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1. Mecánica de los Fluidos Computacional, 2. Método

de Elementos Discretos, 3. Método de Volúmenes

Finitos, 4. Turbina Eólica de Vorticidad, 5. Red de
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ABSTRACT

Several devices and man-made structures interact dynamically with fluids

such as water and air, behaving essentially as flexible elastic systems that un-

dergo large deformations and complex dynamics. The design and analysis of

the variable degrees of efficiency that these devices may have under different

flow conditions can be carried out using numerical modeling tools. Devising

ways of simulating the behavior of fluids with ever increasing accuracy is essen-

tial to save time and resources while testing the potential of new technologies.

One of the fields of engineering that has shown most significant growth in

recent years is the generation of energy from renewable sources. The present

research adapts mathematical methods, still new to the field, to represent ways

of dealing with flows of fluid in bidirectional interactions with those new tech-

nologies, and particularly applies them to the exploration of a new kind of ver-

tical blade-less turbine that gathers energy from the vortex induced vibrations

(VIV) of a relatively short and scalable mast. This device is very promising

for several logistic and cost related reasons, especially when considering the

difficulties of implementing new approaches in developing countries, but until

now it has not been tested under rigorous theoretical models or with simula-

tion methods that can have true predictive value. This research a) presents a

framework for such modeling by coupling the discrete element method (DEM)

with the finite volume method (FVM), b) compares the theoretical method

with previous tests that had both computational and physical experiments to

be contrasted, and c) suggests ways to make the technology more efficient and

adaptable to changing conditions.

Keywords:

Computational Fluid Dynamics, Discrete Element Method, Finite Volume

Method, Vorticity Wind Turbines, Fish Nets.
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RESUMEN

Diversas estructuras y dispositivos creados por el hombre deben interactuar

mecánicamente con fluidos, en particular agua y aire. Cuando estas estructuras

constituyen además sistemas elásticos y flexibles, la interacción con fluidos in-

volucra una dinámica doblemente compleja, pues los flujos generan deforma-

ciones en las estructuras, que a su vez determinan y modulan las respuestas

del fluido. Durante los procesos de diseño, el análisis de los respectivos grados

de eficiencia que estos dispositivos alcanzarán bajo la acción de diversas condi-

ciones de flujo, puede llevarse a cabo mediante herramientas de modelación

numérica. Idear formas de simular la interacción de fluidos y estructuras con

precisión resulta esencial para evitar inútiles pérdidas de tiempo y recursos

a la hora de evaluar el potencial de nuevas tecnoloǵıas. Una de las ramas

de la ingenieŕıa que ha crecido de un modo más significativo en las últimas

décadas es la generación de enerǵıa a partir de fuentes renovables. La presente

investigación adapta métodos matemáticos de representación, todav́ıa nuevos

en el área, para simular la interacción fluido-estructura en esas nuevas tec-

noloǵıas, y en particular los aplica a un nuevo tipo de turbina eólica sin aspas,

que extrae enerǵıa a través de la vibracion inducida por el desprendimiento

de vórtices (VIV) de un mástil vertical flexible. Esta tecnoloǵıa se presenta

como muy prometedora, tanto por razones de loǵıstica como de costo, espe-

cialmente si se consideran las dificultades para implementar nuevos recursos

técnicos en páıses en desarrollo, pero hasta ahora no han sido evaluadas bajo

modelos teóricos rigurosos o con métodos de simulación con verdadero valor

predictivo. Esta tesis a) presenta un marco de referencia para este tipo de sim-

ulaciones acoplando el Método de Elementos Discretos (DEM) con el Método

de Volúmenes Finitos (FVM), b) compara modelos teóricos de pruebas ante-

riores que contiene tanto experimentación f́ısica como computacional, lo que

permite contrastar resultados, y c) sugiere formas de hacer esta tecnoloǵıa mas

eficiente y adaptable a condiciones variables.

Palabras claves:

Mecánica de los Fluidos Computacional, Método de Elementos Discretos,

Método de Volúmenes Finitos, Turbina Eólica de Vorticidad, Red de Pesca.
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Chapter 1

Introduction

1.1 Motivation

In recent decades, renewable energies had a great deal of expansion world-

wide. The causes for this growth are varied and can be associated with several

changes, such as:

• A rise in environmental awareness and related policies, as there is cur-

rently a strong global pressure to slow down global warming with interna-

tional commitments to reduce emissions by setting targets and maximum

agreed levels.

• An expected depletion of the natural resources currently used for power

generation, such as coal and gas.

• The widespread adoption of new generation technologies that are gaining

ground in the global market and consolidating their position in the main-

stream. That includes not only a growing variety of devices and sources

of generation but also the construction of dedicated infrastructure with

growing sustainability as a matter of national policy.

• The technological advancement of classic renewable generation (tradi-

tional wind-turbines and solar panels) that have gained performance ef-

ficiency and thus improve their economic equation.

• A growing tendency to diversify the energy matrix in order to avoid

dependence on highly fluctuating fossil markets.

• An ever-growing increment in energy demand, related to the development

of emergent economies.

• A need for isolated generation in rural areas, away from transmission
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lines, and even for micro-generation in urban areas, bypassing the con-

struction or overloading of transmission and distribution networks.

During the current decade, Uruguay substantially changed its energy ma-

trix at such dramatic pace that moved the country to the forefront of the global

ranking of adoption of new sources and technologies, second only to some Scan-

dinavian countries. A large investment in wind energy infrastructure, which

added to the hydroelectric and thermal biomass generation already available,

has shifted the matrix of renewable sources to an outstanding 95 percent of the

national consumption of electricity, prompting the country to export energy to

its neighbors for the very first time in history. Several factors have contributed

to this process, but among those it is worth highlighting the body of research

dedicated to such renewable sources and technologies.

Although there have been many substantial technical developments on

large-scale wind generation, there are still no technologies with the same pos-

itive impact on the economic equation at the micro-generation level, either

because of the long pay-back periods that small wind turbines involve or due

to the susceptibility of these to the turbulence. So, it is unusual to find this

type of installations either in urban or rural environments, as small scale wind

infrastructures are still less convenient than micro-generation installations of

solar power.

The present research describes and analyzes numerically the generation of

electric energy by transforming the kinetic energy of an oscillating structure,

induced by the vortex detachment as it is immersed in a fluid flow, commonly

known as Vortex-Induced Vibrations (VIV). The structure to be analyzed is

an inverted vertical cone coupled at the bottom to an elastic bar to which it is

anchored, while it leaves the other end free to oscillate. The alternating detach-

ment of the vortices over each side of the cone generates forces in a direction

perpendicular to that of the stream flow, with equal frequency as the vortex

shedding. These forces generate an angular oscillation of the whole structure,

with respect to the anchor point of the elastic rod, which is maximized when

the vortex detachment comes into resonance with the natural frequency of the

structure.

There is an actual project already in development, designed by a Spanish

startup company named “Vortex Bladeless”, that introduces a VIV genera-

tion system like the one described here. The project still has not completed

a research and simulation stage, although the generalities of the system are

2



already tested. There are two different models being developed. One is aimed

at generating 4 kW, which might be particularly useful for micro-generation

projects (both in rural and urban environments), and another smaller model

that generates 100 W. These small-scale devices could provide, for instance,

the required energy for the measurement of potential environmental variables

in places that are hard to reach or off the grid.

The generation of electrical power through VIV systems has been the focus

of many research studies as it has proven to be a very promising technology.

In this scenario, it could certainly be very useful to have a tool capable of

simulating the operation of these devices in order to contribute to their design

and optimization by measuring their power output, resistance, durability, etc.

Having the chance to calibrate numerically many design properties in advance,

prior to the prototyping stage, could save a lot of time and resources.

Today all organizations, products or processes, including energy conversion

from renewable sources, have to measure their ”carbon footprint”. This is the

amount of carbon emissions they produce by direct or indirect action. In the

case of renewable energy, and regardless of their final aim, generation devices

usually consume large amounts of energy during their research, material ex-

traction, construction, installation and maintenance stages. These different

processes also produce greenhouse gas (GHG) emissions that are released into

the atmosphere, generating a certain carbon footprint that can be measured

in equivalent carbon mass before producing any actual saving in environmen-

tal terms. However, these devices will eventually generate energy without

producing emissions, or with much lower emissions than those emitted by con-

ventional generators. In order to reach a balance in terms of efficiency, during

their useful life these devices should make sure that the emissions avoided by

producing clean energy surpass the emissions produced in the stages prior to

its implementation. One of the great advantages of VIV systems, is that they

have simpler and lighter materials and the installation and maintenance are

much easier, which translates into a smaller carbon footprint and thus is easier

to reach a positive balance.

On the other hand, the recent increase in the processing power of computers

and the development of parallel computation have allowed to devise numerical

models suitable for the simulation and resolution of flows in diverse conditions.

In particular Computational Fluid Dynamics (CFD) codes played a crucial

role, being able to explicitly solve the flow around obstacles and allowing to

3



capture the state of a certain specific situation. It is not surprising that the

most advanced research projects, both academic and industrial, use CFD tools

to achieve advances in a wide variety of subjects, with applications at every

scale, from macro frames of reference for climate studies to micro-scales in

the study of blood flows. There are also applications for these simulations

in sports, design of transport systems, study of turbo-machines, dispersion of

pollutants in urban environments, among many others. An accurate simulation

may be a rather convenient way of producing useful data, mainly because of

how cost-effective it is when compared with experiments performed in real,

physical environments like flume tanks or wind tunnels. As the role of CFD

is being expanded, more new applications will arise and so will the need to

enhance the methodologies of simulation.

The Discrete Element Method (DEM) is well suited to represent both

loosely elastic structures and flexible bodies, while the Finite Volume Method

(FVM) is widely used to simulate fluid flow. In the last two decades, several

open source fluid flow solvers have been made available under different grid

topologies, ranging from fully structured, either orthogonal or not, through

block-structured grids, all the way up to fully unstructured. Greater geomet-

rical flexibility has been addressed also through the adoption of methods like

Immersed Boundary Method (IBM) or local grid refinement.

Enclosed in this work there is a coupled model where the DEM method

was implemented to represent the rod as a flexible body, the IBM was used to

represent the mast, while the fluid flow was solved using caffa3d.MBRi, an open

source fully implicit finite volume method for solving the 3D incompressible

Navier-Stokes equations in complex geometry, presented by Usera et al. (2008).

1.2 Aims and objectives

The main objective of this work is to numerically represent the dynamics

between a VIV energy collector device and a fluid flow, in this case a uniform

air flow acting upon a vorticity wind turbine. The research seeks to obtain a

qualitative representation of the movement and to quantitatively estimate the

electric energy extracted by transforming the kinetic energy harvested in the

oscillations.

A secondary objective of this work is to create a module for the

caffa3d.MBRi where the DEM is coupled with the already existing FVM, so as

4



to create a tool capable of representing both elastic and flexible bodies, with

the ability to transmit strain stress, compression and bending moment.

The VIV energy harvester is represented numerically using two methods:

the elastic bar is modeled as a set of small bars with elastic bonds and bending

moment transmission through the DEM, and the mast is determined using

IBM. The flow dynamics are represented using the caffa3d.MBRi model, which

also incorporates a simple linear generator model that describes a magnet

oscillating along with the motion of the elastic bar, inducing emf in 3 fixed

coils. The proposed study tool will be suited to the analysis of this type

of structures, with a wide range of applications. Some examples of those

potential applications could be the study of the effect of strong wind on electric

transmission lines, the implementation of full aeroelastic numerical models

for wind turbine blades and rotors, and the aero-elastic modeling of tension

structures like hanging bridges, just to name a few.

