8

Table 6.8: Full MIPS-like processor test case: initial version of test program fault simulation
results

S2/S3 S4 S5 S5* S6
DT 240 111 107 229 47 475 47 019 49 232
PT 988 1 631 318 351 208
ND 24 896 157 135 218 202 218 625 216 555
UD 2 429 2 429 2 429 2 429 2 429

total 268 424 268 424 268 424 268 424 268 424
tc 90.27 40.31 17.85 17.68 18.51
fc 89.45 39.95 17.69 17.52 18.34

In contrast with Test Case #1, which aims to cover only the faults inside a
performance related module like the branch prediction unit, Test Case #3 targets
the whole processor. In those conditions, a coverage reduction so large, from about
90% to about 40% when moving from a processor-level (S3) to a memory content
observation solution (S4), was an unexpected result. A certain coverage reduction

75

Chapter 6. Observation Techniques – Experimental Results

is expected because performance faults are poorly covered by S4, but a reduction
of 50% would imply that about half of the faults are performance faults, i.e., they
affect only the performance and not the calculation results.

The main reason for the coverage reduction was a misunderstanding of the
test program behavior. Initially the fact that each store instruction can be exe-
cuted several times inside a loop was not considered. An execution trace showed
that a total of about 3500 store operations are performed during the whole test
program execution. But only the last write operation into each of the 50 different
memory addresses was affecting the final memory content, while the previous store
operations on the same address produce no effect.

In order to enhance S4 results the test program was modified again having in
mind that the intermediate results should modify the final memory content. Two
alternative modifications that keep the redesign effort in a moderate level were
evaluated preliminarily. One consists in using an internal register as a memory
pointer and incrementing it to assure that each new store operation targets a
different memory location, consequently requiring a larger RAM memory. The
other alternative consists in substituting each store instruction with a load-modify-
write sequence in order to produce a signature of the sequence of data written to
each address, but at the cost of a strong impact on test duration. The results
presented in the previous section correspond to the first of these two solutions
that was the one finally implemented, obtaining a much better test coverage of
about 87% (instead of about 40%) as seen in the previous section.

This example illustrates the kind of errors that can be made when migrating
to an in-field test scenario a test program originally developed to be applied at end
of manufacturing. It also shows the strong impact that these errors can produce
in the fault coverage obtained by the migrated test program.

76

Part IV

Conclusions

Chapter 7

Conclusions

7.1 Summary

The initial part of the present thesis explores fault tolerance techniques to
protect a computing system implemented on an FPGA against SEUs. The goal
here is to harden computing intensive applications executed by a commercial-off-
the-shelf processor implemented on SRAM-based FPGAs, as a way to enable its use
in safety-critical applications. Computing systems based in modern processor cores
synthesized on an FPGA have a series of advantages in terms of performance, cost
and flexibility if compared with radiation-hardened hardware. As a consequence
there is a strong pressure to enable the use of this kind of processors at least in
the less critical parts of systems that must operate in radiation environments.

An architecture is proposed based on replicating task execution two or more
times, assuring memory segregation between the different tasks by the use of a
memory protection unit. A watchdog is included to protect the system against
hang conditions and ad-hoc hardware can be added to accelerate the comparison
of the results of each replica.

A proof-of-concept implementation of the proposed architecture was developed
using the Altera NIOS-II as processor core, the Altera Memory Protection Unit IP
core for memory segregation and a standard timer core for the watchdog. Being
most of the cores already available and validated, the design effort is dramatically
reduced.

Fault injection experiments were conducted to validate the proposed architec-
ture. The results outline its fault tolerance effectiveness, and the overhead analysis
shows that it is effective in reducing the resource occupation when compared to
N-modular redundancy, at an affordable cost in terms of application execution
time. The analysis also allows for a good understanding of the system behavior in
the presence of faults, and of the effectiveness of some fault detection mechanisms
provided by the processor used.

Chapter 7. Conclusions

The main part of the present thesis deals with different ways to enhance the
effectiveness of in-field software-based self-tests. The first result presented in this
part consists in a method to detect stuck-at faults in the snooping protocol cache
coherence logic of a multi-core system. A test program was developed in order to
excite and expose any stuck-at fault both on the validity bit associated with each
cache block and on the comparators used by the snooping logic. The test program
runs concurrently in all the processor cores in a coordinated way. It is derived
from the functional specifications of the circuitry under evaluation only, and can
therefore be reused on any circuit implementing the same coherence protocol. In
order to practically validate the method and to better quantify its cost in terms of
memory occupation and execution time, some experimental results were gathered
using a multi-core system integrating a variable number of LEON3 cores. The
results show its cost in terms of execution time, which grows linearly (and slowly)
with the number of cores.

When adopting SBST for in-field test of a processor-based system, as it is often
required by standards and regulations for safety-critical applications, the achieved
fault coverage is often affected in a strong manner by observability issues. More in
detail, the fault coverage is affected by the limited ways that an in-field program
test has to observe the results and thus identify a difference between the faulty
and fault-free situations.

First, the different solutions that can be adopted to observe the results of a test
were presented, analyzing the inconveniences and advantages of each method. The
analyzed methods include some of the methods typically adopted for in-field and
end of manufacturing test and a set of methods proposed to enhance the detection
of performance faults.

