
ISSN 1688-2784

Universidad de la República
Facultad de Ingenieŕıa

Energy-efficient memories for wireless
sensor networks

Tesis presentada a la Facultad de Ingenieŕıa de la
Universidad de la República por

Leonardo Steinfeld Volpe

en cumplimiento parcial de los requerimientos
para la obtención del t́ıtulo de
Doctor en Ingenieŕıa Eléctrica.

Director de Tesis
Dr. Luigi Carro Univ. Federal do Rio Grande do Sul, Brasil

Tribunal
Dr. Eduardo Gramṕın Universidad de la República
Dr. Augusto Fröhlich* Univ. Federal de Santa Catarina, Brasil
Dr. Diógenes da Silva Jr* . . . Univ. Federal de Minas Gerais, Brasil

* Revisor externo

Director Académico
Dr. Fernado Silveira Universidad de la República

Montevideo
28 de noviembre de 2013

Energy-efficient memories for wireless sensor networks, Leonardo Steinfeld Volpe

ISSN 1688-2784

Esta tesis fue preparada en LATEX usando la clase iietesis (v1.0).
Contiene un total de 130 páginas.
Compilada el Monday 16th June, 2014.
http://iie.fing.edu.uy/

http://iie.fing.edu.uy/

Acknowledgments

This thesis would not have been possible without the support of many people
around me. I apologize beforehand to those who are not explicitly mentioned
here, although I hope I had expressed my gratitude.

First of all, I would like to thank my advisor, Luigi, for his support along the
time during the thesis and sharing his valuable time. I also would like to specially
thank Fernado whose help was fundamental during these years. I am sure that
this thesis would not have been possible without his support.

I also wish to thank Patricia, who was the third fundamental cornerstone,
because she encouraged me during these long hard years, and for her effort specially
during my stays in Porto Alegre and during the last 6 months taking care of little
Salva more than usual.

I also wish to thanks my colleagues and administrative staff at IIE.
The work in this thesis is in part supported by ANII, CSIC, and CAPES .
Last but not least, I would like o thank the reviewers and members of the jury

who kindly accepted to review my work.
——

This page is intentionally left blank.

A Salvador y Patricia, mis verdaderos amores.

This page is intentionally left blank.

Resumen

Las redes de sensores inalámbricas (RSI o WSN, por sus siglas en inglés) agregan
computación y sensado al mundo f́ısico, posibilitando un rango de aplicaciones sin
precedentes en muchos campos de la vida cotidiana, como por ejemplo monitoreo
ambiental, manejo de ganado, cuidado de personas adultas mayores y medicina,
solo por mencionar algunas. Una RSI consta de nodos sensores, los cuales repre-
sentan un nuevo tipo de computadora embebida en red, caracterizada por tener
grandes restricciones de recursos. El diseño de un nodo sensor presenta muchos
desaf́ıos, ya que es necesario que sean, pequeños, confiables, de bajo costo y con
muy bajo consumo de enerǵıa, ya que se alimentan de pilas o recolectan enerǵıa
del medio. En un nodo sensor, la potencia instantánea del transceptor (radio) es
usualmente algunos órdenes de magnitud mayor que la potencia de procesamiento.
Sin embargo, la enerǵıa de comunicación es solamente dos veces mayor que la en-
erǵıa de procesamiento. Por otro lado, el escalado de la tecnoloǵıa CMOS permite
mayor performance a menores precios, posibilitando aplicaciones distribuidas más
refinadas con más procesamiento local. El aumento de la complejidad de las apli-
caciones requiere memorias de mayor tamaño, que a su vez aumenta el consumo
de potencia. Este escenario empeora ya que las corrientes de fuga son cada vez
más importantes en transistores de menor tamaño.

En el presente trabajo de tesis se caracteriza el consumo de enerǵıa de un nodo
sensor, y se investigan diferentes arquitecturas de memoria para ser integrado en las
RSI futuras, mostrando como las memorias SRAM con un estado de sleep pueden
ser convenientes en sistemas que operan con bajos ciclos de trabajo. Si además la
memoria se divide en bancos que pueden ser controlados de manera independiente,
se pueden poner los bancos inactivos en estado sleep, incluso cuando el sistema está
activo. Aunque esta es una técnica conocida, los ĺımites de ahorro de enerǵıa no
hab́ıan sido exhaustivamente determinados, ni tampoco la influencia de la poĺıtica
de gestión de enerǵıa usado. Se propone un nuevo modelo detallado del ahorro de
enerǵıa para bancos uniformes con dos poĺıticas de gestión: best-oracle y greedy.
Nuestro modelo proporciona información valiosa de los factores fundamentales
(provenientes del sistema y la carga de trabajo) que son escenciales para alcanzar
el máximo ahorro alcanzable. Gracias a nuestro modelado, en tiempo de diseño se
puede estimar el número óptimo de bancos para lograr grandes ahorros de enerǵıa.
El problema de asignación del código a los bancos fue resuelto usando programación
lineal entera. En el contexto de esta tesis, se realizaron experimentos usando
dos aplicaciones reales de redes de sensores inalámbricas (basadas en TinyOS y
ContikiOS). Los resultados mostraron una reducción de enerǵıa cercano a 80%

para un overhead de partición de 1% con una memoria de diez bancos para una
aplicación con gran carga. El ahorro depende del patrón de acceso a memoria y los
parámetros de la memoria (tales como cantidad de bancos, overhead de partición,
reducción de enerǵıa del estado sleep y el costo energético de wake-up. El ahorro de
enerǵıa decrece para ciclos de trabajo bajos. Sin embargo, igualmente se alcanzan
ahorros de enerǵıa significativos, por ejemplo, aproximadamente 50% para ciclos
de trabajo de 3% usando la memoria anterior. Finalmente, nuestros resultados
sugieren que debe ser cuidadosamente evaluado el uso de poĺıticas de gestión de
energia avanzados, ya que la poĺıtica best-oracle es solo marginalmente mejor que
la poĺıtica greedy.

vi

Abstract

Wireless sensor networks (WSNs) embed computation and sensing in the physical
world, enabling an unprecedented spectrum of applications in several fields of
daily life, such as environmental monitoring, cattle management, elderly care,
and medicine to name a few. A WSN comprises sensor nodes, which represents
a new class of networked embedded computer characterized by severe resource
constraints. The design of a sensor node presents many challenges, as they are
expected to be small, reliable, low cost, and low power, since they are powered from
batteries or harvest energy from the surrounding environment. In a sensor node,
the instantaneous power of the transceiver is usually several orders of magnitude
higher than processing power. Nevertheless, if average power is considered in actual
applications, the communication energy is only about two times higher than the
processing energy. The scaling of CMOS technology provides higher performance
at lower prices, enabling more refined distributed applications with augmented
local processing. The increased complexity of applications demands for enlarged
memory size, which in turn increases the power drain. This scenario becomes even
worse as leakage power is becoming more and more important in small feature
transistor sizes.

In this work the energy consumption of a sensor node is characterized, and
different memory architectures were investigated to be integrated in future wireless
sensor networks, showing that SRAM memories with sleep state may benefit from
low duty-cycle operating system. SRAM memory with power-manageable banks
puts idle banks in sleep state to further reduce the leakage power, even when the
system is active. Although it is a well known technique, the energy savings limits
were not exhaustively stated, nor the influence of the power management strategy
adopted. We proposed a novel and detailed model of the energy saving for uniform
banks with two power management schemes: a best-oracle policy and a simple
greedy policy. Our model gives valuable insight into key factors (coming from the
system and the workload) that are critical for reaching the maximum achievable
energy saving. Thanks to our modeling, at design time a near optimum number
of banks can be estimated to reach more aggressive energy savings. The memory
content allocation problem was solved by an integer linear program formulation.
In the framework of this thesis, experiments were carried out for two real wireless
sensor network application (based on TinyOS and ContikiOS). Results showed
energy reduction close to 80% for a partition overhead of 1% with a memory of
ten banks for an application under high workload. Energy saving depends on the

access patterns to memory and memory parameters (such as number of banks,
partitioning overhead, energy reduction of the sleep state and the wake-up energy
cost). The energy saving drops for low duty-cycles. However, a very significant
reduction of energy can be achieved, for example, roughly 50% for a 3% duty-cycle
operation using the above memory.

Finally, our findings suggest that adopting an advanced power management
must be carefully evaluated, since the best-oracle is only marginally better than a
greedy policy.

viii

Contents

Acknowledgments i

Acknowledgments ii

Resumen v

Abstract vii

1 Introduction 1

1.1 Motivation . 1

1.2 Goals and contributions . 4

1.3 Thesis Organization . 5

2 Sensor node platform 7

2.1 Sensor node hardware . 8

2.1.1 Evolution and future trends of hardware platforms 8

2.1.2 Ultra low-power processors 10

2.2 Sensor node software . 13

2.2.1 TinyOS . 13

2.2.2 ContikiOS . 14

2.2.3 Higher level abstractions: Java virtual machines 14

2.3 Low-power techniques and methodologies 16

2.3.1 Fundamentals of low-power design 16

2.3.2 Dynamic power management 17

2.4 Characterization of sensor platforms 19

2.4.1 Power model . 19

2.4.2 Energy breakdown . 22

2.5 Summary and conclusions . 28

3 Memories for sensor nodes 31

3.1 Memory fundamentals . 31

3.1.1 Memory internal architecture 33

3.1.2 Memories for embedded systems and sensor nodes 34

3.1.3 Memory organizations . 35

3.2 Flash and SRAM memories . 37

3.2.1 Flash memory . 37

Contents

3.2.2 SRAM memory . 41

3.2.3 Energy comparison: Flash vs. SRAM 43

3.3 SRAM with sleep state . 45

3.4 SRAM with power-manageable banks 48

3.4.1 Memory energy model . 48

3.5 Summary and conclusions . 55

4 Banked memory for sensor nodes 57

4.1 Proposed architecture and methodology 58

4.1.1 Memory power management 59

4.2 Related work . 60

4.3 Energy saving expressions . 61

4.3.1 Energy saving for the greedy policy 62

4.3.2 Energy saving for the best-oracle policy 62

4.3.3 Effective energy saving . 63

4.4 Energy saving in a duty-cycled memory 65

4.5 Summary and conclusions . 67

5 Experimentation and results 71

5.1 Evaluation methodology . 71

5.1.1 Benchmarks and applications 72

5.1.2 Optimization problem: memory contents allocation to banks 73

5.1.3 Simulation and evaluation tools 75

5.2 Results and Discussion . 75

5.2.1 Power management policy 75

5.2.2 Partition overhead effect on energy savings 78

5.2.3 Duty-cycle operation . 78

5.3 Summary and conclusions . 80

6 Conclusions 83

6.1 Summary of the thesis . 83

6.2 Main contributions . 85

6.3 Future works . 86

A Memory simulations 89

A.1 CACTI estimations . 89

A.2 NVSim estimations . 90

B Evaluation tools 93

B.1 Integer linear program: AMPL model 93

B.2 Simulation tools . 95

B.2.1 Energest modifications . 95

Referencias 99

Índice de tablas 110

x

Contents

Índice de figuras 112

xi

This page is intentionally left blank.

Chapter 1

Introduction

This chapter introduces the context of the work presented in this thesis. The first
section presents a description of the wireless sensor networks and the motivation
of this work, to finally highlight some open challenges that need to be addressed
to enable an ubiquitous adoption of these networks. The next section discusses
the specific goals of our work and continues enumerating the main contributions
of the present thesis. Finally, we conclude the chapter providing a road-map for
the rest of this document.

1.1 Motivation
Wireless sensor networks (WSNs) embed computation and sensing in the physical
world, enabling an unprecedented spectrum of applications in several fields of daily
life. A WSN comprises sensor nodes, which sense the environment, process the ac-
quired data and communicate the information to other sensor nodes. In traditional
sense-and-send applications the sensor nodes route the raw data to a sink node to
make it available to users, while in distributed computing applications the data
is processed in the network by neighbor nodes, exchanging messages to directly
output meaningful information or take actions. The sensor node represents a new
class of networked embedded computer that is characterized by severe resource
constraints: computation power, available memory for program and data storage,
and especially energy.

Since the nodes are usually placed in inaccessible locations and in large number,
they are powered from batteries or harvest energy from the environment [38]. In
both cases low-power operation is mandatory, in the former case to avoid frequent
batteries or nodes replacement, and in latter case to suit the scarce available energy
or to minimize the harvesting system cost and size (e.g. solar panel). A canonical
sensor node consists of the following blocks: a processing component (usually a
microcontroller) with wireless communication capabilities (RF transceiver), sen-
sors/actuators and a power supply subsystem [95]. The communication and com-
putation subsystems are the main sources of energy dissipation in a WSN node.
The RF transceiver is usually the most power-consuming component of a sensor

Chapter 1. Introduction

node, and since the WSN emergence the communication energy cost has dominated
the overall budget. Consequently, a significant research effort has been made since
then for reducing this communication energy cost [19] [5]. The Medium Access
Control (MAC) layer design is crucial, since it directly controls the transceiver de-
termining the power profile drain. The use of advanced MAC protocols has helped
in improving the energy efficiency for communication [20], becoming comparable
to the processing energy [51].

Nevertheless, in more recent intensive processing applications the energy spent
in computing could be much larger than the energy spent in communication. Nowa-
days, it is generally accepted that efforts toward energy reduction should target
communication and processing [87]. At the same time, reducing the computa-
tional energy enables further optimizations concerning communication, since usu-
ally actual techniques are restricted by the low computational capabilities and low
memory footprints.

Despite computation energy concerns, expectations for higher performance and
lower prices continue to increase with each new CMOS technology generation. In
this regard, as technology scales, novel applications can be devised, where previ-
ously their cost in terms of price were unacceptable, since the capacity of sensor
nodes integrated processors has increased. More refined applications performing
distributing computing, also known as collaborative information processing, will
become key elements of larger pervasive infrastructures such as Internet of Things
(IoT) [109] or Cyber-Physical Systems (CPS) [80]. However, this increasing com-
plexity of applications using wireless sensor networks soon becomes a barrier to
the adoption of these networks. The currently available wireless sensor network
programming models do not scale well from simple data collection models to collab-
orative information processing ones. On a different scenario, complex distributed
applications have been developed for powerful platforms (such laptops, smart-
phones, etc.), but they are not appropriate, since they require intensive compu-
tation that current WSN platforms can not afford. If they were equipped with
a more powerful microcontroller, they would result in a too power-hungry plat-
form, sacrificing energy [29]. New programming models are essential to develop
complex distributed applications, and at the same time obtain a decent level of
energy-efficiency.

Novel virtual-machines (VMs) and middlewares that are designed with WSN
in mind are efforts in the direction of complex networks. There are several benefits
in using virtual machines in WSN [72]. First, VMs allow applications to be devel-
oped uniformly across WSN platforms. Platform-independent applications can be
written using VM abstractions whose implementations are scaled to meet differ-
ent resource constraints. VMs provide a clean separation of system software and
application software, which reduces the cost of reprogramming after deployment.
Finally, VMs mask the variations among the WSN platforms through a common
execution framework [68]. Middlewares even go further, adding a higher-level of
abstraction to allow a smaller programming effort of distributed systems, such
as the WSNs, and to achieve interoperability [80]. Middleware is usually defined
as the software that lies between the operating system and applications running

2

1.1. Motivation

on each node of the system providing support for the development, maintenance,
deployment and execution of WSN application [24]. A middleware provides stan-
dard interfaces, abstractions and a set of services to hide the working internals
that simplify the application development, while hiding the heterogeneity of the
system, which then enables interoperability. Nevertheless, higher abstractions add
new levels of indirection increasing the execution overhead, which in turns in-
creases the energy consumption. Summarizing, one of the actual major issues of
WSN research is providing high-level application programming abstractions and
reducing the processing energy consumption to leverage creative and more complex
applications of the future.

Regarding processing, a programmable processor, in contrast to hardwired
logic, allows a single hardware resource to implement different applications by
running different software stored in memory. The cost of this unquestionable
flexibility is that a processor spends significant more energy on instruction and
data supply than performing arithmetic [28]. Microcontrollers embed, in addition
to a processor, programmable I/O peripherals (such as timers/counters, serial
ports, and so on) and memory. They usually have two kinds of memory: a read-
write memory (e.g. SRAM) and non-volatile memory (e.g. Flash). The former
memory is needed for storing temporal data (variables), and the later for storing
the program and constants, retaining the content even though it is not powered.
The code can be executed directly from non-volatile memory, known as execute
in place (XIP) or first copied from Flash to RAM (shadow memory) [61]. As
executing code from SRAM consumes considerable less energy than executing from
Flash (this matter is addressed later in Chapter 3), to provide enough SRAM space
for placing the code should be considered in WSN applications in order to reduce
the node energy consumption. Since SRAM occupies more area per bit than Flash
memory, there is a trade-off between area cost and energy reduction. The best
option for the memory architecture should be carefully considered, choosing from
full shadow the code from Flash into SRAM to schemes borrowing ideas from
scratch-pad or even cache memories themselves [9].

Moreover, the aforementioned increased complexity of applications (reflected
in software complexity) demands for increasing memory size. In some applications
the code size is doubling every ten months [108]. WSN applications follows this
general trend, but at a lower rate hampered by hardware limitations, as can be
observed in the evolution of applications memory footprints (as we shall see in the
next chapter). Larger memory size requires more power, as it has been found that
the memory system is responsible for a large portion of the total energy budget
in SoCs [25]. A downside of the scaling of CMOS technology is the increase of
leakage current to the point that it may represent up to 50% of the total power
consumption of a circuit [59,63].

This problem is getting worst as more transistors are put in large circuits as
memory arrays. Therefore, the reduction of leakage power in the memory system
is definitely a primary target in future embedded systems, particularly in deeply
pervasive systems such as WSN.

Partitioning a SRAM memory into multiple banks that can be independently

3

Chapter 1. Introduction

accessed reduces the dynamic power consumption, and since only one bank is
active per access, the remaining idle banks can be put into a low-leakage sleep
state to also reduce the static power [41]. However, the power and area overhead
due to the extra wiring and duplication of address and control logic prevents an
arbitrary fine partitioning into a large number of small banks. Therefore, the final
number of banks should be carefully chosen at design time, taking into account
this partitioning overhead. The memory organization may be limited to equally-
sized banks, or it can allow any bank size [73]. Moreover, the strategy for the bank
states management may range from a greedy policy (as soon as a bank memory is
not being accessed it is put into low leakage state) to the use of more sophisticated
prediction algorithms [18].

1.2 Goals and contributions
Some of the most important challenges that need to be addressed for future wireless
sensor networks are:

• high level programming abstractions for the ease of development and to
enable more complex applications;

• energy-efficient platforms compatible with application lifetime requirements

Considering the challenges above and all motivations discussed before, the main
goal of this thesis is memory energy reduction aiming to extending WSN node
lifetime, and at the same time enabling higher level of programming abstraction
for application development and consequently contribute to a widespread adoption
of WSN technology.

This thesis makes three main contributions: Firstly, it contributes with a char-
acterization and analysis of the run-time execution of typical current application
developed based on the most popular WSN operating systems (TinyOS and Con-
tikiOS). We show that memory energy consumption may hamper the spreading of
WSN application that involves complex processing.

A second contribution of this work is, after a review of available memories for
using in WSN processors to hold program code, the benefits of using a SRAM
memory with a low-leakage sleep state are stated.

A third and the most important contribution of this work is the proposal
of using banked memories with power management to cope with the increasing
leakage current, result from the scaling of CMOS technology. This could help to
manage the increasing complexity of applications and, at the same time, to extend
the life-time of the WSN nodes. Analytical expressions for the energy savings are
derived from a memory model to determine the impact of design decision as power
management strategy, memory architecture and technology parameters, and the
application run-time behavior.

4

1.3. Thesis Organization

1.3 Thesis Organization
This thesis is divided into seven chapters, whose contents are summarized in the
following paragraphs:

• Chapter 1 has described the wireless sensor networks and the motivation
for this thesis, enumerating the main challenges and briefly describing the
contribution of this work.

• Chapter 2 reviews actual platforms (software and hardware), and low-power
techniques and methodologies, particularly those which are applied for re-
ducing the energy consumption in sensor nodes. Next, the energy con-
sumption is characterized, showing its dependence on the hardware platform
power parameters and software architecture.

• Chapter 3 describes current memories available for embedded system, re-
views its main characteristics highlighting which are suitable for WSN em-
bedded processors with special emphasis on energy efficiency. The energy
consumption of Flash and SRAM are compared, focusing on the pros and
cons of each memory technology. The SRAM memory with sleep state is
introduced, and potential energy savings delimited. Finally, a memory with
power-manageable banks is modeled and the main characteristics described.

• Chapter 4 investigates in depth the memory architecture introduced last
in the previous chapter. Expressions for the energy savings are derived,
gaining valuable insight into key factors that are fundamental for achieving
huge savings. Two power management policies are modeled and discussed.

• Chapter 5 presents experiments carried out to asses energy savings. The
energy savings limits predicted by our model are compared to savings results
obtained by simulation for different configurations.

• Chapter 6 summarizes the work developed in the framework of this thesis,
highlights the main contributions and discusses future works.

5

This page is intentionally left blank.

Chapter 2

Sensor node platform

A key element of wireless sensor networks is the sensor node. A basic sensor node
is composed of the following building blocks: a processing element with a radio
(RF transceiver), sensors/actuators and a power supply subsystem. Node power
consumption results from the sum of the power contributions of its electronic com-
ponents, which in turn depend on the component state and the actual operation
performed. The power profile drain, i.e. the instantaneous power as a function
of the time, determines the effective node energy consumption. The hardware to-
gether with software and external factors, as the environment and the interaction
with the network, dictates the power profile drain of each node. The hardware
defines the power level consumption. The network design and the communica-
tion protocols influence the behavior of the nodes. The message exchange within
or between the nodes determine the state and actions of the node, particularly
the radio operation mode, i.e. receive, transmit or sleep mode, and the micro-
controller opeartion mode. Finally, the software implements the final application,
usually on top of an operating system or a higher lever abstraction. The operating
system provides services to ease application development, including a communica-
tion stack that implements network protocols. Also, provides abstractions across
platforms to hide hardware resources differences and thus improve portability.

This chapter introduces the main design challenges of sensor node platforms.
The first section briefly presents the evolution of hardware sensor nodes and future
trends. It also surveys some efforts on designing ultra low-power processors, some
targeting wireless sensor networks. The second section discuss the software sensor
node, describing in detail the most widespread software platforms, TinyOS and
ContikiOS, and emerging Java virtual machines. The third section introduces
the fundamentals of low-power techniques and the main concepts for dynamic
power management. The next section presents an energy characterization of a
popular sensor node, showing that increasing the complexity of applications must
be accompanied with a reduction of processing power. Finally, the conclusion
summarizes the chapter, including a brief discussion of the main aspects.

Chapter 2. Sensor node platform

2.1 Sensor node hardware

2.1.1 Evolution and future trends of hardware platforms
The wireless sensor networks was envisaged in the early nineties as a pervasive
technology where sensor nodes are as small as fine particles of dust. This idea
was materialized in the Smart Dust project by Kristofer S. J. Pister et al. at
University of California, Berkeley, aiming at integrating a complete sensing/com-
munication platform inside a cubic millimeter [62]. Later, in collaboration with
other researches, including David Culler and his group from Berkeley too, they
developed also hardware and software platforms following the open-source model.
These hardware platforms, in the order of a few cubic centimeters, were built us-
ing commercial off-the-shelf (COTS) chips, named macro motes or simply motes.
These sensor nodes together with its sequels (available as commercial products
too), commonly named as Berkeley motes, are still one of the most popular in
the academia, as the mica [27] and telos [90]. The software platform developed is
composed by the operating system TinyOS [55] and the nesC language [44] (nesC,
for network embedded systems C).

Most hardware platforms that are built using COTS components use micro-
controllers of one of the two families: AVR from Atmel Corporation (8-bit pro-
cessor, e.g. Atmega128) and MSP430 from Texas Instruments (16-bit processor,
e.g. MSP430F1611). The selected radio varies according to the frequency range
usually in one of the ISM bands1, and if they are compliant or not with the IEEE
802.15.4 LR-WPANs standard (low-rate wireless personal area networks). They
have evolved from byte-oriented to packet-oriented radio, incorporating in silicon
new functionalities defined in the standard, such as data encryption or automatic
preamble generator.

Some years later after the release of the first sensor nodes, more powerful
platforms were developed, featuring ARM cores running at hundreds of MHz, for
example Sun SPOT by SUN (now Oracle). However, their high power requirements
drain the batteries in days or even hours, therefore limiting its use to a narrow set
of applications. More recently, some sensor nodes were equipped with newer low
power 32-bit microcontrollers, offering increased computation power with a power
consumption of about one order of magnitude higher than the Berkeley motes [66].

Table 2.1 compares some of the most representatives motes from the beginning
of the WSN to the present: telos, micaz, AVR-Raven, Wismote, LOTUS and
econotag. The table shows the microcontroller and radio chips used in each sensor
node (for an extensive list of surveyed platforms, please see [50]). For the sake of
clarity are only considered the main characteristics of the chips, and the current
consumption of the most important operation modes.

As can be seen from the table, there is a clear trend toward increasing the
processing power, adopting 32-bits processors running at higher frequencies. The

1There are other alternatives for the transmission medium different from the electro-
magnetic waves (radio frequency), such as optical or water (in underwater sensor net-
works).

8

2.1. Sensor node hardware

Ta
bl

e
2.

1:
Se

ns
or

no
de

s
co

m
pa

ris
on

.

u
n

it
te

lo
s

m
ic

az
A

V
R

av
en

w
is

m
o
te

L
O

T
U

S
ec

o
n

o
ta

g

M
ic

ro
co

n
tr

o
ll

er
M

S
P

4
30

F
1
61

1
A

tm
eg

a1
28

L
A

tM
eg

a1
28

4p
M

S
P

43
0
F

54
38

L
P

C
1
75

8
(N

X
P

)
M

C
13

22
4V

C
or

e
M

S
P

4
3
0

A
V

R
A

V
R

M
S

P
43

0X
A

R
M

C
o
rt

ex
-M

3
T

D
M

I
A

R
M

7
16

-b
it

s
8-

b
it

s
8-

b
it

s
16

-b
it

s
3
2-

b
it

3
2-

b
it

S
p

ee
d

(f
m
a
x
)

M
H

z
8

8
20

25
10

0
2
4

P
ro

g.
m

em
.

K
B

48
12

8
12

8
25

6
51

2
12

8
D

a
ta

m
em

.
K

B
10

4
16

16
6
4

9
6

A
ct

iv
e

cu
rr

en
t

m
A

4
5

8.
9

5
0

3.
3

S
le

ep
cu

rr
en

t
µ

A
2

15
2.

1
10

5.
1

T
ra

n
sc

ei
ve

r
C

C
2
42

0
A

T
86

R
F

23
0

C
C

25
20

A
T

86
R

F
2
31

In
te

gr
a
te

d
P

iP
R

x
cu

rr
en

t
m

A
19

.7
16

18
.5

13
.2

2
2

T
x

cu
rr

en
t

m
A

17
.4

17
25

.8
14

.4
2
9

L
in

k
b

u
d

g
et

d
B

m
9
4

10
4

10
3

10
4

10
0

S
le

ep
cu

rr
en

t
µ

A
4
26

15
00

16
0
0

4
00

-
D

ee
p

sl
ee

p
cu

rr
en

t
µ

A
2
0

0.
02

17
5

0.
0
2

5.
1

9

Chapter 2. Sensor node platform

transceiver consumption power consumption remains at the same level but pro-
viding an increase of output power (about 3 dBm in average).