In order to validate the developed tool, the coupled method was applied to

the study of the dynamic of the cod end of a trawling fish net. An experimental

computer model of a tunnel net was carried out, which was also contrasted with

an experiment in the naval and maritime testing channel of the University,

which qualitatively compared its results to the form previously adopted by the

rig with fishing load in the simulation.

1.3 Research Flow

This research will be presented in five chapters, each of them containing a

section dedicated to Vorticity Wind Turbine (VWT), as the main matter, and

also a subsidiary section oriented to the study of fish net tunnels. These lasts

parts were extracted from a previous work that is currently being revised by

the reviewers of the Journal of Computers and Fluids. The decision to present

the previous research coupled with the current work was based on the fact

that most of the tools developed for the study of fishing nets were also used

for the modeling of the VWT, but we had no physical test to measure the

efficiency of the turbines in a field situation yet, as we did have for the fish

net tunnel. Although the physical characteristics of both projects are diverse,

the tools for the simulation of the variables are consistent, and can be used in

both situations, having the back up of an already generated body of work in

a physical environment that can be used to contrast the results.
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A brief description of every chapter is given here:

• Chapter 1. Lists the motivations for studying the generation of elec-

tricity with VWT with both global and local perspectives. Outlines the

purpose of the research with possible applications, analyze the current

development of the technology and finally accounts the objectives of the

research.

• Chapter 2. Makes a general review of the literature used in the re-

search. It is divided in four main sections. First the state of the art of

Vortex-Induced Vibrations (originally to avoid movement of structures)

is presented and then with intention to favor the displacement and har-

vest energy. Also the fluid solver (caffa3D.MBRi) used for the research

is described and the method for solving the movement of the turbine

(DEM), which is coupled with the fluid flow solver in this research.

• Chapter 3. Presents a structural analysis of the vorticity wind turbine

analyzing the effect of the wind acting over it. Secondly, the specific

DEM algorithm is used for modeling the turbine and all its components,

and also for modeling the fish net. And finally, there is a description

of how the DEM and the FVM were coupled for solving the interaction

between fluids and structures.

• Chapter 4. This chapter includes the application and 3D analysis of both

models previously described. The results of the simulations are displayed

along some figures and plots that provide quantitative and qualitative

understanding of the dynamics of both systems.

• Chapter 5. The final chapter contains the conclusions reached in the

research process and suggests some possible directions for further studies

in the field.
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Chapter 2

Literature Review

2.1 Vortex-Induced Vibrations

There are many research publications aimed to numerically predict the mo-

tion of structural VIV, most of them studying circular cylinders immersed in

flowing fluids. It is well known that the flow around a fixed circular cylinder

can be affected by a number of parameters, including Reynolds number, sur-

face roughness, free stream turbulence level, etc. Likewise, when dimensional

analysis is applied to elastically mounted cylinders there are also important

variables to consider (listed in Table 2.1) related to their structural mass (m),

structural damping (c) and stiffness (k = spring constant). These parameters

are the most widely explored in the literature, but they are not the only ones

that can be considered.

One of the first publications that presented considerable insight about VIV

response of a cylinder was written by Parkinson (1972). He considered a

mass, spring and dash-pot system driven by the fluid force resulting from

vortex shedding. Equation (2.1) is the differential equation for transverse

displacement (y) of a bluff body:

mÿ + cẏ + ky = Fy = Cy
1

2
ρfV

2D (2.1)

where m = total oscillating structural mass; c = structural damping; k =

spring constant; Fy = fluid force in the transverse direction; and the dot

symbol stands for differentiation with respect to physical time t. Parkinson

made two important assumptions in his research, the first being that the force

and response are sinusoidal with the same frequency (f) and secondly that the
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Table 2.1: Non-dimensional groups for a elastically mounted cylinder. Here ρf =
fluid density, D = cylinder diameter; L = cylinder length; ρm = cylinder density;
c = structural damping; k = spring constant. The ideal added mass, mA, is given
by mA = CA · md , where md is the displaced fluid mass and CA is the potential
added mass coefficient. (CA = 1.0 for a cylinder). U = free-stream velocity; A =
transverse displacement amplitude. The frequency ratio f ∗ is defined as (f /fNo ),
where f is the oscillation frequency, and fN is the natural frequency in the presence
of fluid. Fy = transverse fluid force; µ = fluid viscosity and fv = vortex shedding
frequency.

Mass ratio m∗
m

π · ρf · D2 · L
4

=
ρm
ρf

Damping ratio ξ
c

2
√
k · (m+mA)

Mass-damping parameter α (m∗ + CA) · ξ

Velocity ratio U∗
U

fN · D

Amplitude ratio A∗
A

D

Frequency ratio f ∗
f

fN

Transverse force coefficient CY
Fy

1
2
· ρf · U 2 · D · L

Reynolds number Re
ρf · U · D

µ

Strouhal number St
fv · L
U

fluid force leads the response by a constant phase angle Φ, this is the so-called

lock-in effect,

Fy(t) = Fyo sin (ωt + Φ) (2.2)

y(t) = A sin (ωt) (2.3)

where ω = 2πf ; f = oscillation frequency and A = amplitude of the oscillation.

With these considerations and applying it to a flexible cylinder he obtained

relations for the vibration amplitude, Eq. (2.4), and frequency, Eq. (2.5), as

functions of the previous parameters, where the importance of the phase angle
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and the role played by mass and damping (mass-damping parameter, α) was

shown very clearly.

A∗ =
1

4π3

Cy · sin(Φ)

(m∗ + CA) · ξ

(U∗
f ∗

)2

· f ∗ (2.4)

f ∗ =

√
(m∗ + CA)

(m∗ + CEA)
(2.5)

Here CA is the potential flow added mass coefficient and CEA is an “effec-

tive” added mass coefficient that includes an apparent effect due to the total

transverse fluid force in phase with the body acceleration.

Since the research by Perkinson, several other studies have emerged that

analyze changes induced in the response of a cylinder under VIV by varying

the parameters previously described. Griffin et al. (1975) made the so-called

‘Griffin plot’, where the maximum VIV amplitude was plotted against the

Shop-Griffin parameter, SG = 2π3St2 (m∗ξ), and it was believed for some time

that the amplitude of the VIV is insensitive to Reynolds number changes.

However, Klamo et al. (2005) and Govardhan and Williamson (2006) have

both since demonstrated the strong influence of the Reynolds number on the

maximum VIV amplitude of a cylinder, and in the latter it is proposed that

the amplitude is given by A∗ = g(α) · f (Re) presented in Eq. (2.6). Refer to

Williamson and Govardhan (2008); Bearman (2011) for more detailed reviews.

A∗ =
(
1− 1.12α + 0.30α2

)
log
(
0.41Re0.36

)
(2.6)

For the purposes of the current research, and apart from a comprehensive

review of the state of the art in the academic literature, some specific prac-

tical tools devised for the industry have been used as a conceptual reference.

There is a very complete set of parameters requested by the Guide for the

assessment of wind actions and effects on structures from the Advisory Com-

mittee on Technical Recommendations for Construction (2010), in Italy, to

be included in the standard documentation of limitations and requirements

to civil engineering structures related to wind actions (pressure, forces, mo-

ments, etc.), a model that deals with the overall resistance of structures and

their subsidiary components, including both structural and non-structural ele-

ments. The documentation also includes some explicit examples of application

to different kinds of structure. Such line of inquiry, once adapted to a slender
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structure, could be directly applicable to the VWT being studied in this work,

and for that reason it has been included into the research process.

The analysis for a slender structure starts by considering the actions in the

along-wind direction. The second stage, and the most relevant for the current

research, deals with the determination of the actions of critical wind veloci-

ties that may cause resonant vortex shedding with the structure vibration, in

particular initial calculations concerning the critical wind velocities and the

corresponding Scruton number, a dimensionless coefficient for the characteri-

zation of the response of structures due to the effect of wind loads, calculated

as:

Sc =
4π ·me,1 · ξs
ρair ·D2

ref

(2.7)

where me,1= equivalent mass per unit length, ξs = structural damping and

Dref = the reference diameter. Subsequently, two methods for determining

the peak tip deflection are provided. In Section 3.1 this analysis is specifically

applied to VWT.

The document provides a very precise explanation of the aero-elastic

regime, mainly providing ways to avoid it, whereas in the case of the VWT

the goal is exactly the opposite, as the vibration is at the core of the en-

ergy conversion process. In resonance conditions between the vortex shedding

and the natural frequency of the structure, the smaller the Scruton number

(and therefore the lighter and/or low damped the structure) the greater the

response. In Figure 2.4a, the normalized standard deviation of the tip across-

wind displacement is plotted as a function of the reduced mean velocity and

parametric in Sc. When Sc is large, the across-wind response increases only

moderately, within a small range around the critical velocity. For lower values

of Sc, the across-wind response increases abruptly and the resonance extends

to a much broader range of values of the wind velocity, mainly to higher values

of velocity.

Figure 2.4b shows the maximum value of the normalized standard devia-

tion of the across-wind response at the top of the structure as a function of

the Scruton number. Two main regimes with a transition in between can be

identified:
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• For large values of Sc (usually higher than

30), vibrations are forced by vortex shed-

ding and they have a random nature. Thus,

the probability of lock-in is quite low and

the load induced by the vortex shedding is

not critical.

Figure 2.1: Transversal
response for large values of

Sc

• For intermediate Sc values (from 5 to 30),

a transition occurs between the two types

of behavior and vibrations have a hybrid

nature. In this regime, the vortex shedding

phenomenon is very sensitive to different

parameters, first and foremostly the turbu-

lence intensity.

Figure 2.2: Transversal
response for intermediate

values of Sc

• For small Sc values (less than 5), vibra-

tions are self-excited. The vortex wake pro-

duces vibrations of such an amplitude that

they themselves trigger the shedding of vor-

tices. Both the structure vibration and the

vortex detachment have deterministic char-

acteristics. This phenomenon is commonly

known as the lock-in effect. In this regime,

vibrations induced by vortex shedding may

be very large.

Figure 2.3: Transversal
response for small values of

Sc

This last regime is also called the aero-elastic regime. On Section 3.1

these calculations will be presented in detail, showing how these VWT can be

designed to perform efficiently in this regime.

2.2 Harvesting Energy from VIV

Whilst the norm is to avoid such synchronization regimes (ie. analyzing the

effect on buildings, bridges, etc.), the aim of this research is to examine the op-

posite: finding ways of promoting the vortex-induced vibrations of a bluff body

in fluid flows, with the perspective of facilitating renewable energy production.
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(a) Across wind response to vortex shedding
parametric in Sc

(b) Domains of the across-wind
response to vortes shedding

Figure 2.4: Across wind response to vortex shedding, figures taken from the
Guide for the assessment of wind actions and effects on structures, Advisory

Committee on Technical Recommendations for Construction (2010)

Electrical energy can be produced if the oscillation of the cylinder periodically

displaces a magnet inside a coil. The energy production device will induce a

structural damping term in the equation governing the motion of the cylinder,

the underlying idea being that the energy dissipated by structural damping is

at disposal to be harvested. Such an approach is physically tractable and has

many potentially practical applications.

There are already many works aimed at the conversion of hydro-kinetic en-

ergy into a usable form of energy by enhancing the VIV of cylinders. Bernitsas

et al. (2008b,a) introduce the Vortex-Induced Vibrations Aquatic Clean En-

ergy (VIVACE) converter, where a rigid VIVACE cylinder at high damping

and Reynolds number, is supported by a two linear springs system, a sys-

tem damping csystem, transmission mechanism damping ctra, a generator with

damping cgen, and the energy harnessing damping charn. The cylinder is placed

with its axis in the z−direction perpendicular to the flow velocity U , which is

in the x−direction. The cylinder oscillates in the y−direction, which is per-

pendicular to its axis in z and the flow velocity in x. The research presents the

experimental results from a laboratory rig where a variable electrical load resis-

tance was connected to optimize the harnessed energy, reaching an integrated

power efficiency of ηvivace = 0.22 and a peak of ηpeak = 0.31.
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Barrero-Gil et al. (2012) had an interesting efficiency approach. Knowing

that the energy transfer can be quantified in terms of work done per unit length

by the fluid over one cycle of oscillation (T ), then it is possible to introduce

the efficiency η defined by the ratio of the mean power imparted by the flow

to the body per unit length PF−B and the total power resulting in the flow per

unit length PF .

