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“Its five-year mission: to explore strange new
worlds, to seek out new life and new civiliza-
tions, to boldly go where no man has gone be-
fore.”

JAMES T. KIRK

“Nuestras horas son minutos cuando esper-
amos saber y siglos cuando sabemos lo que se
puede aprender.”

Proverbios y Cantares
ANTONIO MACHADO

“Adiskide onekin, orduak labur.”

Basque proverb.
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Abstract

This thesis is divided in two parts, addressing quite different topics and fields
such as Cryo-Electron Microscopy and Object Segmentation.

Cryo-Electron Microscopy The first part addresses the problem of 3D recon-
struction of macromolecular assemblies from their 2D random projection im-
ages obtained following a tomographic acquisition in a Transmission Electron
Microscope. The challenge of this problem comes from the extremely noisy
and low contrasted projection images obtained with this procedure. The prob-
lem of reconstruction from random projections or multiple view geometry is well
known in Computer Vision, however the usual techniques based in identifying
correspondent point or lines in several views are discarded, due to the noisy
characteristics of the images (see for example figure 2.1b in page 7). Thus,
usually thousands of aligned projections are averaged in order to increase the
SNR and compute the reconstruction.

The main reason for the low SNR is the low electron doses allowed to irra-
diate the macromolecules of interest, otherwise severe radiation damage accu-
mulates, deforming the macromolecules and affecting the projections. Embed-
ding the specimens in vitreous ice and preserving it at cryogenic temperatures
(below -150◦ Celsius) helps reduce the accumulated radiation damage. In this
scenario, Cryo-Electron Microscopy has proved to be a powerful technique to
obtain 3D reconstructions with a wide range of resolutions. Two of the most
popular techniques in Cryo-Electron Microscopy are Single Particle Analysis
and Cryo-Electron Tomography, and are described in this work. Their main
differences for the goal of this work are that the former is capable to routinely
obtain reconstruction ∼8Å or better of in vitro specimens, and the later allows
to analyze in vivo specimens but hardly recovers reconstructions better than
20Å.

This work proposes a new framework combining the Single Particle Analy-
sis and Cryo-Electron Tomography approaches, that combines the best of both
worlds, adding the high resolution feature in the maps obtained with the Cryo-
Electron Tomography data collection procedure without sacrificing its desired
features. This is achieved through a new refinement algorithm and an innova-
tive adaptation of the Single Particle Analysis reconstruction procedure to this



kind of data.

The framework is validated by a set of experiments, first, synthesizing the
data collection procedure, allowing to have access to the complete groundtruth
(parameters and macromolecule structure) for the comparison. The second set
of experiments use data acquired in the Transmission Electron Microscope and
only the macromolecule structure is known. The reconstructed density map
for an homogeneous macromolecule shows details of about 10Å of resolutions.

This work was performed in collaboration with Alberto Bartesaghi and Sri-
ram Subramaniam from the Laboratory of Cell Biology, Center for Cancer Re-
search, National Cancer Institute, National Institutes of Health, USA.

This manuscript was prepared before the publication of this work, fur-
ther information can be found in my web page: http://iie.fing.edu.uy/

~fefo/.

Object segmentation. The second part addresses one of the most interesting
and fundamental tasks in Computer Vision and Image Processing such as ob-
ject segmentation. In this work we use the idea of Shape Models (SMs). SMs,
capturing the common features of a set of training shapes, represent a new in-
coming object based on its projection onto the corresponding model. Given a
set of learned SMs representing different objects classes, and an image with a
new shape, this work introduces a joint classification-segmentation framework
with a twofold goal. First, to automatically select the SM that best represents
the object, and second, to accurately segment the image taking into account
both the image information and the features and variations learned from the
on-line selected model. A new energy functional is introduced that simulta-
neously accomplishes both goals. Position and transformation invariance is
included as part of the modeling as well.

The model selection is performed based on a shape similarity measure, on-
line determining which model to use at each iteration of the steepest descent
minimization, allowing for model switching and adaptation to the data. High-
order SMs are used in order to deal with very similar object classes and natural
variability within them.

The presentation of the framework is complemented with examples for
the difficult task of simultaneously classifying and segmenting closely related
shapes, such as stages of human activities, in images with severe occlusions.

This work was presented in the IEEE International Conference on Image
Processing, ICIP 2009 [1], and appears in the IEEE Transactions on Image Pro-
cessing [2]. The contents of the second part is almost the same that appears
in the later reference.

xvi
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Preface

I started working on my PhD in 2007 with Álvaro Pardo and Gregory Randall.
We studied different techniques for the analysis of high dimensional data, ap-
plying them to different datasets. In July 2007 Guillermo Sapiro gave a short
course on this subject in Montevideo, and in October I visited his Research
Group in Minnesota where we continued this line of work with the goal of
applying these techniques to building models of the variation of shapes.

On February 1st, 2008, the coldest day of that winter in Minnesota, my
wife Julia and I arrived to Minneapolis directly from sunny Montevideo for
my two years internship.

During 2008 the work on object segmentation was performed. It can be
found in the second part of this manuscript, where all the previous work on
high dimensionality analysis was condensed into one section, which was pub-
lished in Transactions on Image Processing and was presented in the 2009 In-
ternational Conference on Image Processing in Cairo, Egypt. I also took some
courses in optimization and statistical learning. During the first month of
2009, with Guillermo and Ignacio Ramírez, we worked on a learning methods
to enhance properties of the dictionaries for sparse modeling. It was published
in the Third International Workshop on Computational Advances in Multi-
Sensor Adaptive Processing as an invited paper. This work is not included in
this manuscript.

In June 2009, Guillermo offered me some options on how to continue my
work, one of which was working (again) with Alberto Bartesaghi, continuing
Guillermo’s collaboration with Sriram Subramaniam’s research group at the
Laboratory of Cell Biology, NCI/CCR, National Institutes of Health, USA. It
took me one femtosecond to make my decision, but only the following day did
I answer Guillermo. Ever since I’ve made several visits to Sriram’s Lab where
I met him and his team of collaborators. It was the first time I was in contact
with this kind of high level research (my previous experience being academic
and industry research), and the human quality and the high stakes of the
subject, made this a very enriching experience at many levels. Getting into a
completely new, exciting and challenging world such as Structural Biology and
in particular Cryo-Electron Microscopy, and also propose some contributions
to the area, along with Sriram, Guillermo and Alberto, took me about two



years where every day was worth it, and the reward is much more than this
manuscript.
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Part I

Constrained Single Particle:
Merging Cryo-Electron

Tomography and Single Particle





Chapter 1

Introduction

Structure determination of macromolecular complexes is key for understand-
ing the mechanisms and functioning of cell’s “molecular machinery” which can
in turn lead to the development of rational vaccine design strategies to com-
bat diseases, for example. Various different techniques exist that can reach
these goals, for example, X-ray Crystallography, Nuclear Magnetic Resonance
(NMR) and Electron or Optical Microscopy, among others. Which technique
should be used to obtain high resolution images for the biologic structure of
interest depends strongly in its size or molecular weight. In other words, each
technique is best suited for a certain range of atomic masses, usually mea-
sured in Daltons1 (Da). X-ray and NMR are suited to the smaller masses up
to 105 Da, structures like aminoacids or secondary structures (as α-helix or
β-sheets), and for human scaled structures higher than 1026 Da. Microscopy
techniques are limited by the wavelength of the beamed particle used, the
lower the wavelength the higher the resolution. Light in optical microscopy
has a wavelength of 600 nanometers and the range of masses where it is ap-
plicable starts at 1012 Da. Electron microscopy, uses electrons instead of light,
with a wavelength of 6 picometers and its range of masses expands from 108

to 1022 Da. The mentioned techniques cover almost all the range of masses
of biological imaging except for a relative small gap between 106 to 1010 Da.
This range is extremely important in the field of cell biology because it is the
mass range of cellular entities, sub-cellular organelles and organisms such as
viruses and bacterias, whose sizes and complex structures are too big to be
analyzed with the preceding techniques. Thus, achieving a molecular level
resolution insight view into this area is key to understand and interpret their
functions and interactions at cellular level. At this point, Cryo-Electron Mi-
croscopy (Cryo-EM) stands as an effective framework to fill this gap [Sub05].

However, the data acquisition technique is not the only factor that might

1One Dalton is approximately equal to the proton or neutron’s mass, it is defined as one
twelfth of the rest mass of an unbound neutral atom of carbon-12 in its nuclear and electronic
ground state, 1Da= 1.660538921× 10−27kg



Chapter 1. Introduction

help to achieve this exciting goal and new algorithms and procedures must
be developed accordingly. In this sense, a wide range of problems such as
denoising, reconstruction, visualization, etc., need to be addressed implying
developments covering several areas of applied mathematics and engineering
such as Signal and Image Processing, Quantitative Analysis, Pattern Recogni-
tion, Multivariate Statistics, among others.

In Cryo-EM, the determination of high-resolution three dimensional (3D)
structure of biological macromolecules requires the application of robust and
effective algorithms for averaging the information obtained from the acquired
two dimensional (2D) random projections. The resolution of the reconstructed
maps is mainly affected by the acquisition procedure and the protocol of dis-
tribution of the dose of electrons while imaging the target. This acquisition
procedure also determines the characteristics of the different methods, impos-
ing a tradeoff between the achieved resolutions and the advantages of each
method. The present work proposes an innovative framework combining two
of the most successful Cryo-EM techniques (Single Particle and Cryo-Electron
Tomography) that allow to increase the resolution of the 3D reconstructions
without sacrificing their highly rated features. Also a new protocol of dose
fractionating is needed to better exploit the advantages of the proposed frame-
work. The framework is named Constrained Single Particle (CSP).

The remainder of this part is organized as follows. Chapter 2 briefly de-
scribes the Cryo-Electron Microscopy characteristics including further descrip-
tions of the Single Particle and Cryo-Electron Tomography techniques. Chap-
ter 3 describes the proposed framework. Chapter 4 presents validation exper-
iments and their discussion. Chapter 5 concludes this part. Appendix A de-
scribes the Euler angles convention used in this work, Appendix B introduces
a metric for measuring the aligment error in the reconstructions proposed in
this work. Appendix C describes the image formation process in Electron Mi-
croscopy and the CTF correction. Finally, appendix D introduces the usual
methods for measuring resolution.

4



Chapter 2

Cryo-Electron Microscopy

Cryo-Electron Microscopy is the technique where a frozen-hydrated specimen
is exposed in a Transmission Electron Microscope (TEM) to obtain an image
of its projection. The sample in the specimen grid is embedded in a very thin
layer of vitreous ice preserving its unembedded (native) characteristic fea-
tures, allowing to obtain projection images of fully hydrated macromolecules;
generally thousand of projections from different views are collected from iden-
tical copies of the macromolecule or particle of interest. Using these set of
projection images a three dimensional (3D) reconstruction of the specimen
can be obtained, once provided the 3D orientation of every projection. The
whole procedure can be thought as the reconstruction from multiple ran-
dom projections, a well known problem in Image Processing and Computer
Vision [Fau93, HZ04]. However, as it will be shown, in EM the projections are
extremely noisy and low contrasted images, and the usual procedures (such
as searching for correspondences) fail.

The mathematical foundations of the projection and reconstruction proce-
dures are based on Radon Transform theory and on the Fourier Central Slice
Theorem, that states that the 2D Fourier Transform of the projection of a 3D
object is equal to a central 2D section (slice) of the 3D Fourier Transform of the
object. Following this theorem, all the 2D transforms of the projection images
can be aligned to a common reference in the 3D Fourier reciprocal space, and
then inverted to obtain the 3D structure of the specimen in the real space.

The two most widely used Cryo-EM techniques are Single Particle Anal-
ysis (SP) and Cryo-Electron Tomography (Cryo-ET). Both techniques share
the same basic principles, but otherwise present major differences and ap-
plications. The most notorious is that SP is applied to study in vitro homoge-
neouses specimens, where only one projection from each particle in the sample
is taken with relatively high dose, achieving reconstructions up to a resolution
between 15 to 4Å [Gri07]. On the other hand, Cryo-ET is applied to study in
vivo specimens, and several projections of each particle are taken tilting the
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sample grid forcing to fractionate the allowable dose between the tilts1, and
therefore lower Signal to Noise Ratio (SNR). The resolution achieved by the
standard ET reconstruction are between 100 to 40Å, and can be increased up
to 20Å with further processing as will be described later (see averaging of sub-
volumes [LBB+08, BSL+08] in page 16). The rest of this section describes the
common Cryo-EM’s characteristics and the next sections concentrate on their
particularities.

The image formation process in a TEM is based on the interaction between
the electrons and the object. The planar wave in the electron beam illuminates
the object, introducing a local phase shift by an amount given by the integral
of the potential distribution in the wave propagation direction. Therefore,
the densities and thickness of the material in the traversed sample affects the
phase shift of the wave and then, the contrast in the image. Appendix C
briefly presents the image formation process in a TEM. Finally, the image is
recorded by detecting the electrons that pass through the sample to a system
of electromagnetic lenses which focus and enlarge the image with hundred of
thousand times magnifications. This image is usually called a micrograph.

The interaction between the electrons and the object originates elastic or
inelastic scattering of the electrons, involving or not energy transference to
the object, leading to variations in the obtained resolution. This energy trans-
fer accumulates, breaking apart molecular bonds, damaging and deforming
the object (an effect known as radiation damage) producing lower resolu-
tion images with undesired background and noise effects. The dose of elec-
trons also affects the amount of damage, in particular the damage to the sec-
ondary structure occurs with doses greater than 1e−/Å2 [Fra06a]. These ef-
fects are temperature-dependent and lowering the temperatures to cryogenic
levels (below -150◦ Celcius) helps to reduce the radiation damage.

Thus, in order to preserve the specimen from radiation damage in Elec-
tron Microscopy, it is embedded in a plastic, glucose or vitreous ice, similar to
the fossilization of animals in amber. Embedding the specimen in vitreous ice
in Cryo-EM has some advantages, since the scattering densities of water and
proteins are sufficiently different to produce contrasted images even at low
resolution, compared with the embedding in glucose. However, the Cryo-EM’s
sample preparation procedure to obtain the sample grid has many manual
steps that makes it an “art”. One major key point is the cooling step, where
the specimen experiments a cooling gradient close to 105 degrees per sec-
ond, which avoids the formation of ice crystals that modify the finer details
in the structure. This step is performed using a freeze-plunger that holds the
specimen grid and plunges it in the cryogen (liquid ethane), which is then
transferred to liquid nitrogen, and finally mounted in the specimen holder.

1The usual doses in SP are about 30 e−/Å2, while the doses in Cryo-ET are about 1 or
2 e−/Å2

6



(a) (b)

Figure 2.1: Section of an image (a micrograph) obtained in (a) Single Particle and (b) Cryo-
Electron Tomography. Projections of several copies of the same complex in random orientations
and positions are marked by blue squares. In (b) also gold particles about 10nm wide are marked
by the red circles, acting as fiducial markers to help in the alignment of the tilt series. Note
the difference in contrast and SNR between both images due, mainly, by the doses used in
each technique (see text).

This ultra fast cooling procedure is possible due to the high heat capacity
given by the small size of the specimen. Another advantage of the embedding
at cryotemperatures is the fact that the biological structure of the processed
specimen is similar to its native (unembedded) structure, i.e., the specimen
does not collapse and the contrast in the images is related to the biological
structure of the specimen, rather than to an external substance as in the neg-
ative stain procedures, where an “opaque” substance (usually a heavy metal
salt) is added to the preparation and surrounds the molecules in the specimen
increasing their contrast. Moreover, the specimen in the grid never comes in
contact with other surface or substances, therefore, the observed shape is the
true shape of the hydrated specimen in the solution and has no distortion due
to an attaching process. However, the procedure does not guarantee keeping
the specimen unaltered, since a shrinkage is produced in the normal direc-
tion to the sample plane, leading to an extra reduction in resolution in this
direction.

Despite Cryo-EM’s artisan specimen preparation procedure for data collec-
tion, compared to X-ray’s, it is much simpler and faster, avoiding the necessity
of creating good crystals in the process. This also impacts in the time scale
of the target specimen: since the whole cooling process takes seconds or less,
short-lived functional aspects of the particles or macromolecules can be an-
alyzed. This advantage is compensated by the high number of parameters

7
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needed to completely determine the geometry to compute the reconstruction.
As a direct consequence of the low electron doses, the Signal to Noise Ratio

(SNR) of the micrograph is very low, which added to the already low contrast
produced by the specimens usually makes it practically impossible to see any
specimen by a non experienced user, see figure 2.1. Therefore, the procedure
to obtain a high resolution reconstruction is to average a large number of
particles, since the SNR for the average of N aligned samples contaminated
by uncorrelated noise, increases with N . Usually N is over ten thousand or
one hundred thousand, depending on the technique. Clearly, the averaging
should be done with an aligned version of the particle, otherwise, a rough,
low resolution reconstruction of the particle is obtained. However given the
low images’ SNR their alignment is a challenging task.

As for any real imaging system, the TEM is characterized by a Point Spread
Function (PSF) or its Fourier Transform, the Contrast Transfer Function (CTF),
as is preferred in EM, governing how contrast in the image is formed by
mapping the amplitudes of the input. The Contrast Transfer Theory states
that [Fra06b], under the weak-phase approximation, the relationship between
the object and the bright field image can be described by the linear transfer
theory, this is, the Fourier transform of the observed image is the product
of the CTF and the Fourier transform of the object being imaged. The CTF
depends on many factors, among them, defocus, spherical aberration of the
lenses and the size of the source, Appendix C briefly describes the image for-
mation process in the TEM and the mathematical definition of the CTF. The
estimation of the CTF for a given image and its correction is a crucial step in
order to reach high resolution reconstructions (helical2 or atomic), since the
information at frequencies higher than the first CTF’s zero are fundamental,
and their frequency dependent amplitude and phase produce an intolerable
contrast distortion. CTF correction is a well studied subject and a fundamen-
tal procedure in the SP framework. However, its use in Cryo-ET is less well
established mainly for the following reasons: first, the estimation of the defo-
cus is more complex in Cryo-ET than in SP given its acquisition procedure and
the variation of the defocus over the image due to the tilted geometry, sec-
ond, the lower amount of signal present in the micrographs due to the lower
doses is not enough to accurately estimate the CTF, and third, there are more
critical issues (like the low SNR) limiting the resolution obtained by Cryo-ET,
therefore, full correction of the CTF does not guarantee its improvement.

Along with the development of these techniques various software pack-
ages have been developed since the beginnings of the 1980, most of them open
source or freeware software. Among them MRC [CHS96], IMAGIC [vHHO+96],
SPIDER [FRP+96], EMAN [LBC99], FREALIGN [Gri07] have been defining file

2Resolution where secondary structures, such as alpha helices and beta sheets, can be
distinguishable.