Then, three test cases were developed to gather quantitative data about the
faults that can be detected using the different observation mechanisms. Two of the
test cases focus on the faults inside an internal module of the considered processor:
a Branch Prediction Unit in a MIPS-like processor-based system, and a Data Cache
Controller logic module in a dual-processor system based on the LEON3 processor.
The other test case considers the faults in the whole MIPS-like processor of the
first case. The test cases are on one hand simple enough to allow for an acceptable
experiment duration (several days in the more complex case) and on the other
hand complex enough to believe that the conclusions drawn are quite general.

Extensive fault coverage figures were obtained for the three test cases. Results
show that, as expected, fault coverage decreases with reduced observability. In
other words, when reusing the same test program originally developed for one
observation mechanism in a different one, the fault coverage may significantly
change.

More importantly, we experimentally demonstrated that a carefully devised
combination of observation mechanisms, based on checking the memory content
at the end of the test program execution and on the information coming from
the Performance Counters or the Debug Interface existing in many processors,

80

7.2. Main Contributions

allows to achieve a fault coverage figure not far from the maximum one. More
generally, a suitable set of Performance Counters or Debug information may allow
for achieving nearly the same fault coverage achieved when continuously observing
all the processor outputs, without significant extra costs for their detection.

The experimental results also show that, for a given test program, the proposed
observation methods that use Performance Counters or the debug infrastructure
provide a better coverage of the internal modules more likely to be affected by
performance faults. Meanwhile, the final memory content examination method
performs better in the other modules. This complementarity explains the good
results mentioned above.

A detailed description of several solutions to implement suitable fault simula-
tion campaigns able to gather the required experimental data is also provided.

Although all the experiments described in Part III “Functional test” refer to
the single stuck-at fault model, the approach followed in this thesis and the main
conclusions drawn also apply to other fault models, including the transition delay.

7.2 Main Contributions
In the present section a commented summary of the main contributions of the

thesis is presented.

7.2.1 Experimental validation of a time-redundancy fault toler-
ance mechanism

An experimental validation of the feasibility of achieving a safe system by
using a mix of already available IP cores, thus minimizing the development time,
was presented in chapter 2. The Altera NIOS-II [36] processor was used as the
processor core, and the Altera Memory Protection Unit IP core was used for
memory segregation. Being all the cores already available, the design effort is
limited to the integration with a custom watchdog timer and a DMA controller.
By exploiting already existing cores a robust system can be obtained, which can
be used with a number of different FPGAs supporting the same cores. As a result,
a general architecture is obtained which is highly portable and reusable.

7.2.2 A method to detect faults in the cache coherence logic of a
multi-core system

A method to detect faults in the cache coherence logic of a multi-core system
using a software based self test approach is presented in chapter 4. The cache
coherence logic presents difficulties when tested because it requires coordinated
actions from the different processors in a multiprocessor, shared memory system.

81

Chapter 7. Conclusions

The method proposed is based on a test program that runs concurrently and was
validated on a LEON3 multicore system.

7.2.3 A survey of test observation methods

A survey of the different solutions that can be adopted to observe the results of
functional tests and a discussion of the advantages and limitations of each of them
is presented in chapter 5. The focus is set on the in-field test of microprocessor
based systems. Usually in this scenario most of the observation methods used in
production test are not available, namely the methods associated with the use of
testers and DfT infrastructure.

The analyzed methods are: module-level, processor-level, system bus, memory
content, performance counters, and debug interface. This list includes the mem-
ory content observation at end of test, a method traditionally adopted for in-field
software-based self-test, and several methods targeted at obtaining a better cov-
erage of the performance faults. A few solutions that are hardly available in-field
are also analyzed to take them as a reference of what can be obtained with better
observability.

7.2.4 A set of experimental test cases

A set of test cases to quantitatively evaluate the benefits and cost of each of the
different observability solutions identified is presented in chapter 6. A comparison
of the fault coverage obtained using two different observation methods was already
presented in [71]. However, to the best of our knowledge, the present work and
its associated papers [26] [28] are the first report of extensive experimental results
to compare the fault coverage that can be achieved with the different observation
methods, giving a much wider panorama of the advantages and disadvantages
provided by the different solutions.

7.2.5 Use of a conventional fault simulator to assess the effective-
ness of in-field SBST

A detailed description of the use of a conventional fault simulator to compute
the fault coverage achieved by a software based self test is provided in chapter 6,
when describing the system setup of each one of the presented Test Cases. For
every observation solution considered, a fault simulation campaign was run in
order to determine whether a fault produces a difference in the observed out-
puts if compared with the fault free situation. In some cases, the introduction of
slight modifications to the system was necessary in order to mimic the observation
mechanism under analysis in the simulation environment of the commercial fault
simulator used.

82

7.3. Future Work

7.2.6 Examples of coverage variation when changing observation
environment

Examples were provided showing that the fault coverage obtained with a test
program developed for one observation method may significantly change when
reusing it with a different observation method. This is particularly relevant be-
cause, as the development of a test program requires an important effort from a
test engineer, there is a strong pressure to adapt and reuse an existing program,
instead of developing a totally new one. A common situation is trying to reuse
in-field —and consequently with reduced observability— a test program originally
developed for end of manufacturing test. As shown in all the test cases in chapter 6
a coverage reduction occurs because of the reduced observability. Also, as com-
mented in subsection 6.5.2, when porting the test program to the new environment
it is easy to make some mistakes that may dramatically affect fault coverage.

