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Abstract

In the last decade we have seen a significant growth of research and potential appli-
cations of electronic circuits that interact with the nervous system, in a wide range
of applications, from basic neuroscience research to medical clinic, or from the en-
tertainment industry to transport services. The real time acquisition and analysis of
brain signals, either through wearable electroencephalography (EEG) or invasive or
implantable recordings, in order to perform actions (brain machine interface) or to
understand aspects of brain operation, has become scientifically and technologically
feasible.

This thesis aims to support neural recording applications with low noise, current-
efficiency and high common-mode rejection ratio (CMRR) as main features of the
recording system. One emblematic example of these applications in the neuroscience
domain is the weakly electric fish neural activity recording, where the interference
produced by the discharge of the fish electric organ is a key factor. Another exam-
ple, from the implantable devices domain, is the nerve activity recorded with cuff
electrodes, where the desired signal is interfered by electromyographic potentials gen-
erated by muscles near the cuff. In these cases, the amplitude of the interfering signals,
which mainly appear in common mode, is several orders of magnitude higher than the
amplitude of the signals of interest.

Therefore, this thesis introduces a novel integrated neural preamplifier architecture
targeting CMRR sensitive neural recording applications. The architecture is presented
and analyzed in depth, deriving the preamplifier transfer function and the main design
equations. We present a detailed analysis of a technique for blocking the input dc
component and setting the high-pass frequency without using MOS pseudo-resistors.
One of the main contributions of this work is the overall architecture coupled with
an efficient and simple single-stage circuit for the preamplifier main transconductor.
A fully-integrated neural preamplifier, which performs well in line with the state-of-
the-art of the field while providing enhanced CMRR performance, was fabricated in
a 0.5 µm CMOS process. Results from measurements show that the measured gain
is 49.5 dB, bandwidth ranges from 13 Hz to 9.8 kHz, CMRR is very high (greater
than 87 dB), and it is achieved jointly with a remarkable low noise (1.88 µVrms)
and current-efficiency (NEF = noise efficiency factor = 2.1). A second version of the
preamplifier with one external capacitor achieves a high-pass frequency of 0.1 Hz while
keeping the performance of the fully-integrated version.

In addition, we present in-vivo measurements made with the proposed architecture
in a weakly electric fish (Gymnotus omarorum), showing the ability of the preamplifier
to acquire neural signals from high amplitude common mode interference in an un-
shielded environment. This was the first in-vivo testing of a neural recording integrated
circuit designed in Uruguay done in a local lab. Furthermore, signals recorded with
our unshielded low-power battery-powered preamplifier perfectly match with those of a
shielded commercially-available amplifier (ac-plugged, without power restrictions). To



the best of our knowledge, the proposed preamplifier is the best option for applications
that simultaneously need low noise, high CMRR and current-efficiency.

Furthermore, in this thesis we applied the aforementioned architecture to band-
pass biquad filters, specially but not only, to those with differential input. The new
architecture provides a significant reduction in consumption (up to 30%) and/or makes
it possible to block a higher level of dc at the input (up to the double, without using
decoupling capacitors).

Next, we applied the novel architecture to the design of the different stages of
an integrated programmable analog front-end. Results from simulations shows that
the gain is programmable between 57 dB and 99 dB, the low-pass frequency is pro-
grammable between 116 Hz and 5.2 kHz, the maximum power consumption is 11.2 µA
and the maximum equivalent input-referred noise voltage is 1.87 µVrms. The com-
parison between our front-end and other works in the state-of-the-art shows that our
front-end presents the best results in terms of CMRR and noise, has the greatest value
of gain and equals the best NEF reported.

Finally, some system-level topics were addressed during this thesis, including the
design and implementation of three prototypes of end-to-end wireless biopotentials
recording systems based on off-the-shelf components.

Developing and applying circuits, systems and methods, for synchronized large-
scale monitoring of neural activity, sensory images, and behavior, would produce a
dynamic picture of the brain function, which is essential for understanding the brain
in action. In this context, we hope that the present thesis become our first step to
further contribute to this area.
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Resumen

En la última década se registra a nivel mundial un crecimiento importante de las in-
vestigaciones y potenciales aplicaciones de circuitos que interactúan con el sistema
nervioso, en un amplio rango de aplicaciones, desde investigación básica en neurocien-
cia hasta la cĺınica médica, o desde la industria del entretenimiento hasta servicios de
transporte. La adquisición en tiempo real y el análisis de señales del cerebro, ya sea me-
diante electroencefalograf́ıa (EEG) “vestible”, registros invasivos o implantados, para
realizar acciones (interfaz cerebro máquina), o entender aspectos del funcionamiento
del cerebro, se ha vuelto cient́ıfica y tecnológicamente posible.

Esta tesis tiene como objetivo darle soporte a aplicaciones basadas en el registro de
señales neurales donde el bajo ruido, la eficiencia en términos de consumo de corriente
y tener una alta relación de rechazo al modo común (CMRR por sus siglas en inglés)
son las caracteŕısticas más importantes del sistema de adquisición. Un ejemplo em-
blemático de estas aplicaciones, dentro del mundo de la neurociencia, es el registro de
la actividad neural del pez eléctrico, donde la interferencia producida por la descarga
del órgano eléctrico del pez es un factor determinante. Otro ejemplo, a nivel de dispos-
itivos implantables, es el registro de la actividad de un nervio mediante electrodos de
tipo “cuff”, donde la señal de interés es interferida por potenciales electromiográficos
generados por músculos cercanos al electrodo. En estos casos, la amplitud de las
señales que interfieren, que esencialmente aparecen en modo común, es varios órdenes
de magnitud mayor que la amplitud de las señales de interés.

Por lo tanto, esta tesis propone una novedosa arquitectura para preamplificadores
neurales integrados orientados a aplicaciones de registro de señales neurales sensibles
al CMRR. La arquitectura es presentada y analizada en profundidad, derivando la
función de transferencia del preamplificador y las principales ecuaciones de diseño.
Además, se presenta el análisis detallado de una técnica para bloquear la componente
de continua de la entrada y fijar la frecuencia corte inferior sin utilizar pseudo-resistores
MOS. La arquitectura en su conjunto, junto con un circuito sencillo y eficiente para
el transconductor principal del preamplificador son una de las principales contribu-
ciones de la presente tesis. Un preamplificador neural totalmente integrado, fabricado
en un proceso CMOS de 0.5 µm permite alcanzar el estado del arte con una desta-
cada performance en CMRR. Resultados provenientes de medidas muestran que el
CMRR medido es muy alto (mayor a 87 dB), y es alcanzado conjuntamente con un
destacable bajo ruido (1.88 µVrms) y eficiencia en términos de consumo de corriente
(NEF = noise efficiency factor = 2.1). Una segunda versión del preamplificador uti-
lizando un solo condensador externo alcanza una frecuencia de corte inferior de 0.1 Hz
manteniendo la performance de la versión totalmente integrada. Asimismo, se pre-
sentan medidas in-vivo realizadas con la arquitectura propuesta en un pez eléctrico
(Gymnotus omarorum), mostrando la habilidad del amplificador de adquirir, sin blin-
daje, pequeñas señales neurales superpuestas a grandes interferencias en modo común.
Esto constituye la primera vez que se realiza en Uruguay el test in-vivo de un ampli-



ficador neural integrado diseñado localmente. Además, las señales registradas con
nuestro preamplificador de bajo consumo (alimentado con bateŕıas y sin blindaje) se
corresponden perfectamente con las que registró un amplificador comercial (sin restric-
ciones de consumo y blindado). Hasta donde sabemos, el preamplificador propuesto
es la mejor opción para aplicaciones que necesitan bajo ruido, alto CMRR y eficiencia
en términos de consumo de corriente.

En esta tesis se extendió y aplicó en filtros bicuadráticos pasa-banda la arquitec-
tura previamente desarrollada, especialmente, pero no solamente, para aquellos con
entrada diferencial. La nueva arquitectura ofrece una reducción significativa del con-
sumo (hasta el 30%) y/o hace posible el bloqueo de mayores niveles de continua en la
entrada (hasta el doble) sin usar capacitores de desacople.

Asimismo, se aplicó la novedosa arquitectura al diseño de las diferentes etapas de
un front-end analógico, integrado y programable. La ganancia se puede programar
entre 57 dB y 99 dB, y la frecuencia de corte superior entre 116 Hz y 5.2 kHz. El
máximo consumo es 11.2 µA y el máximo ruido equivalente a la entrada es 1.87 µVrms.
La comparación entre nuestro front-end y otros trabajos similares en el estado del
arte muestra que nuestro diseño presenta los mejores resultados en términos de ruido
y CMRR, tiene el mayor valor de ganancia, igualando los mejores valores de NEF
reportados.

Finalmente, la tesis plantea algunos tópicos a nivel sistema, incluyendo el diseño
y la implementación de tres prototipos “punta a punta” de sistemas de adquisición de
biopotenciales basados en componentes estándar.

El desarrollo y la aplicación de circuitos, sistemas y métodos para monitorear
actividad neural en forma sincronizada con imagenes sensoriales y comportamiento,
podŕıa producir una imagen dinámica de las funciones cerebrales, que es esencial para
entender el cerebro en funcionamiento. En este contexto, esperamos que la presente
tesis sea nuestro primer paso para continuar contribuyendo en esta área.
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Glossary

ADC Analog to Digital Converter

AFE Analog Front End

BLE Bluetooth Low Energy

bps bits per second

BMI Brain Machine Interface

BR Bluetooth Basic Rate

BSN Body Sensor Network

BT Bluetooth

CR Compression Ratio

CMOS Complementary Metal Oxide Semiconductor

CMRR Common Mode Rejection Radio

CTPS Compression Time Per Scalar Sample

DDA Differential Difference Amplifier

DMA Direct Memory Access

ECG Electrocardiogram

EEG Electroencephalography / Electroencephalogram

EDR Bluetooth Enhanced Rate

EMG Electromyographic / Electromyogram

EOD Electric Organ Discharge

FFT Fast Fourier Transform

FLO C implementation of the algorithm proposed in [1]

IC Integrated Circuit

ICMR Input Common Mode Range

ISR Interrupt Service Routine

GUI Graphic User Interface

kB kilo byte

kbps kilo-bits per second

ksps kilo-samples per second

LFP Local Field Potential

LNA Low Noise Amplifier

Mbps Mega-bits per second

MC Monte Carlo

MCF Multi-Channel Fixed Compression Algorithm



MCS Multi-Channel Speck Compression Algorithm

MCU Microcontroller Unit

NEF Noise Efficiency Factor

OTA Operational Transconductance Amplifier

PCB Printed Circuit Board

PEF Power Efficiency Factor

PSRR Power Supply Rejection Radio

RLS Recursive Least Squares

SoC System on Chip

SPI Serial Peripheral Interface

sps samples per second

TCP Transmission Control Protocol

THD Total Harmonic Distortion

TI Texas Instruments

UART Universal asynchronous receiver-transmitter
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Chapter 1

Introduction

The vertiginous advances, registered in the past years in: a) the miniaturization of
recording devices; b) the increase of the processing capabilities that have smaller and
smaller devices; c) the advances in signal processing (pattern recognition, etc.); and, d)
the knowledge of the brain’s organization of cognitive functions; have revived interest
in developing neural recording systems since the beginning of the last decade [2, 3].

The real time acquisition and analysis of brain signals, either through wearable
electroencephalography (EEG) or invasive or implantable acquisition, in order to per-
form actions or to understand aspects of brain operation, has become scientifically
and technologically feasible. The possibility of controlling machines using signals de-
rived from real-time EEG analysis (Brain-Machine Interface, BMI) was conceived by
Vidal about 40 years ago [4, 5]. Nowadays, there are multiple initiatives tending to
use information of brain activity in products, working stand-alone or in network with
other sensors (BSN, Body Sensor Networks) in a wide range of applications, from
basic neuroscience research [6–9] to medical clinic [10–14], or from the entertainment
industry [15–18] to transport services [19]. There are many opportunities opening up
in this field, especially if it is addressed in a multidisciplinary way, including disci-
plines like neuroscience, computer science, signal processing, information theory and
microelectronics, among others.

These applications involve challenges at various levels: 1) in the signal transduc-
tion, where electrodes have to “translate” biopotentials generated at cells’ membranes
into electrical signals suitable to be recorded with an electronic circuit; 2) in the ac-
quisition of the signal, where electronic circuits have to amplify, filter and, eventually,
digitize this signal; and 3) in the processing and/or wireless transmission of the signal.
An overview of these challenges, from a general-context point of view, starting from
the biological basis, will be presented in Chapter 2. In the context of these challenges,
the next Section will present the motivation and goals of this thesis.

1.1 Motivation and Goals
As Chapter 2 will show, ultra-low-power consumption, low noise and high common-
mode rejection ratio (CMRR) are very desirable features of any biopotential recording
system. In some applications, these features are critical. One emblematic example of
these applications in the neuroscience domain, is the weakly electric fish neural activity
recording, where the interference produced by the discharge of the electric organ of the
fish (called electric organ discharge, EOD) is a key factor [20, 21]. Another example,
from the implantable devices domain is the nerve activity recorded with cuff electrodes,
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where the desired signal is interfered by electromyographic (EMG) potentials generated
by muscles near the cuff [22–25]. In these cases, the amplitude of the interfering signals,
which mainly appear in common mode, is several orders of magnitude higher than the
amplitude of the signals of interest.

Studies of electroreception have provided extensive knowledge about the complete
sensory system. Particularly, electrophysiological recordings in weakly electric fish
have contributed to the understanding of the system at different levels of organiza-
tion [6]. This research has provided insights for the understanding of basic questions
on brain function in humans and other animals [7, 8, 26], and has bio-inspired man-
built autonomous systems (underwater navigation, object classification, communica-
tion, etc.) [9]. In these animals, bioelectric potentials can be recorded at: a) single
cell level either intra or extracellularly, informing about cell and neural circuit signal
integration; b) tissue level (local field potentials, LFP) informing about the average
activity of a cell population; and, c) individual level since electrosensory signals, used
by the fish for object imaging and communication, are carried by a self generated
electric field. For these purposes these animals evolved an electric organ as well as
receptors in the skin that are capable of sensing this field.

Weakly electric fish neural recordings are a very challenging task, whether the fish
is still in acute experiments or freely-moving. Firstly, the single cell signals (unitary
activity) have a spike shape of very low voltage which fire simultaneously with other
cells. Thus in order to separate the activity of more than one cell recorded from the
same electrode, amplifiers require a resolution in the order of microvolts and very low
noise. Secondly, high CMRR is important because the electric field generated by the
EOD can also be recorded in the brain. Its amplitude can be more than 1000 times
larger than other extracellular signals of interest, so most of the time the EOD behaves
as an extra artifact besides the classical ones observed in electrophysiological recordings
(powerline and fluorescent lamps ac fields, electrode polarization, etc). Thirdly, to
separate different types of LFPs containing slow and fast components from the unitary
extracellular activity originated in a single cell, it is necessary to use precise and
tuneable bandpass filtering. Finally, freely-moving fish recordings require a small size
and weight acquisition system as well as ultra-low-power operation to further reduce
size and weight, so that smaller batteries can be used and a reasonable autonomy can
be achieved.

The general domain of work of this thesis is the development of techniques for ana-
log integrated circuits targeting applications that require high CMRR and an excellent
performance in terms of current-efficiency. We refer to current-efficiency to simultane-
ously achieve low-noise and ultra-low-power over a high bandwidth. Current-efficiency
is characterized by the noise efficiency factor (NEF), which will be introduced in Chap-
ter 2. As general guideline, when we state high CMRR, we are thinking of values
greater than 80 dB and an excellent performance in terms of current-efficiency implies
an input-referred noise level below 2 µVrms and power consumption around 10 µA or
less (per channel), operating over a bandwidth greater than 5 kHz, which corresponds
to a NEF of 3.4.

The connecting thread of this thesis, will be the design of an integrated neural ana-
log front end (AFE) architecture. Fig. 1.1 shows a block diagram of the circuit. The
first stage of the AFE is an amplifier with band-pass characteristic (called preampli-
fier). In Chapter 3 we review the state-of-the-art of preamplifiers and discard the most
prevalent architectures. Then, we propose, analyze in depth, implement, characterize
in lab, and test in-vivo a novel architecture. The following stages of the addressed
circuit include band-pass filters. In Chapter 4 we extend and apply the novel architec-
ture to biquad band-pass filters showing the versatility of the proposed architecture.
Next, in Chapter 5 we design an AFE based on the findings of the previous chapters.
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Finally, some system-level topics related to signal processing and wireless data trans-
mission will be covered in Chapter 6. In the next section, a detailed thesis outline is
presented.
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Preamplifier

fLO2 fHI2

G2

Other stages
(Amp & Filter)

 ADC

100101110000111101111...

Processing
and/or
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Figure 1.1: A Top-level schematic of a typical neural acquisition system (shown for only one
channel and only the acquisition/transmitter side). The neuron depicted in the figure was taken
from Neuron Matrix. Copyright (c) 2005 Nicolas P. Rougier (released under the GNU General
Public License).

1.2 Thesis outline
Chapter 2 provides an overview of biopotential monitoring, from the biological basis
to the circuit and system techniques. Signal acquisition, processing and transmission
are fundamental capabilities of biomedical research and medical devices development.
In these topics, integrated, low power consumption systems for portable, wearable
or implantable monitoring of neural signals is taken as study case, presenting both
established solutions and research trends. The overview presented in Chapter 2 is an
adapted version of [27].

Chapter 3 introduces a novel architecture for neural preamplifiers including sili-
con implementation, experimental characterization and in-vivo validation. Chapter 3
presents measurement results indicating that our neural preamplifier simultaneously
offers low noise (equivalent input-referred noise of 1.88 µVrms), high CMRR (greater
than 87 dB) and current-efficiency (NEF = 2.1). Chapter 3 is an extended version
of [28]. This chapter also gathers material from [29] as well as unpublished work.

In Chapter 4, we extend and apply the architecture presented in Chapter 3 to
band-pass biquad filters. Two filters that meet the same requirements were designed
and compared, while the first was based on our novel approach, the second was based
on a traditional implementation. Results from Monte Carlo simulations show that the
proposed architecture, compared with the traditional one, presents a 30 % reduction in
power consumption and more than doubles the dc input that can be blocked. Chapter 4
is an adapted version of [30].

Chapter 5 introduces the design and simulation of an integrated programmable
analog front-end architecture formed by the preamplifier presented in Chapter 3 and
two additional band-pass amplifying stages based on the filter architecture presented
in Chapter 4. Chapter 5 is an extended version of [31]. This chapter also gathers
material from [32] as well as unpublished work.

Chapter 6 presents some system-level topics addressed during the thesis, including
the design and implementation of three prototypes of end-to-end low-power wireless
biopotentials recording systems based on off-the-shelf components. Chapter 6 is based
on adapted versions of [33–36].

Chapter 7 summarizes the main findings of this thesis, highlights its main contri-
butions and discusses future works.
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Chapter 2

Biopotential monitoring overview

This Chapter provides a general overview of neural signal monitoring, from the biolog-
ical basis to the circuit and system techniques. In addition, this Chapter introduces
basic definitions that will be used throughout this manuscript and will help to contex-
tualize the main aspects worked on the framework of this thesis. Despite this, a reader
who is familiar with the area can skip the reading of this Chapter. This Chapter is an
adapted version of [27].

Signal acquisition, processing and transmission are fundamental capabilities of
biomedical research and medical devices development. In these topics, integrated,
low power consumption systems for portable, wearable or implantable monitoring of
neural signals is taken as study case, presenting both established solutions and research
trends. Chapter 2 is organized as follows. Firstly, the biopotential sources and the
specific requirements for recordings these signals at different levels will be described.
Secondly, the design of the front-end circuits, particularly the first amplifying stage,
also commonly referred as preamplifier or LNA (low noise amplifier), is considered.
This stage must handle the toughest trade-offs in terms of low noise operation and
rejection of undesired signals, while keeping consumption at a minimum when battery
operated devices are targeted. Thirdly, the problem will be analyzed from the point of
view of the biopotential acquisition system as a whole, focusing on wireless systems.

2.1 Biopotential sources
Electrophysiology is one of the most important sources of knowledge on the function
of nerve and muscle tissues and the organs that such tissues construct. Some of these
organs are involved with transduction of either in (sensory organs) or out (skeletal,
visceral, and heart muscles) signals. Other organs, deal with the transmission (pe-
ripheral nerves) and processing of information (the brain and spinal cord) of such
signals. Recordings of potential differences generated by excitable cells, provide data
on the cell mechanisms of electrogeneration, inform about the localization, timing and
waveform generation of biopotential sources and yield insights on the information flow
through neural circuits and the activation of different muscle effectors.

The main source of biopotentials is a difference of potential (V) between the inner
and outer sides of the cell membrane ranging from 50 to 100 mV. This difference of
potential thermodynamically compensates a transmembrane pattern of ion gradients
typical for each cell type. Although there are some exceptions, the most used model of
cell membrane assumes: the constancy of the electromotive force driving each ion (E)
and the relative independence of ion channels conductance though the membrane (g).
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As the cell surface is several orders of magnitude larger than its thickness, a constant
capacity (C) in parallel is included (Fig. 2.1). Moreover, for the same ion species
more than one conductance may be present and show different voltage dependence
(i.e. E1=E2 with g16=g2).

Figure 2.1: Cell membrane electric model.

In addition, ion dependent conductances are a non-linear function of the transmem-
brane voltage (V), which is in turn, a linear combination of the previous parameters,
introducing complex dynamics. Furthermore, biochemical action (and also synthetic
drugs) may affect each ion conductance in a different way in different cells.

Biopotentials originated at cells’ membranes can be observed at various levels of
organization. The basic and most detailed level would be the ionic channels. A key
question for researchers interested in pinpointing the mechanisms of cell electrogenesis
is to investigate the parameters of each elemental source driving each ionic current.
This can be done either by indirectly measuring the contribution of one or several
of these sources to the whole membrane voltage [37] or by directly measuring the
conductance through isolated ion channels [38]. In both types of experiments a crucial
aspect is the capability of recording devices to inject current into the cell and to control
such amount of current in order to clamp the voltage either in a constant [37, 38] or
dynamic way [39].

As most excitable cells are able to fire fast, all-or-none, events referred to as spikes,
the second level of analysis consists in determining the firing time of single cells and
their relationships with the firing time of other cells or behavioral events. Each cell is
a closed surface (in most but not all cases geometrically spherical). Although the net
current through the membrane is zero (Gauss’ divergence theorem) any local difference
in the transmembrane voltage (due to changes in some ion conductance) causes a
localized current between membrane patches of opposite voltage polarity. As the
electric field decays with the cube of distance from the emitting source, spikes are
recorded only very close to the emitting cell and require electrode recording spots of
tenths to hundreds of square micrometers.

The synchronic activity of groups of cells generates larger biopotentials that can
be conceived as generated by distributed sources. Depending on the extension of
the source and recording distance, two other forms of field potentials can be distin-
guished: local field potentials arising from the electrical activity of a group of closely
located cells and global field potentials arising from the overall electrical activity of a
whole structure. These last may be deeply buried in the background activity of other
structures and may require to be evidenced by the cross correlation between the raw
recorded signals and repetitive events (event related potentials).

Summarizing, different forms of electrophysiological research are focused at differ-
ent levels of organization: a) to investigate the parameters of each elemental source
driving each ionic current to pinpoint the mechanisms of cell electrogenesis; b) to
evaluate the timing of activation of single cells by measuring the local currents gen-
erated by multiple single cells at the same time; c) to evaluate regional activities of
a cell population by recordings of local differences of potential originated in the sum
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of currents arising from all neighbor cells; and, d) to record the “noise of the engine”
of a whole structure (i.e. the brain, EEG; the heart, electrocardiogram ECG; a group
of muscles, surface-EMG) by measuring far field potential differences between points
localized out of the structure. Although these approaches mostly rely on measuring
the potential difference using electronic amplifiers (which is the focus of this thesis)
other signal carriers should be mentioned: i) the magnetic field generated by biogen-
erated currents (a method used mainly at the organ level) and ii) the luminescence
emitted by some substance in the presence of an electric field (a method used mainly
at cellular level).

2.2 Specific requirements for recordings at different orga-
nization levels

Firstly, different number of channels is required when dealing with different organi-
zation levels. In the case of intracellular recordings only a few channels are required
but when dealing with the extracellular activities (mentioned above in b, c, and d), it
is often necessary to record simultaneously several signals to either assess information
transmission between cells, or to compare generators occurring at different positions
or orientations. In addition, it is also useful, in many cases, to correlate these signals
with behavioral events external to the explored electric sources, imposing a need of
additional acquisition channels for synchronism purposes.

Secondly, recording differences of potentials at different organization levels share
commonalities, but there are also differences depending on the level and the purpose
of the study (Table 2.1). These differences arise from the amplitude and bandwidth
of the signals of interest and the electrode characteristics.

Table 2.1: Main electrical characteristic of biopotentials (typical values).