8



(a) (b)

(c) (d)

(e) (f)

Figure 2.2: Comparison between Single Particle (left) and Tomography (right) data acquisition
geometric configuration. (a) Single Particle acquisition geometry: NP=4 particles Pk are
randomly and independently distributed with orientation Θk. (b) Tomography acquisition
geometry: Same as in Single Particle but the specimen holder is tilted an angle αi , obtaining
NM=3 micrographs Mi , fractionating the total dose between them. (c) In Single Particle,
only one particle projection image Ik by particle with relative high dose is taken. (d) In
Tomography, NM NP particle projection images I i

k are taken with lower SNR. Constraints
between the projections of a particle and between projections in the same micrograph arise
from the tilting geometry (see text). (e) and (f) Relative alignment of the particle projection
images with respect to the reconstruction.
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formats, results visualization, standardizing and automatizing many aspects of
the SP and ET reconstruction procedure.

2.1 Single Particle Analysis

Single Particle Analysis is the Cryo-EM framework applied to study an in vitro
specimen of an individual non-crystallized macromolecular assembly. This
characteristic gives the technique’s name, a single kind of particle is present in
the specimen and is the object of interest. The in vitro characteristic is assured
by a purification procedure, where the particle of interest is isolated and only
copies of it are present in the specimen grid without any contaminants.

Usually, only one micrograph is obtained from each specimen imaged area,
containing a large number of identical copies of the particle of interest which
are randomly distributed. SP assumes that the single particles have even dis-
tribution of orientations on the specimen grid, allowing to compute a 3D aver-
aged reconstruction structure of the studied particle. The homogeneity of the
target particle and its projections is an essential requirement to guarantee the
success of SP reconstruction, otherwise their heterogeneity will be averaged
degrading the reconstruction. Once the micrograph is obtained, the particle
projections are, usually, manually selected and cropped from the micrograph
(a process called boxing), obtaining a stack of raw images of particle projec-
tions. Therefore, the challenging problem for obtaining the reconstruction of
the particle is to accurately compute the alignment of their projections despite
the low SNR and low contrast present in the images.

Figure 2.2a shows a schematic representation of the SP geometrical acqui-
sition configuration. Four particles Pk (k = 1, . . . , 4) are distributed with ran-
dom orientations Θk in the ice embedding supported by the specimen holder.
After acquisition and boxing, four particle projection images Ik are obtained
(Figure 2.2c), with no other connection between them than being projections
of different instances of the same entity. Figure 2.2e shows how the parti-
cle projections are assembled in the 3D structure of the studied particle given
their determined alignment.

Particles are randomly distributed within the ice, with no constraints in
their orientations and positions, leaving six degrees of freedom per particle
projection, three rotational parameters Euler angles Θ and three translational
parameters, in the 3D coordinate reference frame of the ice volume. The pro-
jection maps the translational parameters of the particle from this 3D coor-
dinate reference system to the 2D coordinate reference system of the micro-
graph. Thus, in order to obtain the alignment for each particle projection,
five parameters should be computed (ϑ, s), where the rotational Euler angles
ϑ = (φ,θ ,ψ) are mapped from Θ by the projection and s = (sx , sy) are the
“in-plane” translational parameters in the 2D coordinate reference system of

10
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each boxed image. The first two angles from ϑ define the 3D “out-of-plane”
orientation of each particle projection (φ,θ), while the third one ψ encodes
its “in-plane” rotation; Appendix A explains the Euler Angles convention used
in this work. Therefore, if N particle projection images are collected, a grand
total of 5N parameters should be computed in order to obtain the reconstruc-
tion.

The determination of the alignment parameters for each particle projection
is performed following a typical implementation of an iterative Expectation-
Maximization algorithm, alternating two steps of refinement and reconstruc-
tion. In the first step the alignment parameters (ϑ, s) are refined for each
particle projection. In the second step a 3D structure is reconstructed using
the projection images and their alignment parameters just computed. This
3D structure is used as a reference map for the refinement step in the next
iteration, increasing its resolution through the refinement-reconstruction iter-
ations.

The EM techniques can be grouped in two different classes based in how
the initial reference map is obtained: the reference-free, where it is computed
directly from the data without external information, and second, the reference-
based, where a model building method is used in order to compute it. SP be-
longs to the second class. Among the reference-free techniques, two of them
are the most used in SP as model builders [JSB08]: the common lines meth-
ods [vHGM+00, Fra06b, Fra09] and Random Conical Tilt (RCT) [Rad88]. The
common-line techniques exploit the common line shared by the Fourier Trans-
forms of 2D projections of a 3D object, measuring the angle between those
lines, their relative orientations can be determined and used to compute the
3D reconstruction. In RCT each particle is irradiated twice, first a tilted image
is obtained with the specimen holder tilted, about 45◦, and then an untilted
image, the zero tilt micrograph; these two images are a tilt pair related by the
tilted geometry. RCT assumes that the particle has a preferred orientation in
the embedding ice, viewed for the top in the untilted micrograph, for example.
Then, aligning the untilted images, the alignment of the tilted images can be
determined according to their relative orientation given by the untilted images
and the geometry of each tilt pair (see Figure 2.3a).

The refinement of the alignment parameters has been addressed by many
different algorithms, the most common approach used in EM is [vHGM+00,
vH87] the “projection matching”, which considers several re-projections im-
ages of the reference model in different orientations, and compares them to
the particle projection image. Two kind of methodologies to sample the pos-
sible orientations to be tested are used [JSB08]. The first method is based
in an uniform sampling of the five (ϑ, s) dimensional manifold of parameters.
Usually, the sample period is reduced along with the iterations, in order to
improve the alignment accuracy. The second group of refinement methods
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compute the next set of parameters to be tested based in the local behavior of
the objective function, a kind of gradient descent method, where the gradient
could be explicitly computed or not. From the Image Processing point of view
this is the minimization of some measure of dissimilarity or “distance” between
the image and the re-projection of the reference model. Many possible options
could be considered, but the noisy and low contrasted characteristics of the ac-
quired images turns most of them unhelpful. The most common dissimilarity
function found in the EM literature computes dissimilarity properties based
in the spectral characteristics of the images. The (Linear) Cross-Correlation
Coefficient (CC) is one of the most used tools for the comparison of two im-
ages; other popular cost function is the Phase Residual (PR). A more robust
version to noise bias of the Cross-Correlation, proposed by Stewart and Grig-
orieff in [SG04], is based in weighting down the signals components with low
SNR, leading to the following expression

R=
∑

i

�

�

�CC3
f ,i

�

�

� with CC f ,i =
CC2

i

CCi +ω f
. (2.1)

where CCi is the average CC in a region, usually non-overlapped spherical
shells covering the Fourier space, CC f ,i is a filtered version of CCi and ω f is a
constant to reduce the dependence of the alignments on small correlation co-
efficients. Any of these dissimilarity functions, or new proposals, can be used
in the SP framework but they must provide the discrimination and robustness
needed for the particular characteristics of the EM’s images.

In the refinement step the particle projection images can be treated sep-
arately, refining their parameters independently from the others, or they can
be classified in clusters given their view and refine the parameters for each
class. The first method refines successively the parameters of one image at
a time, independently from the parameters of the other images in the stack.
On one hand, this approach allows a massive parallelization in the refine-
ments of the particles given their decoupling; however, their SNR might not
be enough to accurately refine their parameters. The second method looks
for increasing the SNR of the views by averaging several images facing the
same orientation. In order to do so, clustering the set of images ensures that
images from the same orientation are classified together, then, an average is
obtained for each class and their relative orientations are computed. Another
class of refinement algorithms is based in the maximization of a log-likelihood
function [Sig98, SMVC09, SC09]. These algorithms allow to model in a nat-
ural way the noisy characteristics of the input data and the hidden unknown
parameters in the problem, calculating probability-weighted assignments for
all possible orientations. Thus, instead of assign the parameters for each pro-
jection individually or for a class of projections, the refined structure contains
each image at all possible orientations, weighted by the probability of the
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structure given any particular set of alignment parameters. Usually these al-
gorithms show more robustness to the reference-bias and have superior con-
vergence to the correct structure than a correlation-based algorithm [Sig98],
on the other hand the computation of the refined structure is computationally
more expensive.

Once the set of alignment parameters is determined the reconstruction is
ready to be computed. It is a common practice in SP to select a subset of pro-
jection images to be used in the reconstruction step. This subset includes only
the “best” projections, based on the same dissimilarity function used in the
refinement step to determine the quality of the projection. This allows to dis-
card damaged or improperly aligned projections adding heterogeneity in the
3D averaged structure. As an extreme case Borgnia et al. [BSZM04] show that
using only the best 139 (or even 9!) projections the reconstruction is superior
to the reconstructed with a higher number of projection, supporting the qual-
ity vs. quantity approach. The techniques to compute the 3D reconstruction
given the selected particle projection images and their alignment parameters
can be grouped in three categories: (a) weighted back-projection, (b) interpo-
lation in Fourier reciprocal domain, and (c) iterative algebraic methods. The
weighted back-projection algorithms are based in the back-projection opera-
tion, considered as the inverse of the projection, going from the 2D projection
to a 3D volume where all the voxels in the projection direction have the same
value equal to the value of the correspondent pixel in the 2D projection. When
several projections in different arbitrary directions are considered, they are lin-
early added obtaining the 3D reconstruction of the particle. However, this raw
reconstruction is like a blurred version of the original object, since the density
of sampling points decreases with increasing spatial frequency, resulting in an
overemphasis of the low frequencies in comparison with the higher spatial
frequencies. Therefore, to solve this problem a weighting function (a filter) is
applied to the 2D projections before reconstruction, specially designed for ar-
bitrary projection geometries. The Fourier reconstruction method is based on
the Fourier Central Slice Theorem and the main drawback of these methods is
the arbitrary position of the projections that do not coincide with the regular
3D Cartesian sample grid in the Fourier domain. This leads to complicated in-
terpolation schemes to estimate the set of coefficients in the sampling grid that
best fits the given measurements, and then obtain the 3D structure applying
the inverse Fourier transformation. The iterative algebraic methods are based
in the formation of the discrete projection image, considering the object den-
sities and the projection direction. Thus, every pixel in the projection image
is modeled as a weighted sum of the density values of the object; the weights
are computed taking into account the contribution of each voxel given the
projection angle and the interpolation rule. The weighted back-projection and
Fourier interpolation methods are computationally more efficient than the it-
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(a) (b)

(c) (d)

Figure 2.3: (a) Random Conical Tilt acquisition geometry: all the untilted projections from
one view are aligned together, determining the orientation of the tilted projections used for
the reconstruction. (b) Simulation of the projections obtained in a tomographic framework.
To simplify the image, the electron beam has been tilted with a fixed plane, projections to
different micrographs are identified by different colors. (c) Missing wedge in Fourier reciprocal
space for the tomographic acquisition, each plane corresponds to the Fourier transform of one
micrograph. (d) Projections in five different tilt angles of a simulated GroEL particle (see
figure 4.7).

erative techniques, however the later ones can obtain superior reconstructions
according to the sensitivity to angular gaps and smoothness; finally the qual-
ity of Fourier interpolation methods critically depends on the interpolation
method used [Fra06b]. Many reviews cover the mathematical details of this
topic, in particular [Fra06b] (and references therein) analyze its application
to Electron Microscopy.

The multivariate statistical techniques and signal processing tools which
are present in the refinement and reconstruction procedures in SP cover a wide
spectrum of techniques, many surveys and books [vHGM+00, Fra09, Fra06a,
Fra06b] are dedicated to go through the variations and successful EM appli-
cations.

2.2 Cryo-Electron Tomography

Cryo-Electron Tomography (Cryo-ET) is the Cryo-EM framework applied to
the tomographic data collection procedure, see figures 2.2b and 2.3b. The
main advantage of Cryo-ET over SP is that the former allows to study speci-
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men maintaining their in vivo structural integrity characteristics. This allows
to apply Cryo-ET to analyze the native state of specific sections of macromolec-
ular assemblies, like cells, sub-cell’s organelles, isolated macromolecular com-
plexes or spikes on top of viruses’ membranes [JSB08, LBB+08, Fra06a]. This
avoids the necessity of purification or synthesis of the sample to isolate the
target entity, because the projections into the micrograph will include con-
tributions from the whole macromolecule, invalidating the hypothesis of SP.
Another advantage of Cryo-ET is that the tilted geometry allows to have many
views of the specimen avoiding ambiguities in the determination of the hand-
edness, which can be used to build the initial reference, transforming Cryo-ET
in a reference-free method and no reference bias is present in the reconstruc-
tion.

ET’s data collection geometry is shown in figures 2.2b and 2.3b. The elec-
tron beam direction is fixed as in SP, but the specimen holder (specimen grid)
is tilted a tilt angle α around a single tilt axis. Every time the specimen grid is
tilted, one micrograph Mi is captured, originating a set of micrographs sharing
a common line (the tilt axis), this set of images is know as a tilt series T. As
the tilt angle increases, the thickness of the ice cross section increases as the
inverse of cosα, doubling it at α = 60◦. Therefore, commonly, the set of tilt
angles covers the range ±60◦ with steps about 2◦, leaving a gap in viewing
angles producing a missing wedge of information in Fourier domain requiring
specialized processing for its compensation (see figure 2.3c). The radiation
damage and its consequence in the amount of allowed radiation, dramatically
affects the acquisition of the images, forcing to fractionate the total amount
of allowable dose between the micrographs, leaving each micrograph with an
even lower SNR than in SP. These lower SNR in Cryo-ET’s images compared
to SP’s images, imply that the number of images to be collected and averaged
should be much higher than in SP, thus, usually the number of micrographs
to be collected in Cryo-ET is higher than in SP. Another caveat that should
be addressed is that, besides the radiation damage producing slightly varia-
tions in the particle between micrographs, also different sections of the speci-
men preparation might move relative to the support grid, even if the fiducials
markers (see below) attached are well aligned, therefore, some misalignment
between the particle’s projections may occur, reducing the high-frequency in-
formation in the reconstructed volumes leading to a further reduction in the
resolution of the final reconstruction.

The reconstruction of the 3D tomographic volume given the set of tilted mi-
crographs follows the same ideas of Radon Transform and the Fourier Central
Slice Theorem as in SP. In order to compute the reconstruction, the complete
alignment parameters of the set of micrographs should be obtained, determin-
ing their common-line (the tilt axis) given by a point in the 2D plane and an
orientation angle (the tilt axis angle β) and the tilt angle α, totalizing four pa-
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rameters per micrograph. Since the SNR of the micrographs is extremely low,
signal features are barely present in an individual micrograph, thus, to in-
troduce some external features, high-density fiducial markers (colloidal gold
particles) are added in the specimen preparation step to determine the refine-
ment of micrograph’s parameters. The reconstruction process implies rotations
and translations of the micrographs to align them and build the 3D volume;
all these computations involve interpolation of the data reducing their high
frequency components, being another source of reduction in the achievable
resolution limits. Figure 2.1b shows a section of a micrograph from a tilt se-
ries with the usual SNR in a tomographic acquisition, gold particles (about
10 nanometers wide) are marked by the red circles while the blue squares
(35× 35 pixels approximately) mark a few particles to be analyzed; note the
noisy and low contrasted acquired image.

Cryo-ET has been successfully used to study 3D structures of heteroge-
neous one-of-a-kind specimens, such as whole cells where the SP and other
techniques fail [Fra06a]. However, some complex structures such as cells
and viruses contain, within their heterogeneity, multiple copies of special-
ized macromolecules, such as sub-cell’s organelles or viruses’ spikes, that can
be individualized in the 3D reconstructed tomogram and their sub-volumes
(also called sub-tomograms) cropped. Following the same idea as in SP with
2D images, a 3D averaging of these sub-volumes is the key to obtain higher-
resolution maps of this macromolecules that cannot be purified to undergo the
in vitro SP analysis. But, as pointed out before, the success of the averaging
relies in the classification and alignment of, in this case, the sub-volumes. The
alignment of 3D volumes has been extensively studied in Image Processing
and Computer Vision, where it is referred to as image or volume registra-
tion [HZ04], however, the missing wedge is a too strong feature biasing the
alignment of the sub-tomograms. Therefore, it should be explicitly taken into
account in the alignment procedure, otherwise the resolutions will be com-
promised. Stoffler et al. [SFF+03] overcome this problem by “coarse visual
determination” of the axial direction in each sub-volume, this is used to obtain
an initial average which is refined several times adding different features (as
weighting functions, symmetry, etc.) every time. Bartesaghi et al. [BSL+08]
propose a framework for the alignment, classification, and averaging of tomo-
graphic data, explicitly modeling the missing wedge as an occluding mask in
the Fourier reciprocal domain not affecting the alignment and classification
process, achieving a resolution of 20Å.

The sub-volume alignment requires the determination of six parameters
per particle, the same six degrees of freedom per particle as in the SP, three
Euler angles defining the orientation Θ= (φ,θ ,ψ) and three translational pa-
rameters X = (X , Y, Z). To formalize the notation, if the tilt series has NP par-
ticles of interest Pk (k = 1, . . . , NP) and NM micrographs Mi (i = 1, . . . , NM) are
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taken, and all the particles have projections in all the micrographs, the whole
reconstruction process implies the computation of a grand total of 4 NM+6 NP

parameters. These parameters are (αi,βi, x i, yi) for each micrograph Mi and
{Θk,Xk}= (φk,θk,ψk, Xk, Yk, Zk) for each particle Pk.

Despite the listed drawbacks, ET and Cryo-ET have led to a significant
progress in applications ranging from material science to bio-materials and life
science (structural, cellular and tissue biology). Advances in vitreous section-
ing of a variety of specimens (such as bacteria, yeast and skin cells), descrip-
tion of the structure and conformational changes in the bacterial chemotaxis,
structural analysis of the architectures of a wide range of intact viruses with-
out staining, among others are successful examples of its application [Sub05,
BS09]. A special emphasis should be done in the structural analysis of sym-
metric and non-symmetric viruses with immediate medical relevance in de-
signing strategies to combat viral diseases [SBL+07, LBC+08, BSL+08, LBB+08].
Combined with image averaging methods (specially in the case of highly sym-
metric viruses) have shown to be a powerful method providing complementary
structural information to be used with atomic structures of individual compo-
nents determined by X-ray.
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Chapter 3

Merging Tomography and Single
Particle

The main advantage of Cryo-ET is the potential to individualize sub-volumes
with homogeneous particles in heterogeneous macromolecular assemblies, al-
lowing to align and average them in order to increase their resolution. This
unique characteristic comes along with the advantage of being a reference-
free method, the capacity of analyze in vivo specimens and the disambigua-
tion in the handedness determination being given by the tilted geometry. Fur-
thermore, the geometrical data collection configuration (see figure 2.2b) im-
poses a set of constraints that are strongly used in the tomographic reconstruc-
tion. On the other hand, SP cannot deal with this heterogeneous conforma-
tions and no constraints are imposed in its optimization procedure. However
the reconstruction is performed with the CTF corrected original raw images,
where the tolerated doses (therefore the SNR) are higher, allowing to routinely
achieve resolutions around 10 to 12 Å, and in some cases achieve 4 Å or bet-
ter [LBC+08]. Meanwhile, the usual resolutions for Cryo-ET with sub-volume
averaging are about 20 Å [BS09, and references therein].