η =
PF−B
PF

(2.8)

where the total power in the flow per unit length is ρU 3D/2 . The power

extracted from the flow by the oscillating body, per cycle of oscillation and per

unit length, is given by

PF−B =
1

T

∫ T

0

Fy ẏ dt (2.9)

Considering a steady state of sinusoidal oscillations with amplitude “A”

and frequency “f” it follows from Eq. (2.4) and Eq. (2.8) that the conversion

factor can be expressed in terms of the normalized amplitude, normalized

velocity, normalized frequency, and the fluid lift force excitation coefficient

CY sin Φ
(
f∗

U∗

)
η = πA∗CY sin Φ ·

( f ∗

U ∗

)
(2.10)

From Eq. (2.10), it can be seen that, for a particular Reynolds regime and

fixed mechanical properties (m∗ and ξ), computation of efficiency requires the

fluid force coefficients (CY sin Φ and CY cos Φ) as a function of the normalized

amplitude of oscillation and the true reduced velocity V ∗ = U∗/f ∗. Finally, it

should be noted that the efficiency can also be defined considering the total area

covered by the oscillation device during its motion. In that case,η̄ = PF−B/PF ∗ ,

where in the case of a elastically mounted cylinder PF ∗ = ρU 3 (2A + D)/2 .

In a recent publication, Soti et al. (2017) explores numerically the gener-

ation of electrical power from VIV on a cylinder. In their work, the cylinder

is free to oscillate in the transverse direction, attached to a magnet that can

move along the axis of a coil made from conducting wire. The magnet and

coil constitute a basic electrical generator and, according to Faraday’s law of

electromagnetic induction, the motion of the magnet produces a emf (ε) across

the coil. If the coil is connected to a resistive load, an induced current will

counteract the motion of the magnet by applying electromagnetic force.
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For the calculation of the electromagnetic force they use the single mag-

netic dipole approximation proposed by Donoso et al. (2010) that includes a

mathematical model of the interaction between a N − turns coil and a single

oscillating magnet. A set of experiments that validates the theoretical model

of the oscillator are also presented and discussed in the publication. The mag-

netic force opposing the movement of the magnet is provided by Eq. (2.11)

where cm0 = µ2
m/(RD

4) is a constant (µm = magnetic moment of the mag-

net; R = resistive load; and D = diameter of the oscillating cylinder). And

g = g(y(t)) is a function of the dimensions of the coil and its distance to the

magnet, provided in Eq. (2.12).

Fm = cm0 · g2 · ẏ (2.11)

g(y) =
2πNa2

L

[
1(

a2 + (ycm − L/2)2
)3/2
− 1(

a2 + (ycm + L/2)2
)3/2

]
(2.12)

where ycm = the distance between the magnet and the coil; a = diameter of the

coil; L = length of the coil. The magnetic force can be considered as a damp-

ing force with a non-constant damping coefficient cm = cm0g
2. The electrical

power is calculated by multiplying the electromagnetic force with the velocity

of the magnet P (t) = Fmẏ. Lastly the efficiency is defined as the ratio of the

electrical power to the power available over the fluid region occupied by the

cylinder (not considering the amplitude of the oscillation). Several results are

presented comparing constant versus electro-magnetic damping ratio, varying

the coil length, coil radius, mass ratio, Reynolds number and finally using two

coils. In all cases a maximum average efficiency of η = 0.13 was obtained.

A recent publication from PRACE (Partnership for Advanced Computing

in Europe), Cajas et al. (2016) includes research on a parallel multi-code cou-

pling for simulating the physical response of a scaled model of the turbines

proposed by the Spanish startup company, “Vortex Bladeless”. The paper

compares the results against experimental data from wind tunnel tests. In the

publication, the authors explain that the research is limited to a first stage of

the project, and that the interest for following lines of inquiry is to improve

the efficiency code in order to simulate the full-scale wind energy generator

and provide reliable energy production prediction for the device.
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2.3 Computational Fluid Dynamics, CFD

In the last two decades several open source fluid flow solvers have been made

available Zaleski (2001), under different grid topologies ranging from fully

structured, either orthogonal or not Lehnhäuser and Schäfer (2003), through

block-structured grids Lilek et al. (1997), and up to fully unstructured. Greater

geometrical flexibility has been addressed also through the adoption of meth-

ods like local grid refinement Lange et al. (2002), and immersed boundary

Liao et al. (2010); Mendina et al. (2014) atop the underlying grids. A detailed

review of this last method, originally introduced by Peskin Peskin (1982), is

given in Mittal and Iaccarino (2005a).

The Discrete Element Method (DEM) is well suited to represent freely

moving bodies and loosely elastic structures, while the Finite Volume Method

(FVM) is widely used to simulate fluid flow Ferziger and Peric (2002);

Lehnhäuser and Schäfer (2002). In this work we present a coupled model

where a simple DEM method is implemented to represent the elastic rod,

while the fluid flow is solved using caffa3d.MBRi Usera et al. (2008); Mendina

et al. (2014) an open source fully implicit finite volume method for the 3D

incompressible Navier-Stokes equations in complex geometry.

2.3.1 Fluid Flow Solver

The open source fluid flow solver caffa3d.MBRi is used in this work. A brief

presentation of the solver is given in this section, with further details and solver

validation examples available in Usera et al. (2008); Mendina et al. (2014).

The caffa3d.MBRi solver follows the FVM in three dimensional block struc-

tured curvilinear grids. The underlying mathematical model comprises the

mass balance equation, Eq. (2.13) and momentum balance equation, Eq. (2.14)

for a viscous incompressible fluid, together with generic passive scalar trans-

port equation, Eq. (2.15) for scalar field φ with diffusion coefficient Γ. Note

that Eq. (2.14) has been written only for the first Cartesian direction here.∫
S

(~v · n̂S)dS = 0 (2.13)

∫
Ω

ρ
∂u

∂t
dΩ +

∫
S

ρu(~v · n̂S)dS =
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∫
Ω

ρβ(T − Tref )~g · ê1dΩ +

∫
S

−pn̂S · ê1dS +

∫
S

(2µD · n̂S) · ê1dS (2.14)

∫
Ω

ρ
∂φ

∂t
dΩ +

∫
S

ρφ(~v · n̂S)dS =

∫
S

Γ(∇φ · n̂S)dS (2.15)

In these equations, ~v = (u, v, w) is the fluid velocity; ρ = fluid density;

β = thermal expansion factor; T = fluid temperature; and Tref = reference

temperature; g = gravity, p = pressure, µ = dynamic viscosity of the fluid; and

D = strain tensor. The balance equations are written for a region Ω, limited

by a closed surface S, with outward pointing normal n̂S. Finally ê1 is the first

Cartesian direction.

The generic transport equation, Eq. (2.15), for passive scalars can be used

to implement in a straightforward manner further physical models like heat

transport, turbulence models, etc. In this work the standard Smagorinsky

Large Eddy Simulation (LES) turbulence model is used based on this scheme,

Smagorinsky (1963).The use of equations in their global balance form together

with the finite volume method, as opposed to the differential form, favors

enforcing conservation properties for fundamental magnitudes as mass and

momentum into the solving procedure Ferziger and Peric (2002).

The global grid is made up from structured grid blocks, which can be either

orthogonal Cartesian grid blocks or curvilinear body fitted grid blocks. Never-

theless geometrical properties are always expressed in a Cartesian coordinate

system, as well as flow properties which are expressed in primitive variables

in the same Cartesian coordinate system, like velocities for example. To pro-

vide greater geometrical flexibility the immersed boundary method Liao et al.

(2010) can be combined with both Cartesian and body fitted grid blocks.

Each equation in the mathematical model is discretized and linearized at

each cell to obtain a discrete approximation in the form of Eq. (2.16), written

again for the u velocity component, where the variable value at each cell center

is related to the values at the six neighbors. Details for discretization of each

term will not be given here but can be found in Usera et al. (2008), together

with various validations of the solver Usera et al. (2008, 2006); Mendina et al.

(2014).

AuP ·uP +AuW ·uW +AuE ·uE +AuS ·uS +AuN ·uN +AuB ·uB+AuT ·uT = Qu
P (2.16)

A block structured variant of the Stone-SIP solver Lilek et al. (1997) solver
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algorithm is used that accommodates well the block structure inherited from

the grid, allowing efficient parallelization through Message Passing Interface

(MPI).

To deal with the linearization and subsequent coupling of linear systems

for each equation in the mathematical model, an outer-inner iteration scheme

for each time step is employed, as shown in Eq. (2.5). Linear systems for each

equation in the mathematical model are sequentially assembled and undergo

inner iterations with SIP or AMG-SIP linear solvers. The outer loop is re-

peated within each time step until the desired level of convergence is achieved

before continuing to the next time step.

Figure 2.5: FVM iteration scheme for one time step (adapted from Ferziger and
Peric (2002))

2.3.2 Immersed Boundary Method

The immersed boundary method is a natural alternative to body-fitted or

unstructured-grid methods when the aim is to simulate flow in domains with

complex rigid boundaries, such as in fluid-solid interaction problems, which

generally results in larger requirements of memory and involves higher com-

putational costs. This demand is not only increased by the requiring transient

re-meshing strategies that further raises the computational overhead and al-

gorithmic complexity of these approaches, but also because, as the grid gets

deformed, it gets harder to maintain the efficiency in solving the associated

governing equations discretized in the Cartesian grid.

The IBM not only has the advantage of keeping the structured Cartesian

grids but also provides the possibility to handle more complex geometries.

The method was first implemented by Peskin (1972), and then generalized in

Peskin (2002), who replaced the boundary by a field force which is defined on
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the mesh points of the rectangular domain and which is calculated from the

configuration of the boundary. This numerical scheme was applied to the two-

dimensional simulation of flow around the natural mitral valve (heart valve).

In an IBM the Navier-Stokes equations are discretized on a Cartesian grid

and the boundary condition would be imposed indirectly through the modifica-

tion of the momentum and continuity equations. In general, the modification

takes the form of a source term (or forcing function, fb) in the governing equa-

tions, that reproduces the effect of the boundary. These implementations can

be performed in two different ways. The continuous forcing is characterized by

including the forcing function into the continuous governing equations. This

leads to two different forcing functions (fb = (fm, fp)), one that deals with the

momentum and the other one with the pressure. The equations are then dis-

cretized in a Cartesian grid. This method was used by Pesking in his research,

using feedback forcing to drive the velocity at the boundary to rest. Although

this method was formulated independently of the spatial discretization, which

seems a promising feature, it can produce oscillations and is subject to severe

stability constraints.

The second approach was proposed by Mohd-Yusof (1998), and it is com-

monly referred to as direct forcing or discrete forcing approach. Here the

governing equations are first discretized on the Cartesian grid and then a forc-

ing term (body force) is added in the source term, corresponding to the cells

near the immersed boundary, in such a way that secures that the desired ve-

locity distribution is satisfied at the boundary. This approach is sensitive to

the discretization method. However, it provides easier control over numerical

accuracy, stability and conservation properties of the solver. This approach

was further extended by Fadlun et al. (2000), to reach a finite-difference for-

mulation, where direct forcing was applied at the first Eulerian grid points

external to the immersed boundary. Refer to Mittal and Iaccarino (2005b) for

a further review and examples of the two approaches.