Bandwidth (Hz) Amplitude (µVpp) Number of signals

ECG 0.1 - 150 100 - 15000 1-12

EEG 0.03 – 70 20 - 200 4 – 256

EEG (brain stem auditory 30 - 3000 0.05 - 4 2-4 (standard

evoked potential) clinical use)

EEG (visual evoked 0.2- 200 0.5 - 20 2-4 (standard

potentials) clinical use)

Intracellular recordings dc - 3000 10 - 250000 1-4

Local field potentials 1 – 500 10 - 5000 1-256

Spikes 0.3 - 5000 50 - 1000 1-256

Surface-EMG 25 - 3000 100 - 1000 1-10

Though a complete treatment of the topic of electrodes is out of the scope of
this thesis, the following key considerations are presented. For instance: intracellular
electrodes, multiple electrodes (from tetrode to Utah arrays), cuff electrodes and skin
electrodes (Ag/AgCl or dry, capacitive, etc.) may behave as additional electric sources
in series with the recording system. Usually a linear model of the electrode is sufficient
to account their influence on the potential difference recorded by the amplifier, but
in the general case, a non-linear model is required. This modeling of the electrode,
among other effects, has sometimes to account for up to 100 mV dc signals that can
be generated at the skin- tissue- or cell- electrode interface. In the case of intracellular
and deep placed extracellular, electrodes glass micropipettes, filled with appropriate
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solutions and having a tapered tip adapted to the purpose, have been the standard
in the last 60 years [40]. For extracellular recordings of spikes and field potentials,
multitrodes have recently improved the ability for recording multiple channels and
also to separate several spikes recorded by the same electrode [41].

A particular challenge is posed in order to build small, easy-to-place electrodes and
preferably embedded in wearable clothing, when small potentials have to be measured
with electrodes in contact to the skin (EEG, EMG, etc.). Standard wet electrodes
(Ag/AgCl) are attached to the skin by a conductive gel that improves the interface
conditions. This placement process is slow, cumbersome and the result is uncom-
fortable for the user. On the other hand, dry electrodes have long been known, but
their development remains limited to certain niches (fitness, games, etc.). While the
main advantages of dry electrodes are their easier placement and use, the quality of
the signals acquired with dry electrodes and traditional electronics has significant de-
ficiencies in terms of noise and sensitivity to the electrode movements [42]. Despite
this, the use of dry electrodes is clearly growing opening a wide field of research, in-
cluding optimization methods for electrodes and signal acquisition circuits to alleviate
the mentioned disadvantages of dry electrodes.

Third, in the case of freely behaving subjects, unobtrusive biopotential monitor-
ing systems are required. Thus, a target system would be a wearable device (wireless,
small and comfortable) with a reasonable autonomy (low-power consumption), capable
of acquiring, processing and transmitting biopotential signals. The use of wireless sys-
tems grants: a) more freedom to the user or subject under study, since wired systems
restrict its movements; b) a simpler setup to the researcher; c) the correlation of the
recorded potentials with behavior; and also helps to avoid the interference picked up
by long cables between the electrode and the amplifier. There are commercial systems
that are approaching to have wireless systems with the characteristics described above
and much current research in the design of biopotential monitoring pursues that goal,
as will be discussed in the rest of this chapter.

2.3 Challenges in the integrated acquisition of biopoten-
tials

In recent years the trend on this area has been the use of solutions where most (or even
all) of the circuitry is included in a single complementary metal oxide semiconductor
(CMOS) integrated circuit (IC), instead of what we may call discrete solutions, where
the circuitry is based on several standard off-the-shelf ICs and passive components.
The use of ICs allows for very miniaturized devices that can be unobtrusively placed
very close to the recording site (including implantable solutions) as well as to optimize
the energy consumption. Following this trend, this chapter will focus on IC solutions
because they pave the way for developing a broad range of new applications.

The analog front-end (also referred to as AFE or front-end) is the electronic cir-
cuit performing the signal conditioning (amplification and filtering) prior to digitize,
process and/or transmit the acquired data (Fig. 2.2).

It is usual to tackle the front-end design with a filtering chain involving an amplifier
with band-pass characteristic (preamplifier) and a programmable filtering second-stage
[12,31,43–49]. Depending on the particular biopotential, it can be necessary that the
second-stage provides additional amplification (because of the low amplitude of input
signals). On the other hand, if the input signal was sufficiently amplified, the filter
may need to deal with linearity issues, specially if rail-to-rail operation is desired in
order to accommodate low supply voltages, as is the case in current IC technologies.
Second-order roll off (40 dB/decade) is usually sufficient to filter biopotentials. As can
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Figure 2.2: Top-level schematic of a typical biopotential acquisition system (shown for only one
channel and only the acquisition / transmitter side).

be seen from Table 2.1, cut-off frequencies are usually within the 0.1 Hz to 10 kHz
range. Programmability of bandpass filters, which is easily achieved in ICs, is a useful
mean for the user to focus the acquisition to the relevant phenomenon. We will turn
to the front-end design in Chapter 5.

At the input stage it is advisable to use analog amplification and analog filtering
in order to achieve a reasonable signal to noise ratio (S/R) while maintaining energy
efficiency [50] as well as providing the needed anti-alias filtering prior to sampling. On
the other hand, from the point of view of energy consumption, flexibility and processing
performance, it may be convenient to use digital processing in the subsequent stages.

The conditioning circuit is usually followed by a third stage consisting of an Analog-
to-Digital Converter (ADC). A typical maximum sample rate is 50 ksps (kilo-samples
per second), where samples of 10-bit or 12-bit usually provide an adequate resolution.
For instance, a 12-bit ADC with a full scale range VREF = 3 V and a front-end gain
G = 3000 V/V provides an input resolution of 244 nV with a quantization error of
122 nV. This quantization error is comparable to the equivalent, intrinsic, input noise,
which is later presented, therefore higher resolutions would be useless. When several
channels are required the ADC may be shared among the channels by multiplexing all
or a group of channels at the input.

Some topics related to the final block (processing and transmission) will be dis-
cussed in the next section. In the remaining of this section we will focus on the
preamplifier, because is the part of the system in closer contact with the biological
medium and it has to primary deal with the particular characteristics of the targeted
biopotentials.

According to the nature of the biopotentials and the target application, the pream-
plifier must meet challenging requirements, which usually are contradictory: ultra-
low-power consumption, low noise, small size, high input impedance, high CMRR and
reject input dc values that are much higher than the input signal amplitude. These
challenges are discussed in the next subsections.

2.3.1 Ultra-low-power consumption
Ultra-low-power consumption (up to tens of micro-amps per preamplifier) is a very
important requirement in order to operate with small energy sources (in order to
reduce size) and to not generate local heating of tissues. Next, it shall be considered
how this can be accomplished in integrated implementations. These implementations
shall be in CMOS processes, which are at present the prevailing ones and best suited
for ultra low power implementations.
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The MOS transistor has three regions of operation according to the prevailing
mechanism in the current conduction. Firstly, the traditional strong inversion region,
where the gate-source voltage is above threshold and the drain current in saturation
varies quadratically with the gate-source voltage. Secondly, the weak inversion or
sub-threshold region [51], where the gate-source voltage is below threshold and the
drain current in saturation varies exponentially with the gate-source voltage. Finally,
the moderate inversion, where the gate-source voltage is near or around the threshold
region and the drain current in saturation has a mixed behavior. In order to optimize
power consumption, the best IC design approach is to exploit all the possibilities that
the MOS transistor give us by using indistinctly all its regions of inversion, partic-
ularly weak and moderate inversion, because in several cases these provide the best
compromise between transconductance generation and parasitic capacitance, leading
to an optimum in power consumption [29,52].

2.3.2 Low noise
The MOS transistors, which are the basic component of these circuits are sources
of intrinsic electronic noise, mainly thermal noise and flicker noise. Thermal noise
is produced by the random thermal motion of charge carriers, resulting in a power
spectral density STN ∝ 1/gm (independent of frequency), where gm is the transistor
transconductance. Flicker noise is a low-frequency noise related to the charge trapping
in the silicon-oxide interface, thus it depends on how the transistor is manufactured,
its power spectral density is SFN ∝ 1/f . The flicker noise can be made negligible in
the frequency band of interest through adequate sizing of the transistors or special
amplifier design techniques.

The noise added by the preamplifier is modeled as a voltage source vin,rms, which
is usually referred to the input (equivalent input noise):

vin,rms =

√∫
BW

Sin(f).df (2.1)

where Sin is the power spectral density and BW is the bandwidth. vin,rms gathers
all the contributions of the preamplifier noisy components.

The noise amplitude added by the preamplifier has to be lower than the biopoten-
tials amplitude in a ratio related to the desired signal to noise ratio. In extracellular
recordings this requirement often implies that vin,rms has to be lower than a few mi-
cro Vrms. As we discuss next, low noise preamplifiers design is ruled by two main
trade-offs: noise increases as, on one hand, bandwidth increases and as, on the other
hand, power consumption decreases. These dependencies are discussed next.

By definition, the noise is related to bandwidth. When thermal noise is dominant,
we have:

vin,rms =

√∫
BW

Sin(f).df =
√
STN .BW (2.2)

If the preamplifier input-stage is implemented with a differential pair operating in
weak inversion and these transistors are the only source of noise (noise contributions
of other transistors are made negligible):

vin,rms =
√
STN .BW ∝

√
BW

gm
⇒ vin,rms ∝

√
BW

IDD
(2.3)

where vin,rms is the preamplifier input-referred noise, BW is the bandwidth and
IDD is the total supply current. Eq. 2.3 highlights the noise-consumption trade-off
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and the noise-bandwidth trade-off. For instance, in order to decrease 10 times the
noise level, it will be necessary to increase 100 times the current consumption.

In order to quantify the current consumption efficiency in achieving low noise at a
given bandwidth, as well as guide design decisions, the following NEF (noise efficiency
factor) is a figure of merit that is widely used in integrated biopotential amplifiers (the
lower it is the better) [53]:

NEF = vni

√
IDD

2kπTUTBW
(2.4)

where vni is the input-referred noise voltage, IDD is the total supply current, BW is
the bandwidth, UT = kT/q is the thermal voltage, k is the Boltzmann constant, T is
the absolute temperature and q is the electron charge.

Another figure of merit, the PEF (power efficiency factor), is usually used [54]:

PEF = NEF 2 × VDD (2.5)

In battery powered systems (or powered through a linear regulator) the most
relevant metric of consumption is the charge (or equivalently the current) drained from
the battery. In these cases, the current-efficiency characterized by the NEF is the most
appropriate figure of merit. When the amplifier is powered through a switched dc/dc
converter, the power is the most relevant metric to assess consumption, since once we
assume a given efficiency of the converter and battery voltage, the current consumed
from the battery will be mainly determined by the power consumed by the amplifier.
In this case, the power-efficiency, which can be assessed through the PEF, is the most
appropriate figure of merit. Nevertheless, it must be noted that the PEF is strongly
dependent on the supply voltage of the circuit, which in turn is dependent on the
manufacturing process and its threshold voltages. Finally, It must be noted that PEF
is heavily dependent on the circuit topology because not all topologies can be scaled
due to headroom limitations.

2.3.3 Small size
Size is largely reduced by resorting to integrated implementations. Nevertheless, size
reduction in integrated form is mainly limited by two factors. On the one hand, the
integration of large time constants (associated with the low frequency of biopotentials)
tend to require large capacitors, which occupy large silicon area. On the other hand,
the increasingly need to record more and more channels. This requirement would
not be an issue regarding the silicon area if the preamplifier could be shared with
multiple electrodes through an analog multiplexer. However, the large time constants
involved in the preamplifier prevent a fast enough changeover of the preamplifier among
channels, leading to the need of one preamplifier per channel [55].

2.3.4 High input impedance
High input impedance is necessary in order to guarantee that the output impedance
of the electrode and/or the electrode-tissue impedance do not significantly affect the
signal conditioning. This requirement is critical when one electrode is connected to
several amplifiers, for example the reference in a multichannel recording. Depending
on the application, the output impedance of electrodes, in the frequencies of interest,
ranges from a few kilo-ohms (i.e. wet EEG electrodes) to several mega-ohms (i.e. dry
EEG electrodes). In the case of dry electrodes, is very challenging that the front-end
input impedance (including connections and packages) be actually much higher than
the electrode output impedance, thus some small signal degradation might occur.
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2.3.5 High CMRR
Biopotential monitoring require to separate the low-amplitude signals of interest from
other biological or external interfering signals appearing in common mode. A CMRR
greater than 80 dB [20–25] is required because these common mode interfering signals
can have amplitudes much more larger than the monitored biopotential. The high
CMRR requirement becomes critical in the acquisition of low amplitude extracellular
biopotential in which the signal waveform carries significant information.

2.3.6 Reject dc input signals
The tissue-electrode interface develops undesired dc voltages which are superposed to
the low-amplitude biopotential of interest. In neural recordings these dc signals are
typically in the range of 1 mV - 10 mV, and can be up to a maximum of 50 mV [56].
In other recordings, 100 mV o even higher input dc voltages values can be found.
To avoid such artifact, it is possible to use capacitors between the electrode and the
preamplifier to eliminate the dc voltage, leading to an ac-coupled circuit. Due to the
slow-nature of biopotentials, this option requires large capacitors or large resistors,
which can’t be integrated because occupy a large silicon area. One way to overcome
this problem is to use MOS-bipolar pseudo-resistors [57]. The pseudo-resistor can be
thought as a transistor “almost off”, that presents a very high resistance. In contrast,
the resistance of this nonlinear element is difficult to model and control, and can also
suffer from drift [49, 58, 59]. Alternatively, there are dc-coupled circuits that rely on
feedback instead on capacitors for eliminating the undesired dc voltage.

2.4 Main biopotential integrated preamplifier architectures
Harrison et al. in [57] present a bandpass preamplifier architecture that in the last
decade has become a very important reference, widely applied [43–49,60–70]. At that
time, [57] reported the best noise-consumption compromise, and in some aspects the
circuit is still in the state-of-the-art of biopotentials amplifiers. The core of Harrison’s
circuit (see Fig. 2.3a) is a resistor-less differential amplifier based on a symmetrical
operational transconductance amplifier (OTA). To minimize noise, this architecture
relays in a careful design of all the OTAs transistors, particularly those of the input
differential pair (using wide transistors, working in weak inversion). The circuit has
several interesting aspects: the gain is set by a ratio of capacitors, avoiding the use
of resistors which are a source of noise and consumption; has differential input, and
the high-pass characteristic, which requires high valued resistors, is defined by MOS-
bipolar pseudo-resistors (M1, M2, M3 and M4 in Fig. 2.3a). Therefore, although
high-pass frequencies less than 0.1 Hz can be reached, this can only be done with
low accuracy. Two workarounds on this problem have been proposed. In the first
place, to set the high-pass frequency by the next stages [66], which jeopardize power
consumption and area, among other important features. In the second place, to modify
the pseudo-resistor arrangement so that the equivalent resistance can be controlled
through the gate voltage of the MOS transistors that operate in weak inversion [71].
This allows for an off- or on-chip tuning of the high-pass frequency. However, even
if the accuracy issue is solved, a second drawback remains. This drawback is the
intrinsically low CMRR, which is limited by the capacitor matching (we elaborate on
this in Section 3.2.3). Then, while acceptable values of CMRR (60 dB) are obtained,
it is not possible to guarantee very high values (greater than 80 dB).

Other biopotential amplifier architectures, which have not had as much impact as
Harrison’s, have been proposed over the years. An important subset of these, uses a
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Figure 2.3: Main biopotential integrated preamplifier architectures.

differential difference amplifier (DDA) [72] as input stage [58,73–79], while others are
based on different approaches [53, 80–84]. A DDA is composed of an OTA with two
added differential inputs. One architecture [73] for implementing an instrumentation
amplifier by means of a DDA is shown in Fig. 2.3b. It uses one differential input for
the signal to be amplified, and the other differential input for the feedback that sets the
gain (feedback factor β) and high-pass characteristic (inverting low-pass filter). This
architecture, as discussed in Section 3.2.3, is intrinsically suitable for high CMRR,
and the gain and bandpass cut-off frequencies are set by means of parameters that
are, respectively, very accurate (i.e. ratios of transconductances) or can be easily
and automatically tuned (i.e. ratios of transconductance over capacitances) [85],
achieving high accuracy without jeopardizing power consumption [86]. However, a
straightforward implementation of a DDA adds an important amount of noise and
consumption (because of the two OTAs at the input).

This topic, including an in-depth study of the state-of-the-art of preamplifiers, will
be taken up in Chapter 3.

2.5 Challenges for wireless multichannel biopotential record-
ing systems

The most important challenge that faces the design of wireless biopotential recording
systems is handling an enormous amount of information that is generated in a small
device, with severe power and processing constraints. To acquire signals of 10 kHz
bandwidth, a minimum sampling frequency of 20 ksps/ch is required. Then, 8 channels
and 12-bit samples imply an effective data throughput of 1.92 Mbps (Mega-bit per
second). If it were 100 channels, the effective data rate should be greater than 24 Mbps.
No low-power wireless standard communication protocol reaches these transmission
rates nowadays.

In the last 20 years, there have been several proposals for providing a solution for
solving this problem [87, 88]. [87] present a discrete two channel system for acquiring
flying locusts EMG signals. The acquired analog signal is directly transmitted in
the 145 MHz band within a range of 20 meters. The system weighs 0.55 grams and
has 7.3 hours autonomy powered from a 1.5 V battery, which is overall an impressive
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performance for the date it was designed and not using custom integrated circuits. [88]
present an integrated four channel telemetry system, which acquires neural signals
and EMGs in flying locusts and weakly swimming electric fish, and transmits them
wirelessly in the 900 MHz band within a range of 2 meters. The samples are digitized
with 9 bits and the useful date rate is 104 kbps (kilo-bit per second). The system
weighs 0.17 grams and has 5 hours autonomy powered from a 1.5 V battery. Table
2.2 presents some selected examples of commercially-available wireless biopotential
recording systems.

Table 2.2: Commercial wireless biopotential recording systems.

Application Neural Recording EEG EEG EEG/EMG

Number of channels 128 64 8 64

Weight (grams) 12 800 360 500

Autonomy (hours) 1-3 12-24 25-100 5

Effective data rate 25 ksps/ch 4 ksps/ch 0.3 ksps/ch 2 ksps/ch

Input-referred noise 8.5 µVrms 2 µVpp N/A 1 µVrms

Communication Proprietary, analog WiFi Bluetooth 2.0 WiFi

protocol 4-meters range

Manufacturer Triangle Natus g.tec ANT Neuro

Model/Series W-series [89] Nicolet [90] g.Mobilab+ [91] eego rt [92]

N/A=Not available

Regarding digital communication, it is important to distinguish between effective
data “rate” and “raw data rate”. The effective data rate (also named useful data rate)
refers to the information that the user or the application need to receive or transmit.
The raw data-rate (also referred as the over-the-air data rate) is the total number
of transferred bits per second over the communication link, this data-rate takes into
account not only the useful data, but also any other transmitted data (i.e. protocol
overhead). Some digital wireless communication standards are discussed next.

Typical implementations of Bluetooth (BT) and its low-power version “Bluetooth
low energy” (BLE), are designed to operate in short distances (from a few meters
to several tens of meters). BT can achieve an effective data rate of up to 800 kbps
while consuming an average current in the order of 20 mA. BLE typically achieves a
maximum effective data rate of 200 kbps while consuming an average current less than
10 mA. These protocols typically communicate two devices (host and client), don’t
require infrastructure and are easy to install and configure.

The IEEE 802.15.4 standard specifies the low level layers of a low power (less
than 10 mA), low effective data rate (up to 50 kbps), and short distance (from a few
meters to several tens of meters) wireless communication protocol. Zigbee is a protocol
based on this standard. These protocols typically communicate several devices (sensor
nodes) and don’t require infrastructure since they organize “ad hoc” networks.

In the same range of distances, options like WiFi, can be used to monitor biopo-
tentials. In this case, an effective data rate of 5 Mbps is easily achieved, but current
consumption of hundreds of milliamperes has to be tolerated. WiFi typically commu-
nicates several devices by means of additional infrastructure (i.e. router).

A promising way to solve the problem of having to transmit such a high volume of
data is to incorporate data processing to reduce the amount of transmitted data [93].
In some applications, the data processing consists of methods for detecting the relevant
information contained in the biopotential signal. To illustrate this, let us consider the
particular example of the detection of the spikes that indicate neurons activation,
where several methods for reducing the amount of information to be transmitted have
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been proposed. Some of them, compare the acquired signal against a template (called
“template matching”). These methods are particularly effective when the waveform of
the target spike is known or can be estimated. There are also methods which measure
(and transmit) the energy of the signal [94]. Although in many cases it is sufficient to
send the inter spike interval, there are works that have proposed to send more data
(without sending the complete stream). For example, in a “feature extraction” data
compression scheme, where the spike is detected by two thresholds (one negative and
one positive), and instead of sending the complete signal, either a short epoch of about
2 ms long including the spike waveform or a few points can be transmitted [47].

An alternative approach is to apply general data compression techniques, which
have been proposed in the past 20 years. Methods ranging from simple dictionary-
based approaches to more sophisticated context modeling techniques, methods that
exploit the biopotential particularities (i.e. temporal and/or spatial correlation) or
methods that don’t [95–97]. In Chapter 6 will be presented the implementation of a
compression algorithm in a microcontroller-based low-power platform.

Another way to deal with a high volume of data, is to perform some data processing
in order to take decisions “in situ” (for example to give an alarm or to stimulate), thus
completely avoiding the need to transmit data [49,98].

The acquisition of biopotentials in synchrony with a stimulus signal is a challenge
that is not fully solved. In several research areas related to neurosciences, medicine or
psychology, among others, it is important to record biopotentials after performing a
certain stimulus (visual, auditory, etc.) in order to search for correlations. To have a
system that offers to the user, a stimulus signal perfectly synchronized with the signal
under observation, is a problem not completely solved today.

We will taken up with practical aspect of this topic in Chapter 6, when presenting
the implementation of three wireless biopotential recording systems based on off-the-
shelf components developed in the framework of this thesis.
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Chapter 3

Design and implementation of a
neural preamplifier

As discussed in Chapter 2, the preamplifier is probably the most important part of
the recording system, because it is the part of the system in closer contact with the
biological medium and it has to deal with the particular characteristics of the targeted
signals. In this chapter we review the state-of-the-art of preamplifiers and discard
the most prevalent architecture. Then, we propose, analyze in depth, implement,
characterize in lab, and test in-vivo a novel architecture. This chapter is an extended
version of [28], and also gathers material from [29] as well as unpublished work.

3.1 State-of-the-art of neural preamplifiers
This review will focus on noise performance, current-efficiency, and CMRR, which
are the main features of our recording system. As will be discussed in Section 3.2.3,
in order to correctly compare CMRR performance, it is important to consider the
effects of matching. For this reason, it is incorrect to report the typical value of a
simulation. In our opinion, experimental measurements jointly with the worst-case
value in a Monte Carlo (MC) simulation is a correct manner to characterize CMRR.
Next, when we state a CMRR performance it will correspond to a measured value (or
the worst-case if more than one chip was measured), in those works where the CMRR
worst-case simulation is reported it will be explicitly indicated.

As presented in Section 2.4, Harrison et al. proposed in [57] a neural pream-
plifier architecture featuring an input-referred noise vni = 2.2 µVrms, NEF = 4.0,
CMRR = 83 dB, and a CMRR worst-case simulation of 42 dB. This architecture
has been widely applied to the design of preamplifiers [43, 49, 61, 62, 64–70, 81], front-
ends or complete recording systems [44–47, 62, 65, 66], as well as to more complex
recording system with integrated signal processing, like spike detection or data com-
pression [47,49,60,63,67]. Some of these works will be briefly reviewed next.

Horiuchi et al. [60] present a circuit featuring a spike detection scheme based
on thresholds including a preamplifier with a remarkable low-power consumption
(IDD = 530 nA), but not good enough in terms of the parameters we are analyz-
ing (vni = 20.6 µVrms, NEF = 7.1 and CMRR is not reported).

Wattanapanitch et al. [61] present a modification to the architecture proposed by
Harrison et al. that consists in a folded-cascode structure in the transistors of the
input differential pair, this allows to reduce the power consumption. This circuit has
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a very good performance (vni = 3.06 µVrms, NEF = 2.67 and CMRR = 66 dB) but
presents a narrow bandwidth (45 Hz - 5.32 kHz).

Zou et al. [43] propose improvements to the Harrison et al. architecture, in partic-
ular, a technique to improve the linearity of the pseudo-resistors. This work achieves a
good performance (vni = 2.5 µVrms, NEF = 3.26 and CMRR = 71.2 dB), but working
on a much more limited bandwidth (4.5 mHz - 292 Hz).

Bonfanti et al. [63] present a 16-channel neural recording system featuring data
compression (implemented by detecting the spikes and storing up to 20 points for each
waveform) and wireless transmission. The preamplifier is a straightforward imple-
mentation of [57] where the main OTA was implemented as a single-stage telescopic
cascode amplifier and a second-stage Gm-C filter set the high-pass frequency. This
work achieves a very good performance (input noise vni = 3.05 µVrms, NEF = 2.5
and CMRR = 65 dB)

Wattanapanitch et al. [45] present a 32 channels front-end, where the first stage is
based on [61]. The preamplifier of this new version is not as good in terms of the param-
eters we are analyzing (input noise vni = 5.4 µVrms, NEF = 4.4 and CMRR = 62 dB)
but is much better in terms of area (0.03 mm2 per amplifier).

Al-Ashmouny et al. [46] present a 128 channels neural recording system, where
the design of the OTA preamplifier explores the moderate inversion region for some
transistors (the current mirror of the first stage and other transistors of the second
stage). The overall system presents a good performance (vni = 4.8 µVrms, NEF = 2.9
and CMRR = 62 dB).

