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Se autoriza a través de la presente a la Universidad de la República

Oriental del Uruguay a hacer circular y copiar esta tesis con propósitos no
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muy estimulante de trabajo y estudio.
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Abstract

This thesis treats some dynamic properties of power system models. An ex-

tension of the classical concept of dissipativity is formulated to deal with these

systems described by differential-algebraic equations on phasor variables. A

class of models of these systems–the same that is known to admit an energy

function–is shown to be dissipative in the sense mentioned above, to later be

extended to include realistic models of synchronous machines and other devices.

The small signal models are shown to satisfy a convex constraint in the

frequency domain that is later articulated with Integral Quadratic Constraints,

a well-known stability analysis tool.

Specific features of realistic power system models, as the effect of voltage

regulation and damping injection, are precisely captured and incorporated into

the analysis. It is shown that a trade-off between the mentioned control actions

and the voltage sensitivity is a sufficient condition to establish the robustness

of the electromechanical modes. This result and others mentioned above are

validated through several examples.
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Resumen

Esta tesis trata algunas propiedades dinámicas de los sistemas eléctricos

de potencia. Se formula una extensión del concepto clásico de disipatividad

compatible con estos sistemas, descritos por ecuaciones algebraico-diferenciales

sobre variables fasoriales. Se muestra que una clase de modelos de estos sistemas

satisface este concepto de disipatividad y se muestra que también lo hacen

modelos detallados de máquinas śıncronas y otros dispositivos de potencia.

Se demuestra que los modelos en pequeña señal satisfacen una restricción

convexa en el dominio de la frecuencia, capaz de ser articulada con herramientas

bien conocidas de análisis de estabilidad.

Caracteŕısticas espećıficas de los sistemas eléctricos reales, tales como la

acción de la regulación de tensión y las señales estabilizadoras, son precisamente

definidas e incorporadas al análisis. Se demuestra que un adecuado balance en-

tre las acciones de control mencionadas y la sensibilidad a variaciones de tensión

es una condición suficiente para la robustez de los modos electromecánicos del

sistema. Este resultado y otros mencionados anteriormente son validados me-

diante el análisis de varios ejemplos.



Notation

R,C,N real, complex and natural numbers

In n× n identity matrix

0m×n m× n zero matrix

A⊤, A−⊤ transpose and its inverse

A∗, A−∗ complex conjugate transpose and its inverse

σ̄(A) maximum singular value of matrix A

Re, Im real and imaginary part

jΩ the set s = jω, ω ∈ Ω ⊂ R

L2[0,∞) space of functions of energy
∫∞
0 |f(t)|2dt finite

Le2[0,∞) square integrable functions on finite intervals.

Lm×n
∞ (Ω) m× n bounded functions on the set jΩ.

RLm×n
∞ (Ω) m× n rational proper transfer matrices with

no poles on jΩ

RHm×n
∞ m× n stable rational transfer matrices bounded

on the imaginary axis

Ṽj ∈ C voltage phasor at the bus j

Vj = [VRj VIj]
⊤ Cartesian description of voltage phasor at the bus j.

Vj, θj module and angle of the voltage phasor

Idj Cartesian description of current phasor, entering

device d at the bus j.

P dj , Q
d
j active and reactive power entering device d at bus j

V⋆
j , I

d⋆
j , P

d⋆
j , Qd⋆j electrical magnitudes at the equilibrium

vj , i
d
j , p

d
j , q

d
j small signal electrical magnitudes around the equilibrium.

vj = [vRj vIj ]
⊤ Cartesian description of small signal voltage phasor

at the bus j.
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vj , ϑj small signal voltage module and angle

λj = ϑ̇j small signal frequency deviation at bus j

x̂ Laplace transform of temporal function x(t)

B ⊂ N index set of buses in a network

M,L,E ⊂ B index sets associated to machines, static loads

and external injections

M3 ⊂ M index set associated to third order models

of synch. machines

M6 ⊂ M index set associated to sixth order models

of synch. machines

M ⊂ N index set of a given set of close loop modes

gr, gd, gg auxiliary functions on complex matrices

γr(·, ·;ω) voltage regulation function

γd(·;ω) damping performance function

γg(·;ω) voltage sensitivity function

J auxiliary matrix, 90 degrees counter-clockwise

rotation in R
2

J := diagj∈B(J) auxiliary matrix J ∈ R
2m×2m

JE := diagj∈E(J) auxiliary matrix JE ∈ R
2mE×2mE

Uθ auxiliary matrix, θ clockwise rotation in R
2

kv, kθ versors co-linear and orthogonal to equilibrium

voltage

Z matrix transfer function î → v̂

Y matrix transfer function v̂ → î

colj∈B xj vector column, ordered stacking of the

vectors xj, j ∈ B.

diagj∈B Mj block diagonal matrix, with Mj , j ∈ B

at its diagonal

∇xf(x); ∇f(x) (column) gradient vector of the function

f : Rn → R

∇xf(x, y); ∇yf(x, y) (column) partial derivative vector of the

function f : Rn × R
m → R



xv

ΣM3

i ,ΣM6

i PCH third (sixth) order model of

synchronous machine

ΣMi PCH generic model of synch. machine, i ∈ M

ΣLl PCH description for the ZIP model of the

power system loads

ΣN PCH description for the network model

SN , SLl , S
M3

i , SM6

i , SMi storage functions associated to the

respective devices

W,Wfd,W
N ,WE power supply rate functions

ΨN ,ΨL
l terms associated to the network and loads that

impede dissipativity

Fu upper LFT

Fl lower LFT





A B

C D



 := C(sI −A)−1B +D: transfer matrix of state

space model.



Glossary

AC Alternating Current

AC Alternating Current

AVR Automatic Voltage Regulator
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FACTS Flexible AC Transmission System

FDLMI Frequency Dependent Linear Matrix Inequality
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IQC Integral Quadratic Constraint
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PCH Port-Controlled Hamiltonian
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Introduction

The dynamic behavior of power systems is very complex due to nonlinear-

ity, high order dynamics, topological changes and parametric variations. The

scenario is complex also because of the influence of manifold control actions,

necessary to ensure proper performance and operation. A rich set of theoret-

ical and technological tools are nowadays available to engineers to cope with

this complexity in modeling, planning, design and operation of power systems.

Powerful software packages along with a well established theoretical framework

assist the engineer in simulating and analyzing the dynamic behavior of power

systems. However, the need to conceptually deal with this complexity is always

present.

Power systems constitute a special case of electrical network. However,

some peculiarities of power systems models impede that certain basic dynamic

properties of the classical Circuit Theory can be applied. The AC modulation

and the presence of multiple control actions are shown to hamper the direct

application of the idea of passivity, so essential in circuit theory.

A long line of research rooted with the classical Equal Area Criterion (Kimbark,

1948) and the application of Lyapunov theory (Athay et al., 1979) has con-

tributed with a characterization of power systems from an energy perspective

which has been used as a direct method to study the transient stability of a

class of power systems models. The examination of the terms composing this

energy function illuminates the peculiarities of the power system dynamics.

Kinetic and potential energies depending on the phasorial description of elec-

trical variables highlight the electromechanical nature of the basic power system

dynamics. However, the application of these analysis techniques requires the

absence of resistive losses or loads and the absence of control, conditions that

are in general very restrictive. These facts open some general questions:

Does the concept of energy–from the dynamic perspective–lose its sense for

realistic models of power systems?

1
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Are the power system models passive in a sense different from the classical

one?

In this thesis the general dissipativity framework proposed in (Willems,

1972) is adopted and extended to study the power systems dynamics. Roughly

speaking, a system is dissipative if it satisfies a dynamical balance between the

storage of a generalized energy and a suitably defined power supply from the

environment. In terms also general, the cyclo-dissipative systems satisfy the

same energy balance, but the conditions to be met by the generalized energy

are less restrictive.

A first original contribution of this thesis is the formulation of a specific con-

cept of dissipativity suitable for the algebraic–differential description of power

systems. The particularities of these systems require, for instance, storage func-

tions also depending on the link variables and the definition of a specific supply

rate function having derivative terms on the input.

This approach allows one to establish connections with previous results and

to provide other contributions. It is shown that, in absence of control and resis-

tive load or losses, the different network components–and their interconnection–

admit a Port-Controlled Hamiltonian (PCH) description (Van der Schaft, 2000)

and are, therefore, cyclo–dissipative in the sense above mentioned.

This is also true for a full order, conventional model of the synchronous

machine, including field and damping rotor windings. As a consequence, a

complete energy characterization of these machines is provided—avoiding over-

simplified models that have been used in the past—which constitutes an original

contribution of this work.

The analysis is based on structure–preserving models, see (Bergen and Hill,

1981). A PCH model for the power system including the power exchanges with

outer subsystems is provided, and its links with the classical energy function

are discussed. Small signal models around the equilibrium are then obtained

with the help of the PCH formalism. These linear models are shown to satisfy a

convex constraint in frequency domain that presents similarities–and significant

differences–with the familiar concept of passivity. The phase of the transfer

matrix is constrained, but in a different way.

The frequency characterization of small signal models of power systems

constitutes another original contribution of this work, and it can be articulated

with well known stability analysis tools: the Integral Quadratic Constraints

(IQC), see (Megretski and Rantzer, 1997). This fact facilitates the inclusion of
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power systems models into a very general framework of robustness analysis.

The mentioned dynamic properties, both the cyclo–dissipativity and the fre-

quency domain constraint, withstand significant parametric variations. On the

other hand, several important features of realistic models of power systems can-

not be incorporated to this framework. The inclusion of resistive components

and realistic models of voltage regulation compromises the cyclo–dissipativity.

The reflection of this property on the frequency domain is shown to be very use-

ful to quantify these adverse effects: a simple example allows one to appreciate

how the frequency domain constraint is violated at low and high frequencies,

but it is significantly preserved at the frequency band associated to the elec-

tromechanical modes. This observation and the will to study power system

models closer to the real ones open new questions:

To what extent is the cyclo–dissipativity preserved in realistic models?

How can this concept of dissipativity be modified to cope with voltage regu-

lation and damping injection?

The final part of the thesis, Chapter 4, abandons the simplifying modeling

assumptions mentioned above, and treats generic small signal models of power

systems. The analysis is done with independence of modeling details of the

different devices, by focusing on the effects of the classical control actions on the

input-output maps of small signal models of power systems. A first contribution

of this chapter is a precise definition of the performance of voltage regulation

and damping injection, which are discussed with the help of examples. These

measures of control performance constitute quadratic constraints–on a finite

band of frequencies–that recognize links with the phase constraint mentioned

above and also with some familiar concepts in power system community.

The implications of these control actions on the system stability are then

investigated through a procedure that, although based on IQCs, has some pecu-

liarities. First, the constraints are satisfied only on a finite range of frequencies.

Second, the use of numerical optimization is purposely avoided. This approach

has the virtue of keeping direct links with the well known power system con-

cepts mentioned above. In this way, it is shown that a certain balance between

damping, voltage regulation and voltage sensitivity constitutes a sufficient con-

dition for the robust stability of the electromechanical modes. This result,

another original contribution of this thesis, is validated through the analysis of

a classical example.
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The structure of the thesis is as follows. Chapter 1 begins by introducing the

mathematical model of the various elements comprising the power system, gives

their PCH representation and obtains a model for interconnected subsystems.

Chapter 2 introduces the specific dissipativity framework used in this work.

The nonlinear models of the different devices are shown to be cyclo–dissipative

in the mentioned sense. When small signal models are considered, this property

is shown to imply a convex constraint in the frequency domain given by a

multiplier Πd(ω). The dissipativity of detailed models of synchronous machines

and of a standard model of Static Var Compensator (SVC), controller included,

are studied in detail.

Chapter 3 is focused on applications of the above-mentioned properties. In

Section 3.1 the PCH description of a class of power systems is used for the design

of excitation controllers to ensure stability and performance in the presence of

non-dissipative terms. Section 3.2 studies the application of quadratic frequency

domain constraints to the stability analysis of linear interconnected systems. An

example involving the design of an SVC voltage regulator is considered. The

robust stability is later assessed through the computation of IQC multipliers.

The significance of the a priori knowledge of multiplier Πd in the frequency

band associated to the electromechanical modes is highlighted and, in some

sense, quantified.

Chapter 4 treats general small signal models of controlled power systems,

with no restrictive assumptions on losses or control. We investigate how the

classical control actions–voltage regulation and damping injection–influence the

power system dynamics. A frequency domain characterization of voltage regu-

lation and damping performance is proposed that, in addition, provides a suf-

ficient condition to ensure the robust stability of the electromechanical modes

in a sense that is precisely stated.

Chapter 5 completes the main body of the thesis with some concluding

remarks and comments on future research.

Appendix A presents the classical definition of dissipativity and briefly dis-

cuss its links with passivity and Lyapunov stability. Appendix B gathers the

demonstrations of some auxiliary or intermediate results whose details do not

contribute to a better understanding of the main topics. A brief introduction

to Linear Fractional Transformations (LFT) is included in Appendix C along

with the demonstration of an auxiliary lemma used in Chapter 4. Appendix D

analyzes the small signal models of static ZIP loads.



5

The main original contributions of the research described in this thesis are

briefly commented:

1. Section 2.1 introduces an extension of the classical concept of dissipativity,

intended to cope with differential–algebraic descriptions of power systems.

The dissipative properties of a class of non linear models of power systems

are demonstrated.

2. The small signal models of the mentioned class of power systems are shown

to meet a convex constraint in the frequency domain. Section 2.2.

3. Detailed non linear models of synchronous machines are shown to be cyclo-

dissipative. Its linear model is shown to satisfy the frequency domain

constraint. Section 1.3.2 and Chapter 2.

4. The dissipativity of standard non linear model of controlled SVC is studied

in detail. A complete characterization of the linear controllers preserving

this property for the small signal is provided. Section 2.3 of this thesis.

5. The content of Chapter 4, including the frequency characterization of

classical control actions (Definitions 2-4) and the sufficient condition for

the robustness of electromechanical modes, Theorem 1.

Most of the content of this thesis was reported in publications or interna-

tional events, has been accepted for publication, or it is currently being prepared

to be submitted for review.

References (Giusto et al., 2006a; Giusto et al., 2006b) include most of the

Chapters 1 and 2 along with the control application of Section 3.1. Some aspects

involving notation have been improved for this thesis.

References (Giusto, 2007a; Giusto, 2007b) includes mainly contribution 2,

Section 2.2, although the demonstration included in this thesis is preferred by

the author.

The studies involving detailed models of synchronous machines, contribution

3, were published in (Giusto et al., 2008).

The application of the frequency properties of power systems to the stability

analysis of these systems, Section 3.2, was accepted for publication in (Giusto,

2010).

Contribution 5 is being prepared to be submitted to a journal.



Chapter 1

Power System Modeling

In this thesis we consider the power system models usually employed for tran-

sient stability analysis. It is assumed that the electrical magnitudes can be

represented through their phasors by neglecting the fast dynamics associated

to electromagnetic phenomena on the network. Only the first harmonic of the

positive sequence is included in the analysis which has been shown to be suffi-

cient to study the transient phenomena of interest, see e.g. (Kundur, 1994).

The literature on power system dynamics usually describes the phasors by

the respective angle and modulus. We, instead, have chosen the Cartesian

description via the real and imaginary parts. This fact and the use of currents

(instead of powers) to model external injections allows the work with a more

linear model and the direct use of the models built with the software package

DSAT (Powertech Labs Inc., n.d.). Since several classical models are written

in polar coordinates, we sometimes will consider temporarily both notations.

We will work with a structure–preserving power system model in a similar

way to (Bergen and Hill, 1981). It is a disaggregated model that preserves the

original topology of the network, comprised basically by synchronous machines

and loads interconnected by a constant impedance network. To facilitate in

later sections the derivation of the dissipativity properties of each element, we

first show that they can be described by a PCH model.

The reference to PCH models is done with certain abuse of notation, since

the systems considered in this thesis are algebraic–differential and the port

variables do not respect stricto sensu the framework described, e.g. in (Van der

Schaft, 2000). The analysis takes advantage, certainly, of the usefulness of this

type of models and the implications on the dissipativity of the systems.

The system comprises a set of buses that interconnect load, machines and

other devices through the transmission network. Each bus has an associated

6
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Figure 1.1: Notational conventions

identifier j ∈ B := {1, ..,m}. The generators and loads are respectively labeled

with indices i ∈ M ⊂ B and l ∈ L ⊂ B. Generic buses are denoted by identifiers

j or k with j, k ∈ B. The interconnection with external systems is modeled

by current injections at a set of buses1E ⊂ B. M,L,E,B–whose respective

cardinalities are mM ,mL,mE,m–are ordered sets which is taken into account

when composite vectors or matrices be built with functions as col or diag.

The voltage phasor is expressed in Cartesian notation VRj
, VIj that we

collect in vectors

Vj :=





VRj

VIj



 ∈ R
2. (1.1)

Associated to each bus are the current phasors entering the machine, the

load, or a generic device that will be denoted

IMi =





IMRi

IMIi



 , ILl =





ILRl

ILIl



 , Idj =





IdRj

IdIj



 , (1.2)

respectively. We denote respectively

INj :=
[

INRj
INIj

]⊤
, IEe :=

[

IERe
IEIe

]⊤

the current entering the network interconnecting the system and the external

current injection at bus e ∈ E. Fig. 1 schematically depicts the notational

conventions. We take a current as positive when it enters to its component.

1To avoid cluttering we reserve the subindex i to variables ranging in the index set M

without explicit reference to it. The same for indices l ∈ L, e ∈ E and j, k ∈ B. For the same
reason, we also omit the subindices when the context avoids any confusion.
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The voltage phasor can also be represented by the complex number Ṽj ,

whose magnitude and angle are respectively denoted Vj and θj. Thus

Ṽj = Vj∠θj, θj = arctan
VIj
VRj

, Vj =
√

V2
Rj

+V2
Ij
. (1.3)

The following differential expressions will be useful in our development:






















∂θl
∂VRl

= −
VIl

V2

Rl

1

1+
V2
Il

V2

Rl

= −
VIl

V2

l

; ∂Vl

∂VRl

=
VRl

Vl
;

∂θl
∂VIl

= 1
VRl

1

1+
V2

Il

V
2

Rl

=
VRl

V2

l

; ∂Vl

∂VIl

=
VIl

Vl
.

(1.4)

Some devices are typically described in function of active and reactive pow-

ers. The respective definitions and basic relationships are given next.






P dj := Re(Ṽj Ĩ
d∗
j ) = VRj

IdRj
+VIj I

d
Ij

= V⊤
j I

d
j ,

Qdj := Im(Ṽj Ĩ
d∗
j ) = −VRj

IdIj +VIj I
d
Rj

= V⊤
j JI

d
j ,

(1.5)

where we introduced the auxiliary matrix J ∈ R
2×2

J :=





0 −1

1 0



 , J−1 = J⊤ = −J. (1.6)

Algebraic manipulations of equations (1.5) yields

Vj =
1

(Idj )
2





P dj −Qdj

Qdj P dj



 Idj ; Idj =
1

V2
j





P dj Qdj

−Qdj P dj



Vj. (1.7)

We will use

ΣMi : (IMi ,Vi;Efdi , Ifdi), ΣLl : (ILl ,Vl),

to denote the subsystems associated to the synchronous machines and loads,

with their respective port variables. These subsystems will, in their turn, be

coupled by the power network that interconnects all buses through transmis-

sion lines. The port (Efdi , Ifdi) in the synchronous machine model is the one

associated to the excitation circuit.

1.1 Bus Equations

From Kirchhoff’s current law we have that the sum of all currents entering a

bus must be zero. Consequently,

0 = −INj − IMj − ILj + IEj ∀j ∈ B. (1.8)
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Notice that, at a given bus j, some terms can vanish: i.e. IMj = 0 ∀j /∈ M.

Analogously IEj = 0 for all buses where the interconnection with other systems

does not occur. Equation (1.8) establishes the electrical interconnection of

loads, machines, network and external injections at each bus. Trivially, we can

write equation (1.8) as

ΣBj : 0 = −JINj − JIMj − JILj + JIEj ∀j ∈ B. (1.9)

1.2 Static Loads

Loads are described by the standard ZIP model (Kundur, 1994) that represents

the contribution of each type of load (constant impedance, current or power) to

the active and reactive powers through the coefficients pr ≥ 0, qr ≥ 0, r = 1..3:







PLl = P ⋆[p1(
Vl

V⋆
l
)2 + p2

Vl

V⋆
l
+ p3],

QLl = Q⋆[q1(
Vl

V⋆
l
)2 + q2

Vl

V⋆
l
+ q3],

(1.10)

The equilibrium values, denoted with the super-index ⋆, imply

∑

r

pr = 1;
∑

r

qr = 1.

See Appendix D for a more general model and further discussion.

Fact 1. The load model (1.10) defines an operator ΣLl : (ILl ,Vl) described by
the (memory–less) PCH system

0 = −∇Vl
SLl (Vl) + JILl −ΨL

l (Vl) (1.11)

with storage function2 SLl : R2 → R,

SLl (Vl) , P ⋆p3θl +Q⋆[
q1
2
(
Vl
V⋆l

)2 + q2
Vl
V⋆l

+ q3 ln(Vl)], (1.12)

where

ΨL
l (Vl) ,

P ⋆

V⋆2l
[p1 + p2

V⋆l
Vl

]JVl.

Proof: The proof is immediate from the computation of the gradient of the

function SLl . By invoking expressions (1.12), (1.5), (1.4) and model (1.10) we

have:

∇Vl
SLl (Vl) =





∂SL
l (Vl)
∂VRl

∂SL
l (Vl)
∂VIl



 =





P ⋆p3
∂θl
∂VRl

+Q⋆[q1(
Vl

V⋆2
l

) + q2
V⋆
l
+ q3

Vl
] ∂Vl

∂VRl

P ⋆p3
∂θl
∂VIl

+Q⋆[q1(
Vl

V⋆2
l

) + q2
V⋆
l
+ q3

Vl
] ∂Vl

∂VIl



 =

2The use of the name “storage function” will be justified in the Chapter 2 where SL(·) will
be used to establish the cyclo–dissipativity of ΣL. See also Remark 1.
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=
1

V2
l





−P ⋆p3VIl +QLl VRl

P ⋆p3VRl
+QLl VIl



 =
1

V2
l





QLl −P ⋆p3

P ⋆p3 QLl



Vl =

=
1

V2
l





QLl −PLl + P ⋆[p1(
Vl

V⋆
l
)2 + p2

Vl

V⋆
l
]

PLl − P ⋆[p1(
Vl

V⋆
l
)2 + p2

Vl

V⋆
l
] QLl



Vl =

=
1

V2
l





QLl −PLl

PLl QLl



Vl +
P ⋆

V2
l

[p1(
Vl
V⋆l

)2 + p2
Vl
V⋆l

]





VIl

−VRl



 .

By recalling expressions (1.6) and (1.7), we get

∇Vl
SLl (Vl) = JILl −

P ⋆

V2
l

[p1(
Vl
V⋆l

)2 + p2
Vl
V⋆l

]JVl,

which completes the proof along the definition of function ΨL
l . ���

Remark 1. Denoting the algebraic model (1.11), or the DAE models to be
introduced below, as “ PCH systems” is done with some abuse of notation.
Indeed, the formal definition of PCH systems given, e.g. in Subsection 4.2 of
(Van der Schaft, 2000) implies other considerations that are not met in our case.
We instead refer to the more abstract notion of “generalized energy” introduced
by (Willems, 1972) that is captured by the storage function SL.

Remark 2. As will become clear below, the term ΨL
l (Vl) introduces sign–

indefinite terms in the derivative of the storage function, hampering the estab-
lishment of the cyclo–dissipativity of the subsystem ΣLl . Notice that ΨL

l van-
ishes if the active power is supposed constant, i.e. p1=p2=0—an assumption
that is necessary for the derivation of energy functions, (Tsolas et al., 1985).

1.3 Synchronous machine models

The synchronous machines are usually modeled in stability studies with different

degrees of complexity. Second and third order models are the common choice

in the energy function literature. Fifth and sixth order models are the common

practice in time simulations for transient stability studies, (Kundur, 1994). We

first consider a third order model that represents the rotor dynamics and a

simple model of the flux decay, (Varaiya et al., 1985). These models will be

associated to the index set M3 ⊂ M. Later we will consider detailed sixth order

models, labeled with indices in M6 ⊂ M,M3 ∪M6 = M.
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1.3.1 Third order model

Consider the following model, equations (3.6) in (Varaiya et al., 1985):














































δ̇i = ωi,

Miω̇i = Pmi
−Diωi − PMi ,

τiĖi = −
xdi
x′
di

Ei +
xdi−x

′

di

x′
di

Vi cos(δi − θi) + Efdi ,

PMi = − 1
x′
di

EiVi sin(δi − θi)−
x′di

−xqi
2xqix

′

di

V2
i sin(2(δi − θi)),

QMi =
x′di

+xqi
2xqix

′

di

V2
i −

1
x′
di

EiVi cos(δi − θi)−
x′di

−xqi
2xqix

′

di

V2
i cos(2(δi − θi)),

(1.13)

where the state variables

Xi :=









δi

ωi

Ei









(1.14)

denote the rotor angle, the rotor speed and the quadrature axis internal e.m.f.,

respectively, and Efdi is the field voltage. The interaction of this model with

its environment is given through the active and reactive powers PMi , QMi and

the phasor of terminal voltage in polar coordinates θi,Vi. The parameters Mi,

Pmi
,Di, xdi , x

′
di
, xqi are denoted as in (Varaiya et al., 1985), and their detailed

description may be found in any basic power systems textbook (Kundur, 1994;

Anderson and Fouad, 1993). Following standard convention, we will make the

physically reasonable assumptions Di > 0, xdi − x′di > 0.

For convenience, we will separate the field voltage in two terms,

Efdi = E⋆fdi + efdi , (1.15)

the first one is constant and fixes the equilibrium value, while the second one is

the field voltage deviation. Also, to simplify notation, we define the constants

Y2i ,
x′di − xqi
2xqix

′
di

, YEi
,

xdi
x′di(xdi − x′di)

, YFi
,

1

xdi − x′di
, YV i ,

x′di + xqi
2xqix

′
di

,

and the matrices

Ki ,









0 1
Mi

0

− 1
Mi

0 0

0 0 0









, Ri ,











0 0 0

0 Di

M2

i

0

0 0 1
τiYFi











, Bfdi ,









0

0

1
τi









. (1.16)

Notice that the definition of Ki, Ri implies the properties

Ki = −K⊤
i , Ri = R⊤

i ≥ 0, det(Ki −Ri) 6= 0. (1.17)
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Recalling the definitions (1.1), (1.2) we have the following simple fact, whose

proof is established by direct substitution. The computations are similar to the

introduced in the preceding section and are omitted.