In the current work, the immersed boundary method is used, which it was

already incorporated in caffa3d.MBRi. Refer to Mendina et al. (2014) for re-

search that validates the method. Here it is used to model the mast of the

VWT (see Section 3.2.1), represented as an inverted cone, using the direct

forcing approach. It is also used to model the larger freely moving objects

that correspond to the load in the simulations of the fish net tunnel, which are

represented in that case as spheres. The right term on Eq. (2.16) is modified
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at each time step for the cells inside the bodies or in their boundaries, in order

to force the velocity to be the same than that of the object. Each geometrical

object is represented mathematically, comprising several fluid flow grid cells

across its volume. The resulting body force is integrated in the proximity of

each object in order to compute the fluid force acting on it.

2.3.3 Discrete Element Method

The DEM is used for many kinds of applications. It is a numerical method for

computing the motion and effects of a large number of small particles. As soon

as computers became available, they started to be used for running physical

simulations of the behavior of particles. With the advances in computing power

and the development of numerical algorithms for nearest neighbor sorting, it

has become increasingly possible to numerically simulate millions of particles

on a single processor, and even more so with the rise of parallel computing.

The DEM was first used in applied physics for real-time modeling of plasma,

semiconductors, liquids and phase-change simulations. A precondition for the

appropriate use of the method is that the system to be represented should

be rightfully interpreted as an assembly of objects, and the laws governing

their interaction must be known in order to obtain meaningful results that

could be consistent with reality. The early evolution of the method, as well as

the theory and computational aspects of particle simulations are described in

Hockney and Eastwood (1988).

In the field of rocks mechanics, a discontinuous analysis was first used by

Cundall and Strack (1979). This work presents a developed full-scale com-

puter program for analyzing discontinuous block assemblies in two and three

dimensions. The method consists of deformable blocks and deformable con-

tacts that become frictional contacts after failure. Since the publication by

Cundall, many new applications to analyze fractures and large displacements

of materials started to emerge.

Today DEM has become widely accepted as an effective method for address-

ing engineering problems in granular and discontinuous materials, especially

in granular flows, powder mechanics, and rock mechanics. Nowadays its ap-

plications are being extended to analyze load and deformation on flexible and

elastic systems in addition to the initial application for determining the failure

of structures.
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The general DEM is based on a double integration of the Newton equations

of motion of each element. As the motion of an element is considered uncoupled

from the motion of the rest of the elements during a time step, there is no need

to assemble a stiffness matrix. Instead, coupling is obtained by updating the

spring forces at every time step; each element will move, in the next step,

due to the unbalance on the summation of forces in all springs attached to

the element. Two types of damping are applied to reach equilibrium: the

relative motion between elements of the structure is damped by a coefficient of

damping calculated from the critical damping ratio of the material. Secondly,

due to the motion of the structure immersed in fluid, there is a small amount

of viscous damping, that represents the resistance of the medium in which the

structure is placed.

Ivanov (2001), have developed a three dimensional DEM program for the

analysis of engineering structures subject to earthquake loads. A chapter of

his Ph.D. thesis is devoted to the analysis of shell structures with the DEM.

In his work, he represents the in-plane stiffness of shells by a lattice of energy

equivalent normal springs, while the bending stiffness of walls is represented

by bending springs. He considers the elements of the lattice as beams that can

transfer normal forces, F n (due to tension and compression stresses), shear

forces F s, and bending moment M . In the research presented by Ivanov,

the DEM algorithm to analyze solids is described in detail and used for the

analysis of the shell structure. In Section 3.2.2 that algorithm will be adjusted

to represent the dynamics of the flexible rod of the VWT.

DEM applied to Fish-Nets

The dynamic of fishing nets is a matter of high complexity, the fundamental

reason being that the forces acting on these devices depend on their shape, and

at the same time, due to the elastic nature of the materials that shape it, the

form it adopts is strongly influenced by its interaction with the hydrodynamic

flow and other forces. Being able to design and define the shapes that various

types of fishing gear might acquire under different flow conditions, represents

an important challenge in terms of energy, trading and sustainability. Improve-

ments are needed in design configurations in order to achieve greater efficiency

in fishing, allowing better gear selectivity and reducing also the hydrodynamic

resistance to reduce fuel consumption Takagi et al. (2007).
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There are many researches aimed at making changes in the construction of

fish nets that help to improve the selectivity. Selectivity is the ability of the net

to retain a target species and within it, individuals whose sizes are above the

average size that define the maturity of the specimen. This ensures that young

specimens can escape the device and continue to maintain the sustainability

of the resource. And also ensures an improvement in the efficiency of the net

from an economic standpoint and especially in environmental terms.

Several studies to numerically predict the configurations and loading acting

on a fish net have been performed by various authors. Characterization of

drag models for trawl bodies is performed in Balash et al. (2016) by means of

extensive flume tank tests. Added mass affects are considered in Balash et al.

(2009) for oscillating flows.

The design and setup of fishing nets can be aided by numerical simulations

of their interaction during trawling with water and free bodies dragged by the

stream, with the aim of predicting the shape adopted by the fishnet and the

forces exerted onto it.

In Takagi et al. (2003, 2007); Shimizu et al. (2007) and Lee et al. (2005)

the fish net is modeled as a system of lumped masses that are interconnected

by springs without mass. The shape is estimated by calculating the displace-

ments of these point masses under boundary and flow conditions assuming that

moment is not transmitted between a mesh knot and a bar. A finite element

approach is taken in Priour (1999, 2009) to optimize the energy performance

of trawls design under uniform flow conditions.

To address the interaction between the fish-net and the flow, a coupled

method is presented in Bi et al. (2014), with a lumped mass approach to

model the fishnet and a porous-media model for the flow.
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Chapter 3

Modeling

In this chapter the modeling of the VIV structure will be detailed. First

a structural analysis as the one presented in the Guide for the assessment

of wind actions and effects on structures, Advisory Committee on Technical

Recommendations for Construction (2010) will be applied until reaching a

value for the peak tip deflection. Secondly the computational modeling using

DEM and its coupling with the fluid solver caffa3d.MBRi will be explored more

thoroughly. As it was not possible to perform a physical test in wind tunnel

of the VIV structure, Section 3.3 presents the modeling of a trawling fish net

tunnel, similar to the one used in a physical test in a towing tank. Results and

comparison are provided in chapter 4.

3.1 VIV - Structure Analysis

In this section the Technical recommendations for construction included in the

Guide for the assessment of wind actions and effects on structures from the

Advisory Committee on Technical Recommendations for Construction (2010)

will be carried out to analyze the vorticity wind turbine (VWT). Note that the

referenced document purpose was to study the stability of the analyzed struc-

ture, with recommendations intended to avoid larger displacements; this work

is aimed at achieving exactly the opposite, seeking to maximize the resonance

between the natural frequency of the structure and the vortex shedding.
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Geometry of the structure

The VWT structure consists of four essential parts:

• Foundation: underground structure that adds stability to the turbine

• Generation system: the kinetic energy from the oscillations is con-

verted into electricity by a built-in linear alternator.

• Rod: made of carbon fiber, it provides strength and flexibility to the

movement, while minimizing energy dissipation and providing the highest

resistance to fatigue. It penetrates into the mast for 20 percent of the

mast length, is anchored to it at its top end and the bottom is secured

to the foundation.

• Mast: light conic structure built using resins reinforced with carbon

and glass fiber that oscillates. It is designed to be substantially rigid,

remaining anchored to the rod at its bottom. The top is unconstrained

and presents the maximum amplitude of the oscillation.

Figure 3.1: Scheme of the vorticity wind turbine

The mast is an axisymmetric body, of height LM= 12m., which is modeled by

two functions (f1(z) and f2(z)), represented as two parallel lines separated by
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a distance that is equal to the thickness of the wall, t = 2mm., rotated around

axis z. These functions represent the distance from the external and internal

surface to the symmetry axis z, respectively.

f1(z) = 0.250 +
1

24
z (3.1)

f2(z) = 0.248 +
1

24
z (3.2)

The rod is a cylinder of length Lr= 5.0m. and diameter Dr = 0.1m., that

penetrates 3 meters into the mast (25 % of LM). In Fig. 3.1 there is a diagram

of the structure, where ze is the equivalent height (ze = 0.6 · Ltot), and here

Dref=DM(z = ze) = 0.77m.

Mass of the structure

To calculate the mass of the structure, a cylindrical coordinate system is used

for the integration (z, rz, θ), where rz = distance from axis z; and θ = angle

around axis z. An infinitesimal element of volume can be expressed as dV =

(dz)(drz)rz(dθ) and for the mass dm = ρ(z, rz, θ)dV . Thus, the differential of

the mass can be calculated as:

dm = rzρ(dz)(drz)(dθ) (3.3)

integrating between z0 = 0 and zf = Lm:

mmast =

∫ zf

z0

{∫ f2

f1

∫ 2π

0

ρmast rz dθ drz

}
dz (3.4)

solving the integral with ρmast = 845 kg/m3 the mass of the mast is m =

63.6 kg. The mass of the rod is calculated as the product of the volume by its

density ρrod = 1600 kg/m3,

mrod = ρrod · Vrod = 1600
π · 0.102

4
5 = 62.8 kg (3.5)

and so, the total mass is given by adding the rod and mast mass, mtot =

mrod +mmast = 126.4 kg
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(a) First and second vibration modes (b) Third and fourth vibration modes

Figure 3.2: Schemes of the vibrations modes analysis using AxisVM13.

Finite Element Analysis

Due to the complexity of the structure, the bending natural frequencies, for the

first and second mode shapes of the structure (fN), are calculated using the

software AxisVM, a finite element structural analysis software. Figure 3.2a

shows the analysis for the first and second vibration modes, and Fig. 3.2b

shows the third and fourth modes. As the structure presents polar symmetry,

the vibration modes occur in pairs. This means that the first and the second

vibration are equivalent, and also the third and fourth. The natural frequencies

can be calculated using the software:

fN1 = fN2 = 2.09Hz (3.6a)

fN3 = fN4 = 15.44Hz (3.6b)
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Generalized and Equivalent Mass

The following calculations are limited only to the first vibration mode Φ1(z),

because the interest here is to verify the oscillations in this specific mode.

According to the literature, the generalized mass of the structure, m1, is given

by Eq. (3.7).

m1 =

∫ L

0

m(z) · Φ2
1(z) · dz (3.7)

where m(z) is the mass per unit length, and L is the height of the structure.

And the equivalent mass per unit length, me,1 is given by Eq. (3.8).

me,1 =
m1∫ L

0
Φ2

1(z) · dz
(3.8)

To solve Eqs. (3.7) and (3.8) the structure is divided in 14 equal parts of

dz = 1m., and simulated in the software AxisVM to obtain the value of Φ1(z).