3.1 The goal of this work

The analysis of the advantages of Cryo-ET over SP shows that its benefits are
due to the tilted geometry of the acquisition procedure. On the other hand,
besides the higher doses that are used, the benefits of SP in high-resolution
maps are due to the fact that the reconstruction is computed with the original
particle projection images, along with the standardized CTF estimation and
correction.

This work proposes a new framework combining these two approaches,
trying to get the best of both worlds, adding the high resolution feature in
the maps obtained with the Cryo-ET data collection procedure, through a new
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refinement algorithm and an innovative adaptation of the SP reconstruction
procedure to this kind of data. Their main characteristics rely on (a) the
acquisition of a tilt series of micrographs (b) a refinement procedure of the
parameters of each projection image imposing the geometrical tomographic
constraints, and (c) a reconstruction procedure based on the original CTF cor-
rected projections instead of sub-tomograms. The requirements of fractiona-
tion of the allowable dose leads to a new protocol of distribution of dose giving
flexibility in the combination of what data is used in the refinement and/or the
reconstruction.

Section 3.2 introduces the reconstruction step, while Section 3.3 intro-
duces the refinement in the alignment procedure.

3.2 Reconstruction of tomographic data with a Sin-
gle Particle framework

The tomographic reconstruction recovers the full 3D position and orientation
parameters for each particle in the embedding ice, allowing to crop the sub-
volumes and compute their averages. This procedure, aligning the tilt axes for
all the micrographs and then building the 3D volume, generates a mapping
function between the coordinates of each particle projection and the particle
reconstruction, that will be explained in the next section. See [WTN+97] for
a similar derivation of the coordinates relation.

Considering only the horizontal (0-tilt) micrograph, as in the case of SP,
the mapping function relates the coordinates of the SP framework and the
ET 3D reconstruction. Based in this mapping function it is possible to revert
the path, relating the coordinates from the ET to the SP space, allowing to
assign the 3D orientation and 2D position in the micrograph for each particle
projection. In other words, the five parameters for the SP reconstruction for
the projections in the 0-tilt micrograph can be computed from the ET’s set of
six parameters. In that way, an à la SP reconstruction based in the original raw
images with their parameters assigned mapping the ET reconstruction can be
computed. Moreover, not only the projections in the 0-tilt micrograph can be
used. Also the particle projections in the tilted micrographs can be related by
incorporating the transformation given by the tilt axis and the tilt angle to the
inverse mapping function, as well. Using all the micrographs allows to use all
the particle projections in the tilt series, considerably increasing the number
of images, and thus the number of particle’s views, used in the reconstruction.

Among the advantages of this new method is that the reconstruction is
done with the original raw data in the images as in SP. This is a main ad-
vantage over ET, since all the signal frequency components are present in the
data used in the reconstruction. Second, although the CTF estimation and
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correction can be performed in SP as well as in ET, the former is much more
stable and accurate, obtaining better compensations and avoiding the zero in-
version problem (see Appendix C). In the ET case, assuming and horizontal
tilt axis, the CTF (therefore the defocus), varies with the distance to the tilt
axis; Fernández et al. analyze [FLC06] the defocus variation in the tilted mi-
crograph, proposing a technique for estimation and correction of the CTF of
tilted micrographs.

The acquisition methodology in ET implies a protocol in the fractionating
and distribution of the dose among the micrographs, taking into account the
radiation damage and its effects in the deformation of the particle. Following
the direction of SP the highest possible dose should be concentrated in the first
(or firsts) micrographs, obtaining images with higher SNR with less damage.
On the other hand, as the tilt angle increases, the amount of dose should be
increased in order to obtain similar contrast in the images since the thickness
of the ice increases. One possible solution to overcome this compromise in the
distribution of the dose, is to use only the firsts, less damaged, micrographs
in the reconstruction, avoiding to incorporate particle projections that have
accumulated more radiation damage. Thus, a higher fraction of the dose can
be irradiated in these selected micrographs, in comparison to the dose used
in classical ET. The rest of the available dose is distributed among the higher
tilted micrographs following the classical ET protocol. With this approach the
number of particle projections used in the reconstruction is reduced, becoming
a set of less images but with higher SNR and with less accumulation of radi-
ation damage. The next section shows how to use other projections than this
set, in order to improve the accuracy in the determination of the alignment
parameters. Note that, albeit the higher tilted micrograph will have less SNR
and accumulated damage, they are still useful in the initial ET reconstruction
providing more views of the particle and reducing the missing wedge, finally
helping to obtain an initial accurate estimation of the orientation and transla-
tion parameters.

The main tradeoff of this approach lies in the much lower SNR present in
each particle projection image, due to the dose fractionation, as was just dis-
cussed. Besides this, there is a major change in the acquisition methodology
with respect to SP that could become a possible caveat in the reconstruction
procedure. This is, usually the target particle in their native state is not iso-
lated, for example, an organelle in a cell or a spike on top of a virus’ mem-
brane, therefore, when it is tilted and projected into the micrograph, other
parts of the whole macromolecule occlude the particle and its projection im-
age gets contaminated with contributions from other physiologically relevant
background. Beniac et al. [BDA+07] applied the SP framework directly to a
whole virus and processed the cropped image of their spikes over the mem-
brane obtaining a 18Å 3D reconstructed map. The studied virus has a spherical
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shape with the spikes randomly distributed over the membrane in its normal
direction, therefore the projection of the spikes are not isolated, as is assumed
by SP, but contaminated with the projection of the whole virus. Despite this,
even the top view of the spikes can be recovered without appreciable degra-
dation.

Beyond this SP-like reconstruction, also the refinement of the alignment
parameters for each particle projection can be performed following a SP ap-
proach. Despite being the origin of all the differences between SP and Cryo-ET,
the tilted geometry of the acquisition procedure provides important features
that are incorporated in a new refinement process that helps to overcome the
lower SNR in the images. This is considered and described in the next section,
which boldly goes where no Cryo-EM refinement algorithm has gone before.

3.3 Constrained Single Particle

The data collection process introduces “structure” in the stack of particle pro-
jection images that is not present in the standard SP, allowing to regroup the
images in sub-stacks given by the particle or the micrograph where they be-
long. For each one of these sub-stacks a geometric constraint relates their
particle projection images, transforming the procedure in a Constrained Sin-
gle Particle (CSP) refinement. This idea is schematically shown in figure 2.2d,
where, assuming all the particles have projections in all the micrographs, the
stack of N = NMNP images of particle projections is ordered in NP columns and
NM rows. All the particle projections images I i

k belong to this matrix, where
the k-th column is the sub-stack corresponding to the NM particle projections
of the k-th particle S (Pk) = {I

i
k : i = 1, . . . , NM} and the i-th row is the sub-

stack corresponding to the NP particle projections into the i-th micrograph
S (Mi) = {I

i
k : k = 1, . . . , NP}.

For each sub-stack the geometric constraints over the particles projections
can be summarized as:

Constraint on the micrographs All the particle projections images into the i-
th micrograph (I i

k ∈ S (Mi)) belong to the two dimensional plane given
by the micrograph, thus they should all share the same orientation.

Constraint on the particles All the particle projection images for the k-th
particle (I i

k ∈ S (Pk)) are projected into the set of micrographs, thus
they should be tilted following their corresponding tilt angles. In other
words, the 3D angle between two particle projection images is the same
angle between the tilt angles of the corresponding micrographs.

The constraints imply that all the projection images of one particle are re-
stricted to move “together” if their orientation changes with the refinement
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Figure 3.1: The concatenation of the shown rotations relates the orientation of the particle
projection in the registered micrograph with the coordinates in the particle reconstruction,
allowing to compute a mapping function between the ϑi

k and Θk, αi and βi .

process. Similarly, the projection images in each micrograph should move to-
gether facing all of them the same direction preserving coplanarity. Moreover,
the orientation ϑk

i for the particle projection image I i
k of a particle Pk into a

micrograph Mi is completely determined by the orientation of the particle, the
tilt angle and tilt axis angle of the micrograph, see [WTN+97], i.e.

ϑk
i = f (Θk,αi,βi), (3.1)

where f (·) is a mapping function relating the orientations of one particle and
micrograph with the orientation of the corresponding particle projection. The
orientation of the particle projection ϑk

i needed to compute the 3D reconstruc-
tion, corresponds to the concatenation of the rotations going from the regis-
tered micrographs to the 3D reconstruction. These rotations are shown in fig-
ure 3.1 and lead to R= R(Θk)RY (αi)RZ(βi). Representing the orientation ϑk

i as
a rotation matrix given the Euler angles convention (ZYZ in this work, see Ap-
pendix A) yields the same matrix R, therefore RZYZ(ϑk

i ) = R(Θk)RY (αi)RZ(βi),
allowing to determine ϑk

i as a function of Θk, αi and βi as is given by equa-
tion (3.1).

The refinement of an unconstrained SP (USP) procedure following the pro-
jection matching criteria, looks for minimize some dissimilarity function ν (·)
measuring the discordance between the projection image I and the projection
of the reference map in a certain direction given by ϑi

k. Therefore, when all
the projection images are treated independently, the effective cost function to
be minimized is the (weighted) average of the dissimilarity function, this is,

J({I i
k}, {ϑ

i
k}, {s

i
k}) =

1

W

∑

i=1,...,NM
k=1,...,NP

wI i
k
ν
�

I i
k,ϑi

k, si
k

�

(3.2)

where a weighting coefficient wI is added to generalize, and W =
∑

I wI .
Therefore, when the set of images acquired in the tomographic framework,
represented by the matrix of images in Figure 2.2d, is processed by USP the
sum in the previous equation is computed term by term in any order, for ex-
ample, following the index in the stack of images. The same result is obtained,
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if the sum is computed first row by row (or column by column) and then these
intermediate results are added. These harmless change in the way of com-
puting Equation (3.2) implies a major change in the objects being optimized,
since, again following the representation given in Figure 2.2d, summing row
by row (or column by column) corresponds to accumulate the cost function
for the corresponding micrograph (or particle). Hence, the definition of the
dissimilarity function can be extended for micrographs and particles as the
sum of the cost function of their corresponding particle projections, i.e., the
sum in the corresponding row or column

ν̄M
�

αi,βi
�

=
∑

I i
k∈S (Mi)

wI i
k
ν
�

I i
k,ϑi

k, si
k

�

=
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k=1,...,NP

wI i
k
ν
�

I i
k, f (Θk,αi,βi), si

k

�

(3.3)
and
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k
ν
�

I i
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�

, (3.4)

were Equation (3.1) was used in the last equality on both equations. Using
this definitions Equation (3.2) can be written as

J({I i
k}) = J({Pk}, {Mi}) =

1

W

NM
∑

i=1

ν̄M
�

αi,βi
�

(3.5)

=
1

W

NP
∑

k=1

ν̄P
�

Θk
�

(3.6)

Rewriting Equation (3.2) as Equations (3.5) and (3.6) modifies the rotational
parameters being optimized. Instead of determining ϑi

k for all the particle
projection images, only the Θk for each particle and the (αi,βi) for each mi-
crograph must be determined. This implies a change in the objects being “ro-
tated” in the optimization, moving from the particle projection images in Equa-
tion (3.2) to the micrograph in Equation (3.5) and particle in Equation (3.6).
This will be strongly used in the optimization procedure decoupling the refine-
ment of particles and micrograph. Note that not only the number of objects
is reduced, a dramatic reduction in the number of parameters to determine is
obtained, since, instead of computing the orientation parameters ϑi

k for all the
particle projections, a total of 3NPNM parameters, only the orientation of the
particles Θk and the orientation of the micrographs (αi,βi) should be com-
puted, a total 3NP + 2NM parameters. For the usual number of particles NP

and micrographs NM used in Cryo-ET, this gives a tremendous reduction in the
number of parameters to compute since 3NPNM� 3NP+2NM.1 Finally, the two

1Considering NM = 60 micrographs and NP = 3,000 particles, the total number of rota-
tional parameters to be determined is 3NMNP = 540,000 for USP and 2NM+ 3NP = 9,120 for
CSP. Both methods needs to compute the 2NMNP = 360,000 translational parameters.
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dimensional translational parameters si
k are determined when the dissimilarity

function ν (·) is computed in Equations (3.3) and (3.4).
In this way, the constraints through the mapping function (Equation (3.1))

perform a dimensionality reduction of the search space, meaning that not all
the dimensions in the original SP space are free to move once multiple tilts
are included, and the dependency between projections is bonded by the ori-
entations of the particles and the micrographs. Furthermore, imposing these
geometric constraints might approximate the dimensionality of the space to
the intrinsic dimensionality of the data. From the point of view of the op-
timization procedure, reducing the dimensionality of the search space is an
advantage and alleviates the problems related to work in a high dimensional
space known as the curse of dimensionality.

The weights wI could reflect different aspects of the reconstruction prob-
lem, in particular the radiation damage of the specimen when exposed to the
electron beam or the variation in the amount of material due to the tilt angle,
moreover, they can be used to explicitly leave out projections, for example
thresholding by the values of cost function ν (·). This weighting procedure is
also applied in the reconstruction step, where usually only a percentage of the
best images are used.

Being a constrained SP refinement, CSP uses a reference map which is
refined in each iteration, needing as in SP an initial reference, however, as a
main difference, and advantage compared to SP, CSP can use the tilt series
to build an initial low-resolution reference map in the same way as in ET.
Furthermore, a set of alignment parameters for both, the micrographs and
the particles is obtained from this reconstruction and are ready to be used as
an initial guess for the optimization. Moreover, this initial set of parameters
reduces the refinement to a local search in the low dimensionality space for
the rotational parameters while the translational parameters are refined as in
SP.

Finally, considering the refinement of the micrographs and particles param-
eters separately, the number of particle projection images in a sub-stack for a
particle (S (Pk)) and in a sub-stack for a micrograph (S (Mi)) is very differ-
ent, since the number of particles NP in a tilt series is higher than the number
of projections per particle. This might imply a different behavior in the refine-
ment of particles and micrographs due to the number of terms and the relative
variation of the cost function for a certain particle projection alignments.

3.3.1 Optimization procedure

Given a tilt series with NP particles projected into NM micrographs, the goal
for CSP is to determine the alignment for these NP + NM objects, thus, map-
ping the orientation parameters using equation (3.1) permits to determine
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Figure 3.2: CSP main and secondary iterations (see text).

the orientations for the NPNM particle projections images in order to compute
the reconstruction; also the translational parameters for the projection images
should be determined. Therefore, the parameters to be determined by CSP
are

Θ =
�

{Θk}, {αi,βi}, {si
k}
�

, (3.7)

where Θk ∈ R3 are the Euler angles of the k-th particle, αi ∈ R, βi ∈ R are
the tilt angle and the tilt axis angle of the i-th micrograph respectively, and
si

k ∈ R
2 is the translation of each particle projection image; here i = 1, . . . , NM

and k = 1, . . . , NP. For simplicity, the indexes in the notation of the particle
projection images are omitted from now on, i.e., I means I i

k.
The cost function expressed as Equations (3.5) and (3.6) decomposed

Equation (3.2) based in the imposition of the constraints. This kind of de-
composition is suitable for a block coordinate descent method [Ber99], where
the blocks are given by the coordinates of each optimized object (particles and
micrographs); the procedure optimizes each block of parameters separately,
holding all the others fixed. Few cycles of this procedure are performed, as a
secondary iteration level, until the parameters stabilize. Then, the optimized
parameters are used to update the reconstructed map, used as a reference for
the next main iteration. Figure 3.2 shows graphically the complete optimiza-
tion procedure.

In the optimization of every block of coordinates, several orientations for
each object are tested, corresponding to different points in the space of lower
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dimensionality; each point corresponds to a particular configuration of ori-
entations for every particle and micrograph, and then, for every particle pro-
jection, as a set of related points in the higher dimensionality space. Hence,
in order to evaluate the cost function for every object ν̄M ,P (·), using equa-
tions (3.3) and (3.4), the cost function ν (·) is computed for the correspond-
ing particle projection images fixing their orientations through the mapping
function.

To further formalize the basic step, let Θ j,l be the set of parameters at the
j-th main iteration and the l-th secondary iteration; at main iteration j, the
secondary iteration starts with Θ j,0 = Θ j, and at the end, after r iterations
Θ j+1 =Θ j,r . For example, when the coordinate corresponding to the tilt angle
αi for Mi is refined, the constraint on the micrograph is applied on its parti-
cle projections images I ∈ S (Mi) and the following optimization problem is
solved

α̂i = argmin
αi
ν̄Mi

�

αi,βi
�

= arg min
αi

∑

I∈S (Mi)

wIν
�

I , f (Θk,αi,βi), si
k

�

. (3.8)

For every candidate point α̃i in the previous equation the si
k parameters are

determined in order to correspond with the proposed α̃i. The same procedure
is done in the refinement of βi for each micrograph Mi with I ∈ S (Mi) and for
each Euler angle inΘp for every particle Pk with I ∈ S (Pk),∀i. This procedure
should be cycled a few times since, for example, αi in Θ j,1 was computed to be
optimal with the Θk parameters at Θ j,0 and should not be optimal with their
new values in Θ j,1. This is the reason for the secondary loop, which runs until
no significant improvement is made Θ j,r ≈Θ j,r−1.

Once the secondary iteration refined the parameters for all the micrographs
and particles, with the orientations ϑi

k computed using Equation (3.1) the new
density map P j+1 is computed.
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Chapter 4

Validation experiments

In order to validate the framework a set of experiments with synthesized and
collected data were performed. The goal of using synthesized data is to have
full control of the groundtruth alignment parameters as well as the atomic
structure of the particle, therefore several measures, introduced in the next
section, can be obtained to evaluate the framework performance. In the case of
real collected data, the only groundtruth is the atomic structure of the particle.

Several copies of an homogeneous macromolecule complex are synthe-
sized or acquired following the tilted geometry and dose fractionating proto-
col of the Cryo-ET framework. The obtained data can be processed by three
different approaches. First, following the sub-volume averaging procedure de-
scribed in Section 2.2. Second, by the proposed framework CSP, using the
density map obtained by the previous method as an initial reference and im-
posing the constraints between the particle projection images. And, third,
it can be processed following the approach of SP, without imposing the con-
straints, refining each particle projection independently. The later procedure
was called Unconstrained SP (USP) in this work, in opposition to the Con-
strained SP (CSP) proposed.

The cost function used in this experiment is the Phase Residual (PR) de-
fined in the FREALIGN [Gri07] software package,

ν
�

I i
k,ϑi

k, si
k

�

= PR(I ,ϑi
k, si

k),

corresponding to use the dissimilarity function proposed by Stewart and Grig-
orieff (Equation (2.1)). Also FREALIGN was used as the USP implementation
for the comparison.

4.1 Validation with phantoms

These experiments were performed using the crystal structure of the RNA Poly-
merase II-TFIIB complex [LBW+10], filtering its electron density map to about
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Figure 4.1: Particle projection images of a map generated by filtering the crystal structure of
RNA Polymerase II-TFIIB complex (PDB ID: 3K7A) with decreasing SNR (top to bottom).
Top row are the noiseless projection images generated from the synthesized particle.