In order to have a complete and accurate picture of the overall power consump-
tion of the different sensor motes, it would be necessary to precise the application
characteristics and workload, e.g., how much processing and communication is
needed and how long the radio and microcontroller remains in a sleep state. Un-
fortunately there is no neutral benchmarks available yet, to even compare ultra
low-power processors2. From the data in Table 2.1, it is apparent that the amount
of memory is increasing, and that the program memory increases at a higher rate
than data memory. This fact could be interpreted as increasing demand for mem-
ory by applications.

Because of space limitations, we have not included a significant number of
sensor nodes and modules built using COTS components (commercial or academic)
but the tendency is confirmed: increasing processing power with lower rate of
power consumption rise, as presented by Ko et al. [66].

2.1.2 Ultra low-power processors
In the last years, there has been a large amount of research dealing with plat-
form power optimization for WSN. Most proposals follow an application-driven
approach to design and implement a custom system architecture (see [88] for a
brief review and comparison of different approaches). These architectures are
more power efficient than general purpose commodity microcontrollers.

Raval et al. [97] conducted a workload analysis for a WSN application sce-
nario running TinyOS-based application software on a platform equipped with a
ATmega128L microcontroller (the same microcontroller present in a mica sensor
node). The application included a simple filter processing, where the output data
was sent to a sink node. They therefore proposed a processor platform tuned
for running a suite of applications developed using TinyOS. The tuned platform
included an application-specific programmable processor core and a hardware ac-
celerator for offloading a small, but frequently used, set of instructions. The plat-
form maintained near binary compatibility with the conventional microcontroller,
consuming 48% less energy than the baseline processor when executing the same
WSN application suite.

Hempestead et. al. [51] embraced also the accelerator-based computing para-
digm, including acceleration for the network layer (routing) and the application
layer (data filtering), but focusing on reducing the leakage current during long idle
times. The proposed architecture disable the accelerators via VDD-gating. Accord-
ing to their results the proposed architecture achieved between one to two orders
of magnitude reduction in power dissipation over commonly used microcontroller,
depending on the workload. More specifically, 100 times less power when idle, and
from 10-600 times less energy when active.

2At the time of writing of the present work, the Embedded Microprocessor Bench-
mark Consortium (EEMBC) is working on ULPBench TMBenchmark Software, with the
participation of dozens of top companies that design and manufacture microcontrollers.

10

2.1. Sensor node hardware

Figure 2.1: Custom hard-wired logic, extensible processor and general purpose processor [52].

Pasha et al. [88] architecture followed a hardware specialization with power
gating approach, but incorporated the concept of distributed hardware microtasks
in control-oriented applications. They proposed a complete system-level flow, in
which a node was built out of microtasks that are activated on an event-driven
basis. An application-specific architecture is synthesized for each microtask, op-
timized by hand. They combined this specialized architecture with power gating
to reduce both dynamic and static power. As in the Hempestead work, the focus
was on the bulk workload such as device drivers, medium access control (MAC)
protocols and routing, since the nodes normally don’t have a compute-intensive
operating system kernel (as shall be detailed in Section 2.2).

Kwong et al. [69] adopted the aboves techniques, and additionally applied
supply voltage scaling to below the device threshold in logic and SRAM circuits.
They proposed a technique to mitigate the effects of process variation, increasingly
important at low voltages in deeply scaled technologies. A 16-bit microcontroller
core was designed to operate at sub-threshold voltage down to 300 mV. Energy-
constrained systems that can afford some performance degradation may benefit
from the subthreshold processor design.

The confrontation between general purpose microcontrollers and application-
specific programmable processors can not be addressed without the economic point
of view. Although we do not deal with this issue that arises when considering the
scale dimension, it should be taken into account to get a low power sensor node,
and, at the same time, with lower cost for a wide-spread adoption of WSNs. It is
also worth mentioning that as the more flexible a processor, the more likely to be
massively chosen. Fig. 2.1 reproduce the diagram presented by Henkel et al. [52]
showing the trade-off of custom hard-wired logic, extensible processor (application
specific processor) and general purpose processor. The aforementioned works focus
on reducing the energy spent in processing, in general. Thus, it can be enlightening
seeing where the energy goes in a processor.

11

Chapter 2. Sensor node platform

Table 2.2: Processor configuration and energy consumption per operation (based on [6]).

RISC Processor
Technology TSMCCL013G (VDD 1.2V)

Clock Frequency 200 MHz
Average Power 72 mW

Instruction supply 70 pJ 42 %
Data supply 47 pJ 28 %

Arithmetic (add & multiply) 10 pJ 6 %
Clock and control logic 40 pJ 24 %

Dally et al. [28] proposed an efficient programmable architecture for compute-
intensive embedded applications, and for comparison purposes a detailed energy
breakdown of a conventional RISC (SPARC V8) processor was provided. The
results are reproduced partially in Table 2.2 (see [28] and [6] for details). The
table shows the relative energy for instruction supply, data supply, arithmetic,
and clock and control logic, representing 42% , 28%, 6% and 24% of the total
energy consumption respectively. The presented data is quite revealing since it
shows that the processor spends most of its energy on instruction and data supply,
70%. This result indicates that some research effort should focus on reducing the
energy consumption on supplying data to processors.

Moreover, Verma [110] illustrated that the relative SRAM memory consump-
tion in processors increases as processors consumption decreases by applying ad-
vanced design techniques. The processor with the lowest power consumption,
among the surveyed ones in [110], is a custom MSP430 processor with 16 KB
SRAM cache, operating at 0.3 V [70], where the embedded SRAM consumes 69%
of the total processor power. Hence, the energy consumption in ultra-low-power
processors is greatly dominated by memory accesses.

Chapter 3 analyze in detail the memory energy consumption evolution with
the technology scaling, showing that the reduction of memory energy consumption
is a major goal for future and more complex WSNs.

In summary, reducing the power taken by näıve memory organizations enables
more computationally demanding algorithms to be implemented with the extra
power resources, expanding the range of WSN applications. Moreover, the com-
munication protocols are actually restricted by the low computational capabilities
and low memory footprints of current low-power processors, hence reducing the
computational energy will enable to adopt more complex communications proto-
cols leading to further optimizations to reduce the communication energy [51].

12

2.2. Sensor node software

2.2 Sensor node software
A sensor node is basically a reactive system that responds to external stimulus:
a successful reception of a packet, a communication timeout, a time trigger to
initiate some measurement, data ready interruption that may trigger further pro-
cessing, and so on. Sensor network applications are intrinsically event-driven, so
that the software designer or programmer typically adopts event-based software
architectures or operating systems, like TinyOS [71] and ContikiOS [36]. Both
are perhaps the most popular embedded operating systems for wireless sensor net-
works in the academia and the industry. There are other interesting alternatives
developed by the research community, but they do not have such a large amount
of people involved (user and developers), nor any other clear advantages. To men-
tion a few of them: Mantis OS [15] and SOS [49], which are no longer under
active development; LiteOS [21] provides Unix-like abstractions but apparently it
is not fully operational; and RETOS [23], which includes interesting features like
variable system timer, but the source code is not provided. For a review of oper-
ating systems and network protocols please refer to [38]. Additionally, there are
other operating systems from outside the academia, some commercially offered,
e.g., FreeRTOS (open source but do not include network support) and µC/OS
(open source with many licensing options). Some microcontroller, radio and SoC
manufacturing companies provide operating systems (e.g., TI-RTOS from Texas
Instrument and MQXTMfrom Freescale) and stacks (e.g. simpliciTI and Z-Stack
from Texas Instruments, BitCloud from Atmel).

The remainder of this section briefly present TinyOS and ContikiOS. Also,
some Java virtual machines specially designed for sensor nodes are reviewed.

2.2.1 TinyOS
TinyOS3 based applications are developed using nesC [44], the companion pro-
gramming language which is an extension of the C programming language. TinyOS
embraces the component-based paradigm where different functions are encapsu-
lated within components which are connected each other using interfaces [71].
TinyOS provides components and interfaces for the very common needs, from low-
level abstractions such as timing management and I/O interface, to higher levels
such as communication protocol stacks (including medium access control and rout-
ing). The architecture relies on non-blocking functions that run to completion, and
consequently a single stack is used avoiding high-cost context-switches.

Some of these software components abstract hardware components. TinyOS
extends to all components the split-phase needed to avoid busy-wait in hardware
transactions. For this purpose commands and events are used, which are essentially
functions. Normally an operation is initiated through a command call. When a
transaction lasts too long, the operation is completed later by a event callback.
Operations initiated from a hardware interrupt (interrupt service routine, ISR),
labeled as asynchronous, must be kept short to not delay other ISRs. Larger

3www.tinyos.net

13

Chapter 2. Sensor node platform

computations must be deferred through a function post, task, to be scheduled
later outside of the ISR context. The tasks are serviced by a simple tasker in a
first-input first-output basis. As the tasks run to completion, long tasks should be
split in many shorter ones to share the processor time.

TinyOS provides timing services through timers components based on one or
several system ticks implemented using hardware timers. TinyOS also includes a
library to support threads, named TOSThreads [65].

2.2.2 ContikiOS
ContikiOS4 based applications are developed using the multithreading program-
ming model based on protothreads [37]. The programming language is standard
ANSI C. Each process has its corresponding protothread. Processes uses a special
construct that have a blocking semantic for waiting for events by verifying a condi-
tion. If the condition is false the process yields the processor. The protothreads are
implemented as an ordinary function that returns when it blocks (the condition is
false). But before returning, the function saves the location where it got blocked,
so that it can resume the execution later at that point. The protothread primitives
are ingeniously defined by macros, which expands in a switch-case construction.
The kernel schedules blocked processes in response to an event. The events are
either internal, e.g. a message posted from other processes, or external, e.g. trig-
gered by a hardware interrupt. For that, the kernel has a queue of pending events
from which the next event to be processed is picked. Then the kernel traverse the
process list calling the respective protothread to process the event.

ContikiOS has a process to offer timer services. A system tick periodically
wakes up the process.

The protothread adoption by ContikiOS has some implications: the applica-
tion has a single stack, since the protothreads returns when blocks; local variables
values are not preserved between invocations; and since the kernel is not pre-
emptive the processes should explicitly yield control in long computations. As a
consequence ContikiOS and TinyOS share many characteristics. Despite taht they
follow different paradigms, i.e. component-based model versus multithreading, at
execution time they behave similarly, since both are event-driven in nature.

2.2.3 Higher level abstractions: Java virtual machines
There are many advantages in using higher level languages in WSNs [80]. More-
over, the adoption of Java as the wireless sensor network programing language is
an interesting option, considering the worthwhile features of the language, such as
productivity gain thanks to the associated object-oriented software engineering.
Furthermore, Java virtual machines (JVM) provide memory protection through
type safety, dynamic memory management with garbage collection, and a clean in-
terface for developing platform-independent applications. Middlewares, if present,
are easily implemented on top of a JVM.

4www.contiki-os.org

14

2.2. Sensor node software

Finally, the Java language is very popular among programmers and it definitely
requires a much shorter learning curve than the nesC of TinyOS and even the
widespread language C. As a consequence, Java is a good candidate for becoming
the wireless sensor network language within the Internet of Things.

Many Java virtual machines for wireless sensor networks have been reported,
which are implemented on “bare metal” microcontrollers. Squawk [99] targeted
the relative rich resource SunSPOT platform. Whereas Darjeeling [16] and Taka
Tuka [4] were designed to meet the resource constraints of the so-called Berkeley
motes. All of them implement a split architecture, aiming to offload embedded run-
time processing. The bytecodes are post processed on host, performing bytecode
verification, static linking within group of classes and optimizing bytecodes to
reduce code size. The achieved code reduction was up to 3-4 times w.r.t. the
original Java classes [16].

These two virtual machines, in fact, are no truly implemented on “bare metal”,
since they rely in an underlaying operating system, either TinyOS and/or Con-
tikiOS. Nevertheless, it is worth noting that it is simply periodically scheduled a
task or process to run the interpreter. They also use the already present hardware
abstraction layer (drivers to access the hardware platform) and the communica-
tion primitives. As a result, the virtual machines as software platform, currently
depend on existing modules and protocol stack to build applications. In other
words, the software implemented in Java constitutes still a thin layer. However,
low-level hardware devices can be successfully accessed using an object-oriented
abstraction, Hardware objects introduced by [98], and hardware interrupts by [67].

The potential of middlewares built on top of a Java virtual machines has been
assessed implementing a mobile object tracking system [2]. We modeled the ap-
plication using UML (Unified Modeling Language) and implemented using mobile
agents with the help of the frameworks JADE [8] and later AFME [30]. An initial
evaluation were made from the extracted metrics from the UML models as well as
from the generated Java code. The application developed using AFME framework
was deployed on a network of SunSPOT sensor nodes running the Squawk Java
virtual machine, confirming that significant consumption of processing resources
and energy consumption [29].

Additionally. Mote Runner [22] is an interesting virtual machine that execute
“bytecodes” generated from the compiled Java or C# programs. An event-driven
programming model is adopted using delegates as primitive run-time types.

The interpretation overhead cost and the extra memory required in Java may
argue against interpreted languages adoption in WSN. However, bytecodes show a
denser representation than their directly executed counterpart, as a consequence
interpreted code exhibits smaller power dissipation during over-the-air reprogram-
ming. Consequently, a huge savings in code space and amount of transmitted
information can be obtained when a relatively high rate of code updates are
needed [101]. Finally, the case for interpreted languages expands as the processing
power consumption is reduced; or stated otherwise, lower processing power enables
higher abstraction levels and a wider adoption of wireless sensor networks.

15

Chapter 2. Sensor node platform

2.3 Low-power techniques and methodologies
In most cases, sensor nodes are powered from batteries, hence the main goal of
sensor node design is to extend the node’s lifetime. The battery characteristics,
including the current rate-capacity effect and the recovery effect, could prevent
adopting a simple, and at the same time, precise battery discharge model. In
this work we are not considering these second order effects. Decoupling capacitors
are usually distributed along the supply bus, which flatten the demand of current
drain from the battery. As a result, both effects are minimized, and at the same
time the battery usage is maximized [89]. In this context, the metric used for low-
power design is energy or average power, which are interchangeable. Moreover,
power is hereinafter sometimes interchanged with current, although not explicitly
mentioned, when a nominal supply voltage is considered.

Section 2.1.2 presented the energy breakdown inside a processor, describing
where the energy goes. Next, it is briefly described why the energy is consumed
in digital circuits and how to reduce the power consumption by means of design
techniques and methodologies.

2.3.1 Fundamentals of low-power design
The power dissipation of digital circuits are classified in dynamic and static. Dy-
namic power consumption is associated with the switching of logic values. Static
power refers to the power consumed when the device is powered up but it is idle.

The dynamic power has two components: the first corresponds to useful logic
operation coming from charging and discharging the output capacitance on a gate;
the second is due to short-circuit power that flows through the inverter transistors
during a transition (when both are not fully off). The later component is useless
power, and it can be minimized by a careful design. The former component can
be expressed as:

Pdyn = CVDD∆V fαsw, (2.1)

where C is the total capacitance of the circuit, VDD is the supply voltage, ∆V is
the voltage swing, f is the clock frequency, and αsw denotes the expected switching
activity ratio.

The dynamic power can be minimized performing optimizations at different
levels: architectural, logic and circuit design, aiming at reducing the contribution
of the different components present in the equation. Some techniques focus on
lowering the switching activity in the logic gates for a specific function. Because
the dynamic power depends quadratically on the supply voltage (when it is consider
rail-to-rail operation, i.e., ∆V = VDD), lowering the supply voltage is an effective
way of reducing the dynamic power.

In addition, the relationship between the transistor gate delay, tinv, and supply
voltage is given by:

tinv =
kVDD

(VDD − Vth)α
; (2.2)

16

2.3. Low-power techniques and methodologies

where Vth is the threshold voltage, α has a value in the range 1 to 2, and k is a
technology constant [94].

From this it is clear that, to keep the performance, Vth must be lowered with
VDD (and hence VGS). However, lowering Vth results in an exponential increase in
the sub-threshold leakage current.

These conflicting design objectives had lead to optimization approaches such
as: multi-voltage, where different blocks in a circuit have different supply voltages
according to the speed requirements; multi-threshold, trading leakage current for
speed at different parts of a circuit; clock gating, stopping the clock to reduce the
dynamic power to zero. If some performance degradation is accepted, the operating
frequency is lowered, so that the voltage can be decreased, technique know as
voltage-frequency scaling. In small features technologies, from 90 nm and beyond,
the leakage is becoming increasingly important, and it can not dismissed [45]. A
common technique to reduce the static power is to shut down the power supply of
an inactive logic block, known as power gating.

2.3.2 Dynamic power management
Dynamic power management (DPM) refers to the design methodology that dynam-
ically modifies the configuration of a system to decrease its power consumption,
while meeting some performance requirement. DPM includes a set techniques to
achieve energy-efficient computation by selectively reducing the necessary perfor-
mance or turning off components when they are underutilized or idle.

DPM relies on two fundamental premises: the system computation load is non
uniform during the operation time; and second, it is possible to predict with a
certain degree of accuracy, the fluctuations of workload [10]. Another important
consideration is that the observation and prediction should not involve a significant
energy cost, and that this cost must balance the obtained energy saving.

DPM can be applied at different levels, i.e., to the whole system as a unit, or to
their constituent components. The system components or modules are supposed to
have multiple modes of operation or power states, and that it is possible to dynam-
ically switch between these states. Needless to say, the more power consumption,
the higher performance achieved or the more services offered. The transitions be-
tween operation modes may have an associated cost, in terms of delay and energy.
If the component is not operational during a non instantaneous transition, there
is a performance loss. Moreover, the transition energy cost has a major impact on
the benefits of DPM, as we shall see later.

Each component can be modeled using a finite-state representation, called
power state machine. This simple abstract model holds for many single-chip com-
ponents like processors and memories [10]. The system can be modeled as the
Cartesian product of the finite-state machine of the system components, however
neither all the transition nor the states are valid. This approach is used in the
next section to model a sensor node build from COTS components. The power
model of a component having two power states, namely active and sleep, is shown
in Fig. 2.2.

17

Chapter 2. Sensor node platform

Figure 2.2: Power model of a two states component.

A power manager is the system component that control the states of the other
system modules by implementing a policy based on some observation and/or as-
sumption on the workload [10]. The power management approach for defining
a policy can be divided into two different categories: non-adaptive or adaptive.
The first category includes: greedy and fixed time-out, and the second: predictive
wake-up or shut-down. The static techniques are ineffective when the workload
is non-stationary; hence some adaptive methods can be applied, for example to
dynamically adjust the time-out parameter at the expense of implementation com-
plexity [40].

The break-even time for a sleep state, or any inactive state, is the minimum
time required to compensate the cost of entering the state without performance
degradation. The inactivity time in the sleep state has a duration equal to the
sum of the actual time spent in the sleep state and the time spent to enter and
exit it. To be worthwhile entering the sleep time, the inactivity time must be
enough to enter and exit the sleep state, and to compensate the additional power
consumption.

The break-even time is the sum of the total transition time, Ttr, i.e., the time
required to enter and exit the sleep state, and the minimum time that has to be
spent in the sleep state to compensate the additional transition energy, Etr.

The total transition energy is the sum of the wake-up and the shut-down en-
ergies, Etr = Ewkp + Esht. The average power transition is Ptr = Etr/Ttr.

The break-even time is

Tbe =
Etr − TtrPslp
Pact − Pslp

, if Ptr > Pact

Tbe = Ttr, if Ptr ≤ Pact (2.3)

where Pact and Pslp are the active and sleep power respectively.
In the case of the telos’s microcontroller, the transition time is equal to the

wake-up time, since the shut-down time is zero. During wake-up, the microcon-
troller core and peripheral circuit are powered. It must wait until the digitally
controlled oscillator stabilizes to source the master clock and become operational
again. The microcontroller wake-up time from sleep state (LMP3) is about 6 µs
(for a clock frequency greater than 1 MHz). The power consumption required
during this process is less than the active power. Consequently, the break-even
time is equal the transition time, Tbe = Ttr, since Ptr ≤ Pact (Eq. 2.3).

The power saving potential by adopting a dynamic power management de-
pends on system and the workload. Depends on the system through the following
factors: the power level of the different states, the performance constraints, and
the management policy and implementation of the power manager.

18

2.4. Characterization of sensor platforms

We define an ideal power manager as one that has a priori knowledge of the
entire workload trace, so that it is capable of controlling the component optimally.
The ideal power manager wakes the component up just in time for serving upcom-
ing requests, if no performance penalty is tolerated, and it puts the component in
sleep state at the beginning of all idle periods longer than the break-even time.
We name the policy used by the ideal power manager, best-oracle. Best because
the component is optimally controlled, and oracle in the sense that it “knows the
future” workload, so that the ideal power manager is able to take optimal decisions.

The simplest policy is based on a greedy method, which turns the component
off a soon as it is idle, and the component is turned on as soon as it is required.
A major advantage of greedy policy is its simplicity. But it has two important
drawbacks: the strategy does not consider the energy cost of transitions, hence,
it may put the component in a lower power state for a short period of time,
although if it not worth it; and since it takes some time for the component to
be operational again, the response time is increased. One of the most common
technique to reduce the first effect is fixed-timeout policy. It uses the elapsed idle
time to decide a transition to a lower power state. This simple algorithm may
improve the efficiency of the greedy policy, preventing energy waste in short idle
times at the expense of reducing the energy saving in long idles times.

Consider the corner case of a system or component in which the transitions
between power states are instantaneous and have negligible power cost. The op-
timum policy is greedy, since it worth transitioning to low power states to save
energy all the times. Additionally, there is no performance loss, since the compo-
nent is fully operational as soon as a new service request is received. Intuitively,
the lower the latency and the energy cost of the transitions, the more likely greedy
policy approaches to the optimum energy savings.

2.4 Characterization of sensor platforms
We conducted some experiments in order to investigate the energy breakdown in
a telos sensor mote. The most important components of macro motes are, as
already mentioned, the microcontroller and the radio. The node also includes one
or more sensors. The sensor in some cases may represent an significant contribution
to node power consumption and processor time for acquiring the data from the
sensor [100]. One example is CMOS cameras in image applications [96]. Next,
for sake of simplicity a sensor with negligible contribution, in terms of power and
time, is considered, such as a temperature sensor included in telos mote [90].

2.4.1 Power model
Following the guidelines of DPM, the strategy for reduced power consumption is
to keep most of the time the node in states of minimum power.

These states must guarantee proper operation according to requirements, e.g.
availability of certain services. The power management approach most widely
adopted is greedy.

19

Chapter 2. Sensor node platform

Figure 2.3: Typical current profile of sensor node (telos) [60].

Fig. 2.3 shows an example of current consumption of a telos node as a function
of time, where can be clearly identified different current levels. These levels are
roughly constant for a certain period of time, which correspond to the given node
states. The node states result from the composition of the microcontroller and
radio states. The microcontroller operates alternating between two states: sleep
and active. The sleep state corresponds to the low-power mode LPM3, in which
the core processor is power-down and a timer/counter is feed with an asynchronous
external crystal oscillator of 32768 Hz. This timer is used by the operating system
(e.g. TinyOS and ContikiOS) to generate a system tick, even when the microcon-
troller is in a low-power mode. In active mode, the processor run normally clocked
from an integrated digitally controller oscillator (by default TinyOS at 4.20 MHz
and ContikiOS at 3.9 MHz.). The radio has many operational states, but it can be
represented accurately, functionally and in terms of power consumption, with three
states: sleep, transmitting5, and receiving. Fig. 2.4 shows the microcontroller (top
left), and the radio (bottom left) state charts. However, not all node compound
states are valid.

The sensor node state chart (Fig. 2.4, right side) only represents valid states
and transitions. Table 2.3 lists node states and the corresponding current con-
sumption6. The nominal consumption values corresponds to values extracted from
datasheets, and the measured values were obtained on a single sensor node. De-
spite the fact that the consumption may vary between particular devices and with
operating condition [56], these values facilitate a first order comparison of power
levels of node states.

From the table is evident that the instantaneous power of the radio (receive
or transmit mode) exceeds the processing power (microcontroller in active mode)
in around one order of magnitude. Therefore, in the early days of wireless sensor

5An single output power level of 0 dBm is usually used, and thus, modeled.
6The value showed for the active mode current corresponds to fDCO=1 MHz.

20

2.4. Characterization of sensor platforms

Figure 2.4: Sensor node states.

Table 2.3: Sensor node states and consumption (telos).

State Consumption
Sensor node Microcontroller Radio Nominal Measured
Processing Active Sleep 500 µA 363 µA
Receiving Active Receiving 19.3 mA 21.0 mA
Transmitting Active Transmitting 17.9 mA 20.8 mA
Sleep Sleep Sleep 5.1 µA 5.2 µA

networks, the communication energy cost dominated the overall budget. Con-
sequently a significant research effort has been made since then to reduce the
communication energy contribution. The MAC layer design is crucial, since it
directly controls the transceiver determining the power profile drain. The use of
advanced MAC protocols had helped in improving the energy efficiency for com-
munication [20].

Prayati et al. [91] isolated and measured each contribution to the overall node
power consumption, confirming the values above and providing a model from which
the total energy can be estimated as a function of the different power levels and
the corresponding duty-cycles (i.e. the fraction of time a power contribution is
present).

The roughly constant energy consumption associated to different states has
been exploited to estimate the energy consumption by the node itself, in ContikiOS
(Energest [36]), and later in TinyOS (Quanto [42]). Also, it has been used to
profile the radio activity using a second sensor node that logs the sequence of
time during which the radio spend in each state [75]. This method had served
to assess the communication efficiency in real deployments in precise agriculture
applications [76].

21

Chapter 2. Sensor node platform

In Energest and Quanto the node measure and accumulate the elapsed time
in each state. Periodically the values are reported to the sink node where each
energy consumption contribution is computed. The energy consumption can be
expressed as the sum of each state contribution, computed as the power level mul-
tiplied by the accumulated time in the corresponding state. The state transitions
contribution can be neglected. The microcontroller wake-up time is about 6 µs, for
clock frequency greater than 1 MHz, which correspond to six cycles at 1 MHz and
less than two of cycles at 4 MHz. The radio oscillator startup time, i.e. transition
from low to active power, is about 600 µs, and corresponds to the time spent to
transmit about 18 bytes, roughly the MAC protocol overhead.

The sensor node energy consumption after elapsed a time t is

E(t) = Pprctprc + Ptxttx + Prxtrx + Pslptslp (2.4)

where tprc + ttx + trx + tslp = t, and the time and power subscripts refers to
processing, transmitting, receiving and sleep state respectively, of Fig. 2.4 (right
side) and Table 2.3.

Thus, the average power (Pavg = E/t) is

Pavg = Pprcdprc + Ptxdtx + Prxdrx + Pslpdslp (2.5)

where di = ti/t for i ∈ {prc, rx, tx, slp}, the respective duty-cycles.
The expression can be rewritten as

Pavg = P ∗prcdprc + P ∗txdtx + P ∗rxdrx + Pslp (2.6)

where P ∗i = Pi − Pslp for i ∈ {prc, rx, tx} is the power increment from the sleep
power baseline.