Fact 2. The synchronous machine model (1.13) defines an operator ΣM3

i :
(IMi ,Vi) described by the PCH system

{

Ẋi = (Ki −Ri)∇Xi
SM3

i (Xi,Vi) +Bfdiefdi
0 = −∇Vi

SM3

i (Xi,Vi) + JIMi
(1.18)

with storage function SM3

i : R3 × R
2 → R,

SM3

i (Xi,Vi) ,
1
2Miω

2
i − Pmiδi −

EiVi

x′
di

cos(θi − δi)−

−Y2i
2 V2

i cos 2(θi − δi) +
YEi

2 E2
i − YFi

E⋆Fi
Ei +

YV i

2 V2
i ,

(1.19)

with θi,Vi given by equation (1.3).

We will consider now a complete, detailed model for the synchronous ma-

chine. It includes three damping circuits at the rotor, salient poles, and the

complete dynamics at the stator.

1.3.2 Sixth order model

In this subsection we will introduce two detailed models for the synchronous

machine. The first one, equation (1.20) below, has order eight and it is closely

related with the machine’s physics. On the other hand, it involves some fast

stator dynamics that is usually neglected in stability studies. This is the reason

of the interest on the sixth order model, to be introduced later in this subsection,

that will be the one employed in later chapters.

The standard eighth order model, equations 3.120 to 3.134 in (Kundur,

1994), is given by:



















































































Ed = d
dt
Φd − Φqωr −RaId,

Eq = d
dt
Φq +Φdωr −RaIq,

Efd = d
dt
Φfd +RfdIfd,

0 = d
dt
Φ1d +R1dI1d,

0 = d
dt
Φ1q +R1qI1q,

0 = d
dt
Φ2q +R2qI2q,

d
dt
δ = Ω0(ωr − 1),

h d
dt
ωr = Tm − d(ωr − 1)− Te,

Te = ΦdIq − ΦqId.

(1.20)
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The subindices d, q denote, as usual, the components of the different variables

along the direct and quadrature axes. Φd,Φq represent the components of

the stator flux linkage. Φ1d,Φ1q,Φ2q,Φfd are the respective rotor flux linkages

associated to the damping and field circuits. The currents Id, Iq, Ifd, I1d, I1q, I2q

obey to the same notation. We will assume, by physical reasons, that the

damping coefficient d ≥ 0, the resistances Rk > 0, and the inertia h > 0.

The electrical variables at the stator in the d− q frame (see equation 13.31

in (Kundur, 1994)) are:







Ẽs := Ed + jEq = je−jδṼ ,

Ĩs := Id + jIq = −je−jδ ĨM ,
(1.21)

where Ṽ is the terminal voltage phasor, and δ is the rotor position both re-

ferred to the synchronous reference. The negative signal at Ĩs comes from the

convention used to define this stator current as positive when salient, opposite

to our convention.3. Equations (1.21) can be written

Es :=





Ed

Eq



 = JUδV, Is =





Id

Iq



 = −JUδI
M (1.22)

with Uδ ∈ R
2×2 the matrix associated to the clockwise rotation4 in the plane:

Uδ =





cos δ sin δ

− sin δ cos δ



 ,

that satisfies






U−1
δ = U⊤

δ = U−δ,

dUδ

dδ
= −JUδ = −UδJ.

(1.23)

The properties of Uδ and J , equations (1.23) and (1.6), will be used so often in

this section that no explicit reference to them will be done.

The entering complex power CM results:

CM := Ẽs(−Ĩs)
∗ = −(Ed + jEq)(Id − jIq) = −E⊤

s Is + jI⊤s JEs. (1.24)

The model is completed with the relationship between the flux linkages and

the respective currents, but some notation will be introduced before to get

3The subindex identifying the machine bus is omitted to improve readability
4This matrix also appears in Chapter 4 where is defined in a slightly different way.
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a compact description. We introduce the sub-indices s and r to respectively

denote the stator and rotor variables:

Φs :=





Φd

Φq



; Φr :=









Φ1d

Φ1q

Φ2q









, Ir :=









I1d

I1q

I2q









. (1.25)

The relationship between fluxes and currents is

Φ :=









Φs

Φfd

Φr









= L









−Is

Ifd

Ir









= LI, (1.26)

with

L =



























Lad + Ll 0 Lad Lad 0 0

0 Laq + Ll 0 0 Laq Laq

Lad 0 Lffd Lf1d 0 0

Lad 0 Lf1d L11d 0 0

0 Laq 0 0 L11q Laq

0 Laq 0 0 Laq L22q



























.

The stator equations in (1.20) can be now written as:

Es =
d

dt
Φs + JΦsωr −RaIs (1.27)

We shall state the assumptions we need to proceed with our development.

Assumption 1. The terms d
dt
Φ and RaIs in equation (1.27) are neglected. The

term JΦsωr is approximated by JΦs. So, equation (1.27) will be substituted by

Es = JΦs. (1.28)

Notice that the terms d
dt
Φ are typically neglected all along the power system

since the electrical network is studied with the help of phasors and a quasi-

stationary hypotheses. By neglecting the terms d
dt
Φ in the stator equations, we

are treating the machine’s stator as the remainder of the network. Assumption

1 is fairly standard in stability studies, see (Kundur, 1994). The neglect of the

term RaIs is justified as a simplifying assumption given its little significance in

the transient behavior. Its effect on the dissipativity of the machine model is

quantified numerically in Section 2.2.1.
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The electrical torque Te, from the respective equation in (1.20) and equa-

tions (1.28) and (1.24), results

Te = ΦdIq − ΦqId =





Id

Iq





⊤

J





Φd

Φq



= I⊤sJΦs = I⊤s Es = −PM . (1.29)

With these simplification, we get the sixth order model


















































d
dt
δ = Ω0(ωr − 1),

h d
dt
ωr = Tm − d(ωr − 1) + PM ,

d
dt
Φfd = Efd −RfdIfd,

d
dt
Φr = −RrIr,

Es = JΦs,

Φ = LI,

(1.30)

which is completed with equation (1.22), and definitions (1.25), (1.26). We

denote X := [δ ωr Φfd Φ
⊤
r ]

⊤ ∈ R6 the state vector.

We assume that the mechanical torque Tm is constant. Let us express again

the excitation voltage Efd as the sum of a constant term E⋆fd which sets the

operating point, and the control action efd: Efd = E⋆fd + efd. Analogously,

denote I⋆fd the field current at the equilibrium (I⋆fd =
E⋆

fd

Rfd
) and the incremental

field current ifd := Ifd − I⋆fd.

Consider the function SM6 : R6 ×R2 → R:

SM6(X,V) :=
1

2
Ω0h(ωr − 1)2 +

1

2
Φ⊤L−1Φ− Tmδ − I⋆fdΦfd. (1.31)

We state the PCH model for (1.30), that is demonstrated in Appendix B:

Fact 3. The synchronous machine model (1.30) defines an operator ΣM6

i :
(IMi ,Vi; efdi , ifdi) described by the PCH system

ΣM6

i : (IMi ,Vi; efdi , ifdi)

{

Ẋi = (Ki −Ri)∇XS
M6

i (Xi,Vi) +Bfdefdi
0 = −∇Vi

SM6

i (Xi,Vi) + JIMi
(1.32)

with storage function SM6

i given by (1.31) with

Ki = −K⊤
i =

1

hi





0 1
−1 0

02×4

04×2 04×4



 (1.33)

Ri =



















0 0 0 0 0 0

0 di
h2iΩ0

0 0 0 0

0 0 Rfdi 0 0 0
0 0 0 R1di 0 0
0 0 0 0 R1qi 0
0 0 0 0 0 R2qi



















≥ 0, (1.34)
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Bfd =
[

0 0 1 0 0 0
]⊤
.

Other models can also be considered, e.g. the classical second order model.

This has no theoretical difficulty since it can be seen as an special case of one

of the models above mentioned. In the sequel we will use the symbols ΣMi , S
M
i

to refer generically to any of the models studied.

1.4 Network

The network is composed by m generic nodes labeled j ∈ B interconnected by

series devices as transformers, reactors or transmission lines modeled as classical

circuits of lumped parameters. Each node feeds a shunt impedance associated

to it. Constant impedance loads can also be incorporated to the network.

The classical power system literature usually models the electrical mag-

nitudes all along the network with the help of phasors collected in complex

vectors of dimension m. The phasorial description is of course valid for steady

state and its use can be extended to quasi-statical trajectories. The use of

conventional phasors to study the transient behavior in power systems, our

choice, is nevertheless justified by the engineering practice and the difficulties

to simulate the full response of complex and very high order dynamic systems,

(Kundur, 1994; Anderson and Fouad, 1993). Of course, more detailed mod-

els exist: models for electromagnetic simulation (see e.g. (Dommel, 1969)),

and simulation based on dynamic phasors (Sanders et al., 1991; Mattavelli

et al., 1997; Stankovic and Aydin, 2000).

Denote ĨN, Ṽ ∈ C
m the vectors of current and voltage phasors

ĨN := colj∈B(Ĩ
N
j ); Ṽ := colj∈B(Ṽj).

With these definitions, the network is modeled with the help of the node ad-

mittance matrix Ỹ ∈ C
m×m (Anderson and Fouad, 1993; Kundur, 1994):

ĨN = Ỹ Ṽ. (1.35)

We have been treating the phasorial variables through their Cartesian descrip-

tion. So, we will write Ỹ = YR + jYI and describe the network through the
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vectors IN,V ∈ R
2m:

IN := colj∈B(I
N
j ) = colj∈B(





INRj

INIj



);

V := colj∈B(Vj) = colj∈B(





VRj

VIj



).

(1.36)

Let us denote INR , I
N
I ∈ R

m the respective vectors of real and imaginary parts

INR := colj∈B(I
N
Rj
); INI := colj∈B(IINj

),

and take the analogous definitions for voltages VR,VI ∈ R
m. Define the matrix

U ∈ R
2m×2m such that

V = U





VR

VI



 ; IN = U





INR

INI



 . (1.37)

U is simply a permutation of rows of the identity matrix. Thus, it is a unitary

matrix and satisfies U−1 = U⊤. So, the inverse relations of equation (1.37) are





VR

VI



 = U⊤V;





INR

INI



 = U⊤IN . (1.38)

Also define J ∈ R
2m×2m as

J := diagj∈B(J). (1.39)

Fact 4. The power network model (1.35) defines an operator ΣN : (IN ,V)
described by a PCH system

ΣN : (IN ,V)
{

0 = −∇VS
N (V) + JIN −ΨN (V), (1.40)

with storage function SN : R2m → R,

SN (V) , −
1

2
V⊤YIV, (1.41)

function ΨN : R2m → R
2m

ΨN (V) , YRV,

and the matrices YI ,YR ∈ R
2m×2m:

YI := U

[

YI 0
0 YI

]

U⊤; YR := U

[

0 −YR
YR 0

]

U⊤. (1.42)
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Proof: With the introduction of the respective real and imaginary parts

YR, YI ∈ R
m×m of the admittance matrix, equation (1.35) can be written

(INR + jINI ) = (YR + jYI)(VR + jVI).

Thus

j(INR + jINI ) = j(YR+ jYI)(VR + jVI)) = −YIVR−YRVI + j(YRVR− YIVI),

or equivalently





−INI

INR



 =





−YRVI

YRVR



+





−YIVR

−YIVI



 =

=





0 −YR

YR 0









VR

VI



−





YI 0

0 YI









VR

VI



 . (1.43)

Hence, by recalling the definitions of J and IN :

JIN = diagj∈B(J)colj∈B(I
N
j ) = colj∈B(JI

N
j ) = colj∈B(





−INIj

INRj



) = U





−INI

INR



 .

By invoking equations (1.43) and (1.38), we have

JIN = U





0 −YR

YR 0



U⊤V− U





YI 0

0 YI



U⊤V.

Notice that the symmetry of matrix Ỹ , see (Kundur, 1994), implies the sym-

metry of the matrices YR, YI . So, the definitions (1.42) imply

Y⊤
I = YI , Y

⊤
R = −YR.

Hence

JIN = −YIV + YRV = ∇VS
N (V) + ΨN (V),

which concludes the proof. ���

Remark 3. The role of term ΨN in (1.40) is similar to ΨL in (1.11), commented
in Remark 2 for the loads models. Notice that ΨN(V) = 0 if and only if YR = 0,
i.e., the network has no electrical losses nor resistive loads.
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1.5 Power system model

We are now in position to use the external power injections to model the in-

teractions between adjacent subsystems. The system interacts with its environ-

ment trough the pairs (IEe , Ve), i.e. the phasors at the frontier buses e ∈ E.

The power system model results from the models already introduced, equa-

tions (1.9), (1.11), (1.18), (1.32), (1.40), and some notational convention. The

equations are repeated and reordered here to facilitate later references:

Ẋi = (Ki −Ri)∇Xi
SMi (Xi,Vi) +Bviei, ∀i ∈ M

JIMi = ∇Vi
SMi (Xi,Vi), ∀i ∈ M

JILl = ∇Vl
SLl (Vl) + ΨL

l (Vl), ∀l ∈ L

JIN = ∇VS
N (V) + ΨN (V)

0 = −JINj − JIMj − JILj + JIEj , ∀j ∈ B

(1.44)

Clearly, the currents IM , IL, IN can be eliminated by direct substitution to get

a more compact description. With that objective, denote n the dimension of

the state space, define X, efd the state and control vector of the system, and

name IE ,VE the electrical variables at the frontier buses:

X : = coli∈M(Xi),

efd = coli∈M(efdi)

VE := cole∈E(Ve),

IE := cole∈E(I
E
e ).

(1.45)

With these conventions and after the elimination of the internal currents, one

can describe the equations (1.44) with the differential-algebraic ( DAE ) system







Ẋ = f(X,V, efd)

0 = g(X,V, IE)
(1.46)

The functions f : Rn × R
2m × R

mM → R
n and g : Rn × R

2m × R
2mE → R

2m

gather, respectively, the differential and algebraic equations. f and g will be

supposed smooth enough to ensure, along with the assumptions stated below,

the existence and uniqueness of the trajectories. We will suppose that:

Assumption 2. There exists a set D ∈ R
n × R

2m × R
2mE satisfying

D , {(X,V, IE)|g(X,V, IE ) = 0 and ∇Vg(X,V, I
E) is non singular},

where the solutions of (1.46) are unique and well defined.
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Notice that, since the Jacobian of function g with respect to V is supposed

to be non singular, it will be possible, at least locally, to solve g(·) = 0 to get

V = V(X, IE),

see (Hill and Mareels, 1990). This fact makes possible the substitution of the

so-called link variables in f(·) to get an ordinary differential system.

The second assumption we will need is the existence of an equilibrium point:

Assumption 3. There exists an open loop equilibrium of the system, that is,
a point (X⋆,V⋆, IE⋆) ∈ D where

{

0 = f(X⋆,V⋆, 0)
0 = g(X⋆,V⋆, IE⋆).

(1.47)

We will work on the PCH models obtained in this chapter, to get a compact

description of the overall system. We will begin by applying the operation

colj∈B(·) to each term in the last equation in (1.44). Thus

colj∈B(−JI
N
j ) = −JIN = −∇VS

N (V)−ΨN (V), (1.48)

where the definitions (1.39), (1.36) and equation (1.44) were employed. Com-

pute now

colj∈B(−JI
M
j ) = −∇V(

∑

i∈M

SMi (Xi,Vi)), (1.49)

and

colj∈B(−JI
L
j ) = −∇V(

∑

l∈L

SLl (Vl))− colj∈BΨ
L
j (Vj), (1.50)

Compare the definitions of vectors V and VE in equations (1.36) and (1.45).

Clearly, the entries in VE ∈ R
2mE are a subset of the entries in V ∈ R

2m. So,

define the auxiliary matrix T ∈ R
2mE×2m such that

VE = T V. (1.51)

Let us define the matrix JE ∈ R
2mE×2mE as

JE = diagE(J), (1.52)

i.e., the block diagonal matrix whose diagonal blocks are all equal to J . Thus,

cole∈E(JI
E
e ) = JEIE, colj∈B(JI

E
j ) = T ⊤JEIE . (1.53)



1.5. POWER SYSTEM MODEL 21

Consider now the last equation in (1.44) and substitute the vector associated

to each term with the help of equations (1.48), (1.49), (1.50) and (1.53):

0 = −∇V(SN (V) +
∑

i∈M

SMi (Xi,Vi) +
∑

l∈L

SLl (Vl))−

−ΨN(V) − colj∈BΨ
L
j (Vj) + T ⊤JEIE. (1.54)

The last equation suggest us to define the functions S0 : R
n × R

2m → R :

S0(X,V) :=
∑

i

SMi (Xi,Vi)+
∑

l

SLl (Vl) + SN (V). (1.55)

and Ψ : R2m → R
2m

Ψ(V) := ΨN (V) + colj∈BΨ
L
j (Vj).

Remark 4. Notice that, when the synchronous machines are described with
third (or second) order models, the function S0 coincides, beyond minor details
associated to the notation, with the classical energy function, see e.g. (Varaiya
et al., 1985). The links of the work described in this thesis with the energy
function theory are discussed in remark 8 in Section 2.1.

It is important to underscore that Ψ(V) is not a gradient vector field, that

is, it cannot be expressed as the gradient of a scalar function. This is the main

stumbling block for the generation of energy functions for non–ideal power

systems models, a difficulty that has been widely documented in the power

systems literature, see e.g. (Chiang, 1989). Equation (1.54) can now be written

0 = −∇VS0(X,V) −Ψ(V) + T ⊤JEIE . (1.56)

It is very convenient that a function candidate to be a storage function for the

overall system be singular5, ideally having a local minimum, at the equilibrium.

Notice that S0 does not qualify because of terms involving Ψ and IE in equation

(1.56). Therefore we will add some linear terms to S0 in order to get null partial

derivatives at the equilibrium: define the function S : Rn × R
2m → R :

S(X,V) := S0(X,V) +V⊤Ψ(V⋆)−VE⊤JEIE⋆, (1.57)

with V⋆ ∈ R
2m, IE⋆ ∈ R

2mE the equilibrium value of the variables V, IE .

Define also and the block–diagonal matrices

K := diagi∈M{Ki}, R := diagi∈M{Ri}, Bu := diagi∈M{Bfd}, (1.58)

5In the sense that its gradient vanishes.
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Notice that, the definition of K and R and the properties of Ki, Ri, equations

(1.17), (1.33), (1.34) imply

K = −K⊤, R = R⊤ ≥ 0, det(K −R) 6= 0. (1.59)

This allows us to rewrite the overall system given by equation (1.44) as







Ẋ = (K−R)∇XS(X,V) +Buefd

0 = −∇VS(X,V) −Ψ(V) + Ψ(V⋆) + T ⊤JE(IE − IE⋆).
(1.60)

Notice the presence of the “incremental term”−Ψ(V)+Ψ(V⋆) that, as we know,

captures the effects of the loads with constant current and lossy network.

Notice that the function S has a singular point at the equilibrium, since







0 = ∇XS(X
⋆,V⋆)

0 = ∇VS(X
⋆,V⋆).

(1.61)



Chapter 2

Dynamic Properties

As indicated in the Introduction we adopt the dissipativity framework proposed

in (Willems, 1972) and extended in (Hill and Moylan, 1980). The dissipativity

implies a dynamical balance between the storage of a generalized energy and a

power supply from the environment. This concept, with deep roots in Physics

must nevertheless be tailored to the specific dynamics under study.

The electro-mechanical nature of the basic power system dynamics and the

analysis based on phasors generate some surprises to any observer familiar with

Circuit Theory and with Mechanics. When slow electro-mechanical transients

are under study, the inductances can be interpreted as elements storing potential

energy–no novelty here–but its role reminds more a spring than a magnetic

device. The confusion can even be stronger with the role of the resistances on

the AC network since these elements do not contribute to dissipate the electro-

mechanical energy accumulated in a transient, due e.g. to a fault. The reader is

referred to the classical literature on power systems energy function for a deep

discussion, see e.g. (Pai, 1989; Tsolas et al., 1985; Varaiya et al., 1985).

On the other hand, the dissipativity based on conventional definitions of

electrical energy and power is almost useless in the study of transient stability.

The standard constant power static loads do not fit in this framework and the

conventional energy does not know minima or singular points at the equilibria,

see e.g. (Ortega et al., 1998).

Of course, we always can base our analysis on ordinary differential equations,

control theory and a generic “signal processing” approach. This thesis, and

in particular this chapter, is intended to show that the dissipativity concept,

suitably adapted, can be useful to extract valuable information on the power

system dynamics.

The content of this chapter is closely related with very deep and interesting

23
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topics both in System and Control Theory on the one hand and in Power System

Analysis on the other. The chapter is intended to introduce the specific concept

of dissipativity for power systems models and its links with the energy functions

theory in this context. Appendix A introduces briefly the classical definition of

dissipativity and presents some links with passivity and other concepts.

Section 2.1 introduces the dissipativity framework to be used in the sequel.

It is shown that, in absence of control and resistive elements, the different net-

work components–and their interconnection–are cyclo–dissipative. Small signal

models around the equilibrium are considered in Section 2.2. Finally, Section

2.3 analyzes the dissipativity properties of controlled SVC systems.

2.1 Dissipativity Properties

To establish our results a slight variation of the classical formulation is needed—

this requirement is related to the fact that the supply rate functions that we

consider are functions, not of the port variables (I, V ), but of (I, V̇ ). Another

difference with respect to the standard dissipativity framework is that our sys-

tems are characterized by DAEs1, instead of ODEs and readout maps. But this

difference is not essential as we suppose that the algebraic constraints can be

solved for the “link variables” (Hill and Mareels, 1990) leading to the standard

formulation, see Assumption 2.

Definition 1. Consider a dynamical system Σ : (u, v) represented by the DAEs







ẋ = F (x, y, u)
0 = G(x, y, u)
v = r(x, y, u)

(2.1)

where x ∈ R
n is the state and (u, v) ∈ R

p × R
p are the port variables. The

function r : Rn × R
m × R

p → R
p is the so-called read-out function and G :

R
n × R

m × R
p → R

m establishes the algebraic constraint that links the y ∈
R
m variables to the state and the input. We will assume the existence and

uniqueness of the solutions of system Σ on a set D ⊂ R
n × R

m × R
p. Suppose

v(t) continuously differentiable and let w : Rp × R
p → R be locally integrable

along trajectories of Σ, i.e.

∫ t2

t1

w(u(t), v̇(t))dt <∞, ∀ t1, t2 ∈ R.

We say that Σ is cyclo–dissipative with respect to the supply rate w(u, v̇) if and
only if there exists a differentiable function S : Rn × R

m → R, called storage

1The reader, if confused by notation or acronyms, can consult the Glossary.
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function, such that all solution (x(t), y(t), u(t)) ∈ D satisfies

S(x(t2), y(t2))− S(x(t1), y(t1)) ≤

∫ t2

t1

w(u(t), v̇(t))dt ∀t2 ≥ t1. (2.2)

We also define the dissipation function d : Rn ×R
m × R

p → R

∫ t2

t1

d(x(t), y(t), u(t))dt=S(x(t2), y(t2))−S(x(t1), y(t1))−

∫ t2

t1

w(u(t), v̇(t))dt ∀t2 ≥ t1.

Σ : (u, y) is cyclo–lossless if the dissipation inequality (2.2) holds with iden-
tity, the same to say d ≡ 0. Finally, if the storage function is non–negative we
say that Σ is dissipative with respect to the supply rate w(u, v̇).

As seen from the definition above, the distinction between cyclo–dissipative

and dissipative systems is the non–negativity of the storage function2. It can

be shown that a system is cyclo–dissipative when it cannot create (abstract)

energy over closed paths in the space (x, y). In effect, if the trajectory describes

a cycle in the period t1, t2, it is satisfied

S(x(t1), y(t1)) = S(x(t2), y(t2)),

and
∫ t2

t1

w(u(t), v̇(t))dt ≥ 0.

In this case, the environment delivers (abstract) work, but the system is not

able to storage it as an increase of the generalized energy S. This does not

impede that at an initial portion of the trajectory the system delivers energy

to the environment leading to a temporary decrease of the storage function.

On the other hand, if the system is dissipative and the trajectory starts from a

point with minimum (zero) energy, the above-mentioned behavior is not possible

because S is impeded to decrease below zero.

The presence or not of a lower bound of the generalized energy S also

has an important influence on the local shape of the storage function and the

existence of a class of these functions that can be demonstrated with variational

arguments, see (Willems, 1972).

In the power systems case, the interest resides in the dynamic behavior of

the system around multiple equilibrium points that depend on parametrical and

topological changes. In a certain sense3, the absence of a point with absolute

minimum energy is not important.

2Actually, as one can always add a constant to the storage function, the question is whether
it is bounded from below or not.

3The existence of such a point is of course essential when the system is being shut off.
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A noticeable difference between the concept of dissipativity introduced in

this chapter and the classical one introduced in (Willems, 1972) and extended

in (Hill and Moylan, 1980) is that the supply rate function w also depends in

our case on the derivatives of the port variables. This fact nevertheless does not

constitutes any obstacle, as it can be seen below. It is interesting to note that in

(Ortega et al., 2003) classes of nonlinear RLC circuits have been identified that

are dissipative with respect to supply rates of the form V̇ ⊤I or İ⊤V—which is

in the spirit of the results that we derive below.

In this section it will be shown that, in the absence of control action and

disturbance terms, each device of our power systems model is cyclo–dissipative

with respect to the supply rate function4 W : R2 × R
2 → R:

W (Ij, V̇j) , V̇⊤
j JIj = −I⊤j JV̇j = −V̇Rj

IIj + V̇Ij IRj
. (2.3)

A straightforward, but quite tedious, algebraic computation involving equa-

tions (1.4) and (1.5) allows us to write the power supply function in terms of

the polar description of voltage phasor and the power:

W (Ij, V̇j) = Pj θ̇j +
Qj
Vj

V̇j . (2.4)

The analysis of the dissipativity properties developed in this chapter is en-

tirely based on the Cartesian description of bus variables, since this option

allows us to work with functions closer to be quadratic. On the other hand, the

polar coordinates are closer to the way as the power engineers usually reason.

Remark 5. Before entering to the formal machinery of this chapter, let us
discuss–in an informal way–the meaning of dissipativity for a power system.
Think in a power system (a single device or a subsystem) operating at constant
voltage. In such a case, the power supply function can be approximated by

W (Ij, V̇j) ≈ Pj θ̇j.

The dissipativity with respect to W implies that a closed trajectory satisfies

∫ t2

t1

Wdt =

∫ t2

t1

Pj θ̇jdt ≥ 0,

that enforces a certain proximity between the waveforms of power and bus fre-
quency (θ̇j). Increases of bus frequency must accompany slow increases of active
power, which is a behavior very natural in power system. The dissipativity goes
beyond at enforcing that this proximity also must be maintained for dynamic,
faster, power variations. In particular, if the power variations are sinusoidal, at

4We are supposing, see definition 1, that the port variables V, I are differentiable.
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any frequency, the difference of phase between both waveforms will be less than
90 degrees. A similar reasoning is possible involving the waveforms of Q and
V̇ at constant frequency, which also has a direct engineering meaning: reactive
power injections will be accompanied by positive increases of bus voltage.

In the case of the synchronous machine an additional supply rate function

Wfd : R× R → R arises, associated to the excitation system:

Wfd(efd, ifd) := efdifd. (2.5)

To establish the cyclo–dissipativity properties we make the following (tem-

porary) assumptions.