Abdelhalim et al. [49] present a 64-channel wireless recording system including
a neurostimulator. The front-end is implemented in two stages. The preamplifier
presents a good performance (vni = 5.1 µVrms, NEF = 4.4 and CMRR = 71.5 dB).
The second stage, based also on the Harrison et al. architecture, set the high-pass
frequency by tuning the MOS pseudo-resistors.

Liu et al. [69] present a 64-channel neural recording system. The preamplifier uses a
folded-cascode topology featuring an overall very good performance (vni = 3.86 µVrms,
NEF = 2.8 and CMRR = 69 dB).

Several works [47, 64–66, 68] have implemented the Harrison et al. architecture
jointly with a “current reuse” technique [62], which consist in a complementary input
differential pair to reuse the tail current and nearly double the achieved transconduc-
tance (both input NMOS and input PMOS transistors are stacked in the same current
branch). Next we review some of them.

Rodŕıguez-Pérez et al. in [47] present a neural recording channel with spike de-
tection and a data compression scheme based on feature extraction. The preamplifier
introduces two additional interesting modifications to the original architecture. Firstly,
it uses a fully-differential architecture to increase the dynamic range of the preampli-
fier and improve the PSRR (Power Supply Rejection Radio) and CMRR performance.
Secondly, it implements a low-pass filter of 40 dB/dec in the input stage, enabling
a reduction of the input noise. This preamplifier achieves a very good performance
(vni = 3.8 µVrms, NEF = 2.26 and CMRR = 83 dB). In [70] additional data of this
preamplifier is reported.

Wang et al. [68] present a preamplifier where floating-gate transistors are em-
ployed for tuning the high-pass frequency and to implement the common-mode feed-
back block. The circuit has a very good performance (vni = 2.8 µVrms NEF = 2.25
and CMRR = 70 dB).

Chae et al. [64] present a wireless neural recording system with on-chip processing
and in-vivo measurements (vni = 4.9µVrms, NEF=1.92 and CMRR=90dB). However,
since the work is presented from a system-level point of view, key results of the pream-
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plifier are missing1. Firstly, simulations or measurements of the preamplifier frequency
response are not reported. Secondly, it is not mentioned how a 90 dB of CMRR is
achieved (and as it will be discussed in Section 3.2.3, this value of CMRR requires -at
least- very high levels of matching between the capacitors that set the gain). Finally,
there is no measurements nor MC simulations of the CMRR spread with frequency.

Han et al. [65] introduce a 100 channels neural recording system where the fully-
differential preamplifier achieves a very good overall performance (vni = 3.2 µVrms,
NEF = 1.57 and CMRR = 73dB), in this case with a remarkable 0.45 V power supply.

Zou et al. [66] present a 100 channels neural recording system. The high-pass fre-
quency of the system is determined by a second-stage band-pass filter. Despite the poor
CMRR value, this preamplifier achieves a very good performance (vni = 4.0 µVrms,
NEF = 1.9 and CMRR = 60 dB).

In order to correctly compare input noise, NEF and PEF performance, it is im-
portant to consider the adequate noise integration bandwidth. For instance, the noise
integration bandwidth of Chae et al [64], Han et al. [65] and Zou et al. [66] only covers
the amplifier bandwidth. If the low-pass filter were ideal, it would be correct, but the
roll-off of these works is -20 dB/dec. This led us to the conclusion that the actual
input noise of these works is, at least,

√
π/2 = 1.25 times higher, which implies an

actual NEF ≥ 2.0 in all cases.
As mentioned in Chapter 2, and confirmed by the previous review, an important

drawback of the Harrison et al. architecture is the intrinsically low CMRR. A few works
achieve a CMRR value higher than 80 dB, and the CMRR worst-case value is rarely
reported (and when it is, the reported value is much smaller than the measured one).
For this reason, the Harrison et al. architecture is not suitable in our applications.

Other architectures have been proposed over the years. An important subset of
these uses a DDA [72] as input stage [58, 73–77], while others are based on different
approaches [53,80–84]. Some of them will be reviewed next.

Ng et al. [81] present a 16 channel analog front-end. The input impedance mis-
match problem (which arises when several inputs are acquired with the same reference)
is addressed by using single-ended CMOS-inverter-based preamplifiers for both the ref-
erence and signal inputs. The CMOS-inverter inherently incorporates the previously
mentioned “current reuse” technique. The second stage, which is a straightforward
implementation of the Harrison et al. architecture, provides additional amplification.
A third stage set the high-pass frequency through an externally applied dc voltage.
The CMRR is measured under different conditions, the worst case value reported is
46.1 dB. The noise integration bandwidth only covers the amplifier bandwidth. The
circuit has a good performance (vni = 4.1 µVrms, NEF = 3.19, CMRR = 80 dB).

Chatuverdi et al. [83] use an open-loop single-stage amplifier instead of a closed-
loop configuration. The inherent gain inaccuracy of the open loop architecture is
compensated by using a variable gain amplifier in the second stage (which is not
implemented). The overall performance is good (vni=5.5µVrms, NEF = 2.6, CMRR
not reported).

Guo et al. [82] presents a fully-differential preamplifier. The input block is a
symmetrical OTA with a source degenerated input differential pair. This block is
followed by a variable gain stage and a feedback loop (composed by an integrator and
an OTA) that determines the low frequency characteristic. Chopping is used to lower
the low frequency noise. By tuning a pseudo-resistor in the integrator, the high-pass
frequency can be adjusted (as this pseudo-resistor is not in the signal forward path, its
non-linearity does not affect the preamplifier linearity). This work exhibits a very good
performance in terms of linearity (a total harmonic distortion THD of 0.1% with an

1These results are also not reported in other papers of the same authors related to the
same preamplifier [99–101].
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input of 20 mVpp), CMRR (despite the worst-case value is not reported, a measured
one of 110 dB it is) and noise (vni = 2.9 µVrms). However, its current-efficiency
(NEF = 6.6) makes it not appropriate for our applications.

The performance achieved by relevant prior works that present a good performance
in terms of CMRR, input noise and NEF are compared with our work in Section 3.4.3.

The solution proposed in this thesis will follow the lead of DDAs. As mentioned
in Section 2.4 and further discussed in Section 3.2.3, a DDA is intrinsically suitable
for high CMRR, and the gain and band-pass cut-off frequencies are set by means of
parameters that are, respectively, very accurate or can be tuned without jeopardizing
power consumption. However, a straightforward implementation of a DDA adds an
important amount of noise and consumption (because of the two OTAs at the input).

3.2 Proposed solution
Our solution aims to overcome the drawbacks presented by Harrison et al. architecture
and standard DDAs in order to obtain a neural amplifier with high CMRR, low input
noise and current-efficiency. Our starting point is a variant of the architecture proposed
in [58] shown in Fig. 3.1. This architecture proposes a DDA input stage composed of
two symmetrical OTAs shown as Gm12 and Gm2, and a feedback factor β, where the
transconductance of Gm1 (Gm1) is higher than the transconductance of Gm2 (Gm2).
If a standard DDA is used (Gm1 = Gm2), the noise of Gm2 contributes to the input as
much as the noise of Gm1. By making Gm1 > Gm2, the noise contribution of Gm2 can
be made negligible. A possible drawback of this architecture arises from the reduction
of the current provided by Gm2 to the summing node with respect to the current
provided by Gm1. This reduction decreases the range of dc currents at the Gm1
output that the feedback through Gm2 can compensate. When this compensation is
not possible the circuit loses its high-pass characteristic. This was solved by setting
the high-pass frequency of the preamplifier (and compensating the aforementioned dc
component) through a local feedback at the output of Gm1, which is discussed in the
next section. The summing block is obtained just connecting the two OTAs outputs
and thus adding their output currents, and β is set to 1.

Input dc 
block

+

-
Gm1

+

-
Gm2

CL

vIN 

 +

-

β

+ vOUT  

Figure 3.1: Block diagram of the architecture proposed in [58].

Fig. 3.2 shows the novel architecture proposed in this work. An efficient and

2OTA notation: Gmi refers to the block, Gmi (italic) is the transconductance of the block
and gmi (italic lowercase) is the transistor transconductance.
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simple single-stage circuit for the preamplifier main transconductor (Gm1) is one of the
contributions of this work. Gm1 core is formed by M1, M2, M3 and M4. The M5-M8
block jointly with Gmf and CF , implement the output feedback loop that establishes
the high-pass characteristic and blocks the dc input. Gm2 and Gmf are symmetrical
OTAs whose respective transconductances areGm2 andGmf . gm2 = KGm2Gm2, where
KGm2 is the copy factor3 of the current mirrors of Gm2, as indicated in Fig. 3.2, and
gm2 is the transconductance of input transistors of Gm2. In the same way we will
introduce KGmf such that gmf = KGmfGmf and gmf is the transconductance of the
input transistors of Gmf. We use symmetrical OTAs because it is a simple architecture,
but other alternatives could be considered. However, a single-stage circuit, like the one
used in Gm1, is not suitable to accommodate the required input and output ranges
of Gm2 and Gmf. Furthermore, the saving on power consumption due to the use of a
single-stage circuit in these blocks has little impact.

(gm/ID)1

(gm/ID)CM1

Gm1

VDD

M4M3

VSS

M7

M8

 α : 1

M6

M5

VDD

VSS

 α : 1

2ID1

+

-
Gmf

CF

+

-
Gm2

CL

M1 M2vIN 

 +

-

vF  

vOUT  

M24

 1 : KGmf

M26 M21

M19 M20

2IDf

VDD

vIN 

 +
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M23M22

VSS

M25

VDD

(gm/ID)f

vOUT  

KGmf : 1 

M14

M16

M18 M11

M9 M10

2ID2

VDD

vIN 

 +
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M13M12

VSS

M15

M17

VBIAS1

VBIAS2

VDD

(gm/ID)2

(gm/ID)CM2P

(gm/ID)CM2N

vOUT  

 1 : KGm2 KGm2 : 1 

Figure 3.2: Block diagram of the proposed architecture. M1-M4 are the main transconductor
(Gm1) core. High-pass characteristic is set through M5-M8, Gmf and CF . Gm2 and Gmf are
implemented with symmetrical OTAs.

3.2.1 Transfer function
Gm1 is an OTA with a differential input (vIN ) and a single ended input (vF ). This
single ended input is used in the local feedback loop at the output for dc blocking. In
small-signal operation it can be useful to interpret M7-M6 and M8-M5 as asymmetrical
differential pairs where α defines the degree of asymmetry (see Fig. 3.2): gm7 = αgm6

and gm8 = αgm5, where gm5, gm6, gm7 and gm8 are the transconductance of M5, M6,
M7 and M8 respectively. As will become clear in Section 3.2.2, an α� 1 is adopted,
which implies that gm7 � gm6 and gm8 � gm5. Therefore, the transfer function of
Gm1 is as follows (see Fig. 3.2):

iGm1
∼= Gm1vIN + (gm5 + gm6)vF (3.1)

3To have values of K greater than 1, the copy factor is defined as the inverse of what is the
usual way to do it.
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where Gm1 is the Gm1 transconductance (Gm1 = gm1 where gm1 is the transconduc-
tance of M1 and M2).

The circuit depicted in Fig. 3.2 has the first-order band-pass transfer function
presented in Eq. 3.2 (see demonstration in Appendix A),

vout
vin

=

Gm1
CL

s

s2 + Gm2
CL

s+
(gm5+gm6)Gmf

CLCF

(3.2)

and the low-pass frequency flow−pass is given by Eq. 3.3, the band-pass gain G by Eq.
3.4 and the high-pass frequency fhigh−pass by Eq. 3.5,

flow−pass =
Gm2

2πCL
(3.3)

G =
Gm1

Gm2
(3.4)

fhigh−pass =
(gm5 + gm6)

Gm2

Gmf
2πCF

(3.5)

3.2.2 High-pass / input dc block circuit

VDD

M4M3

VSS

M7

M8

 α : 1

M6

M5

VDD

VSS

 α : 1

2ID1

+

-
Gmf

CF

+

-
Gm2

CL

vF  

≈ 0

M1 M2

vIN 

 +

-
= vIN,dc 

 ID1+ΔI  ID1-ΔI

 ID1+ΔI

 IGm1 ≈ 0 ID1-ΔI

 ID1-ΔI

= vF,dc

 2ΔI

≈ 0

vOUT  

Figure 3.3: Block diagram of the proposed architecture. The steady state condition of the input
dc blocking mechanism is highlighted: a dc input signal VIN,dc makes that the current by M8 be
equal to ID1 − ∆I and the current by M7 equal to ID1 + ∆I, resulting that IGm1 = −2∆I.
Then vOUT falls (Gm2 acts as a resistor to ground), Gmf increases its output current and vF
rises, making M5 to drain less current so that in the steady state condition the current by M5 is
approximately 0 and the current by M6 is approximately 2∆I. This equilibrium implies that the
current by M8 equals the one by M7 and IGm1 ≈ 0.

Fig. 3.3 shows the schematic of Gm1. In an OTA standard structure (without
M5 and M6) M7 and M8 would be ordinary cascode transistors, but in this circuit
they also perform another function. Jointly with M5 and M6, which are in charge of
draining the excess current caused by a dc input signal, they are the core of the input
dc block or high-pass circuit.

22



3.2. Proposed solution

Considering dc operation, the current by M1 and M2 is ID1. Any dc input signal
VIN,dc will generate a current ∆I through M1 and M2 (see Fig. 3.3), that will be
copied to the output by the current mirror formed by M3 and M4. Then, if M5 and
M6 are not present, this current will flow by M7 and M8 and will exit the circuit at
the output node.

The M5-M8 block, jointly with Gmf and CF , are dedicated to establish the high-
pass characteristic and to block the dc input. Indeed, the aforementioned ∆I current
at the Gm1 output (IGm1) will be compensated by M5 or M6, in order to keep the
output voltage vOUT equal to zero, via the integrator Gmf-CF .

For instance, when the dc input signal causes the current by M8 (ID,M8 = ID1−∆I)
to fall (or equivalently causes ID,M7 = ID1 + ∆I, the current by M7, to rise), IGm1 =
−2∆I will fall, then vOUT will fall as well (Gm2 acts as a resistor to ground). Then
Gmf will increase its output current and vF will rise, making M5 to drain less current
(or equivalently making M6 to drain more current). The equilibrium will be reached
when ID,M7 ≈ ID,M8 or consequently when IGm1 ≈ 0. This steady state condition
(marked in blue in Fig. 3.3) holds in a simplified case where Gmf-CF provides ideal
integration with infinite dc gain. In a practical case the finite dc gain and offset of Gmf
will result in a small remaining output dc offset. A similar reasoning can be carried
out if ID,M8 rises (or equivalently ID,M7 falls).

It is interesting to note that any mismatch present in the transistors of Gm1, that
can generate a ∆I current, will also be minimized by means of this technique.

One side-effect of this technique is that in ac operation M5 and M6 will drain
signal current. Then, if a high level of dc input must be blocked, a loss of gain will be
registered. An alternative to overcome this problem is to size M5-M8 in a way that
gm7 � gm6 and gm8 � gm5 (α � 1). For this reason, α is a key parameter in the
design process. On the one hand, if α = 1, the differential pair will be symmetrical,
half of the gain will be lost in M5 and M6, and the circuit will be able to block higher
levels of dc input signals. On the other, if α = 100 or greater, the loss of gain will be
negligible, but the capacity of blocking high levels of dc input signals will be reduced
(this is later quantified in Table 3.5).

3.2.3 CMRR
If we consider the architecture proposed by our work, we have:

CMRR = CMRROTA (3.6)

where CMRROTA is the CMRR obtained by the transconductor Gm1 (which can be
as high as it can be on any OTA), which can be modeled with the circuit depicted in
Fig. 3.4.

In this structure, there are two factors that reduce the common mode gain [102,
Section 4.3.5.3]. The first factor is the intrinsic rejection of common mode signals (low
common mode gain) of a differential pair structure. The common mode gain of each
branch of the OTA input stage is given by RL/2.rtail, where RL is the load resistance
and rtail is the resistance of the “tail” current source of the differential pair. It is worth
noting that rtail could be designed to be high by well known techniques, like cascoding
it. The second factor is the common mode attenuation due to symmetry. If the
structure were perfectly symmetrical (i.e. without systematic or random mismatch),
the common mode gain would be zero. When mismatch is considered, the common
mode gain is

ACMOTA =
RL

2.rtail
(εd + εcm) (3.7)
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Figure 3.4: Simplified model of the input stage of an OTA.

where εd and εcm are asymmetry error coefficients due to mismatch of the differential
pair and current mirror respectively (in Section 3.2.5, the reason why these coefficients
are small in our architecture is discussed).

If we consider the amplifier proposed by Harrison et al. [57, Fig. 1], the CMRR
can be expressed as [103]:

1

CMRR
∼=

1

CMRROTA
+

1

CMRRmismatch
(3.8)

where CMRROTA is the CMRR of the OTA and CMRRmismatch is the resulting
CMRR due to the mismatch of passive elements (capacitors C1 and C2, if we consider
in-band frequencies) considering the OTA has infinite CMRR (CMRROTA → ∞).

From Eq. 3.6 and Eq. 3.8 it can be concluded that the CMRR of the architecture
of [57] is always worse than the one obtained by our architecture. Additionally, it
is usually met that CMRROTA > CMRRmismatch, thus CMRRmismatch dominates
Eq. 3.8. The reasons for this are, firstly, the OTA open loop differential gain is much
larger than the closed loop one. Secondly, as will be shown next, the OTA common
mode gain ACMOTA is lower than ACMmismatch.

Following a similar reasoning of [103] it can be seen that the worst-case of CMRRmismatch
is:

CMRRmismatch ∼=
1 + C1/C2

2(δ1 + δ2)
(3.9)

where δ1 and δ2 are the tolerance of C1 and C2 respectively4, and the worst-case of
the common mode gain is:

ACMmismatch ∼= 2(δ1 + δ2) (3.10)

The mismatch in the passive elements translates directly into a non zero common
mode gain value which is in the order of the mismatch error or tolerance of the passive
elements (e.g a mismatch of 1% leads to a common mode gain around −34 dB).
Furthermore, since C2 must be much smaller than C1, in order to set a reasonably
high closed loop gain (C1/C2), and as matching improves with size, at least matching

4The actual value of both capacitors of nominal value C1 are in the range [1−δ1, 1+δ1].C1,
with δ1 � 1. We could consider δ1 equal to the 3σ value of the distribution of C1. In an
analog way, we consider that capacitors C2 have a tolerance δ2, with δ2 � 1.
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of C2 will not be optimal. On the other hand, in a OTA structure, the common mode
gain is reduced by the two factors mentioned before, and can be further reduced from
the values imposed by mismatch by increasing the rtail.

3.2.4 Noise
It can be proved that the thermal noise input-referred power spectral density Stotalni

for the circuit shown in Fig. 3.2 is5 (see demonstration in Appendix C):

Stotalni
∼=

2γsinNkT

Gm1

(
γwinP
γsinN

+
(gm/ID)CM1

(gm/ID)1
+
ID2

ID1
Γ

)
(3.11)

where (gm/ID)1 and (gm/ID)CM1 are respectively the transconductance to dc drain
current ratio of the input transistors of Gm1 (M1 and M2) and of the current mirror
transistors of Gm1 (M3 and M4). γwi = 2 and γsi = 8/3 are the excess noise factor in
weak and strong inversion, respectively. n is the slope factor (the subscript indicates
whether it is an NMOS or PMOS transistor), k is the Boltzmann constant, T is the
absolute temperature, and Γ is:

Γ =
(gm/ID)2
(gm/ID)1

nN
nPK2

Gm2

+
(gm/ID)CM2N

(gm/ID)1K
2
Gm2

+

+
(gm/ID)CM2N

(gm/ID)1KGm2

+
(gm/ID)CM2P

(gm/ID)1

nN
nPKGm2

(3.12)

where (gm/ID)2 and (gm/ID)CM2i are respectively the transconductance to dc drain
current ratio of the input transistors of Gm2 (M9 and M10) and of the current mirror
transistors of Gm2 (the subscript indicates whether it is an NMOS or PMOS transis-
tor), and KGm2 = gm2/Gm2. These equations show the contribution of KGm2 in the
noise reduction.

In order to reduce noise, according to Eq. 3.11, M1 and M2 have to be biased
in weak inversion (maximum (gm/ID)), and M3 and M4 in strong inversion (low
(gm/ID)). In order to further reduce noise it can be shown that the input transistors
of Gm2 have to be biased in weak inversion and the Gm2 mirror transistors in strong
inversion.

3.2.5 Design flow and design trade-offs
In this section a basic design flow for the proposed architecture, including the main
design trade-offs is presented.

ID1 is set through the power consumption specification or the noise specification
(by means of the NEF). Then, Gm1 is set aiming to maximize (gm/ID)1 in order to
minimize noise (see Section 3.2.4) while having an acceptable size for M1 and M2.
Next, by means of Eq. 3.4 and the gain specification, Gm2 is fixed. Therefore, given
the flow−pass specification, according to Eq. 3.3, CL is determined.

The inversion level of the input transistors of Gm2 (related to (gm/ID)2) has to
be chosen considering the following trade-off. Firstly, (gm/ID)2 has to be maximum
in order to minimize noise (see Section 3.2.4) and power consumption. Secondly,

5Notation about the transconductance to dc drain current ratio: when we state (gm/ID)ab,
b will be 1, 2 or f , corresponding respectively to Gm1, Gm2 o Gmf. If a is omitted the
transconductance to dc drain current ratio refers to the transistors of the input pair, if a is
CM it corresponds to the current mirror transistors, and if it is C to the cascode transistors.
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(gm/ID)2 has to be minimum to maximize the linear range of the Gm2 input dif-
ferential pair, which must be high enough to handle the maximum expected output
amplitude (around 300mVpp in this work). This trade-off is later quantified in Section
3.3 (see Fig. 3.5). On the other hand, KGm2 can be used to lower noise (the higher
KGm2 the better, see Section 3.2.4) at the cost of increasing the power consumption
(the higher the value of KGm2 , the higher the power consumption). Once (gm/ID)2
and KGm2 are determined, as Gm2 was already set, ID2 is also determined.

The inversion level of the cascode transistors of Gm1 (M7 and M8, and therefore
M6 and M5) have to be chosen considering the following aspects. On one hand, in
order to achieve a very low value of fhigh−pass (see Eq. 3.5), gm6 and gm5 have to
take the lowest possible value, therefore, for a given current, M6, M7, M8 and M5
have to be biased in strong inversion. On the other hand, biasing these transistors
in strong inversion may lead to a high saturation voltage VDsat. Finally, another
important point in order to size these transistors is the condition shown in Section
3.2.1: gm7 � gm6 and gm8 � gm5 where gm7

∼= gm8.

Since noise contribution and power consumption of Gm2 cascode transistors are
negligible, the only aspect to be considered in its design is the output swing. Then,
in order to minimize the saturation voltage VDsat of these transistors, they have to be
biased in weak inversion.

To determine (gm/ID)CM1 (corresponding to Gm1 current mirror transistors M3
and M4) and (gm/ID)CM2 (corresponding to Gm2 current mirror transistors) two
elements have to be considered. Firstly, in Section 3.2.4 it was shown that from the
point of view of noise reduction these transistors have to be biased in strong inversion.
Secondly, low values of gm/ID may lead to a high value of the VDsat saturation voltage
that impacts in the output swing.

M1 and M2 (Gm1 input differential pair) need to be large in order to operate in
weak inversion, and hence will present very good matching and low εd error. Addi-
tionally, M3 and M4 have to operate in strong inversion with also large size (large L
for small W/L), both conditions lead to low mismatch error (εcm). Therefore, it is
possible to reduce noise and increase CMRR, at the cost of increasing the area.

Once gm2, gm6 and gm5 are set, and considering that the value of CF is bounded
by the maximum value reachable within a reasonable area, and given a fhigh−pass
specification, according to Eq. 3.5 Gmf is determined. The inversion level of the
Gmf input transistors (defined by (gm/ID)f ) has to be selected paying attention to
the following. On one hand, a very low fhigh−pass implies a very low value of Gmf ,
which in turn implies a low value of the W/L ratio of the Gmf input transistors. For
this reason and for maximizing the linear range of the Gmf input differential pair,
(gm/ID)f has to be minimum (strong inversion). On the other hand, biasing the
Gmf input differential pair in strong inversion may lead to excessively long transistors,
which may in turn result in very high values of the gate-source capacitance which
impacts the load capacitance of Gm1 and hence the low-pass frequency. Therefore,
biasing in moderate or weak inversion may be necessary. Finally, although from the
point of view of power consumption, it might seem that the input transistors of Gmf
should be biased in weak inversion, the contribution of the consumption of this stage to
the overall consumption is negligible due to the low transconductance required. Once
(gm/ID)f is established, IDf is set. Finally, noise contribution and power consumption
of Gmf mirror transistors are negligible, therefore a standard design can be adopted
where it has to be considered the output swing and the offset.

The actual implementation resulting from these trade-offs is presented in the next
section.
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3.3 Implementation
A neural preamplifier based on the previously presented architecture was implemented
in a 0.5 µm standard CMOS process. We designed the preamplifier according to the
following specifications:

• Band-pass gain of G = 50 dB.

• Low-pass frequency flow−pass = 10 kHz with an integrated CL = 5 pF.