3Å (see 3K7A in the PDB database [LBW+11]), and the ET’s acquisition pro-
cedure was simulated. This macromolecular assembly was selected, among
other reasons, because it does not present any kind of symmetry, avoiding
multiple “valid” solutions for the particle projection’s orientation, allowing the
comparison of the orientation angles determined by both methods. Further-
more, since CSP performs a local optimization using the parameters computed
by the tomographic reconstruction as an initial point, USP should be restricted
to a local search too. Using a non-symmetric particle guarantees that even do-
ing a wide search no other coherent view will be selected, besides the errors
produced by the noise.

A set of four tilt series was created, each one with five particles randomly
oriented and sixty one micrographs, leaving a stack of noiseless particle projec-
tion images (see first row in figure 4.1). In these conditions, the groundtruth
of the particle density map and all the parameters of the particles and micro-
graphs are known. The configuration leaves a set of NP = 20 particles with
NM = 61× 4 micrographs, giving a total of N = NMNP = 1220 particle projec-
tion images. From these micrographs and using the groundtruth parameters,
a low resolution map was reconstructed by cropping and averaging the sub-
volumes of the corresponding particles from the reconstructed tomograms of
each tilt series; this map was used as the initial reference for the CSP and USP
refinement-reconstruction procedures. Two different sources of perturbation
were tested. First, uncorrelated, zero mean Gaussian noise with increasing
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variances was added to the two dimensional projections. Figure 4.1 shows
nine columns with different 2D projection images. Top row shows the original
noiseless projection images obtained; the other rows show the noisy images
corrupted by additive Gaussian noise (increasing its variance within the col-
umn). Depending on the SNR levels in the particle projections this number of
images could be low compared with the usual number needed in SP, but with
the aim of comparing the performance of both methods is adequate. However,
for the reconstruction of the maps, having few projections could represent a
disadvantage, specially with the noisier images. In order to overcome this, the
reconstructed maps are obtained with the noiseless images. This is a way to
wean the result from the number of images, since taking their average does
not lead to improved reconstructions which can only be obtained with a better
alignment.

The second source of error is a perturbation in the initial condition in the
optimization, i.e., an error in the parameters of the particles and micrographs,
and therefore in the parameters of the particle projections images. The goal of
this perturbation is to test the convergence of the algorithm and the tolerance
to errors in the estimation of the initial values from the ET procedure.

A total of 121 (11× 11) different experiments are performed varying the
amount of perturbation added by each source of error. The range of variance
for both, the added Gaussian noise and the perturbation of the orientation
angles varies from 0 to 100 in steps of 10, reaching for example a SNR of
1/100. The results obtained are consistent throughout the experiments, for the
discussion the one with the highest perturbations in the initial conditions and
the lowest SNR is going to be used; an example of the noise corrupted particle
projection images that are used are displayed in the last row of Figure 4.1.

In these “controlled” experiments the groundtruth parameters are known
and a numerical analysis of their error can be performed. In particular, the
relative orientation between all the particle projection images in the 3D coor-
dinate system are known. When a global 3D rotation RG affects the stack of
images, the reconstructed map will be affected by the same rotation RG, but
the relative orientation between the images in the stack will be preserved. A
quantitative measure of the alignment error is proposed in Appendix B using
the rotation Rk between the determined and groundtruth orientations for ev-
ery particle projection Ik. This measure is based on the fact that, if there is
no error, then Rk = RG ∀k, and also the mean rotation will be R̄ = RG. The
numerical value, called “variance of the alignment error” (VAE), is the Frobe-
nius norm of the difference between the rotation Rk and the mean rotation R̄
matrices. See Appendix B for further explanation of its computation.

Another indicator of the performance of the framework and quality of the
reconstruction is its resolution. Appendix D introduces and compares the most
frequently used resolution estimators in EM, among them, the Fourier Shell
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Figure 4.2: Map refinement for 3K7A phantom data, comparison of CSP vs. USP refinement
for SNR = 0.01. Top row shows the axial, coronal and sagital cuts of the refined map after one
iteration, by CSP (left) and USP (right). Middle row shows same cuts for the last iteration.
Last row shows one view of the final refined map and the docking of the X-ray coordinates for
CSP (left, in red) and USP (right, in blue).

Correlation (FSC) is the most widely used. The FSC curve varies with the
frequency, measuring the coherence between two 3D maps computing an av-
eraged Cross-Correlation (CC) coefficient in a set of non-overlaped thin shells
in the Fourier reciprocal domain (see Section D.1.2). As a CC the values of FSC
lie between 0 and 1, the FSC resolution estimator corresponds to the highest
frequency where FSC=0.5, known as the f0.5 cut-off frequency. The standard
FSC computation is performed by splitting the set of images in two indepen-
dent sets, computing two different reconstructed maps and computing the FSC
between these two half-set reconstructions. Besides this FSC estimation, in this
synthesized experiments it is possible to compare the reconstructed map with
the one used to compute the projections. Thus, in addition to the traditional
FSC, the FSC between the reconstructed map and the groundtruth can be com-
puted in order to analyze the coherence between both maps. Moreover, since
the reconstruction is computed from the whole set of images instead of half of
it, the estimation should be more accurate due to the higher number of views
used in reconstruction.

The mean Phase Residual for the whole stack is also monitored in the ex-
periments.

Figure 4.2 shows the refined maps obtained by CSP and USP. Also the
axial, coronal and sagital cuts of the models are shown for the first and last
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iteration for both methods. More precisely, the three images at the left side
of the top row are the model cuts of the map after one main iteration of the
CSP refinement, similarly the three images at the right are the model cuts for
the map after one iteration of the USP refinement. The middle row shows the
same cuts for the last iteration. The bottom row shows one view of the recon-
structed density map and the docking of the groundtruth X-ray coordinates for
CSP (left) and USP (right).

Figure 4.3 plots the comparative results between CSP and USP for one ex-
periment. Figure 4.3a shows five different FSC curves, the green dash-dotted
curve is the initial FSC, i.e., is the FSC for the ET sub-volume reconstruction,
starting point for CSP and USP. The blue dashed curves correspond to the USP
refinement, the thin line is the curve at the end of the first iteration, the thick
one is the curve for the last iteration. The same applies to the red solid curves
corresponding to the CSP refinement. In the CSP case the thin curve is at the
end of the first main iteration. Figure 4.3b shows the FSC curves computed
with respect to the groundtruth model for each method in the same iterations.
The abscissa’s axis is the Fourier frequency, which correspond to the inverse of
the map’s resolution in Angstroms.

The FSC curves consistently show a considerable improvement in resolu-
tion obtained by CSP compared to the resolution obtained by USP. Consid-
ering the f0.5 cut-off criteria the initial resolution is about 17.7Å, which is
improved by USP to 16.1Å after one iteration, reaching 9.3Å by the end of the
iterations. On the other hand, the resolution estimation for CSP are 6.7Å after
one main iteration and 5.7Å by the end of the iterations. Beyond the numeri-
cal values, the shape of the curves support the improvement achieved by both
CSP and USP. USP shows a substantial improvement in the resolution and in
the correlation of lower frequencies, but falling off rapidly around 12Å. On
the other hand, CSP shows an extraordinary boost in the first iteration, then it
mildly improves with subsequent the iterations. Moreover, after the first main
iteration with CSP, the remarkable improvement strongly supports the impo-
sition of the geometric constraints, being noticeable that the final resolution
achieved by USP is much lower than the resolution achieved by CSP with only
one main iteration. Also shown in these plots is that the improvement in USP is
given by the iterations, slowly aligning each image to the reference; however,
iterating with CSP does not achieve the same amount of improvement. This
can also be seen in the maps and their cuts in Figure 4.2: an unrecognizable
map after the first iteration and a rough approximation in the final iteration
for USP, meanwhile the map after CSP’s first main iteration has many more
details than USP’s reconstruction, which is improved with the iterations, em-
phasizing sharp details. This is noted too, in the 3D views where the α-helices
can be easily recognized and a better docking of the X-ray coordinates is ob-
tained. A well known issue in classification is that obtaining an improvement
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(a) (b)

(c) (d)

Figure 4.3: Comparison of CSP vs. USP refinement for SNR = 0.01. (a) (Half-set) FSC
plots after one iteration and for the final refinement. Also the (Half-set) FSC for the initial
map is plotted. (b) FSC between whole set reconstruction and groundtruth map, after one
iteration and for the final refinement. (c) Evolution of the global mean Phase Residual with
the iterations. (d) Variance of the Alignment Error (VAE) per particle projection; continuous
and dashed curves are sorted by its value, dots are the VAE on the first iteration ordered by
their index in the last iteration (continuous curve).

from 70% to 80% is much simpler than obtaining an improvement from 95%
to 98%. A similar issue might be happening here: the higher the resolution of
the starting map, tougher is to increase the resolution based on the same data.
This could be the case in CSP, since, after one main iteration the resolution
boosts up and then the resolution increments have small steps, but the refined
map is much better than the USP map.

Figure 4.3b plots the FSC curves between the map reconstructed with the
whole stack of images and the groundtruth map used to take the projection
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images. These curves show a better correlation between the maps, probably
due to an improvement in the reconstructed maps since they are obtained with
twice the number of images. Numerically, the f0.5 cut-off criteria estimates res-
olutions at 19.9Å, 7.4Å, 5.7Å and 4.5Å respectively. Noteworthy, the estimated
resolution and the FSC curve for USP’s first iteration are worse than the ones
for the half-set FSC estimation (the curve for the initial map in Figure 4.3a
is also plotted as a reference). This denotes a smaller correlation in lower
frequencies between the groundtruth and the reconstructed maps, or a kind
of overfitting between both half-sets when the alignment is not accurate, a
classical drawback of the FSC resolution estimation. The FSC curves between
CSP and the groundtruth maps in Figure 4.3b exhibit the same behavior as in
Figure 4.3a: the first iteration after imposing the constraints gives the main
boost in the refinement. However, the resolution enhancement within CSP’s
iterations is more noticeable in this graph, specially the shape of the curve for
the last iteration having a larger “flat” zone in lower frequencies and a slower
fall-off, denoting its highest correlation with the groundtruth map.

Figure 4.3c shows the evolution with the iterations of the mean Phase
Residual (PR) for all the projections in the data set, the dashed blue curve
for USP and in solid red for CSP. The PR is the cost function being optimized
by both methods, individually per image in USP and a weighted average in
CSP. Both plots show a steady reduction of the mean PR due to the opti-
mization, getting stable around iteration twelve. This behavior is consistent
with the FSC curves through the iterations, although they are not numerically
comparable; for USP there is an important reduction within the firsts itera-
tions while for CSP the main reduction come in the first iteration imposing
the constraints, then it slightly improves. In the experiment shown, the mean
PR in CSP is less than the PR in USP, which could imply a better matching
between the projection image and the reference model. However, this is the
case with the noisiest images where the individual alignment of the projec-
tions is tougher than aligning an array of correlated projections, reflecting the
advantage of CSP. When the initial perturbation is not too high, generally the
mean PR for USP is less than the mean PR for CSP, having a better matching
in terms of PR but without satisfying the constraints, which is not reflected in
a better alignment.

Figure 4.3d plots the variance with the particle projection index in the
alignment error introduced in Section B.2, sorted by its increasing values. The
figure shows the same data representation for USP, in blue, and CSP, in red.
The solid thick line represents the variance (VAE) for each particle projection
of the alignment error at the last iteration sorted increasing its value; the
VAE for the first iteration is plotted, too, as a dot for each particle projection
respectively. Also the sorted version of the VAE for the first iteration is plotted
as a dashed line; this corresponds to the previous dots plotted in an increasing
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(a) (b)

(c) (d)

Figure 4.4: Particle projections plotted as points in the unit sphere with coordinates given by
their “out-of-plane” angles. Groundtruth points are plotted in magenta following the tilt angles
of the micrographs. The perturbed orientations are plotted in green. The refined orientations
are plotted in red for CSP and blue for USP. (a) Fixing the amount of perturbation of the initial
orientations in an intermediate step (ini05), two different levels of noise are shown (noise01
and noise10), see legend and text. (b) Fixing the amount of variance of added noise in an
intermediate step (noise05), two different levels of perturbation are shown (ini01 and ini10),
see legend and text. (c) Close view of the sphere in (a) (d). Close view of the sphere in (b).

order. It can be seen that the large majority of the projections reduces its
alignment error variance, since most of the points are above the thick curve for
each method. However, CSP has clearly a smaller variance for each projection
than USP, meaning that the dispersion of the alignment error with respect to
the groundtruth orientation is higher for USP, and the constraint of moving all
the projections of each particle altogether helps reducing this spreading. Also
this is stressed in USP’s curve, where there is a subset of projections, the ones
with higher VAE, that cannot be improved, while this effect does not happen
in CSP.

The fulfillment of the constraints can be viewed in Figure 4.4, where each
particle projection is represented as a point in the unit sphere given its “out-
of-plane” angles. The initial groundtruth orientations are plotted in magenta
while the perturbed ones are plotted in green; note that the perturbations
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(a)

(b)

Figure 4.5: Comparative analysis of CSP vs. USP refinement as a function of SNR and pertur-
bation of initial condition on 3K7A phantom. (a) Map resolution measured as f0.5 (Halfset)
FSC cutoff. (b) Map resolution measured as f0.5 FSC cutoff (whole set vs. groundtruth map).

preserve the constraints since the perturbed objects are the particles and the
micrographs. The orientations recovered by CSP are plotted in red and in blue
for USP. Two different experiments are shown, first, for a given perturbation
of the initial orientations, set to an intermediate amount, the results with the
lowest and highest variance of added noise are shown (plotted with points and
crosses, respectively in Figures 4.4a and 4.4c , also they are connected with a
dotted line following the order of the micrographs). The second experiment
shown, fixes the variance of added noise in an intermediate step and plots
the results for the lowest and highest perturbation of the initial orientations,
following the same color and markers convention, see Figures 4.4b and 4.4d.
In all the experiments CSP fulfills the constraints, showing great robustness to
both, the perturbation in the initial orientations and the noise. On the other
hand, the orientations recovered by USP do not always fulfill the constraints,
sometimes they change the order given by the micrographs and present an
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(a)

(b)

Figure 4.6: Comparative analysis of CSP vs. USP refinement as a function of SNR and
perturbation of initial condition on 3K7A phantom. (a) Sum of mean Phase Residual. (b)
Sum of the Variance in the Alignment Error compared to ground truth (log-scaled).

erratic behavior; this is expected since the refinement of each projection is
performed independently. The only experiment where USP leads to a result
close to the groundtruth is for the lowest amount of added noise; again, this
is expected, since the projection image has almost not degradation.

Figures 4.5 and 4.6 show the same plot as in Figure 4.3 for all the experi-
ments. In all the cases the mesh and its contour are plotted in a grid varying
the standard deviation of the perturbation from the groundtruth orientation
and the standard deviation of the Gaussian noise added to the particle pro-
jection images. Figures 4.5a and 4.5b plot the f0.5 cut-off frequency for the
half-set FSC and FSC against the groundtruth respectively, Figure 4.6a plots
the mean PR in the last iteration and Figure 4.6b plots the sum of the VAE for
all the projection images (the area under the thick lines in Figure 4.3d). One
of the main characteristics of these plots, in particular the contour plots, is the
robustness of CSP to the perturbations in the initial position denoted by the
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Figure 4.7: Top (left) and side (right) views of the GroEL complex at a resolution of 4Å.
One of the fourteen subunits is marked in the top view. The side view marks the apical,
intermediate and equatorial levels of one of the two rings. The views were generated with an
alpha transparency proportional to the depth to improve its visualization.

almost vertical level lines. Concerning the FSC, CSP always reports better res-
olutions than USP, and their gap increases if the FSC against the groundtruth
is considered. The PR shows the same behavior previously commented, with
both methods reaching similar results. Finally, the sum of the VAE show that
USP has a considerable error, increasing with the perturbation and the noise,
which is a quantification of the dispersion observed in Figure 4.4; surprisingly,
CSP almost preserves its robustness with the variation of the initial perturba-
tion, specially in the noisiest experiments.

4.2 Validation with real data

The experiments with data acquired following the Cryo-ET procedure reveal
the complexity of the problem due to the extremely low SNR. The selected
particle was the unliganded GroEL macromolecular assembly, widely used as
a well-know structure, whose atomic map is available (Id 3e76 in the PDB
database [KLP11]). The atomic map was filtered in order to obtain a high-
resolution groundtruth map to be used in the comparisons. From the geo-
metric point of view, GroEL is a tetradecamer composed of two back-to-back,
seven-subunit rings [Hor11]. Its top and side views are shown in Figure 4.7.
The GroEL macromolecule is a chaperonin protein, i.e., a protein that is re-
quired for the proper folding and unfolding of many other proteins, translat-
ing the polypeptide chains into theirs characteristic three-dimensional active
structures. In the case of GroEL, it requires the co-chaperonin protein complex
GroES, acting as a lid.

In this experiment the real orientations of the particles and micrographs
are not known; therefore the VAE measure can not be computed, and only
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the refined maps can be used for comparison. Despite the advantage of be-
ing a well-know structure, GroEL as a highly (C7) symmetric complex, adds
two drawbacks in the comparison. First, multiple “valid” solutions for the
particle projection’s orientation parameters might exist, avoiding the direct
comparison of the orientation angles. Second, the reconstruction procedure is
improved by repeating the image in the symmetric orientation increasing the
number of averaged images, and then the SNR, which can hide the improve-
ments given by the refinement methods. However, both, USP and CSP are
subject to this issue, and if a better alignment is obtained by one of the meth-
ods, the multiplication of the number of images will act as an amplification
factor in both cases.

Two different datasets were acquired, varying the dose fractionating proto-
col. In the first one, GroEL_01, the total dose (70 e−/Å

2
) was equally divided

throughout sixty one micrographs. In the second dataset, GroEL_02, an in-
creased total dose (105 e−/Å

2
) the dose was divided throughout forty five

micrographs, leading to a higher dose per micrograph.

4.2.1 Experiments with the GroEL_01 dataset

The GroEL_01 dataset has a total of 25 tilt series, about 100 particles in each
one and 60 micrographs, totaling about 150,000 particle projection images.
This data was used with the standard ET reconstruction procedure to recon-
struct the corresponding tomograms, generating an initial map with the sub-
volume averaging procedure previously described; also a set of initial orien-
tations for each particle and micrograph, and therefore, for each particle pro-
jection via the mapping function (Equation (3.1)) was obtained. Figure 4.8a
shows a subset of the particle projection images used in the experiment; each
particle projection is located approximately on the center of the image.