Assumption 4. The field voltages of the synchronous machines are constant,
i.e., Efdi = E⋆fdi.

Assumption 5. The active component of loads are modeled as constant power,
i.e. p1 = p2 = 0 in equation (1.10).

Assumption 6. The network has no resistive element: YR = 0.

Proposition 1. The operator ΣM6

i : (IMi ,Vi; efdi , ifdi) defined by the sixth
order synchronous machine model (1.32) is cyclo–dissipative with respect to the
supply rate W (IMi , V̇i) +Wfd(efdi , ifdi). More precisely,

dSM6

i (Xi,Vi)

dt
≤W (IMi , V̇i) +Wfd(efdi , ifdi).

If, in addition, Assumption 4 is satisfied, ΣM6

i : (IMi ,Vi; 0, ifdi) is cyclo–dissipative
with respect to the supply rate W (IMi , V̇i) and

dSM6

i (Xi,Vi)

dt
≤W (IMi , V̇i).

If Assumption 5 holds, the operator ΣLl : (ILl , Vl) defined by the model (1.11)
is cyclo–dissipative lossless with respect to the supply rate W (ILl , V̇l):

dSLl (Vl)

dt
=W (ILl , V̇l).

If Assumption 6 holds, the operator ΣN : (I,V) defined by (1.40) is cyclo–
dissipative lossless with respect to the supply rate WN : R

2m × R
2m → R :

WN (I, V̇) := V̇⊤JI =
∑

j∈B

W (Ij , V̇j). (2.6)

More precisely,
dSN (V)

dt
=WN (I, V̇).

Finally, the bus equations (1.9) may be written as

W (IEj , V̇j) =W (Ij, V̇j) +W (IMj , V̇j) +W (ILj , V̇j) ∀j ∈ B. (2.7)
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Proof Some simple computations from (1.31), (1.32) yield

dSM6(X,V)

dt
=
∂SM6

∂X
Ẋ +

∂SM6

∂V
V̇ =

=
[

∇XS
M6(X,V)

]⊤
[(K −R)∇XS

M6(X,V) +Bfdefd] + [JIM ]⊤V̇ =

−
[

∇XS
M6(X,V)

]⊤
R∇XS

M6(X,V) + efdifd + [JIM ]⊤V̇ ≤

≤Wfd(efd, ifd) +W (IM , V̇). (2.8)

The inequality results from equations (1.33), (1.34), and definitions (2.3), (2.5).

Notice that, if Assumption 4 is also satisfied, efd = 0, Wfd(efd, ifd) = 0 and

the cyclo–dissipativity of the generator with respect to W follows.

Similarly, from the loads equation (1.11) and (2.3), we get

dSLl (Vl)

dt
=
∂SLl
∂Vl

V̇l = ∇Vl
SLl (Vl)

⊤V̇l = (JILl )
⊤V̇l −ΨL

l (Vl)
⊤V̇l =

=W (ILl , V̇l)− V̇⊤
l Ψ

L
l (Vl),

establishing cyclo–dissipativity for load models satisfying Assumption 5, since

ΨL
l (Vl) = 0. For the electrical network we get from (1.40) and (2.6)

dSN (V)

dt
= V̇⊤JIN − V̇⊤ΨN (V) =WN (I, V̇)− V̇⊤ΨN (V)

proving the system is cyclo–lossles if ΨN (V) = 0—that is, in the absence of

resistive components. Finally, (2.7) follows multiplying (1.9) by V̇j and taking

the transpose. ���

In reference (Giusto et al., 2006a) it was shown that Proposition 1 is also met

by classical second and third order generator models with constant excitation.

These results are not included in Proposition 1 for the sake of brevity.

Remark 6. The cyclo–dissipativity of the synchronous machines deserves some
comments. Compute the dissipation function from (2.8) and definition (1.31):

d(Xi, Vi) = −∇XS
M6⊤R∇XS

M6 = −dΩ0(ωr − 1)2 −Rfdi
2
fd − ITr RrIr.

As it can be seen, the dissipation is composed by mechanical and electrical
losses. The rotor circuits are not AC modulated and their resistances appear
dissipating energy as usual. The supply rate function has two components: W is
the one associated to the stator variables and to the energy interchange all along
the network. The term Wfd = efdifd is, naturally, the electrical power supplied
to the machine by the excitation system. Finally, the storage function SM6 ,
equation (1.31) exhibits noticeable terms that emphasize its electromechanical
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nature: the rotational kinetic energy 1
2Ω0(ωr − 1)2 and the electromagnetical

potential energy 1
2Φ

⊤L−1Φ. The term Tmδ is a direct consequence of assuming
constant torque; the linear term involving Φfd was introduced to ensure the
absence of linear terms around the equilibrium, remember (1.61).

Remark 7. Of course, we always can consider the physically natural supply
rate function defined as the sum of Ŵ = −ETs Is = PM for the stator and Wfd

for the field. By doing so, we recover the familiar energy balance at the machine,
see (Ortega et al., 1998) and references therein. This study is very interesting,
since it establishes links with very well-known physical concepts. However, the
election of Ŵ as supply rate function (and its corresponding storage function)
faces serious drawbacks when analyzing the stability of a non zero equilibrium,
since the dissipativity is not satisfied by the incremental model around the
equilibrium. The power supply rate W defined in (2.3) does not have these
drawbacks as it will be shown below.

Notice that the addition in j ∈ B of equation (2.7) yields

∑

E

W (IEe , V̇
E
e ) =WN (I, V̇) +

∑

j∈M

W (IMj , V̇j) +
∑

j∈L

W (ILj , V̇j), (2.9)

which motivates the definition of the external supply rate function5 WE :

R
2mE × R

2mE → R:

WE(IE, V̇E) ,
∑

E

W (IEe , V̇e) =
∑

E

V̇ ⊤
e JI

E
e = V̇E⊤JEIE, (2.10)

with the matrix JE defined in (1.52). Define now the incremental variables

iE := IE − IE⋆, vE := VE −VE⋆,

and the function wE : R2mE × R
2mE → R:

wE(iE , v̇E) , v̇E⊤JEiE. (2.11)

The first order terms around the equilibrium were suppressed in wE , as

it was done in Section 1.5 for the storage function S, equation (1.57). The

links between both functions are highlighted in the following Proposition that

establishes the cyclo-dissipativity of the power system model:

Proposition 2. If Assumptions 4-6 are satisfied, the system given by equation
(1.60) is cyclo-dissipative with respect to supply rate function WE:

dS0(X,V)

dt
≤WE(IE, V̇E),

5The reader familiar with reference (Willems, 1972) will recognize, behind the equation
(2.9), the concept of neutral interconnection that establishes the way how the internal inter-
actions compensate each other.
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with S0 given by (1.55). The system also is cyclo-dissipative with respect to wE:

dS(X,V)

dt
≤ wE(iE , v̇E),

with S given by (1.57).

Proof From the previous derivations and equations (2.9) and (2.10), we have

dS0(X,V)

dt
=

∑

i

d

dt
SMi (Xi,Vi) +

∑

l

d

dt
SLl (Vl) +

d

dt
SN (V) ≤

≤
∑

i

W (IMi , V̇i) +
∑

l

W (ILl , V̇l) +
∑

j∈B

W (INj , V̇j) =

=WE(IE, V̇E)

that proves the first part of the thesis. The second affirmation can be easily

proved directly from equation (1.60):

dS(X,V)

dt
= ∇XS(X,V)⊤Ẋ +∇VS(X,V)⊤V̇ =

= ∇XS(X,V)⊤[(K −R)∇XS(X,V)] + [T ⊤JE(IE − IE⋆)]⊤V̇ ≤

≤ V̇⊤[T ⊤JE(IE − IE⋆)] = ˙VE⊤JE(IE − IE⋆) = ˙vE⊤JEiE .

The latter identities were obtained with equation (1.51) and definition (2.11).

Thus
dS(X,V)

dt
≤ wE(iE , v̇E),

that concludes the proof. ���

Notice that, when the system is isolated, the model (1.46) results

Ẋ = f(X,V(X), 0) := f̄(X), (2.12)

where the links variables V were substituted by a function on the states, by

virtue of Assumption 2. In these conditions, Proposition 2 yields

dS(X,V)

dt
=
dS(X,V(X))

dt
:=

dS̄(X)

dt
≤ 0,

The function S(X,V), see definition (1.57) and equations (1.12),(1.19), (1.31)

and (1.41), is not bounded from below nor radially unbounded: it is only non-

increasing along the trajectories. Its local properties around the equilibria de-

pend on each case. Consequently, the function S̄ can not be used as a Lyapunov

function for the system (2.12) without further considerations. These functions

nevertheless have been successfully used in the power system literature with

different objectives. In this context, see e.g. (Chiang et al., 1987; Varaiya

et al., 1985), a differentiable function S̄ : Rn → R is called an energy function

of system (2.12) if the following three conditions are met:
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1. S̄ is non–increasing along the trajectories of (2.12): ˙̄S((X(t)) ≤ 0,

2. the set {t ∈ R : ˙̄S(X(t)) = 0} has measure zero in R for all non trivial

trajectory X(t),

3. if a trajectory has a bounded value of S̄(X(t)) on t ≥ 0, then X(t) is also

bounded.

The energy function has been employed, among others objectives, to inves-

tigate the dynamic properties of the stability boundary of stable equilibrium

points (s.e.p), to estimate attraction regions of s.e.p, to compute security mar-

gins to the voltage collapse in power systems, to obtain quantitative measures

of transient stability, and to provide on line analysis tools to assess dynamic

security. See, e.g. references (Chiang et al., 1987; Varaiya et al., 1985; Overbye

and DeMarco, 1991; Chiang et al., 1994; Paganini and Lesieutre, 1999), for a

deep discussion and applications.

The application of energy function theory to power systems has faced serious

obstacles due to the size and complexity of these systems. It is not a simple task

to rigourously verify properties 2 and 3 above. Among the legitime responses

to these obstacles it is possible to find the use of simplified dynamic models

and the development of computational procedures based partial and explicitly

on the heuristics.

Remark 8. The contributions of the work reported in this thesis to the analysis
techniques based on the energy function are the following:

• A characterization of the dynamic properties to be met by each component,
Definition 1 and Proposition 1, in order to ensure that the power system
possesses a storage function satisfying Condition 1 above.

• The inclusion of detailed full order synchronous machine models to the
classical energy function: Fact 3 and Proposition 1.

• The inclusion of a class of controlled SVC systems to the classical energy
function, see Section 2.3.

The latter two statements are valid provided that Conditions 2 and 3 of the
energy function can be established for the overall system by some mean.

The expression in polar coordinates of the function W , equation (2.4) have
been implicitly employed in a procedure of construction of energy functions, first
reported in (Van Cutsem and Ribbens-Pavella, 1985) and, more recently, applied
in reference (Azbe et al., 2005) and others of the same authors.
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2.2 Input-output properties for small signal models

We have seen in the previous section that the power system model (1.60) satisfies

a fundamental internal property: the balance between the storage of energy and

the interaction with the environment. We will study how this property is also

satisfied by small signal models. Later, we will exploit the versatility of linear

models to study the dissipativity in the frequency domain.

Variables at the equilibrium will be denoted with a supra-index ⋆: X⋆,V⋆, I⋆fd,

etc. Lowercase will denote the incremental variables around the equilibrium

point: ifd = Ifd − I⋆fd, x̃ = X −X⋆, etc.

Consider the Jacobian matrix of function Ψ(V) at the equilibrium

Jψ :=
d

dV
Ψ(V)|⋆,

and its symmetric and skew-symmetric parts:

JSΨ :=
1

2
(Jψ + J⊤

ψ );J
A
Ψ :==

1

2
(Jψ − J⊤

ψ );

The Hessian of function S, equation (1.57), at the equilibrium:

H :=
∂2S(X,V)

∂(X,V)2
|⋆,

allows us to define H : Rn × R
2m → R :

H(x,v) :=
1

2





x

v





⊤

H





x

v



+
1

2
v⊤JSΨv, (2.13)

and obtain, by invoking (1.60) and (1.61), the small signal model:















ẋ = (K −R)∇xH(x,v) +Buefd

0 = −∇vH(x,v) − JAΨv + T ⊤JEiE

vE = T v

(2.14)

If the excitation is held constant (Assumption 4), and if the network is free

from resistive losses or loads (Assumptions 5-6), Ψ ≡ 0:















ẋ = (K −R)∇xH(x,v)

0 = −∇vH(x,v) + T ⊤JEiE

vE = T v

(2.15)

In these conditions,

d

dt
H = ∇⊤

xHẋ+∇⊤
vHv̇ ≤ v̇E⊤JEiE = wE(i

E , v̇E),
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and the dissipation inequality is recovered:

d

dt
H ≤ wE(i

E , v̇E). (2.16)

If we denote

H =





Hx Hxv

H⊤
xv Hv



 ,

in full accordance with equation (2.13), we obtain

∇xH(x,v) =
[

Hx Hxv

]





x

v



 ,

∇vH(x,v) =
[

H⊤
xv Hv

]





x

v



 .

SinceHv is invertible (because of Assumption 3), a straightforward computation

allow us to get the state space model






ẋ = (K −R)[Hx −HxvH
−1
v H⊤

xv]x+ (K −R)HxvH
−1
v T ⊤JEiE

vE = TH−1
v [−H⊤

xv]x+ T H−1
v T ⊤JEiE .

(2.17)

Notice that the election of the pair vE , iE respectively as output and input is

merely conventional. The inverse map vE → iE exists since the matrix

D̃ := TH−1
v T ⊤JE

is invertible because, by construction, T has full rank and JE is invertible.

Equation (2.15), or equivalently equation (2.17), is the state space repre-

sentation of the small signal response of the power system. It determines the

dynamic matrix

Ã := (K −R)[Hx −HxvH
−1
v H⊤

xv], (2.18)

and also the input-output relationship between iE and vE . Denote Z(s) and

Y(s) the corresponding transfer matrices

v̂E(s) = Z(s)̂iE(s),∀iE ∈ Le2, x(0) = 0,

îE(s) = Y(s)v̂E(s),∀vE ∈ Le2, x(0) = 0,
(2.19)

where we have used the symbol ·̂ to denote the Laplace transform and s ∈ C

the Laplace variable.

The dissipation inequality (2.16) and the classical Kalman-Yakubovic-Popov

lemma, see references (Rantzer, 1996), (Willems, 1971), enable us to think that
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these systems satisfy some constraint in the frequency domain. Our concept

of dissipativity possesses some differences from the original setting. For this

reason, we will prove the mentioned property independently.

Proposition 3. Suppose the Assumptions 4-6 hold and det(jwI − Ã) 6= 0∀ω ∈
R. Then the transfer matrices Z,Y given by equation (2.19) satisfy

[

I
Z(jω)

]∗

Πd(jω)

[

I
Z(jω)

]

≥ 0 ∀w ∈ R, (2.20)

[

I
Y(jω)

]∗

Πd(jω)

[

I
Y(jω)

]

≥ 0 ∀w ∈ R, (2.21)

Πd(jω) := |hd(jω)|
2

[

0 jωJE⊤

−jωJE 0

]

(2.22)

for all function hd(s) real rational stable and strictly proper.

Proof: Consider x(0) = 0 and take Laplace transform at equation (2.15):











































sx̂ = (K −R)
[

Hx Hxv

]





x̂

v̂





T ⊤JE îE =
[

H⊤
xv Hv

]





x̂

v̂





v̂E = T v̂.

The first two equations can be written





sx̂

T ⊤JE îE



 =





(K −R) 0

0 I2m



H





x̂

v̂



 , ∀iE ∈ Le2

As (K −R) is invertible, see equation (1.59), we can write





(K −R)−1 0

0 I2m









sx̂

T ⊤JE îE



 = H





x̂

v̂



 , ∀iE ∈ Le2

If we pre multiply by the vector

|hd(s)|
2s∗





x̂

v̂





∗

,

we obtain

|hd(s)|
2s∗





x̂

v̂





∗ 



(K −R)−1 0

0 I2m









sx̂

T ⊤JE îE



 = |hd(s)|
2s∗





x̂

v̂





∗

H





x̂

v̂



 ,
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or, equivalently

|hd(s)|
2s∗x̂∗(K −R)−1sx̂+ |hd(s)|

2s∗v̂E∗JE îE = |hd(s)|
2s∗





x̂

v̂





∗

H





x̂

v̂



 ,

(2.23)

where we have used the last equation in (2.15). If we take s = jω, ω ∈ R, the

right hand side of equation (2.23) is purely imaginary since H is a symmetrical

real matrix. Thus, ∀iE ∈ Le2

|hd(jω)|
2ω2x̂(jω)∗[(K −R)−1 + (K −R)−⊤]x̂(jω)−

−jω|hd(jω)|
2v̂E(jω)∗JE îE(jω) + jω|hd(jω)|

2 îE(jω)∗JE⊤v̂E(jω) = 0.

The absence of imaginary poles of Ã implies that x̂(jω) is bounded ∀iE ∈ Le2.

The assumptions on hd imply that |hd(jω)|
2ω2 is also bounded on R. Finally,

the sign definition of (K − R) and the introduction of the transfer matrix Z,

equation (2.19), implies

|hd(jω)|
2 îE(jω)∗[−Z(jω)∗jωJE + jωJE⊤Z(jω)]̂iE(jω) ≥ 0, ∀iE ∈ Le2

Since iE ∈ Le2 is arbitrary:

|hd(jω)|
2[−Z(jω)∗jωJE + jωJE⊤Z(jω)] ≥ 0 ∀ω ∈ R. (2.24)

The equation (2.20) results of a simple reordering of this inequality. Notice that

the introduction of the factor |hd(·)|
2 ensures that Πd is bounded on R. By pre

and post multiplying equation (2.24) by Y∗ and Y we have

|hd(jω)|
2[−jωJEY(jω) +Y(jω)∗jωJE⊤] ≥ 0 ∀ω ∈ R.

Since JE⊤ = −JE, we can write

|hd(jω)|
2[jωJE⊤Y(jω)−Y(jω)∗jωJE ] ≥ 0 ∀ω ∈ R,

which allows us to obtain equation (2.21) that concludes the proof. ���

The condition (2.20) is equivalent, see equation (2.24), to

jω|hd(jω)|
2JE⊤Z(jω) + [jω|hd(jω)|

2JE⊤Z(jω)]∗ ≥ 0 ∀ω ∈ R.

If Z(s) is stable and strictly proper, the condition above is equivalent to

sJE⊤Z(s) is positive real,
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in the sense established, e.g. in (Khalil, 1996). This condition does not constrain

the size of the map Z(s) but, in the matrix sense, its phase6.

Equations (2.20)-(2.22) constitute frequency-weighted convex conditions for

the small signal systems Z and Y. This statement can be easily verified with

the help of Lemma 2 in Section 3.2.

2.2.1 Numerical example

We consider a classical benchmark of power system stability studies: the Ex-

ample 12.6 in (Kundur, 1994). A single-line diagram of this example is depicted

in Figure 4.6. The objective of the analysis is to verify the fulfillment of the

frequency domain condition in Proposition 3 and the way this property is af-

fected by the inclusion of resistive losses, magnetic saturation and excitation

control. The linear models around the equilibrium system were computed with

the package DSAT (Powertech Labs Inc., n.d.).

The eigenvalues of the matrix function

σ(jω) := σl(Z(jω),Πd(jω))(jω) ∀ω ∈ R,

for each generator were computed. The generators are modeled in full accor-

dance with (Kundur, 1994), with the exceptions mentioned below in each case.

All the machines models have sixth order. The model of generator G1 does not

include the effect of magnetic saturation nor the resistance Ra. The excitation

is kept constant. Figure 2.1 shows the eigenvalues of σ(jω) for generator G1:

both positive, which provide us a numerical validation of Proposition 3.

The remaining machines were modeled with magnetic saturation. The

model of generator G3 includes also the statorical resistance Ra. The eigenval-

ues of σ for G3 are depicted in Fig. 2.2. As it can be seen, the influence of Ra

is negligible for frequencies up to 1000 rad/sec, beyond the reasonable limits of

validity for the class of models used in transient stability studies.

Generator G4 includes the following AVR:

Efd = 200
1 + s

1 + 10s
(Et − Vref ),

with a relatively high gain. The eigenvalues of σ(jω) for this case are repre-

sented in Fig. 2.3. The AVR naturally affects the frequency response at low

frequencies, just below the natural frequencies of the system, around 1 rad/sec.

6We refer to the polar decomposition of the complex matrices, see e.g. (Conway, 1985).
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Figure 2.1: Eigenvalues of function σ(jω) for G1: no magnetic saturation,
Ra = 0, constant excitation.

Figures 2.1-2.3 allow us graphically appreciate the influence of Ra and the

AVR on the cyclo-dissipativity of the generator model. Notice that this property

remains valid in the presence of active excitation control for medium frequencies

comprising the basic natural frequencies of electromechanical oscillations. This

fact encourages the employment of multiplier Πd, at least at medium frequen-

cies, for robustness analysis of power systems.
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Figure 2.2: Eigenvalues of function σ(jω) for G2. It includes the effect of Ra.
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Figure 2.3: Eigenvalues of function σ(jω) for G4. It includes the effect of Ra
and excitation control.
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Figure 2.4: Schematic one-line diagram of a SVC

2.3 Dissipativity properties of SVC models

This section focuses on the properties of Static Var Compensators (SVC) mod-

els. A schematic diagram of a basic configuration is shown in Figure 2.4. The

model considered here is the one typically used for power system stability stud-

ies (Kundur, 1994): balanced system, oriented to transient phenomena and

describing the behavior of the phasor associated to the fundamental frequency7.

We will show that for a broad class of SVC voltage regulators–namely, the

PD controllers–, these models satisfy the cyclo-dissipativity property defined

in Section 2.1. This fact has particular relevance since it allows to incorporate

the model of the SVC with PD controller to classical energy functions used to

analyze power system stability, see Remark 8 in Section 2.1. As we know, the

dissipation inequality implies also that the linear model around the equilibrium

meets a convex condition in the frequency domain; a complete characterization

of the set of controllers that ensure this property is obtained.

Typically, the SVC have been treated in the energy function literature either

as a constant impedance or as a constant voltage load (Hiskens and Hill, 1992).

The first situation corresponds to a saturated control action and the second one

to an instantaneous control response. However, at the best of our knowledge, no

energy function is known for the SVC when its control dynamics is considered.

The Figure 2.4 represents a fixed bank capacitor with susceptance −BC

and a Thyristor-Controlled Reactor (TCR) with a susceptance BL which is

controlled by the voltage regulator, see (Kundur, 1994). Figure 2.5 graphically

describes the control loop: the controller k(s) operates on the voltage error to

contribute to the adjust of the SVC susceptance BS, positive when inductive.

As it was mentioned, the energy function for the saturated cases (BS = −BC

7Harmonics and electromagnetic fast transients are not considered.
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Figure 2.5: Basic model of the SVC

or BS = −BC +BL) is well known. For this reason, no explicit mention is done

in the sequel on the fixed operating limits.

The controlled SVC susceptance can be written

BS = −BC +BLb(t). (2.25)

So, the specific model of the SVC controlled by a PD regulator8 is


























PS = 0

QS = (−BC +BLb)V
2

b(t) = kP e+ kDė

e = V − Vref .

(2.26)

It will be shown, in a first instance, that the SVC controller with a PD voltage

regulator admits a PCH model.

Fact 5. The model of the SVC with PD control, equation (2.26) can be repre-
sented as the operator ΣSpd : (I

S ,V) described by the system

ΣSpd : (I
S ,V)

{

0 = −∇VS
S
pd(V) + JIS −BLkDV̇V, (2.27)

with storage function SSpd : R
2 → R

SSpd(V) := −
BCV

2

2
+BLkP [

Vref
2

(V − Vref )
2 +

(V − Vref)
3

3
]. (2.28)

Proof: The gradient can be computed from equation (2.28), the model

(2.26), and the identity (1.4):

∇VS
SV C(V) =

SPDSV C
dV





∂V
∂VR

∂V
∂VI



 =

= {−BCV +BLkP [Vref (V − Vref ) + (Vref − Vref )
2]}

1

V





VR

VI



 =

8The index S stands for SVC, the bus identifier is omitted.
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= [−BC +BLkP (V − Vref ]





VR

VI



 = [−BC +BLkP e]V.

Compute JIS from the model (2.26) with the help of equations (1.7):

JIS = J
1

V2





PS QS

−QS PS



V =
1

V2





QS 0

0 QS



V = [−BC +BLb]V. (2.29)

The latter two equations allow us to write

−∇VS
S
pd(V) + JIS = BL(b− kP e)V = BLkDėV = BLkDV̇V,

that concludes the proof. ���

The cyclo-dissipativity of model (2.27) is stated in next proposition.

Proposition 4. The operator ΣSpd(I
S ,V) defined by the model (2.27) is cyclo–

dissipative with respect to the supply rate W (IS , V̇) for all control action

b(t) = kP e(t) + kDė(t), (2.30)

with kD ≥ 0. More precisely, the storage function SSpd satisfies

dSSpd(V)

dt
=W (IS, V̇)−BLkDV̇

2V ≤W (IS , V̇). (2.31)

The proof is straightforward from Fact 5, definition (2.3) and the identity

BLkDV̇V
⊤V̇ = BLkDV̇VV̇ ≤ 0.

Remark 9. Notice that the derivative action introduces a positive dissipation

d(V, V̇) = BLkDV̇
2V ≥ 0

which constitutes a noticeable difference with respect to classical (loss-less)
energy function for these devices. This effect must not be confused with the
additional damping signals that typically are added to the SVC control, see
(Kundur, 1994).

Small signal properties Let us denote V⋆ the equilibrium voltage for the

model (2.25). This quantity is typically near Vref ; the difference, if it exists, is

due to finite controller gain. Let b⋆ be control action at the equilibrium. The

linear model around the equilibrium, for a generic linear controller is


























pS = 0

qS = 2[−BC + 2BLb
⋆]V⋆v +BL(V

⋆)2b̃

d
dt
xk = Akxk +Bkv

b̃ = Ckxk + dkv,

(2.32)
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where xk is the state vector of the regulator and v := V − V⋆. We denote

k(s) := Ck(sI −Ak)
−1Bk+dk the transfer function of the regulator to get

b̂(s) = k(s)v̂(s) = k(s)kv v̂(s) = k(s)
V⋆⊤

V⋆
v̂(s),

where the small signal relation9 v = kvv, and definition (4.1) were employed.

Recall equation (2.29) to write

IS = −J [−BC +BLb]V,

and obtain the small signal model

îS = J [BC −BLb
⋆]v̂ − JBLV

⋆b̂(s) = J [BC −BLb
⋆]v̂− JBLV

⋆k(s)kvv̂(s).

Thus, the transfer function YS(s) such that î(s) = YS(s)v̂(s) is

YS(s) = J [BC −BLb
⋆]−

BLk(s)

V⋆
V⋆V⋆⊤. (2.33)

We now will state the conditions to be met by controller k(s) in order to

the SVC linear model (2.32) satisfies condition (2.21).