• High-pass frequency fhigh−pass = 18 Hz with an integrated capacitor CF = 47 pF,
and fhigh−pass = 0.1 Hz with an external capacitor CF = 10 nF. Both integrated
CL and CF were built as poly−poly capacitors for maximum linearity.

• CMRR greater than 80 dB.

• Input-referred around 2 µVrms.

• NEF around 2.

In order to obtain a NEF around 2, ID1 = 3.75 µA was taken. The Gm1 mirrors
(M3 and M4) were biased6 in deep strong inversion taking (gm/ID)CM1 = 2.5 V−1,
which implies a VDsat = 590 mV. The transistors of the Gm1 input differential pair
(M1 and M2) were biased in deep weak inversion with a (gm/ID)1 = 27 V−1. In
order to assess the impact on flicker noise, taking an almost minimum M1 and M2
transistor length L1 = 1 µm, different cases were simulated varying the M1 and M2
transistor width W1. Table 3.1 and Table 3.2 show the noise performance for the main
values of the (W/L)1 considered. The noise integration bandwidth considered in these
simulations ranges from 3.2 nHz to 100 MHz. As expected, the higher W1 the lower
the contribution of the flicker noise. Finally, W1 = 8000 µm and L1 = 1 µm were
chosen.

Table 3.1: Schematic simulations of noise performance for different values of W/L ratio of the
Gm1 input differential pair, with fhigh−pass = 18 Hz (fully-integrated capacitors).

(W/L)1 (µm) 2000/1 4000/1 8000/1 12000/1

M1/M2 area (µm2) 2000 4000 8000 12000

gm1 (µS) 94.0 98.0 101.0 102.5

(gm/ID)1 (V−1) 25.7 26.7 27.5 27.9

Gain (V/V) 288 299 306 309

vni (µVrms) 2.23 2.11 2.05 2.02

NEF 2.33 2.20 2.14 2.11

A comparison between Table 3.1 and Table 3.2 shows that it does not make a
big difference, regarding noise performance, to vary the high-pass frequency between
0.1 Hz and 18 Hz. This happens because the thermal noise is integrated through a
wide bandwidth (10 kHz) making the flicker noise generated between 0.1 Hz and 18 Hz
negligible. The same behavior is reported in [57].

In order to make the loss of gain negligible, α was set to 1007, assuring that
gm7 � gm6 and gm8 � gm5 due to gm7/100 = gm6 and gm8/100 = gm5.

6Throughout the text gm/ID values are reported at room temperature.
7α = 100 was chosen as an arbitrarily large number, that was then verified that lead to

good results. Low values of alpha reduce the gain and allow the circuit to block higher levels
of dc input signals. On the other hand, high values of alpha increase the gain and decrease
the dc input block capacity. In addition, low values of alpha reduce the output resistance of
Gm1, which in turn impacts in the overall OTA performance.
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Table 3.2: Schematic simulations of noise performance for different values of W/L of the Gm1
input differential pair, with fhigh−pass = 0.1 Hz (external capacitor CF ).

(W/L)1 (µm) 4000/1 8000/1

M1/M2 area (µm2) 4000 8000

gm1 (µS) 97.8 100.8

(gm/ID)1 (V−1) 26.7 27.5

Gain (V/V) 295 306

vni (µVrms) 2.20 2.08

NEF 2.30 2.17

Fig. 3.5 introduces the Gm2 linearity noise current-consumption trade-off (pre-
viously mentioned in Section 3.2.5) and shows how (gm/ID)2 is a useful tool to
evaluate this trade-off. The figure presents the noise contribution of Gm2 (which
is the third term of Eq. 3.11), the current consumption of Gm2 and its input lin-
ear range (taken from [104, Eq. 9] with a linearity error of 10%). In our case,
(gm/ID)2 = 9.3 V−1 was set (this allows an input linear range of 300 mVpp). Addi-
tionally, (gm/ID)CM2N = (gm/ID)CM2P = 4.5 V−1 was taken.
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Figure 3.5: Gm2 linearity noise current-consumption trade-off.

In order to achieve a very low high-pass frequency within a reasonable area and
without an external capacitor, the lowest possible value for Gmf has to be taken.
To have a Gmf around 1 nS the technique proposed in [105] that divides the current
using series-parallel current mirrors was used. The current division factor implemented
was KGmf = 72.5, establishing a fhigh−pass = 18Hz with an integrated capacitor
CF = 47pF, and a fhigh−pass = 0.1 Hz with an external capacitor CF = 10nF. The
same technique was used in Gm2 with a current division factor of KGm2 = 8.5 (in this
case for noise reduction).

According to what was discussed in Section 3.2.3 and Section 3.2.5, two techniques
were implemented to guarantee a high CMRR. Firstly, as mentioned before, large M1,
M2, M3 and M4 transistors were adopted, thus improving matching. Secondly, the
rtail of the current source of Gm1 was increased by cascoding it. To bias the cascode
transistor the technique proposed in [106] was used. This allows to generate the
bias voltage in such a way that the transistor of the current mirror operates in weak
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inversion and its VDS is just a little higher than VDsat. This is done by means of a
single diode connected transistor, avoiding the need of using a dc voltage source and
eventually an external pin. Although this technique was very useful, our design did
not pay enough attention to the consumption nor the area of this auxiliary circuit,
resulting in occupying an important area and a current consumption not negligible8.

The power supplies were set in VDD = 1.65 V and VSS = −1.65 V. The dc
gate voltage of M7 and M8 and the reference values of Gm2 and Gmf were set in
(VDD + VSS)/2 = 0 V. This 0 V voltage, the mid-point between the supply voltages,
is hereinafter referred to as “ground”, and the output is referred to this voltage. The
common-mode voltage of the gates of M1 and M2 has to be higher than ground, so it
was set to 0.6 V, this voltage is hereinafter referred to as “REF”.

According to the aforementioned considerations a neural preamplifier was fabri-
cated in a 0.5 µm standard CMOS process (see Fig. 3.6). The area was not op-
timized. While the core of the preamplifier occupies 0.335 mm2 (including capaci-
tors), biasing and testing circuits occupy 0.322 mm2. The area of the biasing and
testing circuits could be much reduced. The distribution of the area is as follows:
AGm1 = 0.219 mm2 (65.37%), AGmf = 0.040 mm2 (11.94%), AGm2 = 0.021 mm2

(6.27%), ACF = 0.048 mm2 (14.33%) and ACL = 0.007 mm2 (2.09%).

Figure 3.6: Microphotograph of chip containing a preamplifier with the proposed architecture
(dashed white rectangle). The area of the preamplifier core is 0.335 mm2 (including capacitors).

The main parameters of the preamplifier are presented in Table 3.3.

3.4 Experimental results
3.4.1 Testbench results
This Section presents results of the laboratory characterization of two samples of the
same chip (named IC#01 and IC#02) and post-layout simulations. The samples were
randomly selected from the received prototype chips. The consistency between the
results of the two samples, and the simulations including 500-runs MC mismatch ones
was deemed enough to confirm the expected performance of the chip. IDD is the total
current consumption of the preamplifier, vni is the input-referred noise voltage, PSD

8This circuit has two branches that each consumes IBIASGm1/10 which represents 1.54 µA
and will not be considered in the following sections as part of the preamplifier consumption,
because the consumption of these branches can be adjusted to IBIASGm1/100 and make it
negligible.
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Table 3.3: Preamplifier main parameters (post-layout simulations).

Gm1 Gm2 Gmf

(gm/ID)InDifPair 27.5 V−1 9.3 V−1 17.1 V−1

(gm)InDifPair 101 µS 2.7 µS 86 nS

Gm 100 µS 320 nS 1.2 nS

(ID)InDifPair 3.67 µA 291 nA 5 nA

(W/L)InDifPair 7776/1.05 3.3/6 3/42

KGm 1.0 8.5 72.5

(gm/ID)CM 2.5 V−1 4.5 V−1 -

gm6 735 nS - -

gm5 710 nS - -

gm7 91 µS - -

gm8 83 µS - -

corresponds to the noise power spectral density, PSRR+ is the positive power supply
rejection ratio (VDD), PSRR- refers to the negative power supply rejection ratio (VSS),
ICMR is the input common-mode range and “Output Offset” is the output dc voltage
deviation from ground. To measure Gain and CMRR we used input signals of 1 mVpp

and 100 mVpp respectively. PSRR+ and PSRR- were measured by introducing a
signal of 100 mVpp and 50 Hz in the respective supply source. The simulation values
correspond to the typical values unless otherwise indicated.

Table 3.4 summarizes the main characteristics of the proposed preamplifier. In
general terms, expected theoretical values and simulation results agree with measured
data in both chips. However, PSRR- with fully-integrated capacitors is lower than
expected. This is because the integrated CF = 47pF was connected by mistake to VSS
instead of ground. The proposed architecture is very competitive with other amplifiers
in the state-of-the-art as will be shown in Section 3.4.3.

Table 3.4: Preamplifier main characteristics. Experimental results from two chips (IC#01 and
IC#02) with fully-integrated capacitors and external capacitor CF = 10 nF.

Simulation IC#01 IC#02

Fully-int Ext. CF Fully-int Ext. CF Fully-int Ext. CF

Gain (dB) 49.7 49.6 49.6 49.2 49.5 49.3

fhigh−pass (Hz) 17.9 0.1 13.0 0.1 12.0 0.1

flow−pass (kHz) 9.6 9.6 9.8 10.3 9.7 10.6

IDD (µA) 8.10 8.10 8.48 8.45 8.41 8.49

vni (µVrms)* 1.92 1.96 1.88 1.94 2.03 2.07

NEF 2.15 2.19 2.13 2.14 2.30 2.25

Noise integration 3.2n-100M 0.03-25k 0.03-25k

bandwidth (Hz)

CMRR @ 1kHz (dB)* 89.7 90.9 87.0 87.6 92.0 91.6

PSRR+ @ 50Hz (dB)* 73.7 82.1 74.9 72.4 76.9 86.4

PSRR- @ 50Hz (dB)* 35.2 68.1 35.1 63.2 35.0 67.1

Output Offset (mV)* 2.0±11.6 2.0±12.0 -1.4 -8.3 8.1 -3.0

* the simulation value corresponds to the mean value of the 500-runs

MC simulation, otherwise the typical value is reported.

Fig. 3.7 shows the measured and simulated frequency response for two cases,
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fully-integrated capacitors and external CF capacitor. In Fig. 3.8 and Fig. 3.9 the
simulated and measured output-referred noise PSD with fully-integrated capacitors
and external CF capacitor respectively is depicted.
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Figure 3.7: Frequency response with fully-integrated capacitors (blue) and external capacitor
CF = 10 nF (red). Measurements (IC#01 = asterisks and IC#02 = triangles) and simulations
(dashed line).
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Figure 3.8: Ouput-referred noise PSD with fully-integrated capacitors. Measured at the output
of IC#01 (solid blue) and simulated (dashed black). Integration under the solid curve divided by
gain G yields to an input-referred noise voltage of 1.88 µVrms.

Fig. 3.10 shows the measured and simulated CMRR for the fully-integrated ca-
pacitors version. The performance in terms of CMRR is outstanding: below 4 kHz is
always greater than 80 dB, at this frequency it starts to fall, but at 10 kHz it is still
greater than 70 dB. In addition, at 50 Hz the measured value is 90.3 dB, and the 500
runs MC simulation worst-case and best-case are respectively, 81.8 dB and 123.3 dB.

As it was stated in Section 3.2.2 the gain is the only parameter affected by the dc
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Figure 3.9: Output-referred noise PSD with external capacitor CF = 10 nF. Measured at the
output of IC#01 (solid blue) and simulated (dashed black). Integration under the solid curve
divided by gain G yields to an input-referred noise voltage of 1.94 µVrms.
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Figure 3.10: Common-mode rejection ratio (CMRR) with fully-integrated capacitors. Measure-
ments (IC#01 = blue asterisks and IC#02 = blue triangles) and 500 runs MC simulations (black
lines). The best-case iteration of MC simulation is depicted in dashed black line, and the worst-case
iteration in solid black line.

blocking technique proposed in our architecture. In Table 3.5 gain measurements for
different input dc voltages VIN,dc are presented. There it can be seen that the loss of
gain is admissible for input dc voltages lower than 50 mV. As discussed in Section 2.3,
our result is more than acceptable since the undesired input dc signals are typically in
the range of 1 mV - 10 mV, and can be up to a maximum of 50mV [56]. In addition,
in many applications, small variations in the amplitude are not significant (e.g. spikes
detection).

The preamplifier ICMR is 380 mV (within a ±1.65 V power supply). This value
of ICMR assures a loss of gain lower than 0.5 dB and a CMRR greater than 80 dB
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Table 3.5: Dc blocking capacity with fully-integrated capacitors and external capacitor CF = 10 nF.
Gain simulations and measurements for different dc voltage inputs VIN,dc. These measurements
were performed at 1 kHz.

Simulation IC#01 IC#02

VIN,dc Fully-int Ext. CF Fully-int Ext. CF Fully-int Ext. CF

0 mV 49.7 dB 49.6 dB 49.5 dB 49.2 dB 49.5 dB 49.3 dB

50 mV 41.4 dB 41.4 dB 41.9 dB 40.7 dB 40.3 dB 40.6 dB

100 mV 31.8 dB 31.7 dB 29.7 dB 30.8 dB 29.8 dB 30.3 dB

(see Fig. 3.11). This ICMR is more than enough to accommodate typical common-
mode signals. The Gain and CMRR measurements were performed in the band-pass
(200 Hz) with fully-integrated capacitors. Fig. 3.11 shows that, in order to guarantee
a loss of gain lower than 0.5 dB and a CMRR greater than 80 dB, the preamplifier
inputs need to be biased to a common-mode potential (REF) in the range from 0.32 V
to 0.70 V being 0 V the mid-point between the supply voltages. This can be easily
implemented, as will be shown in the application example presented in Subsection
3.4.2 (see Fig. 3.15).
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Figure 3.11: ICMR measurement with fully-integrated capacitors. IC#01 Gain (red) and CMRR
(blue) measurements for different dc input common-mode voltages (referred to ground). The
figure shows that the ICMR is 380 mV (with a ±1.65 V power supply). These measurements were
performed at 200 Hz.

Figures 3.12 and 3.13 present results of PSRR+ and PSRR- with fully-integrated
capacitors respectively. PSRR+ is adequate for the targeted applications. However, as
previously mentioned, PSRR- resulted in a lower value than expected. This is because
the integrated CF = 47 pF was connected by mistake to VSS instead of ground.
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Figure 3.12: Positive power supply rejection ratio (PSRR+) with fully-integrated capacitors. Mea-
surements (IC#01 = blue asterisk and IC#02 = blue triangle) and simulations (black lines). The
best-case iteration of MC simulation is depicted in dashed black line, and the worst-case iteration
in continuous black line.
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Figure 3.13: Negative power supply rejection ratio (PSRR-) with fully-integrated capacitors. Mea-
surements (IC#01 = blue asterisk and IC#02 = blue triangle) and simulations (black lines). The
best-case iteration of MC simulation is depicted in dashed black line, and the worst-case iteration
in continuous black line.
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3.4.2 Weakly electric fish in-vivo recording
Our preamplifier has proved to be highly appropriate for in-vivo recording of LFPs
and unitary signals from the brain stem of weakly electric fish Gymnotus omarorum.

Two in-vivo experiments were performed for testing our preamplifier. Firstly, a
freely-moving fish experiment with a pair of thin wires (60 µm diameter, insulated
except at the tip), attached to the skull with dental cement, chronically-implanted
at the mesencephalon (see Fig. 3.14). Secondly, an acute experiment with the fish
still, consisted in a multitrode (Michigan type) inserted in the electrosensory lobe (one
recording spot was connected to the preamplifier positive input and a copper wire of
80 µm diameter insulated except at the tip was connected to the negative input).

A

B

C
Figure 3.14: In-vivo recording setup (freely-moving fish experiment). Main figure shows a fish
chronically implanted at the mesencephalon with a pair of thin wires (60 µm diameter, insulated
except at the tip). The fish can swim in a mesh pen. Above the fish, an unshielded custom PCB
supporting our integrated preamplifier is shown. Inset panel A: fast field potential recorded in
the freely-moving fish (up), and EOD recorded in the water (down). Inset panel B: close up of
the fish’s head showing the fixation of the wires to the skull with dental cement. Inset panel C:
surgical implantation of the freely-moving fish.
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In both experiments, the aforementioned electrodes were simultaneously connected
to an unshielded custom Printed Circuit Board (PCB) supporting our preamplifier
and to a standard shielded biopotential instrumentation system Microelectrode AC
Amplifier 1800 from A-M Systems. This amplifier features a CMRR greater than
80 dB, an input-referred noise of 3 µVrms (10 Hz - 100 kHz), gain and bandwidth are
programmable, and it is powered from the mains. Despite the fact that the Microelec-
trode AC amplifier 1800 was not designed to perform recordings in freely-moving fish
(mainly because of its size and the fact that it is powered from the mains), we were
able to record simultaneously with both amplifiers, but fish movements were restricted
in order to protect the animal. The output of both amplifiers were sampled through
a Datawave Technologies acquisition system.

The experimental setup is shown in Figs. 3.15 and 3.14. A third wire placed at
the dorsal muscle mass acted as a common-mode reference for both amplifiers (named
REF in Fig. 3.15). The ground of our amplifier is referred to the fish (and to the
rest of the acquisition system) by means of an auxiliary circuit formed by R1 = 470Ω,
R2 = 2.2 kΩ and C1 = 100 nF // 47 µF (shown in Fig. 3.15). This circuit sets
the middle point of our amplifier power supplies to a specific and configurable voltage
below REF. According to what was discussed in Subsection 3.4.1, REF needs to be
biased to a common-mode potential in the range from 0.32 V to 0.70 V being 0 V the
mid-point between the supply voltages. In other words, the ground of our amplifier
needs to be biased to a potential in the range from -0.32 V to -0.70 V (referred to
REF). In these experiments the ground of our amplifier was set in -0.6 V from REF.
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Figure 3.15: In-vivo recording setup (still and freely-moving fish experiments). Electrodes were
simultaneously connected to our preamplifier (powered by 2 AAA batteries) and to a standard
instrumentation system (Microelectrode AC Amplifier 1800 from A-M Systems) powered from the
mains. The output of both amplifiers were sampled through a Datawave Technologies acquisition
system. A third electrode (REF) placed at the dorsal muscle mass acted as a common-mode
reference for both amplifiers.

Fig. 3.16 shows the effect of the EOD at the output of the preamplifier, where
it can be seen that the EOD is firing every 90 ms approximately. Note in this figure
the perfect matching of the signals recorded with our unshielded low-power amplifier
(solid line) with those recorded with the shielded ac-plugged commercially available
amplifier (dashed line). Fig. 3.16 and Fig. 3.14-A display in detail the EOD artifact
and a short-latency fast LFP recorded in the acute and chronically implanted fish
respectively.

In Fig. 3.16 two phenomena can be observed. Firstly, the input signal common
mode voltage (mainly due to the EOD) is largely attenuated. Secondly, due to unbal-
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Figure 3.16: In-vivo recording of a weakly electric fish Gymnotus omarorum (still fish experiment).
Fast LFP and EOD artifact are indicated. In solid blue the recording from our amplifier and
in dashed black the one from the Microelectrode AC Amplifier 1800 from A-M Systems. Each
recorded signal is referred to the input of its corresponding amplifier (the amplitude of the output
signal is divided by the amplifier gain).

ances between impedances at the tissue-electrode interface, the EOD give place to a
differential mode voltage at the amplifier input (usually called “EOD artifact”), which
is consequently amplified (for this reason we achieve a perfect matching in the signal
recorded with our amplifier and the AM-1800 system). This conversion from common
to differential mode is usually called “potential divider effect” [107].

Fig. 3.17 shows a recording from a freely-moving experiment performed with
another fish. In this case the EOD is firing every 50 ms approximately. A slow LFP
can be observed, as well as the Fast LFP, the EOD artifact and unitary activity. In
order to simultaneously record Slow LFP and unitary activity, the preamplifier was
used with external CF = 10 nF.

Finally, Fig. 3.18 shows in-vivo neural unitary activity recordings obtained with
our amplifier. The amplitude of the EOD measured at the inputs of the preamplifier
was approximately 100 mVpp. Therefore, in this particular experiment, we were able
to accurately record 500 µVpp spikes superposed to a 200 times higher EOD.
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Figure 3.17: Gymnotus omarorum in-vivo recording (freely-moving experiment).
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Figure 3.18: Superimposed traces of a single unit repetitively active in the electrosensory lobe
corresponding to the still fish experiment. Note the similarity of the time course and the large
signal to noise ratio.
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3.4.3 Comparison with previous work
As discussed in Section 3.1, over the last years remarkable research work has been
done in this area. Some amplifiers were selected from this rich background. Table
3.6 summarizes the main performance parameters of our preamplifier compared to
state-of-the-art implementations. The rationale behind this table can be summarized
as following:

1. We have prioritized works that take specially into account the CMRR [81], or
report a worst-case simulation [57]. [57] is also included for historical reasons.

2. We have prioritized works that achieve outstanding results of CMRR and present
a reasonable performance in NEF and input noise [64,82]. [82] is also interesting
because it does not implement the architecture of Harrison et al.

3. Residual criterion: works that present acceptable values of CMRR (greater than
60 dB) and exhibits a very good performance in current-efficiency (NEF lower
than 3) and input-referred noise lower than 4 µVrms.

The parameter “CMRR worst-case” corresponds to a measured or simulated worst-
case value. In our preamplifier we report the worst-case value at 50 Hz in a 500-runs
MC simulation.

As mentioned in Section 3.1, in order to correctly compare input noise, NEF and
PEF performance, it is necessary to consider the adequate noise integration bandwidth.
For this reason, the measurements where the noise integration bandwidth only covers
the amplifier bandwidth were marked with (*) in Table 3.6. The actual NEF, PEF
and input noise of these works, when integrated in the whole bandwidth, should be
higher than the reported ones.

As mentioned in Section 2.3, PEF is strongly dependent on the supply voltage
of the circuit, which in turn it is dependent on the manufacturing process and its
threshold voltage. The architecture presented here shows a similar or even a much
better PEF than other circuits manufactured in similar processes, like [57, 61, 63, 68,
69, 82]. For instance, despite that this kind of extrapolation is not straightforward, if
our VDD is scaled in a process with smaller channel length and threshold voltage, the
resulting PEF value gets closer to the best figures shown, or even better than the other
preamplifiers that provide high CMRR (our PEF would scale to 5.3 if the circuit is
powered with a 1.2 V supply voltage in a 0.18 µm or smaller process). Another aspect
directly related to the manufacturing process is the resulting area. This should be
taken into account when comparing this characteristic of the design. In the framework
of an undergraduate thesis [108], a first approach to implement our architecture in a
130 nm process was done (this topic will be taken up in Chapter 7).

Some existing works [64,82] present an excellent value of CMRR (greater or equal
to 90 dB), however they do not include a worst case or spread analysis that allows to
assess the full CMRR performance in face of mismatches. Furthermore, these CMRR
values are not achieved jointly with low NEF or low input noise. Table 3.6 shows that
our work performs well in line with other state-of-the-art neural preamplifiers. Indeed,
our work is the best choice for applications that simultaneously seek low noise, high
CMRR and current-efficiency.
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3.5. Safety considerations

3.5 Safety considerations
The proposed neural recording architecture could be applied to medical devices, in-
cluding implantable ones. In this scenario, the safety of the proposed circuit needs to
be considered. The standards and regulations for active implantable medical devices
require that the dc current leakage towards the tissue (which may damage it) to be
below 1 µA [109, Cl. 16.2]. In addition, safety should be preserved even under sin-
gle failure condition [109, Cl. 19.3]. In this case, the standards and regulations do
not state a numerical value, but require that the failure shall not cause an unaccept-
able hazard, which depending on the application this may allow for a leakage a bit
higher than 1 µA. In any case, it should be analyzed the suitability of the proposed
architecture from this point of view.

In the case of the architecture of Harrison et al. the prevention of dc leakage under
normal and single fault conditions is helped by the use of series input capacitors. In
our case, under no failure conditions, the dc leakage is prevented by the isolation of
the gate oxide of the input transistors. On the other hand, Fig. 3.19 shows the case of
a single failure that short circuits the gate of one of the input transistors to its source
or drain (the figure analyze M2, an analog reasoning can be conducted for M1). In
both cases, the dc current ITISSUE that will flow through the body, can be limited by
the values of R1 and R2

9. For instance, if the value of these resistors is in the order
of MΩs, the value of ITISSUE will be in the order of hundreds of nano-amperes, which
is a safe value. The high value of these resistors does not affect the noise performance
of the circuit because its thermal noise is filtered by C1 (the noise contribution will be√
kT/C1).

The previous analysis is not intended as a complete risk and safety analysis for
the proposed circuit. A complete analysis needs to be carried out in a particular
system and application. It just tried to show that the proposed circuit does not entail
complications regarding safety aspects related to dc leakage to the body under normal
and single failure conditions as required by the regulations and standards of active
implantable medical devices, which is the more demanding application case in terms
of safety.