7.2.7 Performance fault oriented observation methods

Several observation methods were proposed that provide a good coverage of
performance faults, a class of faults that is poorly covered by the observation
method traditionally used for in-field test of microprocessor based systems. The
observation of several performance counters and debugging information was pro-
posed in chapter 6 as a way to catch the faults escaping the traditional mem-
ory content observation method and the effectiveness of the proposed methods
was evaluated by using fault simulation experiments. Also, most of the exam-
ples showed that a proper combination of these complementary methods allow for
achieving nearly the same fault coverage achieved when continuously observing all
the processor outputs, an observation method commonly used for production test
but usually not available in-field.

7.3 Future Work
A first point that seems attractive to analyze more in detail is related with the

compromise between computational cost and accuracy of the results when trying to
assess the effectiveness of functional tests using a fault simulator. Fault simulation
is a computing intensive process. In order to simulate the system behavior in the
presence of each fault and verify if a difference can be detected at the observed
outputs, the fault simulator must be provided with a model of the system under
analysis and the waveforms of the inputs applied to the system. Until recently,
fault simulators had limited capabilities to support behavioral simulation models,
and as a consequence very often the system must be modeled at the gate level.

In an attempt to reduce computation costs, there is a strong pressure to re-
duce the size of the fault simulated system. As a consequence, it is a common
practice to perform the fault simulation including only a small part of the system

83

Chapter 7. Conclusions

in the circuit provided to the fault simulator. For example in section 6.2 “Test
Case #2: Data Cache Controller”, when evaluating the module level observation
solution (Solution S1), the top module in the fault simulation experiments was
only the data cache controller module in one of the processors. The waveforms
of the applied inputs and expected outputs were previously obtained by means of
a fault free simulation of the whole system, including the two processors in the
system and the program and data memories. When doing so, some feedback loops
between the outputs and the inputs of the simulated system may be suppressed,
and consequently the simulation of the faulty system may not accurately reproduce
the behavior of the complete system.

A relevant subject is to determine in which conditions this kind of simplifica-
tions can be done without affecting the fault coverage assessment. Also, in the
cases when the evaluated fault coverage is modified it would be useful to know
if the effect of the simplification is an increase or a decrease of the value of the
coverage estimation. During the work in the thesis valuable experience has been
gained, but still some work must be done to formulate the ideas correctly. With
some modifications, the system setup used in chapter 6 can be used to validate
these ideas and to obtain examples of interest.

A second aspect to consider for future activities is related to the usability
of the proposed observation methods in the presence of external conditions that
cannot be controlled by the test program. For example, in all the examples we
have assumed that all the processors and peripherals use the same clock or are
perfectly synchronized, and that there are no external interrupts. Most of the
proposed performance counters (timer, number of bus accesses, number of cache
hots or misses) may be affected by these external factors. In some situations some
of these factors may be controlled or their effects may be filtered out. It is of
interest to give a closer view of how the different proposed observation methods
are affected by these external factors, or how easily these external factors can be
avoided or filtered out. The different sensitivity to these external factors between
the different observation methods can be a determinant factor when choosing which
one to use.

7.4 Publication List
The following list enumerates the papers directly related with the thesis work.

In [27], Boyang Du presents a harness to exploit the debugging infrastructure
provided by ARM processors to observe the results of in-field Software-Based Self-
Test. My role in this paper was to mimic the same functionality on a miniMIPS
based system and to perform fault simulation experiments to obtain quantitative
fault coverage figures to validate the proposed approach. In all the other papers
the main contributions are part of my work on the present thesis.

• J. Perez Acle, M. Sonza Reorda, and M. Violante, ”Implementing a safe

84

7.4. Publication List

embedded computing system in SRAM-based FPGAs using IP cores: A case
study based on the Altera NIOS-II soft processor,” in 2011 IEEE Second
Latin American Symposium on Circuits and Systems (LASCAS), 2011, pp.
1-5 [24].

• J. Pérez Acle, R. Cantoro, E. Sanchez, and M. Sonza Reorda, ”On the Func-
tional Test of the Cache Coherency Logic in Multi-core Systems,” in 2015
IEEE VI Latin American Symposium on Circuits and Systems (LASCAS),
2015, pp. 2-5 [25].

• B. Du, E. Sanchez, M. Sonza Reorda, J. Perez Acle, and A. Tsertov, ”FPGA-
controlled PCBA power-on self-test using processor’s debug features,” in
2016 IEEE 19th International Symposium on Design and Diagnostics of
Electronic Circuits & Systems (DDECS), 2016, pp. 1-6 [27].

• J. Perez Acle, R. Cantoro, A. T. Hailemichael, E. Sanchez, and M. Sonza Re-
orda, ”Observability solutions for in-field functional test of processor-based
systems,” in 2015 XXX Conference on Design of Circuits and Integrated
Systems (DCIS), 2015, p. 6 [26].

• J. Perez Acle, R. Cantoro, E. Sanchez, M. Sonza Reorda, and G. Squillero,
”Observability solutions for in-field functional test of processor-based sys-
tems: a survey and quantitative test case evaluation,” Microprocess. Mi-
crosyst., vol. 47, no. Part B, pp. 392-403, 2016 [28].

• J. Perez Acle, E. Sanchez, and M. Sonza Reorda, ”About Performance Faults
in Microprocessor Core in-field Testing,” accepted in 10th IEEE Latin Amer-
ican Symposium on Circuits and Systems (LASCAS), 2019, p. 4.

A paper on closely related subjects presented results of the master thesis of
Jorge Barboza, tutored by the author of the present thesis [91].

• J. Barboza, J. Basualdo, and J. Perez Acle, ”Auxiliary IP blocks for early
dependability analysis of small processor based systems,” in 2016 17th Latin-
American Test Symposium (LATS), 2016, pp. 21-26 [91].