Proposition 5. The transfer matrix YS(jω) satisfies

[

I
YS(jω)

]∗

Πd(jω)

[

I
YS(jω)

]

≥ 0 ∀w ∈ R (2.34)

with Πd given by (2.22) if and only if If Im[k(jω)] ≥ 0 ∀ω ≥ 0.

Proof: Condition (2.34) is equivalent to

jω[−YS(jω)⋆J + J⊤YS(jω)] ≥ 0 ∀ω ∈ R ⇔

jω
BL
V⋆

V⋆V⋆⊤(−k(jω) + k(jω)∗) = 2ω
BL
V⋆

Im(k(jω)) ≥ 0 ∀ω ∈ R ⇔

Im(k(jω)) ≥ 0 ∀ω ≥ 0.

���

Noticeably, any reasonable proper approximation of the PD control action

k(s) := kP+skD
Ts+1 satisfies Im[k(jω)] ≥ 0 ∀ω ≥ 0. Notice also that this condition

is met by a broad class of controllers. The example studied in Section 3.2.1

includes a Nichols plot of this constraint on k(jω) in Fig. 3.8.

9This relation is demonstrated in Section 4.1, see equations (4.1) and (4.8). It simply poses
the linear dependence of the small variations of the module respect to the voltage phasor.



Chapter 3

Applications

Toda función de storage sueña con
ser de Lyapunov cuando sea grande...
... y por śı sola asegurar la estabilidad

del punto de equilibrio, de la región
y del universo.

The application of the dynamic properties discussed in Chapter 2 to the

control and analysis of power systems is investigated in this chapter.

We know that, in absence of control and resistive elements, the power sys-

tem admits a PCH formulation, equation (1.60) and the storage function S is

non-increasing along the trajectories of the isolated power system, Proposition

2. A first question to investigate is the importance of these facts in the de-

sign of control laws ensuring performance and stability in spite of the presence

of disturbance terms impeding the open loop cyclo-dissipativity. The chosen

procedure is the synthesis of excitation controllers that suitably shape the stor-

age function and ensure a damping of the closed loop modes. This method

fits in a broader class of techniques, known generically as energy–shaping, that

have been applied to several fields, see (Ortega et al., 2002; Ortega et al., 2001)

and references therein. Applications to power systems has been reported e.g. in

(Sun et al., 2000; Shen et al., 2003; Wang et al., 2003; Galaz et al., 2001; Ortega

et al., 2005).

Section 3.2 studies the application of frequency domain quadratic con-

straints to the stability analysis of linear interconnected systems. An exam-

ple involving the design of an SVC voltage regulator and the use of the IQC

multipliers for robustness analysis is considered.

43
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3.1 Controller design by energy shaping

In this section we consider an isolated power system given by equation (1.60)

without external interactions:

Σ :







Ẋ = (K−R)∇XS(X,V) +Buefd

0 = −∇VS(X,V) −Ψ(V) + Ψ(V⋆).
(3.1)

The control action efd is the vector of the incremental field voltages, see (1.15),

of the synchronous machines, supposed to be described by simplified third order

models. The system is supposed to be ”lossy”, i.e. the disturbance terms Ψ(V)

that impede the cyclo-dissipativity are assumed non zero.

We will investigate the design of excitation (decentralized) controllers that

locally stabilize the desired equilibrium point. More precisely, we will prove

that it is possible to assign to the overall linearized system a positive defi-

nite Lyapunov function, consisting of the sum of the storage function S plus

a quadratic term in the rotor angle and speed deviations. This will be done

by imposing some additional closed loop constraints on pole allocations and

controller’s structure. It is worth to mention that the non-linear version of

this problem has been shown to be hard. In reference (Ortega et al., 2005) it is

proved the existence of a nonlinear static state feedback law that ensures asymp-

totic stability for a general n–machine system including transfer conductances.

Unfortunately, due to the computational complexity, an explicit expression of

the controller can be derived only for the case n ≤ 3.

We will establish asymptotic stability of the linearized system and, invoking

Lyapunov’s indirect method, we conclude that the original nonlinear system is

also asymptotically stable. Section 3.1.1 includes the application of the pro-

posed technique to a classical example.

As we know, when the simplifying Assumptions 4-6 are violated, the cyclo–

dissipativity properties are lost, and the condition dS(X,V)
dt

≤ 0 is not verified

anymore. We will show that, with the addition of field control action efd, it

is possible to assign to the non–ideal linearized system a storage function that,

under some conditions captured by an LMI, achieves a minimum at the desired

equilibrium point hence qualifies as a bona fide Lyapunov function to assess

stability of the equilibrium.
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Let us denote1 g : Rn × R
2m → R

2m the function

g(X,V) := −∇VS(X,V) −Ψ(V) + Ψ(V⋆).

In order to formulate the control problem we will suppose

Assumption 7. There exists a set Dg ∈ R
n × R

2m satisfying

Dg , {(X,V) ∈ R
n × R

2m | g(X,V) = 0 and ∇Vg(X,V) is non singular.}

where the solutions of the DAE are unique and well defined;

Assumption 8. There exists an isolated open loop equilibrium of the system,
that is, a point (X⋆,V⋆) ∈ Dg where

{

0 = ∇XS(X
⋆,V⋆)

0 = ∇VS(X
⋆,V⋆).

Assumptions 7-8 substitute the Assumptions 2-3 for our stand-alone case,

see also equation (1.61). As a consequence of Assumption 7 and the Implicit

Function Theorem there exists, locally around (X⋆,V⋆), a function V̂ : Rn →

R
2m such that g(X, V̂(X)) = 0. Consequently, we can write

V̇ =M(X,V)Ẋ (3.2)

where M(X,V) ∈ R
2m×n is given by

M(X,V) := −∇−⊤
V
g(X,V)∇⊤

Xg(X,V).

Energy Shaping Problem: Consider the system (3.1) satisfying Assump-

tions 7-8. Find a control law efd = êfd(X,V), and a function Sa :

R
n×R

2m → R, such that, for some set D ⊂ R
n×R

2m, with (X⋆,V⋆) ∈ D,

the function

Sd(X
⋆,V⋆) := S(X⋆,V⋆) + Sa(X

⋆,V⋆) (3.3)

satisfies

C1. (X⋆,V⋆) = argmin(X,V)∈D∩Dg
Sd(X,V),

C2. dSd(X,V)
dt

≤ 0, ∀(X,V) ∈ D ∩ Dg.

Consequently, (X⋆,V⋆) is a stable equilibrium of the closed–loop with

Lyapunov function Sd(X, V̂(X)).

1We re-use the letter g to denote a slighly different function, see (1.46), but the context
avoids any confusion.
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For reasons that will become clear below, we select the added energy as a

function of ω and δ only, that is, Sa : R2N → R, where N = mM denotes the

number of machines in the system. We will take the control action as

efd = L∇XS(X,V) (3.4)

with L ∈ R
N×n also to be determined. Let us compute

dSd
dt

= ∇⊤
XSẊ +∇⊤

VSV̇ +
dSa
dt

=





∇XS

∇VS





⊤ 



K −R+BuL

M(X,V)(K −R) +M(X,V)BuL



∇XS +
dSa
dt

.

where we have used (3.2). We will investigate the negativity of this function,

in a neighborhood around the equilibrium point, when (3.4) is replaced by its

linear approximation and we fix the added energy function as

Sa(δ, ω) =
1

2





δ − δ⋆

ω





⊤

P





δ − δ⋆

ω



 (3.5)

where P = P⊤ ∈ R
2N×2N is a matrix to be computed. The question is then:

• Are there matrices P and L such that the conditions C1 and C2 of the

problem formulation above are satisfied?

We will prove that the question can be recast as a convex optimization problem.

More precisely, we show that the response is affirmative if an LMI, for P and L,

is feasible. The LMI arises because we will analyze first the asymptotic stability

of the linearized system. If this is ensured we establish, via Lyapunov’s direct

method, stability of the nonlinear system as well.

We define the matrices

M⋆ := M(X⋆,V⋆)

F :=
∂2S

∂X2
(X⋆,V⋆) +

∂2S

∂X∂V
(X⋆,V⋆)M⋆

Kψ :=
∂Ψ

∂V
(V⋆),

with which we obtain the first order approximations

v ≃M⋆x, ∇XS(X,V) ≃ Fx, ∇VS(X,V) ≃ −KψM
⋆x,
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where lowercases and ·̃ denote incremental variables. Now, for systems having

only synchronous machines modeled with third order models, in view of the

definition of X, equations (1.14) and (1.45), we have

δ̃ = col(δ̃i) = diag([1 0 0])x =: U1x

ω̃ = col(ω̃i) = diag([0 1 0])x =: U2x.

Define U :=
[

U⊤
1 U⊤

2

]⊤
. Using this notation we get

Sa(δ, ω) =
1

2





δ̃

ω





⊤

P





δ̃

ω



 =
1

2
x⊤U⊤PUx,

and

dSa
dt

= x⊤U⊤PU ẋ = x⊤U⊤PU(K −R+BuL)Fx = x⊤U⊤PU(K −R)Fx,

since UBu = 0, see (1.58). Thus

dSd
dt

≃ x⊤[F⊤[K−R+BuL]F−(M⋆)⊤K⊤
ΨM

⋆[(K−R)+BuL]F+U⊤PU(K−R)F ]x.

(3.6)

We also define the (fixed) matrices

W := −M⊤K⊤
ΨM(K−R)F , V :=





B⊤
uM

⊤KΨM

F



 , Z :=





U

U(K −R)F



 .

Using this notation (3.6) can be written as

dSd
dt

≃
1

2
x⊤Q(P,L)x,

where

Q(P,L) := F⊤[−2R +BuL+ L⊤B⊤
u ]F +W +W⊤−

−V⊤





0n L

L⊤ 0n



V + Z⊤





02N P

P 02N



Z, (3.7)

and we have added the arguments on Q to make explicit the dependence on P

and L—which is linear. Notice at this point that if the added energy Sa de-

pended on the state variable E, the quadratic form will contain cross–products

between P and L, destroying the linearity.

Let us check now positivity of the first order approximation of Sd(X,V).

By construction

∇XSd(X
⋆,V⋆) = 0, ∇VSd(X

⋆,V⋆) = 0.
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On the other hand, the Hessian evaluated at the equilibrium is also a linear

function of P that we denote H(P ):

∂2Sd(X,M
⋆X)

∂X2
|X⋆ =

∂2S(X,M⋆X)

∂X2
|X⋆ + U⊤PU =: H(P ). (3.8)

We are in position to present our main stabilization result whose proof

follows immediately from the calculations above, and Lyapunov’s direct method.

Proposition 6. Assume the feasibility of the LMI

Q(P,L) < 0, H(P ) > 0,

for some P = P⊤ and L, where Q(P,L) and H(P ) are defined by (3.7) and
(3.8), respectively. Then, a solution to the energy shaping problem is provided
by the control efd = LFx and the added energy function Sa(δ, ω) given by (3.5).

Since the computation of a stabilizing control law is formulated as an LMI

on P and the controller matrix L, several interesting performance requirements

or conditions can be considered. We mention only two: pole allocation in a

prescribed region in the complex plane and decentralized control action.

Pole placement The allocation of closed loop poles to a given region in

the complex plane is an important performance requirement in power systems

applications. There is a vast set of convex regions that admit an LMI formu-

lation (Chilali and Gahinet, 1996). Consider the constants r > 0, α ≥ 0 and

γ ≤ π/2 and the region R(α, r, γ) ⊂ C defined by

R(α, r, γ) := {λ = u+ jw ∈ C| u <−α<0, |λ| < r, u tan γ < −|w|} (3.9)

The region R(α, r, γ) is the intersection of the conic sector defined by r and

γ with the half plane to the left side of the axis Re(λ) = −α. The require-

ment that all eigenvalues of a matrix A ∈ Rn×n belong to R(α, r, γ) is im-

plied (see (Chilali and Gahinet, 1996)) by the existence of a symmetric matrix

X ∈ Rn×n,X > 0 such that











































L1(X,A) := A′X +XA+ 2αX < 0

L2(X,A) :=





−rX A′X

XA −rX



 < 0

L3(X,A) :=





sin γ(A′X +XA) cos γ(A′X −XA)

cos γ(XA −A′X) sin γ(A′X +XA)



 < 0

(3.10)

or, for brevity, L(X,A) < 0 if we denote L(·, ·) := diag(Li(·, ·)).
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If we fixX to be the Hessian of our Lyapunov function (3.8), i.e., X = H(P ),

and we write A(L) := (K − R +BuL)F , the stabilization with pole allocation

in region R (3.9) can be stated as follows2.

Corollary 1. Assume there exist some P = P⊤ ∈ R
2N×2N and L ∈ R

N×n

such that

H(P ) > 0, L(H(P ), A(L)) < 0,

where Q(P,L), H(P ) and L(X,A) are defined by (3.7) and (3.8) and (3.10),
respectively. Then, the solution to the energy shaping problem provided by the
control efd = LFx, with the added energy function Sa(δ, ω) given by (3.5),
allocates all the closed loop eigenvalues in the region R(α, r, γ) defined in (3.9).

Decentralized control The implementation of the control law (3.4) re-

quires the availability of full information of the overall system in each machine,

which is not realistic in industrial applications. If we wish enforce the use of

only local information Xi, Vi in the control law efdi we must restrict our ma-

trix L to be block diagonal. As our LMI conditions depend directly on L, this

restriction can be easily added to Proposition 6 and Corollary 1 as follows.

In the decentralized case, it is convenient to define the control action as

EFDi
=

[

Lωi LPi LV i

]









ωi

Pmi
− PMi

Vrefi − Vi









. (3.11)

This can be interpreted as the action of an AVR plus a PSS modeled in a rough

manner, see (Kundur, 1994), (Milano, 2005) for details. Since this feedback law

is different from the one assumed in (3.4), the conditions to ensure stability

must be slightly modified. Let us denote

zi(xi,Vi) :=









ωi

Pmi
− PMi

Vrefi − Vi









, z(x,V) := col(zi(xi,Vi)), Ldec := diag([Lωi LPi LV i]).

Straightforward computations allow us to conclude that Proposition 6 remains

valid, if we substitute Q(P,L) by the expression Q̃(P,Ldec) defined as

Q̃(P,Ldec) := −2F⊤RF + F⊤BuLdecG + G⊤L⊤
decB

⊤
u F +W +W⊤−

2It is worth to mention that it is not necessary to enforce all the Lyapunov matrices X in
the Li(·) functions to be the same. The formulation of Corollary 1, although correct, is not
the best from a computational point of view.
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−Ṽ⊤





0N Ldec

L⊤
dec 0n



 Ṽ + Z⊤





02N P

P 02N



Z,

where

Ṽ :=





B⊤
uM

⊤KΨM

G



 , G :=
∂z

∂x
(x⋆,V⋆) +

∂z

∂y
(x⋆,V⋆)M∗.

Corollary 1 also remains valid if we substitute Q(P,L) and A(L) by Q̃(P,Ldec)

and

Ã(Ldec) := (K −R)F +BuLdecG,

respectively. Thus, the computation of the decentralized controller Ldec can be

carried enforcing

Q̃(P,Ldec) < 0, H(P ) > 0, L(H(P ), Ã(Ldec)) < 0,

and restricting the matrix Ldec to be block diagonal.

3.1.1 Example

We consider here the classical 3-machines, 9-buses WSCC system considered in

the textbooks (Anderson and Fouad, 1993), (Sauer and Pai, 1998). The system

is depicted in Figure 3.1. The synchronous machines are modelled with equa-

tions (1.13). We assume that the active components of the loads have constant

power characteristics and the reactive components have constant impedance.

Since this system has no infinite bus, the procedure we described in previous

sections had to be slightly modified in order to cope with the non-isolated equi-

librium point. The details are fairly standard, see (Willems, 1974), and they

are omitted for brevity. Computations were done with the software package

PSAT (Milano, 2005).

The network data can be seen in (Anderson and Fouad, 1993). The machine

data are listed in Table 3.1 for reference.

The LMI condition in Corollary 1 was the tool for the synthesis of the

controller gain L. The parameters of the desired region for the closed–loop

poles, R(α, r, γ), were chosen as α = 0.008, γ = π
2 and r = 25. An additional

constraint on the controller gain, namely ‖L‖ < 10, was also imposed. The

open and closed loop mode patterns are given in Table 3.2 and in Figure 3.2.

A decentralized control law was also computed following the procedure de-

scribed in the previous section. No constraint on the norm of the controller was

imposed in this case. The results are also listed in Table 3.2 and in Figure 3.2.
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Figure 3.1: Three-machines, nine-buses WSCC system.

Table 3.1: Synchronous machines data.
Generator ♯ 1 Generator ♯ 2 Generator ♯ 3

xd 0.8958 1.3125 0.146

x′d 0.1198 0.1813 0.0608

T ′
d0 6.00 5.89 8.96

xq 0.8645 1.2578 0.0969

x′q 0.1969 0.25 0.0969

M 12.8 6.02 47.28

D 0.25 0.25 0.25

A mode at zero is present in all cases, and is associated with the existence of

a manifold of equilibrium points (Willems, 1974). More precisely, the absence of

an infinite bus implies that the right-hand side terms in the DAE (3.1) depend

on the phasor angles only through their differences, see equations (1.13), (1.10).

Thus, if (X⋆,V⋆) is an equilibrium point, so will be any point (X̄, V̄) obtained

by adding to all angles in (X⋆,V⋆) a fixed quantity. As our feedback laws (3.4)

and (3.11) do not break this class of dependence on the angles, the equilibrium

manifold is also preserved in the closed loop system.

Table 3.2: Mode patterns.
Open loop modes Closed loop modes, Closed loop modes,

full controller decentralized controller

−0.29± j11.51 −2.23 ± j10.86 −0.39± j12.41

−0.13± j8.18 −1.39 ± j8.04 −0.24 ± j8.58

−0.19 −11.54 −0.18

−0.16 −1.71 −0.17

−0.01 −0.17 −0.04

−0.01 −0.01 −0.01

0.00 0.00 0.00
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Figure 3.2: Mode patterns. Open loop (O), Decentralized controller (▽), Full
controller (�).

Figures 3.3–3.5 depict the transient response of the open and closed–loop

system to an initial condition ω1(0) = 0.05. All the transient responses shown

were obtained from the respective linear models. Closed–loop responses for

both full and decentralized controller are shown. As it can be seen from Table

3.2 and the transient responses, the full controller is able to significantly im-

prove the system’s stability and provide damping. The damping factors of the

electromechanical modes were increased approximately 8 and 11 times.

The decentralized controller also improves the transient responses—increasing

the damping of the electromechanical modes by 25 and 75 percent. However, if

compared with the full controller, its performance is relatively modest. This is

not unexpected because the decentralized scheme, although more realistic, has

fewer degrees of freedom and exploits less dynamic information of the system.

A few comments on the feasibility of the technique are in order. The tech-

nique is based on the use of a family of Lyapunov functions which has at its

core the function S, see (3.3). The positiveness of S around the equilibrium is

not strictly necessary since there are some degrees of freedom (in the matrix P )

to make Sd positive. However, these degrees of freedom are also necessary to

ensure that Sd is non-increasing along the trajectories. Thus, the positiveness

of S, albeit not necessary, is strongly correlated with the feasibility of the LMI

(6).
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Figure 3.3: Control action u1. Decentralized controller (dashed), full controller
(continuous).

The function S was studied in detail in (Tsolas et al., 1985) and some

conditions, valid for simpler models, were obtained to ensure its positiveness

around a given equilibrium point.

Some concluding remarks are in order. We have provided a solution to the

transient stabilization problem of power systems (3.1). The analysis is based on

the linear approximation of the system and shows that a linear state feedback

controller ensures stability of the desired equilibrium provided an LMI condition

is feasible. The LMI is given in terms of the controller gain and the weighting

matrix of the added energy function, which is quadratic in the increments. The

usefulness of the technique for the controller synthesis was illustrated with its

application to a classical example. The procedure is based on the a priori

knowledge of a storage function S of the idealized open loop system that made

way to the search of a closed loop Lyapunov function that allows us to avoid

the nonlinear coupling between this and the feedback controller.

The technique described in this section does not take advantage of the linear

model (2.14) introduced in Section 2.2. Its use would avoid the definition of

several auxiliary matrix present in the text. The current version essentially

preserves the original formulation in (Giusto et al., 2006a) as it was published

and reviewed by peers.
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Figure 3.6: Feedback interconnection of systems Z1, Y2

3.2 Stability analysis of feedback interconnections

In Section 2.2 we showed the existence of a multiplier Πd that satisfies conditions

(2.20), (2.21) for the linearized models of a class of power system models. This

Section is intended to examine the use of these properties for the stability

analysis of feedback systems.

We briefly introduce the analysis of feedback systems through the use of

multipliers and the IQC Theorem (Megretski and Rantzer, 1997). The discus-

sion is restricted to linear models. The application of this technique to power

systems models is illustrated in the example of Section 3.2.1.

The signals will be assumed belonging to the space Le2[0,∞) and ensuring

the existence of the respective Laplace transforms. We will refer as map or op-

erator to any function Le2[0,∞) → Le2[0,∞) which, for linear systems, involves

the transfer function and the Laplace transformation. Denote Z1 ⋆Y2 the oper-

ator (e, f) → (v, i1) defined by the standard feedback interconnection depicted

in Figure 3.2, given by






v = Z1i1 + f

i1 = −Y2v + e
. (3.12)

The interconnection will be supposed well posed, i.e. the existence of the men-

tioned closed loop operator is assumed. The negative signal in the loop is

completely conventional and it is intended to respect the current convention

introduced in Section 4.1.

Assume Z1 and Y2 are linear, time-invariant operators with transfer func-

tions Z1(s),Y2(s) ∈ RLm×m
∞ and state space realizations:

Z1(s) =





A1 B1

C1 D1



 , Y2(s) =





A2 B2

C2 D2



 . (3.13)

We are interested in the closed loop internal stability, i.e. asymptotical

stability of the equilibrium for the resulting state space representation. This
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condition holds if and only if the dynamic closed loop matrix

Acl =





A1 0

0 A2



+





B1 0

0 −B2









Im −D1

D2 Im





−1 



0 C1

C2 0





is Hurwitz, see (Chen, 1984; Zhou et al., 1996) for a detailed exposition. We

will refer as closed loop modes to the eigenvalues of the matrix Acl. We also

will use the word mode, in other sections, in its broader sense involving the

physical nature of the dynamical response. Is in this sense that we will mention

electromechanical modes, control modes, etc., when the object under study be

the interconnection of power systems models.

We will work with the of maps Z1,Y2. As it is well known, the closed loop

stability of feedback interconnections can be studied in the frequency domain if

the involved open loop systems satisfy some basic requirements, stated in next

assumption.

Assumption 9. The state space realization of maps Z1,Y2 are stabilizable
and detectable. In addition, the number of RHP poles of the cascade matrix
Y2(s)Z1(s) coincides with the sum of the RHP poles of Y2(s) and Z1(s).

In a few words, Assumption 9 establishes the absence of unstable pole-

zero cancelations in each system and in the cascade interconnection. In these

conditions, we have the following basic lemma, see (Zhou et al., 1996):

Lemma 1. The system Z1 ⋆Y2 with Z1,Y2 satisfying Assumption 9 is inter-
nally stable if and only if

det(I +Y2(s)Z1(s))

has all the zeros in the open left-half plane.

Define the quadratic functions σl, σu : Cm×m × C2m×2m → Cm×m :

σl(X,Π) :=





Im

X





∗

Π





Im

X



 ,

σu(X,Π) :=





X

Im





∗

Π





X

Im



 .

(3.14)

Consider a Hermitian multiplier Π : R → C2m×2m, Π ∈ L2m×2m
∞ and the

following partition

Π =





Q R

R∗ V



 , (3.15)
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having each block dimensions m×m. Define

Sl(Π) := {X ∈ RHm×m
∞ : σl(X(ω),Π(ω)) ≥ 0 ∀ω ∈ R}, (3.16)

This notational conventions allow us, e.g., to write condition (2.20) as

σl(Z(jω),Πd(jω)) ≥ 0 ∀ω ∈ R,

and, if Z is stable,

Z ∈ Sl(Πd).

The convexity of the set Sl have strong consequences on the stability anal-

ysis, and are determined by some algebraic properties of multiplier Π. The

following lemma, whose proof is included in the Appendix B, is a direct conse-

quence of the quadratic nature of the frequential constraint in (3.16):

Lemma 2. If the multiplier Π ∈ L2m×2m
∞ satisfies

[

0
Im

]∗

Π(ω)

[

0
Im

]

≤ 0 ∀ω ∈ R, (3.17)

then the set Sl(Π) is convex.

The following proposition is a particular formulation of the IQC Theorem

( Theorem 1 in (Megretski and Rantzer, 1997)), specialized for the linear case.

It allows us to extend the stability of a nominal interconnection to a set of

operators belonging to a suitably defined set Sl(Π). The well-posedness of the

interconnection is assumed.

Proposition 7. Let Z1(s) ∈ RLm×m
∞ ,Y2(s) ∈ RHm×m

∞ such that the operator
Z1 ⋆ Y2 is internally stable. Assume the existence of a Hermitian multiplier
Π(ω) ∈ L2m×2m

∞ and a scalar ǫ > 0 such that the following conditions are met
∀ω ∈ R:

i. σl(Y2(jω),Π(ω)) ≥ 0, (3.18)

ii. σu(−Z1(jω),Π(ω)) ≤ −ǫI, (3.19)

iii.

[

0
Im

]∗

Π(ω)

[

0
Im

]

≤ 0. (3.20)

Then, the feedback interconnection Z1 ⋆ Y2 is internally stable for all operator
Y2 ∈ Sl(Π) such that the pair Z1,Y2 satisfies Assumption 9.



58 CHAPTER 3. APPLICATIONS

The demonstration of Proposition 7, included in the Appendix B, rests

heavily on the IQC theory. The reader unfamiliar with this theory surely would

appreciate an independent discussion of Proposition 7, intended to show the

main ideas behind it.

The Proposition studies the stability of the interconnection Z1 ⋆ Y2, with

Y2 ∈ Sl(Π). This interconnection is supposed well possed and the Assumption

9 assures the equivalence between the input-output and internal stability.

We will show first that the belonging of Y2 to Sl(Π) and condition (3.19)

imply the absence of closed loop modes on the imaginary axis. These conditions

can be written






σl(Y2(jω),Π(ω)) ≥ 0 ∀ω ∈ R

σu(−Z1(jω),Π(ω)) ≤ −ǫI ∀ω ∈ R

The first inequality is maintained if we left and right multiply it by Z∗
1,Z1. We

also invert the second inequality to get:







Z1(jω)
∗σl(Y2(jω),Π(ω))Z1(jω) ≥ 0 ∀ω ∈ R

−σu(−Z1(jω),Π(ω)) − ǫI ≥ 0 ∀ω ∈ R

By addition, we obtain

−ǫI + Z1(jω)
∗σl(Y2(jω),Π(ω))Z1(jω)− σu(−Z1(jω),Π(ω)) ≥ 0 ∀ω ∈ R.