The refinement and reconstruction procedure was as follows. First, a low
resolution map was reconstructed following the sub-volume averaging pro-
cedure using the cropped particles from the tomographic reconstruction, this
map is shown in Figure 4.8b. Using this map as an initial reference, only the
translational parameters of each image were refined, preserving the orienta-
tions given by ET, and reconstructing using the original raw images following
the procedure described in Section 3.2. This procedure can be seen as a partial
CSP refinement (and will be noted as CSP0), were the orientations parame-
ters are not refined, given by the ET orientations. The obtained map is shown
in Figure 4.8c. Using this map as an initial reference map, the full USP and
CSP refinement procedures were applied. The obtained maps are shown in
Figures 4.8d and 4.8e, respectively. Visual inspection of these maps reveals
the improvement obtained from the sub-volume averaged map, showing that
the whole procedure in the ET reconstruction leaves aside high frequency in-
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(a)

(b) (c) (d) (e)

Figure 4.8: (a) Particle projection images from the GroEL_01 dataset. Maps obtained with
(b) tomographic sub-volume averaging, (c) partial CSP, (d) USP and (e) CSP (see text).

formation due to the averages and interpolations. This range of data is “re-
covered” when the original projection images are used in the reconstruction
and only the translational parameters are refined. It should be noted, being
an important issue in the analysis and interpretation of the results, that the
maps reconstructed with the alignments determined by CSP0, USP and CSP
where computed taking into account only the best particle projections, using
their PR as a discriminative feature; only the best 25% were used. Actually,
this could be viewed as an advantage to the USP reconstruction, since CSP
looks for a compromise between all the projections of a particle, probably
slightly degrading the alignment of its best projections in order to keep a “mu-
tual” coherence. This could be controlled with the weighting scheme wI in
the particle cost function definition given in Equation (3.4). This apparently
drawback is CSP’s strongest feature, since as will be shown in the next section
with the GroEL_02 dataset, in extremely low SNR’s scenarios, by including
several tilted views and imposing the constraints it is possible to recover bet-
ter alignments.

Figures 4.9, 4.10 and 4.11 present the results for the GroEL_01 dataset.
Figure 4.9a plots the half-set FSC curves for the following maps: CSP0 in thin
solid red, USP in thick dashed blue and CSP in thick solid red, the FSC curve
for the map obtained after one iteration of the partial CSP refinement over the
ET map is plotted in thin dashed green. Also the CTF profile, i.e. the profile
along a single radial line of the estimated CTF for one tilt series, is plotted as a
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(a) (b)

Figure 4.9: Results for the GroEL_01 dataset. (a) Half-set FSC curves. (b) Orientations of
some particle projections, note the fulfillment of the constraints for the CSP case.

dashed magenta curve, see Appendix C for further description of the CTF. Note
the frequency-dependent oscillations and the dampening envelope attenuating
high-resolution information, also note that the first zero crossing is around
40Å, the usual resolution achieved by ET without CTF correction and sub-
volume averaging; also note that beyond 13Å the CTF profile lacks significant
components. The achieved resolution estimations are 15.8Å for both USP and
the partial CSP refining only the translation parameters, and 14.4Å for the full
CSP refinement. Figure 4.9b plots the fulfillment of the constraints, where
each particle projection is represented as a point in the unit sphere given its
orientation. Two different particles are shown for the partial CSP, USP and
full CSP. Obviously, partial and full CSP (in magenta and red, respectively)
fulfill the constraints while USP (in blue), starting from the partial CSP does
not fulfill them. Figure 4.10a shows the axial, coronal and sagital cuts for
(top to bottom) CSP, groundtruth and USP maps, respectively. Figure 4.10b
shows the side view of (left to right) the CSP, groundtruth filtered at 10Å
and USP maps with the X-ray coordinates docked (in purple). Figure 4.10c
zooms at one α-helix in the apical region of the top ring marked with a red
square in Figure 4.10b. Figures 4.11a, 4.11b and 4.11c show a thin section of
the maps in the apical, intermediate and equatorial region of the top region,
respectively, and the X-ray coordinates docked.

Figure 4.10 (following page): Results for the GroEL_01 dataset. (a) Left to right: axial,
coronal and sagital cuts of the map by (top to bottom) CSP, groundtruth at 10Å and USP,
respectively. (b) Side view of the (left to right) CSP, groundtruth at 10Å and USP with the
X-ray coordinates docked. The areas marked by the red squares are zoomed in (c).
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(a)

(b)

(c)
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(a)

(b)

(c)

Figure 4.11: (a) Apical (b) intermediate and (c) equatorial slices from the top ring of the
density maps obtained with the GroEL_01 dataset shown in figure 4.10 for (left to right) CSP,
groundtruth at 10Å and USP. Also the docked X-ray coordinates are shown.

The main conclusions from these results is that CSP slightly but clearly,
improves the results obtained by USP. The improvement is marginal in the
FSC curves, although the resolution estimation gives more than one Angstrom
of difference. Also in the model cuts, CSP shows a much cleaner map with
less artifacts, and more well defined zones than USP. In the density maps with
the docked coordinates, CSP shows better distribution of the density around
several helices, clearly in Figure 4.10c, where USP also shows a strange “horn”
in a direction outside the particle structure. Also in various regions marked in
Figures 4.11a, 4.11b and 4.11c the CSP better matches the direction and posi-

44



4.2. Validation with real data

Figure 4.12: Mean PR for the first six micrographs in the GroEL_02 dataset.

tion of helices while USP usually misses them or wrongly determines another
direction.

This experiment shows some clear improvements achieved by the proposed
framework, nevertheless, is it possible to further exploit the advantage of the
CSP framework? Several issues affect the results showed with the GroEL_01
dataset favoring the USP reconstruction, first, the initial reference and initial
orientations are the ones computed by the partial CSP, approaching the solu-
tion to the local minima defined by CSP. Second, GroEL is a highly symmetric
particle, which could be exploited by USP determining alignments for projec-
tions of the same particle in different symmetric subunits, while CSP explicitly
avoids it. Third, only the best 25% of the projections were used in the recon-
struction. In USP, this PR’s thresholding discards the improperly aligned pro-
jections which do not affect the ones used in the reconstruction. Meanwhile,
in CSP the rejected projections could degrade the alignment of the selected
ones, since all the projections of one particle affect their alignment. This can
be controlled by the weighting scheme wI . And finally, is there enough sig-
nal present in the data in order to achieve higher resolutions? Several factors
affect how much signal is present in the data, and in particular up to what
frequency (resolution) there is available signal; some of these factors are: the
dose that is used, the magnification of the images, the accumulated radiation,
among others. The CTF profile for the GroEL_01 dataset plotted in Figure 4.9a
indicates that it is expected to find signal up to 13Å, and then, CSP managed
to extract almost all the information available in the data. Hence, there seems
to be room for improvement of the CSP reconstruction; this will be addressed
in the next section with the GroEL_02 dataset.

4.2.2 Experiments with the GroEL_02 dataset

The GroEL_02 dataset has a total of 144 tilt series, with a total of 11,105 par-
ticles. The increased total dose (105 e−/Å

2
) was equally distributed between

the 45 micrographs used, leaving about 2.33 e−/Å
2

for each micrograph. The
number of micrographs should be reduced from the previous dataset due to
the total radiation accumulated, note that the last projection in this dataset
has accumulated 50% more radiation than in the previous dataset. Thus, some
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(a) (b)

Figure 4.13: Results for the GroEL_02 dataset. (a) Half-set FSC curves. (b) Orientations of
some particle projections, note the fulfillment of the constraints for the CSP case.

particle projection images have better SNR, but also causes a faster degrada-
tion of the particle, therefore, not all the projections could be useful and some
of them may degrade the reconstruction. The SNR is higher than the SNR in
the GroEL_01 dataset, but still much lower than the SP standards since the
tilted geometry requires it.

The missing wedge in this case is too big in order to consider the sub-
volume averaging, therefore to obtain an initial set of parameters a not ex-
haustive random global optimization was performed keeping the orientations
that minimize the PR; a standard procedure in the SP framework. The good
results obtained (see later) indicate that even when there is no available ini-
tial condition, a random search will not degrade CSP performance. As in the
previous experiment, a partial CSP was initially performed refining only the
translational parameters of the projection images, from this map, the USP and
full CSP refinement are performed.

A new refinement and reconstruction scenario: CSPN:1

Increasing the dose per micrograph brings a faster degradation of the particles,
and therefore, the high frequency signal is already lost in micrographs with
lower tilt angle than in the previous dataset. Although it can be interpreted

Figure 4.14 (following page): Results for the GroEL_02 dataset. (a) Left to right: axial,
coronal and sagital cuts of the map by (top to bottom) CSP, groundtruth at 10Å and USP,
respectively. (b) Side view of the (left to right) CSP, groundtruth at 10Å and USP with the
X-ray coordinates docked. The marked regions are zoomed and viewed from top in (c).
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(a)

(b)

(c)

47



Chapter 4. Validation experiments

as an error, it is expected that the first micrograph has a higher mean PR than
the second one, despite being less affected by the radiation damage. This
can be explained by the fact that the first irradiation of the specimen burns
out irregularities produced in the ice when it was created and destroys small
residues in the ice affecting the projection images. After the second irradiation
the PR of micrographs increases again. Figure 4.12 shows an error bar plot
where the mean PR and its standard deviation for the first six micrographs
is plotted. Therefore, if only one micrograph is going to be used, then the
reasonable choice is to select the second one, where the projections with lower
mean PR are located.

This proposes a new scenario for the refinement and reconstruction, re-
constructing with the projections from one micrograph and using the extra
projections to do the constrained refinement. In other words, strengthen the
refinement of the parameters for the projections used in the reconstruction by
doing the constrained refinement with more projections. When N projections
are used in the refinement and M projections are used in the reconstruction,
the CSP framework will be noted as CSPN:M and pronounced as “CSP N to
M”. Following this notation, a CSP6:1 experiment was done, using the first six
micrographs for the parameters refinement, imposing the constraints between
them and only the projection in the second micrograph was used for recon-
struction. This scenario leaves a set of 11,105 particle projection images to be
used in the reconstruction. On the other hand, USP refines and reconstruct
only with the projections in the second micrograph. This is the correspond-
ing comparison since the set of images which is used to build the maps to be
compared remains the same, therefore, a better reconstruction implies a better
alignment.

Figures 4.13, 4.14 and 4.15 present the results for the CSP6:1 experiment
on the GroEL_02 dataset. Figure 4.13a plots the half-set FSC curves for the
following maps: CSP0 in thin solid red, USP in thick dashed blue and CSP
in thick solid red. The FSC curve for the map obtained after one iteration of
the partial CSP refinement over the ET map is plotted in thin dashed green,
and the CTF profile is plotted as a dashed magenta curve. Note that, the
higher dose used in this dataset takes the CTF profile up to 10Å, which should
be reflected in the resolution of the obtained maps. Figure 4.13b plots the
fulfillment of the constraints, where each particle projection is represented as
a point in the unit sphere given its orientation. Figure 4.14a shows the axial,
coronal and sagital cuts for (top to bottom) CSP, groundtruth and USP maps,

Figure 4.15 (following page): (a) Apical (b) intermediate and (c) equatorial slices from the
top ring of the density maps obtained with the GroEL_02 dataset shown in figure 4.14 for (left
to right) CSP, groundtruth at 10Å and USP. The regions marked by a red square are zoomed
below each slice (see text).

48



4.2. Validation with real data

(a)

(b)

(c)
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respectively. Figure 4.14c and 4.14b shows the top and side views of (left
to right) the CSP, groundtruth filtered at 10Å and USP maps with the X-ray
coordinates docked (in purple). Figures 4.15a, 4.15b and 4.15c show a thin
section of the maps in the apical, intermediate and equatorial region of the
top region, respectively, with the X-ray coordinates docked, also the region
marked by red squares are shown immediately below each region.

The results of this experiment show that the map obtained with CSP achieves
better resolution, has finer details and better defined regions than the map ob-
tained with USP. From the FSC point of view, the curve for CSP shows more
correlation at higher frequencies improving the results of the partial CSP in all
the frequencies. Meanwhile the USP curve, shares with the partial CSP curve
the same correlation for lower frequencies, with a slight increase for medium
frequencies, in particular at the f0.5 cut. The estimated resolution by the f0.5

cut-offs are 11.8Å for CSP and 14.1Å for USP, more than 2Å difference in
the range of 10 to 15 angstroms, and this is noticeable in the reconstructed
maps. The model cuts in Figure 4.14a show much more coherence between
the groundtruth and the CSP map than with the USP map. The subunits in
the CSP map are well defined, and the features are much more clear, almost
looking as a noisier version of the groundtruth model cuts. In the case of USP,
there are more artifacts due to the alignment errors which in turn cause ar-
tifacts in the map because of the imposition of symmetry. Finally, the model
views with the docked X-ray coordinates, support the much better correlation
between the groundtruth and the CSP map, where some helical details are
well defined and clearly denoted. Again, as in the GroEL_01 dataset those
details are hardly guessed in the USP map. The zoomed regions shown in
Figures 4.14 and 4.15 are clearly defined by CSP and the density maps follow
the direction of the helices, on the other hand USP presents errors connecting
closer different helices showing density in direction that does not correspond
with the groundtruth.

Although the resolution estimation by the f0.5 for the CSP6:1 is far from
10Å, the CSP map looks quite similar to the groundtruth map, supporting
that the real resolution is closer to 10Å. This is further supported by the
fact that only 11,105 projections were used in the reconstruction, while other
experiments use above 30,000 projections, and the FSC estimation accuracy
increases with the number of images. Finally, the CSP achieved map is sur-
prisingly good, being possible, again with the relatively few projection in the
reconstruction, only if a good set of alignments is used, supporting the impo-
sition of the geometrical constraints as in CSP.
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Concluding remarks

The possibility to study in vivo specimens, by identifying and reconstructing by
sub-volume averaging macromolecules within them, the reference-free initial-
ization and disambiguation in the handedness of the particles given by tilted
geometry, are highly rated features of the Cryo-Electron Tomography frame-
work. Nevertheless, they are sacrificed in the compromise for high-resolution
reconstructions due to the experimental limit of about 20Å. The Single Parti-
cle framework, on the other side, does not have these features, but achieves
much higher resolutions in its reconstructed maps, based on a highly tuned
procedure of refinement and reconstruction using always the original particle
projection images and the CTF correction. In this work, a new framework is
proposed, for the refinement and reconstruction of data acquired with a Cryo-
ET procedure that obtains high-resolution reconstructed maps. This frame-
work, called CSP (standing for Constrained Single Particle) describes a new
procedure for the refinement of the particles and micrographs’ alignment pa-
rameters based on the Single Particle approach exploiting the geometric con-
straints of the tomographic acquisition. The imposition of these constraints,
defines a mapping function relating the parameters of the particles and micro-
graphs with the parameters of the particle projections, allowing to determine
their alignment in a space with a much lower dimension, hence gaining ro-
bustness and accuracy.

The experiments performed on acquired data show that it is possible to
achieve resolutions of about 10Å with the usual doses in ET and with a rel-
atively reduced number of images, outperforming the reconstruction without
imposing the constraints USP (standing for Unconstrained Single Particle).
With synthesized and acquired data, CSP shows better response than USP in
a scenario with low SNR and a set of extra tilted projections. In other words,
CSP obtains a similar performance as USP but with lower doses in the data
used for reconstruction, along with some (few) extra tilted projections used to
do the constrained refinement. These extra projections allow to still recover
the alignment of the particles even when the SNR is so low that USP fails to
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align each projection individually. This reduction of the SNR requirements di-
rectly affects the quality of the reconstruction. If less dose is tolerable in order
to obtain a reconstruction, then, less radiation damage occurs to the speci-
men preserving their high frequency details, thus, CSP will allow to analyze
smaller particles, more susceptible to radiation damage. Also, the analysis of
non-symmetric particles should benefit by CSP since the extra tilted projec-
tions used in the refinement would help to overcome the ambiguities in the
orientations, where USP usually fails with low doses.

The proposed framework shows a great flexibility in the configuration of
how many projections are used, both for the refinement of the parameters
and the reconstruction. This is shown with a new configuration denoted as
CSPN:1 which cannot be reproduced by any current method (Single Particle,
Random Conical Tilt or Tomography), being also the one with better compar-
ative results. This flexibility must be accompanied with a coherent protocol of
fractionation of the dose in the acquisition of the data in order to build a tilt
series of micrographs with the dose needed for the task to be used.

A new generation of CMOS devices to imaging the projections in a TEM are
being developed and evaluated [JMK+08, MML+10, MCM+11]. These devices
known as Direct Detector Devices (DDD) avoid the need for light conversion as
required by the CCD devices currently used, and promise the possibility of sin-
gle electron counting, or the ability to compensate the specimen movements or
variations in the dose fractionation [GMFH11]. Therefore, even lower doses
could be used in the imaging process with less radiation damage to the spec-
imen. CSP has shown to be a powerful method with lower SNR images and
could be well suited to this new digitization technology.

Hence, CSP cannot only efficiently process data acquired as a tomographic
tilt series with a single particle approach, but also offers new scenarios of data
collection and processing, introducing itself as an advanced merge of Cryo-
Electron Tomography and Single Particle.
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Euler Angles Convention

Determining the orientation of a rigid object in 3D can be done through the
definition of three angles, the Euler angles (φ,θ ,ψ) associated with three
rotations transforming the 3D Cartesian coordinate system to the object coor-
dinate system. Each rotation is defined by an angle around an axis, being in
total twelve possible valid combinations of the three Cartesian axes (X , Y, Z).
The convention used in this work is ZYZ, the same convention used by FRE-
ALIGN [SG04] and SPIDER [FRP+96], representing the orientation of the ob-
ject with the following matrix R

R= RZ(ψ) RY (θ) RZ(φ)

where

RZ(α) =







cosα sinα 0
− sinα cosα 0

0 0 1






and RY (α) =







cosα 0 sinα
0 1 0

− sinα 0 cosα






.

Figure A.1 shows the concatenation of these rotations and the transformation
between the initial (X , Y, Z) and final (X ′′′, Y ′′′, Z ′′′) coordinate reference sys-

(a) (b) (c)

Figure A.1: Euler Angles convention used in this work. The object is (a) rotated by φ in the
positive direction around Z , then (b) by θ in the negative direction around Y ′, and finally (c)
by ψ in the positive direction around Z ′′.
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tem. First, the object is rotated by φ in the positive direction around Z , then
by θ in the negative direction around the new Y (Y ′), and finally by ψ in the
positive direction around the new Z (Z ′′).

The angles {φ,θ} completely determine the orientation of the object, and
are called the out-of-plane rotation angles, in opposition to ψ, the in-plane
rotation angle, which only defines a rotation around the orientation axis. For
example, in Figure 4.4 each point in the unit sphere is completely determined
by the out-of-plane angles {φ,θ}.

In the tomographic case, the geometry of the tilted micrographs is gen-
erated by setting ψ = 0, φ = φi is the micrograph’s tilt axis angle and
θ = θi is the micrograph’s tilt angle. In the case of Random Conical Tilt
(see Section 2.1) the geometry is defined by ψ = 0, θ = θ0 (constant) and
φi = 2π

�i/N
�

, being N the number of acquired projections.
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Variance of the Alignment Error

B.1 Mean Rotation Matrix

Given a set of N rotation matrices R = {R1, . . . , RN} and its arithmetic mean
matrix

M =
1

N

N
∑

k=1

Rk,

the mean rotation matrix could be computed as [Moa02]

R̄= UV T (B.1)

where UΣV T is the singular value decomposition of M . In [Moa02] the author
shows that the matrix R̄ is M ’s projection into SO(3) and is the solution to

R̄= arg min
R

N
∑

k=1

‖Rk − R‖F .