85

Esta página ha sido intencionalmente dejada en blanco.

Bibliography

[1] International Electrotechnical Commission (IEC), “IEC 61508 : Functional
safety of electrical/electronic/ programmable electronic safety-related sys-
tems,” 2010.

[2] International Organization for Standardization, “26262: Road vehicles - Func-
tional safety,” 2011.

[3] RTCA SC-180, “Design assurance guidance for airborne electronic hardware,”
DO-254, 2000.

[4] M. Psarakis, D. Gizopoulos, E. Sanchez, and M. Sonza Reorda, “Microproces-
sor Software-Based Self-Testing,” IEEE Des. Test Comput., vol. 27, pp. 4–19,
may 2010.

[5] J. Shen and J. A. Abraham, “Synthesis of Native Mode Self-Test Programs,”
J. Electron. Test., vol. 13, no. 2, pp. 137–148, 1998.

[6] P. Bernardi, M. Bonazza, E. Sanchez, M. Sonza Reorda, and O. Ballan,
“On-Line Functionally Untestable Fault Identification in Embedded Processor
Cores,” in Des. Autom. Test Eur. Conf. Exhib. (DATE), 2013, (New Jersey),
pp. 1462–1467, IEEE Conference Publications, 2013.

[7] “Microcontroller self-test libraries (Safety Libs).”

[8] “Guidelines for obtaining IEC 60335 Class B certification for any STM32
application. Application note AN3307,” Tech. Rep. April, STMicroelectronics,
2013.

[9] “Cypress AN204377. FM3 and FM4 Family, IEC61508 SIL2 Self-Test Li-
brary,” tech. rep., Cypress, 2014.

[10] “Renesas. Software add-ons.”

[11] “Microchip. 16-bit CPU Self-Test Library User ’ s Guide,” tech. rep., Mi-
crochip, 2012.

[12] “arm Developer. Functional safety.”

Bibliography

[13] W. Perez, D. Ravotto, E. Sanchez, M. Sonza Reorda, and A. Tonda, “On the
generation of functional test programs for the cache replacement logic,” in
Proc. Asian Test Symp., pp. 418–423, 2009.

[14] E. Sanchez and M. Sonza Reorda, “On the Functional Test of Branch Predic-
tion Units,” IEEE Trans. Very Large Scale Integr. Syst., vol. 23, pp. 1675–
1688, sep 2015.

[15] N. Karimi, M. Maniatakos, C. Tirumurti, and Y. Makris, “On the impact of
performance faults in modern microprocessors,” in J. Electron. Test. Theory
Appl., vol. 29, pp. 351–366, 2013.

[16] M. Hatzimihail, M. Psarakis, D. Gizopoulos, and A. Paschalis, “A method-
ology for detecting performance faults in microprocessors via performance
monitoring hardware,” in 2007 IEEE Int. Test Conf., pp. 1–10, IEEE, 2007.

[17] A. Riefert, R. Cantoro, M. Sauer, M. Sonza Reorda, and B. Becker, “On the
Automatic Generation of SBST Test Programs for In-Field Test,” in 2015
Des. Autom. Test Eur. Conf. Exhib., (Grenoble), pp. 1186–1191, 2015.

[18] J. Pérez Acle, “Prototipado en FPGAs para inyección de fallas. Aplicación a
sistemas distribuidos sobre bus CAN,” Master’s thesis, Facultad de Ingenieŕıa,
Universidad de la República, 2005.

[19] J. Perez Acle, M. Sonza Reorda, and M. Violante, “Dependability analysis of
CAN networks: an emulation-based approach,” Proceedings. 18th IEEE Int.
Symp. Defect Fault Toler. VLSI Syst., pp. 537–544, 2003.

[20] J. Perez Acle, M. Sonza Reorda, and M. Violante, “Accurate dependability
analysis of CAN-based networked systems,” in 16th Symp. Integr. Circuits
Syst. Des. 2003. SBCCI 2003. Proceedings., pp. 337–342, IEEE Comput. Soc,
2003.

[21] F. Corno, J. Perez Acle, M. Ramasso, M. Sonza Reorda, and M. Violante,
“Validation of the dependability of CAN-based networked systems,” in Pro-
ceedings. Ninth IEEE Int. High-Level Des. Valid. Test Work. (IEEE Cat.
No.04EX940), pp. 161–164, IEEE, 2004.

[22] F. Corno, J. Pérez Acle, M. Sonza Reorda, and M. Violante, “A multi-level
approach to the dependability analysis of networked systems based on the
CAN protocol,” in SBCCI 2004. 17th Symp. Integr. Circuits Syst. Des. (IEEE
Cat. No.04TH8784), pp. 71–75, 2004.

[23] J. Perez Acle, M. Sonza Reorda, and M. Violante, “Early, accurate depend-
ability analysis of CAN-based networked systems,” IEEE Des. Test Comput.,
vol. 23, pp. 38–45, jan 2006.

[24] J. Perez Acle, M. Sonza Reorda, and M. Violante, “Implementing a safe
embedded computing system in SRAM-based FPGAs using IP cores: A case

88

Bibliography

study based on the Altera NIOS-II soft processor,” in 2011 IEEE Second Lat.
Am. Symp. Circuits Syst., (Bogotá, Colombia), pp. 1–5, IEEE, feb 2011.