Consequently, the average power consumption can be computed adding to
the sleep power baseline consumption, the power contribution of the other states,
expressed as the power increment respect to this reference multiplied by the cor-
responding average duty-cycle.

2.4.2 Energy breakdown
We took two different approaches to estimate the energy contribution of the dif-
ferent component states. The first method was based on the Energest module
included in ContikiOS [36]. The average power consumption was estimated using
Eq. (2.6) from the information of the time spent in the different states of the mi-
crocontroller and the radio. The second one was based on simulations and offline
trace analysis, and it was focused on further investigate the microcontroller time
breakdown.

The criteria for selecting the case study were: public availability of source
files, practical, and almost ready-to-use applications. Unfortunately, the num-
ber of cases complying with the aforementioned restrictions are scarce. We chose
two data-collection application from the standard distribution of TinyOS (version
2.1.0) and ContikiOS (release 2.5). Both applications are similar, each node of

22

2.4. Characterization of sensor platforms

Table 2.4: Application parameters (size in bytes).

OS Application text bss data #functions
TinyOS MultihopOscilloscope 32058 122 3534 1081

ContikiOS rpl-collect (udp-sender) 47552 232 9250 489

the network periodically samples a temperature sensor and the readings are trans-
mitted to a sink node using a network collection protocol. MultihopOscilloscope
(TinyOS) uses Low-Power listening (LPL) protocol [79] for medium access control,
and CTP (Collection Tree Protocol) [46] for network routing. On the other hand,
rpl-collect (ContikiOS) rely in ContikiMAC [34,35] for communicating with neigh-
boring nodes, and the Contiki implementation of RPL (IPv6 Routing Protocol for
Low power and Lossy Networks) [112], ContikiRPL [107], for routing packages.

The applications were compiled for a telos sensor node using the standard
toolchain required by the software platforms (see the corresponding project site
for details). Table 2.4 summarizes section sizes and number of functions of the
selected applications.

Time measurement in field (Energest)

The ContikiOS module Energest measures the time elapsed in predefined states.
The time resolution is 7.8125 ms (inherited form the rtimer module, 1/128 sec)
Energest includes the sensor states showed in Fig. 2.4 where the state process-
ing is split in two states to differentiate the processing performed in a interrupt
context from the normal processing (usually named as cooperative to highlight
its non-preemtiveness nature). The Energest and the application source codes
were modified to remove some limitations, and thus suit our needs (for details see
Appendix B.2.1).

The ContikiOS network application comprises two different node applications
(executable): udp-sink, the base node connected to a PC, and udp-sender, the
application for other sensor nodes. We carried out an experiment running the
application using two sensor nodes (udp-sender) and a base node (udp-sink) for
more than 20 hours. The sensor nodes periodically send the accumulated time (also
temperature reading) in each state to the base node. The base node forwards the
information to a PC via USB. The companion application Collect-View shows
in real-time the collected data, while it saves the information in plain text to
a file. Finally, the saved data was processed to compute the total accumulated
time in each state. Table 2.5 shows the results: accumulated time in each state,
resulting duty-cycle, power consumption (extracted from Table 2.3 adjusting the
processing current to 1.8 mA corresponding to 3.9 MHz), average current in µA
and in percentage.

The total processing time, i.e. normal time plus the time in the context of
interrupt service routine, represented a duty-cycle of 3.19% for the microcontroller,

23

Chapter 2. Sensor node platform

Table 2.5: Energest results for udp-sender application .

Time (ms) Duty-cycle Current Average current
Processing (norm) 1131047 1.52% 1.80 mA 27.4 µA 16.2%

Processing(IRQ) 1241124 1.67% 1.80 mA 30.0 µA 17.8%
Receiving 391476 0.527% 20.6 mA 108 µA 64.2%

Transmitting 11911 0.016% 19.2 mA 3.07 µA 1.8%
Sleep 71917221 96.81% 5 µA 4.84 µA 2.9%
Total 74289393 100% - 169 µA 100%

and the remaining 96.81% was in sleep state (LPM3). The radio spent 0.527% of
the time in receive mode, and 0.016% in transmit mode. The receive and transmit
time added together resulted in a radio duty-cycle of 0.543%. Needless to say, that
the application communication requirements directly influences the radio usage,
and thus, its energy consumption. However, the results obtained shows that the
radio consumption was dominated by the idle listening of the MAC protocol. More
precisely, the reception time was on average 30 times greater than the transmission
time.

Next, the microcontroller and radio utilization and consumption are compared.
The percentages indicates that the processing time was about six times higher than
communication time. Now, considering the power level of each state results that
the average communication power (transmit plus receive) was only about two times
higher than the processing power. It is apparent from this table that current MAC
protocols, as ContikiMAC [34, 35] which is an enhanced version of the low-power
listening (LPL), achieve an extremely low duty-cycle.

This application example do not process the acquired data, but simply send
the raw data to a sink, so that the processing workload roughly corresponds to
communication protocols and OS housekeeping only. Consequently, the processing
energy is expected to rise with increasing complexity of applications. This results
are quite revealing, and push again for processing energy reduction.

Simulation and trace analysis

The second method consists in getting an execution trace, which is processed later.
Since current sensor nodes do not support real-time execution trace generation, we
simulated the network using COOJA [39]. The telos node-level simulation relies on
MSPsim, an instruction-level emulator for the MSP430 microcontroller, which also
simulates hardware peripherals such as sensors, radio modules or LEDs. MSPSim
is designed to be used as a COOJA plug-in, allowing to access to the MSPSim
command-line client from COOJA. We modified MSPSim’s code to add a new
command for controlling the debug mode, so that it is possible to obtain any node
execution trace from COOJA. COOJA is able to simulate the execution of multi-
ples nodes and the interaction between them. Nodes interact by means of message

24

2.4. Characterization of sensor platforms

Figure 2.5: COOJA graphical user interface showing: main controls and logger windows (top
left), sensor nodes locations and communication exchange, and timeline with the radio activi-
ties.

exchange, and COOJA model the radio-propagation, including interference, col-
lision and so on. Fig. 2.5 show a screenshot of COOJA graphical user interface.
In that regard, the importance of a complete simulation environment has to be
highlighted: executables applications that run in real sensor nodes can be also
simulated. COOJA is able to simulate any supported platform, irrespective of
the operating system (if any) and the toolchain, provided that applications are
compiled to elf format (executable file format).

The execution trace of a particular node can be analyzed to determine the
transition between the different power states. In the context of our work, an
execution trace is the time series of executed instructions addresses, i.e. a sequence
of pairs: access time and address. The access time is considered from the start of
the simulation.

From the executable file description (elf) and some knowledge of the embedded
operating system, the instruction that forces a transition in the power model can
be determined. In this case, the microcontroller and radio power states were
considered individually.

For the microcontroller were distinguished three states: sleep, normal process-
ing, and interrupt context. Fig. 2.6 shows the corresponding diagram state. The
transitions were defined by the following conditions: to sleep state (lpm), the ex-
ecution of the instruction that modifies the status register accordingly (set the
LPM3 bits); to interrupt context (isr), the execution of an address corresponding
to the start of any interrupt service routine (extracted from the interrupt vector);

25

Chapter 2. Sensor node platform

Figure 2.6: Microcontroller power states: sleep, normal processing and interrupt context; and
transition conditions: lpm (low power mode), isr (isr start address), and reti (return from isr).

Figure 2.7: Elapsed time distribution of microcontroller states.

and to normal execution (reti), start returning from a interrupt service routing,
i.e., after executing a reti instruction. Notice that the sleep state is always exited
when an interruption occurs, and that nested interruptions are disable.

Fig. 2.7 shows the distribution of the elapsed time in the different microcon-
troller states. The maximum time spent in sleep state (and in any state) was
about 15 ms, corresponding to period of the system tick. Most of the cases, more
than 90%, the microcontroller stayed in normal processing less than 150 µs (corre-
sponding to the width of the bin in the histogram). Similar results were obtained
for the interrupt context, with the difference that in all instances the interrupt
context lasted at most 450 µs (3 bins wide)

Fig. 2.8 show a box-and-whisker diagram for the same data, graphically depict-
ing the data quartiles (the box in the middle encloses 50% of the data), indicating
variability outside the upper and lower quartiles (using whiskers, the lines extend-
ing from the boxes), and marking the outliers (individual points using cross-marks).
Inside the figure a zoom shows the detail for normal and interrupt context. From
the digram we can see that the maximum time in interrupt context was actually

26

2.4. Characterization of sensor platforms

Figure 2.8: Box-and-whisker diagram of the elapsed time of microcontroller states.

Figure 2.9: Radio power states: sleep and on; and transition conditions: stop reg. (shut off
the voltage regulator) and start osc. (turn the oscillator on).

375 µs.
Two states were considered for the radio: sleep and on. The on state accounted

for the states with relative high power consumption, and it comprised receive and
transmit mode. The state transitions were determined by detecting when it was
invoked two particular functions to issue a command to the radio. As shown in
Fig. 2.9 a command to shut off the internal voltage regulator (stop reg.) triggers a
transition to the sleep state; and a command to turn the oscillator on (start osc.)
forces a transition to on state.

Fig. 2.10 shows the distribution of the elapsed time in sleep and on states of
the radio. It can be seen that both present a bimodal distribution. The on state
has two mode values, one close to 12 ms, associated to listen events (low-power
listening) and the other close to 100 ms associated to transmit and receive. It
seems clear that this protocol implementation or its default parameter values are
such that the radio usage was not as efficient as ContikiMAC (see [20] for a review
of communication protocols). Although, this method could be used to study in

27

Chapter 2. Sensor node platform

Figure 2.10: Elapsed time distribution of radio states.

detail the radio usage, providing more information than the average time values
get by Energest.

Finally, one question that needs to be asked is whether greedy policy is an
appropriate strategy for managing the node power states. Fist, it must be pointed
out that as a reactive system the node act in response to events, and that most
of the cases after finishing the respective processing is highly likely the node will
became idle for a while, until the next event. The minimum time in sleep state
should compensate the transition cost to be worthwhile. Fig. 2.11 shows the cu-
mulative frequency distribution of the sleep time. From the curve distribution we
can see that the sleep time is less than 80 µs at most in 0.8%. We also verified
that the minimum sleep time was of 22.8 µs (value not shown in any figure).

The break-even time was estimated to be about 6 µs, less than the minimum
time in sleep state. Consequently, greedy is the optimum policy to put the node in
sleep state. The wake-up transition from sleep is, albeit small, not null. However,
the incremented latency is the wake-up transition time, i.e., 6 µs, comparable to
the interrupt latency. Obviously, it make no sense to adopt a predictive wake-up
strategy.

2.5 Summary and conclusions
The development of wireless sensor networks on top of high level abstraction has
many advantages, as productivity gain, portability, just to mention a few. The
most popular software platform are currently TinyOS and ContikiOS, which are
event-based software architectures based on different paradigms, component-based

28

2.5. Summary and conclusions

Figure 2.11: Sleep time cumulative frequency analysis.

model and multithreading respectively. However, they share many characteristics
at execution time, since both are event-driven in nature. Java is a very popular
language among programmers and it definitely requires a much shorter learning
curve than nesC and even pure C, used in TinyOS and ContikiOS. It presents other
worthwhile features that makes Java virtual machine adoption in wireless sensor
networks an interesting option for application development. Emerging virtual ma-
chines still constitutes a thin layer, and currently relies on existing modules and
protocol stack provided by the underlying OS. Future virtual machines and mid-
dlewares for creating progressively more complex applications are expected rely on
an underlaying event-driven software architecture, to highly exploit the nature of
wireless sensor networks applications. But yet, they would require more and more
processing power and available memory, therefore they should be accompanied
with energy efficient platforms.

In regards to hardware platforms, there is a clear trend toward enlarging pro-
cessing power with lower rate of energy consumption rise, exploiting the benefits
of the Moore’s Law. On the other hand, it was pointed out that the processor
spends most of its energy on data supply, i.e., memory access. This result shows
that efficient memory design for supplying data to processors is a major issue, and
that some research effort should be dedicated to focus on reducing memory energy
consumption.

Low-power design requires to manage trade-offs between conflicting design
objectives. Some techniques dynamically modify the configuration of a system
to decrease its power consumption. For example, power and clock gating, and

29

Chapter 2. Sensor node platform

voltage-frequency scaling are widely used. The system relies in a power manager
to control the other system modules, which implements a policy based on the work-
load characteristics (the workload statistics may be represented by the probability
distribution of the idle periods). The ideal power manager has a priori knowledge
of the entire workload trace, and controls the component optimally. Obviously,
the ideal power manager is unavailable in practice, and it only serves to obtain the
inherent exploitability of the pair system-workload, representing an upper bound
of the potential savings. On the contrary the greedy policy is the simplest policy to
implement. Additionally, it is the optimum method when transitioning the states
has negligible energy cost, and it is tolerated some performance degradation or the
wake-up is instantaneous.

The results of the experiments carried out on a telos sensor node showed that
despite of the instantaneous power of the radio is tens of times higher than the
processing power, the processing time was about six times higher than communi-
cation time, as a consequence the communication energy was only about two times
higher than the processing energy.

The applications examples in question simply send the data to a sink, so that
the processing workload include only communication protocols and operating sys-
tem tasks. Hence, the increasing complexity of applications is rising the demand
for processing power, which in turn pressures to reduce the processing energy
dominated by memory.

30

Chapter 3

Memories for sensor nodes

Memories in sensor nodes are required to hold the program instructions of pro-
grammable processors, constants values and temporal workspace data. In almost
all cases, they are embedded in a microcontroller or system on chip to serve the
processing unit also within it [53]. Additionally, the sensor node may include
another memory for bulk storage.

This chapter introduces different memories technologies with the goal of review-
ing more deeply those suitable for processors nodes. The first section introduces
the fundamentals of semiconductor memories, needed to better understand present
technologies and some under development. The internal architecture, and the main
organizations are briefly described. The second section presents the Flash tech-
nology, focusing on NOR architecture which is appropriate for holding program
code, and the static RAM (SRAM), which can be used for both program and data
memory. In the following section we present a comparison of Flash and SRAM
memories, centering attention on energy consumption across transistor types and
operation frequency. Next, a SRAM memory with sleep state is considered, and
the average power reduction determined as a function of memory parameters and
the workload characteristics. Then, a SRAM with power-manageable is introduced
that, unlike the previous memory, includes putting idle banks in sleep state while
the memory is active.

We conclude the chapter with a summary, including a brief discussion and
giving the main directions in memory optimization for sensor nodes.

3.1 Memory fundamentals
The memories can be categorized according to different characteristics. We inten-
tionally avoid traditional tree-like taxonomies such as the presented by Nachter-
gaele et al. [81] because they are not suited for our needs, since many introduced
characteristic applies to most memory types.

Depending on whether a memory is capable to retain its contents even if the
power supply is switched off, they can be classified in two types: volatile and non-
volatile. In the one hand, volatile memories requires power to maintain the stored

Chapter 3. Memories for sensor nodes

information, and consequently loses its stored data when the power supply mem-
ory is turned off. In the other hand, non-volatile memories can retain the stored
information even when not powered preserving the data stored during long peri-
ods with the power turned off. Examples of non-volatile memory includes Flash
memory, and older technologies such as permanent read-only-memory (ROM), pro-
grammable read-only memory (PROM), erasable programmable read only memory
(EPROM) and electrically erasable programmable read-only memory (EEPROM)
which evolved to the newer and popular Flash. More recently, emerging non-
volatile memories are available, e.g. magnetoresistive RAM (MRAM), some of
them even integrated into commercial microcontrollers , such ferroelectric RAM
(FeRAM or F-RAM) [113].

Examples of volatile memory are dynamic RAM (DRAM) and static RAM
(SRAM). They are usually used as primary memory and cache memory in personal
computers respectively, since SRAM is faster than DRAM, while consumes more
energy and offer lower memory capacity per unit area. SRAM is widely adopted
in small embedded systems, such as sensor nodes.

Random access refers to the capability to access memory elements at an ar-
bitrary location in equal time (the term random is used as having no specific
pattern), thus memories implement a direct-addressing scheme for elements ac-
cess. On the other hand, sequential access refers to memories in which sequential
element are accessed in relative short times while a remote element takes longer
time to access. In the former case data can be efficiently accessed in any random
order while in the latter case just contiguous elements are accessed efficiently, so
they are adopted for very specific functions.

Read-write refers to the ability to write a memory element as easily as read
from. On the opposite side is read-only memory (ROM), meaning that the data
stored in it can never be modified (e.g. mask ROM fabricated with the final data
stored in it). In its strictest sense the term ROM refers only to read-only memory,
however, sometimes is used less rigorous way to name some types of memory which
can be erased and re-programmed many times in the field. Although, the process
of writing takes longer than reading the memory, and memory must be erased in
large blocks before it can be re-written.

Unfortunately, many adopted terms related to memory types are misleading,
guiding to misconceptions. Some of them are mentioned below. The term ROM
gets stuck for Flash memory when used in substitution of mask ROM to storage of
program code and constants. However, Flash might be considered as a read/write
memory. Similarly, firmware, term coined to describe software in non-volatile
memory that rarely or never change during the product lifetime, sometimes is
used to name software in embedded systems, despite it is expected to be updated
relatively often. Modern types of DRAM read the data in bursts, so in strict sense
are not a RAM. Finally, one of the great contradictions is when the term random-
access memory is occasionally used as synonym of read/write memories, while
even first ROMs were read-only memories with random access. While some of this
terms and usage are generally accepted, this work will use the strict definition for
each type of memory characteristic.

32

3.1. Memory fundamentals

Figure 3.1: Simplified memory structure [52].

Other important parameters are: access time, read/write endurances, oper-
ation speed, cell size, capacity, and operation voltages. Based in considerations
described in the next section, and with the use of memories for storing program
code in mind, the SRAM and the Flash memory are described more deeply in the
following sections.

3.1.1 Memory internal architecture
Most semiconductor memories are comprised of a memory cell array and peripheral
circuits. A memory cell stores one bit of data (with the exception of some kind
of Flash memory that store multiple bits per cell). Peripheral circuits, needed
to access the memory cells, include decoders and drivers for rows and columns,
amplifiers, I/O and control logic circuits. The memory cells in the array are
grouped into words of fixed size, W , which can be accessed by an address, in a
direct access implementation. The maximum number of addressable words M with
an address of N bits is 2 raised by N (M = 2N).

In a straightforward implementation, the W ×M memory cells are arranged in
a two-dimensional array, which results in a quite slender array. A row is selected
by decoding the corresponding address. Each column of the word correspond to
a bit. The row and column lines are named wordline and bitlines, respectively.
Actually, physical considerations, such as the capacitance and resistance of the
lines, limits the size of the array, so that the array might be divided into multiple
blanks. The memory address is logically divided in three fields that select the
bank, the column and the row of the word in the memory. Each field is decoded
so that the correct bank is selected through the corresponding driver and the right
cells in that bank are enabled. In a write operation the data is driven into the cells,
and during a read operation the store data is driven form the cell to the detection
circuits. Particular circuits are used for reading and writing, according to the type
of the memory and theirs requirements. These peripheral circuits are subject to
power optimization as any logic circuit, applying the techniques presented in the
previous chapter. Fig. 3.1 shows a simplified typical memory structure.

33

Chapter 3. Memories for sensor nodes

Figure 3.2: Memory organization in three hierarchy levels: bank, mat and subarray [33].

The internal architecture is usually organized in a hierarchical fashion to op-
timize access times, area and power consumption. Fig. 3.2 shows a memory with
three hierarchy levels, namely bank (already mentioned), mat, and subarray, for
the particular case of SRAM but it is generally applicable in any memory type.
The bank is the top-level structure. It is a fully-functional memory unit which
can be operated independently and even concurrently accessed. Depending on
its size, one memory can have can have multiple banks. Each bank is comprised
of multiple mats that are connected together in either H-tree or bus-like fashion.
The mat is composed of subarrays. There is one predecoder block per mat. The
subarray is the bottom-level structure, and contains peripheral circuitry including
row decoders, column multiplexers, detection circuits and output drivers. The
aforementioned limits in the hierarchical structure are arbitrary, and the place for
a specific block or function is chosen accordingly, trading different properties or
characteristic.

3.1.2 Memories for embedded systems and sensor nodes
A programmable processor needs at least a memory to hold the program code and
another for temporal data. A microcontroller usually has two kinds of memory:
a read-write memory (e.g. SRAM) and non-volatile memory (e.g. Flash). The
former memory is needed for storing temporal data (variables) that are modified
at run time, and the later for storing the program and constants, retaining its
content even though it is not powered. The code can be executed directly from
non-volatile memory, known as execute in place (XIP), in such a case the random-
access feature is needed. Or the code can be first copied from Flash to SRAM,
technique known as shadow memory [12]. In this case, the non-volatile memory
can have sequential access and it can be relative slow, since the content is copied
at boot time, prior to the application execution from SRAM, which is faster than
Flash allowing higher clock frequencies.

SRAM memory is used in embedded system as the read/write memory required
for variables and temporal data, since the SRAM is fast enough to feed data to
the processor, avoiding power hungry power cache memories needed to speed up

34

3.1. Memory fundamentals

slow DRAM.

As will be discussed later in Section 3.2, accesses to SRAM generally consumes
much less energy than Flash. So, executing code from SRAM consumes consider-
able less energy than executing from Flash. However, SRAM occupies more area
per bit than Flash memory. Consequently, there is a trade-off between area cost
and energy reduction that should be carefully considered.

On the other hand, the recently introduced FRAM memory in the micro-
controller market opens new possibilities, where applications benefits from non-
volatile storage with faster and lower energy write access. However, to hold the
program and constants as a direct substitution of Flash memory does not has any
clear advantage. Additionally, despite of having faster write cycles compared to
Flash memory, FRAM still present significant higher energy consumption than
SRAM [1], preventing its adoption it as the temporal data memory.

3.1.3 Memory organizations
The most common memory organization for embedded system are summarized in
Fig. 3.3, either suitable for program or data memory. The first is the simplest
and commonly adopted in low-end microcontrollers, in which the whole address
space is mapped into a single memory 1. Several optimized organization have been
proposed with performance and energy enhancement, such cache and scratch-pad
memories. The main concepts may be applied to embedded (on-chip) and off-chip
memories, and even to different memory technologies.

In the embedded area, scratch-pad memories (SPMs) are preferred over caches
and are widely employed because they achieve comparable performance with higher
power efficiency. The most frequently accessed addresses are allocated to the
scratch-pad, while the remaining content is assigned to the main memory (Fig. 3.3,
darker gray depict more relative accesses). Since, each access to the scratch-pad
account less energy compared to the main memory, significant energy saving are
achieved [85]. The contents of the SPM are either static and do not change at run
time, or dynamic, that is, the contents change during the operation time to reflect
the most frequently accessed data at any given time. The static allocation is ac-
complished at compilation time, while the dynamic must be performed at run time
by specialized libraries. Dynamic allocation provides flexibility to adapt to work-
load statistics that varies in time, at the expense of implementation complexity
and execution overhead. In some embedded systems simplicity is more desirable
than flexibility and improved energy reduction, so that, static allocation is favored.
In order to be able to exploit fully the potential of the scratch-pad memory with
static allocation, the scratch-pad memory must contain almost all the “hot spots”
of the accessed address space during the program execution.

Menichelli et al. [78] investigated the memory access distribution on embedded
applications. They selected a set of application benchmarks from Mibench [48].
A trace of the fetched addresses were obtained by means of instruction-level sim-

1We have intentionally excluded the discussion between von Neumann and Harvard
architectures

35

Chapter 3. Memories for sensor nodes

Figure 3.3: Common memory organization: single memory and address space, cache and main
memory, scratch-pad and main memory.

Figure 3.4: Normalized cumulative frequency analysis for the memory access.

ulations of an ARM processor platform. They verified that the most accessed
addresses fit on a very small portion of the address space, showing the effective-
ness of this memory organization.

Similarly, we follow a analogous procedure considering the MultihopOscillo-
scope application (TinyOS) and the method described in Section 2.4.2 to get mem-
ory access traces. The unit of allocation, i.e., the block to be allocated into the
scratch-pad or into the main memory, were defined equal to the relocation unit of
the linker-locator, that is, the object codes corresponding to each symbol of the
executable program: application and library functions plus compiler generated
global symbols.

A normalized cumulative frequency analysis were carried out considering the
allocation units. The following steps were then taken. First, it was computed the
access count to each allocation unit for the whole trace. Then, for each allocation
unit the access count was divided by its size, obtaining the count-to-size ratio.
Finally, the allocation units are ordered in ascending order by the count-to-size
ratio. The allocation units with higher count-to-size ratio comes first, and they are

36

3.2. Flash and SRAM memories

preferred to be assigned to the scratch-pad, since leads to higher profits. Fig. 3.4
shows the normalized cumulative values of the memory access count-to-size ratio.
It can also be seen the cumulative size and count, that is the total size and count
as more allocation units are considered for the scratch-pad.

Menichelli et al. have found that the 80% of the most accessed memory ad-
dresses fit in a SPM of size less than 1% of the total footprint. It can be observed
that for our experiment, Fig. 3.4, the 80% more accessed allocation units occu-
pied more that 10% of the total footprint, corresponding to the first 20 functions
(indicated with the arrow). Thus, the power reduction of SPM in this application
example would not be significant, because it did not exhibit enough “hot spots”.
We argue that the access distribution spread along almost all the address space is
typical in event-driven application, as seen in Section 2.2.

Finally, this characteristic is highly exploited in the present work, proposing
the adoption of banked memory with power management in wireless sensor net-
works (although, it may be used in other event-driven application context). This
architecture is proposed to be used as a substitution of the single memory in the
first category in Fig. 3.3. Nevertheless, the concept could be generalized and com-
bined with other organizations. This memory architecture is introduced later in
this chapter (Section 3.4).

3.2 Flash and SRAM memories
In this section, Flash and SRAM memories technologies are presented more in
detail, particularly the consumption issue, central to embedded system in general
and sensor node in particular.

3.2.1 Flash memory
Flash is a non-volatile memory which can be electrically erased and reprogrammed.
This device was developed from EEPROM , but unlike EEPROM the Flash mem-
ory is able to erase a block of a data “in a flash”, fact that give the name to this
memory.

The core of a flash is a non-volatile cell build form one transistor with a floating
gate where electrons are trapped onto. The write or program operation have
an effect on the the threshold voltage of the cell, changing its value and as a
consequence the current/voltage characteristic of the cell, i.e., IDS-VGS curve.
Fig. 3.5 shows a cell and the current/voltage characteristic for a logic value “1”
and a logic value “0”.

In Flash memories the erased operation (writing of logic “1”) is slow but inde-
pendent of the amount of cells being erased. So that the cells are grouped in large
blocks to obtain significant speed advantage over old-style EEPROM (in which
cells are erased individually), when writing large amounts of data. While, on the
other hand, the program operation (the writing of logic “0”) can be accomplished
on individual cells. As a consequence, before any writing can take place on a
particular cell, all the cells of the corresponding block must be erased. The fact

37

Chapter 3. Memories for sensor nodes

Figure 3.5: Flash cell and the current/voltage characteristic for the “1” and “0” logic val-
ues [26].

that the erase operation is restricted to blocks, allows one to design the array in a
compact configuration, and therefore in a very competitive size, from an economic
point of view.

The read operation of a cell is performed applying suited voltages to its ter-
minals and measuring the current that flows through the cell, further explained in
the next section for two particular architectures.