3.6 Conclusions
This work presented a novel neural preamplifier architecture, including silicon imple-
mentation and experimental characterization. This architecture was presented and
analyzed in depth, with a strong focus in the technique that efficiently blocks the
dc input signal and sets the high-pass frequency, deriving the preamplifier transfer
function and the main design equations. This architecture enables a low noise, high
CMRR and current-efficient neural preamplifier, with a high-pass frequency fixed with-
out MOS pseudo-resistors.

A fully-integrated neural preamplifier, with an overall state-of-the-art performance
and enhanced CMRR, was fabricated in a 0.5 µm CMOS process. In general terms,
expected theoretical values and simulation results agree with measured data in both
chips. Results from measurements show that the CMRR is greater than 87 dB, the
equivalent input noise is 1.88 µVrms and the NEF is 2.1. To the best of our knowl-
edge, our amplifier is the best option for applications that simultaneously need low
noise, high CMRR and current-efficiency. cdA second version of the preamplifier with
one external capacitor achieves a high-pass frequency of 0.1 Hz while keeping the

9For a short circuit between gate and drain other current pathways can be considered. In
all cases, the current will be limited by R1 and R2.
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Figure 3.19: single failure safety analysis: the short circuits between the gate of M2 and its source
(up) or drain (down) are marked in red. The brain depicted in the figure was taken from Brain
Embroidery by Hey Paul Studios (licensed under CC BY 2.0).

performance of the fully-integrated version.
In addition, this work has presented in-vivo measurements made with the pro-

posed architecture in a weakly electric fish (Gymnotus omarorum), showing the abil-
ity of the preamplifier to acquire neural signals from high amplitude common-mode
interference in an unshielded environment. Moreover, signals recorded with our un-
shielded low-power battery-operated amplifier perfectly match those recorded with a
shielded ac-plugged commercial laboratory instrumentation system. Finally, the pro-
posed preamplifier has proved to be highly appropriate for in-vivo recordings of LFPs
and unitary signals from the brain stem of a weakly electric fish.
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Chapter 4

A novel band-pass biquad filters
architecture

Second-order filters, often referred as biquads, can be configured to be universal filters
and they are suitable for cascade connection in order to achieve higher order filters
[110]. These filters are key blocks of AFEs and other important circuits. In this
chapter we extend and apply the architecture presented in Chapter 3 to biquad band-
pass filters showing the versatility of the proposed architecture. This chapter is an
adapted version of [30].

Continuous-time integrated Gm-C filters, have received considerable interest in
various applications, such as hard-disc drives, video filtering, wireless communications,
instrumentation systems and biomedical circuits [111, 112]. Gm-C filters are suitable
for biomedical or biological applications because they present high input resistance, it
is possible to integrate large time constants within a reasonable silicon area [105] and
they have a simple and systematic design flow, but many of their other properties still
need improving, such as operation at reduced power consumption [112].

A possible approach to provide low-noise, ultra-low-power, band-pass filtering with
amplification, high CMRR and the capacity to reject large input dc values, is to
use a traditional Gm-C biquad band-pass filter, for example the one shown in Fig.
4.1 [85, 113]. However, this solution requires an OTA devoted to establish the high-
pass characteristic and block the dc input (depicted by Gm3 in Fig. 4.1). This
implies an overhead in terms of power consumption and silicon area. There are other
Gm-C biquad architectures that achieve the band-pass characteristic without Gm3.
However, these architectures, such as the one used in [12], do not have a differential
input. These architectures can be used in the middle of the processing chain, but they
are not suitable for the input stage. Then, despite to be useful in any context, our
solution will be particularly advantageous when a differential input is required.

4.1 Proposed Solution
4.1.1 Input dc block in the traditional biquad
In Fig. 4.1 a traditional biquad implementation of a band-pass filter with amplification
is depicted [113]. In order to facilitate the analysis, this discussion will be presented on
basis of a particular architecture of a transconductor (symmetrical OTAs). However,
the principle is general and can be extended to other OTAs implementations. Then,
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Gm1, Gm2, Gm3 and Gmf are symmetrical OTAs whose transconductances are, re-
spectively, Gm1, Gm2 Gm3 and Gmf . We shall refer as 2.IDj to the tail current of the
input differential pair of Gmj (where j stands for 1, 2, 3 or f).

+

-

Gm2

+

-

Gm1

- Gm3

-

+

Gmf

vIN

vOUT

vF
+

+

-

IGm1,OUT

IGm3,OUT IOUT=0

( = )

CF

CL

= Vos,IN

Figure 4.1: Traditional biquad architecture of a band-pass filter with amplification [113] p. 847.
The input dc blocking mechanism is highlighted: if Vos,IN is a dc signal, vOUT will be zero
whenever Gm3 is able to drain the Gm1 ouput current (IGm1,OUT ). This means that IGm3,OUT

has to be equal to IGm1,OUT . If Gm3 is not able to provide the needed current, the dc input
signal won’t be blocked and the band-pass characteristic will be lost.

Gm3 is especially dedicated to establish the high-pass characteristic and block the
dc input. Indeed, as shown in Fig. 4.1, any dc input signal Vos,IN will generate a
current at the Gm1 output (IGm1,OUT ), that will be compensated by Gm3, in order to
keep the output voltage vOUT equal to zero (at ground voltage). This compensation
will be done by means of the integrator Gmf-CF . For instance, if IGm1,OUT rises, then
vOUT will rise (Gm2 acts as a resistor to ground), then Gmf will increase its output
current and vF will rise as well, hence the Gm3 output current (IGm3,OUT ) will fall.
The equilibrium will be reached when IGm1,OUT = IGm3,OUT .

It is worth to emphasize that it is incorrect to analyze the blocking of the dc input
solely on basis of the small signal analysis. This would lead to the wrong conclusion
that Gm3 is able to block any level of input dc signal. A large-signal analysis shows
that the maximum current that Gm3 is able to provide1 is IGm3,OUT = 2.ID3, when its
input differential pair is totally unbalanced, being 2.ID3 the tail current of the input
differential pair of Gm3. Next, if we consider an arbitrary dc input signal Vos,IN , then
IGm1,OUT = Gm1.Vos,IN . Hence, the maximum dc input signal that this architecture
will be able to block is given by Eq. 4.1.

Vos,IN ≤ 2.ID3/Gm1 (4.1)

4.1.2 Description of the proposed architecture
In this chapter we propose a change in a traditional biquad, aiming to reduce the
overhead in terms of power consumption and silicon area that Gm3 introduces. We
propose to replace Gm3 with the architecture described in Section 3.2.2. This circuit
rejects the dc component at the output branch of Gm1 and set the high-pass frequency
(see Fig. 4.2). The circuit is formed by the transistors M6, M7, M8 and M9 (see Fig.

1For the sake of simplicity, and without loss of generality, we have assumed that the copy
factor of the symmetric OTA current mirrors is 1:1.
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4.3). Note that in order to maintain the circuit behavior it is necessary to swap the
inputs of Gmf.
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Figure 4.2: Proposed circuit architecture.5
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Figure 4.3: Gm1 implementation at transistor level. M6-M9 are part of the dc block circuit.

Gm2 and Gmf are symmetrical OTAs whose respective transconductances are Gm2

and Gmf . Gm1 is an OTA with a differential input (vIN ) and a single ended input
(vF ). This single ended input is used in a local feedback loop at the output for dc
blocking. The transfer function of Gm1 is given by Eq. 4.2 (see Fig. 4.3).

iGm1,OUT
∼= Gm1vIN + (gm6 + gm9)vF (4.2)

where Gm1 is the Gm1 transconductance and gm6 and gm9 are the transconductance
of M6 and M9; with gm7 � gm6 and gm8 � gm9, where gm7 and gm8 are the
transconductance of M7 and M8.
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Following the same reasoning made in Section 3.2 it can be shown that the circuit
depicted in Fig. 4.2 has the first-order band-pass transfer function presented in Eq.
4.3.

vout
vin

=

Gm1
CL

s

s2 + Gm2
CL

s+
(gm6+gm9)Gmf

CLCF

(4.3)

and the low-pass frequency flow−pass is given by Eq. 4.4, the band-pass gain G by Eq.
4.5 and the high-pass frequency fhigh−pass by Eq. 4.6.

flow−pass =
Gm2

2πCL
(4.4)

G =
Gm1

Gm2
(4.5)

fhigh−pass =
(gm6 + gm9)

Gm2

Gmf
2πCf

(4.6)

The noise performance of both architectures, the traditional biquad (Fig. 4.1) and
the proposed architecture (Fig. 4.2), is similar and mainly depends on the design of
Gm1 and Gm2 (transistor size and transistor inversion level of the input pairs and the
current mirrors). Both architectures can provide excellent results in terms of noise. In
addition, as mentioned in Chapter 3, the gain and bandpass cut-off frequencies of these
architectures are set by means of parameters that are, respectively, very accurate (i.e.
ratios of transconductances) or can be easily and automatically tuned (i.e. ratios of
transconductance over capacitances) [85], making it possible to achieve high accuracy
without jeopardizing power consumption [86].

In summary, this architecture is suitable for low-noise ultra-low-power operation,
presents high CMRR, offers an efficient way to block dc input signals and has a well-
controlled high-pass frequency.

4.2 Filter implementation
Biquad filters can be used to address different applications. Therefore, in Table 4.1
we present filter specifications that tries to cover a wide range of applications (audio
signals, sensor signals, biological/biomedical signals, etc.) without focusing on any in
particular.

Based on the specifications established in Table 4.1, two filters were designed and
compared. While the first was based on our novel approach (Fig. 4.2), the second was
based on a traditional implementation (Fig. 4.1).

Table 4.1: Filter specifications.

flow−pass 7 kHz

fhigh−pass 5 Hz

Gain G 100 V/V

Input dc block 40 mV

CMRR 80 dB

The filters were designed and simulated on a 0.5 µm CMOS technology. The fol-
lowing values were used: CL = 2 pF, CF = 300 pF, VDD = 1.65 V and VSS = −1.65 V.
The value of CL was set to emulate a typical load capacitance. The value of CF was
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chosen based on the low value of the required high-pass frequency, balancing the trade-
off between the large area that implies a large capacitor and the need of implementing
an ultra-low-value Gmf transconductor.

4.2.1 Proposed architecture
Given CL and flow−pass, then Gm2 is set by Eq. 4.4. Hence, as G is given, Gm1 is set by
Eq. 4.5. In order to reduce noise and power consumption, the Gm1 input differential
pair is biased in weak inversion (i.e. (gm/ID)1 ≥ 20 V−1), then ID1 is set. In order
to increase the input linear range of Gm2 (which is equal to the maximum expected
output amplitude), the Gm2 input differential pair is biased in strong inversion (i.e.
(gm/ID)2 ≤ 5 V−1) and ID2 is set.

According to the discussion presented in Section 3.2.2, α was set to 10. Finally,
Gmf, gm6 and gm9 were established by the means of Eq. 4.6 and considering the
following trade-off. Initially, it is desirable to have low values of Gmf, gm6 and gm9,
either to lower the high-pass frequency or to reduce the size of CF . Secondly, low
values of Gmf need very large transistors which imply excessively high Cgs values
(which affects the low-pass frequency).

Table 4.2 presents the main parameters of the filter transconductors and Table 4.3
the parameters of the dc block circuit.

Table 4.2: Filter main parameters (new approach).

Gm1 Gm2 Gmf

(gm/ID)InDifPar 23.3 V−1 5.0 V−1 18.8 V−1

ID 352 nA 17.4 nA 44 pA

Gm 8.2 µS 87.2 nS 834 pS

(W/L)InDifPar (µm/µm) 38.8/1.2 1.5/152 1.5/1294

Table 4.3: Dc block circuit parameters (new approach).

gm6 387 nS

(W/L)M6 1.5/36 (µm/µm)

gm7 3.66 µS

(W/L)M7 1.5/36 (µm/µm)

gm8 4.36 µS

(W/L)M8 1.5/8.3 (µm/µm)

gm9 411 nS

(W/L)M9 1.5/8.3 (µm/µm)

4.2.2 Traditional implementation
The design process is similar to the one carried out in the previous section. The
only difference concerns the setting of the high-pass frequency. In this case, Gm3
has to be sized instead of Gmf, gm6 and gm9. For this purpose, Eq. 4.1 (which

implies that ID3 > 164nA) and fhigh−pass =
Gm3Gmf

2πCFGm2
will be the design equations.

Table 4.4 shows the main parameters of the resulting design for the traditional biquad
architecture.
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Table 4.4: Filter main parameters (traditional approach)

Gm1 Gm2 Gmf Gm3

(gm/ID)InDifPar 23.3 V−1 5.0 V−1 18.8 V−1 5.0 V−1

ID 352 nA 17.6 nA 44 pA 176 nA

Gm 8.2 µS 87.6 nS 834 pS 883 nS

(W/L)InDifPar (µm/µm) 38.8/1.2 1.5/152 1.5/1294 1.5/15.2

4.3 Results
Monte Carlo (MC) mismatch simulations (100 runs), at transistor level, of the ac, dc,
noise and transient analysis were performed in both implementations. IDD is the total
current consumption of the filter, vni is the input-referred noise voltage, the “Output
Offset” is the dc voltage deviation from the reference at the output, PSRR+ is the
positive power supply rejection ratio (VDD) and PSRR- is the negative power supply
rejection ratio (VSS). The “Input Linear Range” is determined by the maximum input
voltage where the THD of the output voltage remains equal or less than 5%.

4.3.1 Proposed architecture
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Figure 4.4: MC simulations of the filter frequency response (proposed architecture).

Fig. 4.4 depicts the MC simulations of the filter frequency response of the new
approach.

In Table 4.5 the simulated main filter characteristics are presented. The MC
simulation mean value of the output dc voltage was 1.3 mV and the standard de-
viation σ = 4.6 mV. Therefore we have a systematic offset of 1.3 mV and taking
±3σ = ±13.8 mV the worst case of the output voltage would be 15.1 mV.

Ac, dc and transient simulations were performed in order to test the blocking
of a dc input Vos,IN . In Table 4.6 the variations of the filter main parameters are
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Table 4.5: Filter characteristics (New and Traditional approach).

New approach Traditional approach

Typical value Worst case (of 100 runs) Typical value Worst case (of 100 runs)

Gain G 38.5 dB 37.8 dB - 39.3 dB 39.54 dB 38.9 dB - 40.2 dB

flow−pass 5.4 kHz 5.4 kHz - 5.5 kHz 5.4 kHz 5.3 kHz - 5.9 kHz

fhigh−pass 3.8 Hz 3.1 Hz - 4.6 Hz 4.6 Hz 4.3 Hz - 4.6 Hz

CMRR 89.5 dB 76.6 dB 90.0 dB 76.0 dB

PSRR+ 53.5 dB 51.0 dB 58.6 dB 57.7 dB

PSRR- 65.9 dB 61.2 dB 88.5 dB 81.5 dB

Output Offset 1.3 mV 15.1 mV 1.9 mV 16.3 mV

IDD 1.51 µA - 2.18 µA -

vni 14.1 µVrms - 17.1 µVrms -

Input Linear Range 8.7 mVpp - 8.0 mVpp -

presented. For the transient analysis, the input was a sinusoidal signal of amplitude
equal to 100 µVpp and a frequency of 1 kHz.

Table 4.6: Filter response to an input dc offset Vos,IN (New and Traditional approach).

New approach Traditional approach

Vos,IN Gain G IDD THD fhigh−pass Gain G IDD THD fhigh−pass

-100 mV 26.8 dB 1.48 µA 0.37% 3.4 Hz - - - -

-50 mV 35.1 dB 1.48 µA 0.35% 4.6 Hz - - - -

-45 mV 35.6 dB 1.48 µA 0.35% 4.6 Hz 37.3 dB 2.18 µA 0.37% 1.1 Hz

-10 mV 38.4 dB 1.48 µA 0.35% 3.4 Hz 39.4 dB 2.18 µA 0.37% 4.4 Hz

0 mV 38.5 dB 1.51 µA 0.35% 3.8 Hz 39.5 dB 2.18 µA 0.37% 4.6 Hz

10 mV 38.3 dB 1.56 µA 0.35% 4.3 Hz 39.4 dB 2.18 µA 0.37% 4.5 Hz

45 mV 35.7 dB 1.81 µA 0.35% 5.4 Hz 37.3 dB 2.18 µA 0.37% 1.2 Hz

50 mV 35.1 dB 1.84 µA 0.36% 5.5 Hz - - - -

100 mV 26.6 dB 2.05 µA 0.37% 4.0 Hz - - - -

For the input linear range analysis, a 1 kHz sinusoidal signal was taken, and the
input was varied from 100 µVpp to 10 mVpp. The results are presented in Table 4.7.

Table 4.7: Filter input linear range (new approach).

vIN (mVpp) vOUT (mVpp) THD (%)

0.1 8.4 0.4

3.5 289 1.0

7.5 670 3.0

8.7 816 4.9

9.0 860 5.6

9.5 940 7.1

10.0 1031 9.0

Table 4.8 presents process corners simulations of gain, high-pass frequency, low-
pass frequency and dc blocking capacity. Both mismatch simulations presented in
Table 4.5 and process corners simulations presented in Table 4.8 show that the varia-
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tions are acceptable.

Table 4.8: Process corner simulation (New approach): worst case speed (wcs), worst case power
(wcp), worst case zero (wc0), worst case one (wc1) and typical (typ).

Vos,IN = 0 V Vos,IN = 100 mV

Corner Gain G flow−pass fhigh−pass Gain G flow−pass fhigh−pass

wcs 38.7 dB 4.9 kHz 3.7 Hz 27.6 dB 4.9 kHz 4.1 Hz

wcp 38.2 dB 5.9 kHz 3.8 Hz 25.7 dB 5.9 kHz 3.8 Hz

wc0 38.4 dB 5.4 kHz 3.8 Hz 26.4 dB 5.4 kHz 3.8 Hz

wc1 38.5 dB 5.3 kHz 3.8 Hz 27.0 dB 5.3 kHz 3.9 Hz

typ 38.5 dB 5.4 kHz 3.8 Hz 26.6 dB 5.4 kHz 4.0 Hz

In order to confirm the stability of the loop of Gmf and Gm1, an open loop simula-
tion was performed for three values of input dc voltage Vos,IN = [-100 mV, 0 V, 100 mV].
The result depicted in Fig. 4.5 shows that the loop has a large phase margin in all
conditions. This is related to the dominant pole set by Gmf and CF , which set the
high-pass characteristic of the overall filter.
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Figure 4.5: Gm1-Gmf Open-loop frequency response (proposed architecture).

4.3.2 Traditional implementation and comparison
In Table 4.5 the main results of the traditional implementation are presented.

Ac, dc and transient simulations were performed in order to test the blocking
of a dc input Vos,IN . In Table 4.6 the variations of the filter main parameters are
presented. For the transient analysis, the input was a sinusoidal signal of amplitude
equals to 100 µVpp and a frequency of 1 kHz.

From Table 4.5, it can be seen that both filters comply with the specifications
established in Table 4.1. The main difference is that the new approach reduced the
power-consumption by 30.7%.
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The second main difference is that our approach is able to block a dc input of
100 mV (or even higher) while the traditional one lost its high-pass characteristic
from a dc input of 50 mV on, as shown in Table 4.6.

An increment of Vos,IN , reduces the gain G and slightly modifies the high-pass
frequency fhigh−pass in both implementations. In our approach the loss of gain is a
bit higher, but it has to be pointed out that our implementation continues to give the
band-pass characteristic regardless of the dc input. In order to achieve this behavior
with the traditional implementation, its power consumption must be increased.

Finally, it is noted that the PSRR- of the traditional approach is higher than the
one presented by the new approach. However, the value achieved by the new approach
is acceptable for the considered applications.

Table 4.9 compares differential input second order active band-pass filters reported
in the literature. Since these filters were designed for different applications, their main
characteristics are different, therefore the comparison has to be done carefully. The
usage of capacitors to block dc signals allows to block almost any level of input dc
signal but it decreases the value of the CMRR [57,114–116]. On the other hand, filters
based on the traditional approach achieve higher CMRR values but are not able to
block high levels of input dc signals [86,117,118]. To summarize, Table 4.9 shows that
the new approach is an efficient way to balance the trade-off between high precision
in setting fhigh−pass, high CMRR and dc input signal blocking capacity.

4.4 Conclusions
In this chapter, we have shown that a significant part of the power consumption of
a traditional biquad, is associated with the feedback loop that set the high-pass fre-
quency and blocks the dc input signals. It was also shown that the power consumption
of this feedback loop is dictated by the current that this circuit needs to provide in
order to compensate the current due to the dc voltage at the input.

Then, we have proposed a modification in a traditional Gm-C biquad filter imple-
mentation, using the technique presented in Chapter 3, that efficiently blocks the dc
input and set the high-pass frequency.

The proposed architecture presents, as the traditional approach does, a trade-off
between gain and dc input blocking capacity. In our approach the loss of gain is greater
than in the traditional approach, but it is remarkable that our implementation does
not lose the band-pass characteristic for high dc input values. Therefore, it is possible
to exchange gain for dc input blocking capacity.

This architecture avoids the overhead in terms of power consumption and silicon
area that traditional approaches introduce for establishing the high-pass characteristic
and to block the dc input. This feature enables lower power consumption or higher
levels of dc input to be blocked without jeopardizing the power consumption. Results
from MC simulations show that the proposed architecture, compared with a traditional
one, presents a 30% reduction in power consumption and more than doubles the dc
input that can be blocked.
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Chapter 5

Integrated programmable analog
front-end

In this chapter we introduce the design and simulation of an integrated analog front-
end architecture formed by the preamplifier presented in Chapter 3 and two additional
band-pass amplifying stages based on the filter architecture presented in Chapter 4.
This chapter is an extended version of [31], gathering material from [32] as well as
unpublished work.

The goal of this chapter is to present an architecture suitable for acquiring a wide
range of low-amplitude physiological signals, such as EEG, visual evoked potentials,
LFP, spikes, among others. These signals may come from skin electrodes, cortical
arrays or nerve cuffs. As shown in Chapter 2, the amplitude of these signals ranges
from 10 µVpp to 1 mVpp (thus require a very low-noise amplification) and its bandwidth
ranges from 0.1 Hz to 5 kHz. In addition, the targeted applications require to separate
these low level signals from other biological or external interfering signals appearing
in common mode, leading to a minimum CMRR requirement that may reach more
than 80 dB. Finally, low power consumption suitable for wearable or implantable
implementations must be achieved.

5.1 Architecture

fLO1 10k

G1=300

fLO2 fHI2

G2

fLO3 fHI3

G3=3.33

Output Filter

VIN

Preamplifier Prog. Filter

Figure 5.1: Front-end block diagram.

The proposed front-end consists of three stages (see Fig. 5.1). The first stage
is implemented using the preamplifier described in Chapter 3. The second stage is
a programmable band-pass filter and the third stage is a low-gain high-linear-range
band-pass output filter, both stages were designed using the architecture presented in
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Chapter 4. Why this is a suitable solution will come up once the main trade-offs of
the acquisition chain design are presented in the next subsections.

+

-

Gm2

+

+

Gm1

-

Gmf

vOUT

-
vF

vIN

+

- IGm1,OUT

CL

CF

Figure 5.2: schematic diagram of each front-end stage. Gm1 preamplifier is implemented with a
single-stage circuit (see Fig. 3.2). Gm1 of the programmable filter and the Gm1 of the output
filter are implemented with symmetrical OTAs (see Fig. 4.3). Gm2 and Gmf are symmetrical
OTAs on the three cases (see Fig. 3.2).

The schematic diagram of each front-end stage is shown in Fig. 5.2. While the
Gm1 preamplifier is implemented with a single-stage circuit (see Fig. 3.2), the Gm1
of the programmable filter and the Gm1 of the output filter are implemented with
symmetrical OTAs (see Fig. 4.3). In all cases, Gm1 has a differential input (vIN ), a
single ended input (vF ) and its transfer function is given by Eq. 5.1:

iGm1,OUT = Gm1vIN + gmCvF (5.1)

where gmC is an internal parameter related to the input dc block circuit1.
Gm2 and Gmf are symmetrical OTAs on the three cases (see Fig. 3.2). A detailed

description of the architecture can be found in Chapters 3 and 4. As shown on these
chapters each front-end stage has a band-pass transfer function given by Eq. 5.2,
where the low-pass frequency flow−pass is given by Eq. 5.3, the band-pass gain G by
Eq. 5.4 and the high-pass frequency fhigh−pass by Eq. 5.5.

vout
vin

=

Gm1
CL

s

s2 + Gm2
CL

s+
gmCGmf

CLCF

(5.2)

flow−pass =
Gm2

2πCL
(5.3)

G =
Gm1

Gm2
(5.4)

fhigh−pass =
gmC
Gm2

Gmf
2πCF

(5.5)

In the following subsections we discuss the main trade-offs that this architecture,
the application’s requirements and the process technology present. Next, in Section
5.2 we present how they were addressed.