If we operate with partition (3.15) and definitions (3.14) we can get

−ǫI + Z∗
1R(I + Y2Z1) + (I + Y2Z1)

∗R∗Z1 + Z∗
1Y

∗
2VY2Z1 −V ≥ 0 ∀ω ∈ R,

where we have omitted the dependence on ω to avoid cluttering. If we suitably

factorize the last two terms, we obtain

−ǫI + Z∗
1R(I + Y2Z1) + (I + Y2Z1)

∗R∗Z1+

+(I + Y2Z1)
∗V

2
(−I + Y2Z1) + (−I + Y2Z1)

∗V

2
(I + Y2Z1) ≥ 0 ∀ω ∈ R.

If we right and left multiply this matrix inequality by an arbitrary vector v ∈ C
m

and v∗ we can conclude that

(I + Y2Z1)v 6= 0 ∀ω ∈ R,

or, equivalently,

det(I + Y2(jω)Z1(jω)) 6= 0 ∀ω ∈ R.



3.2. STABILITY ANALYSIS OF FEEDBACK INTERCONNECTIONS 59

G1

G2

G3

G4

L7 L9C7 C9SV C

1

2

3

4

7 86 109I8

Area 1 Area 2

Figure 3.7: Two-area system.

This implies the absence of closed loop modes of Z1 ⋆Y2 on the imaginary axis.

So, the closed loop modes of Z1 ⋆ Y2 do not cross the imaginary axis. The

stability of Z1 ⋆Y2 locates the nominal modes on the left half plane. Notice

that condition (3.20) and Lemma 2 ensure the convexity of the set Sl(Π). Thus,

this set is connected and the map Y2 ∈ Sl(Π) can be reached by following a

continuous path

Yµ
2 = (1− µ)Y2 + µY2, µ ∈ [0, 1],

that starts from the nominal, stable3 system. In this way, the continuity of

this transformation and the presence of the barrier on the imaginary axis for

all Y2 ∈ Sl(Π) imply the stability of all interconnection Z1 ⋆ Y2.

Remark 10. Given Z1,Y2, the computation of a suitable multiplier Π sat-
isfying conditions i-iii in Proposition 7 is a frequency dependent linear ma-
trix inequality (FDLMI), i.e., a convex infinite dimensional problem. The
problem, however, can be casted with the help of the Kalman-Yakubovic-Popov
(KYP) lemma as a finite dimensional LMI problem, see (Megretski and Rantzer,
1997),(Rantzer, 1996).

3.2.1 Example

This Section treats the application of the frequency domain properties derived

in Section 2.2 to the robustness analysis with the help of Proposition 7. The

analysis of a benchmark shows that the presence of excitation control and resis-

tive elements does not completely destroy the dissipativity implications in the

frequency domain, which remain valid in a significant frequency band associated

to the electromechanical modes. The example includes a detailed robustness

analysis showing the importance of the a priori knowledge of the dynamic prop-

erties of these models in the frequency band of interest.

3Notice that the assumption Y2 ∈ RH∞ is necessary. Otherwise, Yµ=0

2
would have hidden

unstable modes that will belong to RHP ∀µ ∈ [0, 1].
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Consider the system depicted in Fig. 3.7. It is based on the Example 12.6 in

(Kundur, 1994) and includes a SVC. The system is split in two areas, with the

bus 8 at the frontier. The SVC is associated to area 1. Linear models for both

areas were computed with the program DSAT (Powertech Labs Inc., n.d.), by

taking v8 and i8 as the interconnection variables.

The model of area 1 has the same parameters as (Kundur, 1994), included

the non-zero machine resistances and transfer conductances. The excitation

systems of machines G1 and G2, are given by the option iv) in (Kundur, 1994),

i.e. high transient gain plus a standard setting for the PSS.

The SVC comprises a 200 MVAr fixed capacitor and a 0-200 MVAr thyristor-

controlled reactor (TCR), see (Kundur, 1994), whose voltage regulator will be

designed to ensure a proper voltage tracking and to improve the robust stability.

The area 2 is modeled fully in accordance with Assumptions 4-6, with i8 as

output, see Fig. 3.7. The resistive losses in transmission lines and machines are

neglected. Classical second order models are considered for generators G3 and

G4. On the other hand, significant parametric variations are considered for the

area 2, which are described below.

Design of the SVC voltage regulator The SVC is modeled as in Fig.

2.5 where the controller k(s) includes a fixed time constant due to the converter.

Notice that controller k(s) must ensure the closed loop stability and the tracking

requirements given by the slope of the voltage characteristic (set to 7 % ) and

a prescribed phase margin of approx. 45 degrees.

As area 2 satisfies Assumptions 4-6, by virtue of Proposition 3, Y2 satisfies

σl(Y2(jω),Πd(jω)) ≥ 0 ∀ω ∈ R,

i.e. Y2 satisfies condition i in Proposition 7. It is convenient to mention that

Y2 is stable and that condition iii in Proposition 7 is met by the multiplier Πd,

see definition (2.22). Thus, we will employ the SVC regulator k(s) to ensure

σu(−Z1(jω),Πd(jω)) ≤ −ǫI,∀ω ∈ Ω (3.21)

for a set Ω ∈ R as broad as possible. Notice that, by the structure of Πd:

σu(−Z1(jω),Πd(jω)) = σl(−Z1(jω),Πd(jω)) =

= −σl(Z1(jω),Πd(jω)).

Thus, in absence of control and resistive losses and because of Proposition

3, condition (3.21) would be true for ǫ = 0 for all ω ∈ R. As it will be
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shown below, the presence of excitation control, resistive loads and transmission

losses restricts the band of frequencies where condition (3.21) is valid or feasible

through the controller design. Thus, the multiplier Πd will not be suitable to

carry the robustness analysis via Proposition 7.

The constraints that (3.21) imposes on the gain k(jω) for several frequencies

are depicted in Fig. 3.8. The constraints were shown to be feasible for

Ω = [ωl, ωh] = [0.38, 9.94].

This set can not be extended for lower frequencies due to voltage slope con-

straints nor for higher frequencies due to bandwidth limitations associated to

the phase margin. However, this set Ω is, significantly, wide enough to include

the system electromechanical local and interarea modes which range from 0.5

to 1.1 Hz (3.1 to 6.9 rad/sec). The SVC voltage regulator was obtained by

loopshaping, see (Horowitz, 1993), and is given by

k(s) =
6.5(s + 1)

(0.1s + 1)(0.02s + 1)
.

The plots in Figs. 3.9 and 3.10 show the resulting eigenvalues of the matrix

σl(−Z1(jω),Πd(jω)).
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Figure 3.8: SVC voltage regulator design. Nichols plot of k(jω) and feasibility
regions for ω = {0.4, 0.7, 4.0, 7.0, 10.0} rad/sec.

Modeling of parametric uncertainty in area 2
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Figure 3.9: Frequency domain condition for area 1. Eigenvalues of
σl(−Z1(jω),Πd(jω)).

A set of scenarios for area 2 were considered, which are associated to two

parameters: the voltage dependence of load L9 and the transient reactance

of machine G3. The reactive load L9 is supposed either constant impedance

(case A), constant current (case B) or constant reactive power (case C). The

transient reactance of generator G3 is supposed to have values X ′
d ∈ [0.3, λ],

being λ ≥ 0.3 a figure of merit intended to compare some alternative approaches

for the robustness analysis.

The choice of a set of eight values for the parameter X ′
d and three for load

L9 results in N = 24 scenarios, each defined by the matrices (Ai, Bi, Ci,Di) of

the standard linear state space model. The corresponding matrices

Mi :=





Ai Bi

Ci Di



 , i = 1..N.

were approximated by the set

Mi =M1 +





P1

P2



∆[Q1 Q2]; i = 1..N

withM1, P1, P2, Q1, Q2 fixed matrices and a variable block ∆i ∈ Rp×p, i = 1..N .

This approximation was carried with the help of an elementary singular value

decomposition. The minimum size of blocks ∆i for a good approximation is
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Figure 3.10: Frequency domain condition for area 1. Detail.

closely related with the number of independent parameters. In our case p = 2

was sufficient.

Finally, the area 2 is modeled as the polytope given by the N scenarios:





ẋ

i8



 =



M1 +





P1

P2



∆[Q1 Q2]









x

v8



 ; (3.22)

∆ =

r=N
∑

r=1

αr∆r,
∑

r

αr = 1, αr ≥ 0. (3.23)

that can also be written as the Linear Fractional Transformation4 (LFT) of the

nominal block N(s) and the uncertain block ∆ depicted in Fig. 3.11, with

N(s) =









A1 P1 B1

Q1 0 Q2

C1 P2 D1









.

So, the overall uncertain system can be seen either as the interconnection of

blocks ∆ and Fl(N,−Z1) at interface B, or the interconnection of Fu(N,∆)

with (−Z1) at the interface A. It is necessary to highlight that model (3.23)

considers all the continuous combinations of parameter X ′
d and the ZIP model

for load L9.

4The reader is referred to (Zhou et al., 1996) for a detailed exposition of LFTs, that are
briefly described in Appendix C.
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Figure 3.11: Feedback interconnections between subsystems Z1 and Y2.

The design of controller k(s) of the SVC assures the nominal closed loop

stability. The maps of area 1 and 2 are also nominally stable.

Robustness analysis

The stability of the feedback interconnection of area 1 and 2— given by

equations (3.22),(3.23)—is analyzed with the help of Proposition 7. The prob-

lem is the computation of a suitable multiplier Π satisfying condition i) to iii).

The multiplier Πd satisfies conditions i) and iii). However, it does not solve

the problem since condition ii) is only satisfied for ω ∈ Ω.

Given the polytope description (3.23) for the area 2, it is convenient to

consider the standard family of multipliers Πpol ∈ R
4×4, see (Megretski and

Rantzer, 1997):

Πpol =





Q R

R⊤ V



 ;Q = Q⊤;V = V ⊤ (3.24)

such that

V ≤ 0; Q+R∆r +∆⊤
r R

⊤ +∆⊤
r V∆r > 0,∀r = 1..N. (3.25)

This condition implies condition iii) for the multiplier Πpol and

σl(∆,Πpol) ≥ 0,

i.e. condition ii) for all ∆ satisfying (3.23). In a first instance the search for a

suitable multiplier satisfying Proposition 7 were carried with multipliers of the

family Πpol. More precisely, the following computational problem was solved5.

Problem 1 Find a multiplier ΠR

pol and ǫ > 0 satisfying (3.24), (3.25) and

σu(Fl(N,−Z1)(jω),Π
R

pol) ≤ −ǫI,∀ω ∈ R.

5Fl(N,−Z1) denotes the lower linear fractional transformation between block N and −Z1,
see Fig. 3.11
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The existence of a solution for Problem 1 would allow us to apply Proposi-

tion 7–at interface B in Fig. 3.11–to establish the closed loop stability for all

parametric variation. Problem 1 was formulated as a LMI via the KYP lemma,

see (Megretski and Rantzer, 1997), and solved with the help of software package

LMILAB (Gahinet et al., 1995). The extreme value of parameter λ for which

the robust stability could be established is shown in Table 3.3. For comparison

purposes, the stability of the interconnection was also studied by the computa-

tion of the eigenvalues of the dynamic matrix at a fine grid of scenarios. The

extreme value, denote λMAX is also listed in Table 3.3.

Table 3.3: Extreme values of parameter λ for each technique of analysis
Problem 1 Problem 2 Problem 3 Stability
(ΠR

pol) (Πd+pol) (ΠΩ
pol) λMAX

0.32 2.53 0.32 2,548

As it can be observed, the analysis of robust stability based only with mul-

tiplier Πpol is quite conservative. This is foreseeable, since the closed loop sta-

bility is also ensured for parameters αr in equation (3.23) having an arbitrary

temporal dependence αr(t), see (Megretski and Rantzer, 1997).

In a second instance the search was confined to the frequency weighted sum

of two members Πlfpol,Π
hf
pol of the family Πpol, trying to exploit the fact that the

multiplier Πd satisfies condition i), ii) and iii) of Proposition 7 in a significant

band Ω. So, the structure of the multiplier Π was chosen

Πd+pol = wlf (ω)Π
lf
pol +whf (ω)Π

hf
pol (3.26)

with the weights wlf ,whf given by

wlf =







1 if |ω| < ωl

0 otherwise
; whf =







1 if |ω| > ωh

0 otherwise
.

In this way, the computation of the multiplier can now be relaxed to:

Problem 2 Find Πlfpol,Π
hf
pol and ǫ > 0 satisfying (3.24), (3.25), and

σu(Fl(N,−Z1)(jω),Π
lf
pol) ≤ −ǫI,∀|ω| < ωl,

σu(Fl(N,−Z1)(jω),Π
hf
pol) ≤ −ǫI,∀|ω| > ωh.

Problem 2 was also formulated as a LMI, by following the lines of the Gen-

eralized Kalman-Yakubovic-Popov lemma (GKYP), see reference (Iwasaki and
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Hara, 2005). The maximum λ for which Problem 2 is feasible is also listed in

Table 3.3. The solution of Problem 2 ensures the existence of multiplier Πd+pol

as in (3.26) that satisfies the hypotheses of Proposition 7–at the interface B of

Fig.3.11–for all ω /∈ Ω. As we know, the multiplier Πd meets these conditions in

Ω at the interface A. So, the Proposition 7 is not directly applicable. However,

this does not constitute an essential obstacle. As we know, the Proposition 7

is based on three basic conditions: the nominal stability, the convexity of the

set Sl and the existence of a barrier at the imaginary axis for the closed loop

modes. In our example we simply conclude the existence of this barrier, by

examining the interconnection at two different interfaces6.

As it can be seen from Table 3.3, the procedure of splitting the frequency

domain in three regions and taking into account the multiplier Πd improved

noticeably the results of the analysis. However, it is convenient to know if the

improvement is due to the splitting in regions or to the use of multiplier Πd.

So, only for comparison purposes, it was computed the maximum λ such that

the following problem remains feasible:

Problem 3 Find the multiplier ΠΩ
pol and ǫ > 0 satisfying (3.24), (3.25) and

σu(Fl(N,−Z1)(jω),Π
Ω
pol) ≤ −ǫI,∀ω ∈ Ω.

The result also can be read in Table 3.3 and seems to indicate that the

difficulties in the assessment of robust stability with multipliers ΠR

pol resides

precisely in the band Ω associated to the electromechanical modes and the

associated resonances. The exploitation of multiplier Πd, derived by analytical

methods and valid in a sensible frequency band, allows to significantly improve

the results of the analysis.

Figure 3.12 displays the stability regions able to be predicted by each choice

of multiplier. The oblique region was determined by a careful choice of pa-

rameters once the stability boundary was computed directly. Significantly, the

gap between the hard stability limit and the region able to be predicted by the

simultaneous use of multiplier Πpol and Πd is very small.

Figure 3.13 depicts the loci of the most significant modes of the intercon-

nection when the load L9 is modeled with constant reactive power and x′d varies

in the interval [0.3, 2.8] (notice that the maximum value exceeds λMAX). The

local mode of area 1 remains unchanged as expected. The local mode of area 2

6The statements in this paragraph can be formally formulated and demonstrated. It is not
done here because is beyond the scope of this thesis
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Figure 3.12: Stability regions. Space of parameter X ′
d − L9.

and the inter-area mode vary significantly but without crossing the imaginary

axis because the barrier at the imaginary axis is valid even for greater values of

λ for a suitable frequency band Ω. In this case, the stability is lost at frequency

zero when a real mode turns unstable.

3.3 Some primary concluding remarks

These lines close in some sense a first part of this thesis. The analysis done

up to this point is based on a class of power system models given mainly by

Assumptions 4-6. We have shown in Chapter 2 that some important dynamic

properties are valid for this class of power system. We indeed extended this class

to include detailed models of synchronous machines and a class of controlled

SVCs. We also have seen that these properties are not completely destroyed

when some of the above-mentioned assumptions are not valid, see the example

of Section 2.2.1.

We also have seen that the excitation control can be used to exploit the

open loop cyclo-dissipativity of idealized models to ensure stability and im-

prove performance even in the presence of resistive elements, Section 3.1. The

articulation of the phase constraint in Proposition 3 with the IQC framework,

Section 3.2, enables its use for robustness analysis and controller synthesis, as



68 CHAPTER 3. APPLICATIONS

−2.5 −2 −1.5 −1 −0.5 0 0.5 1
−10

−8

−6

−4

−2

0

2

4

6

8

10

Real part

Im
ag

 p
ar

t

Figure 3.13: Eigenvalue loci for power flow C, X ′
d ∈ [0.3, 2.8]. Local, interarea

and real modes.

done in the previous example.

As it was already mentioned, the inclusion of resistive components and

realistic models of voltage regulation compromises the cyclo–dissipativity. It is

possible to appreciate that the frequency domain constraint, Proposition 3, is

however preserved at the frequency band associated to the electromechanical

modes. In addition, the stabilizing signals injected to the system at generators

and FACTS act by enforcing the phase constraint on the frequency channel.

These observations and the will to study power system models closer to

the real ones open the question on whether this concept of dissipativity can

be modified to cope with classical control actions as voltage regulation and

damping injection.

So, we will proceed to

abandon Assumptions 4-6,

restrict our analysis to linear models,

consider frequency constraints valid on a subset of the imaginary axis,

and characterize classical control actions of power systems,

with the objective of understand the mechanisms and effects of these control

strategies on the system dynamic behavior. This is the content of the following

chapter.



Chapter 4

Effects of damping and

voltage regulation

The dynamic behavior of power systems is complex due, among other factors,

to the interactions of multiple control actions, necessary to ensure proper per-

formance and operation. However, in spite of their complexity, the controlled

power systems typically exhibit a dynamic behavior relatively robust which

allows them to keep stability when extreme conditions are not present. This

fact is, of course, consequence of engineering control practices that have taken

into account the underlying physical structure of the system. One example

is the synthesis of control actions intended to improve the inherent damping

behavior, see e.g. (Cigré, 1996; Commitee, 2004; Klein et al., 1992; Kun-

dur, 1994; Stankovic et al., 1999). On the other hand the voltage regulation,

although necessary to proper operation, introduces a new dynamics, absent in

the open loop system.

This chapter examines some structural properties of realistic models of

power systems that in certain conditions explain its robust properties. More

precisely, the effect of the classical control actions on the robustness of elec-

tromechanical modes of power systems is examined. The analysis is done with

independence of modeling details of the different controlled devices, by focusing

on the effects of the classical control actions on the input-output maps of small

signal models of power systems.

A first contribution is a generic, frequency domain characterization of the

performance of voltage regulation and damping injection, which are discussed

with the help of both numerical and analytical examples. These measures

of control performance constitute quadratic constraints–on a finite band of

frequencies–that have links with the phase constraint derived in Section 2.2,

69
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and also with some familiar concepts in power system community.

The implications of these control actions on the system stability are then

investigated through a procedure that, although based on IQCs, has some par-

ticularities. The chosen approach has the virtue of keeping direct links with

the well known power system concepts mentioned above. In this way, it is

shown that a certain balance between damping, voltage regulation and voltage

sensitivity constitutes a sufficient condition for the robust stability of the elec-

tromechanical modes. This result is validated through the analysis of a classical

example.

The control theory provides us with a valuable set of concepts and techniques

that allows us to analyze the robustness of dynamic systems with respect to a

broad class of uncertainties (Fan et al., 1991; Megretski and Rantzer, 1997). The

power systems literature possesses significant contributions on the application

of these tools, related modeling procedures and case studies (Abdel-Magid et al.,

2000; Boukarim et al., 2000; Castellanos et al., 2006; Djukanovic et al., 1999; Pal

and Chaudhuri, 2005). However, the above-mentioned vocation of linking the

analysis with the classical control actions requires a specialized framework which

constitutes an original contribution of this work. Four important observations

are in order:

O1 The approach has no modeling limitations beyond the consideration of

the small signal model around a stable equilibrium.

O2 Despite the use of concepts of the robust control theory strongly related

with IQCs and real µ, (Fan et al., 1991; Megretski and Rantzer, 1997),

the theoretical treatment is mostly self-contained.

O3 The quadratic constraints are satisfied only on a finite range of frequencies,

strongly related with the validity range of the models used for transient

stability analysis.

O4 The use of numerical optimization is purposely avoided, leading to results

expressed in familiar terms to power systems community.

Section 4.1 presents some basic assumptions on power system modeling and

basic notation. In Section 4.2 we introduce a characterization of the perfor-

mance of voltage regulation and damping injection in terms of frequency do-

main properties of the input-output maps of generic devices, along with some
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small examples intended to clarify the main ideas. These concepts are em-

ployed in Section 4.3 to derive sufficient conditions for the robust stability of

electromechanical modes. Section 4.4 illustrates the application of these results

to an example. Section 4.5 wraps up the chapter with some concluding remarks.

4.1 Power System Modeling

Variables at the equilibrium will be denoted with a supra-index ⋆: V⋆, Id⋆, etc.

Lowercase will denote small signal variables:

v := V −V⋆; v := V − V⋆; pd := P d − P d⋆; qd := Qd −Qd⋆.

The angle and frequency deviations of the bus voltage will be denoted ϑ := θ−θ⋆

and λ := θ̇ = ϑ̇. Given the equilibrium value for the bus voltage V⋆, define the

row vectors kv , kθ ∈ R
2

kv :=
V⋆⊤

V⋆
, kθ :=

(JV⋆)⊤

V⋆
. (4.1)

Notice that the pair k⊤v , k
⊤
θ constitutes an orthonormal basis of R2, since |kv | =

|kθ| = 1, kvk
⊤
θ = 0. So, if we define the matrix Uθ ∈ R

2×2

Uθ :=





kv

kθ



 =
1

V⋆





V⋆⊤

(JV⋆)⊤



 =





cos θ⋆ sin θ⋆

− sin θ⋆ cos θ⋆



 , (4.2)

it follows

U⊤
θ Uθ =

[

k⊤v k⊤θ

]





kv

kθ



 =





kv

kθ





[

k⊤v k⊤θ

]

= UθU
⊤
θ = I2. (4.3)

Notice that Uθ is the matrix corresponding to the clockwise rotation by an angle

θ in R
2.

Our object of study is a generic shunt device given by the dynamic relation

between the respective electrical variables at its terminal bus e ∈ B, i.e. the

phasors Ve and Ide. The word device is used here either to mean a power

system component ( a generator, a load, etc.) or a subsystem composed by

the interconnection of several components through transmission lines. The

input signals will be assumed belonging to the space Le2[0,∞) and also ensuring

the existence of the respective Laplace transforms. We will refer as map or

operator to any function Le2[0,∞) → Le2[0,∞) which, for linear systems, involves
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the transfer function and the Laplace transformation. The dynamic relation

between the electrical variables is given by

Σ(Ide,Ve) :







Ẋ = f(X,V)

0 = g(X,V, Ide),
(4.4)

where X ∈ R
n is the state vector and V := colj∈BVj is the voltage vector of all

the buses in the subsystem, e ∈ B included. The functions f : Rn ×R
2m → R

n

and g : Rn × R
2m × R

2 → R
2m are supposed smooth enough to ensure, along

with Assumptions 2-3, the existence and uniqueness of the solutions.

The above-mentioned assumptions ensure the existence of the small signal

dynamical model






ẋ = Ax+Bide

0 = Cx+Dide − ve,
(4.5)

where the link variables were eliminated with the help of Assumption 2. The

small signal dynamics can also be described in the Laplace domain by

v̂e(s) = Z(s)̂ide(s) ∀i
d
e ∈ Le2, (4.6)

Z(s) =





A B

C D



 := C(sIn −A)−1B +D.

The choice of currents as inputs and voltages as outputs is completely arbi-

trary, since that, except for some special cases that need be treated separately,

the following assumption is fairly generic1.

Assumption 10. Given the map Z(s) meeting (4.6), there exists a map Y(s) =
Z(s)−1 such that

îde(s) = Y(s)v̂e(s) ∀ve ∈ Le2. (4.7)

Classical studies of power systems stability often are based on simplified

models where some variables are supposed constant. These models result in

individual devices not having one of the linear maps Z,Y. This difficulty dis-

appears when more complex systems are considered or when simple modeling

modifications are done. The following assumptions establishes the non existence

of poles of Z and Y on the set jΩ.

Assumption 11. Z ∈ RL∞(Ω).

Assumption 12. Y ∈ RL∞(Ω).

1The existence of the inverse map is equivalent to the existence of matrix D−1 in (4.5).
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4.2 Frequency domain characterization

This section is devoted to characterize the small signal response of power sys-

tems through three frequential functions directly related to voltage regulation,

damping injection and voltage sensitivity. The analysis of the voltage regula-

tion and damping is done with independence of modeling details, by focusing on

the effects of these control actions on the map of the generic device. The power

systems dynamics is composed by phenomena of different time scales, each re-

lated with different models and analysis tools. We will focus our attention on

a certain subset of frequencies Ω ⊂ R satisfying

Assumption 13. Ω ⊂ R is non empty, compact, bounded, and 0 /∈ Ω.

All future mention to set Ω supposes valid Assumption 13.

4.2.1 Voltage regulation

The primary objective of voltage regulation is to keep the variable V = |Ṽ | as

constant as possible2. Since V2 = V 2
R + V 2

I , we have

2V⋆v = 2V ⋆
RvR + 2V ⋆

I vI ,

and, if we use definition (4.1):

v =
1

V⋆
(V⋆

RvR +V⋆
IvI) =

V⋆T

V⋆
v = kvv. (4.8)

We will introduce an auxiliary set of matrices. Be

U := {U ∈ C
2×2invertible and |σ̄(U)| = 1}, (4.9)

and, given two invertible matrices Z ∈ C
2×2, U ∈ U define the regulation index

gr : C
2×2 × U → R:

gr(Z,U) :=
1

||kvZU−1||
. (4.10)

The assumptions on Z,U implies that ZU−1 is invertible and hence gr is

well defined.

Let us define a set of matrix functions that will be used as spatial and

frequency weights for the voltage regulation. Consider a set Ω ⊂ R and define

U := {U : R → C
2×2 such that U ∈ L∞(Ω),U(ω) ∈ U ∀ω ∈ Ω.} (4.11)

2Often, the variable to be controlled is Vc = |Ṽc| := |Ṽ − ZcĨ
d| due to a control action

known as load compensation (Kundur, 1994). The explicit consideration of this control action
has no theoretical inconveniences.
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Definition 2. Voltage regulation performance function Given the set Ω,
the map Z satisfying Assumptions 10-13, and a matrix function U ∈ U , we
define the function γr : RL2×2

∞ (Ω)× U × Ω → R
+:

γr(Z,U;ω) := gr(Z(jω),U(ω)),∀ ω ∈ Ω (4.12)

which will be denoted Voltage regulation performance function of the map Z
(weighted by U).

The assumptions on Z and U, along with the comment following the defi-

nition of function gr imply that the function γr is well defined. The following

lines are intended to illustrate the relation of the function γr with the concept

of voltage regulation. We will omit the dependence of γr on Z and U, in order

to keep the notation as simple as possible. So, we will use the brief notation

γr(ω) := γr(Z,U;ω).