NOR and NAND architectures

Based on the described cell, different memory organizations are obtained depend-
ing on how they are interconnected. The most commonly Flash memories are NOR
and NAND, which are named after the respective logic gate. The former aims at
fast random access, and the later aims at high bit density. In a read operation
NOR and NAND memories use the current in different ways, as a consequence
they present different energy and access time performance. Fig. 3.6 shows the
connection of NOR and NAND cells.

The floating gates of a NOR flash memory are connected in parallel to the
bitlines, resembling the parallel connection of transistors in a CMOS NOR gate.
This allows individual cell access to be read and programmed. NOR-based flash
has long erase and write times, but since it provides full address and data buses,
it allows random access, and as a consequence usage for code storage and direct
execution. The NOR type offers fast read access times, as fast as DRAM, although
not as fast as SRAM or ROM. The NOR architecture requires one contact per two
cells, which consumes the most area of all the flash architecture alternatives.

The cells of a NAND flash memory are connected in series, in a string shape,
resembling a NAND gate. The NAND string is composed of flash gates, two select
transistors, one source line, and one common bit-line contact for all its cells, as
shown in Fig. 3.6. The lack of metal contacts in between cells of NAND string,

38

3.2. Flash and SRAM memories

Figure 3.6: Flash architectures: NOR and NAND [74].

allows a more compact cell size than NOR. The occupied area is 4F 2 for a NAND
cell, while 10F 2 for NOR cell [57]. Thus, the NAND flash memory has the smallest
cell size, and so the bit-cost is the lowest among flash memories.

The NAND flash trades the random access feature to reduce the chip area
per cell, therefore higher density and greater storage volume than NOR flash [13].
Since NAND cells are denser than NOR cells they achieves reduced erase and
write times. The NAND flash memory and the NOR flash memory are required to
operate at the same supply voltage as that of the controller devices for simplicity
in the low-power systems.

Flash energy consumption

In the NOR Flash architecture, the read of a matrix cell is done in a differential
way, i.e., making a comparison between the current of the read cell and the current
of a reference cell which is physically identical to the matrix cell and biased with
the same voltages VGS and VDS . In the case of memories storing only one bit
per cell, the electrical characteristics of the IDS-VGS of the written cell (logic “0”)
and of the erased cell (logic “1”) are separated as was sketched in Fig. 3.5. This
is due to the fact that the two cells have different threshold voltages VTHW and
VTHE . The threshold voltage of the reference cell is placed between the erased and
the written cell characteristics, so that the two different logic values are correctly
distinguished. The current of the cells is converted into a voltage by means of a
current to voltage converter (I/V), a circuit able to supply to the output a voltage
whose value depends on the value of the current at its input. The voltages are
then compared through a voltage comparator which outputs the cell status, i.e.
the logic value.

The involved current are relatively large, between 1 to 100 µA [26,54,83]. This

39

Chapter 3. Memories for sensor nodes

Figure 3.7: Threshold voltage distribution in a NAND cell, for erased and programmed [26].

current level allows a high speed sensing operation, achieving random-access read
operation up to 25 MHz, and based on a speed-enhanced cell and architecture
optimization, up to 80 MHz [54].

In NAND Flash memories, an erased cell has a negative threshold voltage, while
a programmed cell has a positive voltage. The cell string are placed together with
two selection transistors at both ends, as depicted in Fig. 3.7. To read a particular
cell, all the other gates of the string are biased with a high voltage. This ensures
that they act as pass-transistors, irrespective of their threshold voltage (i.e., they
are erased or programed). The gate of the cell to be read is set to 0 V, so that the
stack will sink current if the addressed cell is erased. On the contrary, if the cell
is programmed no current is sunk through the string.

Because the stack is composed by several transistors in series, typically in
groups of 16 or 32, the current to be sensed in the NAND structure is very low,
in the order of 200-300 nA. This weak current is unfeasible to be detected with
a differential structure as the used for NOR architecture. Charge integration is
the reading method used in NAND architectures. The parasitic capacity of the
bitline is precharged to a fixed value. Subsequently, if the cell is erased, the bitline
is discharged by the sink current; on the contrary, if the cell is programmed, the
bitline remains at the its initial value. Then, the voltage final value is detected
and latched. The discharge time is carefully tunned, and it is about 5-10 µs [26].

In conclusion, the different reading techniques used in NOR and NAND archi-
tectures affect the time and current involved in a read cycle.

To the best of our knowledge, there is no report that compares the read energy
of both architectures. Considering the current values and the time it takes a read
cycle, we consider that the NAND and NOR read energy are in the same order of
magnitude.

40

3.2. Flash and SRAM memories

Figure 3.8: A six-transistor CMOS SRAM cell.

3.2.2 SRAM memory
SRAM memory is the first choice in small embedded systems, such as sensor nodes,
for temporary data. The most adopted SRAM cell is composed by six transistors
(as shown in Fig. 3.8): four transistors forming a flip-flop and two transistors to
connect the flip-flop to the internal circuitry for accessing purposing. The flip-flop
is a bistable circuit composed of two inverters, in which the bit is stored as a logic
value. The flip-flop sides are connected to a pair of lines, B and B̄, in columns.
The transistor gate of the access transistors are connected to the so called wordline.
Each wordline gives access to multiple cells in groups, forming a row.

When the cell is idle, the access transistors are off and the data is retained
in a stable state. When a cell is accessed, the flip-flop sides are connected to the
internal SRAM circuit by turning on the access transistors. The selected row is set
to VCC . In a read operation the bitlines are connected to the sense amplifier that
detects the stored data in the cell. This logic signal is feed to the output buffer.
During a write cycle the data coming from input are connected to the drivers that
force the data onto the flip-flop. After a read or write operation completion, the
wordline is set to 0V . In the case of a read operation the flip-flop keeps the original
data, while in the write operation the new data loaded during the cycle is stored
on the latch.

SRAM energy consumption and optimizations

The SRAM power consumption can be classified as usual in dynamic, coming from
switching capacitances, and static, due to leakage currents in transistors [83]. The
switching of long and heavily loaded bit and wordlines is responsible of the major
dynamic power cost. Initial works had tackled the dynamic power consumption
and a wide range of solutions has been proposed [86] based in memory partition.
This has an influence on the effective capacitance and the switching factor (C and
αsw of Eq. (2.1) in Section 2.3.1). Applying such techniques, SRAM results in a

41

Chapter 3. Memories for sensor nodes

relatively low dynamic power, because only a small portion of the whole memory
switches at any given time. Additionally, static power may dominate in SRAM
because a very large part of the memory is quiescent most of the time and depends
directly on the number of transistors. So that, the larger the memory array, the
more static power is drain. In CMOS technologies the static power is mainly
due to leakage through off transistors, subthreshold leakage, and also due to gate
leakage from 45 nm and smaller feature sizes, and both worsens with technology
scaling [45]. In this scenario, the reduction of both dynamic and leakage power in
the memory subsystem is definitely a primary target in future sensor node design.

Dynamic energy reduction: partitioning

Partitioning is one of the most successful techniques for memory energy optimiza-
tion, where a large memory array is subsequently divided into smaller arrays in
such a way that each of these can be independently controlled and accessed [73].
The access energy is reduced as banks becomes smaller, i.e. more banks are added
for a given memory size. However, an excessively large number of small banks leads
to an inefficient solution due to an increased area and also energy cost because of
wiring overhead. Consequently, the aim of the partitioning is to find the best bal-
ance between energy savings, and delay and area overheads [32]. Several sub-arrays
share decoders, precharge and read/write circuits, where internal control circuitry
provide mutually exclusive activation of those sub-arrays. Moreover, the internal
control circuitry is merged with row/column decoders to generate sub-array se-
lection signals, so introduction of extra circuitry is efficiently limited. Nowadays,
memory arrays are generally partitioned horizontally -using a divided word-line
technique, and vertically using a hierarchical divided bit-line technique [32].

Static energy reduction: low-leakage sleep state

The major source of leakage current in low power SRAM is due to the retention
power in the memory cells, since the peripheral circuit contributions are negligible
[64]. Several techniques have been proposed to reduce the SRAM sub-threshold
leakage power, at circuit and architectural level. Two options are available: using
a power-off state that almost remove the leakage but the information stored is lost,
and using a sleep state that retains data while consuming less leakage power. In this
work we are considering only state-preserving mechanisms. It is worth emphasizing
that any realistic leakage power reduction technique must ensure that the data is
reliably retained during the standby period. Besides the leakage reduction goal, the
energy overhead consumed during the transition to active state is essential, since
it has direct impact on the overall energy reduction. The most effective techniques
to date are based on voltage manipulation: lowering the supply voltage, increasing
the bias voltages of the transistors inside the cell or a combination of both [92]. The
most straightforward voltage scaling approach to lowering standby leakage power
in memory sections is reducing its supply voltage, VDD. This method reduces
powers because of the voltage reduction and the leakage current reduction. The
leakage current varies exponentially as the VDD is increased [17, 47]. Using this

42

3.2. Flash and SRAM memories

approach, it has been shown that any SRAM cell has a critical voltage (called
the data retention voltage or DRV) at which a stored bit (0 or 1) is retained
reliably [17].

Qin et al. developed an analytical model of DRV to investigate the dependence
of DRV on process variations and design parameters [73]. However, as a result of
process variations, the cell’s DRV exhibits variation with an approximately normal
distribution having a diminishing tail, consequently the worst-case standby supply
voltage should be chosen, i.e. a voltage value that is larger than the highest
DRV among all cells in an SRAM. A test chip was implemented and measured,
demonstrating the feasibility of a leakage power reduction of 97% [73].

In contrast to the worst-case design, Kumar et al. proposed a more aggressive
reduction of the standby supply voltage using error-control coding to ensure reli-
able data-storage [14]. A memory architecture based on the Hamming code was
proposed with a predicted power reduction of 33% while accounting for coding
overheads [14]. However, this techniques should be carefully weighed against the
active and static power of the extra cells and components [92].

When a SRAM memory is in the sleep state, the memory cell needs to go back
from the data retention voltage to the active voltage, before an access could be
successfully achieved. The source voltage recovery causes the loading of internal
capacitances, with an associated energy cost. The transition delay from active
to sleep doesn’t have any impact since the next clock cycle another bock will be
accessed. On the contrary, when a block goes to active mode the processor must
stall until the VDD is reached. The maximum reactivation current and the wake-up
latency are strongly correlated. Calimera et al. [7] have proposed a new reacti-
vation solution that helps in controlling power supply fluctuations and achieving
minimum reactivation times of a few clock cycles at the cost of increased area.

In addition, as already indicated in Section 2.3.1 the effective power reduction
depends on the system parameters, in this case the leakage power reduction of the
sleep state and the wake-up energy of the memory, and the workload statistics.
Both factors are fundamental for a substantial energy savings.

3.2.3 Energy comparison: Flash vs. SRAM
As stated before, SRAM is the sole choice for read/write memory in small em-
bedded systems, mainly due to its very low power consumption. However, the
question about what it is the best option for program code and constants is still
unanswered. If the required clock frequency is not relative high, a natural alterna-
tive is the NOR-flash for executing in place. However, SRAM memory has some
interesting features as a substitution of flash, such as its lower read time and energy,
and, in case of a program update, substantively lower write energy. Additionally,
SRAM reaches higher frequency than Flash by several orders of magnitude.

In order to better compare and evaluate both technologies we used NVSim [33]2,
an estimation tool for non-volatile memories. This tool is based on the popular
CACTI estimation tool [105], but developed from scratch. Several technologies

2Project site: http://www.nvsim.org

43

Chapter 3. Memories for sensor nodes

Table 3.1: Read energy.

Read energy (J) HP LOP LSTP
Flash 11.036×10−9 11.925×10−9 14.299×10−9

SRAM 36.164×10−12 20.748×10−12 52.761×10−12

Table 3.2: Leakage power.

Leakage power (W) HP LOP LSTP
Flash 155.1×10−3 3.426 ×10−3 73.37×10−6

SRAM 1.805 105.0 ×10−3 703.4×10−6

are modeled including NAND Flash and SRAM memory. They claim that the
Flash memory modeled correspond to a NAND architecture. However, the access
times are close to the values reported for NOR memory [54]. Taking into account
the previous considerations regarding a similar read energy for both architectures,
we based our findings on the estimation given by NVSim. Hereafter, we refer to
this memory simply as Flash.

We also tried to verify the results with the data published by ITRS [57]. Nev-
ertheless, the reported values are useless since the given values are in terms of
current per cell, and do not consider the differences that arises by varying the
memory size.

We obtained the main characteristic parameters for Flash and SRAM for sev-
eral configurations, including three types of devices: high performance (HP), low
operating power (LOP) and low standby power (LSTP). HP devices aims at high
operating clock frequency, so that transistors have the highest performance and
the highest leakage current. LOP transistors have the lowest VDD for low operat-
ing power, trading lower performance and off-current. Finally, LSTP aims at the
lowest possible static power dissipation resulting in the lowest speed performance
and off-current (highest threshold voltage Vth) of the three [58]. The used memory
configuration was: 512 KB size and 64 bits word width 3.

The estimation tool outputs, among other results: the power leakage, the read
energy and latency. The later parameter correspond to the inverse of the maximum
operational frequency. The read energy, leakage power and maximum operational
frequency are shown in Table 3.1, Table 3.2 and Table 3.3, respectively.

The data from these tables are quite revealing in several ways. For both mem-
ory types the effects of choosing different transistor types are similar. The leakage
is reduced by 2500x when comparing HP with LSTP. The HP frequency is slightly
higher than LSTP (x5 in Flash and 1.5x in SRAM). The LOP is an intermediate

3For further details about the memory and cell configuration, please see the Ap-
pendix A.2 in page 90.

44

3.3. SRAM with sleep state

Table 3.3: Maximum frequency.

Maximum frequency (Hz) HP LOP LSTP
Flash 23.8×106 9.77×106 4.83×106

SRAM 5.66×109 4.36×109 3.37×109

case with an improvement respect to HP of 50x and 20x in leakage power reduc-
tion for Flash and SRAM respectively, at a cost of reducing a little the maximum
frequency (2.5x and 1.3x). There is no significant effect on the read energy, but
a small reduction when a LOP device is used. The higher reduction is 2.5x for
SRAM if compared to LSTP.

On the one hand, SRAM read energy is much lower than Flash memory, be-
tween 300x and 600x depending on the transistor type. On the other hand, the
SRAM leakage power is 10x higher if compared to Flash. Flash end up in a reduced
leakage power at the cost of increased read energy. The Flash cell does not leak, as
opposed to the flip-flop in SRAM cell. In contrast a simple differential read circuit
can not be used due to lower currents present in the read operation. Accordingly,
the trade-off between leakage power and read energy must be carefully evaluated.

The total read power of a memory depends on the operating frequency, through
the dynamic read power, and the leakage as static power. The average read power
can be expressed as,

Pread = Psta + Edynf f ≤ fmax (3.1)

where Psta is the static power and Edyn is the energy consumption per read cycle.
Fig. 3.9 shows the total power as a function of the frequency for Flash and

SRAM considering the different device types. From the curves we can graphically
appreciate some of the previous observations. The static power of Flash memory
is lower by 10x than SRAM for the respective device type and SRAM has higher
maximum frequency and lower read energy (slope of the curve) than Flash.

Considering that for different transistor types there are no significant differ-
ences in energy access, if there is no restrictions for performance, the reduced
leakage obtained from LSTP is preferred for Flash and SRAM. From Fig. 3.9 one
can see from the power curves that LSTP consumes less power than LOP up to
1 MHz and 3 GHz for Flash and SRAM respectively. Depending on the required
operation frequency range, the least power consuming memory can be chosen. For
example, a Flash memory (LSTP) consumes less power than the remainder mem-
ories but just up to 50 KHz, then SRAM memory (LSTP) is preferred up to 5
GHz, frequency from which SRAM memory (LOP) is preferred.

3.3 SRAM with sleep state
The technique presented in Section 3.2.2, in which the supply voltage is scaled
down, can be used to reduce the static power when the SRAM memory is idle. In

45

Chapter 3. Memories for sensor nodes

Figure 3.9: Flash and SRAM power consumption as a function of the operating frequency.

the case of the SRAM, the whole memory cell array is put in sleep state achiev-
ing important static power reduction. On the contrary, in Flash only would be
reasonable applied to peripheral circuit, since the leakage of memory cells is no
significant. As a result, in the case of Flash memory only marginal savings are
achieved.

The power saving potential of a SRAM memory with sleep state depends on
the memory parameters and the workload. The power consumed in the sleep
state is a fraction of the ready power, since we suppose that a technique based
on reducing the supply voltage is used to exponentially reduce the leakage. We
assume a reduction factor of the leakage in sleep state of 0.1, which is a common
value adopted in the literature [73,82,93].

Before a memory bank could be successfully accessed, the memory cells need
to go back from the data retention voltage to the standby voltage, which involves
the loading of internal capacitances. Since the path of the currents in this process
is similar to the path of the leakage currents, the wake-up energy is in a close
relation to the leakage energy. Nemeth et al. [82] computed the activation energy
and the leakage energy drain in one cycle, to find the proportionality constant.
In the literature it is reported that the proportionality constant respect to active
energy varies from about one [17] to hundreds [73].

The average power of a SRAM memory with sleep state can be expressed as,

Pread = Edynf̂d+ Pstad+ Pslp(1− d) + Ewkprwkp (3.2)

where Psta and Edyn are as defined in Eq. (3.1), and f̂ is the new operating
frequency. Additionally, Pslp is the leakage power in sleep state, d is the average

46

3.3. SRAM with sleep state

duty-cycle (i.e. the fraction of time the memory is read), rwkp the average wake-up
rate (i.e. the inverse of the average period), and Ewkp the wake-up energy.

The dynamic power remains unchanged, only that f̂ is 1/d times faster than
f , that is, f̂ = f/d with d < 1. In other words, the increased frequency leads to a
duty-cycle less than 100%, allowing the memory to enter in sleep state. Note that
we are considering a greedy policy for manage the memory, so that the memory
enters in sleep state whenever it is not active.

The last equation can be reformulated as,

Pread = P ∗sta + Edynf, (3.3)

where P ∗sta is an equivalent static power defined as

P ∗sta = Pstad+ Pslp(1− d) + Ewkprwkp. (3.4)

This value depends on the following memory parameters: static power of the
ready and sleep state, and the wake-up energy. Also depends on the workload,
through duty-cycle d, and the wake-up rate rwkp. The average power due to wake-
up transition from sleep to ready, Pwkp = Ewkprwkp, depends on the memory
(Ewkp) and its usage (rwkp).

Eq. (3.4) can be rewritten as:

P ∗sta = (Psta − Pslp +
Ewkp
τ

)d+ Pslp (3.5)

where τ the time the memory is in ready state, during which the memory is read.
We define Twkp = 1/rwkp the average time between wake-ups, so that rwkp = d/τ .
Then, if it holds

τ >>
Ewkp
Psta

=
Ewkp
Esta

Twkp, (3.6)

the wake-up contribution can be neglected.

Considering that the wake-up to static energy ratio ranges from one to hun-
dreds, we have that the wake-up contribution to the equivalent static power can
be disregarded, if the sleep time is tens to thousands clock cycles (applying the
10x rule of thumb to neglect a term). It was found that in average the sensor node
in average is in sleep state about ten milliseconds. The curves in Fig. 3.9 can be
recomputed considering the P ∗sta and find the range for which SRAM consumes
less. Let’s consider a duty-cycle of 1%, a leakage reduction power of 10x for the
sleep state respect to the normal leakage.

As shown in Fig. 3.10 a significant reduction in average power is obtained,
corresponding to the equivalent static power. For high frequencies the dynamic
energy is more significant and the average power reaches the levels corresponding
to the memory without power management. For frequencies up to 300 MHz the
more energy-efficient memory is the SRAM-LSTP with power management.

47

Chapter 3. Memories for sensor nodes

Figure 3.10: Flash, SRAM and SRAM with sleep state power consumption as a function of
the operating frequency.

3.4 SRAM with power-manageable banks
The SRAM with sleep state, presented in the previous section, minimize the av-
erage power consumption taking advantage of the system idleness, by putting the
whole memory in a low leakage state to reduce the drain of static power.

A SRAM memory is usually partitioned in banks to reduce the dynamic power.
As stated previously, in Section 3.2.2, a memory bank is a fully-functional unit,
and only one bank is active at a time. Since only one bank is active per access, the
remaining idle banks could be put into the sleep state to save power. Partitioning
a memory in banks, incurs in energy overhead that needs to be considered.

The SRAM memory with power-manageable banks adds to each bank a sleep
circuit to put the bank in low-leakage state. These sleep circuits are controlled by
the power manager.

3.4.1 Memory energy model
In this section we model the energy consumption of a SRAM memory with power-
manageable banks. First, we revisit the model derived in the previous section
for a monolithic SRAM memory with a sleep state, but in this case we derive an
expression as a function on the respective energy per cycle. Next, the dependence
of the energy on the memory size is modeled. Then, we derive an expression of the
energy consumption for this memory without considering the partition overhead.
Finally, the partition overhead is included and the effective energy consumption
expression found.

48

3.4. SRAM with power-manageable banks

Basic energy model
Up to this point, the power consumption has been modeled considering the power
as the sum of the static power and the dynamic power, the latter computed as
the dynamic energy multiplied by the operating frequency (Pdyn = Edynf). If a
sleep state was available, and a duty-cycle defined, the average power was com-
puted. This simple model served to study the power consumption dependency on
frequency.

Henceforth, it assumed the system (processor and memory) operates at a fixed
frequency. Therefore, memory consumption is conveniently modeled in terms of
energy per cycle, as follows.

The static power consumed by a memory depends on its actual state: ready or
sleep. During the ready state read cycles can be performed, but not in the sleep
state. Since the memory remains in one of these states for a certain number of
cycles, the static energy consumed can be expressed in terms of energy per cycle
(Erdy and Eslp) and the number of cycles in each state. Each memory access,
performed during the ready state, consumes a certain amount of energy (Eacc).
The ready period during which memory is accessed is usually called the active
period, and the total energy spent corresponds to the sum of the access and the
ready energy (Eact = Eacc + Erdy), i.e., the dynamic and static energy. On the
other hand, the ready cycles without access are called idle cycles, consuming only
static energy (Eidl = Erdy). Each state transition from sleep to active (i.e. the
wake-up transition) has an associated energy cost (Ewkp) and a latency penalty,
considered in Section 4.3.3.

Based on the parameters defined above, the total energy consumption of a
memory, when n cycles have elapsed, can be defined as

E = Eactnact + Eidlnidl + Eslpnslp + Ewkpnwkp, (3.7)

where nact, nidl and nslp are the number of the cycles in which the memory is in
active, idle and in sleep state respectively, and nwkp is the number of times the
memory switches from sleep to active state. We define the ratios rk = nk/n for
k ∈ {act, idl, slp, wkp} where n is the elapsed number of cycles. So the average
energy per cycle is

Ē = Eactract + Eidlridl + Eslprslp + Ewkprwkp. (3.8)

Fig. 3.11 depicts the power consumption profile of a memory, based on this
model in which it is considered the average power (energy) per cycle. For illus-
trating purposes the static power is selected as reference, and the remainder terms
are shown as a function of the static level in logarithmic scale. Fig. 3.11 (left side)
shows in blue the static power depending on the state: sleep in light blue, and
ready in dark blue. The access energy is represented in red, and the wake-up en-
ergy in dark red each time there is a transition from sleep to ready state. Fig. 3.11
(right side) shows the same profile, in which access energy is combined with the
ready energy to constitute the active energy, shown in green, and the ready cycles
without access are identified as idle cycles.

49

Chapter 3. Memories for sensor nodes

Figure 3.11: Energy consumption model.

Energy variation with memory size

The basis of memory banking is that the energy increases with the size of the
memory. Consequently, if a single bank memory is partitioned in several banks,
each bank is expected to reduce its energy consumption. In order to evaluate the
energy saving appropriately when a banked memory is adopted, we next model the
energy consumption of a memory as a function of its size. The energy values in
Eq. (3.8), Eact, Eidl, Eslp and Ewkp, are generally considered simply proportional
to the size of the memory [47]. We investigated the dependence of the involved
parameters on the memory size, mainly using an estimation tool, CACTI [105].
However, not all parameters can be obtained from CACTI.

Table 3.4 lists the energy parameters and the used method to find the respective
values. CACTI outputs the dynamic energy and the leakage power. The former
value corresponds to the access energy of our model (Eacc). The leakage power was
used to calculate the leakage energy per cycle, i.e., the idle energy of our model
(Eidl), at the lowest maximum operating frequency among all memory sizes. The
active energy (Eact) was directly computed (dynamic plus leakage).

The remaining energy parameters are not calculated by CACTI, so these values
were estimated.

Similarly to the case of the SRAM with sleep state, we assumed that a tech-
nique based on reducing the supply voltage was used to reduce the leakage. There-
fore, the energy consumed per cycle in the sleep state (Eslp) was a fraction of
the idle energy. We assume that the leakage power in sleep state is 0.1 the idle
power [73,93].

Based on the limit values found in the literature for the wake-up energy cost
(one [17] and hundreds [73]), we considered three different values to asses the
impact of the wake-up cost on the energy savings, the aforementioned values, i.e.,
one and one hundred, and an intermediate value of ten.

We followed the described method to get a set of parameters for each memory
size, ranging from 512 B to 256 KB (in a sequence of power of two), in order to
model the dependence of the memory energy with its size. The CACTI mem-
ory configuration was set for a pure RAM memory, one read/write port, 65 nm
technology and a high performance ITRS transistor type. Each energy parameter
was considered at a time and the values varying the memory size were fitted to a

50

3.4. SRAM with power-manageable banks

Table 3.4: Energy parameters and method to find the respective values.

Parameter Method
Eacc read access: CACTI estimation
Eidl leakage: CACTI estimation
Eact direct calculation: Eacc + Eidl
Eslp estimation, Eidl/10
Ewkp estimation, K · Eact, K = {1, 10, 100}

Table 3.5: Energy curve parameters as function of memory size.

Parameter a (nJ/B) b (adim.) Model
Eidl 3.28× 10−7 1.09 linear function
Eslp Eidl/10 same as Eidl linear function
Eacc 7.95× 10−5 0.48 square root function
Eact 1.78× 10−6 0.96 linear function
Ewkp K · Eact, K = {1, 10, 100} same as Eact linear function

power function E(S) = aSb (least-square method), where E(S) is the energy per
cycle and S the memory size. The resulting fitting coefficients (the proportionality
constant a and the exponent b) and the model adopted are presented in Table 3.5.
Figure 3.12 shows all the energy estimated values and the fitted curves.

Figure 3.12: Energy consumption per cycle as a function of the memory size.

The dependence on the memory size of the energy parameters obtained directly
from CACTI can be explained by examining the simulation output and analyzing

51

Chapter 3. Memories for sensor nodes

the relative contribution of each memory component [102]. The leakage energy in
idle state grew nearly linearly, because the memory-cell leakage represented about
70% of the total energy and the number of memory-cells was directly proportional
to the memory size. The access energy varied approximately as the square root of
the size. It can be observed that between 70% and 80% of the dynamic energy come
from bit-lines, sense amps, and other resource shared between memory-cells. The
active energy (access plus idle, dynamic plus leakage), finally ended up varying
almost linearly with size (exponent equal to one), because the leakage energy
becomes more important than the dynamic energy with increasing size. However,
for small footprints a exponent less than one or a polynomial model should be
used.