1In the case of the preamplifier gmC = gm5 + gm6, where gm5 and gm6 are the transcon-
ductance of M5 and M6 (see Fig. 3.2). In the case of the other two stages, gmC = gm6 +gm9,
where gm6 and gm9 are the transconductance of M6 and M9 (see Fig. 4.3).
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5.1.1 Noise gain trade-off
If the preamplifier input-referred noise voltage is vni1, then its output-referred noise
voltage is vno1 = G1vni1, where G1 is the preamplifier gain (in general we will note Gi
as the gain of the ith stage). If the input-referred noise voltage of the second stage is
vni2, and we impose that the noise contribution of the second stage adds only a 10% to
the noise given by the first stage in the total input-referred noise voltage vtotalni2 , then
we have:

vtotalni2 =
√
v2no1 + v2ni2 < 1, 1vno1 (5.6)

Thus,

vni2 < 0, 46.G1vni1 ⇒ G1 > 2, 18.
vni2
vni1

(5.7)

Eq. 5.7 is a very useful design equation that shows how the noise requirement define
the preamplifier gain. The preamplifier is one of the main contributors to consumption
due to its low noise requirement (Eq. 2.3). To reduce consumption, we should enable
the second stage to have higher noise, which lead to the need of a high gain in the first
stage. For instance, if we impose that vni1 = 2 µVrms and vni2 = 250 µVrms, we will
have:

G1 > 2, 18.
vni2
vni1

= 2, 18.
250

2
⇒ G1 > 273V/V (5.8)

5.1.2 Linearity gain trade-off
Our architecture uses transconductors instead of operational amplifiers. This approach
is very advantageous in terms of power consumption but faces linearity problems. A
transconductor with a standard input differential pair is not able to efficiently handle
an input signal much higher than 300 mVpp (see [104]). Therefore, if the input signal
ranges from 10 µVpp to 1 mVpp, the preamplifier gain G1 should be:

G1 ≤ 300V/V (5.9)

This ensure that the signal amplitude at the preamplifier output, and therefore at the
inputs of Gm2 and Gmf (see Fig. 5.2), be less or equal than 300 mVpp.

The same restriction applies to the second stage. If G1 = 300 V/V, the signals at
the programmable filter input ranges from 3 mVpp to 300 mVpp. In order to assure
that the signal amplitude remains below 300 mVpp, the programmable gain G2 have
to vary between 1 V/V (for the signals in the 300 mVpp range) and 100 V/V (for the
3 mVpp signals).

If the third stage has to provide additional amplification, some change in the
architecture will be necessary.

5.1.3 Linearity noise current-consumption trade-off
As introduced Section 3.2.5 and graphically shown in Fig 3.5, the design of the OTAs
of this architecture, but particularly Gm2, present a trade-off between current con-
sumption, noise and linearity. The inversion level of the input differential pair of
Gm2 (related to (gm/ID)2) is a useful tool to evaluate this trade-off. A low value of
(gm/ID)2 (strong inversion) implies a higher input linear range but also more current
consumption and more noise. On the other hand, a high value of (gm/ID)2 (weak
inversion) set a narrower input linear range while current consumption and noise are
reduced. Depending on the application, moderate inversion could be a good choice.
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5.1.4 Transconductance value and programmability constraints
It can be seen from Eqs. 5.3, 5.4 and 5.5 that in order to program the gain we need to
vary the transconductance values, and possibly also the capacitor values, to program
the cut-off frequencies. In order to modify the transconductance value we may vary
the bias current of the transconductor or we may modify the internal structure of the
transconductor (e.g. the current mirror gain factor).

According to Eq. 5.3, given CL = 2pF, in order to vary flow−pass between 100 Hz
and 5 kHz, Gm2 has to vary between 1.3 nS and 63 nS. Thus, Gm2 has to vary by a
factor of 50. This cannot be done by just modifying the Gm2 bias current because the
Gm2 input differential needs to be biased in strong inversion to provide the required
linearity and if we change the bias current by a factor of 50 either the differential pair
will no longer be in strong inversion or the dc voltages (VGS , VDSsat) will vary too
much. In the meantime, if G2 has to vary between 1 V/V and 100 V/V, according to
Eq. 5.4, Gm1 must vary between 1.3 nS and 6.3 µS. This means that Gm1 has to vary
by a factor of 5000. This situation can be relaxed by tuning CL. Achieving these large
factors is an interesting challenge, in Section 5.2 we present how it was addressed.

5.1.5 Dc-block gain trade-off
As discussed in Chapter 3, our architecture offers a trade-off between gain and dc-block
capacity. This trade-off is ruled by the parameter α introduced in Section 3.2.2. A low
value of α enables higher levels of dc-block capacity jeopardizing gain. On the other
hand, a high value of α reduces the dc-block capacity while gain remains unaffected.

5.1.6 Capacitor size constraints
According to Eq. 5.5, in order to achieve sub-1Hz high-pass frequencies it is necessary
to work with sub-nS OTA (which is perfectly feasible, see [105]) and/or use relatively
large capacitors (200 − 300 pF).

5.2 Implementation
The balance between the constraints and trade-offs presented in the previous section
led to the following design decisions. The programming is performed in the interme-
diate stage, where it is not necessary to filter very small signal amplitudes (and thus
the noise is no longer a major problem) nor very large signal amplitudes (where the
linearity starts to be a problem). The preamplifier has a G1 = 50 dB fixed gain. The
gain of the second stage (G2) can be programmed between 0 dB and 40 dB and the
low-pass frequency between 100 Hz and 5 kHz. The output filter has a G3 = 10 dB
fixed gain, so its linear range at the output should be 1 Vpp. In order to achieve
this linear range, the linearization technique employing source degeneration proposed
by [119] was implemented in the output stage.

In order to program the gain and the low-pass frequency of the second stage we
designed a Base Filter with the maximum gain (G = 40 dB) and the maximum desired
low-pass frequency (flow−pass = 5 kHz). The first and third stage were designed to
have a cut-off frequency higher than flow−pass = 5 kHz in order to warrant that the
whole front-end can reach a flow−pass = 5 kHz.

We implemented two mechanisms to program the gain of the Base Filter. First,
a rough tuning was implemented by modifying the copy factor at the output current
mirror of Gm1 (this allows to divide Gm1 by 10 or 100). Second, a fine tuning was
achieved by varying the Gm1 Bias current (this permits to divide Gm1 continuously by
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up to 8 times). The low-pass frequency was programmed varying the value of CL. This
was done by connecting in parallel (by means of switches) various integrated capacitors
of different values in order to obtain six discrete values of CL (CL = [1.6 pF, 3.3 pF,
10 pF, 20 pF, 33.3 pF, 100 pF] which respectively set flow−pass = [5 kHz, 3 kHz,
1 kHz, 500 Hz,300 Hz, 100 Hz]).

The input dc value that the programmable filter and the output stage have to
block, corresponds to the output offset of the previous stage, which is not that high
(less than 25 mV). Then, for these stages we took α = 10, which is a reasonable
compromise, because the loss of gain is negligible and the circuit presents an adequate
capacity of blocking dc input signals. In the case of the preamplifier, as mentioned in
Section 3.3, we took α = 100.

For the maximum low-pass frequency setting (flow−pass = 5 kHz) the flicker noise
effect is negligible compared to the contribution of thermal noise (this was already
mentioned when reporting the preamplifier implementation, see Section 3.3). However,
for the minimum flow−pass setting (100 Hz), the effect of the flicker noise is significant.
The wide transistors used in the preamplifier are crucial to keep this noise bounded.

Table 5.1 presents the main parameters of the front-end transconductors.

Table 5.1: Front-end main parameters

Preamplifier Base Filter (Prog.) Output filter

Gm1 100 µS 6.3 µS 523 nS

Gm2 320 nS 63 nS 157 nS

Gmf 1.2 nS 1.9 nS 5.7 nS

gmC 360 nS 158 nS 53 nS

CL 5 pF 2 pF 2 pF

CF 47 pF 300 pF 300 pF

α 100 10 10

5.3 Results
Monte Carlo (MC) mismatch simulations (500 runs) of the frequency response were
performed on the four corners that arise from programming the gain and the low-pass
frequency.

Fig. 5.3 depicts the transistor level MC simulations of the front-end frequency
response for maximum G and minimum flow−pass.

Fig. 5.4 depicts the transistor level MC simulations of the front-end frequency
response for maximum G and maximum flow−pass.

Table 5.2 presents simulations results for the aforementioned four corners. This
table shows that the front-end gain is programmable between 57 dB and 99 dB, the
low-pass frequency is programmable between 116 Hz and 5.2 kHz. The maximum
power consumption of the front-end is 11.2 µA and its maximum equivalent input-
referred noise voltage is 1.87 µVrms. The front-end configured for the maximum gain
(99dB) and the maximum low-pass frequency (5.2 kHz), has a consumption of 11.2 µA
and its equivalent input-referred noise voltage is 1.46 µVrms, which corresponds to a
NEF = 2.61. On the other hand, we note some degradation in terms of current-
efficiency (NEF = 14) in the minimum gain and minimum flow−pass setting. However,
the performance of this corner, in other parameters of the front-end, is very good. This
degradation occurs because we designed a filter (Base Filter) for a higher bandwidth
and higher gain, and our programming method (to switch capacitors) is not able to
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Figure 5.3: Monte Carlo simulations (500 runs) of the front-end frequency response for maximum
G and minimum flow−pass.

Figure 5.4: Monte Carlo simulations (500 runs) of the front-end frequency response for maximum
G and maximum flow−pass.

recover in terms of power consumption or noise, the reduction of bandwidth. One
possible way to overcome this issue is to explore the possibility of programming the
front-end by modifying the Gm1 preamplifier bias current.

The front-end presents a good linearity achieving an output swing of 483 mVpp

with a THD = 1.0% and 950 mVpp with a THD = 4.8%.
The performance achieved by relevant prior works that implement complete front-

ends [3, 44–47, 62], which reach high gain (greater than 65 dB) and cover the desired
bandwidth, are compared with our work (with maximum flow−pass setting) in Table
5.3. The data show that our front-end presents the best results in terms of CMRR
and noise, has the greater value of gain, equaling the best NEF reported.

5.4 Conclusions
The most important contribution of this chapter is to have applied a novel architecture
to the design of a complete programmable front-end.
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Table 5.2: Front-end simulations results.

Minimum flow−pass Maximum flow−pass
Mean σ or Min-Max Mean σ or Min-Max

Gain G (dB) 98.9 σ = 0.8 99.3 σ = 0.8

Input noise vni (µVrms) 0.40 σ = 0.03 1.46 σ = 0.12

Max flow−pass (Hz) 116 115 - 117 5.2k 5.0 k - 5.4 k

Gain fhigh−pass (Hz) 17.3 16.9 - 17.8 19.0 18.6 - 20.5

Supply current (µA) 11.2 - 11.2 -

NEF 5.19 - 2.61 -

Gain G (dB) 57.3 σ = 1.1 58.1 σ = 1.1

Input noise vni (µVrms) 1.14 σ = 0.03 1.87 σ = 0.14

Min flow−pass (Hz) 116 121 - 125 4.9k 4.8 k - 5.0 k

Gain fhigh−pass (Hz) 17.0 15.8 - 18.1 20.0 19.4 - 20.6

Supply current (µA) 10.8 - 10.8 -

NEF 14.5 - 3.39 -

Table 5.3: State-of-the-art front-ends comparison.

[3] [62] [44] [45] [46] [47] This work

Technology (µm) Discrete 0.13 0.5 0.18 0.25 0.13 0.5

Max. Gain (dB) 93.4 77.6 78.0 66.0 79.8 65.5 99.3

Min. Gain (dB) 69.4 42.8 67.8 49.0 52.4 47.5 58.1

flow−pass (kHz) 6.5 10.0 8.0 11.7 8.9 6.9 5.2

fhigh−pass (Hz) 445 300 10 350 4 167 19

Supply current (µA) 3170 75 25 11.1 3.67 1.9 11.2

Input noise (µVrms) 1.0 1.95 4.32 5.4 6.67 3.8 1.46

NEF 27.9 6.60 9.30 6.53 5.22 2.46 2.61

CMRRworst-case (dB) 39 N/A N/A N/A N/A N/A 82

CMRRmeasured (dB) 42 63 N/A 66 62 83 87

Prog. flow−pass (kHz) No No No No 1 - 17 4.8 - 9.8 0.1 - 5.2

Prog. fhigh−pass (Hz) No No 0.1 - 1 k No 0.1 - 1.2 k 12 - 16 No

THD 1% (mVpp) N/A 1.0 N/A N/A N/A 3.1 0.6

N/A=Not Available

The main design trade-offs of the front-end architecture were discussed and their
impacts in the design of the acquisition chain in terms of assignment of gain, noise,
linearity and programmability to each stage were shown.

Noise is the most critical requirement of the first stage because ultra-low-amplitude
signals must be amplified and filtered. Therefore, the noise-power trade-off, expressed
in terms of the NEF, led us to assign most of the power budget to the first stage.
Furthermore, the noise-gain trade-off and linearity-gain trade-off determined the gains
of the first and second stage. Moreover, it was shown that programming wide ranges
of gain and/or cut-off frequencies implies wide ranges of transconductance values and
high capacitor values.

The integrated programmable analog front-end architecture presented is focused
in acquiring a wide range of physiological signals. This can be done because the gain is
programmable between 57 dB and 99 dB, and the low-pass frequency is programmable
between 116 Hz and 5.2 kHz, while the maximum power consumption of the front-end
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is 11.2 µA and its maximum equivalent input-referred noise voltage is 1.87 µVrms.
The comparison between our front-end and other works in the state-of-the-art

shows that our front-end presents the best results in terms of CMRR and noise, has
the greatest value of gain and equals the best NEF reported.
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Chapter 6

A system level perspective

On our way to designing a wireless biopotential recording system based on the ar-
chitecture proposed in Chapters 3, 4 and 5, we developed three prototypes1 based
on off-the-shelf components [33, 34, 36]. As shown in Chapter 2, the design of these
systems faces several challenges. In the first three sections of this chapter we describe
these experiences showing how these challenges were addressed. In the final section
we conclude with a comparison between the developed systems and other systems in
the state-of-the-art.

6.1 Wireless neural recording system
This Section summarizes the work reported in [33], which is a low-power 4-channel
wireless neural recording system based on off-the-shelf components, aiming at 12-bits
10 ksps acquisition and real time transmission.

6.1.1 Proposed Solution
The developed system is depicted in Fig. 6.1, a remote module is kept by the test
subject and a base module is connected to a PC. The remote module is composed by
a programmable AFE and a system-on-chip (SoC) that implements the digitalization
of up to four signals and the communication with the base module. The base module
consists of a SoC equal to the one in the remote module. The Graphic User Interface
(GUI) was developed as a toolbox in Matlab and besides storing the data in the PC,
offers a friendly interface for the user to operate the remote module and visualize and
analyze the acquired data.

Analog front-end
In Fig. 6.2 a block diagram of one channel of the AFE is presented. This AFE features
a programmable gain between 68 dB and 97 dB, the high-pass frequency is fixed in
0.1 Hz and the low-pass frequency can be set between 200 Hz and 15 kHz. in addition,

1These works have been done in the framework of two undergraduate thesis and three
research projects. I was the advisor of the two undergraduate thesis, responsible researcher for
two projects and member of the third research project. In the three roles, I was fully involved
in the design and implementation of the prototypes. I have participated in the system design
main decisions, in the definition of the hardware and embedded software architecture, in the
planning and execution of tests, and in the results analysis.



Chapter 6. A system level perspective

Figure 6.1: High-level description of the neural recording system.

the input-referred noise is less than 11 nV/
√
Hz (for frequencies greater than 10 Hz),

and the measured CMRR is greater than 93 dB.

Figure 6.2: Block description of a signal’s path through one channel of the AFE.

Processing and communication block (SoC)
The signal digitalization and the communication between modules are implemented
with a CC430F6137 chip from Texas Instruments (TI). This SoC includes a MSP430
microcontroller (MCU), a CC1101-based sub-1 GHz radio-frequency transceiver, 12-
bits ADCs, Timers, and UART (Universal asynchronous receiver-transmitter) and SPI
(Serial Peripheral Interface) peripherals. The MCU is a 16-bit RISC microcontroller
with a maximum clock frequency of 20 MHz, with 32 kB of Flash and 4 kB of RAM
memory. This chip features a typical power consumption of 3.2 mA in active mode
(at 20 MHz clock frequency and 3.3 V supply voltage) and offers several modes of
low-power operation, called sleep mode, where its power consumption can be as low as
a few of microamperes.

The remote and base module’s firmware operates in two modes: configuration mode
and acquisition mode. The main functions of the remote module embedded software
are: receive data from AFE, and digitize and send this data to the base module. In
addition, is responsible for parsing commands received from the base module. The
MCU acts as master in the SPI communication digital potentiometer that controls the
gain (AD5270), as well as, to the clock pin of the programmable filter (MAX7414).
In Fig. 6.3 the main components of the remote module firmware flowchart are shown.
With respect to the base module, in the acquisition mode it works always forwarding
packages from the remote module to the PC.

In both modules a round-robin with interrupts architecture is adopted, where
interrupt service routines (ISR) are extensively used to exchange (transmit and receive)
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data, and keep the MCU in sleep mode while no processing is needed. The ISR in turn
use flags to signal in the main loop whether extra processing is needed. If no further
processing is needed, the MCU is put in sleep mode.

(a) High level. (b) acquisition mode.

Figure 6.3: remote module firmware flowchart.

For the communication between modules, a packetized system was selected em-
ploying 60 bytes for data, 1 byte as counter for detection of lost packets, and 10 bytes
internally added by the radio core (8 for synchronization and preamble bytes and 2 for
CRC). Each sample is dispatched in 2 bytes, so each packet carries up to 30 samples.
The 60 bytes are used during the acquisition mode for sending sampled data, and also
during the configuration mode to send programming parameters and consult current
configuration. The communication is done over a 915 MHz link with a programmed
data rate of 358 kbps. At reception in the base module, the packages are forwarded
to the PC through the UART interface, at 921.6 kbps and converted by a FTDI chip
into USB protocol.

The sampling frequency, which is configured from the GUI before starting the
experiment, may vary between 12 ksps at full speed sampling to 2 ksps in a battery
save mode.

The acquisition can be started directly from the PC or the system can be com-
manded to wait until a button, in the remote module, is pressed. Once the acquisition
starts, the communication between modules becomes unidirectional from the remote
module to the base module, in order to take advantage of all the airtime to transmit
the sampled data. To force a stop in the acquisition, the button in the remote module
has to be pressed again. Also a time limit can be selected for the test and once reached
the system automatically stops.

6.1.2 System test
Power consumption

The average supply current when acquiring 4 channels at 2.5 ksps/ch is 31.2 mA. In
this scenario, the system continuously operates for more than 28 hours with two AAA
rechargeable batteries (900 mAh). In the battery save mode (4 channels at 0.5 ksps/ch)
the average supply current is 7.9 mA and the autonomy is more than 113 hours.
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Analog front end

The AFE provided the expected performance, specially with regard to the programmable
gain and bandwidth. However, because of the transmission power chosen for the com-
munication, and the fact that the AFE was located close to the antenna, given the
modules reduced size, a severe interference in the acquired signals was observed while
acquiring with the system from end to end. This was produced by a bad electro-
magnetic isolation of the AFE. At the time, this problem was mitigated but not fully
solved, being one of the milestones for future developments for this work.

Communications

Several scenarios were tested measuring an average of 10 runs for each scenario. In
Table 6.1 these averages are reported along with the proposed scenario. These numbers
indicates than in most cases the packet-loss rate is around 1%; however, it deteriorates
whenever there is obstacle very close to one of the stations. 12 ksps of effective data
rate, with a 358 kbps raw data rate, was achieved with a packet loss less than 2%
at 5 m distance with a transmit power of 10 dBm. Raw data rates of 407 kbps were
tested and can be used at the cost of a higher packet-loss ratio.

Table 6.1: Packet-loss ratio for different scenarios of acquisition

Modules Distance Obstacle in the line of sight Packet-Loss Ratio

H: 1.5m; V: 0m No 0,94%

H: 3.0m; V: 0m No 1,19%

H: 3.0m; V: 0m Person 1,26%

H: 4.0m; V: 1.5m No 1,45%

H: 6.0m; V: 0m No 1,29%

H: 6.0m; V: 0m Person 1,68%

H: 6.0m; V: 1.0m Thick wall of bricks 1,11%

H: 7.0m; V: 0m No 1,09%

H: 7.0m; V: 0m Person 1,13%

H: 7.0m; V: 0m Person close to the base module (0,20m) 3,00%

H = Horizontal, V = Vertical

The effective sampling and transmission ratio depends on the processing load of
the SoC. While sampling up to 3 channels and transmitting them at 358 kbps radio
data rate, operation at a overall sampling rate of 12 ksps is reached (1 channel at
12 ksps/ch, 2 channels at 6 ksps/ch each or 3 channels at 4 ksps/ch each). Acquisition
and transmission of 4 channels requires slowing down the sampling rate to 10 ksps
(2.5 ksps/ch per channel).

Full-system test

Signals of different frequency and amplitude were injected directly into the ADC and
transmitted. Then the recovered signals were analyzed in the PC, and the Fast Fourier
Transform (FFT) was run to recover the principal frequency component. These results
show that the received signal is a very accurate approximation of the injected signal.
In the Fig. 6.4-A, there is an example of the recovered signal and its FFT in Fig. 6.4-B.
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Figure 6.4: Signal acquired by the proposed system (injected directly into the ADC). A) Temporal
evolution, B) Fast Fourier Transform (FFT).

6.1.3 Conclusions
A neural signal recording system based on a MSP430 SoC from TI was implemented.
The system is capable of acquiring 4 channels at 2.5 ksps/ch encoded in 12 bits and
transmit them wirelessly. In this scenario, the average supply current is 31.2 mA, which
allow to continuously operates for more than 28 hours with two AAA rechargeable
batteries (900 mAh). In the battery save mode (4 channels at 0.5 ksps/ch) the average
supply current is 7.9 mA and the autonomy is more than 113 hours. The wireless
communication achieved a remarkable throughput of 358 kbps with a packet loss of
less than 2 % at 10 dBm transmit power and 5 m distance.

Future developments for the hardware should focus in the integration of the remote
module in a single board, substituting the antenna with a PCB antenna and the
improvement of the shielding of the AFE against electromagnetic interference.

6.2 Wireless EEG recording system I: WiFi
EEG is one of the main tools used for studying human brain activity. However,
current standard EEG systems are wired and uncomfortable, and are mainly used in
static settings in clinical practice. As discussed in Chapter 2, in order to enable EEG
recordings in daily-life activities, EEG technology needs to become wearable (wireless,
low weight, and small size), which requires low-power operation and energy-efficient
wireless data transmission. Although a bandwidth ranging from 0.5 Hz to 60 Hz is
sufficient for many EEG applications, much higher frequencies (up to 500 Hz) are
required in other cases [10]. In addition, the current miniaturization of analog front-
ends (AFE) for acquiring EEG signals enables the simultaneous recording of hundreds
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of channels [48,68]. As a consequence, handling high data rates efficiently is essential
for high-performance EEG recorders.

A WiFi 64-channel EEG recording system for wearable applications is presented.
The aim of this work is to allow the patient to move freely for a reasonable time (about
one day) within a short distance (about ten meters), in order to extend the field of
application of traditional EEG. In this Section we summarize the work reported in [34].

6.2.1 Proposed solution
The proposed solution, depicted in Fig. 6.5, consists of a wireless module located in
the patient and a GUI that runs on a PC.
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Figure 6.5: WiFi wireless EEG recording system.

At the beginning of the test the user selects the desired system configuration,
which implies setting the high-pass (fhigh−pass) and low-pass (flow−pass) frequency,
the sampling frequency (fS), the number of channels to be sampled (NC , that can be
selected from four predefined standard electrode arrangement: 1, 4, 21 or 64 channels)
and the number of synchronism channels (NS , up to 6). The synchronism channels
allow to record the reaction to a stimulus synchronized with the EEG signals (for
example the pressing of a button in front of a visual stimulus to analyze the reaction
time). Next, the user gives the command to start in the GUI and the EEG test
begins. The data acquisition block samples NC + NS channels every TS = 1/fS and
sends them (via a Serial Peripheral Interface, SPI) to the data processing block, which
in turn processes the data and sends them (via SPI) to the data communication block.
Finally, this block sends the acquired data (via WiFi) to the PC, where the user can
view them in real time.

Data acquisition block
The data acquisition block comprises electrodes, a cap, a programmable AFE, and an
ADC. Dry electrodes from Cognionics were used: Flex Sensor to acquire through hair
and Drypad Sensor to acquire in skin. The AFE and ADC were implemented using
two off-the-shelf RHD2132 chips from Intan Technologies. Each RHD2132 chip is in
charge of acquire, amplify, digitize and transmit by SPI (16 bits) up to 32 channels at
30 ksps each. The RHD2132 chip features an input impedance of 1.3 GΩ, a CMRR of
82 dB, low input referred noise (2.4 µVrms), programmable bandwidth and low power
operation. For instance, the high-pass frequency can be set between 0.1 Hz and 500 Hz
and the low-pass frequency can vary from 100 Hz to 20 kHz. In addition, the total
current consumption of the two chips to acquire 64 channels at 500 sps/ch is 1.8 mA
and at 1 ksps/ch it is 2.1 mA. A four-layer PCB supporting the RHD2132 chips was
carefully designed and fabricated. The top and bottom layers of this PCB were used
for signal routing. The second layer was a ground plane and the third layer was a VDD
plane.
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Data processing block

The data processing block is based on the MSP432P401R microcontroller from TI. This
MCU is a 32-bit ARM Cortex-M4F microcontroller with a maximum clock frequency
of 48 MHz, with 256 kB of Flash and 64 kB of RAM memory. This chip features a
typical power consumption of 4.6 mA in active mode (at 48 MHz clock frequency and
3.3 V supply voltage) and hundreds of nanoamperes in sleep mode. In addition, this
MCU includes a rich set of peripherals including several 8-bit SPI ports, UART ports
and timers.