B.2 Measuring the alignment error

If the groundtruth orientation angles are known, it is possible to have a quali-
tative measure of the errors in the alignments. If the groundtruth’s orientation
angles and the ones obtained by CSP and USP are computed in the same ref-
erences systems it is possible to directly compare them, but in our case, due to
the reconstruction procedure, the obtained models, thus the alignment angles,
have a global rotation avoiding this direct comparison.

Applying a 3D global rotation to the set of particle projections implies a
rotation in the set of Euler angles for each particle projection. When there
is no alignment error all the angles are affected by the same rotation. If the
mean error in the alignments is zero, then averaging the orientations gives
a good approximation to the global rotation. Being RG the rotation matrix
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associated with the original Euler angles, RC the rotation matrix associated
with the rotated Euler angles and RΘ the global 3D rotation, the following
holds

RC = RGRΘ ⇒ RΘ = RT
GRC . (B.2)

Therefore, if we have the groundtruth set of Euler angles represented by their
rotation matricesRG = {R1

G, . . . , RN
G} and the corresponding set of Euler Angles

estimated by CSP (or USP) represented as matrices, too, RC = {R1
C , . . . , RN

C }, it
is possible to estimate the rotation matrix between each correspondent pair of
rotations using equation B.2,

Rk
C = Rk

GRk
Θ ⇒ Rk

Θ = (R
k
G)

T Rk
C .

An estimation of the global rotation in the reconstructed density map can be
computed using equation (B.1)

R̄C = UC V T
C where MC =

1

N

N
∑

k=1

Rk
C = UCΣV T

C .

The alignment error is computed averaging the difference in the Frobenius
norm between each rotation matrix Rk

C and R̄C

εC =
1

N

N
∑

k=1

‖Rk
C − R̄C‖F . (B.3)

56



Appendix C

(Simplified) Image Formation in a
TEM and CTF correction

The process of image formation in the TEM is based in the interaction between
the electron planar wave and the object, i.e., the incoming plane wave Ψ0

is modified according to a phase shift proportional to the integral of the 3D
Coulomb potential C(r) of the object in the direction of propagation

Ψ(r) = Ψ0 exp
�

jΦ(r)
�

, where Φ(r) =

∫

C(r, z)dz.

Under some approximations, fulfilled in the data acquisition with a TEM, the
wave function in the “back focal plane” Ψbf (k) is the Fourier Transform of
Ψ(r). The wave is also affected by the lens aberrations and the defocusing,
shifting the phase by an amount proportional to the “wave aberration func-
tion”

χ(k,φ) =
1

4
Csλ

3k4−
1

2
∆zλk2−

za

4
sin
�

2(φ −φ0)
�

λk2,

where Cs is the spherical aberration coefficient, λ is the electron wavelength,
∆z is the defocus, and za is the focal difference due to astigmatism.

The wave function in the image plane is the wave in the back focal plane
affected by the aperture function A(k). The aperture affects the contrast in the
image, since, reducing the aperture only electrons deflected at lower angles
are transferred and the contrast is enhanced. There is also an attenuation of
the wave for higher spatial frequencies, modeled by another term E(k) known
as “compound envelope function”. Finally, the intensity distribution in the
image plane is

I(r) = |ψ(r)|2 where ψ(r) =F−1
¦

F
¦

Ψbf (r)
©

A(k)E(k)exp
�

j2πχ(k)
�

©

.

Assuming that Φ(r) is real, the Weak-Phase Object Approximation (Φ(r)�
1) is valid, and the axial astigmatism is fully compensated (i.e., Za = 0), the
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(a) (b)

Figure C.1: (a) A typical CTF profile for a TEM in EM. (b) Effect of the envelope function in
the CTF shown in (a).

Fourier Transform of the image contrastF{I(r)} has a linear relationship with
O(k) =F{Φ(r)}

F{I(r)}= O(k)A(k)E(k) sin
�

2πχ(k)
�

,

where sin
�

2πχ(k)
�

is called the Contrast Transfer Function (CTF) [Fra06b].
The negative staining procedure to create contrasted images has some

drawbacks, causing for example deformations in the specimens by the physical
attachment to the staining substance. Thus, the unstained procedure by em-
bedding the specimen in glucose or vitreous ice represents a major advantage
in data collection. However, for unstained specimens with atomic masses un-
der 400 kDa, the image formation procedure in a TEM needs to use relatively
high defocuses in order to create a well contrasted image [Cro04, Fra06b].
Therefore, although the spherical aberration of the lenses could be reduced in
the lenses preparation, the necessary defocus will add an oscillatory behavior
to the CTF.

A typical profile of a CTF plot is shown in figure C.1a. The CTF starts
close to zero, presenting a bandpass shape until the first zero crossing, then
an oscillatory pattern attenuates the amplitudes and also adds a phase of π to
many of the frequencies. But the critical aspect of this behavior are the zero
crossing frequencies, where all the information is suppressed.

There are many ways to deal with this effect. One way is to take more
than one image of the specimen at different defocuses, then the zero crossings
are at different frequencies and supplementary information is given by both
images. Other approach only corrects the phase of the contrast, inverting the
sign for the frequencies with phase π. The most complete correction involves
the correction of the amplitudes and phases, generally via Wiener filtering to
avoid the division by zero. See for example [MG03] and references therein.
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Appendix D

Resolution measurement

Several measures to estimate the resolution of the obtained density map are
presented in the literature, most of them based in the spectral components of
the Fourier transform of the map. None of them has become a standard, how-
ever the FSC (see below) is widely used in the consulted references. Clearly,
the evidence of structural features, such as secondary structure of proteins
(α-helices or β-sheets), gives the best idea of the order of the resolution ob-
tained. For example, a resolution close to 5Å is needed to discriminate these
structures [SG04]. But if the resolution is far from this no hints can be ob-
tained directly from the density map.

The resolution of an imaging system is the minimum distance between two
different points to be distinguishable (individually identified) in the formed
image. Usually it is measured by the angular resolution being the smallest
angle formed between the points and the image sensor, and transformed to a
spatial resolution multiplying by the distance to the points. Even considering
an imaging device with perfect lenses, the diffraction of the wave through the
aperture limits the resolution of the system; when imperfect lenses are used
their aberration also affects the limits of the resolution, being characterized by
the Point Spread Function (PSF) or its Fourier transform, the Contrast Transfer
Function (CTF).

As a first classification of the resolution measures, these can be separated
into two groups depending if the statistical analysis is performed in the whole
set of data or is splitted in two equally large independent subsets. The methods
that split the data set in two halves, obtain two different reconstructions of the
map and generate an estimation of the resolution comparing some features of
the Fourier Transform of both maps. The main disadvantage of these meth-
ods is that the averaged maps are not completely independent since they are
usually computed using the same model; this effect can be overcome if two
different models are used or a reference free alignment is perform.



Appendix D. Resolution measurement

D.1 Half-set methods

The Differential Phase Residual (DPR) and the Fourier Shell Correlation (FSC)
are two representative methods considering two subsets of the data. Let us
call F1 and F2 the Fourier Transform of the map computed from each subset.
Both methods compute a frequency dependent factor evaluated in shells in
Fourier space generating a curve for the range of working frequencies.

D.1.1 Differential Phase Residual

The Differential Phase Residual (DPR) is defined for a shell of frequencies
S f ,δ = ( f −δ, f +δ) as

DPR( f ,δ) =
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(D.1)

where ∆φ(k) is the phase difference between F1 and F2 at frequency k.
The analysis of the curve of the DPR computed for the range of working

frequencies is needed to characterize the consistency between the two maps.
This curve starts from zero at low spatial frequencies and gradually grows,
indicating inconsistencies at high frequencies between both maps. In order to
have a single value for quantification of the resolution, the frequency f45 where
the DPR is 45◦ is selected as the representative resolution. The justification for
this value comes from the argument that, if two sines waves are superimposed,
they enforce each other if the phase differential is at least 45◦, and if it is
greater they interfere in a destructive way.

D.1.2 Fourier Shell Correlation

The Fourier Shell Correlation (FSC) is also defined for a shell of frequencies
S f ,δ as

FSC( f ,δ) =
Re
�

∑

|k|∈S f ,δ
F1(k)F2

∗(k)
�

Æ
∑

|k|∈S f ,δ
|F1(k)|2

∑

|k|∈S f ,δ
|F2(k)|2

(D.2)

The FSC curve starts from one at low spatial frequencies and gradually falls to
zero. As in the case of the DPR, a single value of resolution is desired. In this
case, at what value of the FSC curve takes the representative frequency is not
so clear, or at least has various proposed values. Naming

σ =
1
p

N
(D.3)
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D.2. Whole set methods

the estimation of the correlation for pure noise in a shell with N points, the
criterion of 2σ, 3σ and 5σ where used by different authors (see the discus-
sion at [Fra06b, chap.5, §8.2.1]). Also the 0.5 and 0.143 cutoffs were used.
Comparing the reconstructions of the same structure, obtained with different
techniques (X-ray crystallography and Cryo-EM) has been shown that the cut-
off should be placed somewhere between 0.5 and 3σ. Empirically the 0.5
cutoff has raised as a good compromise not too optimistic neither pessimistic
and is quite consistent with the DPR=45◦ criterion [Fra09].

D.2 Whole set methods

D.2.1 Q-Factor

The Q-Factor is computed for the j-th component in the Fourier space as

Q( j) =

�

�

�

∑M
i=1Fi( j)

�

�

�

∑M
i=1

�

�Fi( j)
�

�

(D.4)

where Fi( j) is the j-th Fourier component for the i-th image in the data set.
Considering each Fourier component as a vector in the complex plane, the
Q-Factor is the ratio between the length of the sum vector and the length
of the path from the origin to the end of this vector following the directions
given by each image component. Thus, if there is no noise and all the image
components are correlated and aligned, the Q-Factor is one. In the case of pure
uncorrelated noise, then the numerator should be M times the noise mean and
the Q-Factor is zero.

In the 3D case, each voxel of the Q-Factor is computed using Equation (D.4).
Averaging the components in shells S f ,δ, a curve is obtained for the range of
working frequencies. In this case the cutoff with a frequency dependent crit-
ical Q-Factor curve is defined. This critical Q-Factor is a proportional to the
correlation for pure noise given by Equation (D.3). Frank [PRF92] suggests
using 3σ as the critical Q-Factor, Grigorieff [Gri98] uses σ.

Concerning the number of images, Grigorieff [Gri00] shows that for M
large, the Q-Factor is essentially independent of this number and depends
only on the mutual correlation between the images.

D.2.2 Spectral Signal to Noise Ratio

The Spectral Signal to Noise Ratio (SSNR) was introduced by Unser et al. [UTS87]
and revisited by Grigorieff [Gri00] and Penczek [Pen02] in the 3D case. The
SSNR is based on estimations of the SNR in consecutive shells in the Fourier
space.
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Appendix D. Resolution measurement

Let X i = Si + Ni be the Fourier Transform of the i-th image in the data
set, being Si and Ni the FT of the signal and noise images respectively. An
estimation of the energy of the signal present in a region R of the Fourier
space can be obtained as

σ̂2
Rs =

∑

R



Ŝ




2

nR
and Ŝ =

1

N

N
∑

1=1

Si

where nR is the number of Fourier components in R, and Ŝ is an estimation of
the signal component obtained by averaging N images. On the other hand, an
estimation of the energy of the noise present in the same region is obtained as

σ̂2
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∑N
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X i − Ŝ




2

(N − 1)nR

The authors show that the ratio FR = N σ̂2
Rs/σ̂

2
Rn is a biased estimate of the

SNR of the averaged image. Compensating this bias the SSNR is defined as

SSNR=
�

FR− 1 if FR ≥ 1
0 if FR < 1 (D.5)

Taking the regions R as consecutive shells a frequency dependent curve is
calculated. The authors consider two thresholds f4 and f0 where the SSNR
equals 4 and 0 respectively. The first threshold defines an empirical “mini-
mum acceptable threshold” considered adequate for “unambiguous visual in-
terpretation”. The second threshold defines the region where no signal can be
detected.

Compared with the DPR and the FSC, the SSNR is statistically more precise,
being similar only if all the possible half-set partitions are considered. It is
also shown that a DPR = 45◦ corresponds to a SSNR ≈ 3, being an optimistic
estimation.

D.2.3 RMEASURE: Fourier Neighbor Correlation

Following the analysis [Gri00, SG04] of partial noise alignment to the refer-
ences in the refinement process (model bias) in the resolution estimation using
FSC, Sousa and Grigorieff [SG07] propose to compute the Fourier Neighbor
Correlation (FNC) based in correlation between neighboring Fourier terms.

The FNC idea is based on the observation that the Fourier terms of a vol-
ume filled with zero mean random noise are uncorrelated, but if a 3D binary
mask is applied, the convolution introduces correlation between the Fourier
terms. This correlation depends on the Fourier Transform of the mask, Ghp

following the notation in [SG07].
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D.2. Whole set methods

FNC is defined for a thin shell SR at resolution R and a neighborhood Vp,
consisting of the six Fourier terms connected with p, as

FNC(R) =

∑

p∈SR

∑

q∈Vp
FpFq

∗
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∑

p∈SR

∑

q∈Vp
|Fp|2

∑
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∑
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|Fq|2
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If only noise is present in the volume the FNC is approximately constant
through the frequencies but with a large variance in the lower frequencies
where the number of terms in the shells is reduced. The constant depends
on the mask Ghp. When a macromolecular structure is added in the volume,
an additional density (another source of noise) affects the computation of the
FNC. In this case the term Fp is replaced by Sp + Np reflecting the two “sig-
nal” sources, where Sp is the contribution from the macromolecule and Np the
background noise; similarly with Fq. Manipulation from Equation (D.6) gives

FNC(R) =
FNCF SNR(R) + FNCN

SNR(R) + 1
or SNR(R) =

FNCN − FNC(R)
FNC(R)− FNCF

, (D.7)

where FNCF and FNCC are the constants describing the FNC arising from
the structure and the background noise, respectively. These constant values
are estimated masking the macromolecular structure and computing the FNC
when filling the mask with noise. Any density outside the mask counts as noise
and any density inside the mask counts as signal plus noise. To obtain the
structure mask a low-pass filtered version of the volume is computed retaining
sufficient information about the shape of the structure, but without finer and
noisier details.

Equation (D.7) is valid when the FNC of the signals is approximately con-
stant, but at very low resolutions the FNC value depends strongly on the details
in the Fourier space of the molecular envelope. Following this result and the
relation between the SNR and the FSC [Gri00] the FSC(R) could be compared
with the real FSC computed splitting the data set is halves.

The FNC measure seems to be less affected by model bias or over-fitting to
the noise in the refinement compared to the FSC measure.
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Chapter 5

Object segmentation

Object segmentation is one of the most fundamental tasks in image processing,
still lacking a completely automatic solution. The main idea is to find a set
of features that describes and discriminates the object of interest from the
rest of the image. Object color is a low level feature that can be used as
such descriptor, although its discrimination capacity is often insufficient in
real images. Using shape as a high level feature is a common approach to
augment such low level features.

The shape of the desired object is added as a descriptor, constraining the
set of possible solutions to regions of the image that simultaneously “match”
this shape and the low level features (color, edges, etc.). The most common
way to add this shape information is in the form of a weighted linear com-
bination of functionals addressing, on one hand, the low level features and,
on the other hand, the shape priors or models. This leads to a minimiza-
tion problem where the solution is a compromise between the shape of the
final contour and the information given by the image. The minimization tech-
niques used in the literature, include, among others, gradient descent meth-
ods [LGF00, COS06, TYWW+01, CFK07, CSS06] and graph-cuts [VM08]. The
used shape representations can be signed distance functions (SDF) [LGF00,
COS06, TYWW+01, VM08, CSS06, RJZ06], quadratic splines [CKS03], char-
acteristic functions [CFK07], and landmark points [CTCG95].

When M different objects (or object classes) can appear in an image, a
single shape prior (model) is not sufficient, and multiple shape priors must be
considered. A possible, but not elegant, approach is to run the process with
each one of the shape priors separately, and then choose the best solution.
Vu and Manjunath [VM08] and Cremers et al. [CSS06] define M possible
labels for each pixel on the image, and then propose a segmentation energy
that includes the optimization of these labels in order to determine where to
apply each prior. In a different work, Cremers et al. [CKS03] perform density
estimation in a non-linear feature space, where different objects are separable.
The proposed energy is then minimized considering both the curve’s control
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points and the image.
Considering the natural deformations and the variability of objects within

a class, high-order shape models (SMs) should be included in the segmen-
tation. Leventon et al. [LGF00] compute PCA on a set of registered shapes,
fitting a Gaussian probability distribution to the coefficients of the reconstruc-
tion. This allows to include the probability of a certain shape, in traditional
geodesic active contours for low level features, and a MAP estimation of the
object in the image. Tsai et al. [TYWW+01] also use PCA to model shape vari-
ations, defining an energy for the aligning of the binary shape, and formulate
a segmentation functional optimizing the parameters of the representation
with the first deformation modes. Cootes and Taylor [CTCG95] and Kim and
Lee [KL05], among other authors, compute, using PCA, a point distribution
model of landmarks points defining a shape, based on the active shape model
framework. More recently, Charpiat et al. [CFK07] proposed a framework to
compute non-linear shape statistics based on the Hausdorff distance between
shapes, and then model distributions similarly to [LGF00].

In this work, a new framework for image segmentation with multiple high-
order shape models is introduced, addressing at the same time the selection
of the model and its image-driven positioning and adjustment to the mod-
eled deformations. Invariance is included as part of the framework as well.
In particular, the high-order SMs are computed using PCA in a similar way
as [LGF00, TYWW+01], obtaining a set of eigenmodes of variations. In the
case of dynamic shapes with large, non-linear deformations, a method to ob-
tain a lineal approximation of the shape space is described using a dimension-
ality reduction algorithm. The selection of the model is obtained with a binary
selection coefficient, on-line learned based on a similarity measure between
shapes. The proposed framework follows from a functional that combines two
terms. The first one is a region-based segmentation term [CV01]. The second
term is a combination of the multiple high-order SMs, addressing the model
selection and constraining the solution to the high-order shape information
coming from the on-line selected model. While the framework is presented
for planar curves, it can be easily extended to data in higher dimensions.