Hereafter, for sake of simplicity, we will work based on simple models, that is
the active, idle, sleep and wake-up energy are proportional to the memory size:

Ek(S) = akS (3.9)

for k ∈ {act, idl, slp, wkp}, where S is the memory size in bytes, and ak is the
corresponding constant of proportionality in Table 3.5.

Energy consumption expression
Using Eq. (3.9) the energy consumption of a bank of size s in a banked memory
of total size S can be modeled as

Ek(s) = Ek
s

S
, (3.10)

where Ek = akS is the corresponding energy consumption per cycle of the whole
memory.

Now, considering a banked memory of N equally sized banks Eq. (3.10) becomes

Ek

(
S

N

)
=
Ek
N
. (3.11)

The total energy consumption per cycle of the whole banked memory can be
found adding each bank energy contribution,

ĒN =
N∑
i=1

(
Eact
N

racti +
Eidl
N

ridli +
Eslp
N

rslpi +
Ewkp
N

rwkpi

)
, (3.12)

where the first three terms of the sum represent the active, idle and sleep energy as
a function of the fraction of active, idle and sleep cycles respectively performed by
each bank i. The last term of the sum represents the wake-up energy as a function
of the average wake-up rate of each memory bank, that is, the average number of
cycles elapsed between two consecutive bank transitions from sleep to active (for
example, one transition in 1000 cycles).

The Eq. (3.12) can alternatively rewritten as

ĒN =
Eact
N

N∑
i=1

racti +
Eidl
N

N∑
i=1

ridli +
Eslp
N

N∑
i=1

rslpi +
Ewkp
N

N∑
i=1

rwkpi , (3.13)

52

3.4. SRAM with power-manageable banks

where each term represents the energy of each kind of contribution, i.e., active,
idle, sleep and wake-up.

Let’s focus on the sleep energy contribution together, particularly in the sum-
mation. The total number of cycles is n = nacti + nidli + nslpi for all banks, so
racti + ridli + rslpi = 1. Then

N∑
i=1

rslpi =
N∑
i=1

1− racti − ridli (3.14)

And since there is only one bank active per cycle, the sum of the active cycles
for all banks is the total number of cycles, in other words

N∑
i=1

racti = 1 (3.15)

so Eq. (3.14) simplifies to

N∑
i=1

rslpi = N − 1−
N∑
i=1

ridli (3.16)

Finally, substituting Eq. (3.16) in Eq. (3.13), the total energy consumption per
cycle is

ĒN =
Eact
N

+
N − 1

N
Eslp +

Eidl − Eslp
N

N∑
i=1

ridli +
Ewkp
N

N∑
i=1

rwkpi . (3.17)

A preliminary analysis of the Eq. (3.17) shows that, in a memory with power-
manageable banks, the active energy consumption is reduced by N relative to the
monolithic memory. This is due to the fact that only one bank, which is one N th

the size of whole memory, is active at a time. The remaining N − 1 banks are in
sleep state, consuming a fraction (N − 1)/N of the total sleep energy. The third
term corresponds to the idle energy and the last term to the wake-up energy, and
both depend on the respective accumulated cycles ratio among the banks.

Effective energy consumption
The partitioning overhead must be considered to determine the effective energy
consumption. A previous work had characterized the partitioning overhead as a
function of the number of banks for a partitioned memory of arbitrary sizes [73].
The hardware overhead was due to an additional decoder (to translate addresses
and control signals into the multiple control and address signals), and the wiring to
connect the decoder to the banks [11]. As the number of memory banks increases,
the complexity of the decoder was roughly constant, but the wiring overhead in-
creases [73].

Table 3.6 reproduces the data presented in the aforementioned work, where
the percentages are relating to the active energy. Fig. 3.13 shows graphically the

53

Chapter 3. Memories for sensor nodes

Table 3.6: Partition overhead as function of the number of banks (values extracted from [73]).

Number of banks 2 3 4 5
Overhead 3.5% 5.6% 7.3% 9%

Figure 3.13: Partition overhead.

partition overhead as a function of the bank partitions. It can be clearly seen
that the partition overhead is proportional to the active energy of an equivalent
monolithic memory and roughly linear in the number of banks. The resulting
overhead factor is approximately 1.8% per bank (also shown in the Figure).

Consequently, the relative overhead energy can be modeled as:

EovhdN = kovhdNEact. (3.18)

In this work, the memory is partitioned into equally-sized banks. As a result the
overhead is expected to decrease, leading to a lower value for the overhead factor.
In order to asses the impact of the partition overhead, we keep the overhead factor
as a design parameter.

Finally, the energy consumption of the banked memory, considering the parti-
tion overhead is

ĒN =
Eact
N

+
N − 1

N
Eslp +

Eidl − Eslp
N

N∑
i=1

ridli +
Ewkp
N

N∑
i=1

rwkpi + kovhdNEact.

(3.19)
The energy consumption is expected to decrease as more banks are added,

however the partition overhead grows with the number of banks. Presumably,
there exist an optimum number of banks for which the energy consumption is
minimized.

54

3.5. Summary and conclusions

This model is used in the next chapter to determine the energy savings achieved
using a banked memory with power-manageable banks, when compared to a mono-
lithic memory. Also, the optimum number of banks is determined as a function of
the memory parameters and the workload.

3.5 Summary and conclusions
Programmable processors relay in memories to hold the program instructions and
temporal data. These memories are responsible of a significant part of the power
budget in sensor nodes. Energy-efficient memory design represent an opportunity
to further reduce the energy consumption in sensor nodes, enabling a broader
adoption of the wireless sensor networks. In this chapter we reviewed existing
options for memories in sensor networks.

The processor needs two kinds of memory, albeit could be the same technology,
a read-write memory and non-volatile memory. Emerging non-volatile technolo-
gies, such as FRAM, are an interesting option for applications that need to write
non-volatile data intensively. However, they not present any clear advantage as
a direct substitution of Flash memory for code memory. In embedded system,
NOR-Flash memory is typically used as non-volatile code memory, and SRAM
as temporal data memory. Despite the code can be executed directly from non-
volatile memory (NOR Flash), sometimes it is first copied from a non-volatile
storage (NAND Flash) to SRAM at boot time, and later executed from SRAM.
Usually, the rationale behind this choice is to achieve higher performance. Ad-
ditionally, SRAM consumes less power than Flash for increasing frequency. On
the contrary, Flash is more efficient at lower frequencies, since static power dom-
inates over dynamic power, and Flash benefits from its low-leakage memory cell.
However, a SRAM memory with a sleep state could be more energy efficient for
a wide range of frequency. This memory reduces the static power by putting the
whole memory in a low-leakage state when it is idle. This simple technique is very
profitable in low duty-cycle system with relative long idle periods.

Additionally, a SRAM banked memory has the attribute that only one bank
is active per access. SRAM with power-manageable banks can put the idle banks
into the sleep state, reducing the leakage power even in always-on operation (100%
duty-cycle). The bank energy is reduced by the number of banks, compared to
the energy of the equivalent monolithic memory. On the other hand, before a
bank could be accessed, it must be reactivated with an associated energy cost.
Furthermore, partitioning the memory in independently manageable banks has an
energy overhead. Consequently, the number of bank should be carefully selected.

The event-driven nature of sensor nodes is highly exploited by this last memory
architecture. In the next chapter this memory is further analyzed, considering
different power management strategies.

On the other hand, optimized memory hierarchies previously proposed, as those
including cache and scratch-pad memories, are not well-suited for wireless sensor
network applications. This is because the nodes normally don’t have a compute-
intensive kernel, and the access to memory are more evenly spread. The more

55

Chapter 3. Memories for sensor nodes

refined proposed architecture could be used as a single memory or adopted in any
other hierarchies, in wireless sensor networks or in other event-driven application
context.

56

Chapter 4

Banked memory for sensor nodes

The fundamental idea behind a memory with power-manageable banks is that
only one bank is active per access, and the remaining idle banks can be put into
the sleep state. The memory architecture relies on that banks can be individually
managed to control its power state, so that they are able to enter in a low-leakage
sleep state to reduce the static power. However, the transition from sleep state to
the ready state has an energy cost by itself. As a consequence, the leakage saving
on the sleep state should compensate this bank wake-up cost. The overall wake-
up energy cost considering all banks can be minimized by properly allocating the
program code into the different banks. Highly correlated memory blocks allocated
to the same bank leads to a bank access pattern with a high temporal locality,
thus reducing the number of wake-ups. Hence, the total wake-up fraction across
the banks is very low and the energy saving maximized. On the other hand,
the partitioning overhead due to sleep transistors, extra wiring and duplication
of address and control logic limit the number of banks that effectively reduce the
energy consumption. So that, the partition overhead must be taken into account
to find the optimum number of banks.

In this chapter it is explored in depth the memory introduced last in the
previous chapter, and its potential in the context of wireless sensor networks as
duty-cycled systems. The first section presents the proposed architecture and
methodology to greatly profit the memory structure and achieve huge energy sav-
ing. Different power management strategies options are described, and greedy and
best-oracle are selected for evaluation. The second section reviews related work
and highlights the main differences with the present work. The third section derive
expressions for the energy saving considering both power management policies, in
the case the memory is continuously accessed, that is, there is always an active
bank. The next section considers a memory with power-manageable banks which
it is also duty-cycled as a unit.

We conclude the chapter with a summary, including a brief discussion.

Chapter 4. Banked memory for sensor nodes

Figure 4.1: Block Allocation to banks.

4.1 Proposed architecture and methodology
A SRAM memory with power-manageable banks is composed by a memory cell
array divided in banks, each of which has a sleep circuit to put the bank in low-
leakage state, and a power manager that controls the bank states.

The memory consumption is given by the Eq. (3.19) derived in Section 3.4,
reproduced here for ease of reference,

ĒN =
Eact
N

+
N − 1

N
Eslp+

Eidl − Eslp
N

N∑
i=1

ridli+
Ewkp
N

N∑
i=1

rwkpi+kovhdNEact. (4.1)

The energy consumption depends on energy memory parameters, number of
banks, resulting idle cycles ratio and wake-up rate, and partition overhead. Given
the characteristic parameters of the memory, including the partition overhead, the
user should choose the number of banks to finally allocate the memory content into
the banks. The memory content must be distributed among the banks with the
objective of minimizing the energy consumption. For that, the memory content is
divided in blocks, the allocation unit, which are mapped to banks using a specified
method. Fig. 4.1 depict the procedure in which the code blocks are allocated to
memory banks.

The proposed methodology for distributing the code to banks is shown in
Fig. 4.2. The method is based on using a memory access trace to solve an op-
timization problem. The hypothesis behind this methodology is that execution
workload has the same statistical properties than the workload used during the
optimization phase. The application binary program is divided in memory blocks,
e.g. basic blocks or any other arbitrarily defined. Then, the memory access trace
is obtained by simulation or execution of the program to get the access trace to the
defined blocks. The access pattern to blocks and a memory configuration are input
to the optimization solver that outputs the block-to-bank mapping that minimizes
the energy consumption of the banked memory. The optimization also outputs
the activation signals that control when a bank is sleeping or ready to be accessed.

58

4.1. Proposed architecture and methodology

Figure 4.2: Design flow.

The memory configuration specifies the number of banks, the memory energy pa-
rameters, and the power management strategy used to control the banks states.
Next, the energy saving is obtained by simulating the application execution from
the banked memory, in which the original program code was reallocated among
the banks.

The process may be repeated for different numbers of banks to find the opti-
mum number by simply comparing the obtained energy saving in each step. In
addition, at design time the power management strategy could be modified to asses
its impact on the energy saving.

The user may configure the memory using the procedure described above; or
conversely, he or she could set the number of banks based on an estimation from
the memory parameters only. The estimated number of banks may result in a
suboptimal solution, however it can be used to narrow the search space to its
neighborhood. Nevertheless, the memory content needs to be allocated to banks
using the block-to-bank map provided by the optimization solver. The binary
of the application, specified as a relocatable object file (e.g. elf format file), is
modified using a patching tool (as proposed by [3] and [77,111]) so that the blocks
are rearranged to the banks.

Before applying the patch tool, the block-to-bank map must be completed,
i.e. all banks have a corresponding bank. It can be possible that the trace used
to determine map, do not cover the 100% of the executable. Thus, the remaining
blocks must be allocated to available banks using a complementary algorithm based
on some heuristic.

4.1.1 Memory power management
The memory bank states (sleep or ready) are defined using a given power manage-
ment strategy. This strategy defines when a bank is put in sleep state and when it
is woken up, and therefore includes the information if a bank remains in idle state
even if it is not accessed. The basis of the chosen strategy may range from a very
simple one to highly sophisticated prediction algorithms [18]. The energy savings
may depend much on the adopted strategy. Taking this into account, we consider
two power management strategies: a simple greedy policy and the best-oracle pol-
icy, as defined in 2.3.2. In the greedy strategy, as soon as a memory bank is not
being accessed it is put into sleep state. The greedy policy is one of the simplest
possible management schemes. Conversely, an best-oracle policy is based on the

59

Chapter 4. Banked memory for sensor nodes

best prediction algorithm in the sense that follows. The optimization takes into
account the whole access trace, including information of future access, to obtain
the schedule of bank states that maximize the energy savings. In this way, we are
able to assess the energy saving using two algorithms in opposite ends in terms of
complexity.

Subsequently, the power management module must implement the algorithm
in hardware. At run time it must manage the bank states in accordance with the
access patterns to the banks. The implementation of the greedy power manage-
ment is straightforward. As soon as a new bank is accessed, it is woken up and the
previously active bank is put in sleep state. The performance of the best-oracle
policy that was obtained at the optimization stage can not be achieved at run time,
since there is no practical prediction algorithm that can beat the off-line optimum
oracle strategy. As a consequence, the energy saving obtained by the best-oracle
policy represents the maximum achievable savings using any power management.

The power management may be implemented locally, in case of greedy or time-
out policy, or centrally, if global and historical information should be considered to
decide which and when is wake-up or put in sleep state. In any case a stall signal
is needed to stop the processor until the corresponding bank is in ready state. The
control for greedy policy is straightforward, while for time-out policy a monostable
or a chain of flip-flops can be used to hold the needed clock cycles until the bank
is ready for accessing.

4.2 Related work
SRAM memory banking along with power management to put memory banks into
a sleep mode is a well known technique. Farrahi et al. [41] initially presented
the memory partitioning problem to exploit the sleep mode operation to minimize
power consumption, showing that it is a NP-hard problem, and that some special
classes are solvable in polynomial time. Results were obtained for a set of synthetic
data, randomly generated with controlled parameters, and the effectiveness of the
algorithm was assessed by comparing to a random partitioning algorithm.

This idea of reducing energy consumption by increasing memory elements idle-
ness have been applied to scratch-pad and cache memories, in applications with
high performance requirements (see Loghi et al. [73] for a brief survey).

Focusing on SRAM memory partitioning, Benini et al. [11] applied this tech-
nique to highly data-intensive application (e.g., digital filtering, transformations,
stream processing), which contain few control conditions. They proposed a re-
cursive bi-partitioning algorithm to solve the memory partitioning problem using
simulated execution traces of a set of embedded applications. Golubeva et al. [47]
continue this line of investigation, considering the availability of a low-leakage sleep
state for each memory block in a scratch-pad memory. The partition algorithm
proposed is based on a randomized search in the solution space. Finally, Loghi
et al. [73] proposed an optimal partitioning algorithm based on an implicit enu-
meration of the partitioning solutions. They proved a theoretical property of the
search space, exploited to reduce the number of partition boundaries to be enu-

60

4.3. Energy saving expressions

merated, making exhaustive exploration feasible. A set of applications taken from
the MiBench [48] application suite were used to get execution traces. These works
consider splitting the address space into multiple, contiguous memory banks. Con-
sequently, the partition algorithm is restricted to finding the optimal boundaries
between the memory banks.

Ozturk and Kandemir [84] proposed a series of techniques starting with the
relocation and merge of memory blocks of the address space into memory banks, re-
laxing the aforementioned restriction. They formulated each of these techniques as
an ILP (integer linear programming) problem, and solved them using a commercial
solver. They target also data-intensive embedded applications (e.g. multimedia
processing: image and video), which manipulates multidimensional arrays (with
affine subscript expressions) of data using a series of nested loops (with compile
time known bounds). Therefore, a static compiler analysis is used to extract data-
access patterns, which in turn are the input for finding the solution. The explored
techniques include nonuniform bank sizes, data migration, data compression, and
data replication.

All mentioned works report energy savings in terms of a relative percentage of
some baseline, i.e., the consumption of an equivalent monolithic memory. However,
the presented results not only depend on the proposed technique, the memory
architecture or the particular case study, but also on the selected technology. Since
different technologies were chosen in each work, the comparison between them is
difficult.

We follow a methodology similar to the one employed in [84], detailed in the
previous section, in which a memory access trace is used to solve an optimiza-
tion problem for allocating the application memory divided in blocks to memory
banks. Our work differs from the previous literature in three main aspects. First,
we propose using banked memories with power management for code memory,
in this case in WSN, exploiting the event-driven characteristics of this class of
application [102]. We derive expressions for energy savings based on a detailed
model that favors the analysis of the different factors determining the effective
energy saving [102]. Second, we address the power management issue obtaining
results for a greedy policy [104], one of the simplest possible management scheme,
and a best-oracle policy, representing the best prediction algorithm. Finally, we
assess the benefit of whether or not to adopt an advanced memory bank state
management, as a function of different wake-up energy costs [103].

4.3 Energy saving expressions
In this section we derive expressions for the energy savings of a memory of equally
sized banks with two different management schemes: greedy and best-oracle. Ini-
tially, the partition overhead is not considered, for the sake of simplicity. Next, this
overhead is included to find an expression for the effective energy saving. Also, a
formula for an estimated optimum number of banks is given, based only on mem-
ory constructive parameters: energy consumption values and partition overhead
as a function of the number of banks. Finally, the energy saving is determined

61

Chapter 4. Banked memory for sensor nodes

in the case the memory is also duty-cycled completely, that is, all banks enter in
sleep state.

4.3.1 Energy saving for the greedy policy
When a greedy strategy is used each bank is either in active or sleep state (there are
no idle cycles), ridli = 0, and from Eq. (4.1) (disregarding the partition overhead
contribution) one obtains:

ĒgreedyN =
Eact
N

+
N − 1

N
Eslp +

Ewkp
N

N∑
i=1

rwkpi . (4.2)

We define the energy savings of a banked memory as the relative deviation
of the energy consumption of a single bank memory which is always active (i.e.
N = 1, so that Ē1 = Eact)

δE =
E1 − ĒN

E1
. (4.3)

Thus, the energy saving of a banked memory of N uniform banks is

δEgreedyN =
N − 1

N

(
1−

Eslp
Eact

)
− 1

N

Ewkp
Eact

N∑
i=1

rwkpi . (4.4)

The first term is related to active consumption reduction, coming from having
N −1 banks in sleep state and only one bank in active state. The last term, which
is related to the cost of wake-ups, depends on the accumulated wake-up rate among
the banks. It is directly proportional to the wake-up to active energy ratio and
inversely proportional to the number of banks.

In order to maximize the energy saving in a memory having N uniform banks,
the optimization algorithm must minimize the accumulated wake-up rate. Note
that the optimum content distribution among the banks does not depend on the
wake-up cost, but rather the wake-up cost determines the final energy saving.
However, the allocation of blocks to banks must consider the bank size constraint.
Finally, the energy saving can be improved by increasing N and at the same time
keeping the accumulated wake-up rate low.

The maximum achievable saving corresponds to the sleep to active rate, which
is equivalent to have the whole memory in sleep state, but one bank in active state.

Even so, the partition overhead limits the maximum number of banks and
reduces the achieved savings.

4.3.2 Energy saving for the best-oracle policy
Consider a memory with a power management, different from greedy, by means of
which a bank may remain in idle state, even if it will not be immediately accessed.

62

4.3. Energy saving expressions

Figure 4.3: Energy comparison: stay in idle state vs. enter in sleep state (y-axis in logarithmic
scale).

In a similar way to the greedy policy, the expression for the energy savings can be
determined as:

δEoracleN =
N − 1

N

(
1−

Eslp
Eact

)
− 1

N

(
Eidl − Eslp

Eact

) N∑
i=1

ridli −

− 1

N

Ewkp
Eact

N∑
i=1

rwkpi . (4.5)

Compared to Eq. (4.4), Eq. (4.5) has an additional term, which is related to the
energy increase caused by the idle cycles. This does not necessarily imply that the
energy saving is reduced. On the contrary, if the banks are controlled by the best-
oracle policy, the accumulated wake-up ratio decreases achieving higher energy
savings. Fig. 4.3 depicts the situation in which the bank consumes less energy
staying idle (dark blue), than entering in sleep state to later waking up (unfilled).

Note that the expression for the ideal power manager (best-oracle policy) and
any other policy different from greedy is the same. The difference is that, in the
case of best-oracle, the memory content allocation to banks was optimal at design-
time, so that at run time the energy is minimized by optimally, again, controlling
the bank states. Consequently, the idle cycles ratio and the wake-up rate resulting
from best-oracle, leads to the lowest energy consumption.

4.3.3 Effective energy saving
As mentioned previously, the wake-up transition from sleep to active state of a
bank memory has an associated latency. This latency forces the microprocessor
to stall until the bank is ready. The microprocessor may remain idle for a few
cycles each time a new bank is woken up, incrementing the energy drain. This
extra microprocessor energy can be included in the bank wake-up energy and
for simplicity we will not consider it explicitly. Moreover, if the wake-up rate is
small and the active power of the microprocessor is much higher than idle power,
this overhead can be neglected. Additionally, the extra time due to the wake-up
transition is not an issue in low duty-cycle applications, since it simply increases
the duty-cycle slightly.

63

Chapter 4. Banked memory for sensor nodes

The partitioning overhead must be included to assess the effective energy con-
sumption. As was mentioned in Section 3.4.1, the energy increase is proportional
to the active energy of an equivalent monolithic memory and it is approximately
linear with the number of banks, resulting in an overhead factor of approximately
1.8% per bank.

Consequently, the relative overhead energy can be found dividing the energy
overhead, Eq. (3.18), by the energy of an equivalent monolithic memory, obtaining

δEovhdN = kovhdN. (4.6)

The effective energy saving δEeffN is calculated subtracting Eq. (4.6) from
Eq. (4.5). This expression applies for both policies, and the effective saving for the
greedy strategy is obtained by setting ridli equal to zero for all banks. The number

of banks that maximize the effective energy saving can be determined from δEeffN

finding its maximum.
δEeffN presents a maximum for

Nopt =

√√√√ 1

kovhd

[(
1−

Eslp
Eact

)
+

(
Eidl − Eslp

Eact

) N∑
i=1

ridli +
Ewkp
Eact

N∑
i=1

rwkpi

]
. (4.7)

It can be seen that the optimal number of banks depends on the memory
parameters and the resulting access pattern to the memory. The optimal number
of banks, and also the effective energy saving achieved, grows with decreasing
partition overhead factor. With regards to behavioral dependence, how effectively
the memory content was allocated to banks at design time, and the performance
of power management policy at run time, have influence in the last two terms
multiplying the inverse of the overhead factor.

From the previous formula, an estimated value of the optimum number of
banks can be found, based only on the memory constructive parameters (energy
consumption values and partition overhead). Obviously, this estimation is general
and independent of the application and run-time behavior. The estimated value
agrees with the optimum number of banks, as long as the wake-up contribution is
relatively small. Note that in the best-oracle policy, the idle energy cycles came in
to reduce the overall energy consumption, so if the wake-up energy decrease, the
idle energy also drops.

The maximum energy savings is defined for both cases for null wake-up con-
tributions:

δEmaxN =
N − 1

N

(
1−

Eslp
Eact

)
− kovhdN. (4.8)

Finally δEmax presents a maximum for

N est
opt =

√
1

kovhd

(
1−

Eslp
Eact

)
, (4.9)

obtaining the described estimation of the optimum number of banks (or near op-
timum number of banks).

64

4.4. Energy saving in a duty-cycled memory

4.4 Energy saving in a duty-cycled memory
Let us consider first a monolithic memory with sleep state, but unlike the case
analyzed in Section 3.3, we include a power management different from greedy, so
that the memory may remain idle without entering in sleep state.

The basic energy model derived in Section 3.4.1 is reproduced here for the sake
of convenience,

Ē = Eactract + Eidlridl + Eslprslp + Ewkprwkp,

where the energy parameters and the cycles ratio refers to the whole memory.
Next, the active cycles ratio ract, is replaced by the usual notation d for the

duty-cycle (d = ract), and since the memory is in one only state at a time, the
following substitution is made, rslp = 1 − d − ridl. Finally we obtain the average
energy consumption per cycle of a memory with sleep state.

Ē = (Eact − Eslp)d+ Eslp + (Eidl − Eslp)ridl + Ewkprwkp. (4.10)

Subsequently, based on the model of the memory with power-manageable
banks, an expression for the energy consumption is derived.

The energy consumption per cycle is given by Eq. (3.13), and for easy reference
we reproduce it here (partition overhead not included yet),

ĒN =
Eact
N

N∑
i=1

racti +
Eidl
N

N∑
i=1

ridli +
Eslp
N

N∑
i=1

rslpi +
Ewkp
N

N∑
i=1

rwkpi .

It holds that for any bank,

racti + ridli + rslpi = 1. (4.11)

In other words each bank spends cycles in one of the possible states.
Besides, the duty-cycle, d, is

N∑
i=1

racti = d, (4.12)

since one bank is active at a time, and the total active cycles corresponds to global
duty-cycle.

The partition overhead increase the consumption only when the memory is
active state,

EovhdN (d) = kovhdNEactd. (4.13)

Using the definitions above we get

ĒN (d) =
Eact − Eslp

N
d+Eslp+

Eidl − Eslp
N

N∑
i=1

ridli +
Ewkp
N

N∑
i=1

rwkpi +kovhdNEactd.

(4.14)

65

Chapter 4. Banked memory for sensor nodes

Needless to say, for a memory with only one single manageable bank (i.e.
N = 1), or for a duty-cycle of 100% (i.e. d = 1), we get the respective expressions
previously found.

In order to easily compare a memory with power-manageable banks with a
monolithic memory, we draw the following definitions. We say that the memory
is in active state when any of its banks is active, and that it is in sleep state if all
its banks are in sleep state. Similarly, the memory is idle if all its banks are idle.
The idle cycles of a bank are discriminated in idle cycles during which another
bank is active (r̂idli) hence the memory is active, and global idle cycles (ridl) when
the memory is idle. The same applies the wake-up rate, differentiating between
bank wake-ups (r̂wkpi) when the memory is active, form memory wake-ups (rwkp).
Then,

N∑
i=1

ridli =

N∑
i=1

ridl + r̂idli = Nridl +

N∑
i=1

r̂idli (4.15)

and,
N∑
i=1

rwkpi =

N∑
i=1

rwkp + r̂wkpi = rwkp +

N∑
i=1

r̂wkpi . (4.16)

Note that, in the first equation, the global idle ratio is multiplied by N , since when
there is global idle cycles, all banks are idle. In the case of wake-ups, the global
wake-up ratio term is alone, since when takes place a global memory wake-up only
the corresponding bank is waken up, and not the whole memory.