[25] J. Perez Acle, R. Cantoro, E. Sanchez, and M. Sonza Reorda, “On the func-
tional test of the cache coherency logic in multi-core systems,” in 2015 IEEE
6th Lat. Am. Symp. Circuits Syst., pp. 1–4, IEEE, feb 2015.

[26] J. Pérez Acle, R. Cantoro, A. T. Hailemichael, E. Sanchez, and M. Sonza
Reorda, “Observability solutions for in-field functional test of processor-based
systems,” in 2015 XXX Conf. Des. Circuits Integr. Syst., (Estoril), p. 6, IEEE,
2015.

[27] B. Du, E. Sanchez, M. Sonza Reorda, J. Perez Acle, and A. Tsertov, “FPGA-
controlled PCBA power-on self-test using processor’s debug features,” in 2016
IEEE 19th Int. Symp. Des. Diagnostics Electron. Circuits Syst., pp. 1–6,
IEEE, apr 2016.

[28] J. Perez Acle, R. Cantoro, E. Sanchez, M. Sonza Reorda, and G. Squillero,
“Observability solutions for in-field functional test of processor-based systems:
a survey and quantitative test case evaluation,” Microprocess. Microsyst.,
vol. 47, no. Part B, pp. 392–403, 2016.

[29] J. Perez Acle, E. Sanchez, and M. Sonza Reorda, “About Performance Faults
in Microprocessor Core in-field Testing,” in 10th IEEE Lat. Am. Symp. Cir-
cuits Syst. (IEEE, ed.), (Armenia, Quind́ıo, Colombia), p. 4, IEEE, feb 2019.

[30] M. Ceschia, M. Violante, M. Sonza Reorda, A. Paccagnella, P. Bernardi,
M. Rebaudengo, D. Bortolato, M. Bellato, P. Zambolin, and A. Candelori,
“Identification and classification of single-event upsets in the configuration
memory of sram-based fpgas,” IEEE Trans. Nucl. Sci., vol. 50, pp. 2088–
2094, dec 2003.

[31] J. Heiner, B. Sellers, M. Wirthlin, and J. Kalb, “FPGA partial reconfigura-
tion via configuration scrubbing,” in 2009 Int. Conf. F. Program. Log. Appl.,
pp. 99–104, IEEE, aug 2009.

[32] D. K. Pradhan, Fault-tolerant computer system design. Prentice-Hall, Inc.,
feb 1996.

[33] “Xilinx TMRTool.”

[34] M. Sonza Reorda, M. Violante, C. Meinhardt, and R. Reis, “A low-cost SEE
mitigation solution for soft-processors embedded in Systems on Pogrammable
Chips,” in 2009 Des. Autom. Test Eur. Conf. Exhib., pp. 352–357, IEEE, apr
2009.

[35] M. Pignol, “DMT and DT2: Two Fault-Tolerant Architectures developed
by CNES for COTs-based Spacecraft Supercomputers,” in 12th IEEE Int.
On-Line Test. Symp., pp. 203–212, IEEE, 2006.

89

Bibliography

[36] “Altera Corporation - NIOS-II Processor Reference Manual,” tech. rep., Al-
tera Corporation, San Jose, CA, USA, 2009.

[37] N. Foutris, D. Gizopoulos, J. Kalamatianos, and V. Sridharan, “Measuring
the performance impact of permanent faults in modern microprocessor archi-
tectures,” in 2013 IEEE 19th Int. On-Line Test. Symp., pp. 181–184, IEEE,
jul 2013.

[38] L. Chen and S. Dey, “Software-based self-testing methodology for proces-
sor cores,” IEEE Trans. Comput. Des. Integr. Circuits Syst., vol. 20, no. 3,
pp. 369–380, 2001.

[39] J. Jian Shen and J. Abraham, “Native mode functional test generation for
processors with applications to self test and design validation,” in Proc. Int.
Test Conf. 1998 (IEEE Cat. No.98CH36270), pp. 990–999, Int. Test Confer-
ence, 1998.

[40] S. M. Thatte and J. A. Abraham, “Test Generation for Microprocessors,”
IEEE Trans. Comput., vol. C-29, pp. 429–441, jun 1980.

[41] P. Parvathala, K. Maneparambil, and W. Lindsay, “FRITS - a microprocessor
functional BIST method,” in Proceedings. Int. Test Conf., pp. 590–598, IEEE,
2002.

[42] L. Fournier, Y. Arbetman, and M. Levinger, “Functional verification method-
ology for microprocessors using the Genesys test-program generator. Applica-
tion to the x86 microprocessors family,” in Proc. -Design, Autom. Test Eur.
DATE, pp. 434–441, 1999.

[43] S. Gurumurthy, M. Pratapgarhwala, C. Gilgan, and J. Rearick, “Comparing
the effectiveness of cache-resident tests against cycleaccurate deterministic
functional patterns,” in 2014 Int. Test Conf., pp. 1–8, IEEE, oct 2014.

[44] G. Theodorou, S. Chatzopoulos, N. Kranitis, A. Paschalis, and D. Gizopoulos,
“A Software-Based Self-Test methodology for on-line testing of data TLBs,”
in Proc. - 2012 17th IEEE Eur. Test Symp. ETS 2012, 2012.

[45] N. Kranitis, A. Paschalis, D. Gizopoulos, and G. Xenoulis, “Software-
Based Self-Testing of Embedded Processors,” IEEE Trans. Comput., vol. 54,
pp. 461–475, apr 2005.

[46] F. Corno, E. Sanchez, M. Sonza Reorda, and G. Squillero, “Automatic test
program generation: a case study,” IEEE Des. Test Comput., vol. 21, no. 2,
pp. 102–109, 2004.