The main functions of the MCU embedded software are: receive the sampled
data from the RHD2132 chips, process this data and forward them to the WiFi radio
module. In addition, the MCU is responsible for parsing commands received from the
PC.

A round-robin with interrupts architecture is adopted, where ISRs are extensively
used to exchange (transmit and receive) data, and keep the MCU in sleep mode while
no processing is needed. The ISR in turn use flags to signal in the main loop whether
extra processing is needed. If no further processing is needed, the MCU is put in sleep
mode.

The MCU acts as master in the SPI communications. A software 16-bit SPI
implementation was developed for the MCU - RHD2132 chips communication. Two
different SPI ports of the MCU are used to communicate with the RHD2132 chips.
Firstly, to parallelize the data flow, and also to configure the two chips separately. An
additional SPI port is used to communicate the MCU with the WiFi radio module.

Two MCU timers are used. One is employed to set the sampling frequency fS .
When this timer expire, the MCU triggers a new acquisition by strobing commands
to the RHD2132 chips according to the system configuration and stores the received
data into an input buffer. The second timer is used to periodically poll the WiFi radio
module input buffer to check for incoming commands from the PC.

Data communication block

The data communication block is implemented with a WiFi radio module based on
the CC3100 chip from TI. The WiFi radio module sends the acquired data to the PC,
receive commands from the PC as well as exchange configuration parameters. The
SimpleLink library provided by the vendor is used to communicate with the WiFi
radio module.

The communication technology was selected considering the system requirements,
specially maximum data rate, power consumption and communication range to ensure
connectivity within the required area. The maximum effective throughput required
by the application correspond to acquiring all channels (NC = 64, NS = 6) at the
highest data sample rate (fS = 1 kHz) and with the maximum resolution (16 bits
per sample), resulting in 1120 kbps. WiFi was chosen, which despite of being a tech-
nology with relative high power consumption, it meets the application requirements
and gives the chance to scale. In addition, WiFi is widely adopted enabling an al-
most straightforward integration. The application was build over TCP (Transmission
Control Protocol) since it provides a reliable data stream.

6.2.2 System test
Communication

The system requirements imposes a minimum throughput for the payload data of
1120 kbps (see Section 6.2.1). The maximum measured data throughput, at 12 meters
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of distance between the wireless module and the router, was 5480 kbps. Although the
data throughput was not measured for distances greater than 12 meters, the system
has the potential to operate in a greater range.

Acquisition timing

In order to start an acquisition the MCU must establish a communication with both
RDH2132 chips, which we will call AFE0 and AFE1. Two possible configurations were
analyzed: request all channels to AFE0 first, and then all channels to AFE1 (serial
configuration); or, request all channels in parallel to both chips (parallel configuration).

The measured acquisition time2 for 64 channels (NC = 64 and NS = 0) in the serial
configuration was 1.03 ms, and in the parallel configuration was 1.05 ms. Although at
first glance it is expected that the parallel configuration would be faster, since there
is only one processor, it can not process both interruptions at the same time, and it
processes first the interruption of the AFE0 because it has higher priority. Due to the
similarity between the serial and parallel configuration delays, it is decided to use the
serial one, since it allows a simpler implementation of the embedded software.

Maximum sampling frequency vs. number of channels

The maximum frequency fS for which the system works without data losses for differ-
ent system configurations was measured carrying out a 10-minute test. The Table 6.2
shows the recorded frequency values.

Table 6.2: Maximum sampling frequency.

NC NS fSmax (Hz)

64 0 800

64 6 730

21 0 2160

21 6 1690

4 0 5970

4 6 3380

1 0 10300

The main limitation on the maximum attainable frequency is given by the time
of acquisition of a run (run refers to the sampling of NC + NS channels, the data of
a run correspond to the same instant of time). For almost all system configurations
it is used more than 90% of the time to acquire samples, leaving less than 10% to
perform other tasks, mainly sending packages to the WiFi radio module. Therefore,
a reduction of the acquisition time of a run would improve the maximum frequency
currently reached by the system.

Battery run-time measurements

A test with this parameters: NC = 64, NS = 0 and fS = 770 Hz, was left running
until the battery could not maintain the minimum voltage required by the RHD2132
chips (3.2 V). The test lasted 24 hours and 22 minutes. This represent an average
supply current of 139 mA.

2Acquisition time: time elapsed between the timer that controls the sampling frequency
expires, and the sampled data is copied to the radio buffer.
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Full-system test

At the inputs of the AFE, known signals were injected for different system config-
urations all with an amplitude of 10 mVpp, and choosing flow−pass = 20 kHz and
fhigh−pass = 0.1 Hz, and compared with the registered data. In Fig. 6.6 the signal is
within the amplifier band-pass and an attenuation of 3.7% is observed (the amplitude
of the signal is 9.63 mVpp). This small attenuation can be explained by the fact that
the input signal amplitude equals the maximum input linear range of the AFE, which
is 10 mVpp. Fig. 6.7 presents an actual EEG test.

Figure 6.6: Input: sinusoid of 100 Hz.

Figure 6.7: EEG test.

6.2.3 Conclusions
The wireless EEG recording system developed is capable of acquiring up to 64 EEG
signals and 6 synchronization signals, with a programmable sampling frequency be-
tween 100 Hz and 10 kHz, and with an autonomy of more than 24 hours. The system
supports four types of system configuration (1, 4, 21 or 64 channels), with a pro-
grammable band-pass filter where the high-pass frequency can vary between 0.1 Hz
and 500 Hz and the low-pass frequency can vary between 100 Hz and 20 kHz. The
maximum distance measured between the wireless module and the PC was 12 meters
(but the system has the potential to operate in a greater range).
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6.3 Wireless EEG recording system II: Bluetooh + data
compression

As discussed in Section 2.5, data compression can be a key factor in a wireless biopo-
tential recording system, not only for reducing power consumption, usually driven by
the transmission [120], but also to overcome limitations of wireless technologies in
the maximum data throughput that can be attained. For example, a EEG record-
ing system with 64 channels, 16-bits per sample, at 1 ksps, requires a payload data
rate of 1 Mbps, which is a throughput attainable by Bluetooth but not by other low-
power transmission protocols such as IEEE 802.15.4. Moreover, common low-power
transmission protocols available at this moment are unable to support 256 channels
(payload data rate of 4 Mbps).

EEG data acquired for clinical purposes is often required to be processed, trans-
mitted and stored without distortion; this establishes the need for lossless compres-
sion algorithms, in which the decompressed digital signal is identical to the originally
captured one. If the preceding requirement is relaxed to allow a small, prescribed
maximum per-sample distortion on the recovered signal, we arrive at the so called
near-lossless setting. The near-lossless setting allows for significantly higher data rates
and/or number of channels, with a user-controlled maximum sample reconstruction
error given by a parameter δ. This configuration guarantees that the reconstructed
value of each sample differs by up to δ quantization levels from the originally acquired
sample.

The impact of EEG compression on the overall energy consumption of an elec-
troencephalograph is driven by two factors that are generally opposed: the better the
compression ratio, the more energy saved on transmission, but the more complex the
compression algorithm, the greater the energy consumed in computing. [36] present
two low-complexity EEG compression algorithms and evaluate this trade-off in actual
hardware. These algorithms, which are inspired on the same statistical model as [1],
both admit lossless and near-lossless variants, and are suitable to be implemented in
a low-power hardware because they require only basic operations. In this Section we
summarize the work reported in [36] (which is an extended version of [35]) focusing
in the areas that we were more involved (hardware implementation and experimental
work).

6.3.1 Low-power platform
The EEG low-power platform, depicted in Fig. 6.8, comprises an AFE, an ADC, a
low-power processor (MCU), a BT radio transceiver and a power supply subsystem.
All modules are powered by a 3.3 V dc source. The AFE and ADC stages, as well
as the processor block, are exactly the same introduced in Section 6.2. The BT radio
transceiver core is a module based on a CC2564 chip by TI. This is a dual mode module
that supports Bluetooth 4.1 in low energy mode (BLE), and basic (BR) or enhanced
data rate (EDR) mode. The prototype uses the EDR mode with serial port profile
(SPP); this allows for high throughput configurations, e.g. 31 channels at 1 ksps/ch,
which would not be affordable with BLE 4.1.

The processor embedded software is responsible for receiving the sample data,
running the compression algorithm, and transmitting the compressor output to the
BT module. A round-robin with interrupts architecture is adopted, where ISRs are
extensively used to exchange (transmit and receive) data, and keep the processor in
sleep mode while no processing is needed. The microcontroller’s timer is used to
trigger a new sample acquisition. The samples (one from each channel), received via
the SPI interface, are stored in a input buffer. Once the input samples of all channels
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Figure 6.8: Bluetooth wireless EEG recording system.

are received, the compression algorithm is executed. The compressor output is stored
in an output buffer to be transferred to the BT module through the UART interface.
Once completed, the microcontroller enters in sleep mode.

In order to asses the platform using a controlled setup, the software module re-
sponsible for receiving the sample data from the RHD2132 chips via SPI is replaced
by a Test Double. The Test Double module supplies data that is either received via a
USB interface from a PC or directly read from the processor memory.

6.3.2 EEG Compression algorithms
The lossless, real time and low power requirements of the platform impose severe
restrictions on the latency and computational resources of its embedded software.
[1] reports a low-latency, low-complexity algorithm (the complexity actually grows
linearly in storage and number of operations with respect to the number of channels),
with controllable per-sample distortion. Thus, [36] choose [1] as the starting point;
the algorithms developed involve non-trivial modifications of the original method with
the goal of making it suitable for implementation on a low-power microcontroller with
minimum computational and memory requirements.

As most EEG compression algorithms, the method in [1] exploits temporal and
spatial sample correlations. These are induced by natural properties of the target signal
such as temporal continuity, natural correlation of neural activity across regions, and
spatial smoothing due to the different layers of tissue that separate the source signals
(the neurons) from the point where they are measured (the electrodes). The essence
of the algorithm is summarized below (see Fig. 6.9 and [1] for further details):

Figure 6.9: Compression algorithm of [1]. LEFT: block diagram of the prediction scheme; here
xi(n) refers to the value of channel i at discrete time n, x` is the “helper” (parent) channel of xi,
P is the maximum order of the predictors, x̂pi is the p-th order prediction of xi and x̂i is the final
prediction for that channel. RIGHT: sample tree used when deciding which channel helps which;
the root channel is encoded with no help.
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• The coding stage is predictive: both encoder and decoder predict the value of
each sample from previously encoded samples; the actual value is described to
the decoder by encoding the difference with respect to the prediction using the
Golomb-Rice code [121].

• Channel samples are encoded in a pre-specified order following a tree; the root
channel is predicted using past samples only, whereas all other channels have a
parent channel (corresponding to their parent in the tree) that “helps” them,
meaning that the past (and present) information about the parent channel is
used for predicting the present sample of the child channel.

• Each sample prediction is a weighted average of a set of linear predictions of
different orders, which are combined using an exponential weighting scheme [122]
to form a final prediction.

• All these linear predictions are adaptive; they are updated in an online fashion
using an efficient implementation of a multi-channel Recursive Least Squares
(RLS) algorithm [123].

The performance and memory constraints of the target platform make the RLS
algorithm used in [1] infeasible for high throughput scenarios and, in general, not very
competitive in energy consumption. Instead, [36] use a multi-channel extension of
a simple integer-based, adaptive, single-channel prediction algorithm originally pro-
posed by Speck in [124]. This extension, is an original contribution of [36]. It turns
out that although a compressor implemented with this predictor is significantly less
complex, and thus requires a fraction of the resources, it still attains a performance
similar to a floating-point RLS implementation (see Table 6.4 in Section 6.3.3). As an
additional contribution, [36] propose an efficient integer implementation of the expo-
nential weighting algorithm, which further improves the performance of the predictor.
These tools, together with a cautious selection of a reduced set of predictors and other
computation savings described in [36], result in a very simple and efficient compression
algorithm that we refer to as MCS (Multi-Channel Speck). In addition, by replacing
the adaptive predictors by fixed ones, [36] derives a significantly faster algorithm at
the cost of some compression performance degradation, termed MCF (Multi-Channel
Fixed). Finally, a near-lossless encoding scheme that applies to both MCS and MCF
is also adopted.

6.3.3 System test
MCS and MCF algorithm were initially developed for a desktop computer and the
source code later ported to the low-power platform and compiled with the GNU v4.8.4
(Linaro) compiler. For comparison purposes, a C implementation of the algorithm
proposed in [1] (named FLO) was also ported and tested on the platform.

All the EEG signals used in the experiments reported are taken from publicly
available databases:

• DB1a and DB1b [125, 126]: 64-channel, 160 Hz, 12 bits EEG of 109 subjects
using the BCI2000 system. Recordings are divided in 2-minute motor imagery
task (DB1a) and 1-minute calibration (DB1b).

• DB2a and DB2b [127] (BCI Competition III): 118-channel, 1 kHz, 16 bits EEG
of 6 subjects performing motor imagery tasks (DB2a). DB2b is a 100 Hz down-
sampled version of DB2a.

• DB3 [128] (BCI Competition IV): 59-channel, 1 kHz, 16 bits EEG of 7 subjects
performing motor imagery tasks.
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• DB4 [129]: 31-channel, 1 kHz, 16 bits EEG of 15 subjects performing image
classification and recognition tasks.

21, 31, and 59 channel EEG signals from databases DB23, DB4, and DB3, respec-
tively, were used. EEG signals at 250 Hz and 500 Hz were obtained by downsampling
the original data.

Power consumption

The power consumption of the AFE and ADC stages depends exclusively on the input
data rate, i.e., the sampling frequency and number of channels. We thus focus on the
power consumption of the processor block, which depends on the complexity of the
compression algorithm, and on the power consumption of the BT radio block, which
depends on the data rate output by the compressor.

Figure 6.10: Current consumption and throughput measurement setup.

The setup used to measure the current consumption of both the processor and the
BT radio is presented in Fig. 6.10. The data is fed to the platform via a USB interface
from a PC, and the data rate is controlled by the combination of an internal timer of
the processor and hardware flow control, used to signal the PC when a new sample
can be received. Upon completing the compression of a vector sample the processor
enters in sleep mode until the timer expires.

The power consumption of BT depends on the state of the link, which can be
any of idle, connected, or transmitting. Fig. 6.11 shows measured samples of current
consumption over time for each of these states; the curves are characteristic of BT
communications [131].

BT links in active state (i.e., connected and transmitting states) require periodic
exchanges of packets in order to keep the connection active and synchronized. These
transmissions can be seen as the peaks in the plot of Fig. 6.11b; transmissions with
actual payload can be seen as pulses in Fig. 6.11c. In sniff mode, the BT device
transmits/receives only at certain regular time intervals and during a specific period.
This allows the radio to enter a low-power mode between transmissions, which results
in an energy saving in exchange for a smaller maximum attainable throughput and
slightly larger latency. The power consumption in sniff mode for a sleep time period
of 30 ms is shown in figures 6.11d and 6.11e; we notice a reduction in the number
of current consumption peaks with respect to figures 6.11b and 6.11c. To evaluate
the current consumption of the BT radio alone, we modify the setup of Fig. 6.10 by
feeding the processor directly from the voltage source and measure the current drain.

Fig. 6.12 shows the current consumption of the BT radio for different configurations
of sampling rate and number of channels, as a function of the data throughput, for
both BT with sniff mode off and on. The figure also shows, in dashed lines, the plots
of a linear regression for each of the sniff modes; we observe an excellent fit in both
cases.

3We picked the channels that comprise the international 10-20 system [130].
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Figure 6.11: Current consumption vs. time for different Bluetooth transmission states measured in
the low-power platform: (a) idle, (b) connected, (c) transmitting, (d) connected with sniff mode,
and (e) transmitting with sniff mode.

0.9877

Figure 6.12: Current consumption vs. data rate, for processor (MCF, lossless compression) and
BT.

Compression time and memory usage

The platform performance, in terms of processing time and memory usage, is detailed
in Table 6.3 for MCS and MCF. Results indicate that MCF shows a speedup of 40–
50% relative to MCS, and also a lower usage of RAM memory. On the other hand, the
FLASH memory usage is nearly constant in all cases, 27.5 kB and 26.6 kB for MCS
and MCF, respectively. Table 6.3 reports on the lossless versions of the compression
algorithms (δ = 0). The near-lossless versions (δ > 0) do not increase the memory
usage, and they increase the processing time by less than 3%.

Both MCS and MCF execute much faster than FLO, the average compression time
per scalar sample (CTPS) of FLO is almost 10 times larger than that of MCS on the
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Table 6.3: Platform performance depending on the compression algorithm version (δ = 0).

Alg. Number of Proc. time per Max. sampling RAM usage

channels sample (ms) rate (sps) (kB)

MCS 21 0.432 2313 11.7

MCS 31 0.593 1686 14.8

MCS 59 1.232 812 23.4

MCF 21 0.286 3496 8.6

MCF 31 0.418 2394 10.1

MCF 59 0.826 1211 14.4

low-power platform (see Table 6.4).

Compression performance
For each database, each data file was compressed separately and the overall compres-
sion ratio (CR), in bits per sample, was calculated as L/Ns, where Ns is the sum of
the number of scalar samples over all files of the database, and L is the sum of the
number of bits over all compressed files of the database; smaller CRs are better.

Table 6.4: Compression ratio in bits per sample (smaller is better) of MCS, MCF algorithms for
different databases (δ = 0) and average CTPS (µs). Comparison with state-of-the-art.

Algorithm DB1a DB1b DB2a DB2b DB3 DB4 CTPS

MCS 4.82 4.94 5.34 6.97 5.47 3.81 0.08

MCF 5.09 5.18 5.96 7.41 5.90 4.35 0.05

FLO 4.74 4.82 5.30 6.98 5.46 3.64 0.51

[1] 4.70 4.79 5.21 6.93 5.42 3.58 0.92

[132] 5.37 5.45 5.69 7.69 5.99 3.73 1.07

Table 6.4 shows the CRs and average CTPSs of MCS and MCF compared to
those of FLO, those reported in [1], and those obtained for ALS (MPEG-4 audio
lossless coding standard [132], ALS attains the best CRs in [132–135] for the same
databases). MCS shows CRs that are very similar for some databases and slightly
higher (worse) than those of FLO in some cases. This deterioration is expected, due
to the various simplifications made to lower the complexity of MCS. A compression
performance deterioration is also observed in MCF with respect to MCS, due to the
use of fixed predictors instead of adaptive ones, which, on the other hand, yielded
important reductions in memory and time requirements. Notice, however, that the
performance of MCF is still superior to that of the best algorithm reported in [132–135]
for all the databases except DB4. Comparing the CR of MCS with the original sample
resolution for each database we observe that the amount of data that needs to be
transmitted is reduced by a factor of at least 2.3 times, for DB2b, and up to 4.2 times,
for DB4. Finally, Table 6.5 shows results for the near-lossless versions.

Power consumption vs. throughput
Fig. 6.13 shows the current consumption of the platform (compression plus transmis-
sion) as a function of the data throughput for several values of the distortion parameter
δ (shown next to the curve), different sampling rates (different color lines), and differ-
ent number of channels (different markers). The curves on top correspond to BT with
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Table 6.5: Compression ratio (bits per sample) of MCS and MCF algorithms for different databases
(smaller is better).

δ DB1a DB1b DB2a DB2b DB3 DB4

MCS 0 4.82 4.94 5.34 6.97 5.47 3.81

MCS 2 2.79 2.86 3.23 4.66 3.35 2.30

MCS 5 2.04 2.08 2.37 3.57 2.45 1.83

MCS 10 1.62 1.64 1.86 2.75 1.91 1.58

MCF 0 5.09 5.18 5.96 7.41 5.90 4.35

MCF 2 3.03 3.06 3.70 5.10 3.66 2.53

MCF 5 2.27 2.26 2.73 3.94 2.70 1.98

MCF 10 1.82 1.81 2.08 3.10 2.08 1.67

sniff mode off and the ones on the bottom to BT with sniff mode on. Fig. 6.13a shows
the results for MCS and Fig. 6.13b for MCF. The dashed lines represent the current
consumption of the BT radio alone transmitting raw (uncompressed) data.
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Figure 6.13: Current consumption vs. throughput. (a) MCS, BT (top) and BT with sniff mode on
(bottom). (b) MCF, BT (top) and BT with sniff mode on (bottom). The dashed line represents
the current consumption as a function of the uncompressed data throughput.

We observe that the proposed low-power platform is able to perform lossless com-
pression of a 59-channel acquisition at a rate of 500 sps/ch, with a current consumption
of 19.9 mA, that is 337 µA per channel (marked as 1 in Fig. 6.13). Using near-lossless
compression with distortion δ = 2, in the same setting, results in almost 10% reduction
in current consumption (marked as 2 in Fig. 6.13). On the other hand, for 31 chan-
nels, a sampling rate of 1000 sps/ch can be attained with a consumption of 590 µA/ch
(marked as 3 in Fig. 6.13).

Fig. 6.13 illustrates the trade-off between power invested in compression and power
saved in data transmission. For very low data rates compressing does not pay off. For
larger throughputs, however, the savings in transmission exceed the cost of compres-
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sion, resulting in a reduction of up to 10% in current consumption.

The experiment also shows that, for a given current consumption, the proposed
compression scheme results in a substantial increase in the maximum attainable through-
put. For example, a budget of 24 mA allows for an uncompressed throughput of
265 kbps (see 4 in Fig. 6.13), while the use of the MCF algorithm allows for through-
puts of up to approximately 315 kbps for δ = 0 (marked as 5 in Fig. 6.13) and 400 kbps
for δ = 2 (marked as 6 in Fig. 6.13). In other words, using data compression we ob-
tain an increase in throughput of 19% with the lossless setting and 51% with the
near-lossless one.

6.3.4 Conclusions
We have presented a successful implementation, in a low-power wireless platform, of
two lossless/near-lossless multichannel EEG compression algorithms that offer different
levels of complexity and compression performance. We used these implementations to
experimentally evaluate, the energy saving and the increment in attainable throughput
derived from the reduction in the amount of data transmitted; these turn out to be
very significant for large throughput scenarios.

Future work includes evaluating the low-power platform with other physiological
signals such as ECG, for which the proposed compression algorithm yields very promis-
ing results [1]. Another future objective is to develop a custom SoC using one of the
proposed algorithms to further reduce power consumption.

6.4 Comparison and conclusions
In order to extend the field of application of traditional electrophysiology, wireless
biopotential recording systems must allow the test subject to move freely for a rea-
sonable time (about one day) within a reasonable area (about ten meters).

There were and there are multiple efforts on this direction. For example [136,137]
present systems that attain very low power consumptions using very specialized custom
hardware, and at the expense of other features we designed for, such as transmission
range, robust and secure transmission protocols and compatibility with a wide range of
devices. On the other hand, there are reaserch works such as [138,139] where systems
based on standard hardware are presented. In addition, there are several commercial
systems [90–92, 140]. A comparison of these implementations with our systems is
presented at the end of this section.

This Chapter presented three experiences where we designed and implemented pro-
totypes of biopotential wireless recording systems based on off-the-shelf components.
In Table 6.6 we summarizes its performance.

Table 6.6: Wireless biopotential recording systems described in Chapter 6.

System [33] [34] [36]-MCS

Number of channels 4 64 59

Autonomy (hours) 109 >24 156

Average supply current (mA) 31.2 139 21.7

Effective data rate (ksps/ch) 2.5 0.8 0.5

Input-referred noise (nV/
√
Hz) 11 21 21

Comm. protocol TI propietary WiFi BT (snif mode)

Application Neural EEG EEG
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Firstly [33], which is focused on neural signal recording, has 4 channels and the
AFE was built with low-cost discrete components. It has a TI low power communi-
cation protocol with limited data throughput (10 ksps). The autonomy is excellent
(109 hours powered from a 3400 mAh Li-Ion battery). The implementation of the
PCB of the AFE suffers from severe problems of interference from the radio block.

Secondly [34], that is focused on EEG signal recording, has 64 channels and the
AFE was implemented with an off-the-shelf integrated circuit. The communication
protocol is a high data rate standard (WiFi) which is not low power. This is traduced
in an excellent range of work (greater than 12 meters) and an acceptable autonomy
(24 hours powered from a 3400 mAh Li-Ion battery). The effective maximum data
rate (64 ch x 800 sps/ch = 51 ksps) can be largely increased. The current bottleneck
is in the data processing block: the 16-bit SPI communication between the RHD2132
chips and the MCU takes about 1 ms for acquiring 64 channels. A possible way to
decrease this time is to use the DMA (Direct Memory Access) peripheral of the MCU.
Another possible way is to change the MCU. However, to the best of our knowledge, the
MSP432 is the best option to balance low power and processing capabilities. Thanks
to the care put into the AFE design, there were no problems of interference between
the analog part of the circuit and the radio frequency components.