Substituting Eq. (4.15) and Eq. (4.16) in Eq. (4.14),

ĒN (d) =
Eact − Eslp

N
d+ Eslp + (Eidl − Eslp)ridl +

Ewkp
N

rwkp

+
Eidl − Eslp

N

N∑
i=1

r̂idli +
Ewkp
N

N∑
i=1

rwkpi + kovhdNEactd. (4.17)

Comparing the energy consumption of a monolithic memory, Eq. (4.10), and
a memory with power-manageable banks, Eq. (4.17), it can be appreciated the
following differences:

Ewkprwkp →
Ewkp
N

rwkp

(Eact − Eslp)d → (Eact − Eslp)
d

N
+
Eidl − Eslp

N

N∑
i=1

r̂idli + (4.18)

+
Ewkp
N

N∑
i=1

r̂wkpi + kovhdNEactd

Interestingly, the first difference states that the wake-up energy is reduced by
N , since only one bank is waken up, instead of the whole memory. The second
difference can be interpreted as the memory in active state benefits form individ-
ually managing banks, reducing the energy consumption. The previous findings

66

4.5. Summary and conclusions

related to a memory continuously accessed, studied in the last section, are valid
for the active state.

If the power management policy is greedy, for the whole memory and also for
controlling individually the bank states, the energy consumption is

ĒN (d) = Eact
d

N
+ Eslp

(
1− d

N

)
+
Ewkp
N

(
rwkp +

N∑
i=1

rwkpi

)
+ kovhdNEactd

(4.19)
From the equation above it is even more straightforward to interpret that

banking reinforce the saving of duty-cycling, having an equivalent effect of further
reducing the duty-cycle by N . On the other hand, if the duty-cycle is low enough,
the energy reduction might not be significant. The latter depends on the relative
weight of the sleep energy relative to the active energy, and obviously, the wake-up
energy contribution.

Note that, in this case, we had not drawn an expression for the energy saving
relative to a single bank memory with sleep state. This is because it would only
be enlighten in corner cases with no special interest or already studied.

4.5 Summary and conclusions
SRAM memory with power-manageable banks can reduce highly its energy con-
sumption by putting idle banks in sleep state. The partition overhead increases
as more banks area added, limiting the number of banks that effectively reduce
the energy consumption. The optimum number of banks that minimize the energy
saving can be estimated based on memory parameters only: partition overhead
factor, active, sleep and wake-up energy. So that, the memory can be hard-wired
configured at design time to meet the most common applications. However, this
estimated number of banks may produce a suboptimal solution under certain con-
ditions, such as relative high wake-up energy. The number of banks can be adjusted
according to the particular application. The proposed methodology includes iter-
atively search the optimum partition to finally configure the number of banks.

Whether the number of banks is configured by the user or not, the memory
content must be mapped to memory banks. For that, the memory content is
divided in allocation units, named blocks, which are assigned to banks using an
optimization algorithm. The optimization phase is based on the availability of
a memory access trace to blocks, which is obtained by simulation. Since the
simulation may not cover all the code address space, the unallocated blocks by the
previous method need to be distributed along the banks. The block coverage may
be incomplete simply because the program has unreachable blocks, or the test case
was not appropriate (including not long enough trace).

The power manager that controls the bank states may vary from one based on
the simplest policy, greedy, to an ideal power manager that rely in the best-oracle
policy. Since, both policies are in opposite ends in terms of complexity and results,
they are selected for consideration to asses its impact on the energy saving. All
other policies fall between these limits.

67

Chapter 4. Banked memory for sensor nodes

The most relevant research studies that are based on the concepts behind
banked memory with power management, were reviewed. However, it is virtu-
ally impossible to compare the proposals and results presented by the studied
works, since they depends on the particular case study and the selected technology.
The power management issue had been ignored, with no attempt to differentiate
between various options. Although, an implicit power manager was evidently as-
sumed, in each study. Ozturk and Kandemir [84] had used an ideal power manager,
but we had to deduce this from the optimization problem formulation 1. Their
findings might have been more interesting if they had included a detailed model
for deriving expressions for energy savings. This would have enable an analysis of
the influence of different factors on the effective energy saving.

In this chapter we had presented a model and the corresponding energy con-
sumption expressions for a greedy policy and best-oracle policy. We had found
three crucial parameters: the sleep to active energy ratio, since determine the
maximum energy savings; the wake-up to active energy ratio, since it might re-
duce the saving for poor temporal locality access patterns; and the partition over-
head that limits adding extra banks for augmented savings. The best-oracle policy
could keep a bank in idle state if entering in sleep state would not result beneficial.
Thus, the energy saving expression differs in a term, the one related to the idle
cycles ratio. Consequently, the idle cycles ratio and the wake-up rate resulting
from best-oracle, leads to the lowest energy consumption.

In the case of greedy, the memory content allocation to banks was optimal
during the optimization phase. Later, the banks are managed following the greedy
policy. Conversely, in the best-oracle, in addition to allocate the block optimally
in the blanks, the energy is minimized by optimally, again, controlling the bank
states at run time.

Finally, the energy consumption for a duty-cycled operation was derived. The
benefits of a banked memory that also puts the banks in sleep state while the
memory is active were determined. The resulting energy consumption could be
analyzed from two different perspectives. Firstly, as a memory originally managed
as a unit (as seen in Section 3.3) that include putting idle banks in sleep state, even
when the memory is active. Secondly, a banked memory with power-manageable
banks (as seen in Section 3.4), that operates duty-cycling, so that, the previously
energy savings is only profitable during the active period.

The extra saving will be significant if the energy consumption related to the
active period is relative high respect to the sleep energy. In other words, a high
duty-cycle operation tend to obtain higher benefits from individually managed
memory banks.

1The difference between the formulation for an ideal policy and a greedy policy is in
one expression, which changes from less than or equal to equal, as will be seen in the next
chapter.

68

4.5. Summary and conclusions

i

69

This page is intentionally left blank.

Chapter 5

Experimentation and results

An SRAM with power-manageable banks is expected to reduce considerably the
static power of large memory cell arrays. In the previous chapter this memory
was modeled to find expressions for energy consumption and energy savings, con-
sidering two opposite power management policies: best-oracle and greedy. The
partition overhead was also included in analytical expressions, and an estimation
of the optimal number of banks was obtained. However there are still some unan-
swered issues regarding technological and practical issues. One question that needs
to be answered is whether applications code accesses to memory can be arranged in
memory banks with enough temporal locality, so that the wake-up rate is kept low,
and consequently, the saving is significant. Another open question is if it worths
adopting a predictive power management, instead of rely in the straightforward
greedy policy. In this chapter we present experiments comparing the predicted
energy savings by our model with the energy savings obtained in practical applica-
tions. The first section is concerned with the evaluation methodology used in this
chapter. It begins by examining alternatives for benchmark applications. Next, it
is described the optimization problem that seeks to minimize the energy consump-
tion by allocating the memory contents to memory banks properly. Then, it is
briefly described the question of assigning the remaining unallocated blocks to the
banks. Finally, the simulation tools for the evaluation are described. The second
section presents the results and discusses the findings of this research, focusing on
the following three key issues: power management policy, partition overhead and
the accuracy of the estimated value, and energy saving in duty-cycle applications.
The last section concludes the chapter with a summary and a critical discussion.

5.1 Evaluation methodology
This section describes the methodology used for the evaluation of the SRAM with
power-manageable banks. First, we describe the applications selected and the
criteria adopted for that. The block-to-bank map is almost completely built by
solving an integer linear program. The problem formulation used for that, is
described in detail afterwards. It can happen that the obtained map in the previous

Chapter 5. Experimentation and results

Table 5.1: Application parameters (size in bytes).

Application text bss data #func. avg. size
MultihopOscilloscope 32058 122 3534 1081 29.6

rpl-collect (udp-sender) 47552 232 9250 489 97.2

phase is incomplete, i.e., some blocks haven’t been assigned to any bank. An
approach to solve this problem is addressed later. Finally, the simulation tools are
listed.

5.1.1 Benchmarks and applications

The benchmarks previously used for memory energy comparison, such as MiBench
[48], are not adecuate for evaluating our proposal. In most cases, each benchmark
is an algorithm implementation compiled as an independent application. The
application, executed in batches, usually reads data inputs for the algorithm from
files and outputs the processing results to the console or to a file. The sensor nodes
has a limited amount of memory, and usually do not have a file system, preventing
using Mibench in sensor nodes as is. But, the main limitation is that they do
not capture the external event timing [7] needed to evaluate the memory regions
idling.

Lacking available and general accepted benchmarks for our purposes, the idea
was to select some representative applications of typical wireless sensor networks.
We based our evaluation using the same applications as those employed for plat-
form energy characterization : MultihopOscilloscope (TinyOS) and rpl-collect
(ContikiOS). They are data-collection applications, in which each node of the
network periodically samples a sensor and the readings are transmitted to a sink
node using a network collection protocol (please refer to Section 2.4.2 for details).

The applications were compiled for a telos node. Table 5.1 summarizes the sec-
tions sizes, the number of functions and the function average size of the selected
applications. It can be found that in both cases the code memory (text seg-
ment) is between five and nine times larger than the data memory (bss plus data
segment). This relationship, which is typical in current wireless sensor networks
applications, supports our preference of code memory for using a memory with
power-manageable banks. As was argued in the motivation section (Section 1.1),
code memories are increasingly large, so it is expected that this relationship is
maintained or even grow. Particular applications that demand also large data
memories, as signal processing, may embrace this in addition to other orthogonal
techniques.

72

5.1. Evaluation methodology

5.1.2 Optimization problem: memory contents allocation to banks
Next, we define an integer linear program that minimizes the energy consumption
of a banked memory with power management by optimally distributing the appli-
cation code divided in blocks to memory banks. Later, the parameter selection for
the evaluation are described.

Problem formulation
The memory has N memory banks B = {1, . . . , N}, of equal size sb, b ∈ B. The
application code is divided in M memory blocks D = {1, . . . ,M} of size sd, d ∈ D.
We are further given an access pattern to these blocks over time by adt. A value
of adt = 1 indicates that block d is accessed at time t. We want to determine an
allocation of blocks to banks that respects the size constraints, and an activation
schedule of the banks that minimizes total energy consumption, and such that
banks that are accessed at time t are ready at time t. Let ldb ∈ {0, 1} indicate that
block d is allocated to bank b, and obt ∈ {0, 1} that bank b is ready at time t. We
define auxiliary indicator variables abt ∈ {0, 1} representing the access of bank b at
time t, o+bt ∈ {0, 1} representing the wake-up transition of bank b at time t 1. Let
further T = {1, . . . , t} be set of access times. We assume that time 0 represents
the initial state where all banks are in sleep state. For a given number of banks,
the partition overhead is fixed, hence the problem formulation does not need to
include this term.

Now, we can model the problem of finding the allocation and power manage-
ment strategy by the following integer program:

minimize
∑
t∈T
b∈B

Eaccabt + Erdyobt + Ewkpo
+
bt (5.1)

subject to

o+bt ≥ obt − ob,t−1 ∀b ∈ B, t ∈ T (5.2)

obt ≥ abt ∀b ∈ B, t ∈ T (5.3)

abt =
∑
d∈D

lbdadt ∀b ∈ B, t ∈ T (5.4)∑
b∈B

ldb = 1 ∀d ∈ D (5.5)∑
d∈D

ldbsd ≤ sb ∀b ∈ B (5.6)

ob0 = 0 ∀b ∈ B (5.7)

ldb ∈ {0, 1} d ∈ D, b ∈ B (5.8)

obt ∈ {0, 1} b ∈ B, t ∈ T ∪ {0} (5.9)

o+bt, abt ∈ {0, 1} b ∈ B, t ∈ T . (5.10)

1Note that the formulation models access and ready state separately, so that there is
no explicit active states.

73

Chapter 5. Experimentation and results

Eq. (5.2) defines wake-up transitions: if some bank is ready at time t, but has
not been ready at time t− 1, a wake-up transition occurred.2 Eq. (5.3) and (5.4)
define the access pattern for a given allocation. Restriction (5.5) guarantees that
every block has been allocated to exactly one memory bank, and restriction (5.6)
limits the total size of the allocated blocks to the size of the bank.

The above formulation corresponds to the best-oracle strategy, since it does
not limit the activation schedules. For a greedy power management the constraint
given by Eq. (5.3) can be modified, so that a bank is ready only when it is accessed.

obt = abt ∀b ∈ B, t ∈ T. (5.11)

The formulation was described using AMPL (A Mathematical Programming Lan-
guage) , and the corresponding models are listed in Appendix B.1.

Initially, the ILP solver used was glpsol, included in GLPK (GNU Linear Pro-
gramming Kit) 3. But, due to memory limitations later CPLEX optimizer by
IBM R© was adopted 4 The solver was executed in a PC and computation time for
solving a single problem ranged form minutes to several hours or days, depending
on the power management (oracle takes much longer time than greedy to find the
solution) and the number of banks.

Parameters selection

The size of the blocks could be chosen regular (equally sized) or irregular, ranging
from the minimum basic blocks to arbitrary size. For the sake of simplicity, the
block set was selected as those defined by the program functions and the compiler
generated global symbols (user and library functions, plus those created by the
compiler). This facilitate the modification of the application binary, by means of
a patching tool [3, 77]. Additionally, the conversion from address trace to block
trace is straightforward.

The size of the blocks ranges from tens to hundreds of bytes (see Table 5.1), in
accordance with the general guideline of writing short functions, considering the
run-to-completion characteristic of TinyOS and any non-preemptive event-driven
software architecture.

The energy parameters for the memory are the following. The active, idle and
sleep values are those shown in Table 3.5 (Section 3.4.1), where the sleep state
energy is a factor of 0.1 the idle energy. Three different values of wake-up energy
cost were considered: 1, 10 and 100 times the access energy.

The problem of allocating the code to equally sized banks was solved for up
six banks, for both power management strategies.

The total memory size was considered 10% larger than the application size, to
ensure the feasibility of the solution. For each experiment the bank memory access

2Since the variables involved in the inequalities are binary, a ≥ b corresponds to the
logical implication, a⇒ b.

3http://www.gnu.org/software/glpk/
4Since, we had already modeled the problem using AMPL, gplsol itself was used to

convert the problem formulation to the format used by cplex.

74

5.2. Results and Discussion

patterns abt have been determined using the trace adt and the allocation map lbd
(how block are allocated to banks), given by the corresponding solution. For the
best-oracle power management the solution also outputs obt, the bank states for
each cycle (i.e. ready or sleep). Finally, the average energy consumption is calcu-
lated using the memory energy parameters and the energy saving is determined
comparing with a single bank memory with no power management.

5.1.3 Simulation and evaluation tools
We simulated the network using COOJA to get an execution trace. We followed
the same methodology as before (Section 2.4.2) for getting a memory block access
trace.

For the experiments we set up an unique scenario based on a configuration con-
sisting of a network composed of 25 nodes. The simulation time varied form about
10 to 60 seconds, corresponding to roughly 300k and 2500k executed instructions
respectively. Note that the node frequently enters in sleep mode, during that time
no instruction are executed.

During the course of this investigation, we had used different trace lengths for
the solving the optimization problem, seeking a balance between solving time and
results. The results presented in this work were get considering a 5000 cycles trace.
A framework were developed using MATLAB R© to process the trace, invoke the
ilp solver and analyze the results.

5.2 Results and Discussion
In this section the experimental results are presented and discussed.

5.2.1 Power management policy
Fig. 5.1 shows the energy savings for the intermediate value of wake-up energy
(ten times the active energy) as a function of the number of banks for best-oracle
and greedy policy in both applications (based on TinyOS and ContikiOS). In this
analysis we have intentionally discarded the partition overhead, considered later.
As the number of banks increases, the energy savings approaches the corresponding
value of having all banks but one in sleep state. The figure shows that the best-
oracle policy outperforms the greedy policy for both applications, as expected, and
both are within 2% and 5% of the theoretical limit for the energy savings. In all
cases, except for six banks, ContikiOS outperforms TinyOS by a narrow margin.
The results presented hereafter are similar for both applications, and only the
corresponding to TinyOS are analyzed more deeply.

Fig. 5.2 shows the fraction of cycles and the energy breakdown for a memory
having five banks of equal size, where each contribution (i.e. access, ready, sleep,
wake-up) is averaged among the different banks. The upper part clearly shows
that the fraction of access cycles are equal in both cases and represent 20% of

75

Chapter 5. Experimentation and results

Figure 5.1: Energy savings as a function of the number of banks for best-oracle and greedy
policy (denoted gr and or) in TinyOS and ContikiOS applications (denoted TOS and COS)
and the theoretical limit (dashed line).

Figure 5.2: Fraction of cycles and energy breakdown where each contribution is averaged
among the different banks.

76

5.2. Results and Discussion

Figure 5.3: Energy savings as a function of the number of banks for best-oracle and greedy
policy (denoted gr and or) for increasing wake-up cost factor (TinyOS application.

the total number of cycles, since five banks are considered (only one bank of N is
active, in this case five).

For the greedy policy the number of ready cycles is equal to the access cycles,
since both correspond to the active compound state. On the other hand, for the
best-oracle policy part of the ready cycles correspond to active cycles, and the rest
to idle cycles, in which the banks are ready but not accessed. Moreover, for the
greedy policy 80% of the cycles are sleep cycles (N − 1 banks are in sleep state)
while for the best-oracle policy this percentage is slightly smaller, since idle cycles
are used to reduce the wake-up rate from 0.5% to 0.12% (not visible in Fig. 5.2).
The energy breakdown, Fig. 5.2 (lower part), shows that the difference between
best-oracle and greedy comes from the wake-up transitions. In this case study,
due to its event-driven nature, the code memory access patterns are triggered by
events, leading to a chain of function calls starting with the interrupt subroutine.
This chain may include the execution of subsequent functions calls starting with a
queued handler function called by a basic scheduler. This applies both to TinyOS
and ContikiOS, in the first case the queued function is a deferred task and in the
latter case is a protothread. The allocation of highly correlated functions to the
same bank leads to a bank access pattern with a high temporal locality. Hence,
the total wake-up fraction across the banks is very low. This explains the modest
gain of applying the best-oracle policy.

Finally, Fig. 5.3 shows the energy savings for different wake-up energy costs:
one, ten (analyzed so far) and one hundred. It can be seen that for high wake-up
energy costs the best-oracle policy outperforms the greedy policy by roughly 40%,
reducing the saving from 70% to 30% for five banks. On the contrary, for a low
wake-up cost the difference is marginal. In the middle, for moderate cost, the
difference is about 2%. The energy increase due to the wake-up transitions, the
last factor in Eqs. (4.4) and (4.5) is proportional to the wake-up cost. This saving
lost can be reduced using the best-oracle policy by increasing the idle cycles with
low relative energy cost.

77

Chapter 5. Experimentation and results

Table 5.2: Optimum number of banks as a function of partition overhead.

kovhd(%) 0 1 2 3 5
N est
opt ∞ 10 7 6 4

δEmax
N,eff (%) 98.2 78.3 70.1 63.8 53.6

5.2.2 Partition overhead effect on energy savings
The optimum number of banks estimated using Eq. (4.9) (after rounding) as a
function of kovhd (1%, 2%, 3% and 5%) is shown in Table 5.2. The energy savings
is limited by the partition overhead, reaching a maximum of 78.3% for an overhead
of 1%. The energy saving limit, as the partition overhead tends to zero and N to
infinity, is 98.2% (1− Eslp/Eact).

Table 5.3 compares the energy saving results as a function of the number of
banks and the partition overhead. In the upper part, the table gives the maximum
achievable savings calculated using Eq. (4.8). It can be observed that with a
partition overhead of 3% the optimum number of banks is six, whereas with 5% is
four, both highlighted in gray. Obviously, these number of banks corresponds to
the values in Table 5.2. In the middle part of the table it can be observed that the
maximum energy saving for greedy strategy with 3% and 5% of partition overhead
is achieved for six and five banks respectively, different from the estimated value
using the maximum achievable savings. This means that the saving loss due to
wake-up transitions shifts the optimum number of banks. Finally, similar results
are obtained for the best-oracle strategy, but with higher energy savings.

5.2.3 Duty-cycle operation
Fig. 5.4 shows the energy consumption of the memory, Eq. (4.19), normalized
respect to Eact as a function of the number of banks for different duty-cycles. It is
considered the maximum achievable savings, i.e., the wake-up energy contribution
is neglected, but it is not the partition overhead. Let’s briefly analyze the corner
cases: null duty-cycle corresponds to an inactive memory consuming a constant
power (a baseline relative energy of Eslp/Eact) and 100% duyt-cycle corresponds
to an always-on memory studied so far. It can be appreciated that the energy is
minimum for ten banks, as estimated.

The duty-cycle found in the characterization presented in Chapter 2 (Sec-
tion 2.4.2) is about 3%. Fig. 5.5 plots the energy consumption relative to a single
bank memory (with sleep state). It can be observed that for a 3% duty-cycle an
energy reduction of 50% is obtained for ten banks (marked with black dot). Then,
for higher duty-cycles this energy reduction is increased as suggested by the model.

In conclusion, even though the memory maximizes savings for higher duty-
cycles, for relatively low duty-cycles substantials savings are achieved, 50% for a
3% duty-cycle using a memory with the optimum number of banks.

78

5.2. Results and Discussion

Table 5.3: Energy saving comparison: maximum, greedy and best-oracle.

maximum number of banks
2 3 4 5 6

kovhd(%)
1 47.08 62.44 69.62 73.53 75.80
2 45.08 59.44 65.62 68.53 69.80
3 43.08 56.44 61.62 63.53 63.80
5 39.08 50.44 53.62 53.53 51.80

greedy number of banks
2 3 4 5 6

kovhd(%)
1 43.82 58.33 65.18 69.36 71.99
2 41.82 55.33 61.18 64.36 65.99
3 39.82 52.33 57.18 59.36 59.99
5 35.82 46.33 49.18 49.36 47.99

best-oracle number of banks
2 3 4 5 6

kovhd(%)
1 46.40 61.88 69.12 73.07 75.41
2 44.40 58.88 65.12 68.07 69.41
3 42.40 55.88 61.12 63.07 63.41
5 38.40 49.88 53.12 53.07 51.41

Figure 5.4: Energy normalized respect to Eact.

79

Chapter 5. Experimentation and results

Figure 5.5: Energy normalized respect to a single-bank memory (with sleep state).

5.3 Summary and conclusions
The presented experiments were designed to determine the effect of previously
identified factors on the achieved energy savings. Returning to the questions posed
at the beginning of this chapter, it is now possible to state that the code memory
contents of applications can be properly allocated to memory banks, so that a
significant saving is obtained. The energy saving is augmented by minimizing the
accumulated wake-up rate and the idle cycles. The optimization algorithm allocate
blocks to banks in such a way that bank accesses present high temporal locality,
and thus, low wake-up rates.

The results of the experiments indicate that the energy savings are close to the
maximum achievable, corresponding to have all banks but one in sleep state. As
the number of banks increases, the energy savings approaches the limit given by
the memory design parameters and limited by the partition overhead. We have
found energy savings up to 78.3% for a partition overhead of 1% with a memory of
ten banks. Savings increases with duty-cycle. In other words for low duty-cycles
lower savings are obtained. In any case, important energy reductions could be get.
For example, for a 3% duty-cycle operation the energy is reduced by roughly from
78.3% to 50%. The final savings also depends on the sleep energy contribution to
the total energy. The lower the sleep energy the higher the impact of individually
mange the banks in the active state.

One of the more significant findings to emerge from this work is that the
savings difference between best-oracle and greedy is scarce for relative low wake-up
energy costs. Additionally, both are within 2% and 5% of the maximum achievable
savings. On the contrary, the extra benefit of the best-oracle over the greedy policy

80

5.3. Summary and conclusions

is significant for high wake-up energy costs. Consequently, the additional benefit
of using an advanced algorithm to predict future access to banks must justify the
increased complexity and compensate the extra energy and area cost.

It was also shown that the estimated number of banks in most cases agrees
with the optimum number. The possible difference came from the saving loss due
to wake-up transitions, being the optimum number greater than the estimation.
All the same, the estimated value can reduce the search space to quickly find the
optimum, starting from this value to higher number of banks.

The results of the experimental evaluation show that huge savings are obtained
using a SRAM memory with power-manageable banks. The current findings en-
hance our understanding of the potential and limitations of these memories.

81

This page is intentionally left blank.

Chapter 6

Conclusions

This chapter concludes this work. First, we summarize the work of individual
chapters into a single concluding section. Next, we present the main contributions.
Finally, we discuss future perspectives of current research work.

6.1 Summary of the thesis
One of the main challenges in wireless sensor networks is to provide high level
programming abstractions to enable more complex applications, accompanied with
energy-efficient platforms that satisfies extended lifetime requirements.

High level abstractions have many advantages since ease the development of
wireless sensor networks providing productivity gain, portability, among other ben-
efits. For example, Java requires a much shorter learning curve than other spe-
cialized languages (such nesC of TinyOS) and even language C. It presents other
worthwhile features that makes Java virtual machine adoption in wireless sensor
networks an interesting option for application development. The scaling of CMOS
technology enables refined applications built on top of emerging virtual machines
that benefit from increased available computation power. However, these more
and more complex applications requires also enlarged memory size to hold the
programs. The energy drain by memories is paying the price for the flexibility of
programmable processors. A drawback of smaller feature transistor sizes is the in-
creased leakage power. Additionally, the energy budget of processors is dominated
by the memories that supplies data to them. Energy-efficient memory design rep-
resent an opportunity to reduce the energy consumption in sensor nodes, enabling
a broader adoption of the wireless sensor networks.

NOR-Flash is more efficient than SRAM at lower frequencies, since static power
prevails over dynamic power, and it benefits from its low-leakage feature. SRAM
is more efficient that NOR-Flash for a wide range of frequency if the static power
is reduced. Some general applicable low-power techniques involves dynamically
decrease the system power consumption, trading performance for power, or even
entering in an inactivity state of reduced power. In the case of SRAM memory can
be applied to the whole cell array, or to individual banks. On the one hand, the

Chapter 6. Conclusions

SRAM with a sleep state, manageable as a unit, is very profitable in low duty-cycle
system with relative long idle periods. On the other hand, SRAM with power-
manageable banks can put the idle banks into the sleep state, reducing the leakage
power, even when the system is active. The fundamental idea behind a memory
with power-manageable banks is that only one bank is active per access, and the
remaining idle banks can be put into the sleep state. The memory architecture
relies on that banks can be individually managed to control its power state.

The power manager controls the memory banks states in base of a given policy.
The greedy policy is the simplest policy to implement, and puts a bank in sleep
state as becomes idle, and back to ready state as soon as it is required. On the
contrary, the ideal power manager controls the banks optimally since has a priori
knowledge of the entire workload trace. For this reason the policy is named best-
oracle. Evidently, there is no real implementation of the best-oracle policy, and it
only serves as an upper bound reference of the potential savings.

A detailed model of the energy saving was presented for uniform banks with the
mentioned power management schemes. The model gives valuable insight into key
factors (coming from the system and the workload) that are critical for reaching
the maximum achievable energy saving. The energy savings increases as a function
of the number of banks, and it is limited by the partition overhead.

We evaluated the benefits of using a partitioned memory in WSNs by the sim-
ulation of two real applications, one based on TinyOS and the other on ContikiOS.
The energy saving is maximized by properly allocating the program memory to
the banks in order to minimize the accumulated wake-up rate and the idle cycles.
The memory content allocation problem were solved by an integer linear program
formulation.

The energy saving obtained by simulations were compared with the limits
given by the derived expressions, showing a good correspondence. The best-oracle
policy outperformed the greedy policy as expected. However, the extra benefit of
the best-oracle over the greedy policy was significant only for high wake-up energy
costs. Conversely, for relative low wake-up energy costs, the difference between
best-oracle and greedy was scarce. In this case the additional benefit of using an
advanced algorithm to predict future access to banks probably won’t justify the
increasing complexity and compensate the extra energy and area cost.