The mass per unit length of the rod is directly calculated with Eq. (3.5); and

the mass of the mast per unit length is obtained by changing the integration

limits in Eq. (3.4). Table 3.1 shows the calculations required to obtain m1

and me,1. Adding up the sixth column the generalized mass is obtained, and

then dividing that result by the sum of the last column, the equivalent mass

is obtained.

m1 = 55.0 kg (3.9)

me,1 =
55.0

8.12
= 6.78

kg

m
(3.10)

Actions due to Vortex Shedding

To calculate the equivalent static actions associated with vortex shedding, it

is necessary to determine first the critical velocities, that is the mean wind

velocity that gives rise to the resonance condition (fvs=fN), and the relative

Scruton number. Using Eq. (3.11) with fN1 = fN2 = 2.09, the across wind

natural frequency of the structure in the fluid, for the first and second modes

shapes, which are obtained from the finite element analysis. Evaluating where

the mode shape is maximum (top according to Table 3.1), thus D = Dtop =

1m. and obtaining the Strouhal number as function of Reynolds number from
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Table 3.1: Calculations to obtain the generalized and equivalent mass for the first
vibration mode shape.

z mrod(z) mmast(z) mtot(z) Φ1(z) m(z) · Φ2
1(z) Φ2

1(z)
[m] [kg/m] [kg/m] [kg/m] [kg/m]
1 12.56 0 12.56 0.030 0.0113 0.0009
2 12.56 0 12.56 0.090 0.102 0.0081
3 12.56 2.87 15.43 0.115 0.204 0.0132
4 12.56 3.30 15.86 0.237 0.891 0.0561
5 12.56 3.75 16.31 0.329 1.765 0.108
6 0 4.19 4.19 0.438 0.804 0.192
7 0 4.64 4.64 0.587 1.597 0.345
8 0 5.08 5.08 0.720 2.632 0.518
9 0 5.52 5.52 0.817 3.685 0.667
10 0 5.96 5.96 0.911 4.948 0.830
11 0 6.41 6.41 1.037 6.888 1.075
12 0 6.85 6.85 1.143 8.945 1.306
13 0 7.29 7.29 1.192 10.358 1.420
14 0 7.73 7.73 1.257 12.217 1.580

55.0 8.12

Fig. 3.3.

vcr1 =
fN1 · Dtop

St
(3.11)

With an iterative procedure, the critical velocity for the first and second modes

shapes, which are the same due to the cylindrical symmetry of the structure,

is obtained:

Figure 3.3: Strohual number for
cylinders as a function of Reynolds number

Setting the Strouhal number to St= 0.23

and using fN1 = 2.09 (from Fig. 3.2a), the

critical velocity can be calculated, then the

Reynolds number and finally obtain St from

Fig. 3.3, until convergence is reached:

fN1 =
St · vm
Dtop

(3.12)

vcr = 9.1m/s (3.13)
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Re =
Dtop · vcr

ν
= 6× 105 (3.14)

The convergence is achieved for a wind velocity of vcr= 9.1m/s, with this

velocity at the top of the structure the Reynolds number is Re = 6 × 105.

Then the Scruton number is calculated with Eq. (3.15), where the structural

damping is ξs= 0.008 for carbon fiber.

Sc =
4π ·me,1 · ξs
ρair ·D2

top

= 0.57 (3.15)

This is a very low value for the Scruton number, which means that the reso-

nance conditions can be extended to a higher range of values of wind velocity,

and the vibrations due to vortex shedding may be, as expected, very large.

For calculating the peak tip deflection, Eq. (3.16) to Eq. (3.24) are followed:

ypL = gL · σL (3.16)

where gL is the peak deflection factor given by Eq. (3.17) and σL is the standard

deviation of the deflection, heading Eq. (3.21). The peak deflection factor is a

function of the Scruton number as follows:

gL =
√

2 ·

{
1 +

[
Arctan

(
0.7 ·

(
Sc

4π ·Ka

)2.5
)]1.4}

(3.17)

here, Ka is the dimensionless aerodynamic damping parameter, given by

Eq. (3.18), with Ka,max as the maximum value of the aerodynamic damp-

ing parameter in the absence of turbulence in the air flow, corrected then by

the turbulence factor, CI , and associated with the critical vortex shedding in

the first mode.

Ka = Ka,max · CI (3.18)

Ka,max = 5.075− 0.715 · logRe (3.19)

CI = 1.3− 0.06 · vcr (3.20)

The normalized standard deviation of the deflection is given in Eq. (3.21)

where c1 and c2 are dimensionless coefficients resulting from Eq. (3.22) and
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Eq. (3.23) respectively.

σL
Dtop

=

√
c1 +

√
c2

1 + c2 (3.21)

c1 =
a2
L

2

(
1− Sc

4π ·Ka

)
(3.22)

c2 =
a2
L

Ka

ρ · Dtop
3

me · L
C2
c

St4
(3.23)

Where aL is the normalized limiting amplitude, here the amplitude of the

oscillation is sought to be similar to the diameter, thus aL = 1. Lastly, Cc is

a dimensionless parameter, function of the shape of the cross section and the

Reynolds number, for circular cross section it is given by Eq. (3.24).

Cc = 0.07− 0.01 · logRe (3.24)

and finally the amplitude of the oscillation at its top end is obtained,

ypL = 1.38m (3.25)

3.2 VIV - Computational Modeling

The strategy to analyze the VWT structure is to divide it in two main parts,

the rod and the mast, and treat the forces acting over these parts separately.

The rod is analyzed as a beam anchored vertically to the ground with the DEM

method, while the mast is represented by the Immersed Boundary Method.

The domain for the simulations is presented as a prism of (8×6×15) meters

in the (x, y and z) directions respectively. It is divided in cubic cells of 5 cm

side distributed in four blocks and regions of (2×6×15) meters, one block for

each region, named as blocks I, II, III and IV from west to east (x direction).

The western block of the domain, block I, has inlet boundary condition where

a uniform flow of Uo = 9.1m/s in the x direction enters to the domain by

its west boundary, the east boundary of this block has interface boundary

conditions as the middle blocks, II and III, in their west and east boundaries

and the eastern block, IV, in its west boundary. Block IV, has null-gradient

outlet boundary condition in its east boundary. All, north, south, top and

bottom boundaries of the four blocks have non-slip walls boundary conditions.
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Figure 3.4: Domain scheme for the VWT simulation

A processor is used for each region, and so four processors (Xeon E5 family

at Cluster-fing) are used for the simulations with MPI, parallel computing.

Thus, the whole domain consists of (160 × 120 × 300) cells adding a total of

5,760,000 cells, 1,440,000 computed in each processor. The time step for the

fluid flow solver is set at dt = 0.01 sec and for computing 1 second of simulation

time it takes almost one hours of computing time.

Besides the domain seems to be too short and narrow, a bigger domain

simulation ,(16× 9× 15) meters, was carried through and the behavior of the

VWT was comparable to that from the smaller domain simulations, with no

more than 10% in the variation of the results. So it was decided to provide

the small domain results because of the savings in time and resources for every

change implemented in the simulations.
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3.2.1 Mast

The mast is an inverted cone as shown in Fig. 3.1, represented as a rigid struc-

ture with the direct forcing approach of the IBM introduced in Section 2.3.2.

It is represented mathematically at each time step as a function of the position

and normal direction of the last element of the rod (described in Section 3.2.2).

The source term, Qu
P in Eq. (2.16), corresponding to the cells inside of the

mast, is modified to make the velocity of each cell equal to the translational

velocity of the mast. This is equivalent to adding a mass field ~F ∗ in the inner

cells. Integrating this field in a closed region (D) surrounding the mast, the

force that the body exerts over the fluid is obtained, and so:

Fimb = −
∫
D

ρ ~F ∗ dV (3.26)

the same can be applied to calculate the moment that the overall force exerts

over the connecting node (CN ) of the elastic rod, this the highest node of the

rod, where the mast and the rod are connected.

Mimb = −
∫
D

(P −O) ∧ (ρ ~F ∗) dV (3.27)

Where (P − O) is the distance from every computing point from the region

(D) to the connecting node. Once the force that the fluid exerts over the

mast (Fimb) and the moment with respect to the connecting node (Mimb) are

calculated, the procedure continues with the analysis of the rod.

3.2.2 Rod

The rod is the main section for the modeling of the structure because of its

flexibility and elasticity. It is constructed with the DEM approach proposed

by Ivanov (2001), composed of 20 equal bars of length l = 10 cm and diameter

Drod = 10 cm, that conform the 2 meters rod (Lrod), see Fig. 3.5a. Note that,

as the mast is modeled with IBM as a rigid body, there is no bending taking

place in the part of the rod that penetrates into the mast, and for that reason

only the first two meters of the rod have to be modeled. Each bar is constructed

as a linear bar with two punctual nodes, sharing with the next bar one of those

punctual nodes at each end, schematic representation in Fig. 3.6b. The nodes

are the points in which the forces and moments are transmitted from bar to
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(a) Rod DEM Scheme (b) Scheme of the modeling of the rod with the
immersed boundary force and moment, and the
magnetic force applied over the connecting node.

Figure 3.5: Modeling of the Rod

bar. Figure 3.6 shows the schematic representation of forces in Fig. 3.6a and

the corresponding deformations in Fig. 3.6b, the bar is named with a counter

“k” (from 1 to 20) and the nodes are marked with the subindex’s “i” and “j”.

The external forces, and moment are applied in the highest node, named as

“Connecting-Node” (CN) because is the one that connects the rod and the

mast.

The motion of each element of the rod is represented by the first and second

cardinal equations, applied at the center of the bars and used to calculate the

displacement and rotation of the nodes (endings). The first, Eq. (3.28), is

the equation for translational motion, and the second for rotational motion,

Eq. (3.29), of a single element “i”.

ẍi + α ẋi =
Fi
mi

+ g (3.28)

ω̇i + αωi =
Mi

Ii
(3.29)
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(a) Schematic representation of
forces acting over each bar

(b) Schematic representation of
deformations of the bars

Figure 3.6: Forces and deformations of the bars

where xi = position vector; ωi = rotational velocity; mi = mass; Ii = mass mo-

ment of inertia; and g = gravity acceleration. The dots represent the derivative

in time. A centered finite difference is used for the integration of the equations

of motion. New and old values, within a time step, are designated by super-

scripts plus and minus respectively, thus the expression for translational and

rotational velocities are provided by

ẋi =
1

2

[
ẋ−i + ẋ+

i

]
(3.30)

ωi =
1

2

[
ω−i + ω+

i

]
(3.31)

and the expression for translational and rotational accelerations,

ẍi =
1

∆tdem

[
ẋ+
i − ẋ−i

]
(3.32)

ω̇i =
1

∆tdem

[
ω+
i − ω−i

]
(3.33)

inserting this expressions in the equations of motion, Eq. (3.28) and Eq. (3.29),
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and solving for new values of velocities results in:

ẋ+
i =

[
D1 ẋ

−
i +

( Fi
mi

+ g
)
∆tdem

]
D2 (3.34)

ω+
i =

[
D1 ω

−
i +

(Mi

Ii

)
∆tdem

]
D2 (3.35)

where D1 = 1 − (α∆tdem/2), and D2 = 1/[1 + (α∆tdem/2)], with ∆tdem =

time step for the DEM. The time step used for the displacement of the rod

is smaller than the time step used by the fluid solver (caffa3d.MBRi), as the

differential equations system governing the motion of the rod is too stiff, be-

cause of the high Young’s module of the material, and then it is necessary

to use a smaller time step than the one required for solving the fluid. In the

simulations presented in this work, for every time step of the fluid solver the

DEM is executed 10,000 times in order to reach the convergence of the system.

With the new velocities obtained, it is possible to update the contact forces

in between bars, which depend on the properties of the system. To update the

normal and shear forces, and bending moment, first the incremental displace-

ments of the contact point due to translational and rotational motions of the

elements are computed using the new values of velocities. Note that for each

k − bar there are two nodes (one at each end) denoted as ’i’ and ’j’.

∆xtrci = ẋ+
i ∆t ∆xtrcj = ẋ+

j ∆t (3.36a)

∆xrotci = ic+ ×∆θi ∆xrotcj = −jc+ ×∆θj (3.36b)

where ic+ and jc+ are the current vectors from the center of the bar to the

contact points, and ∆θi and ∆θj are the incremental rotation of the elements.

For the first time step the method uses values of position and velocity provided

as initial conditions. Thus, the total incremental displacement at the contact

is:

∆xc = (∆xtrcj −∆xtrci) + (∆xrotci −∆xrotcj ) (3.37)

which resolves into normal and shear components as:

∆xnc = (∆xc · n+
ij
′)n+

ij (3.38)

∆xsc = ∆xc −∆xnc (3.39)

here nij is the unit normal vector pointing from node “i” to node “j”; the
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supra-index “′” stands for the transposed vector (so as to be able to calculate

the product). And the angular displacements for nodes “i” and “j” can be

calculated as:

∆θi = ω+
i ·∆ t, ∆θj = ω+

j ·∆ t, (3.40)

then, the increment of force in the normal spring is expressed in Eq. (3.41),

where At = transversal area; E = Young’s modulus; l = element length; and

ν = Poisson’s ratio (material property).