Finally [36], which is focused on EEG signal recording, has 59 channels and the
AFE was implemented with an off-the-shelf integrated circuit. The communication
protocol is standard (BT) and a data compression scheme is introduced. The auton-
omy is excellent (156 hours powered from a 3400 mAh Li-Ion battery). The effective
maximum data rate was not measured, but was close to 59 ksps (59 ch x 1 ksps/ch).
The bottleneck was simultaneously in the data processing block and the data commu-
nication block. At the processing block, the compression algorithm requires more than
1 ms in the MCS version and 0.828 ms in the MCF version, to process 64 channels.
In the latter we almost achieved 1 ksps/ch. However, at this rate, the data commu-
nication block starts to fail, a 944 kbps effective data rate is beyond the Bluetooth
4.1 radio module capabilities (59 ch x 1 ksps/ch x 16 bits = 944 kbps). Future work
should include changing the radio module for a Bluetooth 5 (released in June 2016)
module aiming to achieve a higher effective maximum data rate.

Comparing commercial systems with research implementations pose some difficul-
ties. For example, Table 6.7 shows that our systems are lighter, and achieve longer
autonomy than available commercial systems. However, there are various constraints,
such as regulatory requirements, packaging and aesthetics, and use of mature technolo-
gies, among others, that apply to commercial systems but not to research prototypes.
Additionally, some important parameters of commercial systems are often not reported
on, which limits the scope of the comparisons. Therefore, head-to-head comparisons
with commercial systems may be regarded as incomplete. On the other hand, with the
previous disclaimer on mind, it can be useful to perform the comparison. Table 6.7
shows a comparison between our EEG systems and some selected commercial EEG
recording devices and research implementations built with off-the-shelf components.
It is observed that our system compares favorably, being the only solutions that offers
the acquisition of a high number of channels with an autonomy greater than 24 hours.

Undoubtedly there is room to keep improving. There are improvements that will
come from advances in known technologies, and others will come from new technolo-
gies. For example, the increase of the processing capacity of low power MCUs and/or
the increase of effective data rates of standard protocols. Other improvements will
come from merging these standard technologies with our own developments. Part of
our future work is to implement a wireless multi-channel recording system, based on
the AFE architecture presented in Chapter 5, and on one of the systems presented in
this chapter. We believe that we are really close to develop a 64-channel 1 ksps/ch
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wireless biopotential recording system that can continuously operate for more than
one week.
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Chapter 7

Conclusions

This thesis introduced a novel integrated DDA-based preamplifier architecture target-
ing CMRR sensitive neural recording applications, including silicon implementation,
experimental characterization and in-vivo validation. The architecture was presented
and analyzed in depth, deriving the preamplifier transfer function and the main design
equations. The design flow and the main design trade-offs were discussed. In addition,
we presented the detailed analysis of a technique for blocking the input dc component
and setting the high-pass frequency without MOS pseudo-resistors.

A fully-integrated neural preamplifier, that performs well in line with the state-of-
the-art of the field while providing enhanced CMRR performance, was fabricated in
a 0.5 µm CMOS process. Results from measurements show that the gain is 49.5 dB,
the bandwidth ranges from 13 Hz to 9.8 kHz, the CMRR is very high (greater than
87 dB), and it is achieved jointly with a remarkable low noise (1.88 µVrms) and current-
efficiency (NEF = 2.1). To the best of our knowledge, this preamplifier is the best
option for applications that simultaneously need low noise, high CMRR and current-
efficiency. A second version of the preamplifier with one external capacitor achieves
a high-pass frequency of 0.1 Hz while keeping the performance of the fully-integrated
version.

We presented in-vivo measurements made with the proposed architecture in a
weakly electric fish (Gymnotus omarorum), showing the ability of the amplifier to ac-
quire neural signals from high amplitude common mode interference in an unshielded
environment. This was the first in-vivo testing of a neural recording integrated cir-
cuit designed in Uruguay done in a local lab. Furthermore, signals recorded with
our unshielded low-power battery-powered preamplifier perfectly match with those
recorded with a shielded commercially available amplifier (ac-plugged, without power
restrictions). The proposed preamplifier has proved to be very appropriate for in-vivo
recording of LFPs and unitary signals from the brain stem of a weakly electric fish.

In this thesis we extended and applied the previously mentioned architecture
to band-pass biquad filters (specially but not only to those with differential input).
Firstly, we showed that traditional implementations of these filters require an OTA
devoted to establish the high-pass characteristic and block the dc input (which implies
an overhead in terms of power consumption and silicon area). Secondly, we derived
the equation that rules the trade-off between the power consumption of these filters
and its capacity of blocking large dc inputs. Then, we proposed, among other changes,
to replace the aforementioned additional OTA with our circuit for blocking the input
dc component and setting the high-pass frequency.

Two filters that meet the same requirements were designed and compared, while
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the first was based on our novel approach, the second was based on a traditional
implementation. The novel architecture presents, as the traditional approach does,
a trade-off between gain and dc input blocking capacity. In our approach the loss
of gain is greater than in the traditional approach, but it is remarkable that our
implementation does not lose the high-pass characteristic for high dc input values
while the traditional one does. Our architecture avoids the overhead in terms of power
consumption and silicon area that traditional approaches introduce for establishing the
high-pass characteristic and to block the dc input. This feature enables to decrease
the power consumption, or to increase the levels of dc input to be blocked without
jeopardizing the power consumption. Results from Monte Carlo simulations show that
the proposed architecture, compared with a traditional one, presents a 30 % reduction
in power consumption and more than doubles the dc input that can be blocked. A
comparison with state-of-the-art filters shows that our approach is an efficient way to
balance the trade-off between a reasonable precision in setting the high-pass frequency,
high CMRR and dc input signal blocking capacity.

This thesis introduced a novel integrated programmable AFE architecture formed
by the preamplifier presented in Chapter 3 and two additional band-pass amplifying
stages based on the filter architecture presented in Chapter 4. Firstly, the main design
trade-offs (noise versus power, gain versus power, noise versus gain, linearity versus
gain, among others) of the proposed architecture were discussed and their impacts
in the design of the processing chain in terms of assignment of gain, noise, power
consumption, linearity and programmability to each stage were shown. Noise is the
most critical requirement of the first stage because ultra-low-amplitude signals must
be amplified and filtered. Therefore, the noise-power trade-off, expressed in terms of
the NEF, led us to assign most of the power budget to the first stage. Furthermore, the
noise-gain trade-off and linearity-gain trade-off determined the gains of the first and
second stage. Moreover, it was shown that programming wide ranges of gain and/or
cut-off frequencies implies wide ranges of transconductance values and high capacitor
values.

The proposed front-end architecture is focused in acquiring a wide range of physio-
logical signals. This can be done because the gain is programmable between 57 dB and
99 dB, the low-pass frequency is programmable between 116 Hz and 5.2 kHz, and the
high-pass frequency is 0.1 Hz, while the maximum power consumption of the front-end
is 11.2 µA and its maximum equivalent input-referred noise voltage is 1.87 µVrms. The
comparison between our front-end and other works in the state-of-the-art shows that
our front-end presents the best results in terms of CMRR and noise, has the greatest
value of gain and equals the best NEF reported.

On our way to designing a system based on the previously proposed circuits, we
developed three prototypes of biopotential signals acquisition systems based on off-
the-shelf components. Firstly, a wireless neural recording system based on a MSP430
SoC from TI was implemented. The system is capable of recording up to 10 ksps from
up to 4 channels. The wireless communication achieved a remarkable throughput
of 358 kbps with a packet loss of less than 2% (without retransmissions) at 10 dBm
transmit power, within a 5 meters range. The wireless module powered with two AAA
batteries (900mAh) can operate for more than 28 hours. Secondly, a wireless EEG
recording system based on two RHD-2132 analog-front-end from Intan Technologies, a
MSP432 microcontroller and a WiFi radio module from TI was developed. The system
is capable of acquiring up to 64 EEG signals and 6 synchronism signals at 800 sps
for more than 24 hours, powered from a 3400 mAh Li-Ion battery. The maximum
distance measured between the wireless module and the PC was 12 meters. Finally, a
wireless EEG recording system based on two RHD-2132 analog-front-end, a MSP432
microcontroller and a Bluetooth radio module from TI was implemented. Two novel,
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low-complexity, efficient compression algorithms were ported and tested in this low
power platform. These algorithms were tested on six public EEG databases comparing
favorably with the best compression rates reported up to date in the literature. The
system is capable of acquiring up to 64 EEG signals at 500 sps for 156 hours powered
from a 3400 mAh Li-Ion battery.

7.1 Thesis contributions
As a summary of the previous section, the following paragraphs will highlight the main
contributions of this thesis:

• We introduced a DDA-based current-efficient preamplifier architecture
for CMRR sensitive neural recording applications, including silicon im-
plementation and experimental characterization.

• The measured neural preamplifier exhibits an overall state-of-the-art perfor-
mance and enhanced CMRR.

• We presented the detailed analysis of a technique for blocking the input
dc component and setting the high-pass frequency without jeopardizing
power consumption.

• We introduced a band-pass biquad filter architecture that provides a signif-
icant reduction of power consumption and/or makes it possible to block higher
levels of dc at the input (without using decoupling capacitors).

• We proposed, designed and simulated an integrated programmable analog
front-end architecture with a performance well in line with the state-of-the-
art in the field.

• Some system-level topics were addressed during the thesis, including the design
and implementation of three prototypes of end-to-end wireless biopoten-
tials recording systems based on off-the-shelf components. In one of these
systems, we participated in the implementation, characterization and testing of
two novel, low-complexity, EEG compression algorithms.

• We performed the first in-vivo testing of a neural recording integrated
circuit designed in Uruguay done in a local lab.

7.2 Future work
In the years to come, neuroscience research will heavily depend on multi-unitary
recording performed in parallel to behavior analysis. The development of a wearable,
wireless, multi-channel and small device offering the user a synchronism mechanism,
allowing the correlation between neural activity, sensory images, and behavior signals
recorded by other devices, is a problem still not fully solved. Event related potentials
and unit firing probability after sensory stimulus and before motor actions are currently
recorded in neurosciences, medicine and psychology, among others disciplines. In the
case of event related potentials, increasing the number of channels with small size and
low power consumption would improve the possibility of source reconstruction. Large-
scale multi-unitary recordings will allow scientists to search for correlations between
the activities of neurons belonging to the same local circuitry and deciphering their
functional connectivity and also to evaluate the effects on other brain regions through
long connections. Peripheral studies, as for example Holter recordings of heart or
skeletal muscle activities in medicine and sports, would benefit from the same type of
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recording devices and simultaneous synchronous monitoring of physical activity. Fi-
nally, concerning EEG, an important challenge is electrode development. The use of
dry electrodes will continue to grow boosted by applications in Brain-machine inter-
face, wearable devices and Internet of Things, among others. This will push further
the research on optimization methods for electrodes and signal acquisition circuits to
alleviate the disadvantages of dry electrodes.

In this context, we expect that the present thesis is the first step to continue
contributing in the followings areas:

Integrated neural acquisition:
• A high ICMR implementation of the proposed architecture was fabricated in a

0.5 µm process and is currently under testing. Some preliminary results were
reported in [141] and we made them available in Appendix D.

• A low voltage (1.2 V) variant of the proposed architecture was fabricated in a
130 nm process and is currently under testing. This was done in the framework
of an undergraduate thesis [108].

• If a large number of channels is required, it can be necessary to explore changes
to the preamplifier architecture in order to reduce area. Firstly, smaller input
transistors of Gm1 can be adopted (at the expense of increasing noise). Sec-
ondly, in order to reduce the area of integrated capacitors or avoid external
capacitors, smaller OTAs can be implemented (for instance in [105] a 33 pS
OTA is reported).

• Explore the possibility of modifying α to program or tune the preamplifier gain.

• New applications of the architecture can be explored, for instance in fully-
differential filters and amplifiers.

• Implement a wireless multi-channel recording system, based on the AFE archi-
tecture presented in Chapter 5, and on one of the systems presented in Chapter
6.

On-chip processing:
• Spike detection (which can be made in the same chip of the AFE, or at the

microcontroller level).

• Develop a custom integrated circuit using one of the compression algorithms in
Chapter 6 to further reduce power consumption. The algorithm admits lossless
and near-lossless variants, and requires only basic operations, which can be
readily implemented using discrete logic blocks as part of a custom SoC.

• Conduct in-vivo tests/trials using the presented compression algorithms. Par-
ticularly, the near-lossless versions.

System level:
• Development of technological tools or platforms to study the behavior of living

beings. For example, in order to asses the response of the animal, it is possible
to conceive a system that allows to modify the impedance in a certain place of
the water while performing a weakly electric fish neural recording.

• Development of technological tools or platforms to study and control cognitive
processes. For instance, a platform that while performing a neural recording has
the possibility of stimulate.
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• An important part of the work presented in this thesis was performed in a mul-
tidisciplinary environment. The specifications, the evaluation of the trade-offs,
the most important design decisions were made in close contact with neurosci-
entists. In addition, it was rewarding to work together with colleges from signal
processing and information theory area. Future work should remain in this way.
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cient preamplifier architecture for CMRR sensitive neural recording applications.
IEEE Transaction on Biomedical Circuits and Systems, 2018 [28].

• Julián Oreggioni, Pablo Castro-Lisboa, and Fernando Silveira. Relaxing the
maximum dc input amplitude vs. consumption trade-off in differential-input
band-pass biquad filters. International Journal of Circuit Theory and Applica-
tions, volume 44, number 9, pages 1706-1716, Sept. 2016 [30].
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Appendix A

Deduction of the architecture
transfer function

Consider the small-signal operation of the circuit1 of Fig. A.1. Applying superposition
we will find iout1:

iout1 = −id7 + id8 (A.1)

iout1

VDD

M4M3

VSS

M7

M8  α : 1

M6

M5

VDD

VSS

 α : 1

2ID1

+

-
Gmf

CF

+

-
Gm2

CL

M1 M2vIN 

 +

-

vF  

vOUT  

id8

id7

Figure A.1: Architecture.

Firstly, let us consider vF = 0. vin is applied to the M1-M2 input differential pair,
therefore a current of 1

2
gm1vin enters to the source of M5 and M8 while the same (with

opposite sign) is copied by the mirror M3-M4 entering the source of M6 and M7. Fig.
A.2 shows the small signal equivalent circuit.

1We assume that the Early voltage VA =∞ and gmbs = 0.
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iout1

M7

M8  α : 1

M6

M5

VDD

VSS

 α : 1

vOUT  

(1/2).gm1.vIN 

(1/2).gm1.vIN 

id8

id7 id6

id5

Figure A.2: Gm1 small-signal equivalent circuit with vF = 0.

Due to the circuit symmetry is enough to study only one half. For instance, lets
consider the upper half, where the M5 and M8 drain current are:

id8 = −gm8vs5,8 (A.2)

id5 = −gm5vs5,8 (A.3)

Applying Kirchhoff’s current law (KCL) to the source of M5 and M8 we have:

− 1

2
gm1vin = −gm8vs5,8 − gm5vs5,8 = −(gm5 + gm8)vs5,8 (A.4)

Combining the previous two equations:

id8 =
1

2

gm1gm8

gm5 + gm8
vin (A.5)

Analogously:

id7 = −1

2

gm1gm7

gm6 + gm7
vin (A.6)

Substituting the two last equations in Eq. A.1 yields to:

iout1 =
1

2
gm1

(
gm8

gm5 + gm8
+

gm7

gm6 + gm7

)
vin (A.7)

Secondly, let us consider vin = 0. In this case, no ac current flow through M1, M2,
M3 and M4, therefore is enough to study the circuit depicted in Fig. A.3. Applying
KCL in the output node we have:

iout1 = gm8vs5,8 + gm7vs6,7 (A.8)

It can be seen that:

vs6,7 =
gm6

gm7 + gm6
vF (A.9)
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Figure A.3: Gm1 small-signal equivalent circuit with vin = 0.

vs5,8 =
gm5

gm5 + gm8
vF (A.10)

Then, combining the previous three equations we have:

iout1 =

(
gm5gm8

gm5 + gm8
+

gm6gm7

gm7 + gm6

)
vF (A.11)

Therefore, applying superposition and thus substituting Eq. A.7 and Eq. A.11 in
Eq. A.1 we arrive to:

iout1 =
1

2
gm1(

gm8

gm5 + gm8
+

gm7

gm6 + gm7
)vin + (

gm5gm8

gm5 + gm8
+

gm6gm7

gm7 + gm6
)vF (A.12)

Applying KCL in the node of vf (see Fig. A.1) we have:

vF
vout

= −Gmf
sCF

(A.13)

Applying KCL in the output node vout (see Fig. A.1) lead to:

iout1 = Gm2vout + sCLvout (A.14)

Then, combining the previous three equations with Gm1 = gm1, we have:

vout
vin

=

1
2
Gm1
CL

( gm8
gm5+gm8

+ gm7
gm6+gm7

)s

s2 + Gm2
CL

s+ ( gm5gm8
gm5+gm8

+ gm6gm7
gm6+gm7

)
Gmf

CLCF

(A.15)

this equation analytically shows that the less current M5 and M6 drain, the greater
the output current and the gain would be. In addition, the equation shows that
taking gm7 � gm6 y gm8 � gm5 the gain can be doubled without affecting the overall
performance. On the other hand, it is possible to design M7 and M8 to have gm7 = gm8.
Taking these two simplifications we arrive to the architecture transfer function:

vout
vin

=

Gm1
CL

s

s2 + Gm2
CL

s+
(gm5+gm6)Gmf

CLCF

(3.2)

It is simple to see than this function has a band-pass characteristic, where the
low-pass frequency flow−pass is given by Eq. 3.3, the band-pass gain G by Eq. 3.4 and
the high-pass frequency fhigh−pass by Eq. 3.5:

flow−pass =
Gm2

2πCL
(3.3)
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G =
Gm1

Gm2
(3.4)

fhigh−pass =
gm5 + gm6

Gm2

Gmf
2πCF

(3.5)
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Architecture linearity

If we consider M6-M7 and M5-M8 as differential pairs, they potentially can introduce
a multiplication effect between vin and vF . Next, we made the calculations that yields
to the following conditions:

vin �
2

(gm/ID)1
(B.1)

vF �
2α

(gm/ID)C1
− αnUT (B.2)

Considering that M1, M2, M5, M6, M7 and M8 are in weak inversion and α = 100,
the conditions are fulfilled:

vin �
2

(gm/ID)1
' 80mV (B.3)

vF �
2α

(gm/ID)C1
− αnUT = αnUT ' 4V (B.4)

Proof

iout1 =
1

2
gm1(

gm8

gm5 + gm8
+

gm7

gm6 + gm7
)vin + (

gm5gm8

gm5 + gm8
+

gm6gm7

gm7 + gm6
)vF (A.12)

Assuming that gm1 = gm7 = gm8 = αgm9 = αgm6 ≡ αgmc with α � 1, and
ID1 = ID7 = ID8 = αID6 = αID9 ≡ αIDC , and substituting in Eq. A.12 we have:

iout1 = gm1vin + 2gmcvF (B.5)

A way to analyze the multiplication effect is to see how the input signal perturbs
the polarization (the dc current) of M5, M6, M7 and M8:

I ′DC =
ID1 + 1

2
gm1vin

α
(B.6)

The first condition directly arise from the previous equation:

ID1 �
1

2
gm1vin ⇒ vin �

2

(gm/ID)1
(B.1)

Considering the general expression for gm given by the ACM model [142] we have:

gmc =
1

nUT

2IDC

1 +
√

1 + IDC/IS
(B.7)
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Then:

g′mc =
1

αnUT

2(ID1 + 1
2
gm1vin)

1 +

√
1 +

ID1+
1
2
gm1vin

αIS

(B.8)

Considering the first-order Taylor series of g′mc we have:

g′mc = g′mc(0) +
∂g′mc
∂vin

(0)vin = gmc +
∂g′mc
∂vin

(0)vin (B.9)

∂g′mc
∂vin

(0) = ... =
1
2
gm1

αnUT

1√
1 + ID1

αIS

(B.10)

Substituting in Eq. B.5 leads to:

iout1 = gm1vin + 2gmcvF + 2
1
2
gm1

αnUT

1√
1 + ID1

αIS

vinvF (B.11)

The second condition arise from impose that the first term in the right side is
greater than the third term. If this is true, there won’t be multiplication:

gm1vin � 2
1
2
gm1

αnUT

1√
1 + ID1

αIS

vinvF ⇒ 1� 1

αnUT

1√
1 + ID1

αIS

vF (B.12)

Then:

vF � αnUT

√
1 +

IDC
IS

= αnUT (
2IDC

gmCnUT
− 1) (B.13)

Finally:

vF �
2α

(gm/ID)C
− αnUT (B.2)
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Deduction of the thermal noise
power spectral density
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Figure C.1: Architecture.

Consider Fig. C.1. Only the noise contribution of Gm1 and Gm2 will be consid-
ered, because Gmf only have its input transistors connected to the output node of the
circuit, thus its noise contribution is negligible.

Firstly, we will analyze the noise contribution of Gm1. The transistors of the
current source 2ID1 introduce noise in common mode, thus they can be ignored. M5,
M6, M7 and M8 are cascode transistor, for that reason the noise contribution of these
transistor is negligible. Therefore, the main noise contributors are M1, M2, M3 and
M4.

The input-referred noise power spectral density SM1,2
ni of M1 and M2 is simple to

find, because these transistor are at the input:

SM1
ni = SM2

ni =
γ1nP kT

gm1
(C.1)
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where γ is the excess noise factor1, n is the slope factor (the subscript indicates whether
it is an NMOS or PMOS transistor), k is the Boltzmann constant and T is the absolute
temperature.

If we consider that the current mirror M3-M4 perfectly copies (gmCM1N = gmM3 =
gmM4), the noise contribution of M3 and M4 is the same. The noise current of these
transistors directly flow to the output node vout, and we have:

SM3
ni = SM4

ni =
γCM1N .nNkTgmCM1N

g2m1

(C.2)

Combining Eq. C.1 and C.2 we have

SGm1
ni =

2γCM1N .nNkT

gm1

(
γ1nP

γCM1NnN
+

(gm/ID)CM1N

(gm/ID)1

)
(C.3)

According to Eq. C.3, M1 and M2 have to be biased in weak inversion (maximum
(gm/ID)), and M3 and M4 in strong inversion (low (gm/ID)), thus we have:

SGm1
ni =

2γsinNkT

gm1

(
γwinP
γsinN

+
(gm/ID)CM1

(gm/ID)1

)
(C.4)

where γwi = 2 and γsi = 8/3 are respectively the excess noise factor in weak and
strong inversion.

Secondly, we will analyze the noise contribution of Gm2 (see Fig. C.2). The
transistors of the current source 2ID2 introduce noise in common mode, thus they can
be ignored. M14 and M15 are cascode transistor, for that reason the noise contribution
of these transistor is negligible.

M14

M16

 1 : KGm2

M18 M11

M9 M10

2ID2

VDD

vIN 
 +
-

M13M12

VSS

M15

M17

VBIAS1

VBIAS2

VDD

 KGm2 : 1

(gm/ID)2

(gm/ID)CM2P

(gm/ID)CM2N

vOUT  

Figure C.2: Gm2 implementation at transistor level.

Therefore, considering the noise contribution of the input transistors (M9 and
M10), the NMOS current mirror transistors (M11, M12, M13 and M18) and the PMOS
current mirror transistors (M6 and M17) we have:

SGm2
ni

∼=
2γsinNkT

Gm1

ID2

ID1
Γ (C.5)

1γi corresponds to the input transistors of Gmi and γCMij to the current mirror transistors
of Gmi, j indicates whether it is an NMOS or PMOS transistor)
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where Γ is:

Γ =
(gm/ID)2
(gm/ID)1

nN
nPK2

Gm2

+
(gm/ID)CM2N

(gm/ID)1K
2
Gm2

+

+
(gm/ID)CM2N

(gm/ID)1KGm2

+
(gm/ID)CM2P

(gm/ID)1

nN
nPKGm2

(3.12)

Therefore, the total input-referred noise power spectral density Stotalni is:

Stotalni
∼=

2γsinNkT

Gm1

(
γwinP
γsinN

+
(gm/ID)CM1

(gm/ID)1
+
ID2

ID1
Γ

)
(3.11)
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Appendix D

High-ICMR implementation

This architecture essentially consist of replacing the Gm1 presented in Chapter 3 by
the one depicted in Fig. D.1. This architecture enables a higher ICMR at the cost of
increasing the power consumption (and therefore NEF). As mentioned in Chapter 3
this architecture was our starting point which was originally reported in [58].5
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Figure D.1: High-ICMR preamplifier Gm1 implementation at transistor level.

Preliminary experimental results of two samples of the same chip, fabricated in a
0.5 µm standard CMOS process, are presented in Table D.1 and Table D.2 (part of
them were reported in [141]).



Appendix D. High-ICMR implementation

Table D.1: Experimental results of two chips with external CF = 22 nF.

Simulation IC#01 IC#02

Gain (dB) 46.4 46.7 47.0

fhigh−pass (Hz) 1.4 1.0 1.0

flow−pass (kHz) 7.7 7.7 7.5

Supply current (µA) 16.1 16.1 16.1

Input noise (µVrms) 3.1 N/A N/A

NEF 5.5 N/A N/A

CMRR (dB) N/A 87.6 100.5

Gain w/VIN,dc = 50 mV (dB) 39.6 39.7 39.7

Gain w/VIN,dc = 100 mV (dB) 33.1 30.4 29.8

Output offset (mV) 1.0 15.1 14.3

Table D.2: Variation of CMRR with dc input VIN,dc with external CF = 22 nF.

VIN,dc (mV) CMRR @ 1 kHz (dB)

-100 93.6

-50 90.4

0 87.6

+50 85.1

+100 84.0
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