Thanks to our modeling, a near optimum number of banks can be estimated
reducing the search space to quickly find the optimum, by restricting the search to
its neighborhood. Moreover, in most cases, the estimated number of banks agrees
with the optimum number.

We have found that aggressive energy savings can be obtained using a banked
memory, close to 80% for a partition overhead of 1% with a memory of ten banks
using the most recent technology parameters. Highly correlated memory blocks
allocated to the same bank led to a bank access pattern with a high temporal
locality, thus reducing the number of wake-ups. Hence, the total wake-up fraction
across the banks was very low. The energy saving scales down with the duty-cycle,
but even for low duty-cycles significant extra benefits are obtained.

84

6.2. Main contributions

6.2 Main contributions
The main contributions of this work are organized in three groups, described next.

1. Characterization and analysis of the run-time execution of typical current
applications, showing that memory energy consumption may hinder the
spreading of future WSN applications.

2. Review of memory technologies with focus in code memory energy consump-
tion, demonstrating that SRAM memory with power-manageable banks
helps to cope with increasing leakage current of the scaling of CMOS tech-
nology.

3. Proposal and in-depth study of SRAM memory with power-manageable
banks for extending sensor nodes life-time, and at the same time, enabling
the increasing complexity of applications.

The third and most important contribution is described in detail below.

• We have proposed a novel and detailed model of the energy saving, gaining
valuable insight into key factors, coming from the system and the workload,
that are critical for reaching the maximum achievable energy saving. A
crucial parameter is the sleep to active energy ratio, since determine the
maximum energy savings. The energy savings approaches to this maximum
for increasing number of banks. However, the effective energy saving is
limited by the partition overhead and the wake-up energy cost of the banks.
There is an optimum number of banks, which depends on the previously
mentioned parameters.

• Our experimental results showed that memory contents can be arranged in
memory banks to have high temporal locality accesses, and, consequently,
the overall wake-up rate is minimized. For that, we followed a methodology
in which a memory access trace is used to solve an optimization problem
that outputs the block-to-bank map. The optimum number of banks is
found iteratively.

• We have addressed the power management issue, evaluating two power man-
agement policies: best-oracle and greedy. Both policies are in opposite ends
in terms of complexity and results, thus covering all the potential possibil-
ities. Our findings suggests that adopting an advanced power management
probably might not justify its implementation energy cost, since the best-
oracle is only marginally better than a greedy strategy for low and moderate
wake-up energy cost.

• We have provided a formula for estimating the optimum number of banks.
In most cases the estimated value match the optimum. The estimated value
reduce the search space to quickly find the optimum and determine the
block-to-bank map.

85

Chapter 6. Conclusions

• We have found an energy reduction close to 80%, depending on the memory
parameters (partitioning overhead, energy reduction of the sleep state and
the wake-up energy cost) for an application under high workload.

• We have considered the duty-cycle operation of this memory, presents in
wireless sensor network nodes. The energy saving scales down lowering the
duty-cycle. The additional energy saving due to individually manage the
memory banks will be significant for relative high duty-cycles and low con-
sumption in the sleep state.

Finally, a number of limitations need to be noted regarding the present work.

• The results are based on models and simulations. Our finding contributes
to conduct the efforts in low-power integrated-circuit design, when they are
particularly applied to banked memories. Despite the models were build
from reliable sources, it would be interesting to deeply investigate memory
internal architectures to design and fabricate a test chip to confirm the dif-
ferent memory parameters (including partition overhead) and the predicted
savings.

• The evaluation performed has been done using applications developed with
the two most popular state of the art software platforms: TinyOS and Con-
tikiOS. In both operating systems the code memory was several times larger
than the data memory. In this fact we founded to choose adopting a mem-
ory with power-manageable banks for instructions. In the case of virtual
machines, the programs are bytecodes which can be read from data or code
memory (they are actually assigned to the read-only data segment). All the
same, nowadays they still only represent a thin layer that relay in an under-
neath operating system. Therefore the code memory still prevails, and the
virtual machine would present a run-time behavior similar to those studied.
However, the previous hypothesis need to be reviewed in the future for new
virtual machines designed for wireless sensor network.

• The access pattern to banks in execution time must be similar to the opti-
mization phase in order to achieve similar energy saving. This means that
the optimization or “training” trace should be statistical representative of
any trace. However, relative short traces were used for the optimization to
obtain reasonable solving time. To overcome this limitation the segment
trace was carefully selected, however other solutions could be more effective.

6.3 Future works
This research has thrown up many questions in need of further investigation.

• Further research might explore instruction and data memory sharing the
same banked memory, in accordance to the limitation mentioned above re-
garding code and data memory sizes. As in the present work, the key point

86

6.3. Future works

is whether the data memory access pattern is such that the content can be
distributed among the banks to get an overall low wake-up rate. Memory
protection issues should be taken into account, however a first approach
could be having two separate memories sharing the power manager.

• A number of possible future studies on the field of optimization are obvi-
ous. They may range from heuristic algorithms to cope with larger traces to
these combined with other techniques based on static analysis. In this di-
rection it would be very interesting to work towards design and build a tool
to automatically process the linker-locator output to asign blocks to banks.
However, it needs to take into account that traditional techniques applied to
internal code structure might not be directly applicable, since memory access
patterns are highly influenced by external interaction through hardware in-
terruptions (e.g. sensors, radio, and so on). Additionally, the block-to-bank
mapping need to be completed using some algorithm, if the optimization
phase did not cover the whole binary application. The algorithm could be
based on extra execution information, i.e., traces not used in the previous
optimization phase, and on static or structural information, such program
call graphs.

• More work is needed on power management policies for the case of high
wake-up energy cost. Our findings suggest that a predictive algorithm to
manage the banks might lead to higher energy savings than a greedy policy.
However, the implementation costs and performance should be evaluated to
determine its advantage. Besides, time-out policy is as simple as greedy,
and it may improve energy savings in certain conditions (memory energy
parameters and workload characteristics).

• The proposed model is easily extended for a memory with non-uniform sized
banks. The idea is dividing a memory in several banks. The memory can
be configured to merge banks into sets. Each set constitute a manageable
unit, being equivalent to the banks of the present work. Primary analysis
suggests that non-uniform banks get the better of memories with relatively
high wake-up energy cost and high partition overhead. More research is
required to assess if it is worth to work on a more flexible structure as
the required in a memory with non-uniform banks. Note that, a memory
with uniform sized banks is a particular case of this memory, however the
partition overhead model need to be revisited in this case.

• Further research regarding practical implementation and use of this memo-
ries would be of great help to favor its widest adoption. Accordingly, it is of
primary importance address the design of a configurable memory. Regular
internal structure might help in reducing partition overhead, which accom-
panied with appropriate solution could allow to configure the memory in the
field. Based on the provided models it is needed to further study the effects
on the energy saving of different practical issues. For example, one question
that need to be answered is how many banks to choose to allocate a binary

87

Chapter 6. Conclusions

application in a given configurable memory. The memory could be much
larger than the application size. It could be better to use the least amount
of banks and shutdown the unused ones (with a power consumption lower
than the sleep state), or use more banks, if the wake-up rate is reduced, but
this would lead to an increased sleep power .

• Finally, our proposal was conceived for wireless sensor nodes, so it was as-
sessed accordingly. However, it seems that the power-manageable banks
could lead to huge energy saving in other event-driven applications

Minors future works or not central to this thesis:

• Evaluate the processing workload due to time management only. It seems
that an important fraction of time the microcontroller wakes up just to
increment the system tick (or decrement timer counters) and verify if any
time request had time-out. If this is true, it should strongly consider adopt
a variable timer, like the proposed for RTOS [23]. (see Fig. 2.7 and 2.8 and
the respective discussion).

88

Appendix A

Memory simulations

A.1 CACTI estimations
For the memory estimation the web version of CACTI was used (version CACTI
5.3 rev. 174). It can be accessed in http://www.hpl.hp.com/research/cacti/.

Configurations

• Pure RAM Interface

• RAM Size (bytes): from 512 to 32768

• Nr. of Banks: 1

• Read/Write Ports: 1

• Read Ports: 0

• Write Ports: 0

• Single Ended Read Ports: 0

• Nr. of Bits Read Out: 16

• Technology Node (nm): 65

• Temperature (300-400 K, steps of 10): 400

• RAM cell/transistor type in data array (choose ITRS transistor for SRAM
cell): ITRS-HP

• Peripheral and global circuitry transistor type in data array: ITRS-HP

• RAM cell/transistor type in tag array (choose ITRS transistor for SRAM
cell): ITRS-HP

• Peripheral and global circuitry transistor type in tag array: ITRS-HP

Appendix A. Memory simulations

• Interconnect projection type: Conservative

• Type of wire outside mat: Semi-global

A.2 NVSim estimations
The application can be downloaded from the project site: http://nvsim.org/ (pass-
word required that should be asked for the authors).

There are two categories of the configuration input files: .cfg and .cell1.

Memory: file.cfg

Next, we list the different options for each parameter of the general configuration
file, where some possible values are given between curly braces. Some notes are
added between parenthesis.

DesignTarget: {cache, RAM, CAM} (Note: if RAM is selected Cache

option ignored)

OptimizationTarget: {ReadLatency, WriteLatency, ReadDynamicEnergy,

WriteDynamicEnergy, LeakagePower, Area} = ReadLatency

ProcessNode: {200, 120, 90, 65, 45, 32}

Capacity (KB): 512 (Note: can select MB or KB and the number.)

WordWidth (bit): {512, 64, x} = 32

DeviceRoadmap: {HP, LSTP, LOP}

LocalWireType: {LocalAggressive, LocalConservative, SemiAggressive,

SemiConservative, GlobalAggressive, GlobalConservative}

= LocalAggressive

LocalWireRepeaterType: {RepeatedOpt, Repeated5\%Penalty, ..., }

= RepeatedNone

LocalWireUseLowSwing: {Yes, No} = No

GlobalWireType: {LocalAggressive, LocalConservative, SemiAggressive,

SemiConservative, GlobalAggressive, GlobalConservative}

= GlobalAggressive

GlobalWireRepeaterType: {RepeatedNone, RepeatedOpt,

Repeated5\%Penalty, ..., Repeated50\%Penalty} = RepeatedOpt

GlobalWireUseLowSwing: {Yes, No} = No

Routing: {H-tree, non-H-tree} = H-tree

InternalSensing: {true, false} = true

MemoryCellInputFile: {SRAM.cell, Memristor_1.cell,

PCRAM_JSSC_2007.cell, PCRAM_JSSC_2008.cell,

MRAM_ISSCC_2007.cell, PCRAM_IEDM_2004.cell,

MRAM_ISSCC_2010_14_2.cell, SLCNAND.cell}

= SLCNAND.cell or SRAM.cell

1See: http://nvsim.org/wiki/index.php?title=Documentation for limited documenta-
tion.

90

A.2. NVSim estimations

Temperature (K): 380

BufferDesignOptimization: {latency, area, balance} = latency

(Note: the following parameters are optional and force a

given configuration.)

ForceBank (Total AxB, Active CxD): {8x1, 1x1; 1x4, 1x4;

2x2, 2x2}: 2x2, 2x2

ForceMuxSenseAmp: 8

ForceMuxOutputLev1: 4

ForceMuxOutputLev2: 1

ForceBank (Total AxB, Active CxD): 1x1, 1x1

ForceMuxSenseAmp: 1

ForceMuxOutputLev1: 1

ForceMuxOutputLev2: 2

Cell
Next, two examples of cell configuration file are listed.

Example: SLCNAND.cell

-MemCellType: SLCNAND

-CellArea (F^2): 4

-CellAspectRatio: 1

-GateCouplingRatio: 0.7

-FlashEraseTime (ms): 1.25

-FlashProgramTime (us): 200

-FlashEraseVoltage (V): 16

-FlashProgramVoltage (V): 6

-FlashPassVoltage (V): 3.8

-ReadMode: voltage

-ReadVoltage (V): 0.5

Example: SRAM.cell

-MemCellType: SRAM

-CellArea (F^2): 146

-CellAspectRatio: 1.46

-ReadMode: voltage

-AccessType: CMOS

-AccessCMOSWidth (F): 1.31

-SRAMCellNMOSWidth (F): 2.08

-SRAMCellPMOSWidth (F): 1.23

91

This page is intentionally left blank.

Appendix B

Evaluation tools

B.1 Integer linear program: AMPL model
Next the AMPL model is listed for the best-oracle policy.

##

model for memory blocks allocation to banks

##

parameters

number of memory banks

param n >=0;

memory banks (index set)

set B := 1..n;

activation , active mode , access , and deactivation

energy

param ep >=0;

param e >=0;

param ea >=0;

param em >=0;

overhead constant

param koh >= 0;

memory bank sizes

param sb { B } >= 0;

number of memory blocks

param m >=0;

memory blocks (index set)

set M := 1..m;

memory block sizes

param sm { M } >= 0;

Appendix B. Evaluation tools

number of time steps

param t >=0;

time points (index set)

set T0:= 1..t;

set T := 2..t;

block access pattern

param am{T0} integer;

a: block access pattern

param a{mi in M, ti in T0} binary := if (am[ti]=mi) then

1;

decision variables

allocation of memory blocks to banks

var l { B cross M } binary;

access of memory banks (auxiliary)

var ab { B cross T } binary;

bank active during t

var o { B cross T0 } binary;

bank activated at start of t

var op { B cross T } binary;

model

minimize TotalEnergyConsumption:

sum { t0 in T, b0 in B } (op[b0 ,t0]*ep*sb[b0] +

ab[b0,t0]*ea*sb[b0] + o[b0 ,t0]*e*sb[b0]);

subject to Activation { b0 in B, t0 in T }:

op[b0 ,t0] >= o[b0 ,t0]-o[b0 ,t0 -1];

subject to Access { b0 in B, t0 in T}:

ab[b0 ,t0] = sum{m0 in M} l[b0 ,m0]*a[m0 ,t0];

subject to ActiveWhenAccessed { b0 in B, t0 in T}:

o[b0 ,t0] >= ab[b0 ,t0];

subject to AllocatedOnce { m0 in M }:

sum { b0 in B } l[b0 ,m0] = 1;

subject to RespectsSize { b0 in B }:

sum { m0 in M } l[b0 ,m0]*sm[m0] <= sb[b0];

94

B.2. Simulation tools

subject to StartsDeactivate { b0 in B }:

o[b0 ,1] = 0;

solve;

display sb;

display sm;

display a;

display am;

display a;

display l;

display o;

display ab;

display op;

end;

B.2 Simulation tools
Initial wireless sensor networks simulations were performed using the following
tools:

• AVRora 1 developed for the AVR microcontrollers [106], which later incorpo-
rates the simulation IEEE 802.15.4 compliant radio chips, allowing emulation
of sensor nodes such as MicaZ [31]. In this work it was used as stand-alone
simulator (later it was incorporated to COOJA).

• WSim2 [43] is a platform simulator that relies on cycle accurate full platform
simulation. It can be used standalone for debuging purposes or with the
WSNet simulator to perform the simulation of a complete sensor network.

B.2.1 Energest modifications
Energest functionality is implemented in ContikiOS as a module that could be
included or not in an application through macros. The idea is to measure and
accumulate the elapsed time in different power states. Periodically these values
are reported to the sink node where each energy consumption contribution is com-
puted.

In the code location where a change in the power state it is performed, a macro
signaling the transition is called. Two macro are used, one for entering a state, so
that it is started the time measurement, and other to existing a state, recording
the elaspsed time in that state and accumulating the time measurement.

1http://compilers.cs.ucla.edu/avrora/
2http://wsim.gforge.inria.fr/

95

Appendix B. Evaluation tools

Listing B.1: Code excerpt .
1

2 while(1) {
3 // ...
4 do {
5 watchdog periodic();
6 r = process run();
7 } while(r > 0);
8 // ...
9 static unsigned long irq energest = 0;

10 /∗ Re−enable interrupts and go to sleep atomically. ∗/
11 ENERGEST OFF(ENERGEST TYPE CPU);
12 ENERGEST ON(ENERGEST TYPE LPM);
13 /∗ We only want to measure the processing done in IRQs when we are asleep

, so we discard the processing time done when we were awake. ∗/
14 energest type set(ENERGEST TYPE IRQ, irq energest);
15 watchdog stop();
16 /∗ check if the DCO needs to be on − if so − only LPM 1 ∗/
17 if (msp430 dco required) {
18 BIS SR(GIE | CPUOFF); /∗ LPM1 sleep for DMA to work!. ∗/
19 } else {
20 BIS SR(GIE | SCG0 | SCG1 | CPUOFF); /∗ LPM3 sleep. This statement

will block until the CPU is woken up by an interrupt that sets the
wake up flag. ∗/

21 }
22 /∗ We get the current processing time for interrupts that was done during

the LPM and store it for next time around. ∗/
23 dint();
24 irq energest = energest type time(ENERGEST TYPE IRQ);
25 eint();
26 watchdog start();
27 ENERGEST OFF(ENERGEST TYPE LPM);
28 ENERGEST ON(ENERGEST TYPE CPU);
29 }

The states considered in the actual implementation are: LPM, IRQ, CPU,
Transmit, and Listening, corresponding to the low power mode (LPM3), microcon-
troller active mode in interrupt context, microcontroller in active state in normal
mode, radio transmitting and radio in reception mode, respectively.

The Listing B.1 with code excerpt of the main loop of ContikiOS show the use
of the Energest macros.

96

B.2. Simulation tools

Modifications
The main limitation is that the application that send the report to the sink node,
collect-view, allocated data variables of 16-bits wide. We could verified that this
maximum time is overflow for the LPM and CPU states in normal operation. The
Energest module has 32-bit variables for accumulating the elapsed time. When
the application is preparing the message with these data, if an accumulated time
does no fit in a 16-bits word, it scaled all the times values. This procedure keep
the relations between the different measured times, but introduce an error for
computing the total accumulate time though summing all the reported times.

This limitation was easily fixed using spare data variable in the message struc-
ture, to send 32-bits accumulated time for all the considered state.

97

This page is intentionally left blank.

Bibliography

[1] MSP430FR573x, MSP430FR572x Mixed Signal Microcontroller (Rev. H).
http://www.ti.com/lit/ds/symlink/msp430fr5739.pdf, September 2013.

[2] R. Allgayer, Leonardo Steinfeld, C. E. Pereira, Luigi Carro, and F. R. Wag-
ner. Aplicação de Agentes Móveis em Redes de Sensores sem Fio para Lo-
calização e Seguimento de Objetos Alvos Móveis. In Congresso Brasileiro de
Automática, 18. Bonito, MS, Brasil, 2010.

[3] Federico Angiolini, Francesco Menichelli, Alberto Ferrero, Luca Benini, and
Mauro Olivieri. A post-compiler approach to scratchpad mapping of code. In
Proceedings of the 2004 international conference on Compilers, architecture,
and synthesis for embedded systems, CASES ’04, pages 259–267, New York,
NY, USA, 2004. ACM.

[4] Faisal Aslam, Luminous Fennell, Christian Schindelhauer, Peter Thiemann,
Gidon Ernst, Elmar Haussmann, Stefan Rührup, and Zastash Uzmi. Opti-
mized Java Binary and Virtual Machine for Tiny Motes Distributed Com-
puting in Sensor Systems. In Rajmohan Rajaraman, Thomas Moscibroda,
Adam Dunkels, and Anna Scaglione, editors, Distributed Computing in Sen-
sor Systems, volume 6131 of Lecture Notes in Computer Science, chapter 2,
pages 15–30. Springer Berlin / Heidelberg, Berlin, Heidelberg, 2010.

[5] A. Bachir, M. Dohler, T. Watteyne, and K. K. Leung. MAC Essentials
for Wireless Sensor Networks. Communications Surveys & Tutorials, IEEE,
12(2):222–248, 2010.

[6] J. Balfour, W. J. Dally, D. Black-Schaffer, V. Parikh, and JongSoo Park. An
Energy-Efficient Processor Architecture for Embedded Systems. Computer
Architecture Letters, 7(1):29–32, January 2008.

[7] Tobias Becker, Peter Jamieson, Wayne Luk, Peter Y. K. Cheung, and Tero
Rissa. Towards benchmarking energy efficiency of reconfigurable architec-
tures. In 2008 International Conference on Field Programmable Logic and
Applications, pages 691–694. IEEE, 2008.

[8] Fabio L. Bellifemine, Giovanni Caire, and Dominic Greenwood. Developing
Multi-Agent Systems with JADE (Wiley Series in Agent Technology). John
Wiley & Sons, April 2007.

Bibliography

[9] Tony Benavides, Justin Treon, Jared Hulbert, and Weide Chang. The En-
abling of an Execute-In-Place Architecture to Reduce the Embedded System
Memory Footprint and Boot Time. JCP, 3(1):79–89, 2008.

[10] L. Benini, A. Bogliolo, and G. De Micheli. A survey of design techniques
for system-level dynamic power management. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 8(3):299–316, June 2000.

[11] L. Benini, L. Macchiarulo, A. Macii, and M. Poncino. Layout-driven mem-
ory synthesis for embedded systems-on-chip. Very Large Scale Integration
(VLSI) Systems, IEEE Transactions on, 10(2):96–105, April 2002.

[12] D. Bertozzi and L. Benini. Hardware Platforms for Third-Generation Mo-
bile Terminals Memories in Wireless Systems. In Rino Micheloni, Giovanni
Campardo, and Piero Olivo, editors, Memories in Wireless Systems, Sig-
nals and Communication Technology, chapter 1, pages 1–28. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2008.

[13] R. Bez, E. Camerlenghi, A. Modelli, and A. Visconti. Introduction to flash
memory. Proceedings of the IEEE, 91(4):489–502, April 2003.

[14] Subhasis Bhattacharjee and Dhiraj K. Pradhan. LPRAM: a low power
DRAM with testability. In ASP-DAC ’04: Proceedings of the 2004 Asia
and South Pacific Design Automation Conference, pages 390–393, Piscat-
away, NJ, USA, 2004. IEEE Press.

[15] Shah Bhatti, James Carlson, Hui Dai, Jing Deng, Jeff Rose, Anmol Sheth,
Brian Shucker, Charles Gruenwald, Adam Torgerson, and Richard Han.
MANTIS OS: an embedded multithreaded operating system for wireless mi-
cro sensor platforms. Mob. Netw. Appl., 10(4):563–579, August 2005.

[16] Niels Brouwers, Peter Corke, and Koen Langendoen. A java compatible
virtual machine for wireless sensor nodes. In the 6th ACM conference, SenSys
’08, pages 369–370, New York, New York, USA, 2008. ACM Press.

[17] A. Calimera, L. Benini, A. Macii, E. Macii, and M. Poncino. Design of a
Flexible Reactivation Cell for Safe Power-Mode Transition in Power-Gated
Circuits. IEEE Transactions on Circuits and Systems I: Regular Papers,
56(9):1979–1993, September 2009.

[18] A. Calimera, A. Macii, E. Macii, and M. Poncino. Design Techniques and
Architectures for Low-Leakage SRAMs. Circuits and Systems I: Regular
Papers, IEEE Transactions on, 59(9):1992–2007, 2012.

[19] Edgar H. Callaway. The Wireless Sensor Network MAC. In Handbook of
Sensor Networks, pages 239–276. John Wiley & Sons, Inc., 2005.

[20] C. Cano, B. Bellalta, A. Sfairopoulou, and M. Oliver. Low energy opera-
tion in WSNs: A survey of preamble sampling MAC protocols. Computer
Networks, 55(15):3351–3363, October 2011.

100

Bibliography

[21] Qing Cao, Tarek Abdelzaher, John Stankovic, and Tian He. The LiteOS Op-
erating System: Towards Unix-Like Abstractions for Wireless Sensor Net-
works. In 2008 7th International Conference on Information Processing in
Sensor Networks (IPSN), IPSN ’08, pages 233–244, Washington, DC, USA,
April 2008. IEEE.

[22] A. Caracas, T. Kramp, M. Baentsch, M. Oestreicher, T. Eirich, and I. Ro-
manov. Mote Runner: A Multi-language Virtual Machine for Small Em-
bedded Devices. In Sensor Technologies and Applications, 2009. SENSOR-
COMM ’09. Third International Conference on, volume 0, pages 117–125,
Los Alamitos, CA, USA, June 2009. IEEE.

[23] Hojung Cha, Sukwon Choi, Inuk Jung, Hyoseung Kim, Hyojeong Shin, Jae-
hyun Yoo, and Chanmin Yoon. RETOS: resilient, expandable, and threaded
operating system for wireless sensor networks. In Proceedings of the 6th in-
ternational conference on Information processing in sensor networks, IPSN
’07, pages 148–157, New York, NY, USA, 2007. ACM.

[24] Ioannis Chatzigiannakis, Georgios Mylonas, and Sotiris Nikoletseas. 50 ways
to build your application: A survey of middleware and systems for Wireless
Sensor Networks. In 2007 IEEE Conference on Emerging Technologies &
Factory Automation (EFTA 2007), pages 466–473. IEEE, September 2007.

[25] G. Chen, F. Li, M. Kandemir, O. Ozturk, and I. Demirkiran. Compiler-
Directed Management of Leakage Power in Software-Managed Memories. In
IEEE Computer Society Annual Symposium on Emerging VLSI Technologies
and Architectures (ISVLSI’06), volume 00, pages 450–451. IEEE, 2006.

[26] L. Crippa, R. Micheloni, I. Motta, and M. Sangalli. Nonvolatile Memories:
NOR vs. NAND Architectures Memories in Wireless Systems. In Rino Mich-
eloni, Giovanni Campardo, and Piero Olivo, editors, Memories in Wireless
Systems, Signals and Communication Technology, chapter 2, pages 29–53.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[27] David Culler, Jason Hill, Mike Horton, Kris Pister, Robert Szewczyk, and
A. Woo. Mica: The commercialization of microsensor motes. Sensors Mag-
azine, 19(4):40–48, 2002.

[28] William J. Dally, James Chen, R. Curtis Harting, James Balfour, David
Black-Shaffer, Vishal Parikh, David Sheffield, and Jongsoo Park. Efficient
Embedded Computing. Computer, 41(7):27–32, July 2008.

[29] Edison de Freitas, Bernhard Bösch, Rodrigo Allgayer, Leonardo Steinfeld,
Flávio Wagner, Luigi Carro, Carlos Pereira, and Tony Larsson. Mobile
Agents Model and Performance Analysis of a Wireless Sensor Network Tar-
get Tracking Application. In Proceedings of the 11th International Confer-
ence and 4th International Conference on Smart Spaces and Next Gener-
ation Wired/Wireless Networking, NEW2AN’11/ruSMART’11, pages 274–
286, Berlin, Heidelberg, 2011. Springer-Verlag.

101

Bibliography

[30] Edison P. de Freitas, Bernhard Bösch, Rodrigo Allgayer, Leonardo Stein-
feld, Carlos Pereira, Tony Larsson, F. W. Wagner, and L. Carro. Análise
de Desempenho da Utilização do Framework AFME em uma Aplicação de
Seguimento de Trajetória para Rede de Sensores sem Fio utilizando Agentes
Móveis. In SBAI 2011, São João del-Rei, September 2011.