The remainder of this part is organized as following. Chapter 6 reviews
briefly the definition and properties of shapes models. Chapter 7 describes the
proposed framework. Chapter 8 presents experiments testing the ideas and
theirs discussion. Chapter 9 proposes an invariance to translation extension of
the framework. Finally, Chapter 10 concludes this part.
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Chapter 6

High-order multiple shapes models

Consider M sets Φk, k = 1, . . . , M , each with Nk registered shapes Φk =
{φ1

k , . . . ,φNk
k }, where each φ j

k is a signed distance function (SDF), whose zero
level-set curve, C j

k , represents a shape from the k-th class of objects. LetM d
k

be a d-order model that captures the intrinsic deformations of the training set
Φk for the class k. In this work, M d

k is derived from a PCA decomposition of
the training set Φk (all the shapes φk are represented as vectors in RD, D being
the size of the range of the corresponding SDFs),

M d
k := {µk, U d

k }, (6.1)

where µk ∈ RD is the mean shape of Φk, U d
k ∈ R

D×d is a matrix containing the
first d modes of variation (eigenmodes), U d

k = [{u
i
k}

d
i=1], ui

k ∈ R
D.

A modelM d
k generates a representation of a new incoming shape φ̂ by the

d-projection P d
k φ̂

P d
k φ̂ = µk + U d

kαk, (6.2)

where αk = (U d
k )

T (φ̂ − µk) ∈ Rd are the corresponding reconstruction coeffi-
cients, computed directly, in closed form, from the shape φ̂ given the model
M d

k (see for example [LGF00, section 2.1] for details).
The accuracy of the representation depends on the similarity between φ̂

and the shapes in Φk. Constraining small shape variations in the class Φk

(compared with the deformations across different classes k) allows to obtain
accurate representations using a linear approximation like PCA.

Finally, let
M= {M1, . . . ,MM}

be a set of SMs for the M different classes of objects. For simplicity, the order
d in the notation is omitted from now on.

Figure 6.1 shows SMs for a walking person. Figure 6.1a shows four dif-
ferent shapes from one of the classes of shapes, note the similarity between
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(a) (b)

(c)

(d) (e) (f) (g)

Figure 6.1: (a) Four shapes from one of the classes, and (b) the first three modes of variation
of the corresponding model in the walking sequence. The thick black line is the mean shape,
the red lines are obtained varying the amplitude (see text). (c) Original shape (in black) and its
projections Pkφ (colored as in figure 6.2) to M = 5 different models in the walking sequence,
one for each cluster. The mean shape of the corresponding model is plotted too (black curve).
The projections are ordered based in the measure given by Equation (7.6). Note how the
projection is completely deformed when using the wrong shape model. (d) - (g) First three
modes of variation for four different shape models.

them. Figure 6.1b shows the first three modes of variation of the correspond-
ing model in a walking sequence. The data was obtained filming a single
person walking with a static background [ARS07]. The thick black line is the
zero level set of the mean shape. The red lines are the zero level sets of the
addition of the mean shape and a constant times the first, second, or third
eigenmode respectively, varying the amplitude. Figure 6.1c shows an origi-
nal shape from the set and its projections (with d = 21) to M = 5 different
models in a walking sequence. The mean shape of the corresponding model is
plotted too (black curve). The projections are ordered based in the measure
given later by Equation (7.6). Note how the projection is completely deformed
when using the wrong model, clearly illustrating the importance of selecting
the correct shape model (prior). Figures 6.1d, 6.1e, 6.1f and 6.1g show the
first three modes of variation of the other four models obtained from the same
walking sequence. The procedure to obtain these models is explained in the
next section.
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6.1. Clustering a set of shapes

(a) (b)

Figure 6.2: (a) Low dimensional embedding. Each point correspond to the first three coordi-
nates of the mapping obtained with DM. The colors correspond to the M = 5 obtained cluster.
One sample shape from each cluster (walking-cycle position) is shown. (b) Eighteen samples
from the walking sequence colored based on the obtained clusters.

6.1 Clustering a set of shapes

One of the used datasets of shapes was taken from the sequence of a walking
person [ARS07]. Considered as a unique deformable object, this shape has
large, non-linear deformations, invalidating the hypothesis of small (and lin-
ear) shape variations for this set. To alleviate this, a set of clusters may be con-
sidered. In this way linear approximations can be used to approximate shape
deformations within each cluster to obtainMk. In order to obtain the clusters,
in this work a non-linear mapping to an Euclidean space is performed based
on Diffusion Maps (DM) [CL06]. DM is a general framework for data analysis
based on a diffusion process over an undirected weighted graph, defining a
new metric on the data called Diffusion Distance. Two properties of this met-
ric are important in the present work. First, as a consequence of the density
renormalized kernel defined to build the graph, the graph-Laplacian (see Von-
Luxburg’s tutorial [vL07] for definition and properties of the graph Laplacian)
is an approximation of the Laplace-Beltrami operator on the underlying man-
ifold, allowing to recover the Riemannian geometry of the data set regardless
the distribution of the points in the underlying manifold. Second, the Diffusion
Distance is equivalent to the Euclidean distance in the space with coordinates
given by the mapping function. This allows to simply compute K-means in the
corresponding Euclidean space in order to group the shapes into M clusters
and then obtain a local model in each cluster.

To recapitulate, the clusters are obtained by mapping into a new space via
DM (a kernel method) and then applying K-means on this space. Note that the
subsequent PCA could actually be performed in this space as well (using Kernel
PCA [SS02, DRT06]), though the clustering makes the inner class variations
already well approximated by ordinary PCA.

Figure 6.2 shows the clustering result. Figure 6.2a shows the low dimen-
sional embedding manifold. Each point correspond to the first three coordi-
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Chapter 6. High-order multiple shapes models

nates of the mapping colored based on the obtained clusters. One sample
shape from each cluster (walking-cycle position) is shown too. Figure 6.2b
shows eighteen consecutive samples from the walking sequence colored based
on the obtained clusters.
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Chapter 7

Proposed variational framework

Given an input image I : Ω ⊂ R2 → R containing a shape generated by one
of the shape modelsMk ∈M, an energy E is defined to simultaneously select
the best model and obtain a segmentation of the corresponding object in I
(we will discuss the issue of multiple objects later),

(M ∗,φ∗) := arg min
φ,M∈M

E(I ,φ,M). (7.1)

This energy includes two terms linearly combined with the constant λ,

E(I ,φM) = EIM(I ,φ) +λESM(φ,M). (7.2)

The EIM term is related to any low level image descriptor such as gray level,
color, edges, texture, etc. For the examples in this work, EIM = ECV is the energy
introduced by Chan and Vese [CV01],

ECV(I ,φ, c+, c−) =

∫

Ω

|I (x)− c+|2H(φ(x))dx +
∫

Ω

|I (x)− c−|2(1−H(φ(x)))dx +

µ

∫

Ω

δ(φ(x))|∇φ(x)|dx , (7.3)

where c+ and c− are the averages of the input data inside and outside the
curve C (the zero level set of φ), respectively, H(·) is the Heaviside function,
and δ(·) is the Dirac function. This energy attempts to split the input data
into two different regions of approximately piecewise constant color or gray
level values (c+ and c−). Other low level descriptors could be used for a better
discrimination, for example texture [PD99] or edges [SKC95].

The term ESM adds an additional force aiming at maximizing the similarity
between the evolving shape φ and its projection onto only one of the d-order
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models from M. Which one of the M models is used depends on the evolution
of the shape and its projection to each model. The proposed term is

ESM(φ,M) =
M
∑

k=1

βkEk(φ,Mk), (7.4)

defining

Ek(φ,Mk) =

∫

Ω



H(φ(p))−H(Pkφ(p))




2
dp, (7.5)

where again H(·) is the Heaviside function, βk is a binary coefficient that (on-
line) selects which of the M models is used, and Pkφ is the projection of φ
onto the model Mk, given by Equation (6.2). Only one of the βk must be
different from zero in (7.4), since it is not fair to penalize for models that do
not correspond to the object in the image. This is detailed next.

7.1 Shape dissimilarity measure and model selec-
tion

Which is the non-zero βk in Equation (7.4) is computed based on a shape
dissimilarity measure (Υ) between two shapes φ1 and φ2,

Υ(φ1,φ2) =

∫

Ω

|φ1(p)|δ(φ2(p))
length(C2)

dp+

∫

Ω

|φ2(p)|δ(φ1(p))
length(C1)

dp. (7.6)

This is a length-normalized variation of the measure introduced by Funkhouser et
al. [FKS+04]. This measure evaluates the sum of Euclidean distances corre-
sponding to moving the contour of the first shape to points in the contour of
the second shape, and viceversa, scaled by the curves lengths. In figure 6.1c,
the projected shapes are ordered according to increasing values of Υ(φ,Pkφ).
These ordered values are 1.35, 2.83, 3.59, 5.87, and 7.83 respectively.

Based on (7.6), a normalized shape similarity measure ξ̄k(φ) between a
shape φ and its projection Pkφ to the d-order k-th model is computed as

ξ̄k(φ) =
exp
�

−Υ(φ,Pkφ)
�

∑M
l=1 exp

�

−Υ(φ,Plφ)
� . (7.7)

This normalized similarity measure ξ̄k(φ) is close to one for the model that
better represents φ. Finally to force the binary value in βk, soft thresholding,
based on a sigmoid function, is performed. Note that a unique coefficient is
used as model selector, instead of one coefficient in each pixel as in [CSS06,
VM08]. This encourages shape consistency and significantly simplifies the
optimization.
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7.2. Shape validation

This procedure can be viewed as a case of an analysis-by-synthesis frame-
work for model selection, similar to the one introduced by Srivastava and
Jermyn [SJ09]. Instead of comparing the current curve with high-probability
sampled contours from the models, in our case, its best representation, given
by its projection to the model, is used for comparison.

In the particular case where two models represent objects with too similar
features, the proposed model selection framework might fail if both models
obtain high βks (a human observer might fail as well in such scenario). This
could be resolved adding a “multiple hypothesis” procedure, selecting these
two models and first evolving two curves “in parallel” under different model
hypothesis, and then confirming one of these hypothesis with the dissimilarity
measure or the validation procedure proposed in Equation (7.8) in the next
section.

If the typical features of the object are defined and captured with the curve,
the model selection procedure does present a stable behavior, also allowing
model switching to recover from errors in the selection. To achieve this, the ECV

term plays an important role. An example of model switching and recovering
from a potential error is shown in Chapter 8 (Figure 8.1).

7.2 Shape validation

With the proposed method, one model is always selected and a segmentation
is obtained, even if the shape in the image has no appropriate model in M that
provides a good representation. The validation of the final segmentation can-
not be directly compared to the original non-occluded shape in all the cases,
since there is no way to “create” the particular features or attributes that are
occluded in it. Instead of this, the resulting segmentation is evaluated taking
into account the fact that the shape is generated by a modelMk in M and the
solution should then be a “valid” shape generated by this model. The follow-
ing measure permits to discard a segmentation φ̃ given the selected model.
First, the mean Ῡk and variance σ2

Υk
of Υ(φ j

k,µk) are computed ∀φ j
k ∈ Φk. If

Υ(φ̃,µk)> Ῡk +τσ
2
Υk

, (7.8)

then the segmentation is discarded, and the shape can not be recognized.
Empirically it was found that a value of τ= 1.5 is useful for the acceptance of
shapes from the correspondent model and the rejection of shapes from other
models. Moreover, a model-dependent τk could be used, where the particular
variations of the set of shapes are considered.
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7.3 Energy minimization

The proposed energy is minimized using a classical gradient descent method.
The first variation of Equation (7.2) becomes

∂ E

∂ φ
=
∂ ECV

∂ φ
+λ

∂ ESM

∂ φ
. (7.9)

For the gradient descent of ECV, the expression is given in [CV01, Equation
(9)]

∂ ECV

∂ φ
= δ(φ)

�

(I − c+)
2− (I − c−)

2−µ∇ ·
� ∇φ
|∇φ|

��

.

For ESM, defining W = UkU T
k , the obtained expression is

∂ ESM

∂ φ
=−2

M
∑

k=1

βk



H(φ)−H(Pkφ)




�

δ(φ)−δ(Pkφ)W
�

.

Although the model selector βk depends on φ, is treated as static, as a first or-
der approximation for the gradient descent, since it affects the model selection
and only indirectly the evolution of the curve. This model selector coefficient
is computed/updated at every iteration r of the gradient descent, i.e., given a
new updated curve C (r) at iteration r, its projection to the models in M are
computed and the binary selector β (r+1)

k is obtained selecting the model for
iteration (r + 1).

7.4 Prior activation

The first steps of the optimization are performed without SMs information
(λ = 0), until stationarity, then the “prior is activated” adding ESM with λ 6= 0
(manually selected) until a new stationary point is reached1, now combining
the image and the shape information. This helps to determine the object in
the image without affecting the initial steps of the evolution with the projec-
tions to the models of the initial curve used in the minimization, which in
the general has no similarity with the shapes in the models. A similar idea
of “prior activation” is considered by Vu and Manjunath [VM08] using shape
prior templates instead of SMs.

The Gestalt Principles [Kan79] can give some intuition to this initial step.
The “Principle of Similarity” states that people try to organize visual elements
into groups based on the similarity of certain features (shape, intensity, tex-
ture, etc.). This gives an additional argument for trying to start grouping

1Stationary points are determined taking into account the variation of the area of the
evolving curve φ, i.e., if there is no substantial variation in this area the iterations are stopped.
Also note that λ does not affect the first stationary point, previous to the “prior activation.”
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7.4. Prior activation

regions of similar intensity and use the results as an initial point or “primary
units” for helping the minimization process. After the identification of these
“primary units,” the addition of priors is used for a better interpretation of the
object or scene.

The framework, as is presented, obtains the segmentation of only one ob-
ject (at a time) in the image. If more than one object is present in an image,
the segmentation will depend on the initial curve that roughly selects the ob-
ject and hence the segmentation at the “prior activation” step. This will be
exemplified in Figure 9.1b, where five different objects are present and always
only one is selected and segmented, even if the initial curve contains more
than one object in the image.

In order to be able to segment an image with more than one object, a
possible solution, as a direct extension of the proposed framework, is to con-
sider a multiphase level set framework [VC02], where each phase has its own
model selector. Alternatively an analysis of the connected components of φ at
the “prior activation” step could be performed, and then use the multiphase
level set framework from this step. Lastly, we could also consider multiple
steps, and once an object has been detected and segmented, its region is elim-
inated/ignored and the rest of the image is further studied for additional ob-
jects.

Finally, the selection of λ and its effects on the balance of the energy terms
is, as in a general framework of active contours, important in determining
the final segmentation. A detailed discussion of this point is presented in
Sections 8.1 and 8.2.

83





Chapter 8

Experimental results

8.1 Models of ellipses

The first example is a “toy example,” though illustrative and challenging, with
two models of ellipses, where the only difference is that the first (and only
beyond the mean shape) eigenmode is rotated π

2
(this already exemplifies the

importance of high-order models). Let us name M 1
V

the model with vertical
deformations and M 1

H
the model with horizontal deformations. Figure 8.1a

shows the mode of variation for both models, in green forM 1
V

and in red for
M 1

H
.
The input image contains an occluded vertical ellipse, not present in the

training set. Two different experiments are presented, varying the order d of
the model M d

V
while maintaining the highest dimension for the model that

does not represent the input shape,M 1
H
. With d = 0, only the mean shape is

considered in the shape prior (no deformations), with d = 1 the vertical defor-
mations are considered. All the parameters are the same in both experiments.
Figures 8.1b and 8.1d show some steps in the minimization, and Figures 8.1c
and 8.1d show the evolution of the shape dissimilarity measure, for both ex-
periments, respectively. Steps À and Ä show an intermediate curve in the
evolution with λ = 0, and the projections, P 1

H
φ and P d

V
φ, to both models,

dashed colored lines. The initial curve (in yellow) is also shown. Note that
P 0

V
φ has no vertical deformations. The following steps (Á,Â and Å,Æ) show

the evolution after the “prior activation” adding the ESM term (λ = 1.1), and
the obtained segmentation (Ã and Ç).

In the first experiment (Figure 8.1b), the projections to both models end in
the same shape, the mean shape. This is reflected also in the graph of dissim-
ilarity measure (Figure 8.1c) by the overlapping of the green and red curves.
In the second experiment (Figure 8.1d),M 1

V
captures the variation of the in-

put shape, as reflected in the obtained segmentation. In this case there is also
a model switching around iteration 200 (step Å), where the M 1

H
is selected
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Figure 8.1: (a) Mode of variation for the two ellipses models (M 1
v in green and M 1

h in red),
the mean shape of both models is the same and is plotted in black dash line. (b) Results for
the experiments with M 1

h and M 0
v (only mean shape). Some steps in the segmentation (see

text) (c) Evolution of the shape dissimilarity measure for the experiments with M 1
h and M 0

v .
(d) Results for experiments with M 1

h and M 1
v (complete model). (e) Evolution of the shape

dissimilarity measure for the experiments with M 1
h and M 1

v .

while the occlusions are being filled. After this point, the vertical deforma-
tion determines the selection ofM 1

V
for the rest of the evolution, ending with

an accurate segmentation. Clearly, the high-order model and the automatic
model selection are critical to obtain the correct segmentation.

8.2 Models from the walking sequence

Five high-dimensional models of a walking person cycle M 21
Wk

(k = 1, . . . , 5,
d = 21) were obtained with the procedure explained in Section 6.1. The first
three modes of variation for each model are shown in Figure 6.1. These are
the models in the set of models M = {M

Wk
}5k=1 for the next experiment. This

set of models is particularly challenging for model selection since they are
different deformations of the “same object.”

The input image in this experiment contains a new occluded shape φ̂1

(Figure 8.2a) that belongs to the model M
W1

and is not in its training set

Φ1. Figure 8.2 shows details about the segmentation of φ̂1. Figure 8.2c
shows four steps after the “prior activation” (steps À to Ã) in the evolution of
φ (blue curve) and their projections onto the automatically on-line selected
model M

W1
(green curve). Also the obtained segmentation φ̃1 (red curve)

and its projection are shown. Figure 8.2b shows the projections of φ (blue
curve) in the “prior activation” iteration onto the five models, ordered based
on Υ(φ,P

Wk
φ) for this iteration. The mean shape of the corresponding model

is plotted too (black curve). Compare the projections of the occluded shapes
(Figure 8.2b) with those of a similar non-occluded shape in Figure 6.1c. Note
how the projections onto the incorrect models are not too different, but the
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(a) (b)

(c)

(d)

Figure 8.2: (a) Input image with an occluded shape φ̂1 in gray levels. (b) Projections of φ
in the “prior activation” iteration (blue curve in step À in Figure 8.2c) onto the five models,
ordered based on Υ(φ,Pwk

φ). The mean shape of the corresponding model is plotted too
(black curve). (c) Steps À to Ã in the evolution of φ (blue curve) and its projections onto the
selected modelMw1

(green curve). The obtained segmentation is the red curve. (d) Evolution
of the shape dissimilarity measure, Υ(φ,Pwk

φ) with the iterations. The curves in steps À-Ã
are shown in Figure 8.2c. (This figure is in colors.)

projections onto the correct model have significative differences. Figure 8.2d
plots the evolution of the shape dissimilarity measure, Υ(φ,P

Wk
φ), for all the

iterations and the five models. Note how the correct model is the one with
lowest dissimilarity measure.