Definition (4.12) implies

γ−2
r (ω) = ||kvZ(jω)U(ω)−1||2 = max

y∈C2,||y||6=0

||kvZ(jω)U(ω)−1y||2

||y||2
=

= max
x∈C2,||Ux||6=0

||kvZ(jω)x||
2

||U(ω)x||2
.

Thus, for all vector x ∈ C
2

|kvZ(jω)x|
2 ≤ γr(ω)

−2||U(ω)x||2∀ω ∈ Ω.

So, if we chose x = îd(jω) with id ∈ Le2 arbitrary, and we recall equations (4.6)

and (4.8), we get

|kvZ(jω)x|
2 = |kvZ(jω)̂i

d(jω)|2 = |kv v̂(jω)|
2 = |v̂(jω)|2,

and thus

|v̂(jω)| ≤
1

γr(ω)
||U(ω)̂id(jω)|| ∀ω ∈ Ω, ∀id ∈ Le2. (4.13)

This inequality describes the role of the current as the disturbance for the

voltage regulation. For a power system device having voltage regulation, e.g.

a generator, the function γr and the matrix U(·) capture the frequential and

spatial nature of the action of current id on the voltage v. Slow variations of the

current deviations should be easily compensated by the control action, which

results in a weight γr(ω) relatively big at lower frequencies. On the other hand,

small deviations of the current Ĩd in phase with voltage Ṽ ⋆ should have a minor
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influence on the voltage magnitude. This fact can be taken into account with

the help of the weight U. The function γr can be seen as a figure of merit of the

control action: γr gets bigger as the voltage tracking performance gets better.

The function U(·) provides a spatial characterization of the voltage regula-

tion, able to be exploited3 for robustness analysis in Section 4.3. The following

example shows the analytical calculation of γr of a typical Static Var Compen-

sator (SVC).

Voltage regulation performance of a SVC

Consider the model introduced in the Section 2.3, depicted in Figs. 2.4 and

2.5. The small signal model is given by its admittance transfer matrix YS(s),

equation (2.33). The impedance transfer matrix ZS can be computed

ZS(s) = YS(s)−1 = {J [BC −BLb
⋆]−

BLk(s)

V⋆
V⋆V⋆⊤}−1.

Denoting B⋆
S := [BC − BLb

⋆], recalling definitions (4.1), and doing some alge-

braic computations, we obtain

ZS = −
1

∆(s)
[B⋆

SI2 +
BL
V⋆

k(s)(JV⋆)(JV⋆)⊤]J,

with

∆(s) := B⋆
S[B

⋆
S +

Bl
V⋆
k(s)].

Compute

kvZ
S = −

B⋆
S

∆(s)
kvJ = −

1

[B⋆
S + Bl

V⋆k(s)]
kvJ.

So, if we take U = I2, it follows

γr(Z
S , I2;ω) = ||kvZ

S(jω)||−1 = |B⋆
S +

Bl
V⋆
k(jω)|,

which evidences the direct effect of the controller k(s) on the voltage regulation.

4.2.2 Stabilizing control actions

We consider now those control actions typically used in power systems to im-

prove the damping of the electromechanical modes. Examples of these con-

trol actions are the Power System Stabilizers (PSS), the stabilizing signals at

SVC, and also the rotorical damping circuits of the synchronous machines, see

(Anderson and Fouad, 1993; Kundur, 1994). By abstracting technical details

about each device, it is possible to conclude that all these control actions are

3When such spatial weighting is not of interest, it can be taken U = I2.
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intended to provide an incremental generated active power opposite in phase

with the frequency deviations at least in a certain frequency band Ω, see e.g.

(Kundur et al., 1989; Lee et al., 1981).

Our objective is to obtain a definition of damping able to be characterized

as a constraint on the map Z. The main difficulty is that the damping is

normally expressed in terms of active power pd and voltage angle θ, variables

whose dependence on Z is not direct.

By reasons that will be clear later, we focus our attention on the set of input

vectors îd that cause no small signal variation in voltage magnitude v. Define

Iv=0 = {̂id ∈ Le2 : v̂(s) = kvZ(s)̂i
d(s) ≡ 0}. (4.14)

It is necessary to consider the polar description of the small signal voltage

ṽ. With the help of equations (1.4), (1.5), (1.6), and (4.1) compute

V⋆ϑ = V⋆
∂θ

∂VR
vR + V⋆

∂θ

∂VI
vI =

1

V⋆
[−V⋆

I V⋆
R]v =

(JV⋆)⊤

V⋆
v = kθv. (4.15)

Let us denote u the small signal polar description of phasor Ṽ :

u :=





v

V⋆ϑ



 =





kv

kθ



 v = Uθv, (4.16)

where definitions (4.1) and (4.2) were employed. The inverse relationship be-

tween u and v is given by

v =
[

k⊤v k⊤θ

]

u = U⊤
θ u. (4.17)

Thus, the map u→ id is given by

îd = Yv̂ = YU⊤
θ û = Y

[

k⊤v k⊤θ

]

û = Yk⊤v v̂ +Yk⊤θ V
⋆ϑ̂. (4.18)

We define an auxiliary function gd : C
2×2 × Ω → R:

gd(Y, ω) :=
jω

ω2
[−kvY k

⊤
θ + kθY

∗k⊤v ] =
2

ω
Im(kvY k

⊤
θ ), (4.19)

that enable us to define the

Definition 3. Damping performance function Given the set Ω and the
maps Z,Y satisfying Assumptions 10-13, we define the function γd : RL2×2

∞ (Ω)×
Ω → R:

γd(Y;ω) := gd(Y(jω), ω) ∀ω ∈ Ω. (4.20)

The function γd will be denoted Damping performance function of the map Y .
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Notice that the assumptions on Y and Ω ensure γd ∈ L∞(Ω). The reason for

considering γd to describe the damping performance is clarified in next lemma.

We denote γd(ω) := γd(Y;ω) by brevity and recall that the frequency λ of the

voltage phasor was defined at the beginning of Section 4.1.

Lemma 3. Damping performance Given the set Ω and the map Y satisfying
Assumptions 10-13, it is satisfied

Re[(p̂d(jω))∗λ̂(jω)] =
1

2
V⋆2γd(ω)|λ̂(jω)|

2 ∀ω ∈ Ω, ∀̂id ∈ Iv=0. (4.21)

Proof. Equation (1.5) allows us to compute the small signal component of

the active power:

pd = V⋆⊤id + (Id⋆)⊤v.

By invoking equations (4.16) and (4.17),

pd = V⋆⊤id + (Id⋆)⊤
[

k⊤θ k⊤v

]





V⋆ϑ

v



 = V⋆⊤id + (Id⋆)⊤[JV⋆ϑ+
V⋆

V⋆
v].

If we recall equations (4.1) and (1.5), we can write

pd = V⋆⊤id +Qdϑ+
P d

V⋆
v ∀id ∈ Le2.

The same relation can be written in a more compact way with the help of

equations (4.16) and (4.18):

p̂d = V⋆⊤ îd+Qd⋆ϑ̂+
P d⋆

V⋆
v̂ = V⋆⊤YU⊤

θ û+
1

V⋆

[

P d⋆ Qd⋆
]

û, ∀id ∈ Le2, (4.22)

or, equivalently

p̂d = [V⋆⊤Yk⊤v +
P d⋆

V⋆
]v̂ + [V⋆⊤Yk⊤θ V

⋆ +Qd⋆]ϑ̂, ∀id ∈ Le2, (4.23)

If we focus on the case îd ∈ Iv=0, we have v̂ ≡ 0 and

p̂d = V⋆⊤Y(jω)k⊤θ V
⋆ϑ̂+Qd⋆ϑ̂ = [V⋆⊤Y(jω)k⊤θ V

⋆ +Qd⋆]
λ̂

jω
, ∀̂id ∈ Iv=0,

since λ̂ = jωϑ̂. Thus

Re[p̂d∗λ̂] = Re[p̂dλ̂∗] = Re[
1

jω
V⋆⊤Y(jω)k⊤θ V

⋆]|λ̂|2, ∀̂id ∈ Iv=0.

By recalling definitions (4.1), we have

Re[p̂d∗λ̂] = V⋆2Re[
1

jω
kvY(jω)k⊤θ ]|λ̂|

2 =
V⋆2

ω
Im[kvY(jω)k⊤θ ]|λ̂|

2∀̂id ∈ Iv=0.
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The proof concludes recalling the definition of γd, equations (4.19),(4.20). ���

Notice that, for all complex numbers v,w ∈ C,, the expression Re[v∗w] =

|v||w| cos(θv − θw), weights the projection of the complex v on the direction

of w. Notice also that the influence of voltage variations v on the quantity

Re[(p̂d)∗λ̂] is specifically avoided in the definition since all variables in equation

(4.21) are computed for the case v = 0. The function γd allows us to quantify

the component of the active power pd in phase with the frequency deviations λ.

It is a common practice to assume constant bus voltage in certain controlled

devices to perform some simplified analysis. In such cases, the maps that de-

scribe the device have less dimension and the procedures above employed do

not apply directly. The classical synchronous machine model is one of these

cases, since it establishes only the relation between pd and λ, see (Anderson

and Fouad, 1993; Kundur, 1994). We consider this case next to clarify the

main ideas behind the definition of γd, albeit it is not directly applicable.

Classical generator model Consider the classical model with constant

e.m.f. behind the transient reactance:






δ̇ = λ

2H
Ω0
λ̇+ KD

Ω0
λ = Pm + P d.

In the small signal setting, the angle dynamics can be written

p̂d = jω
2H

Ω0
λ̂+

KD

Ω0
λ̂.

Compute

Re[(p̂d)∗λ̂] = Re[(−jω
2H

Ω0
|λ̂|2 +

KD

Ω0
|λ̂|2)] =

KD

Ω0
|λ̂|2. (4.24)

Examine the previous equation and Lemma 3. The idea behind the damping

performance function γd is to capture the classical concept of damping even for

complex, controlled devices. So, beyond some constant factors, the function

γd plays the role of the classical damping coefficient kD. Its usefulness for a

realistic synchronous machine model will be illustrated in section 4.2.4 with a

numerical example.

4.2.3 Voltage sensitivity of active power

The small signal deviations of active power around the equilibrium can be

computed with the help of equation (4.23). Recall definition (4.1) and write,

for the case ϑ ≡ 0:

p̂d = [V⋆kvY k
⊤
v +

P d⋆

V⋆
]v̂. (4.25)
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We define the auxiliary function gg : C
2×2 → R:

gg(Y ) := |kvY k
⊤
v +

P d⋆

V⋆2
|, (4.26)

that enable us to define the

Definition 4. Voltage sensitivity function Given the set Ω and the maps
Z,Y satisfying Assumptions 10-13, we define the function γg : RL2×2

∞ (Ω)×Ω →
R:

γg(Y;ω) := gg(Y(jω)) ∀ω ∈ Ω, (4.27)

that will be denoted Voltage sensitivity function of the map Y .

The reasons for such denomination are clear from equation (4.25): γg is pro-

portional to the module of the transfer function between the voltage deviations

v and the active power pd. The voltage sensitivity of the power system loads

has a very significant effect on the damping of power system oscillations, see

e.g. (Klein et al., 1992).

Remark 11. Notice that the sensitivity depends directly on the equilibrium
value of the active power. However, when all subsystems interconnected at a
single bus are considered jointly, it is satisfied

∑

d P
d⋆
j = 0. If we denote Yd

j

the respective input-output maps of each device, we have

γg(
∑

d

Yd
j ) := |kv

∑

d

Yd
j k

⊤
v +

∑

d

P d⋆j | = |kv
∑

d

Yd
j k

⊤
v |,

and the effect of the individual active powers P d⋆j is canceled.

4.2.4 Some examples

The Figure 4.1 displays the function γr for the generator G1 of the Example

12.6 in (Kundur, 1994) in three cases: constant excitation, AVR gain KA = 20,

and KA = 200. As it can be seen, γr is essentially proportional to the gain at

low frequencies and converges to the open loop response at high frequencies.

The addition of a PSS, not shown, has little effect.

The analysis of the function γd in Figure 4.2 evidences the effect of the

damping windings at frequencies about 10 rad/sec. The damping of the syn-

chronous machine with constant excitation is always positive, with small values

at low frequency. The inclusion of a positive value for the damping parame-

ter KD = 1 is very noticeable at low frequencies, where γd exhibits an almost

constant value that coincides with (4.24). The effect of the AVR with gain



80CHAPTER 4. EFFECTS OF DAMPING AND VOLTAGE REGULATION

10
−1

10
0

10
1

10
2

15

20

25

30

35

40

45

50

Function γ
r

dB

Frequency, rad/s

Figure 4.1: Function γr, in dB, for different excitation systems: constant exci-
tation (solid), KA = 200 (dashed), KA = 20 (dotted).

KA = 200 in absence of PSS (case KS = 0) exhibits a worsening of the damp-

ing at low frequencies where it take negative values4. This effect of the AVR

on the function γd can be interpreted in a similar way to the conclusions of the

classical paper (DeMello and Concordia, 1969) about the effect of the AVR on

the equivalent damping coefficient. The effect of increasing values of the PSS

gain on the function γd is clearly positive. It is also possible to appreciate a

moderate effect of the PSS on the synchronizing factor, see (DeMello and Con-

cordia, 1969), that is evidenced here by the shifting to higher frequencies of the

electromechanical resonance. From the standpoint of the control technology, it

is noticeable that, while the AVR has a positive effect on the regulation and one

negative on the damping, the PSS improves the damping with no appreciable

effect on the voltage regulation.

The similarities of our analysis with the conclusions of the reference (DeMello

and Concordia, 1969) must not be misunderstood since our definition of damp-

ing is different and has other objectives. The comments above are intended to

provide links with concepts well known in the power system community.

The role of the static loads is also interesting for this analysis. Consider the

4Although the plot is logarithmic, the change of signal is evidenced by the zero crossing at
ω ≈ 0.08 rad/sec.
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Figure 4.2: Function γd, in dB, for different excitation systems: constant exci-
tation (CE); constant excitation with KD = 1; PSS gain KS = 20, 2, 0.

generic, standard model (Kundur, 1994)

P d = P ⋆[p1(
V
V ⋆ )2 + p2

V
V ⋆ + p3][1 + kpf∆f ]

Qd = Q⋆[q1(
V
V ⋆ )2 + q2

V
V ⋆ + q3][1 + kqf∆f ]

,

with ∆f the frequency deviations, in p.u., of the bus voltage. The respective

portions of constant impedance, current and power satisfy

3
∑

i=1

pi = 1,
3

∑

i=1

qi = 1, pi ≥ 0, qi ≥ 0 ∀i = 1..3.

The coefficients kpf and kqf are the respective sensitivities of active and reactive

power loads to frequency deviations. In the Appendix D the small signal model

YZIP =
1

V ⋆2
U⊤
θ {





P ⋆(p1 − p3) Q⋆

−Q⋆(q1 − q3) P ⋆



+
jω

2Πf0





0 P ⋆kpf

0 −Q⋆kqf



}Uθ,

is computed. The application of Definitions 3, 4 allows us to determine the

damping and voltage sensitivity functions

γd(YZIP ;ω) =
2

ω
Im[kvYZIPk

⊤
θ ] =

P ⋆

Πf0V ⋆2
kpf , (4.28)

γg(YZIP ) = |kvYZIPk
⊤
v +

P ⋆

V ⋆2
| = |

P ⋆

V ⋆2
(p1 − p3) +

P ⋆

V ⋆2
|. (4.29)



82CHAPTER 4. EFFECTS OF DAMPING AND VOLTAGE REGULATION

Remark 12. As it can be appreciated from equations (4.28) and (4.29), the
damping performance is only affected by the term kpf , i.e. the sensitivity of the
active power load to frequency deviations. On the other hand, the effect of the
constant impedance term on the voltage sensitivity is equal and opposite to the
one due to the constant power. So, the quantity |kvYZIPk

⊤
v |–that, by the reasons

mentioned in Remark 11, is the one really significant in our analysis–reaches
its minimum, vanishes, for p1 = p3.

4.3 Stability analysis

In this section we examine the use of the functions defined in Section 4.2 for the

stability analysis of interconnections of power systems models. The approach

is based on the use of multipliers and quadratic constraints in the frequency

domain, (Doyle, 1982; Fan et al., 1991; Megretski and Rantzer, 1997). Although

the control theory is fairly mature in these topics, we adopt a specialized ap-

proach because of the following reasons:

R1 We are focusing on a specialized set of linear systems: square, invertible

and having a dynamic behavior strongly affected by damping injection

and voltage regulation.

R2 The conventional approach via IQCs requires a set of conditions to be met

for all frequency ω ∈ R, while our interest is focused on the frequency band

associated to the electromechanical modes.

R3 We will try to limit the use of generic multipliers as optimization variables

in order to keep a direct link with variables having a direct engineering

meaning, like those introduced in Section 4.2.

The object under study is the interconnection of linear systems Z1,Y2 de-

picted in Fig. 3.2 and given by equation 3.12.

Albeit we are studying the same interconnection that in Section 3.2, in this

chapter we are interested in weaker dynamic properties–the stability of a given

set of closed loop modes–, departing from laxer conditions to be met by the

open loop maps. So, we will work with a set Ω ⊂ R satisfying Assumption 13,

and with Z1 and Y2 linear, time-invariant operators with transfer functions5

Z1(s),Y2(s) ∈ RLm×m
∞ (Ω).

5Sections 4.1 and 4.2 were focused on the case m = 2. The results in this section are
nevertheless valid for the general case.
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Assumption 9 is a very reasonable hypothesis that we will suppose valid,

which implies Lemma 1.

Consider a Hermitian multiplier Π : R → C2m×2m bounded on jΩ, i.e.

Π ∈ L∞(Ω). Consider also a constant matrix Π ∈ C
2m×2m, and define the sets

Sl(Π) := {X ∈ C
m×m : σl(X,Π) ≥ 0}, (4.30)

Sl(Π,Ω) := {X ∈ RLm×m
∞ (Ω) : X(jω) ∈ Sl(Π(ω)) ∀ω ∈ Ω}, (4.31)

with the function σl defined in (3.14). Notice that, while Sl(·) is a subset of

C
m×m, Sl(Π,Ω) is a set of frequency dependent functions. Notice also two

important differences between this set and Sl(Π) defined in equation (3.16):

the quadratic constraint is only met on jΩ and the stability is not required.

The following Lemma can be demonstrated in a similar way to Lemma 2,

see Appendix B:

Lemma 4. The set Sl(Π,Ω) is convex if Π ∈ L2m×2m
∞ (Ω) satisfies

[

0
Im

]∗

Π(ω)

[

0
Im

]

≤ 0 ∀ω ∈ Ω. (4.32)

In a first instance, we will consider some properties of the interconnection

of constant matrices. So, Z1, Y2 ∈ C
m×m are constant, invertible matrices

whose respective inverses are denoted Y1, Z2. Define the auxiliary function

Γ : Cm×m × C
m×m × C

m×m × R → C
2m×2m:

Γ(Q,R, Y, ǫ) :=





Y ∗QY + Y ∗R+R∗Y − ǫIm R∗

R −Q



 , (4.33)

whose domain will be later extended to include also matrix functions as argu-

ments. Notice the identity

σl(Y2,Γ(Q,R, Y1, ǫ)) = Y ∗
1 QY1−Y

∗
2 QY2+(Y1+Y2)

∗R+R∗(Y1+Y2)−ǫIm, (4.34)

and that

σl(Y2,Γ(Q,R, Y1, ǫ)) ≥ 0 ⇐⇒ Y ∗
1 QY1−Y

∗
2 QY2+(Y1+Y2)

∗R+R∗(Y1+Y2) ≥ ǫIm.

(4.35)

Consider the following lemma:
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Lemma 5. Be Z1, Y2 ∈ Cm×m and the respective inverse Y1 := Z−1
1 . Assume

the existence of two matrices Q = Q∗, R ∈ Cm×m and a real ǫ > 0 such that

Q ≥ 0, (4.36)

Y ∗
1 QY1 − Y ∗

2 QY2 + (Y1 + Y2)
∗R+R∗(Y1 + Y2) ≥ ǫIm, (4.37)

Then
det(Im + Z1Y2) 6= 0 (4.38)

for all Y2 ∈ Sl(Π) ⊂ C
m×m, with Π ∈ C

2m×2m given by

Π = Γ(Q,R, Y1, ǫ). (4.39)

Furthermore, the set Sl(Π) is convex.

Proof: The condition (4.37) can be written–see the equivalence (4.35)–:

σl(Y2,Π) ≥ 0, (4.40)

with Π given by (4.39). By virtue of Lemma 4, Q ≥ 0 implies the convexity of

Sl(Π). Furthermore, by definition, all Y2 ∈ Sl(Π), satisfies

σl(Y2,Π) ≥ 0,

or equivalently

Y ∗
1 QY1 − Y∗

2QY2 + (Y1 + Y2)
∗R+R∗(Y1 + Y2) ≥ ǫIm, ∀Y2 ∈ Sl(Π). (4.41)

As a consequence of the identity

Y ∗
1 QY1 −Y∗

2QY2 + (Y1 + Y2)
∗R+R∗(Y1 + Y2) =

= (Y1 + Y2)
∗[R+

Q

2
(Y1 − Y2)] + [(Y1 − Y2)

∗Q

2
+R∗](Y1 + Y2),

the condition (4.41) is equivalent to

(Y1 +Y2)
∗[R+

Q

2
(Y1 −Y2)] + [(Y1 −Y2)

∗Q

2
+R∗](Y1 +Y2) ≥ ǫIm ∀Y2 ∈ Sl(Π),

that is equivalent to

v∗(Y1+Y2)
∗[R+

Q

2
(Y1−Y2)]v+v

∗[(Y1−Y2)
∗Q

2
+R∗](Y1+Y2)v ≥ ǫ||v||2, ∀v ∈ C

m, v 6= 0.

This implies

(Y1 + Y2)v 6= 0 ∀v ∈ C
m, v 6= 0, ∀Y2 ∈ Sl(Π)

and

det(Y1 + Y2) = det(Y1)det(Im + Z1Y2) 6= 0,
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that implies the thesis. ���

The previous lemma establishes conditions that ensure det(I+Z1Y2) 6= 0 for

a convex set of matrices Y2, for a fixed Z1. We will introduce now a proposition

that allows us to check the presence of closed loop modes on the set jΩ for the

system Z1 ⋆Y2 and for an extended, convex set of systems around it.

Proposition 8. Consider the feedback interconnection (3.12) for two linear,
time-invariant systems Z1 and Y2 satisfying Assumptions 9-12 for Ω satisfying
Assumption 13. Assume the existence of a scalar ǫ > 0 and two matrices
Q,R : R → Cm×m,Q,R ∈ Lm×m

∞ (Ω) such that Q = Q∗ and

Q(ω) ≥ 0 ∀ω ∈ Ω, (4.42)

Y1(jω)
∗Q(ω)Y1(jω)−Y2(jω)

∗Q(ω)Y2(jω)+
+[Y1(jω)+Y2(jω)]

∗R(ω) +R(ω)∗[Y1(jω)+Y2(jω)] ≥ ǫIm ∀ω ∈ Ω.
(4.43)

Then, the operator Z1 ⋆Y2 has no modes on jΩ. Therefore, there are no modes
of Z1 ⋆Y2 on jΩ for all stabilizable and detectable realization of Y2 ∈ Sl(Π,Ω),
with Π = Γ(Q,R,Y1, ǫ). Furthermore, the set Sl(Π,Ω) is convex.

Proof The hypotheses on the systems Z1,Y1,Y2 imply the existence of

uniform bounds for these maps on jΩ. So, we can apply the Lemma 5 for the

matrices Z1(jω),Y1(jω),Y2(jω) ∀ω ∈ Ω. Thus, the condition (4.43) allows us

to conclude

det(Im + Z1(jω)Y2(jω)) 6= 0 ∀ω ∈ Ω,

which implies, due to Assumption 9 and Lemma 1, the absence of closed loop

modes of Z1 ⋆Y2 on the set jΩ.

The extension of this property for any Y2 ∈ Sl(Π,Ω) is as follows. Since

both Y2 and Z1 are bounded on jΩ there is no pole-zero cancellation on jΩ

in the cascade system Z1Y2. As the realizations of both systems are sta-

bilizable and detectable, the closed loop modes on jΩ, if any, must make

det(Im + Z1(jω)Y2(jω)) = 0. This is not possible since Y2 ∈ Sl(Π,Ω) im-

plies σl(Y2(jω),Π(ω)) ≥ 0, ∀ω ∈ Ω, and, by virtue of equivalence (4.35), this

constraint makes way to the application of Lemma 5 for Z1(jω),Y2(jω),∀ω ∈ Ω.

The convexity of the set Sl(Π,Ω) is ensured by (4.42), the existence of a

uniform bound for Π, and Lemma 4. ���

Remark 13. The condition (4.43) is a Frequency Dependent Linear Matrix In-
equality (FDLMI) and constitutes an infinite dimensional constraint on Q,R.
Notice that the finite domain Ω impedes the application of the classical KYP
Lemma, see e.g. (Megretski and Rantzer, 1997; Rantzer, 1996). However, if
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Figure 4.3: Interconnection of power systems.

finite state space realizations are supposed for Q,R, the FDLMI can be for-
mulated as an LMI, by applying the Generalized KYP Lemma, see reference
(Iwasaki and Hara, 2005).

The set Sl(Π,Ω) is infinite dimensional since its elements are frequential

functions satisfying a quadratic constraint. Thus, its usefulness to describe a

family of models of a physical system– subject e.g. to parametrical variations–is

not direct. In the next section we again consider power systems to exploit the

frequential characterization described in Section 4.2, to later build a family of

models able to be linked with Proposition 8.

4.3.1 Interconnections of small signal models of power systems

This section is intended to apply the previous results to small signal models of

power systems, taking advantage of the functions introduced in Section 4.2. The

object under study is the interconnection of two power system as depicted in

Fig. 4.3.1. It can be modeled, in small signal, as the interconnection described

by equation (3.12), once we model the subsystems Σ1,Σ2 respectively through

its impedance and admittance models, Z1,Y2, given by equations (4.6), (4.7).

Notice also that, as a consequence of Kirchoff laws,

P 1⋆
e + P 2⋆

e = 0, (4.44)

that enables the application of Remark 11, relative to function γg.

In the present case Z1,Y2 are square, 2 × 2 maps. We suppose valid the

Assumptions 10, 11, 12 that imply the existence of uniform bounds of these

maps and their inverses on the set jΩ.

We will consider in first instance, constant, complex matrices Z1, Y2 ∈

C
2×2, Y1 := Z−1

1 that coincide with the evaluation of the respective transfer

function at one frequency ω ∈ Ω:

Z1 = Z1(jω), Y1 = Y1(jω), Y2 = Y2(jω). (4.45)
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Consider the definition of the orthogonal versors k⊤v , k
⊤
θ ∈ R

2, equation

(4.1), taking the bus e in Fig 4.3.1 as reference. All mention to the subindex

e ∈ B will be omitted, by brevity, in the sequel.