[31] Rodolfo de Paz Alberola and Dirk Pesch. AvroraZ: extending Avrora with an
IEEE 802.15.4 compliant radio chip model. In Proceedings of the 3nd ACM
workshop on Performance monitoring and measurement of heterogeneous
wireless and wired networks, PM2HW2N ’08, pages 43–50, New York, NY,
USA, 2008. ACM.

[32] Minh Q. Do, Mindaugas Drazdziulis, Per L. Edefors, and Lars Bengtsson.
Leakage-Conscious Architecture-Level Power Estimation for Partitioned and
Power-Gated SRAM Arrays. In ISQED ’07: Proceedings of the 8th Interna-
tional Symposium on Quality Electronic Design, pages 185–191, Washington,
DC, USA, 2007. IEEE Computer Society.

[33] Xiangyu Dong, Cong Xu, Yuan Xie, and N. P. Jouppi. NVSim: A Circuit-
Level Performance, Energy, and Area Model for Emerging Nonvolatile Mem-
ory. Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, 31(7):994–1007, July 2012.

[34] Adam Dunkels. The ContikiMAC Radio Duty Cycling Protocol. Technical
Report T2011:13, Swedish Institute of Computer Science, December 2011.

[35] Adam Dunkels, Luca Mottola, Nicolas Tsiftes, Fredrik Österlind, Joakim
Eriksson, and Niclas Finne. The announcement layer: beacon coordina-
tion for the sensornet stack. In Proceedings of the 8th European conference
on Wireless sensor networks, EWSN’11, pages 211–226, Berlin, Heidelberg,
2011. Springer-Verlag.

[36] Adam Dunkels, Fredrik Österlind, Nicolas Tsiftes, and Zhitao He. Software-
based On-line Energy Estimation for Sensor Nodes. In Proceedings of the
Fourth Workshop on Embedded Networked Sensors (Emnets IV), Cork, Ire-
land, June 2007.

[37] Adam Dunkels, Oliver Schmidt, Thiemo Voigt, and Muneeb Ali. Pro-
tothreads: Simplifying event-driven programming of memory-constrained
embedded systems. In In Proc. 2006 SenSys, pages 29–42, 2006.

[38] Prabal Dutta and Adam Dunkels. Operating systems and network protocols
for wireless sensor networks. Philosophical Transactions of the Royal Soci-
ety A: Mathematical, Physical and Engineering Sciences, 370(1958):68–84,
January 2012.

[39] Joakim Eriksson, Fredrik Österlind, Niclas Finne, Nicolas Tsiftes, Adam
Dunkels, Thiemo Voigt, Robert Sauter, and Pedro J. Marrón. COOJA/M-
SPSim: interoperability testing for wireless sensor networks. In Proceedings

102

Bibliography

of the 2nd International Conference on Simulation Tools and Techniques,
Simutools ’09, pages 1–7, ICST, Brussels, Belgium, Belgium, 2009. ICST
(Institute for Computer Sciences, Social-Informatics and Telecommunica-
tions Engineering).

[40] Farzan Fallah and Massoud Pedram. Circuit and System Level Power Man-
agement. In Massoud Pedram and JanM Rabaey, editors, Power Aware
Design Methodologies, pages 373–412. Springer US, 2002.

[41] Amir H. Farrahi, Gustavo E. Téllez, and Majid Sarrafzadeh. Memory seg-
mentation to exploit sleep mode operation. In Proceedings of the 32nd an-
nual ACM/IEEE Design Automation Conference, DAC ’95, pages 36–41,
New York, NY, USA, 1995. ACM.

[42] Rodrigo Fonseca, Prabal Dutta, Philip Levis, and Ion Stoica. Quanto:
tracking energy in networked embedded systems. In Proceedings of the
8th USENIX conference on Operating systems design and implementation,
OSDI’08, pages 323–338, Berkeley, CA, USA, 2008. USENIX Association.

[43] Antoine Fraboulet, Guillaume Chelius, and Eric Fleury. Worldsens: develop-
ment and prototyping tools for application specific wireless sensors networks.
In Proceedings of the 6th international conference on Information processing
in sensor networks, IPSN ’07, pages 176–185, New York, NY, USA, 2007.
ACM.

[44] David Gay, Philip Levis, Robert von Behren, Matt Welsh, Eric Brewer, and
David Culler. The ¡i¿nesC¡/i¿ language: A holistic approach to networked
embedded systems. SIGPLAN Not., 38(5):1–11, May 2003.

[45] Alan Gibbons, Aitken Robert, Kaijian Shi, Michael Keating, and David
Flynn. Low Power Methodology Manual. Springer US, Boston, MA, 2007.

[46] Omprakash Gnawali, Rodrigo Fonseca, Kyle Jamieson, David Moss, and
Philip Levis. Collection tree protocol. In Proceedings of the 7th ACM Con-
ference on Embedded Networked Sensor Systems, SenSys ’09, pages 1–14,
New York, NY, USA, 2009. ACM.

[47] Olga Golubeva, Mirko Loghi, Massimo Poncino, and Enrico Macii. Archi-
tectural leakage-aware management of partitioned scratchpad memories. In
DATE ’07: Proceedings of the conference on Design, automation and test in
Europe, pages 1665–1670, San Jose, CA, USA, 2007. EDA Consortium.

[48] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown. MiBench: A free, commercially representative embedded
benchmark suite. In Proceedings of the Fourth Annual IEEE International
Workshop on Workload Characterization. WWC-4 (Cat. No.01EX538),
pages 3–14. IEEE, 2001.

103

Bibliography

[49] Chih-Chieh Han, Ram Kumar, Roy Shea, Eddie Kohler, and Mani Srivas-
tava. A dynamic operating system for sensor nodes. In the 3rd international
conference, MobiSys ’05, pages 163–176, New York, New York, USA, 2005.
ACM Press.

[50] Vlado Handziski. Double-Anchored Software Architecture for Wireless Sen-
sor Networks. PhD thesis, Berlin, Technische Universtität Berlin, Diss.,
2011, 2011.

[51] M. Hempstead, D. Brooks, and G. Wei. An Accelerator-Based Wireless
Sensor Network Processor in 130 nm CMOS. Emerging and Selected Topics
in Circuits and Systems, IEEE Journal on, 1(2):193–202, June 2011.

[52] Jörg Henkel, Sri Parameswaran, and Newton Cheung. Application-Specific
Embedded Processors. In Jörg Henkel and Sri Parameswaran, editors, De-
signing Embedded Processors, pages 3–23. Springer Netherlands, 2007.

[53] H. Hidaka. Evolution of embedded flash memory technology for MCU. In IC
Design & Technology (ICICDT), 2011 IEEE International Conference on,
pages 1–4. IEEE, May 2011.

[54] Hideto Hidaka. Embedded Flash Memory. In Kevin Zhang, editor, Embedded
Memories for Nano-Scale VLSIs, Integrated Circuits and Systems, pages
177–240. Springer US, 2009.

[55] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David Culler, and
Kristofer Pister. System architecture directions for networked sensors. SIG-
PLAN Not., 35(11):93–104, November 2000.

[56] Philipp Hurni, Benjamin Nyffenegger, Torsten Braun, and Anton Hergen-
roeder. On the accuracy of software-based energy estimation techniques.
In Proceedings of the 8th European conference on Wireless sensor networks,
EWSN’11, pages 49–64, Berlin, Heidelberg, 2011. Springer-Verlag.

[57] ITRS. International Technology Roadmap for Semiconductors, 2011 Edition,
Emerging Research Devices (ERD), 2011.

[58] ITRS. International Technology Roadmap for Semiconductors, 2011 Edition,
Process Integration, Devices and Structures (PIDS), 2011.

[59] ITRS. International Technology Roadmap for Semiconductors, 2011 Edition,
System Drivers, 2011.

[60] Xiaofan Jiang, P. Dutta, D. Culler, and I. Stoica. Micro Power Meter for
Energy Monitoring of Wireless Sensor Networks at Scale. In Information
Processing in Sensor Networks, 2007. IPSN 2007. 6th International Sympo-
sium on, pages 186–195. IEEE, April 2007.

104

Bibliography

[61] Yongsoo Joo, Yongseok Choi, Chanik Park, Sung W. Chung, EuiYoung
Chung, and Naehyuck Chang. Demand paging for OneNANDTM Flash
eXecute-in-place. In the 4th international conference, pages 229–234, New
York, New York, USA, October 2006. ACM Press.

[62] J. M. Kahn, R. H. Katz, and K. S. J. Pister. Next century challenges: mobile
networking for ” Smart Dust”. In the 5th annual ACM/IEEE international
conference, MobiCom ’99, pages 271–278, New York, New York, USA, 1999.
ACM Press.

[63] N. S. Kim, T. Austin, D. Baauw, T. Mudge, K. Flautner, J. S. Hu, M. J.
Irwin, M. Kandemir, and V. Narayanan. Leakage current: Moore’s law meets
static power. Computer, 36(12):68–75, December 2003.

[64] B. S. Kiyoo Itoh, K. Sasaki, and Y. Nakagome. Trends in low-power RAM
circuit technologies. Proceedings of the IEEE, 83(4):524–543, April 1995.

[65] Kevin Klues, Chieh Jan Mike Liang, Jeongyeup Paek, E. Răzvan Musăloiu,
Philip Levis, Andreas Terzis, and Ramesh Govindan. TOSThreads: thread-
safe and non-invasive preemption in TinyOS. In Proceedings of the 7th ACM
Conference on Embedded Networked Sensor Systems, SenSys ’09, pages 127–
140, New York, NY, USA, 2009. ACM.

[66] JeongGil Ko, Kevin Klues, Christian Richter, Wanja Hofer, Branislav Kusy,
Michael Bruenig, Thomas Schmid, Qiang Wang, Prabal Dutta, and Andreas
Terzis. Low power or high performance? a tradeoff whose time has come
(and nearly gone). In Proceedings of the 9th European conference on Wire-
less Sensor Networks, EWSN’12, pages 98–114, Berlin, Heidelberg, 2012.
Springer-Verlag.

[67] Stephan Korsholm, Martin Schoeberl, and Anders P. Ravn. Interrupt Han-
dlers in Java. Object-Oriented Real-Time Distributed Computing, IEEE In-
ternational Symposium on, 0:453–457, 2008.

[68] Joel Koshy, Ingwar Wirjawan, Raju Pandey, and Yann Ramin. Balancing
computation and communication costs: The case for hybrid execution in
sensor networks. Ad Hoc Networks, 6(8):1185–1200, November 2008.

[69] J. Kwong and A. P. Chandrakasan. An Energy-Efficient Biomedical Signal
Processing Platform. Solid-State Circuits, IEEE Journal of, 46(7):1742–
1753, July 2011.

[70] J. Kwong, Y. Ramadass, N. Verma, M. Koesler, K. Huber, H. Moormann,
and A. Chandrakasan. A 65nm Sub-Vt Microcontroller with Integrated
SRAM and Switched-Capacitor DC-DC Converter. In Solid-State Circuits
Conference, 2008. ISSCC 2008. Digest of Technical Papers. IEEE Interna-
tional, pages 318–616. IEEE, February 2008.

105

Bibliography

[71] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo,
D. Gay, J. Hill, M. Welsh, E. Brewer, and D. Culler. TinyOS: An Operating
System for Sensor Networks, chapter 7, pages 115–148. Springer-Verlag,
Berlin/Heidelberg, 2005.

[72] Philip Levis and David Culler. Maté: a tiny virtual machine for sensor
networks. SIGOPS Oper. Syst. Rev., 36(5):85–95, October 2002.

[73] Mirko Loghi, Olga Golubeva, Enrico Macii, and Massimo Poncino. Architec-
tural Leakage Power Minimization of Scratchpad Memories by Application-
Driven Subbanking. IEEE Transactions on Computers, 59(7):891–904, July
2010.

[74] B. Matas, C. DeSubercausau, and Integrated C. Corporation. Memory,
1997: Complete Coverage of Dram, Sram, Eprom, and Flash Memory IC’s.
Integrated Circuit Engineering Corporation, 1997.

[75] Pablo Mazzara, Leonardo Steinfeld, Fernando Silveira, and Jorge Villaverde.
Herramienta para depuración de redes de sensores inalámbricos. In Congreso
Argentino de Sistemas Embebidos (CASE), Buenos Aires, Argentina. Libro
de Trabajos, 2010.

[76] Pablo Mazzara, Leonardo Steinfeld, Jorge Villaverde, Fernando Silveira,
German Fierro, Alvaro Otero, Celmira Saravia, N. Barlocco, P. Vergara,
and D. Gar’ın. Despliegue y Depuración de Redes de Sensores Inalámbricos
para Aplicaciones al Agro. In Roberto F. Mar’ıa Eugenia Torres, editor, Re-
unión de Trabajo en Procesamiento de la Información y Control, 14, RPIC
201. Paraná, Argentina. Universidad Nacional de Entre Ŕıos, 2011.

[77] A. K. I. Mendonça, D. P. Volpato, J. L. Güntzel, and L. C. V. dos Santos.
Mapping Data and Code into Scratchpads from Relocatable Binaries. In
VLSI, 2009. ISVLSI ’09. IEEE Computer Society Annual Symposium on,
pages 157–162, Washington, DC, USA, May 2009. IEEE.

[78] F. Menichelli and M. Olivieri. Static Minimization of Total Energy Consump-
tion in Memory Subsystem for Scratchpad-Based Systems-on-Chips. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 17(2):161–
171, February 2009.

[79] David Moss, Jonathan Hui, and Kevin Klues. Low power listening. TinyOS
Core Working Group, TEP, 105, 2007.

[80] Luca Mottola and Gian Picco. Middleware for wireless sensor networks: an
outlook. Journal of Internet Services and Applications, 3:31–39, 2012.

[81] Lode Nachtergaele, Francky Catthoor, and Chidamber Kulkarni. Random-
Access Data Storage Components in Customized Architectures. IEEE Des.
Test, 18(3):40–54, May 2001.

106

Bibliography

[82] J. Nemeth, Rui Min, Wen-Ben Jone, and Yiming Hu. Location Cache De-
sign and Performance Analysis for Chip Multiprocessors. Very Large Scale
Integration (VLSI) Systems, IEEE Transactions on, 19(1):104–117, January
2011.

[83] Yukihito Oowaki and Tohru Tanzawa. Low Power Memory Design. In Mas-
soud Pedram and JanM Rabaey, editors, Power Aware Design Methodolo-
gies, pages 51–89. Springer US, 2002.

[84] Ozcan Ozturk and Mahmut Kandemir. ILP-Based energy minimization
techniques for banked memories. ACM Trans. Des. Autom. Electron. Syst.,
13(3):1–40, July 2008.

[85] Preeti R. Panda, Nikil D. Dutt, and Alexandru Nicolau. On-chip vs. off-
chip memory: the data partitioning problem in embedded processor-based
systems. ACM Trans. Des. Autom. Electron. Syst., 5(3):682–704, July 2000.

[86] Preeti R. Panda, Alexandru Nicolau, and Nikil Dutt. Memory Issues in Em-
bedded Systems-on-Chip: Optimizations and Exploration. Kluwer Academic
Publishers, Norwell, MA, USA, 1998.

[87] M. A. Pasha, S. Derrien, and O. Sentieys. A complete design-flow for the gen-
eration of ultra low-power WSN node architectures based on micro-tasking.
In Design Automation Conference (DAC), 2010 47th ACM/IEEE, pages
693–698. IEEE, June 2010.

[88] Muhammad A. Pasha, Steven Derrien, and Olivier Sentieys. System-Level
Synthesis for Wireless Sensor Node Controllers: A Complete Design Flow.
ACM Trans. Des. Autom. Electron. Syst., 17(1), January 2012.

[89] Massoud Pedram and Qing Wu. Design considerations for battery-powered
electronics. In Proceedings of the 36th annual ACM/IEEE Design Automa-
tion Conference, DAC ’99, pages 861–866, New York, NY, USA, 1999. ACM.

[90] J. Polastre, R. Szewczyk, and D. Culler. Telos: enabling ultra-low power
wireless research. In Information Processing in Sensor Networks, 2005. IPSN
2005. Fourth International Symposium on, pages 364–369. IEEE, April 2005.

[91] A. Prayati, Ch Antonopoulos, T. Stoyanova, C. Koulamas, and G. Pa-
padopoulos. A modeling approach on the TelosB WSN platform power
consumption. Journal of Systems and Software, 83(8):1355–1363, August
2010.

[92] Hulfang Qin, Yu Cao, D. Markovic, A. Vladimirescu, and J. Rabaey. SRAM
leakage suppression by minimizing standby supply voltage. In Quality Elec-
tronic Design, 2004. Proceedings. 5th International Symposium on, volume 0,
pages 55–60, Los Alamitos, CA, USA, 2004. IEEE.

107

Bibliography

[93] Jan Rabaey. Optimizing Power @ Standby – Memory. In Low Power Design
Essentials, Integrated Circuits and Systems, pages 233–248. Springer US,
2009.

[94] Jan M. Rabaey, Anantha P. Chandrakasan, and Borivoje Nikolic. Digital
integrated circuits, volume 2. Prentice Hall, 2003.

[95] V. Raghunathan, C. Schurgers, Sung Park, and M. B. Srivastava. Energy-
aware wireless microsensor networks. Signal Processing Magazine, IEEE,
19(2):40–50, March 2002.

[96] Mohammad Rahimi, Rick Baer, Obimdinachi I. Iroezi, Juan C. Garcia, Jay
Warrior, Deborah Estrin, and Mani Srivastava. Cyclops: in situ image sens-
ing and interpretation in wireless sensor networks. In SenSys ’05: Pro-
ceedings of the 3rd international conference on Embedded networked sensor
systems, pages 192–204, New York, NY, USA, 2005. ACM.

[97] R. K. Raval, C. H. Fernandez, and C. J. Bleakley. Low-power TinyOS tuned
processor platform for wireless sensor network motes. ACM Trans. Des.
Autom. Electron. Syst., 15(3), June 2010.

[98] Martin Schoeberl, Christian Thalinger, Stephan Korsholm, and Anders P.
Ravn. Hardware Objects for Java. Object-Oriented Real-Time Distributed
Computing, IEEE International Symposium on, 0:445–452, 2008.

[99] Doug Simon, Cristina Cifuentes, Dave Cleal, John Daniels, and Derek White.
Java™ on the bare metal of wireless sensor devices: the squawk Java
virtual machine. In Proceedings of the 2nd international conference on Vir-
tual execution environments, VEE ’06, pages 78–88, New York, NY, USA,
2006. ACM.

[100] J. A. Stankovic and T. He. Energy management in sensor networks. Philo-
sophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 370(1958), 2012.

[101] Leonardo Steinfeld and Luigi Carro. The Case for Interpreted Languages
in Wireless Sensor Networks. In IESS 09 - International Embedded Systems
Symposium. Langenargen, Germany, pages 279–289. Springer, September
2009.

[102] Leonardo Steinfeld, Marcus Ritt, Luigi Carro, and Fernando Silveira. Opti-
mum design of a banked memory with power management for wireless sensor
networks. In Memory Architecture and Organization Workshop in conjunc-
tion with ESWEEK, October 2012.

[103] Leonardo Steinfeld, Marcus Ritt, Luigi Carro, and Fernando Silveira. A
new memory banking system for energy-efficient wireless sensor networks. In
The 9th IEEE International Conference on Distributed Computing in Sensor
Systems 2013 (IEEE DCoSS 2013), pages 215–222, Cambridge, USA, May
2013.

108

Bibliography

[104] Leonardo Steinfeld, Marcus Ritt, Fernando Silveira, and Luigi Carro. Low-
power processors require effective memory partitioning. In IESS 13 - Inter-
national Embedded Systems Symposium. Paderborn, Germany, pages 73–81.
Springer, June 2013.

[105] Shyamkumar Thoziyoor, Jung H. Ahn, Matteo Monchiero, Jay B. Brock-
man, and Norman P. Jouppi. A Comprehensive Memory Modeling Tool and
Its Application to the Design and Analysis of Future Memory Hierarchies.
In 2008 International Symposium on Computer Architecture, pages 51–62,
Washington, DC, USA, June 2008. IEEE.

[106] B. L. Titzer, D. K. Lee, and J. Palsberg. Avrora: scalable sensor network
simulation with precise timing. In Information Processing in Sensor Net-
works, 2005. IPSN 2005. Fourth International Symposium on, pages 477–
482. IEEE, April 2005.

[107] Nicolas Tsiftes, Joakim Eriksson, Niclas Finne, Fredrik Österlind, Joel
Höglund, and Adam Dunkels. A framework for low-power IPv6 routing sim-
ulation, experimentation, and evaluation. SIGCOMM Comput. Commun.
Rev., 40(4):479–480, August 2010.

[108] Frits Vaandrager. Introduction, volume 1494 of Lecture Notes in Computer
Science, chapter 1, pages 1–3. Springer Berlin Heidelberg, Berlin, Heidelberg,
1998.

[109] Jean P. Vasseur and Adam Dunkels. Interconnecting Smart Objects with IP:
The Next Internet. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2010.

[110] N. Verma. Analysis Towards Minimization of Total SRAM Energy Over
Active and Idle Operating Modes. Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, 19(9):1695–1703, 2011.

[111] D. P. Volpato, A. K. I. Mendonça, L. C. V. dos Santos, and J. L. Güntzel.
A Post-compiling Approach that Exploits Code Granularity in Scratchpads
to Improve Energy Efficiency. In VLSI (ISVLSI), 2010 IEEE Computer
Society Annual Symposium on, pages 127–132. IEEE, July 2010.

[112] T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister,
R. Struik, J. Vasseur, and R. Alexander. RPL: IPv6 Routing Protocol for
Low-Power and Lossy Networks. RFC 6550 (Proposed Standard), March
2012.

[113] M. Zwerg, A. Baumann, R. Kuhn, M. Arnold, R. Nerlich, M. Herzog,
R. Ledwa, C. Sichert, V. Rzehak, P. Thanigai, and B. O. Eversmann. An
82uA/MHz microcontroller with embedded FeRAM for energy-harvesting
applications. In Solid-State Circuits Conference Digest of Technical Papers
(ISSCC), 2011 IEEE International, pages 334–336. IEEE, February 2011.

109

This page is intentionally left blank.

List of Tables

2.1 Sensor nodes comparison. 9
2.2 Processor configuration and energy consumption per operation (based

on [6]). 12
2.3 Sensor node states and consumption (telos). 21
2.4 Application parameters (size in bytes). 23
2.5 Energest results for udp-sender application 24

3.1 Read energy. 44
3.2 Leakage power. 44
3.3 Maximum frequency. 45
3.4 Energy parameters and method to find the respective values. . . . 51
3.5 Energy curve parameters as function of memory size. 51
3.6 Partition overhead as function of the number of banks (values ex-

tracted from [73]). 54

5.1 Application parameters (size in bytes). 72
5.2 Optimum number of banks as a function of partition overhead. . . 78
5.3 Energy saving comparison: maximum, greedy and best-oracle. . . . 79

This page is intentionally left blank.

List of Figures

2.1 Custom hard-wired logic, extensible processor and general purpose
processor [52]. 11

2.2 Power model of a two states component. 18

2.3 Typical current profile of sensor node (telos) [60]. 20

2.4 Sensor node states. 21

2.5 COOJA graphical user interface showing: main controls and log-
ger windows (top left), sensor nodes locations and communication
exchange, and timeline with the radio activities. 25

2.6 Microcontroller power states: sleep, normal processing and inter-
rupt context; and transition conditions: lpm (low power mode), isr
(isr start address), and reti (return from isr). 26

2.7 Elapsed time distribution of microcontroller states. 26

2.8 Box-and-whisker diagram of the elapsed time of microcontroller states. 27

2.9 Radio power states: sleep and on; and transition conditions: stop
reg. (shut off the voltage regulator) and start osc. (turn the oscil-
lator on). 27

2.10 Elapsed time distribution of radio states. 28

2.11 Sleep time cumulative frequency analysis. 29

3.1 Simplified memory structure [52]. 33

3.2 Memory organization in three hierarchy levels: bank, mat and sub-
array [33]. 34

3.3 Common memory organization: single memory and address space,
cache and main memory, scratch-pad and main memory. 36

3.4 Normalized cumulative frequency analysis for the memory access. . 36

3.5 Flash cell and the current/voltage characteristic for the “1” and “0”
logic values [26]. 38

3.6 Flash architectures: NOR and NAND [74]. 39

3.7 Threshold voltage distribution in a NAND cell, for erased and pro-
grammed [26]. 40

3.8 A six-transistor CMOS SRAM cell. 41

3.9 Flash and SRAM power consumption as a function of the operating
frequency. 46

3.10 Flash, SRAM and SRAM with sleep state power consumption as a
function of the operating frequency. 48

List of Figures

3.11 Energy consumption model. 50
3.12 Energy consumption per cycle as a function of the memory size. . 51
3.13 Partition overhead. 54

4.1 Block Allocation to banks. 58
4.2 Design flow. 59
4.3 Energy comparison: stay in idle state vs. enter in sleep state (y-axis

in logarithmic scale). 63

5.1 Energy savings as a function of the number of banks for best-oracle
and greedy policy (denoted gr and or) in TinyOS and ContikiOS
applications (denoted TOS and COS) and the theoretical limit
(dashed line). 76

5.2 Fraction of cycles and energy breakdown where each contribution is
averaged among the different banks. 76

5.3 Energy savings as a function of the number of banks for best-oracle
and greedy policy (denoted gr and or) for increasing wake-up cost
factor (TinyOS application. 77

5.4 Energy normalized respect to Eact. 79
5.5 Energy normalized respect to a single-bank memory (with sleep state). 80

114

Esta es la última página.
Compilado el Monday 16th June, 2014.

http://iie.fing.edu.uy/

http://iie.fing.edu.uy/

	Acknowledgments
	Acknowledgments
	Resumen
	Abstract
	Introduction
	Motivation
	Goals and contributions
	Thesis Organization

	Sensor node platform
	Sensor node hardware
	Evolution and future trends of hardware platforms
	Ultra low-power processors

	Sensor node software
	TinyOS
	ContikiOS
	Higher level abstractions: Java virtual machines

	Low-power techniques and methodologies
	Fundamentals of low-power design
	Dynamic power management

	Characterization of sensor platforms
	Power model
	Energy breakdown

	Summary and conclusions

	Memories for sensor nodes
	Memory fundamentals
	Memory internal architecture
	Memories for embedded systems and sensor nodes
	Memory organizations

	Flash and SRAM memories
	Flash memory
	SRAM memory
	Energy comparison: Flash vs. SRAM

	SRAM with sleep state
	SRAM with power-manageable banks
	Memory energy model

	Summary and conclusions

	Banked memory for sensor nodes
	Proposed architecture and methodology
	Memory power management

	Related work
	Energy saving expressions
	Energy saving for the greedy policy
	Energy saving for the best-oracle policy
	Effective energy saving

	Energy saving in a duty-cycled memory
	Summary and conclusions

	Experimentation and results
	Evaluation methodology
	Benchmarks and applications
	Optimization problem: memory contents allocation to banks
	Simulation and evaluation tools

	Results and Discussion
	Power management policy
	Partition overhead effect on energy savings
	Duty-cycle operation

	Summary and conclusions

	Conclusions
	Summary of the thesis
	Main contributions
	Future works

	Memory simulations
	CACTI estimations
	NVSim estimations

	Evaluation tools
	Integer linear program: AMPL model
	Simulation tools
	Energest modifications

	Referencias
	Índice de tablas
	Índice de figuras