[47] L. C. L. Chen and S. Dey, “Software-based diagnosis for processors,” Proc.
2002 Des. Autom. Conf. (IEEE Cat. No.02CH37324), 2002.

90

Bibliography

[48] D. Appello, P. Bernardi, M. Grosso, E. Sanchez, and M. Sonza Reorda, “Ef-
fective diagnostic pattern generation strategy for transition-delay faults in
full-scan SOCs,” IEEE Trans. Very Large Scale Integr. Syst., vol. 17, no. 11,
pp. 1654–1659, 2009.

[49] A. Paschalis and D. Gizopoulos, “Effective software-based self-test strategies
for on-line periodic testing of embedded processors,” in Proc. - Des. Autom.
Test Eur. Conf. Exhib., vol. 1, pp. 578–583, 2004.

[50] A. Apostolakis, D. Gizopoulos, M. Psarakis, D. Ravotto, and M. Sonza Re-
orda, “Test Program Generation for Communication Peripherals in Processor-
Based SoC Devices,” IEEE Des. Test Comput., vol. 26, pp. 52–63, mar 2009.

[51] P. Bernardi, L. Ciganda, M. Sonza Reorda, and S. Hamdioui, “An Efficient
Method for the Test of Embedded Memory Cores during the Operational
Phase,” in 2013 22nd Asian Test Symp., pp. 227–232, IEEE, nov 2013.

[52] M. Karpovsky and V. Yarmolik, “Transparent memory BIST,” in Proc. IEEE
Int. Work. Mem. Technol. Des. Test, pp. 106–111, IEEE Comput. Soc. Press,
1994.

[53] S. Di Carlo, P. Prinetto, and A. Savino, “Software-Based Self-Test of Set-
Associative Cache Memories,” IEEE Trans. Comput., vol. 60, pp. 1030–1044,
jul 2011.

[54] J. Sosnowski, “Improving Software Based Self - Testing for Cache Memories,”
in 2007 2nd Int. Des. Test Work., pp. 49–54, IEEE, dec 2007.

[55] M. A. Skitsas, C. A. Nicopoulos, and M. K. Michael, “DaemonGuard:
Enabling O/S-Orchestrated Fine-Grained Software-Based Selective-Testing
in Multi-/Many-Core Microprocessors,” IEEE Trans. Comput., vol. 65,
pp. 1453–1466, may 2016.

[56] J. Sosnowski, “Software-based self-testing of microprocessors,” J. Syst. Ar-
chit., vol. 52, no. 5, pp. 257–271, 2006.

[57] M. Riga, E. Sanchez, and M. Sonza Reorda, “On the functional test of L2
caches,” in 2012 IEEE 18th Int. On-Line Test. Symp., pp. 84–90, IEEE, jun
2012.

[58] W. J. Perez H., J. V. Medina, D. Ravotto, E. Sanchez, and M. Sonza Reorda,
“Software-Based Self-Test Strategy for Data Cache Memories Embedded in
SoCs,” in 2008 11th IEEE Work. Des. Diagnostics Electron. Circuits Syst.,
pp. 1–6, IEEE, apr 2008.

[59] G. Theodorou, N. Kranitis, A. Paschalis, and D. Gizopoulos, “Software-Based
Self-Test for Small Caches in Microprocessors,” IEEE Trans. Comput. Des.
Integr. Circuits Syst., vol. 33, pp. 1991–2004, dec 2014.

91

Bibliography

[60] B. O’Krafka, S. Mandyam, J. Kreulen, R. Raghavan, A. Saha, and N. Malik,
“MPTG: a portable test generator for cache-coherent multiprocessors,” in
Proc. Int. Phoenix Conf. Comput. Commun., pp. 38–44, IEEE, 1995.

[61] X. Quin and P. Mishra, “Automated generation of directed tests for transition
coverage in cache coherence protocols,” in 2012 Des. Autom. Test Eur. Conf.
Exhib., pp. 3–8, IEEE, mar 2012.

[62] E. Sanchez and M. Sonza Reorda, “On the functional test of MESI con-
trollers,” in 2011 12th Lat. Am. Test Work., pp. 1–6, IEEE, mar 2011.

[63] M. L. Bushnell and V. D. Agrawal, Essentials of electronic testing for dig-
ital, memory, and mixed-signal VLSI circuits. Boston: Kluwer Academic
Publishers,, 2000.

[64] CobhamGaisler, “LEON3 Processor.”

[65] J. L. Hennessy and D. A. Patterson, Computer architecture: a quantitative
approach. Elsevier Inc., 5th ed., 2012.

[66] H. Grigoryan, G. Harutyunyan, S. Shoukourian, V. Vardanian, and Y. Zorian,
“Generic BIST architecture for testing of content addressable memories,” in
2011 IEEE 17th Int. On-Line Test. Symp., pp. 86–91, IEEE, jul 2011.

[67] T.-Y. Hsieh, M. A. Breuer, M. Annavaram, S. K. Gupta, and K.-J. Lee,
“Tolerance of performance degrading faults for effective yield improvement,”
in 2009 Int. Test Conf., pp. 1–10, IEEE, nov 2009.

[68] Intel Corporation, “Intel(R) 64 and IA-32 Architectures Software Developer’s
Manual, Combined Volumes,” 2011.