∆F n
c = kn ∆xnc , with kn =

√
3

3

AtE

l · (1− ν)
(3.41)

The calculation of the increments of the shear force and bending moment

is not as simple as the normal force and further calculations are needed. The

relation between these forces and the corresponding displacement for the end-

point i of the element ’k’ with second moment of inertia Ik is expressed in

Eq. (3.42) and Eq. (3.43),

F s
i =

12EIk
l3

(xsi − xsj)−
6EIk
l2

(θi − θj) (3.42)

Mi =
6EIk
l2

(xsi − xsj)−
4EIk
l

(
θi −

θj
2

)
(3.43)

with symmetric relations for node j, where x = position vector and θ = ro-

tation of the element, see Fig. 3.6b. An additional set of spring constants

is defined accounting for the bending behavior equal to the coefficients of

Eq. (3.42) and Eq. (3.43) as follows: kqq = 12EI/l3, kqm = kmq = 6EI/l2

and kmm = 4EI/l. Then the respective contributions to the driving force and

driving moment are calculated as functions of the relative incremental shear

displacement ∆xsc, and the incremental rotations of the elements ∆θi and ∆θj.

∆F s
i = −∆F s

j = kqq∆x
s
c + kqm · n+

ij × (∆θi + ∆θj) (3.44)

Before incrementing the values of the contact forces, their old directions have

to be corrected in order to reflect the latest orientation of the contact plane.

The old normal force should be modified to be collinear to the latest unit

normal vector,

F n−
c = (F n−

c · n+
ij
′) · n+

ij (3.45)

The shear contact force is first updated to be co-planar with the latest contact
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plane,

F s−
c = a+ · (a− · F s−

c
′) + b · (b · F s−

c
′) (3.46)

where a+, a− and b are auxiliary unit vectors given by the expressions b =

(n−ij × n+
ij)/|(n−ij × n+

ij)|; a− = b× n−ij and a+ = b× n+
ij. Finally, the rotation of

the contact shear force has to be considered along the nij axis. The average

rotation along this axis will be ∆θ = 1/2 · (∆θi+∆θj) ·n+
ij
′. The final updated

old shear contact force (co-planar with the new contact plane) will be,

F s−
c = cos ∆θ · F s−

c + sin ∆θ · (a+ × F s−
c ) (3.47)

once having corrected the direction of the old contact forces, the incremented

ones will yield the new values, with ∆F n
i = −∆F n

j and ∆F s
i = −∆F s

j ,

F n+
i = F n−

i + ∆F n
i F n+

j = F n−
j + ∆F n

j (3.48a)

F s+
i = F s−

i + ∆F s
i F s+

j = F s−
j + ∆F s

j (3.48b)

Resuming Eq. (3.43), the increment of moments is computed as:

∆Mi = kqm n
+
ij ×∆xs − kmm (∆θi + ∆θj/2) (3.49)

∆Mj = kqm n
+
ij ×∆xs − kmm (∆θj + ∆θi/2) (3.50)

and the increment of the moment at both ends:

M+
i = M−

i + ∆Mi, M+
j = M−

j + ∆Mj (3.51)

This iterative procedure is computed for every bar composing the rod.

When computing on the highest bar, the force that the fluid exerts over the

mast (Fimb) is transmitted to the connecting node (the one that is connected to

the mast), as well as the moment with respect to this node (Mimb), calculated

in the previous Section 3.2.1 with the IBM. It should be also considered at this

stage the magnetic force that the generator exerts over the rod (Fem), as it is

also applied to the connecting node, see Fig. 3.6b. In the next Section 3.2.3,

it will be explained how that magnetic force should be calculated.

F+
CN = F−CN + ∆FCN + Fimb + Fem (3.52)

M+
CN = M−

CN + ∆MCN +Mimb (3.53)
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Having computed the stresses and moment resultants acting on each ele-

ment, the system is ready to enter a new time step. It is worth highlighting

that as the time step for this procedure is smaller than the one for solving

the fluid equations, the same immersed boundary force and moment are used

during several iterations until the fluid solver time step is advanced.

3.2.3 Generator

The kinetic energy of the oscillations is converted into electricity using a linear

built-in generator as the one described by Donoso et al. (2010). It is composed

of a magnet coupled to the last bar of the rod, modeled as a punctual magnet,

and two fixed coils, one at each side of the rod, see Fig. 3.7. When the sys-

tem is oscillating, the magnet oscillates with the rod, generating an oscillating

magnetic field inside the coils. According to Faraday’s law of electromagnetic

induction, the motion of the magnet produces emf (ε) across the coil. Con-

necting the coil to a resistive load, an induced current appears, opposing the

motion of the magnet by applying an electromagnetic force (Fem), which can

be considered as a damping force in the motion of the rod.

Figure 3.7: Scheme of the generator system

The magnetic force that each coil exerts over the magnet is a function

of the magnet velocity and its relative position to the coils, as well as to the

properties of the coils and the magnet, and the resistive load connected to each

circuit. Here two identical coils are disposed at each side of the rod, connected

to two identical loads for reaching a symmetrical displacement. In equilibrium

conditions the center of the coils are located at 8.5 cm in y− direction at each

side of the magnet. The properties of the magnet and the coils are listed in
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Table 3.2: Parameters used in the model of the generator

Property Value Unit
Lcoil 7.0 cm
acoil 5.0 cm
Ncoil 700 turns
Rload 100 Ω
µm 4.5e-3 J/T
y0
cm,1 -8.5 cm
y0
cm,2 +8.5 cm

Table 3.2.

From the literature, the equation of the magnetic force (Fem,i) is obtained

as follows:

Fem,i = cm0 · g2
i · ẏ (3.54)

cm0 is calculated in Eq. (3.55), where µm is the magnetic moment of the magnet.

Here it is constant because the resistive load (R) is set to be constant, but it

could be variable, for instance, within the wind velocity.

cm0 =
µ2
m

R
(3.55)

gi(y) is a function of the relative position between the i−coil and the magnet

(ycm,i), expressed as:

gi(y) =
2πNcoila

2
coil

Lcoil
·[

1(
a2
coil + (ycm,i − Lcoil/2)2

)3/2
− 1(

a2
coil + (ycm,i + Lcoil/2)2

)3/2

]
(3.56)

where the properties of the coil, denoted with the subindex ”coil”, are illus-

trated in Fig. 3.7, together with the distance from the magnet to each coil,

ycm,i.

The magnetic forces are calculated at each time step of the DEM, added

in a single force (Fem), and applied to the highest bar of the rod as expressed

in Eq. 3.52. Note that the magnet is also modeled as a punctual element. As

this force opposes the motion of the bar and it is proportional to its velocity,

it can be interpreted as a damping force.

To calculate the output power, P , the electromagnetic force is multiplied

by the magnet velocity at each time step, the negative value is because the
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force opposes the motion,

P (t) = −Fem · vmg (3.57)

in this way, the output power is determinate just for an instant of time. In-

tegrating the instantaneous power over a period of time T ∗, the accumulated

energy is obtained, and dividing then by the value of that period of time, the

average output power, P , is obtained:

P =
ET
T ∗

=
1

T ∗
·
∫
T ∗
P (t) · dt (3.58)

Finally, the efficiency of the VWT is defined as the ratio of the output

power to the power available in the fluid flow over the region occupied by the

turbine. The latter is constant in this simulations because an uniform flow is

used. If dividing the instantaneous power, then the instantaneous efficiency is

obtained, η; and the integrated efficiency, η, is obtained dividing the integrated

power:

η =
P

1/2 ρU3AVWT

(3.59)

Where U is the velocity of the fluid flow upstream, and AVWT is the area

occupied by the VWT in a plane perpendicular to the flow direction.

3.3 Fish Net Solver

The domain of this simulation is covered by one prism block with a length

of L = 4m in the principal direction of the flow (x direction) and a square

section of size a = 0.70m in y and z directions. The west boundary of the

domain has inlet boundary condition where a uniform flow Uo = 1m/s in the x

direction enters to the domain. The east boundary is the outlet, and the rest

of the boundaries, north, south, top and bottom are non-slip walls, although

symmetry boundary conditions could also have been applied at these lateral

boundaries. The discretization grid for the flow solver is made by cubic cells

of ∆ l = 0.01m length, totaling about 2 million cells. The properties of the

fluid are assumed to be those of water. The time step for the flow solver is set

to dt = 0.01 s.

Here DEM is applied to represent the shape and stresses of a Fish Net
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Figure 3.8: Domain for the Fish Net Tunnel simulation.

Tunnel in interaction with an axial stream of water and free bodies dragged

by the stream. The results are then compared and validated with a Fish Net

Tunnel trawled in a towing tank. The long term objective of the study is to

develop a comprehensive model to simulate flexible bodies or elastic systems in

interaction with fluids as a complementary tool to tank or wind tunnel testing.

The lumped masses model, with spring connections, is adopted in this work

to model the Fishnet, similar to the previously referenced works from other

authors Takagi et al. (2007, 2003); Shimizu et al. (2007) and Lee et al. (2005).

The model parameters such as drag and added mass coefficients and the spring

rate of the interconnections are modeled after the values provided in Takagi

et al. (2003). Figure 3.9 shows a scheme of the knots and bars modeling,

both elements are represented as point masses with different hydrodynamic

parameters, resumed in Table 3.3.

The equations of motion for the fishnet and the freely moving objects rep-

resenting the load, are formulated in this work under the framework of the

DEM. The point masses that shape the net are placed at each knot and at the

center of the mesh bars connecting each pair of knots.
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Figure 3.9: Domain for the Fish Net Tunnel simulation.

Table 3.3: Hydrodynamic coefficients of bars and knots

Knots Bars
τ η ν

CD 1.0 0.1 1.2 1.2
CL 0.5 0.0 1.0 1.0

For the example presented here, the fishnet is made up from 1550 knots

disposed in 50 concentric circles of 31 knots, and the corresponding 3100 bars.

Freely moving objects are also added representing the load, modeled as a set

of 90 uniform radius spheres.

Each element of the system, except for the freely moving objects, is subject

to internal forces derived from the elasticity of the mesh bars and the location

of the knots. Also external forces are applied to each object, including weight,

buoyancy, drag and induced mass. The contact between the freely moving

objects and the knots and bars of the fishnet might also generate additional

forces on the corresponding elements.

Each knot point is assumed to be a spherical object, so the drag and induced
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mass coefficients are assumed to be the equal in every direction of motion.

Their values are given in the first column of Table 3.3. The equation of motion

for each knot i is given in Eq. (3.60), where ~ai is the acceleration vector for

the knot, Mi its mass, V oli its volume, ρ is the fluid density, and the vectors
~Ti, ~Wi, ~Bi, ~Di, ~Fi, are respectively the elastic tension, weight, buoyancy, drag

force and interaction with fishing load force.

~ai · (Mi + ρ · V oli · CMi) = ~Ti + ~Wi + ~Bi + ~Di + ~Fi (3.60)

On the other hand, the mesh bars are modeled as cylindrical elements and

the fluid forces vary with different flow directions of relative fluid velocity, thus

it is needed to transform the forces applied to each bar into the local system

of the corresponding bar, add them together and the transform back again to

the global reference system. Both coordinate systems are shown in Fig. 3.9.