Consider a matrix R ∈ C
2×2 given by

R := jωk⊤v kθ, ω ∈ Ω, (4.46)

Recall definitions (4.1) and (4.2), and property (4.3). Thus, for R given by

(4.46) and a constant matrix Y ∈ C
2×2, it can be computed

Uθ(Y
∗R+R∗Y )U⊤

θ = jω





kv

kθ



 (Y ∗k⊤v kθ − k⊤θ kvY )
[

kTv kTθ

]

=

=





0 jωkvY
∗k⊤v

−jωkvY k
⊤
v jω(kθY

∗k⊤v − kvY k
⊤
θ )



 . (4.47)

Recall the definition of the function gd, equation (4.19). Thus, the equation

(4.47) can be written

Uθ(Y
∗R+R∗Y )U⊤

θ =





0 jωkvY k
⊤
v

−jωkvY k
⊤
v ω2gd(Y, ω)



 . (4.48)

The following fact is a direct consequence of definition (4.10):

Lemma 6. For all invertible matrix Z ∈ C
2×2, and U ∈ U, it is satisfied

Y ∗U∗UY − k⊤v kvg
2
r (Z,U) ≥ 0, (4.49)

being Y = Z−1.

Proof. By definition (4.10):

gr(Z,U)2||kvZU
−1||2 = gr(Z,U)2σ̄2(kvZU

−1) = 1.

A standard property of the maximum singular value6 allow us to write

I2 − g2r (Z,U)Ū−∗Z∗k⊤v kvZU
−1 ≥ 0.

Left and right multiplying by Y ∗U∗ and UY , we get

Y ∗U∗UY − g2r (Z,U)k⊤v kv ≥ 0.

���

6σ̄2(A) = 1 =⇒ A∗A ≤ I .
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For a given matrix Z2 ∈ C
2×2, let us choose a particular weighting matrix :

U2 :=
Z2

||Z2||
. (4.50)

It is immediate to verify that U2 ∈ U, recall definition (4.9), and

gr(Z2, U2) = ||Z2||
−1. (4.51)

Next lemma proposes a particular choice for Q that, along with R given by

(4.46), allows us to satisfy conditions (4.36) and (4.37) in Lemma 5:

Lemma 7. Suppose valid the assumptions 10- 13 for the set Ω and maps Z1,Y2

describing the small signal model of interconnection depicted in Figure 4.3.1.
Denote Z1, Y2, Y1 as in (4.45) for an arbitrary ω ∈ Ω. The existence of a real
ǫ > 0 such that
[

ω2||Z2||2

2 gd(Y1 + Y2, ω)[g
2
r (Z1, U2)− g2r (Z2, U2)] ωgg(Y1 + Y2)

ωgg(Y1 + Y2)
ω2

2 gd(Y1 + Y2, ω)

]

≥ ǫI2,

(4.52)
implies the existence of Q,R ∈ C

2×2 such that Q ≥ 0 and

Y ∗
1 QY1 − Y ∗

2 QY2 + (Y1 + Y2)
∗R+R∗(Y1 + Y2) ≥ ǫIm, (4.53)

Proof: Take Q = xU∗
2U2, with x ∈ R, x ≥ 0, a degree of freedom to be

exploited to optimize feasibility. Notice that Q ≥ 0 and compute

Uθ[Y
∗
1 QY1 − Y ∗

2 QY2]U
⊤
θ = xUθ[Y

∗
1 U

∗
2U2Y1 − Y ∗

2 U
∗
2U2Y2]U

⊤
θ =

= xUθ[Y
∗
1 U

∗
2U2Y1 − ||Z2||

−2I2]U
⊤
θ ≥ xUθ[g

2
r (Z1, U2)k

⊤
v kv − ||Z2||

−2I2]U
⊤
θ =

= x





g2r (Z1, U2)− g2r (Z2, U2) 0

0 −||Z2||
−2



 , (4.54)

where equations (4.49) , (4.50), and (4.51) were employed. Thus, take R as in

(4.46), and recall (4.48),(4.54) to get

Uθ[Y
∗
1 QY1 − Y ∗

2 QY2 + (Y1 + Y2)
∗R+R∗(Y1 + Y2)]U

⊤
θ ≥

≥ x





g2r (Z1, U2)− g2r (Z2, U2) 0

0 −||Z2||
−2



+





0 jωkv(Y1 + Y2)k
⊤
v

−jωkv(Y1 + Y2)k
⊤
v ω2gd(Y1 + Y2, ω))



 .

By hypothesis, the net active power entering both subsystems is zero, equation

(4.44), and hence |kv(Y1 + Y2)k
⊤
v | = gg(Y1 + Y2), see Remark 11. Thus, if we

introduce ψ12 := ∠kv(Y1 + Y2)k
⊤
v , we have

Uθ[Y
∗
1 QY1 − Y ∗

2 QY2 + (Y1 + Y2)
∗R+R∗(Y1 + Y2)]U

⊤
θ ≥
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=





x[g2r (Z1, U2)− g2r (Z2, U2)] jωgg(Y1 + Y2)e
jψ12

−jωgg(Y1 + Y2)e
−jψ12 ω2gd(Y1 + Y2, ω)− x||Z2||

−2



 . (4.55)

Now, we will determine x such that





x[g2r (Z1, U2)− g2r (Z2, U2)] jωgg(Y1 + Y2)e
jψ12

−jωgg(Y1 + Y2)e
−jψ12 ω2gd(Y1 + Y2, ω)− x||Z2||

−2



 ≥ ǫI2, (4.56)

which is equivalent to















x[g2r (Z1, U2)− g2r (Z2, U2)] ≥ ǫ

ω2gd(Y1 + Y2, ω)− x||Z2||
−2 ≥ ǫ

{x[g2r (Z1, U2)− g2r (Z2, U2)]−ǫ}{ω
2gd(Y1+Y2, ω)− x||Z2||

−2−ǫ} ≥ ω2g2g(Y1+Y2)

For ǫ sufficiently small, the optimum x to ensure the previous conditions is

xopt = argmax
x≥0

{x[ω2gd(Y1 + Y2, ω)− x||Z2||
−2]} =

ω2||Z2||
2gd(Y1 + Y2, ω)

2
.

If we take x = xopt in (4.56) and omit the phase factor jejΨ12 in the non

diagonal terms–with no significance for the signal definition–we recover the

inequality (4.52). Thus, this hypothesis implies the inequality (4.56) that, due

to inequality (4.55), yields condition (4.53) that concludes the proof. ���

As consequence of the previous development, we have built a pair of multi-

pliers Q̃, R̃ given by

Q̃(ω) :=
ω2

2
γd(Y1+Y2;ω)Z2(jω)

∗Z2(jω); R̃(ω) := jωk⊤v kθ ∀ω ∈ Ω. (4.57)

These functions are bounded on jΩ since this set is bounded and excludes the

origin. Define the function Ũ2 : R → U:

Ũ2 :=
Z2(jω)

||Z2(jω)||
, ∀ω ∈ Ω. (4.58)

Since Z2 ∈ RL∞(Ω), it is easy to check that Ũ2 ∈ U, see definition (4.11).

The following proposition extends the previous lemma for all ω ∈ Ω, setting

the additional conditions to be met by the involved maps. Its proof is straight-

forward from Lemma 7, definitions (4.57-4.58), and the previous discussion.

Proposition 9. Consider the feedback interconnection (3.12) for two linear,
time-invariant systems Z1 and Y2 satisfying Assumptions 10-12 for Ω meeting
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Assumption 13. Assume that equation (4.44) holds for the equilibrium and that
a scalar ǫ > 0 exists such that7

[

ω2||Z2||2

2 γd(Y1+Y2)[γ
2
r (Z1, Ũ2)−γ

2
r (Z2, Ũ2)] ωγg(Y1+Y2)

ωγg(Y1+Y2)
ω2

2 γd(Y1+Y2)

]

≥ ǫI2, ,∀ω ∈ Ω

(4.59)
Then, there exist Q̃, R̃ defined in (4.57) satisfying

Q̃(ω) ≥ 0 ∀ω ∈ Ω, (4.60)

Y1(jω)
∗Q̃(ω)Y1(jω)−Y2(jω)

∗Q̃(ω)Y2(jω)+

+[Y1(jω)+Y2(jω)]
∗R̃(ω) + R̃(ω)∗[Y1(jω)+Y2(jω)] ≥ ǫIm ∀ω ∈ Ω.

(4.61)

Let us examine some key quantities in inequality (4.59). To meet this in-

equality it is necessary that

||Z2(jω)||
2[γ2r (Z1, Ũ2)− γ2r (Z2, Ũ2)] = ||kvZ1Y2(jω)||

−2 − 1 > 0,∀ω ∈ Ω,

where equations (4.10), (4.58) and (4.51) were employed. This inequality is

equivalent to

||kvZ1(jω)Y2(jω)|| < 1, ∀ω ∈ Ω,

which is an H∞-like condition on the loop gain Z1Y2 on one of the two output

channels, the one associated to the voltage module. Other necessary condition

implicit in (4.59) is

γd(Y1 +Y2;ω) > 0 ∀ω ∈ Ω,

which is a damping requirement on the angle (or frequency ) channel: the power

system must have, at the bus considered, a positive damping. Provided these

two conditions, (4.59) requires

γg(Y1 +Y2;ω)
2 <

ω2||Z2||
2

4
γd(Y1 +Y2;ω)

2[γ2r (Z1, Ũ2)− γ2r (Z2, Ũ2)

that can be interpreted as a low voltage sensitivity condition.

Remark 14. Condition (4.59) imposes thus a balance between damping and
voltage regulation on the one hand, and the voltage sensitivity on the other.
The classical control actions and the load static characteristic play a direct
role on each parameter in this inequality. The inequalities (4.60) and (4.61)
also imply an implicit, less restrictive, balance between these variables. Due to
these reasons, in the sequel, we will refer generically to condition (4.59) (or the
pair (4.60) - (4.61)) as balance conditions.

7The dependence of the functions γr, γd, γg on ω is omitted to facilitate the reading.
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4.3.2 Robustness analysis

The main results in the preceding sections of this chapter allow us to check the

presence of closed loop modes on the set jΩ and the extension of this property

to a convex set that includes the nominal system. To progress with the stability

analysis of small signal models of power systems, it is necessary to build a family

of models for which some relevant dynamic property is guaranteed.

The robust control theory provides us many ways to describe families of dy-

namical systems, each one accompanied by its corresponding robustness analysis

tool, see e.g. (Megretski and Rantzer, 1997).

Our development has followed, in some sense, an inverse way. We have

defined three frequency domain functions with direct meanings in the power

system community. We assume a given balance between these functions, Propo-

sition 9, to later examine its consequences on the dynamic behavior of the in-

terconnection. To advance to this objective, we will define a family of small

signal models of power systems.

We will follow partially the lines of references (Doyle, 1982; Doyle, 1985;

Fan et al., 1991) to propose a Linear Fractional Transformation (LFT) model.

Consider a given, fix, matrix function N(s) ∈ RL4×4
∞ (Ω) with a partition of

four square blocks

N(s) =





N11(s) N12(s)

N21(s) N22(s)



 . (4.62)

We will assume that N12 is invertible, and that N−1
12 is bounded on jΩ. So, the

matrix function Ñ : jΩ → C
4×4:

Ñ(jω) :=





N−1
12 −N−1

12 N11

N22N
−1
12 N21 −N22N

−1
12 N11



 (jω) (4.63)

exists and it is bounded on jΩ. Consider also a convex, compact set D∆ ⊂ R
2×2

with 02×2 ∈ D∆, and the family of systems

YN,∆ := {Y : Y(s) = Fu(N(s),∆),∀∆ ∈ D∆} (4.64)

The family YN,∆, depicted in Figure 4.3.2, is parameterized by ∆ ∈ D∆,

and its members are supposed to have stabilizable and detectable state space

realization. The case ∆ = 02×2 constitutes the so-called nominal system Y =

Fu(N(s), 0) = N22(s), see Appendix C.

This family of systems can be used directly to model uncertain systems

where ∆ collects some real parameters varying in a certain domain. A significant
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Figure 4.4: Description of the family of power systems models.

case is the use of ∆ to exactly capture the variations of a static load with a ZIP

model, see Appendix D.

Lemma 8. Be Π : R → C
4×4 an Hermitian multiplier Π ∈ L∞(Ω) and

N(s) ∈ RL4×4
∞ (Ω) partitioned as in (4.62). N−1

12 (s) exists and N−1
12 ∈ RL∞(Ω).

Assume ∆ ∈ D∆ given and Fu(N,∆) ∈ RL2×2
∞ (Ω). Then the following two

statements are equivalent

1. Fu(N,∆) ∈ Sl(Π,Ω)

2. ∆ ∈ Sl(Ñ
∗ΠÑ ,Ω).

Proof: The hypotheses ensure that the functions N12(jω)
−1 and [Im −

N11(jω)∆]−1 are bounded on Ω. Thus, the Lemma 10 in Appendix C allows us

to conclude the equivalence between

Fu(N(jω),∆) ∈ Sl(Π(ω), ǫ) ∀ω ∈ Ω,

and

∆ ∈ Sl(Ñ(jω)∗Π(ω)Ñ(jω), ǫ) ∀ω ∈ Ω.

So, the thesis results directly from the definition (4.31). ���

A very important characteristic of the power systems dynamics is the pres-

ence of electromechanical modes. They are typically studied in the state space

where the modal analysis allows us to link each mode with a set of state

variables (rotor angles, speeds, etc.) which evidences its physical meaning.

However, it is not simple to capture the physical nature of these modes in an

input-output setting. However, the electromechanical modes are typically char-

acterized by their frequency range. These modes typically ranges from 0.2 to

2Hz, see (Kundur, 1994). This range–one decade–may be even smaller when a

concrete case and certain parameter variations are under study. Thus, we will

characterize the set of electromechanical modes through their frequency range

and also through their continuity with respect to parametrical variation.
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We will assume that a balance condition holds for our nominal system Z1 ⋆

Y2, and we will study the consequences on the stability of the electromechanical

modes facing parametrical variations. The results are precisely stated in the

next Proposition.

Theorem 1. Consider a set Ω satisfying Assumption 13, and the intercon-
nection Z1 ⋆ Y2 with Y2 ∈ YN,∆ with ∆ ∈ D∆ ⊂ R

2×2 and D∆ compact and
convex. N(s) ∈ RL4×4

∞ (Ω), partitioned as in (4.62) satisfies that N12(jω) has a
bounded inverse en jΩ. Assume state space realizations for both Z1 and Y2 for
all ∆ ∈ D∆ satisfying Assumptions 9-12. Denote Y2 = Fu(N, 0) and Z1 ⋆Y2

the nominal interconnection. Assume that the equation (4.44) holds for the
equilibrium. Assume also

A1. the existence of a scalar ǫ > 0 such that Q̃,R̃ given by (4.57) satisfy

Q̃(ω) ≥ 0 ∀ω ∈ Ω, (4.65)

Y1(jω)
∗Q̃(ω)Y1(jω)−Y2(jω)

∗Q̃(ω)Y2(jω)+

+[Y1(jω)+Y2(jω)]
∗R̃(ω)+R̃(ω)∗[Y1(jω)+Y2(jω)] ≥ ǫIm ∀ω ∈ Ω;

(4.66)

A2. that the uncertain model satisfies

[

0
I2

]∗

Ñ(jω)∗Π̃(ω)Ñ (jω)

[

0
I2

]

≤ 0 ∀ω ∈ Ω

with Π̃ = Γ(Q̃, R̃,Y1, ǫ);

A3. that Z1 ⋆ Y2 has a set of closed loop modes mi : D∆ → C, i ∈ M ⊂ N

satisfying
Im(mi(∆)) ∈ Ω ∀∆ ∈ D∆,

that are continuous, bounded functions on D∆;

A4. that the nominal interconnection satisfies Re(mi(0)) < 0 ∀i ∈ M.

Then
Re(mi(∆)) < 0 ∀i ∈ M ∀∆ ∈ ∆

with
∆ := D∆ ∩ Sl(Ñ(jω)∗Π̃(ω)Ñ(jω),Ω). (4.67)

Proof The inequality (4.66) can be written, in compact notation, Y2 ∈

Sl(Π̃,Ω). Since Y2 = Fu(N, 0), the assumptions on the boundedness of N−1
12

and Fu(N,∆) and Lemma 8 implies that

02×2 ∈ Sl(Ñ(jω)∗Π̃(ω)Ñ(jω),Ω)
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and this set is thus nonempty. Consider an arbitrary matrix ∆0 ∈ ∆.

Notice that Assumption A2 and Lemma 4 imply that the set Sl(Ñ
∗Π̃Ñ ,Ω)

is convex. ∆ is thus convex since it is the intersection of two convex sets, see

(4.67). Both 02×2,∆0 ∈ ∆, then

∆(µ) := µ∆0 ∈ ∆ ∀µ ∈ [0, 1].

As ∆(µ) ∈ D∆ it is ensured that Yµ := Fu(N,∆µ) ∈ RL∞(Ω). Since

∆µ ∈ Sl(Ñ(jω)∗Π̃(ω)Ñ (jω),Ω, the Lemma 8 implies that

Yµ ∈ Sl(Π,Ω),

and, due to Proposition 8, the interconnection Z1 ⋆Yµ has no closed loop modes

on the set jΩ.

Suppose, reasoning by the absurd, that there exists a closed loop mode

k ∈ M such that

Re[mk(∆0)] >= 0.

Then, we have a continuous, bounded function mk(µ∆0) whose real part is

negative for µ = 0 and non negative for µ = 1. This implies that there ex-

ists an intermediate µ⋆ such that Re[mk(µ
⋆∆0)] = 0. Due to Assumption A3

Im[mk(µ
⋆∆0)] ∈ Ω which violates the absence of closed loop modes of Z1⋆Yµ on

jΩ. Thus, the absurd hypothesis is not correct and the thesis is demonstrated.

���

Theorem 1 constitutes a robust stability test for a set of closed loop modes

characterized by its frequency range Ω and its continuity. The balance condi-

tion, assumption A1, determines the existence of a barrier at the set jΩ. The

continuity and frequency domain characterization of the modes and the con-

vexity of the domain impede the modes to cross this barrier. So, the nominal

stability of these modes determines their robust stability for all ∆ ∈ ∆. Figure

4.5 represents the complex plane and schematically depicts the mode loci when

the parameter moves along a given curve ∆(µ) ∈ ∆. Notice that Theorem 1

does not exclude the possibility that other modes can cross the imaginary axis

avoiding the mentioned barrier.

Remark 15. Notice that the Theorem 1 is also valid if we substitute the pair
Q̃, R̃ in Assumption A1 for any pair Q,R satisfying the assumptions of Propo-
sition 8. It is also true that we can adopt a more general uncertainty model and
that a convex optimization algorithm can be used to improve feasibility of con-
dition A1. However, as it was mentioned before, we are not interested in that,
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but in investigating the links between the classical power system control actions
and the robust stability of the electromechanical modes. Notice also that, by
virtue of Proposition 9, the Theorem 1 is also valid when A1 is substituted by
the other, more explicit, balance condition (4.59).

A few words on assumption A2 are necessary. This condition is needed to

ensure the convexity of ∆ and thus its connectedness, essential to demonstrate

the theorem. Assumption A2 can be written




−N−1
12 N11

N21 −N22N
−1
12 N11





∗

Π̃





−N−1
12 N11

N21 −N22N
−1
12 N11



 (jω) ≥ 0 ∀ω ∈ Ω,

i.e., an inequality that depends quadratically on N11, of the type:

[A+BN11 +N∗
11B

∗ +N∗
11CN11](jω) ≤ 0.

The independent term, that we denoted A above, is given by the expression

A = N∗
21





0

I2





∗

Π̃





0

I2



N21.

The condition (4.65) implies A ≤ 0. Thus, the Assumption A2 can be viewed

as a constraint on the maximum ||N11(jω)||. In particular, Assumption A2 is

met for all uncertain models of the type

YN,∆ := {Y : Y(s) = Y(s) +N21(s)∆N12(s),∀∆ ∈ D∆},

which is known in the robust control literature as multiplicative model, see

(Doyle et al., 1992). The choice of the LFT model (4.64) is justified by its

generality–this model allows us to capture the dependence of the modes of Y2

on the parameter–albeit it turns Assumption A2 necessary.

j

Figure 4.5: Closed loop modes behavior for ∆(µ) ∈ ∆.

The application of Theorem 1 to the stability analysis of the electrome-

chanical modes of power system rests, in first instance, on the reasonableness of
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Figure 4.6: The example.

Assumption A3 as characterization of these modes. However, it is also required

Assumption A1 and its balance between damping, voltage regulation and volt-

age sensitivity. In next section we will examine a well known classical example

to check this condition and validate the theorem.

4.4 Example

Consider the system depicted in Fig. 4.6, see (Kundur, 1994), pg. 813. The

parameters are in complete accordance with the reference and the excitation

control is modeled as a thyristor exciter with high transient gain and PSS,

option (iv) in (Kundur, 1994). The interconnection at the bus 7 is studied, by

denotingY2 the small signal admittance model of load L7 and Z1 the impedance

model for the rest of the system, including the four machines and load L9.

The objective of the study is the use of Theorem 1 for the analysis of the

electromechanical modes when the parameters of the ZIP model of L7 are varied

in certain domain. The nominal system corresponds to a ZIP model for L7

with active and reactive components with constant power. Since the subsystem

Y2 consists exclusively of a static load, it can be modeled as in Appendix D,

equation (D.5), with the set D∆ given by (D.6) with the parameters kpf ∈

[0, 3], kqf = 0. The modeling and computation of small signal system were done

with the software DSAT, (Powertech Labs Inc., n.d.).

Figure 4.7 depicts the functions involved in the balance conditions for the

nominal system. Observe the significance of the damping function mainly re-

stricted to the frequency band associated to electromechanical modes. The

term associated to the voltage regulation remains approximately constant, and

the voltage sensitivity has in this case a behavior similar to γd. To check the

balance conditions, the minimum eigenvalues of the corresponding matrices are

displayed. Balance conditions (4.59) and (4.61) are respectively satisfied8 in the

ranges ω ∈ [1.3, 12.3] rad/sec and ω ∈ [1, 20.8]. Since left hand side of condition

8Since no numerical optimization is involved, these conditions were checked on a fine grid
of frequency points, taking advantage of the continuity of these functions.
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Figure 4.7: Voltage regulation function (top left), damping function (top right),
voltage sensitivity function (bottom left) and balance conditions (bottom right).

(4.61) is always greater than the left hand side of (4.59), see Proposition 9, it

is not necessary to identify each plot. The analysis of several cases allows us to

chose Ω = [2.1, 10], which seems to be reasonable with the results known for this

example en several scenarios, see (Klein et al., 1992; Kundur, 1994; Stankovic

et al., 1999).

The robust stability of the electromechanical modes was assessed with the

help of Theorem 1. The balance condition of the nominal interconnection,

hypothesis A1, is satisfied in a suitable frequency range. The hypothesis A2

is trivially satisfied by the uncertainty model (D.5). We studied the extent

of the uncertainty set ∆ by checking the belonging of the vertices of D∆ to

the set Su(Ñ(jω)∗Π̃(ω)Ñ(jω),Ω), the convexity ensures that this procedure is

sufficient.

The results of this procedure are the domains ∆ plotted in Figure 4.8.

Notice that the stability of the electromechanical modes is ensured for most of

the domain, and it is improved by a positive frequency coefficient kpf of the

load.

The stability of the electromechanical modes for the extreme values of ∆
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Figure 4.8: Space of parameters for load L7, cases kpf = {0, 3}. ∆11 = p1−p3
at the horizontal axis, ∆21 = q1−q3 at the vertical axis. The labels P,Q,I,Z
indicate the points of pure constant power, current or impedance for each axis.

was verified directly and the corresponding loci are depicted in Figure 4.9.

Fig. 4.9 also remember us that Theorem 1 is a sufficient condition: some

scenarios whose stability could not be ensured by Theorem 1 are nevertheless

stable.

4.5 Some concluding remarks

The objective of this chapter was to study the consequences, at the system

level, of the classical control actions in power systems. Voltage regulation and

damping injection are done everywhere in the networks at generators, FACTS

and some controlled loads. We have provided a way to quantify these control

actions with the help of two suitably defined frequency functions. The ideas

behind these functions were illustrated with the help of several examples involv-

ing either analytical or numerical computation. With these functions in mind,

a pair of frequency dependent multipliers was obtained that allow us quantify

the amount of damping and voltage regulation necessary to guarantee some ro-

bust closed loop properties. It was shown that if a balance is ensured between

damping, voltage regulation and voltage sensitivity, a set of closed loop modes

is kept stable in spite of model uncertainty. The robust stability condition de-

rived in this work does not require the numerical computation of multipliers or
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Figure 4.9: Loci of the electromechanical modes for the extreme points shown in
Fig. 4.8 for kpf = 0. The damping factors and the jΩ barrier are also depicted.

scalings, and it provides an interesting insight since it is directly formulated in

well known terms in power system community. The feasibility of the robustness

test and the extent of the parametric variations supported by the method was

assessed with the help of a classical benchmark.



Chapter 5

Conclusions and future work

The main original contributions presented in this thesis are commented next.

• Section 2.1 introduces an extension of the classical concept of dissipativity,

intended to cope with differential–algebraic descriptions of power systems.

A specific power supply rate function W is proposed that enables the es-

tablishment of dissipative properties for a class of power system models.

The dissipativity also holds for the incremental dynamics around the equi-

librium which is shown to have direct consequences for the small signal

dynamics.

• Detailed non linear full order models of synchronous machines are shown

to be cyclo-dissipative in the above-mentioned sense. This fact allows

us to include these models into the classical energy function for power

systems, avoiding the use of oversimplified models. Section 1.3.2 and

Chapter 2.

• The small signal models of the above-mentioned class of power systems

are shown to meet a convex constraint in the frequency domain, more

precisely on the phase of the transfer function. This constraint is even

satisfied in a significant frequency band in the presence of non-dissipative

terms. Section 2.2.

• A standard non linear model of SVC with PD voltage control is shown

to be cyclo–dissipative. It is shown that the control law can add dissipa-

tion to the device. A complete characterization of the linear controllers

preserving this property for the small signal is provided. Section 2.3.

• The simplifying modeling assumptions mentioned above are abandoned in

Chapter 4, to treat generic small signal models of power systems. A first

100
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contribution of this chapter is a precise definition of the performance of

voltage regulation and damping injection that have direct links with the

phase constraint mentioned above and also with some classical concepts.

It is shown that a certain balance, precisely established, between damp-

ing, voltage regulation and voltage sensitivity on a suitable frequency

band constitutes a sufficient condition for the robust stability of the elec-

tromechanical modes. Definitions 2-4 and Theorem 1.

The methodology has been quite eclectic, since the analysis includes so di-

verse tools as differential-algebraic equations, dissipativity, Lyapunov stability

analysis, IQCs, LMI optimization and quadratic constraints on a finite fre-

quency band.

Seen from a certain distance, it can be said that the analysis tools followed

a way inverse to the assumptions taken on the model. Global statements valid

for nonlinear models in the whole state space are only possible for a restricted

class of systems that–it worths to emphasize it–was a bit extended in this thesis.