This experiment is repeated four times, maintaining the same set of mod-
els M = {M

Wk
}5k=1 and changing the input image. In each repetition, the

input image contains a new occluded shape φ̂k, k = 2, 3,4, 5, belonging to the
modelsM

Wk
, k = 2, 3,4, 5, respectively. These four images are shown in Fig-

ure 8.3a with the corresponding obtained segmentations φ̃k (red curves) and
the projections onto the corresponding selected model (dashed green curves).

The results in Figure 8.2 show a number of important characteristics of
the proposed framework that are consistent for all the presented experiments.
First, in all the examples the selected model is the one to which the input
shape belongs and the obtained segmentation is accurate to the data given by
the image. Also, for all the experiments, during the minimization iterations
the model selection is stable and there is no switch between the models once
the shape prior is activated.

Second, it is relatively easy to follow the variations of the projection in the
shape dissimilarity measure graph as the curve evolves. When the occlusions
are being filled, the projection gets more similar to the shapes in M

W1
and

the dissimilarity Υ(φ,P
W1
φ) reduces. This is due to the force generated by
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(a) (b)

Figure 8.3: Segmentations obtained with the proposed framework with the set of models M=
{Mwk

}5k=1 for different input images. (a) Segmentations for the binary occluded shapes φ̂2, φ̂3,
φ̂4 and φ̂5 belonging to different models Mwk

, k = 2,3, 4,5, respectively. (b) Segmentations
of the gray level images with added occlusions. The shapes in these images also belong to
different models Mwk

, which are all correctly selected by the proposed framework.

the shape term ESM, and as the curve gets closer to its projection this term
attracts the curve strongly. Although this behavior is due to the ESM term,
the competition of both energy terms in areas of the shape where there is
no occlusion preserves the curve close to the contour of the original shape,
preventing to locally follow the projection, meaning that the ECV energy term
is stronger than the prior in this area of the image. This can be seen in the final
segmentation (red curve in Figure 8.2c), where the projection (dashed green
curve) in the hand goes through the original shape but the curve respects
the gray level information. Similar details can be seen in Figure 8.3a for a
different example. This example shows how the two energy terms collaborate
to obtain a good segmentation of the occluded shape and each term attempts
to define the curve in the regions where it better describes the solution. Where
there is an occlusion the shape prior term takes control of the curve and where
there is information of the actual shape (given by the intensity of the pixels),
the data term controls the curve. This is done in a collaborative way, there
is no discontinuity in the curve and it remains smooth. In order to achieve
this, the projection onto the proper model is critical. Also the selection of

k(M
Wk
) Υ(φ̃k,µk) Ῡ σ2

Υ Υ(φ̃k,φk)

1 4.53 3.85 0.91 0.86
2 3.39 2.66 0.68 1.05
3 2.60 3.42 1.31 0.59
4 4.14 3.75 1.37 1.44
5 2.99 3.18 1.17 2.18

Table 8.1: Numerical validation results (Equation (7.8)) and dissimilarity measures (Equa-
tion (7.6)) for the obtained segmentations φ̃k for the experiment in Figures 8.2 and 8.3.
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8.3. Model of lips and mouth

the parameter λ is important, determining these collaboration/competition
between both energy terms. In this work, as often done in the literature, λ is
manually obtained. As a rule of thumb λ ∈ (1.0,1.2) was found to be a good
initial estimation.

Table 8.1 shows numerical results for the validation of the obtained seg-
mentation (see Equation (7.8)). The dissimilarity between the obtained shape
and the original non-occluded shape Υ(φ̃k,φk) (possible in these experiments
since it is accessible) is shown in the last column. Note that these last mea-
sures are, in general, significantly smaller than the mean dissimilarity between
the shapes in the training set and the mean shape, Ῡk. This indicates the high
accuracy of the proposed framework for this data.

Table 8.2 shows the dissimilarity measures between the obtained segmen-
tations and the mean shapes for all the models in M, for the five different
images and shapes in Figures 8.2 and 8.3, the minimum for each is in bold
in each row, and obtained in the diagonal as expected from a correct model
selection. Note that the difference between the minima and the next greater
value in each row are considerable. This further indicates how the automatic
model selection is correctly performed. Taking into account that the obtained
segmentations correspond to shapes generated by the selected models, in all
the experiments, the results were validated with the proposed measure, Equa-
tion (7.8), and were not validated by the other four used models. This further
supports the validity of the proposed framework in general and the on-line
automatic selection of the correct model in particular.

Figure 8.3b shows the obtained segmentations with the proposed frame-
work for four different gray level images. The configuration of the frame-
work is the same as in the previous examples, using the set of models M =
{M

Wk
}5k=1. The automatically selected models, as well as the obtained seg-

mentations, are also correct and accurate.

Υ(φ̃k,µ1) Υ(φ̃k,µ2) Υ(φ̃k,µ3) Υ(φ̃k,µ4) Υ(φ̃k,µ5)

φ̃1 4.53 13.16 6.99 9.08 11.54
φ̃2 12.99 3.39 11.05 7.65 6.05
φ̃3 6.87 9.14 2.60 6.34 7.45
φ̃4 6.89 8.43 7.48 4.14 7.97
φ̃5 8.81 6.64 7.01 6.54 2.99

Table 8.2: Dissimilarities measures (Equation (7.6)) between the obtained segmentations φ̃k
and the mean shapes µk of the models in M for the experiment in Figures 8.2 and 8.3.
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(a) (b) (c) (d)

Figure 8.4: Segmentation obtained with the model of lips and mouth Ml. (a) Three images
and the corresponding contour (in red) of the defined shape in the set of training shapes.
(b) First three modes of variation of the modelMl. (c) A new image with an occluded shape
and the evolution of the curve φ. Top: Initial curve (in yellow), curve in the “prior activation”
step (in blue) and its projection onto the model (dashed green curve). Bottom: curve (in blue)
at an intermediate step with the Esm term added, and its projection onto the model (dashed
green curve). (d) Obtained segmentation (zoom).

8.3 Model of lips and mouth

A model of the shape variation of a mouth and lips, M
L
, of a person while

smiling is obtained from a set of 50 images. A new image where the mouth and
lips are occluded by a finger is then segmented using the proposed framework.
Figure 8.4a shows three images and the manually segmented contour for three
different elements in the set of training shapes. Figure 8.4b shows the first
three modes of variation of the obtained shape model. At the top of Figure 8.4c
the new testing image is shown with the curve in two different steps before the
ESM is added. The initial curve is shown in yellow and the curve in the “prior
activation” step is in blue, its projection to the model is also shown as a dashed
green curve. At the bottom of Figure 8.4c an intermediate step after the “prior
activation” is shown, the curve is in blue and its projection is the dashed green
curve. Figure 8.4d shows the obtained segmentation (curve in red). The
obtained segmentation is accurate and the occlusion is filled properly with the
information given by the model.

8.4 Varying the order of the models

This section further analyzes the segmentations when the order d of the model
varies. The shapes used in this test are shown in Figure 8.5a. They are fifteen
shapes of sharks taken from the SQUID database [AMK96]. Two different sets
of shapes are defined, ΦS1

and ΦS2
. ΦS1

has fourteen shapes, leaving out the
shape marked with a box in Figure 8.5a, while ΦS2

uses the fifteen shapes. Two
different models were created, M d

S1
from ΦS1

and M d
S2

from ΦS2
. Since ΦS2

is
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M d
S1

d Υ(φ̃Sd
,µS1
) Υ(φ̃Sd

,φS)

3 3.59 1.46
7 4.15 0.97
10 4.25 0.95
13 3.96 1.38

(a) Ῡ = 6.11, σ2
Υ = 1.42

M d
S2

d Υ(φ̃Sd
,µS2
) Υ(φ̃Sd

,φS)

3 5.68 6.34
10 5.49 2.60
13 3.69 1.63
14 4.00 0.63

(b) Ῡ = 5.93, σ2
Υ = 1.48

Table 8.3: Numerical validation results (Equation (7.8)) and dissimilarity measures (Equa-
tion (7.6)) for the obtained segmentations φ̃sd

shown in Figure 8.5.

larger than ΦS1
,M d

S2
might have more maximal modes of variation thanM d

S1
,

this happen in this case being d = 14 the number of modes of variation for
M d

S2
and d = 13 forM d

S1
. Figure 8.5b shows the first three modes of variation

ofM d
S1

. The modes of variation ofM d
S1

are very similar to those ofM d
S2

.
Inspite of the “visual” similarity of the shapes in the set, their variations are

larger than in the previous examples. For instance, they are not just a sampling
of the deformation of an object like the walking sequence or the ellipses. This
can be observed from the mean dissimilarity measure between the shapes in
the training set and the mean shape, Ῡ. For the modelsM

Sk
this value is close

to 6 (see Tables 8.3a and 8.3b) whereas for the modelsM
Wk

is smaller than 4
(see Table 8.1). This is a significant difference for this dissimilarity measure.
(Note that the dissimilarities can be compared since they are normalized by
their corresponding curve length.)

In order to analyze the segmentations varying the order of the model, at
first a single model is used in M at a time, without the influence of the model
selection component of the framework.

The first experiment consists of the segmentation of an input image with
an occluded version of the boxed shape in Figure 8.5a, with the model M d

S1

with different order d (number of modes of variation). Let φS be the original
shape, φ̂S its occluded version, and φ̃Sd

the obtained segmentation with the d-
order model. Figure 8.5c shows the obtained segmentations φ̃Sd

(red curves)
for d = [3,7, 10,13]. The projection to the model is also plotted (dashed
green curves).

This experiment is repeated using the model M d
S2

. Figure 8.5d shows the
obtained segmentations for d = [3,10, 13,14] and the corresponding projec-
tions onto the model.

Table 8.3a shows, for the model M
S1

, the dissimilarity measure between

the obtained segmentations φ̃Sd
for different d and the original non-occluded

shape, Υ(φ̃Sd
,φS), and the dissimilarity measure with respect to the mean
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Chapter 8. Experimental results

(a) (b)

(c) (d)

Figure 8.5: Obtained segmentations with different orders of the shape model. (a) Set of shapes
used in the experiment, the boxed shape is φs. (b) First three modes of variation of the model
Ms1

. (c) Segmentation of φ̂s (an occluded version of φs) when φs is not in the training set
(left to right and top to bottom d = [3,7, 10,13]). (d) Segmentation of φ̂s when φs is in the
training set (left to right and top to bottom d = [3, 10,13, 14]).

shape µS1
, Υ(φ̃Sd

,µS1
). Table 8.3b shows the same results for the model M d

S2

and the mean shape µS2
.

As can be observed in both experiments, the projection better represents
the shape as the order increases.

In the first experiment (Figure 8.5c), the obtained segmentation improves
the adjustment to the shape as the model has more details to represent. This
can be seen for example in the pectoral and tail fin and under the head. How-
ever, since the projection does not perfectly adjust to the object, there is a
competition between both energy terms, generating an intermediate curve
that does not completely fit the present object. If more weight is added to
the ESM term, other regions of the curve, in non-occluded areas of the object,
will follow a less accurate approximation of the projection and lead to a worst
segmentation, for example in the belly of the shark. Trying to choose the best
segmentation from this four cases of d, the curve obtained with d = 10 seems
to be the slightly more accurate than the curve obtained with d = 13, for ex-
ample, analyzing the adjustment in the tail and the pectoral and pelvic fins.
This is also supported by the dissimilarity between the obtained segmentations
φ̃Sd

and the original non-occluded shape, last column of Table 8.3a. This pro-
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8.4. Varying the order of the models

Figure 8.6: Evolution of the shape dissimilarity measure, Υ(φ,PSk
φ), with the minimization

iterations.

vides an example of a kind of over-fitting of the model to the shapes in the
training set, capturing features that are too specific in the higher eigenmodes.

On the other hand, with the model M d
S2

that includes the non-occluded
shape in the training set (Figure 8.5c), the ESM shape term has more relevance
in the segmentation. When the order of the model increases, the projection
gets more accurate and the segmentation improves. When the order is low
and the projection is not accurate, the segmentation again is a compromise
between the two energy terms, being an intermediate curve between the pro-
jection and the edges of the gray level information. Finally, the main difference
between the segmentations with d = 13 and d = 14 are the fine details like
high curvature points, see the extreme points in the tail and the pectoral fin.

The last experiment of this section is done using both models in the set
M = {M 13

S1
,M 14

S2
}, and the same occluded shape in the input image. Fig-

ure 8.6 plots the dissimilarity measure for this example. The selected model
isM 14

S2
which has one additional eigenmode and obtains a better description.

The obtained segmentation is, of course, the same segmentation shown in Fig-
ure 8.5d with d = 14. This further supports the necessity of high-order models
in order to obtain accurate segmentations, in particular when the different ob-
ject classes are relatively similar.

These obtained segmentations are also validated by the proposed valida-
tion process, (Equation (7.8)).
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Chapter 9

Invariance to translation

Invariance to geometric transformations (such as translations, rotations and
scaling) is a desirable property in a general framework for segmentation. One
way to do this is to substitute H(φ) by

H(σRθ (φ(x − x0)))

in Equation (7.5), as in the work of Cremers et al. [COS06, section 5.1]. Here,
σ is a scale factor, Rθ a rotation matrix of a given angle θ , and x0 a translation
vector.

This chapter proposes an extension of the functional in Equation (7.5),
adding invariance to translation (other invariances can be similarly added).

Consider all the shapes aligned with respect to their corresponding center
of mass pφ, defined for a certain shape φ as

pφ =

∫

Ω
pH(φ(p))dp

∫

Ω
H(φ(p))dp

.

The shape models are built in the same way as in the previous chapter. Con-
sidering that all the shapes in Φk have the same center of the mass pk, this
point becomes the center of mass of the model. To obtain the projection of a
new, not aligned, shape φ with center of mass pφ, first the shape is translated
to pk and then projected. Mathematically, the projection to the translation in-
variant model M (IT)

k centered at pk, becomes Pkφ(p+ pφ − pk), and lets call
pk
φ its center of mass. Finally, the projection needs to be translated back to the

original center of mass. Defining T (φ(p), p0) = φ(p+ p0), the final projection
to the translation invariant model is

P (IT)k φ = T (PkT (φ(p), pφ − pk), pk
φ − pφ). (9.1)

Without loose of generality pk = 0 is assumed from now on.



Chapter 9. Invariance to translation

Figure 9.1: Segmentations obtained with the translation invariant energy (see Equation (9.2)).
(a) Four zero-order models (shape prior templates). (b) Four different initial curves (yellow
curves) and the obtained segmentations (red curves). (c)-(d) Two different initializations with
Gaussian noise added. Initial curve (in yellow), last curve previous to the “prior activation” (in
blue) and obtained accurate and valid segmentation (red curve).

In order to incorporate the invariance to translation in the original energy,
the shape models terms Ek(φ,Mk) become

Ek(φ,Mk) =

∫

Ω





H
�

φ(p+ pφ)
�

−H
�

Pkφ(p+ pφ)
�







2
dp. (9.2)

If the kth model provides a good representation of φ, the corresponding
centers of mass are close, pk

φ ≈ pk = 0. For the derivation of the corresponding
gradient descent expression below, this approximation is assumed, simplifying
the derivation here presented. However in the implementation the actual pk

φ

is used. The updated gradient descent expression is

∂ ESP

∂ φ
=−2

M
∑

k=1

βk

h

∆H(p)∆δ(p)+

δ(φ(p))(p− pφ)T
∫

Ω
H(φ(u))du

∫

Ω

∆H(z)∆δ(z)∇φ(z)dz
i

, (9.3)

where
∆H(p) =

�

H(φ(p))−H
�

P (IT)k φ
��

and
∆δ(p) = (δ(φ(p))−δ

�

T (WPkT (φ(p), pφ),−pφ)
�

).

Again, βk is treated as static, as a first order approximation for the gradient
descent.

9.1 Model selection with invariance to translation

An example of the model selection capabilities of the translation invariant
framework is shown in Figure 9.1. In order to test only the model selection,
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9.2. Segmentations with invariance to translation

(a) (b) (c)

Figure 9.2: Segmentations obtained with the translation invariant energy (see Equation (9.2)).
(a) Three steps in the segmentation of the ellipse from Figure 8.1. Note in the first image
the projections translated to the center of mass of φ. The second image shows the projection
to the correct model and the curve filling the occlusions. The last image shows the obtained
segmentation (red curve). (b) Obtained segmentation of a binary shape from the walking
person cycle. (c) Obtained segmentation of a gray-valued shape from the walking person
cycle.

without being influenced by the adjustment to the selected model, four zero-
order models are used. A zero-order model obtains always the same synthe-
sized shape for any input shape, this synthesized shape being the mean shape
of the model in this work. The zero-order models are shown in Figure 9.1a.
These four different shapes from the SQUID database are arranged in a sin-
gle image with occlusions for each shape and this becomes the input image
for testing the framework. Figure 9.1b shows four different initial curves (in
yellow) and the segmentation (red curves) obtained with the proposed frame-
work. Two examples with Gaussian noise added to the image are shown in
Figures 9.1c and 9.1d.

In all the cases the segmentations are accurate which also implies that the
selected model is the correct one. Note that these results are valid even when
the initial curves are not clearly defining one object (following our definition
of validity, Equation (7.8)).

9.2 Segmentations with invariance to translation

The last tests show the translation invariant framework working with the high-
order models. The first experiment reproduces the test with the ellipses (Sec-
tion 8.1), now with the addition of Gaussian noise and the translation of the
ellipse. Figure 9.2a shows the details of the segmentation. The first subfigure
shows the initial curve (in yellow), an intermediate step (blue curve), and its
projections to both models (green and red dashed curves). Note the projec-
tions translated to the center of mass of φ. The second subfigure shows the
projection to the correct model and the curve filling the occlusions. The last
subfigure shows the obtained segmentation (red curve).

Figure 9.2b shows the segmentation of an image with an occluded binary
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Chapter 9. Invariance to translation

shape from the walking sequence and Figure 9.2c shows the segmentation of
an image with a gray level shape from the walking sequence, using the set of
translation invariant models for this dataset. Again the result is an accurate
segmentation with a valid shape from the correctly selected model.
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Chapter 10

Concluding remarks

A framework for simultaneous and automatic model selection and object seg-
mentation was introduced in this work. The proposed technique is based on
a new energy that combines region based segmentation with on-line selection
of the best model for the object present in the image, and an adjustment to
the best description of the object given the selected model.

The segmentation is obtained via gradient descent energy minimization,
and the model selection is automatic in each iteration, without the need to
run the segmentation with all the models and then select the best solution.
The on-line decision of best description is based on a shape dissimilarity mea-
sure between the curves. The selection is such that a unique model candidate
is considered at each step of the minimization. Invariance to shape transfor-
mations are incorporated into the proposed framework as well.

Possible directions for further improvements include incorporating high-
order modes in the validation step and considering going beyond PCA, as well
as including class-dependent model orders (dk). Results in these directions
will be reported elsewhere.
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