The equation of motion of the i bar is completed in three steps, Eq. (3.61),

Eq. (3.62) and Eq. (3.63)), where TMi is the transformation matrix between

the reference coordinate system and the i bar local coordinates, and the supra

index ′ represents that the vector is expressed in the local, body-fixed coordi-

nates of the bar. The first step calculates an intermediate acceleration, ~a′
∗
i , that

sums the terms of elastic tension, weight, buoyancy and drag, note that the

elastic tension and drag forces are calculated directly in the local coordinates.

In the second step the intermediate acceleration in the bar local, body-fixed

coordinates, is transform to the global coordinates, and in the last step the

contact force due to the load is added directly in the global coordinates.

~a′
∗
i · (Mi + ρ · V oli · CMi) = ~T ′i + ~Wi · TMi + ~Bi · TMi + ~D′i (3.61)

~a∗i = TMi · (~a′
∗
i )
T (3.62)

~ai = ~a∗i + ~Fi (3.63)

Finally, for the freely moving objects representing the fishing load, the

elastic forces are dropped and full fluid force DCi is computed directly from

the fluid solver due to the larger size of this objects, by means of the immersed

boundary method. Equation (3.64) hold for these objects.

~ai ·Mi = ~Wi + ~Bi + ~DCi + ~Fi (3.64)
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These equations have the position and velocity of each knot point and

mesh bar implicit in the tension and drag force, so the displacement of the

device is given by a system of ordinary differential equations. The equations

can be solved numerically for each point, given an initial position of the net.

Shimizu et al. (2007) introduces a Fishing Net Shape Simulator (NaLA) that

incorporates the sixth order Runge-Kutta method for solving the ordinary

differential equation system to simulate a bottom gill net. It was found that

the fourth order Runge-Kutta method Ferziger and Peric (2002) gives the best

performance to solve the ordinary differential equations system, in this case.

Equations (3.65) summarize the method where φ is the vector with the velocity

and position of every element of the system and f is the vector containing the

acceleration and velocity calculated with and the corresponding time.

φ∗
n+ 1

2
= φn +

∆t

2
· f(tn, φ

n) (3.65a)

φ∗∗
n+ 1

2
= φn +

∆t

2
· f(tn+ 1

2
, φ∗

n+ 1
2
) (3.65b)

φ∗n+1 = φn + ∆t · f(tn+ 1
2
, φ∗∗

n+ 1
2
) (3.65c)

φn+1 = φn +
∆t

6
·
[
f(tn, φ

n) + 2f(tn+ 1
2
, φ∗

n+ 1
2
)+

2f(tn+ 1
2
, φ∗∗

n+ 1
2
) + f(tn+1, φ

∗
n+1)

]
(3.65d)

The time step required for solving the fishnet equations might not be the

same required by the flow solver for the given flow conditions. In the sim-

ulations presented in this work, for every time step of the fluid solver the

Runge-Kutta is executed 100 times to reach the convergence of the system.

To obtain the external forces acting on the fishnet, the fluid flow properties

at each time step and the location of each element of the fishnet are required

in order to compute the drag forces. The velocity is obtained by a search and

interpolation routine that interrogates the finite volume grid for each lumped

mass location. The drag forces are then calculated and applied to both the

fishnet and the fluid. The forces on the fishnet are incorporated at each lumped

mass, while the force applied to the fluid is first filtered with a Gaussian

distribution back into the finite volume grid in the fluid cells nearby each

element of the fishnet and then added in the source term. This procedure is

iterated within each time step until a specified convergence criteria.
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Chapter 4

Results

This chapter describes the results of the numerical methods for modeling both

the vorticity wind turbine (VWT) and the fish net tunnel, including the val-

idation for the latter by comparing it with results from a physical test in a

towing tank. Several variables are considered for the analysis of the VWT

simulations, including displacement, velocity and prediction of output power.

The chapter will also include an interpretation of the behavior of the fluid flow

around the bodies.

4.1 Fish net tunnel

A physical towing tank test was carried out to compare the simulated with an

experimental case. Figure 4.1 shows the configuration adopted by the net at

four different time steps during the simulation and Fig. 4.2 the shape adopted

during the experimental test in the same conditions. In the upper panel of

Fig. 4.1 (panel a) the initial configuration of the net has the conic shape

described in the previous section and the load is disposed at the entrance of

the net represented as a set of free balls. As time advances, the load starts

to be dragged by the flow and interacts with itself and the net. Subject to

the drag of the fluid and the interactions with the load, the net adopts a bulb

shape at the downstream end and a constriction in the middle.

The form adopted by the fishnet in the numerical simulation compares

qualitatively well with the one observed at the towing tank test. In the sim-

ulation the load tends to expand further, this may be due to several reasons,

the two main ones being the elasticity of the bars and the shape of the objects
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Figure 4.1: Evolution of the fishnet shape during the simulation as the load is
dragged into the fishnet at four time steps; a) t = 0 s, b) t = 1.0 s, c) t = 2.0 s and

d) t = 5.0 s.
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Figure 4.2: Shape of the Fish Net during towing tank test.

representing the load. The bars in the numerical model might be given a lower

elastic constant than those in the experimental fishnet. Also the load used in

the experimental test were plastic bottle caps while in the simulation larger

uniform radius spheres were used. These spheres produce a greater blocking

on the fluid flow, giving place to significant radial components on the flow

velocity. Figure 4.3 shows the stream lines of the fluid flow. The green lines

are the stream lines that are far from the load of the fishnet and red lines are

the stream lines that cross the bulb in between the load spheres. It can be

seen that the red stream lines acquire radial components in the bulb zone, elic-

iting the large dispersion of the load, and chaotic behavior with recirculation

immediately after the bulb.

Figure 4.3: Stream Lines around the Fish Net; the red stream lines cross the
bulb in between the spheres; the green stream lines are far from the load

The simulation model represents the motion of the elements by hydrody-

namic interaction with the fluid. This interaction is bidirectional, this mean

that the flow affects the system elements and vice versa. To this end, once

calculated the force on the element an equal and opposite force is applied on
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the fluid, previously filtered with a Gaussian distribution, in the neighboring

cells where the item is located. In Figure 4.4 the velocity profile is plotted at

three different places as indicated in Fig. 4.5 with letters A, B and C. Each

graph a, b and c, contains three plots, the dotted lines are the profile that

the flow adopt just before the fish net (letter A in Fig. 4.5), the continuous

line is the velocity profile at the bulb (B) and the slash-dotted line the profile

Figure 4.4: Velocity profiles at different cross sections along the fishnet, and for
three values of Ψ. Graph a) is for Ψ = 1, b) for Ψ = 0.8 and c) for Ψ = 0.6. The

dotted line is the velocity profile at A, the continuous line at B and the
slash-dotted line at C
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Figure 4.5: Three dimensional view of the shape adopted by the Net in the
simulation and indication of the position of the velocity profiles plotted.

after the fish net (C), where recirculation occurs. In order to represent the free

bodies of the load as independent bodies with the immersed boundary method

IBM it is necessary to define the object radius of the IBM smaller than the

real object radius. Because of this the tuning parameter Ψ of the model is

defined in Eq. (4.1) as the quotient of the IBM radius (RXimb) and the object

real radius (Robj).

Ψ =
RXimb

Robj

(4.1)

In Figure 4.4 the three different axis (a, b and c) plot the velocity profile

at the three positions of Fig. 4.5 for Ψ = 1 in panel a, Ψ = 0.8 in panel

b and Ψ = 0.6 in panel c. As it can be seen in Fig. 4.4 smaller values of

Ψ generates more transversal flow through the bulb (continuous line) while

greater values tend to represent the load as one big peace of load generating

complete blocking of the flow. In this work all the results are presented for

Ψ = 0.8, anyway further experiments are needed to determine a right value of

transversal flow through the bulb.

The mesh angle α (see Fig. 3.9) is a very important design property; the

selectivity of the fish net depends on this, a much closed mesh would not allow

baby fishes to scape and preserve the species. In Figure 4.6 the grey dots indi-

cate the mesh angle α and the continuous line represents the mean by section

within the x direction. Further experiments are currently being organized to

obtain mesh angel measurements from the experimental campaigns in order to

compare those to the numerical results.
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Figure 4.6: Mesh angle of the fish net.

Figure 4.7: Mesh independence
study. Velocity profiles for three sizes

of mesh, a) ∆ la = 2 ·∆ l, b)
∆ lb = 1.25 ·∆ l and c) ∆ lc = 0.75 ·∆ l

To study the mesh independence

several simulations were carried

on. In this work all the re-

sults are presented for the Carte-

sian grid described in Section 3.3,

with cubic control volumes of size

∆ l = 1 cm. In Figure 4.7 the ve-

locity profile adopted by the flow,

in the same three planes as indi-

cated in Fig. 4.5, are presented.

The tuning parameter used in

this simulations is set to Ψ = 0.8,

so these profiles should be com-

pared with Figure 4.4b. In the

graphs of Fig. 4.7, the coarser

mesh corresponds to plot a with

eight times less control volumes,

∆ la = 2 · ∆ l , in plot b ∆ lb =

1.25 ·∆ l and in plot c the num-

ber of control volumes is around

the double with ∆ lc = 0.75 ·∆ l.
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As the grid gets smaller, this is better definition, the IBM module can

represent better the spherical shape of the elements of the load and so the

free spaces between the spheres. While some details of the flow across the

bulb seem to be smeared out for the coarser resolution, the results remain

qualitatively comparable, specially for the three finer resolutions, suggesting

that the flow is sufficiently resolved for these conditions.

Finally the influence of blending coefficient between upwind and centered

discretization for the convective terms in the flow solver, as well as of tur-

bulence modeling, is shown in Fig. 4.8, depicting velocity field magnitude at

a horizontal mid-plane for two simulations. Results from a simulations with

blending coefficient 0.7 and no turbulence model are given in the upper panel,

while results from a simulation with blending coefficient 0.95 and a simple large

eddy simulation (LES) Smagorinsky turbulence closure are given in the lower

panel. Velocity fields from both simulations seem rather similar to each other,

although in the simulation with a lower blending coefficient wake structures

seem to be smeared as expected.

Figure 4.8: Comparison of velocity field of two simulations, the upper panel does
not represent turbulence, bottom panel has turbulence modeling activated with

bending coefficient 0.95
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4.2 Vorticity wind turbine

The modeling of a vorticity wind turbine (VWT), as explained in the previous

chapter, was carried through and simulated numerically with caffa3d.MBRi.

Results are presented in this section, in a first instance, for a uniform air

flow of Uo = 9.1 ·m/s, as this is the critical velocity found in the structural

analysis Section 3.1, the Reynolds number calculated at the equivalent height

ze= 8.4m (where the radius is Dref = 0.77m) for the critical velocity is

Re = 4.67E5. Following that, a sensitivity analysis to wind speed and other

relevant parameters will be shown.

Figure 4.9 shows the dimensionless transversal displacement of the top of

the rod, where the magnet is located, for a 30 second simulation with uniform

air flow of Uo = 9.1m/s. The oscillatory response shows that the lock-in effect

is well captured by the coupled simulation, and that the device is taking energy

from the fluid. This is evidenced by the sinusoidal displacement, of amplitude

A = 0.2Dref , which correlates with the graph of the transversal displacement

for structures under the lock-in effect from Section 2.1. The response shows

different frequencies, distinguishable from the slight difference between peaks

and valleys presented in the figure, anyway the main oscillatory frequency of

the turbine can be calculated from Fig. 4.9, f= 1.26Hz.

Figure 4.9: Dimensionless transversal displacement of the top of the rod, where
the magnet is located.
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Note that at the top of the mast, the amplitude of the oscillations are much

wider. For the same simulation, the amplitude of the transversal displacement

at the top of the mast is twice its diameter, which is quite bigger than the

one predicted in Section 3.1. This is illustrated in Fig. 4.10 for an interval of

five seconds of the simulation. It can also be seen the sinusoidal response with

greater detail.