[69] M. Grosso, M. Sonza Reorda, M. Portela-Garcia, M. Garcia-Valderas,
C. Lopez-Ongil, and L. Entrena, “An on-line fault detection technique based
on embedded debug features,” in 2010 IEEE 16th Int. On-Line Test. Symp.,
pp. 167–172, IEEE, jul 2010.

[70] W. Perez, J. Velasco, D. Ravotto, E. Sanchez, and M. Sonza Reorda, “A
Hybrid Approach to the Test of Cache Memory Controllers Embedded in
SoCs,” in 2008 14th IEEE Int. On-Line Test. Symp., pp. 143–148, IEEE, jul
2008.

[71] T.-H. Lu, C.-H. Chen, and K.-J. Lee, “Effective Hybrid Test Program Devel-
opment for Software-Based Self-Testing of Pipeline Processor Cores,” IEEE
Trans. Very Large Scale Integr. Syst., vol. 19, pp. 516–520, mar 2011.

[72] FreescaleSemiconductor, “Freescale Semiconductor - e200z4 Power Architec-
ture TM Core Reference Manual,” tech. rep., Freescale Semiconductor, 2009.

[73] “AMBA TM AHB Trace Macrocell (HTM) Technical Reference Manual,”
tech. rep., ARM Limited, 2008.

92

Bibliography

[74] P. Bernardi, M. Grosso, M. Rebaudengo, and M. Reorda, “Exploiting an I-IP
for both Test and Silicon Debug of Microprocessor Cores,” in 2005 Sixth Int.
Work. Microprocess. Test Verif., pp. 55–62, IEEE, nov 2005.

[75] P. Bernardi, L. Ciganda, M. de Carvalho, M. Grosso, J. Lagos-Benites,
E. Sanchez, M. Sonza Reorda, and O. Ballan, “On-line software-based self-
test of the Address Calculation Unit in RISC processors,” in 2012 17TH IEEE
Eur. TEST Symp., pp. 1–6, IEEE, may 2012.

[76] G. Theodorou, N. Kranitis, A. Paschalis, and D. Gizopoulos, “Software-Based
Self Test Methodology for On-Line Testing of L1 Caches in Multithreaded
Multicore Architectures,” IEEE Trans. Very Large Scale Integr. Syst., vol. 21,
pp. 786–790, apr 2013.

[77] W. Lindsay, E. Sanchez, M. Sonza Reorda, and G. Squillero, “Automatic test
programs generation driven by internal performance counters,” in Fifth Int.
Work. Microprocess. Test Verif., pp. 8–13, IEEE Comput. Soc, 2004.

[78] H. O’Keeffe, “IEEE-ISTO 5001 TM-1999, The Nexus 5001 Forum TM Stan-
dard providing the Gateway to the Embedded Systems of the Future,” Tech.
Rep. January, Ashling Microsystems Ltd., 2000.

[79] N. Stollon, On-Chip Instrumentation Design and Debug for Systems on Chip,
vol. 53. Springer, 2013.

[80] “ARM CoreSight Debug and Trace.”

[81] A. Jutman, S. Devadze, I. Aleksejev, and T. Wenzel, “Embedded synthetic
instruments for Board-Level testing,” in 2012 17TH IEEE Eur. TEST Symp.,
pp. 1–1, IEEE, may 2012.

[82] I. Aleksejev, A. Jutman, S. Devadze, S. Odintsov, and T. Wenzel, “FPGA-
based synthetic instrumentation for board test,” in 2012 IEEE Int. Test Conf.,
pp. 1–10, IEEE, nov 2012.

[83] B. Du, M. Sonza Reorda, L. Sterpone, L. Parra, M. Portela-Garcia, A. Lin-
doso, and L. Entrena, “Online Test of Control Flow Errors: A New Debug
Interface-Based Approach,” IEEE Trans. Comput., vol. 65, pp. 1846–1855,
jun 2016.

[84] ARM Corporation, “ARM CoreSight Program Flow Trace (PFTv1.0 and
PFTv1.1) - Architecture Specification.”

[85] “CoreSight Technical Introduction A quickstart for designers,” Tech. Rep.
August, ARM Limited, 2013.

[86] “miniMIPS.”

[87] J. Gaisler, E. Catovic, M. Isomaki, K. Glembo, and S. Habinc, “GRLIB IP
core user’s manual. Version 1.3.7 - B4144,” tech. rep., Gaisler research, 2014.

93

Bibliography

[88] R. Goldman, K. Bartleson, T. Wood, K. Kranen, C. Cao, V. Melikyan, and
G. Markosyan, “Synopsys’ open educational design kit: Capabilities, deploy-
ment and future,” in 2009 IEEE Int. Conf. Microelectron. Syst. Educ., pp. 20–
24, IEEE, jul 2009.

[89] “ARM CoreSight Architecture Specification.” 2013.

[90] Xilinx, “Zynq-7000 All Programmable SoC Technical Reference Manual,”
tech. rep., Xilinx, 2015.

[91] J. Barboza, J. Basualdo, and J. Pérez Acle, “Auxiliary IP blocks for early
dependability analysis of small processor based systems,” in 2016 17th Latin-
American Test Symp. (IEEE, ed.), (Foz do Iguacu), pp. 21–26, IEEE, apr
2016.