The consideration of small signal models made possible to quantify the modest

effect of some parameters that nevertheless obstruct the establishment of the

dissipativity for non linear models. The further inclusion of realistic features of

power systems into the model restricted us first to the consideration of linear

models, and finally to the study of certain properties in a given frequency band.

The work reported in this thesis opens some opportunities for future re-

search:

• The results in Chapter 4 can be better illustrated with a bigger example,

closer to the common practices of power system community.

• The new terms, associated to detailed models of synchronous machines

and SVCs, that are now admitted by the classical energy function can

be tested on a benchmark to improve the accuracy of the existing direct

methods to compute critical clearing times.

• The relation between the dissipativity of AC-modulated electrical net-

works, the classical passivity of electrical circuits and the role of the pha-

sorial models perhaps deserves more attention.
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Appendix A

A brief introduction to

dissipative systems

A deep treatment of the classical concepts of dissipativity, passivity and their

links with stability and performance of feedback systems is beyond the scope

of this thesis. This appendix is intended to offer a brief presentation including

the Willems’ definition of dissipativity, a definition of passivity and some links

between these concepts and Lyapunov stability.

Reference (Willems, 1972) presents a general theory of dissipative dynamic

systems, oriented to the state space description of these systems. The concept of

dissipativity generalizes the idea of passivity as the storage functions generalizes

the concept of energy stored. Although these concepts are classical, e.g., in

thermodynamics and circuit theory, different formulations co-exist that are not

equivalent. The interested reader can find in reference (Wyatt et al., 1981)

several alternative definitions of passivity along with some examples showing

the respective flaws.

We will follow the lines of reference (Willems, 1972) to define dissipativity,

but we will purposely restrict the class of dynamical systems under study to

those given by the differential formulation

Σ(u, v) :







ẋ = f(x, u)

v = r(x, u)
(A.1)

where x ∈ R
n is the state and (u, v) ∈ R

p × R
p are the port variables. The

function r : Rn × R
p → R

p is the read-out function. f : Rn × R
p → R

n and

r are functions smooth enough to ensure the existence and uniqueness of the

solutions on a set D ⊂ R
n × R

p.

103



Definition 5. Consider the dynamical system Σ (A.1). Let w : Rp × R
p → R

be locally integrable along trajectories of Σ, i.e.

∫ t2

t1

w(u(t), v(t))dt <∞, ∀ t1, t2 ∈ R.

We say that Σ is dissipative with respect to the supply rate w(u, v) if and only
if there exists a non-negative differentiable function S : Rn → R, called storage
function, such that all solution (x(t), u(t)) ∈ D satisfies

S(x(t2))− S(x(t1)) ≤

∫ t2

t1

w(u(t), v(t))dt ∀t2 ≥ t1. (A.2)

We also define the dissipation function d : Rn ×R
p → R

∫ t2

t1

d(x(t), u(t))dt=S(x(t2))− S(x(t1))−

∫ t2

t1

w(u(t), v(t))dt ∀t2 ≥ t1.

The system is lossless if the dissipation inequality (A.2) holds with identity,
the same to say d ≡ 0.

Finally, if the storage function is not bounded from below, we say that Σ

is cyclo-dissipative with respect to the supply rate w. See references (Willems,

1972; Hill and Moylan, 1980) for a detailed discussion about the consequences of

the non-negativeness of the storage functions and the dissipativity along closed

trajectories.

The definition above is very general. An engineering standpoint requires the

establishment of some dynamic properties as the existence of equilibrium points,

the boundedness of trajectories, among others. So, additional requirements

either on the storage function S or the supply rate function w are needed.

Reference (Hill and Moylan, 1980), in an input-output setting for the system

description, focuses its attention on quadratic supply rate function. This class

of functions are rich enough to capture passivity and bounds on the L2 gain.

To highlight the links between dissipativity and the better known concept

of passivity we will reproduce the definition in (Khalil, 1996) due, among other

reasons, to its formulation in the state space. So, suppose that

Assumption 14. The system Σ, equation (A.1) satisfies

{

f(0, 0) = 0
h(0, 0) = 0.

This assumption implies that the origin is an equilibrium point when the

system is not subject to external inputs.
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Definition 6. The system Σ satisfying Assumption 14 is said to be passive if
there exists a continuously differerentiable positive semidefinite function V (x)
(called the storage function) such that

d

dt
V (x) ≤ u⊤v − (ǫu⊤u+ δv⊤v + ρΨ(x)) ∀(x, u) ∈ R

n × R
p (A.3)

where ǫ, δ and ρ are nonnegative constants, and Ψ(x) is a positive semidefinite
function such that

Ψ(x(t)) ≡ 0 ⇒ x(t) ≡ 0

for all the solutions (x(t), u(t)) of Σ. The system is said to be

• lossless if (A.3) is satisfied with equality and ǫ = δ = ρ = 0:

d

dt
V (x) = u⊤v.

• input strictly passive if ǫ > 0.

• output strictly passive if δ > 0.

• state strictly passive if ρ > 0.

The definition of these several types of of passivity opens very direct links

with Lyapunov stability when some additional conditions hold, see Lemma 10.6

in (Khalil, 1996):

Lemma 9. If the system Σ satisfying Assumption 14

is passive with a definite positive storage function V (x), then the origin of
ẋ = f(x, 0) is stable;

is state strictly passive with a definite positive storage function V (x), then the
origin of ẋ = f(x, 0) is asymptotically stable.

The interested reader is referred to the above-mentioned references and to

(Van der Schaft, 2000) for a deep discussion of these topics in a general setting.
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Appendix B

Some demonstrations of

Chapters 1 and 3

B.1 Demonstrations of Chapter 1

We reproduce the Fact 3 of Section 1.3.2, omitting the indices associated to the

specific bus to facilitate the reading. Later we proceed to demonstrate it.

Fact 3 The synchronous machine model (1.30) defines an operator ΣM6 :

(IM ,V; efd, ifd) described by the implicit PCH system

ΣM6 : (IM ,V; efd, ifd)







Ẋ = (K −R)∇XS
M6(X,V) +Bfdefd

0 = −∇VS
M6(X,V) + JIM

(B.1)

with storage function SM6 : R6 ×R2 → R:

SM6(X,V) :=
1

2
Ω0h(ωr − 1)2 +

1

2
Φ⊤L−1Φ− Tmδ − I⋆fdΦfd. (B.2)

with the matrices K,R defined in (1.33),(1.34).

Proof First, notice that the stator flux Φs is not a state variable, but a

function on δ and V. In effect, from equations (1.28) and (1.22), we have

Φs = J−1Es = −JEs = −J [JUδV] = UδV. (B.3)

As a consequence, the flux vector Φ, see equation (1.26), is a function of the

state vector X and the link variables V. With the help of the auxiliary matrices

Ts =





I2

04×2



 , Tr =





02×4

I4



 ,

we write

Φ =









Φs

Φfd

Φr









= TsΦs + Tr





Φfd

Φr



 , −Is = T⊤
s I. (B.4)
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By invoking equations (B.3) and (B.4), we can compute

∂Φ

∂V
=

∂Φ

∂Φs

∂Φs
∂V

= TsUδ, (B.5)

and, with the help of property (1.23):

∂Φ

∂δ
=

∂Φ

∂Φs

∂Φs
∂δ

= Ts
dUδ
dδ

V = Ts[−JUδ]V = −TsEs. (B.6)

Define the function SM0 : R6 ×R2 → R:

SM0 (X,V) :=
1

2
Ω0h(ωr − 1)2 +

1

2
Φ⊤L−1Φ− Tmδ. (B.7)

From definition (B.7) and equation (1.26), we get

∂SM0
∂Φ

= (L−1Φ)⊤ = I⊤, (B.8)

and, from (B.6) and (1.29):

∂SM0
∂Φ

∂Φ

∂δ
= I⊤[−TsEs] = I⊤s Es = −PM . (B.9)

The partial derivative
∂SM

0

∂V can be computed with the help of equations

(B.8), (B.5), (B.4) and (1.24):

∂SM0
∂V

=
∂SM0
∂Φ

∂Φ

∂V
= I⊤[TsT (δ)] = −I⊤s T (δ) = −[T (δ)⊤Is]

⊤.

Equation (1.22) allows us to conclude

∂SM0
∂V

= [T (δ)⊤JT (δ)IM ]⊤ = [JIM ]⊤.

Definition (B.7) and equation (B.9) imply:

∂SM0
∂X

=









−Tm + ∂S
∂Φ

∂Φ
∂δ

hΩ0(ωr − 1)

T⊤
r L

−1Φ









⊤

=









−Tm − PM

hΩ0(ωr − 1)

T⊤
r I









⊤

. (B.10)

Thus, from the definition (B.2) and equation (B.10), we get the gradients

of function SM :

∇XS
M (X,V)=









−Tm − PM

hΩ0(ωr − 1)

T⊤
r I









−BfdI
⋆
fd; ∇VS

M (X,V)= JIM . (B.11)

with the matrix Bfd defined as

Bfd =
[

0 0 1 0 0 0
]⊤
.
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B.2 Demonstrations of Chapter 3

We will demonstrate here both lemma 2 and Proposition 7 of Section 3.2. As

the proof of Proposition 7 is based on the IQC Theorem in (Megretski and

Rantzer, 1997), it is worth to briefly repeat this Theorem here, after mention

some basic definition.

So, we will said that two signals v,w ∈ L2 satisfy the IQC defined by Π ∈ L∞

if
∫ +∞

−∞





v̂(jω)

ŵ(jω)





∗

Π(ω)





v̂(jω)

ŵ(jω)



 dω ≥ 0. (B.12)

The definition is extended for operators L2
e → L2

e in the following way: A

bounded operator ∆ is said to satisfy the IQC defined by Π if (B.12) holds for

all w = ∆v, ∀v ∈ L2.

Consider two operators G and ∆. The standard feedback interconnection is

given by






v = Gw + f

w = ∆v + e
. (B.13)

The closed loop stability is defined in (Megretski and Rantzer, 1997) in the L2

sense, see reference (Vidyasagar, 1993) for a deep discussion.

Next, we reproduced the Theorem 1 in (Megretski and Rantzer, 1997):

IQC Theorem Let G(s) ∈ RL∞, and let ∆ be a bounded causal operator.

Assume that:

1. for every τ ∈ [0, 1], the interconnection of G and τ∆ is well-possed;

2. for every τ ∈ [0, 1] the IQC defined by Π is satisfied by τ∆;

3. there exists ǫ > 0 such that





G(jω)

I





∗

Π(ω)





G(jω)

I



 ≤ −ǫI, ∀ω ∈ R.

Then, the feedback interconnection of G and ∆ is stable.

As it can be seen, the object of study of (Megretski and Rantzer, 1997) is

the interconnection of a linear time invariant operator G and a generic oper-

ator ∆. When only linear time-invariant systems are considered, the Integral

Quadratic Constraint (B.12) is equivalent to a quadratic constraint to be met
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for all frequency. In fact, if ∆ is a time invariant linear system ∆ ∈ RH∞, we

have that all signal w defined by

ŵ := ∆v̂, v ∈ L2

meets w ∈ L2. If ∆ ∈ Sl(Π), we have





Im

∆(jω)





∗

Π(ω)





Im

∆(jω)



 ≥ 0;∀ω ∈ R. (B.14)

If we right and left multiply this inequality respectively by v̂(jω) and v̂(jω)∗

we have




v̂(jω)

ŵ(jω)





∗

Π(ω)





v̂(jω)

ŵ(jω)



 ≥ 0;∀ω ∈ R, (B.15)

where we introduced the definition of signal w. Since v,w ∈ L2 and Π is

bounded, we can integrate on jR to obtain

∫ +∞

−∞





v̂(jω)

ŵ(jω)





∗

Π(ω)





v̂(jω)

ŵ(jω)



 dω ≥ 0, (B.16)

i.e. the block ∆ satisfies the IQC defined by multiplier Π, recall definition

(B.12). The converse also can be shown to be true. Hence

∆ ∈ Sl(Π) ⇐⇒ ∆ ∈ RH∞ satisfies the IQC defined by Π. (B.17)

Next we will demonstrate the Lemma 2:

Lemma 2 If the multiplier Π ∈ L2m×2m
∞ satisfies





0

Im





∗

Π(ω)





0

Im



 ≤ 0 ∀ω ∈ R, (B.18)

then the set Sl(Π) is convex.

Proof: If we recall the partition (3.15) for Π, we can write the quadratic

constraint in definition (3.16) and assumption B.18 respectively as

σl(X(jω),Π(ω)) = Q(ω)+R(ω)X(jω)+X(jω)∗R(ω)∗+X(jω)∗V(ω)X(jω) ≥ 0 ∀ω ∈ R,

and

V(ω) ≤ 0 ∀ω ∈ R.
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Figure B.1: Feedback interconnection of systems Z1,Y2

Consider two maps X1,X2 ∈ Sl(Π). So, both are stable and bounded on jR

and satisfy1

Q+RX1 +X∗
1R

∗ +X∗
1VX1 ≥ 0 ∀ω ∈ R

Q+RX2 +X∗
2R

∗ +X∗
2VX2 ≥ 0 ∀ω ∈ R

Multiply the first inequality by µ ∈ [0, 1], the second one by (1− µ) and add:

Q+R[µX1+(1−µ)X2]+[µX1+(1−µ)X2]
∗R∗+µX∗

1VX1+(1−µ)X∗
2VX2 ≥ 0 ∀ω ∈ R

(B.19)

Notice that

−µ(1− µ)(X1 +X2)
∗V(X1 +X2) ≥ 0, (B.20)

because V ≤ 0 and µ ∈ [0, 1]. Introduce the convex combination

Xµ := µX1 + (1− µ)X2.

Xµ ∈ RH∞ since both X1,X2 ∈ RH∞. Add inequalities (B.19) and (B.20) to

obtain

Q+RXµ +X∗
µR

∗ +X∗
µVXµ ≥ 0 ∀ω ∈ R. (B.21)

Thus Xµ ∈ Sl(Π) ∀µ ∈ [0, 1] and this set is convex. ���

Next we reproduce and demonstrate the Proposition 7 in Section 3.2:

Proposition 7 Let Z1(s) ∈ RLm×m
∞ ,Y2(s) ∈ RHm×m

∞ such that the opera-

tor Z1 ⋆Y2 is internally stable. Assume the existence of a Hermitian multiplier

Π(ω) ∈ L2m×2m
∞ and a scalar ǫ > 0 such that the following conditions are met

∀ω ∈ R:

i. σl(Y2(jω),Π(ω)) ≥ 0, (B.22)

1As usual, we omit the dependence on ω.
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ii. σu(−Z1(jω),Π(ω)) ≤ −ǫI, (B.23)

iii.





0

Im





∗

Π(ω)





0

Im



 ≤ 0. (B.24)

Then, the feedback interconnection Z1 ⋆ Y2 is internally stable for all operator

Y2 ∈ Sl(Π) such that the pair Z1,Y2 satisfy Assumption 9.

Proof: Consider an arbitrary operator Y2 in the conditions stated in the

Proposition. Thus Y2 ∈ Sl(Π) and, by hypothesis i), also Y2 ∈ Sl(Π). Define

∆ := Y2 −Y2.

∆ ∈ RH∞ because both terms are in RH∞. Recall partition (3.15) for Π and

write

σl(Y2,Π) = σl(∆ +Y2,Π) =

=





Im

∆+Y2





∗

Π





Im

∆+Y2



 =

= Q+R(Y2 +∆) + (Y∗
2 +∆∗)R∗ + (Y∗

2 +∆∗)V(Y2 +∆) =

= σl(Y2,Π) +R∆+∆∗R∗ +∆∗VY2 +Y∗
2V∆+∆∗V∆.

Thus

σl(Y2,Π) =





Im

∆





∗



σl(Y2,Π) R+Y∗
2V

R∗ +VY2 V









Im

∆



 . (B.25)

Define

Π∆ :=





σl(Y2,Π) R+Y∗
2V

R∗ +VY2 V



 , (B.26)

and notice Π∆ ∈ L∞. Since Y2 ∈ Sl(Π), equation (B.25) implies




Im

∆





∗

Π∆(ω)





Im

∆



 ≥ 0;∀ω ∈ R. (B.27)

Since ∆ ∈ RH∞, the equivalence (B.17) implies that the block ∆ satisfies the

IQC defined by multiplier Π∆. By definition, Π∆ satisfies




Im

0





∗

Π∆(ω)





Im

0



 = σl(Y2(ω),Π(ω)) ≥ 0 ∀ω ∈ R,





0

Im





∗

Π∆(ω)





0

Im



 = V(ω) ≤ 0 ∀ω ∈ R,

(B.28)
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because of, respectively, hypotheses i) and iii). Inequalities (B.28) imply, re-

spectively that 0m×m satisfies the IQC defined by Π∆(ω) and that the set

Sl(Π∆) is convex. So, all operator µ∆, µ ∈ [0, 1] satisfies the IQC defined by

Π∆(ω).

Notice that the operator Z1 ⋆ Y2 can be seen as the interconnection of a

nominal stable system G := −Z1[I + Y2Z1]
−1 ∈ RH∞ with the stable block

∆, see Figure B.2. Let us compute

[I +Y2Z1]
∗σu(G,Π∆)[I +Y2Z1] =

=





−Z1

(I +Y2Z1)





∗

Π∆





Z1

(I +Y2Z1)



 .

A routine algebraic manipulation involving definition (B.26) and latter identity

allows us to conclude

[I +Y2Z1]
∗σu(G,Π∆)[I +Y2Z1] = σu(−Z1,Π).

Hypothesis ii) and the existence of an upper bound of (I + Y2Z1)
−1 on the

imaginary axis imply the existence of a real ǫ1 > 0 such that

σu(G,Π∆) ≤ −ǫ1I,

i.e.




G(jω)

I





∗

Π∆(ω)





G(jω)

I



 ≤ −ǫ1I;∀ω ∈ R. (B.29)

The proof ends verifying that we are in condition to apply the IQC Theorem

to conclude the stability of the interconnection of Fig. B.2. In first instance, it

is assumed that the interconnection is well possed for all Y2. So the hypothesis

1 of the IQC Theorem is met. The block µ∆, µ ∈ [0, 1] was shown to satisfy

the IQC defined by Π∆. So, hypothesis 2 of the IQC Theorem es also met.

Inequality (B.29) is equivalent to the hypothesis 3 of the IQC Theorem. The

stability of G and ∆ allow us apply the mentioned theorem and conclude the

input-output stability of the operator Z1 ⋆Y2. The closed loop internal stability

finally follows from Assumption 9. ���
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Appendix C

On Quadratic Inequalities and

LFTs

This appendix introduces some algebraic computations involving Linear Frac-

tional Transformations (LFT), necessary to demonstrate Lemma 8 in Chapter

4. The interested reader can consult reference (Zhou et al., 1996) for a detailed

treatment of LFTs.

Consider a complex matrix N ∈ C
2m×2m with a partition

N =





N11 N12

N21 N22



 ,

and a matrix ∆ ∈ C
m×m. Assume the matrix (Im − N11∆) invertible. The

(upper) Linear Fractional Transformations Fu : C2m×2m × Cm×m → C
m×m is

defined by

Fu(N,∆) := N22 +N21∆(Im −N11∆)−1N12.

Assume N12 invertible. Factorize

Im = N−1
12 (Im −N11∆)(Im −N11∆)−1N12, (C.1)

to write

Fu(N,∆) = N22N
−1
12 (Im−N11∆)(Im−N11∆)−1N12+N21∆(Im−N11∆)−1N12 =

= [N22N
−1
12 (Im −N11∆) +N21∆](Im −N11∆)−1N12 =

=
[

N22N
−1
12 N21 −N22N

−1
12 N11

]





Im

∆



 (Im −N11∆)−1N12.

Now factorize equation (C.1) to obtain

Im =
[

N−1
12 −N−1

12 N11

]





Im

∆



 (Im −N11∆)−1N12,
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and compute





Im

Fu(N,∆)



 =





N−1
12 −N−1

12 N11

N22N
−1
12 N21 −N22N

−1
12 N11









Im

∆



 (Im−N11∆)−1N12.

Denote

Ñ :=





N−1
12 −N−1

12 N11

N22N
−1
12 N21 −N22N

−1
12 N11



 , M̃(∆) := (Im −N11∆)−1N12,

to write




Im

Fu(N,∆)



 = Ñ





Im

∆



 M̃(∆).

Recall the definition (3.14) and compute, for a given Π ∈ C
2m×2m:

σl(Fu(N,∆),Π) =





Im

Fu(N,∆)





∗

Π





Im

Fu(N,∆)



 =

= M̃(∆)∗





Im

∆





∗

Ñ∗ΠÑ





Im

∆



 M̃(∆).

Thus

σl(Fu(N,∆),Π) = M̃(∆)∗σl(∆, Ñ
∗ΠÑ))M̃ (∆). (C.2)

The previous considerations are the basis of the following lemma:

Lemma 10. Assume Π ∈ C
2m×2m and N ∈ C2m×2m such that N12 and (Im −

N11∆) are invertible. Then

Fu(N,∆) ∈ Sl(Π)

if and only if
∆ ∈ Sl(Ñ

∗ΠÑ).

Proof The hypotheses imply that the matrix M̃(∆) := (Im −N11∆)−1N12

is invertible. Thus, the equation (C.2) implies that

σl(Fu(N,∆),Π) ≥ 0

is equivalent to

σl(∆, Ñ
∗ΠÑ)) ≥ 0.

The proof concludes by recalling definition (4.30). ���

114



Appendix D

Small signal models of static

loads

Consider the classical polynomial model for the static load, (Kundur, 1994):

P d = P ⋆[p1(
V
V ⋆ )

2 + p2
V
V ⋆ + p3][1 + kpf∆f ]

Qd = Q⋆[q1(
V
V ⋆ )2 + q2

V
V ⋆ + q3][1 + kqf∆f ]

,

with ∆f the frequency deviations, in p.u., of the bus voltage and P ⋆, Q⋆, V ⋆

the standard variables at the equilibrium. The respective portions of constant

impedance, current and power satisfy

3
∑

i=1

pi = 1,

3
∑

i=1

qi = 1, pi ≥ 0, qi ≥ 0 ∀i = 1..3 (D.1)

kpf and kqf represent the power deviations proportional to frequency, see (Kundur,

1994) for a deep discussion. If we recall equations (1.5), we can write

V⊤I = P ⋆[p1(
V
V ⋆ )2 + p2

V
V ⋆ + p3][1 + kpf∆f ]

V⊤JI = Q⋆[q1(
V
V ⋆ )2 + q2

V
V ⋆ + q3][1 + kqf∆f ]

,

to obtain the small signal deviations from equilibrium

V⋆⊤i + I⋆⊤v = P ⋆[2p1
v
V ⋆ + p2

v
V ⋆ ] + P ⋆kpf

λ
2Πf0

V⋆⊤J i− I⋆⊤Jv = Q⋆[2q1
v
V ⋆ + q2

v
V ⋆ ] +Q⋆kqf

λ
2Πf0

,

that is equivalent to

V⋆⊤i = −I⋆⊤v + P ⋆[2p1
v
V ⋆ + p2

v
V ⋆ ] + P ⋆kpf

λ
2Πf0

−V⋆⊤J i = −I⋆⊤Jv−Q⋆[2q1
v
V ⋆ + q2

v
V ⋆ ]−Q⋆kqf

λ
2Πf0

.

Recall equations (4.8), (4.15) and the definition λ = ϑ̇ to get, in the transformed

domain:

v̂ = kvv̂ =
V⋆⊤

V ⋆
v̂; λ̂ = jωϑ̂ =

jω

V ⋆
kθv̂ = −

jω

V ⋆2
V⋆⊤J v̂.
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With the help of these relations, we get





V⋆⊤

−V⋆⊤J



 î = −





I⋆⊤

I⋆⊤J



 v̂ +
1

V ⋆2





P ⋆(2p1 + p2)

−Q⋆(2q1 + q2)



V⋆⊤v̂−

−
jω

2Πf0V ⋆2





P ⋆kpf

−Q⋆kqf



V⋆⊤J v̂, (D.2)

Recall the definition of Uθ, equation (4.2), and property (4.3), to get

Uθ =
1

V ⋆





V⋆⊤

−V⋆⊤J



 ; U⊤
θ =

1

V ⋆

[

V⋆ JV⋆⊤
]

, UθU
⊤
θ = U⊤

θ Uθ = I2. (D.3)

Now, equation (D.2) can be written

V ⋆Uθ î = {−





I⋆⊤

I⋆⊤J



+
1

V ⋆2





P ⋆(2p1 + p2)

−Q⋆(2q1 + q2)



V⋆⊤−
jω

2Πf0V ⋆2





P ⋆kpf

−Q⋆kqf



V⋆⊤J}v̂.

Recall properties (D.3) and definitions (1.5) to obtain, successively

YZIP =
1

V ⋆
U⊤
θ {−





I⋆⊤

I⋆⊤J



+
1

V ⋆2





P ⋆(2p1 + p2)

−Q⋆(2q1 + q2)



V⋆⊤−

−
jω

2Πf0V ⋆2





P ⋆kpf

−Q⋆kqf



V⋆⊤J}U⊤
θ Uθ =

=
1

V ⋆2
U⊤
θ {





−P ⋆ Q⋆

Q⋆ P ⋆



+





P ⋆(2p1 + p2) 0

−Q⋆(2q1 + q2) 0



+
jω

2Πf0





0 P ⋆kpf

0 −Q⋆kqf



}Uθ =

=
1

V ⋆2
U⊤
θ {





P ⋆(2p1 + p2 − 1) Q⋆

−Q⋆(2q1 + q2 − 1) P ⋆



+
jω

2Πf0





0 P ⋆kpf

0 −Q⋆kqf



}Uθ.

The use of constraints (D.1) allows us to conclude

YZIP =
1

V ⋆2
U⊤
θ {





P ⋆(p1 − p3) Q⋆

−Q⋆(q1 − q3) P ⋆



+
jω

2Πf0





0 P ⋆kpf

0 −Q⋆kqf



}Uθ. (D.4)

Uncertainty model Suppose that the nominal ZIP model is given by the

triads p⋆i , q
⋆
i , i = 1..3 and k⋆pf , k

⋆
qf . The family of ZIP models able to be obtained

by parameter variation constrained by (D.1) can be written

YZIP(∆) : Y ⋆
ZIP +

1

V ⋆2
U⊤
θ





P ⋆ 0

0 −Q⋆









∆11 ∆12

∆21 ∆22









1 0

0 jω
2Πf0



Uθ, (D.5)
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with

∆11 := p1 − p3 − (p⋆1 − p⋆3);∆12 := kpf − k⋆pf ,

∆21 := q1 − q3 − (q⋆1 − q⋆3);∆22 := kqf − k⋆qf .

Bounds on kpf , kqf and the constraints (D.1) yield the set

D∆ : {∆ ⊂ R
2×2 such that



























−1 ≤ ∆11 + p⋆1 − p⋆3 ≤ 1,

−1 ≤ ∆21 + q⋆1 − q⋆3 ≤ 1,

kpf ≤ ∆12 + k⋆pf ≤ kpf ,

kqf ≤ ∆22 + k⋆qf ≤ kqf ,

}, (D.6)

which is compact and convex.
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