94

Glossary

DUT Device Under Test

SBST Software-Based Self-Test

DfT Design for Testability

SoC System-on-Chip

ATE automatic test equipment

STL Self-Test Library

IP Intelectual Property

BPU Branch Prediction Unit

MIPS Microprocessor without Interlocked Pipeline Stages

FPGA Field Programmable Gate Array

ASIC Application Specific Integrated Circuit

SRAM Static Random Access Memory

SEU Single Event Upset

SEFI Single Event Functional Interruption

TMR Triple Modular Redundancy

DMT Duplex Multiplexed in Time

MPU Memory Protection Unit

EDAC Error Detection and Correction

RTL Register Transfer Level

ISA Instruction Set Architecture

BIST Built-In Self-Test

Bibliography

MESI Modified-Exclusive-Shared-Invalid (MESI), a cache coherence protocol

CCL Cache Coherence Logic

VB Validity Bit

MISR multiple-input signature register

ARM ARM, previously Advanced RISC Machine, originally Acorn RISC Ma-
chine

SPARC Scalable Processor Architecture SPARC

PeC Performance Counter

MMU Memory Management Units

TLB Translation Lookaside Buffer

DAP Debug Access Port

DP Debug Port

AP Access Port

APB ARM Peripheral Bus

AHB Advanced High-performance Bus

AXI Advanced eXtensible Interface

ATB AMBA trace bus

PTM Program Trace Macrocell

ETM Embedded Trace Macrocell

ITM Instrumentation Trace Macrocell

STM System Trace Macrocell

HTM AHB Trace Macrocell

FTM Fabric Trace Monitor

ETB Embedded Trace Buffer

TPIU Trace Port Interface Unit

VHDL VHSIC (Very High Speed Integrated Circuit) Hardware Description Lan-
guage

BTB Branch Target Buffer

VCD Value Change Dump

96

Bibliography

AMBA Advanced Microcontroller Bus Architecture

SMP Symmetric Multi-Processor

GPIO General Purpose Input Output

UD Undetectable

ND Not Detected

DT Detected

PT Possibly Detected

fc Fault Coverage

tc Test Coverage

DMA Direct Memory Access

e.g. short for the Latin phrase exempli gratia, which means for example

i.e. short for the Latin id est, which means that is, namely, or in other words

97

Esta página ha sido intencionalmente dejada en blanco.

List of Tables

2.1 Resource occupation . 18

2.2 Clasification of fault effects . 21

6.1 BPU’s test case: fault simulation results 58

6.2 Data Cache Controller’s test case: fault simulation results 63

6.3 Full MIPS-like processor test case: fault simulation results 69

6.4 Combining S4, S5, S5* and S6 . 70

6.5 MIPS-like processor internal modules description 71

6.6 Fault coverage of the different internal modules 72

6.7 Fault coverage increment when adding other observation methods
to Memory content observation . 73

6.8 Full MIPS-like processor test case: initial version of test program
fault simulation results . 75

Esta página ha sido intencionalmente dejada en blanco.

List of Figures

2.1 Sequence of operations. 16

4.1 Comparator schema and test patterns. 37

4.2 Test programs execution time (clock cycles) vs. number of cores. . 40

5.1 Generic system under test: the observation points adopted by the
first four of the techniques described in the text are highlighted. . 44

5.2 Example CoreSight system (source [85]). 50

6.1 Branch Prediction unit and related pipeline stages of the MIPS-like
processor. 54

6.2 MIPS-like processor external interface. 55

6.3 BPU’s test case: experimental environment and considered obser-
vation solutions. 56

6.4 Data Cache Controller test case: dual-core system under test and
considered observation solutions. 61

6.5 Data Cache Controller’s test case: sets of faults detected by the
different observation solutions. 65

6.6 Branch Prediction Unit’s test case #1: sets of faults detected by
the different observation solutions. 67

6.7 Full MIPS-like processor test case: sets of faults detected by the
different observation methods. 71

Esta es la última página.
Compilado el Monday 5 August, 2019.

http://iie.fing.edu.uy/

http://iie.fing.edu.uy/

	Abstract
	Resumen
	I Introduction
	Introduction
	Motivation
	Thesis contributions
	Chronology
	Thesis organization

	II Fault tolerance – Time redundancy
	Time redundancy fault tolerance
	Introduction
	Adopted architecture
	Overview
	Implementation

	Experimental results
	Chapter conclusions

	III Functional test
	Background on Software-Based Self-Test
	Functional Test of the Cache Coherency Logic in Multi-core Systems
	Introduction
	Background
	Proposed approach
	Excitation phase
	Observation phase
	Analytical performance analysis
	Optimizing the test in multiple-core systems

	Experimental results
	Chapter conclusions

	Observation Techniques – Survey
	Module-Level Observation
	Processor-Level Observation
	System Bus Observation
	Memory Content Observation
	Performance Counters Observation
	Debug Interface Observation

	Observation Techniques – Experimental Results
	Test Case #1: Branch Prediction Unit
	System setup
	Results

	Test Case #2: Data Cache Controller
	System setup
	Results

	Analysis of the Results of Test Cases #1 and #2
	Test Case #3: Full MIPS-like processor
	System setup
	Results

	Some Lessons Learned
	Setting the fault simulator observation times
	Some comments on migrating a test program from end-of-manufacturing to in-field test scenario

	IV Conclusions
	Conclusions
	Summary
	Main Contributions
	Experimental validation of a time-redundancy fault tolerance mechanism
	A method to detect faults in the cache coherence logic of a multi-core system
	A survey of test observation methods
	A set of experimental test cases
	Use of a conventional fault simulator to assess the effectiveness of in-field SBST
	Examples of coverage variation when changing observation environment
	Performance fault oriented observation methods

	Future Work
	Publication List

	Back Matter
	Bibliography
	Glossary
	List of tables
	List of figures