Figure 4.10: Dimensionless transversal displacement of the top of the mast for a
five seconds interval of the same simulation

In order to be able to determine the frequency of the vortex shedding, the

in-plane vorticity, ωk, defined in Eq. (4.2), is calculated in three monitoring

points at every 0.01 seconds and plotted vs time in the upper panel of Fig. 4.11.

The three monitoring points are set for the same x and y coordinate compo-

nents, downstream the turbine, and at three different heights, z1, z2 and z3

(corresponding to 20%, 50% and 80% of the height of the mast respectively).

In the discretized domain, the two-dimensional vorticity is calculated with the

least-square method in Eq. (4.3).

ωk = (∇∧ ~v) · k̂ (4.2)

V or = −2 · vi+2,j + vi+1,j − vi−1,j − 2 · vi−2,j

10 ·∆x
+

2 · ui,j+2 + ui,j+1 − ui,j−1 − 2 · ui,j−2

10 ·∆y

(4.3)
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Where i is the cell index of the x− coordinate and j the cell index of the y −
coordinate, u is the velocity component in x−direction and v in y−direction,

and ∆x and ∆y are the distance between two consecutive computing points

in x and y − direction respectively.

Figure 4.11: In-plane Vorticity calculated at three monitoring points corresponding
to 20, 50 and 80 % of the length of the mast (upper panel) and transversal force vs
time (bottom panel)

Two important concepts are drawn from the plotted data in the upper
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panel of Fig. 4.11. First of all, the frequency of the vortex shedding can be

determined, fvs= 1.25 ·Hz, and secondly it can be seen that the shedding is

synchronized along the height of the mast. Because of this, the transversal force

integrated along the structure, at a given instant of time, will be maximized.

Otherwise, opposing forces will coexist along the structure, and the resulting

force will be reduced. The bottom panel plots the integrated transversal force

acting over the mast. Here the frequency of the force can be obtained and

compared with the vortex shedding frequency, which turn out to be the same,

as expected.

The vorticity can also be calculated for all the computing points of a x− y
plane and plotted as a vorticity field. This is presented in Fig. 4.12 for z = zeq

at two instants of time. The black triangle inserted over the field represents

the monitoring points used in Fig. 4.11. All three points occupy the same

exact point in the field, as it is a top view of the turbine. It can be seen in the

figures that at the specific instant of time of Fig. 4.12a the vortex is getting

detached from the left side of the mast (in the range of positive values of the

y−coordinate), with negative value of the vorticity (ωk). While in Fig. 4.12b

(0.41 seconds later) the vortex is getting detached from the right side (in the

range of negative values of the y−coordinate), with positive values of vorticity.

This denotes how the vortex are alternatively detached from one side and

(a) Vorticity field at t=14.90 seconds of
simulations

(b) Vorticity field at t=15.31 seconds of
simulations

Figure 4.12: Upper view of the in-plane vorticity field at a height of z = zeq.
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another of the mast, and that the local spinning of the fluid runs in opposite

rotation directions at each side and another of the turbine.

Figure 4.13 shows a three dimensional view of the simulation with the

respective streamlines of the flow around the volume. The red streamlines are

closer to the mast and display chaotic behavior downstream, while the green

streamlines are further away and then only a slight deviation is observed. In

the figure is also observed that at the top of the mast, the streamlines flow

over the obstacle.

Figure 4.13: Three dimensional view of the vorticity wind turbine with
streamlines. The red streamlines are close to the mast and shows chaotic behavior

downstream, while the green streamlines are further away and only a slight
deviation is observed.
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To quantitatively assess the output energy production, the calculations of

Section 3.2.3 were followed. In Figure 4.14 three plots are shown: the upper

panel plots the velocity of the last element of the rod (where the magnet is

fixed, and thus this velocity is equal to the magnet velocity) during the 10

seconds of the simulation. The mid panel plots the magnetic force calculated

at every time step for a generator with the properties of Table 3.2 connected

to a resistive load of R = 7 Ω. Multiplying these two values (magnet velocity

and magnetic force) at every time step, the instant output electrical power

is obtained, plotted in the bottom panel together with the instant mechanical

power available in the last element of the rod, the latter calculated as expressed

in Eq. (4.4).

Pmec = Mimb,x · ωx + Fimb,y · vy (4.4)

If the instantaneous output electrical power is divided by the power avail-

able in the fluid flow (constant in time for a uniform flow), the instantaneous

efficiency of the system is obtained.

Pwind = 1/2 ρU3AVWT (4.5)

Here AVWT is the transversal area of the VWT, The same calculations can

be done considering the swept area (Asw), this is the total area covered by

the oscillations, as proposed by Barrero-Gil et al. (2012). With this approach

smaller values of efficiency are reached, which turn to be more convincing.

η∗ =
Pe

1/2 ρU3Asw
(4.6)

This is plotted in Fig. 4.15 for the last five seconds of same simulation, here a

peak efficiency of ηpeak = 0.223 is reached, and integrating during the period of

the simulation and dividing by the time lapse, an integrated efficiency of η∗ =

0.0944 is reached. For a discretized in time system the integrated efficiency is

calculated as:

η∗ =
1

Nsteps ∗∆t

Nsteps∑
1

η∗ ·∆t (4.7)
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Figure 4.14: Plot of the magnet velocity (upper panel), magnetic force (mid
panel), and instantaneous mechanical and electrical output power (bottom panel),

during 10 seconds of simulation with uniform wind velocity of vwind = 9.1m/s.
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Figure 4.15: Instantaneous efficiency

The magnetic force presents a relatively small valley in the peak of the main

sinusoidal component of the magnetic force and vice-versa (see mid panel of

Fig. 4.14), this is then transmitted to the output electrical power (bottom

panel), and to the instantaneous efficiency Fig. 4.15. These smaller valleys

presented in the main peaks can be explained by analyzing the relative dis-

placement of the magnet from one coil to the other. In Figure 4.16 the magnet

transversal displacement and the magnetic force are plotted together in left and

right vertical axes respectively for two cycles of the oscillation of the VWT. In

the figure the two coils are also represented by the grey lines, the continuous

ones correspond to the center of each coil and the dashed ones represent the

ends.

Defining two zones in the displacement of the magnet, zone I when the

blue line (magnet location) is in between the two coils (white area), and zone

II when it is in the shaded area, note that at every cycle each zone is crossed

twice. When the magnet is located in zone II, it means that it is inside a coil,

and as the magnet is represented punctually, the induced currents in the coil

at one side and another of the magnet will be opposed, causing a reduction of

the magnetic force and thus of the output power. Anyway, zone II is a zone

of low velocity, as it even reaches zero at the peak of the displacement, where

the magnetic force became null, and so the reduction of the magnetic force is

not critical. When the magnet is in zone I, it is located between the two coils,

and here the distance from the magnet to each coil plays an important role in
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Figure 4.16: Plot of the magnet transversal displacement (left blue axis) and the
magnetic force (right red axis). The position of the center of the coils are

illustrated by the grey continuous lines and the borders of the coils by the grey
dashed lines. Simulation with uniform wind velocity of vwind = 9.1m/s.

the magnitude of the force. Note that a maximum peak is presented when the

magnet is next to a coil end. This is because no opposite currents coexist in

the coil, and the distance to the coil is the minimum. As the magnet moves

away from one coil is getting closer to the other, this means that the magnetic

force exerted by the first coil start to decrease while the other increases. But

as the coils are relatively far, when the magnet is in the middle between the

two coils there is a small valley besides the velocity is maximum.

The results shown so far, correspond to the same simulation, having a

uniform flow velocity of Uo = 9.1m/s, and two equal resistive loads of R = 7 Ω

connected at each coil of the generator model. Several simulations where

carried out varying alternatively the wind velocity and the resistive load. For

each simulation the integrated efficiency was calculated and plotted in Fig. 4.17

against the wind velocity. The different colors indicate different values of load

resistance connected to the coils.

The curves presented in Fig. 4.17 are generally continuous, displaying grow-

ing behavior. As the efficiency at low values of wind speed is almost zero, it

improves the values for mid wind velocities (shown the horizontal axis), and

significantly higher values are reached for higher wind speeds. This is mainly
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Figure 4.17: Efficiency vs wind speed parametric in load resistance

for the structural damping of the rod. For low values of wind velocity, low

forces are applied, and so the energy disipated in the material is enough to

keep the oscillations within a range of very small amplitude. On the other

hand, for high valuess of wind speed the rod adopts large deformations and

the amplitude of the oscillations become much wider, reaching higher velocities

and forces, hence generating higher values of power. This large deflections on

the rod may not be really convenient, as it it may make it prone to malfunction

or even risk breaking it, but as the model does not actually implement fracture

prediction, it returns high values of output power instead.
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4.2.1 Limitations

The results presented in the previous section describe a VWT adjusted to oper-

ate at a wind speed of vwind = 9.1m/s, seeking to maximize the output power,

and thus, the efficiency of the device. However, it was found that at different

wind speeds, the same turbine would operate with lower values of efficiency.

Also some chaotic behavior of the structure was found at much higher values

of wind speed, as the forces that the wind exerts over the structure are so

significant. This chaos could follow several patterns:

• The frequencies of oscillations are much higher than the frequency of the

vortex shedding tabulated for the corresponding Reynolds number.

• The amplitude of the oscillations obtained turned out to be dispropor-

tionately big.

• The output power is higher than the power available in the fluid.

• The mechanical power in the rod is higher than the available in the fluid

(both are results that actually contradict the laws of thermodynamics).

This phenomenon may be explained because the time step used is not small

enough to capture the motion of the mast, hence several cells are crossed by

the mast in only one time step, causing erratic and unmeasurable forces over

the mast that, when transmitted to the rod, create the illusion of physically

unfeasible phenomena. Some testes were carried on, using shorter time steps,

but so far the exact combination of time steps (∆tdem and dt) has not been

found yet, as it would vary for different values of wind speed.

Anyway, these irregularities could be avoided testing a more damped struc-

ture, as it would support larger forces. This can be achieved by changing the

entire rod, for instance using a thicker one or changing the properties of the

material (i.e using one with higher structural damping), but this is not a func-

tional option, as it would not be actually possible in a real physical setting to

change the rod in order to accommodate the system for different wind speeds.

A solution that would be both physically feasible and logistically sound would

be to implement a variable damping system.

As the model of the generator implemented in these simulations can be

interpreted as a damping force in the motion of the rod, by varying the pa-

rameters of the generator, the damping of the structure could be measurably

modulated. The key is to find a set of parameters for the generator that can
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maintain the amplitude and velocity of the oscillations within a controlled

range while at the same time maximizing the output power. In this case, the

resistive load connected to the circuit of the generator would be used to tune

the damping, so as to analyze the behavior at different time steps. Eq. (3.54)

and Eq. (3.55) explain the inversely proportional relation between the mag-

netic force (damping) and the value of the load resistance. There is available

technology that could, after measuring the wind speed, automate the adjust-

ment of the damping to optimize the power generation under each specific

wind conditions.
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Chapter 5

Conclusions and Future work

The main objective of the present research was to understand, through the use

of mathematical models, the potential efficiency of a vorticity wind turbine.

In the process of devising the tools to achieve that goal, a three-dimensional

numerical method had to be developed for coupling the finite volume and

discrete element methods in the analysis of flexible and elastic structures. With

this purpose in mind, two similar numerical methods were developed in order

to simulate two specific types of structure. Each one of them was designed for

different functions, and involved different dynamic behaviors. As there was

a wealth of information already collected in real, physical experiments that

measured the behavior of loose elements in a fish net tunnel, and that served

as a way of contrasting the numerical models with the behavior of fluids in a

natural setting, the theoretical framework for those experiences was used as a

reference for the potential divergences between simulations and real conditions.

5.1 Fish Net

The preliminary results show that the coupled method for solving the inter-

action between the fishnet, free bodies and water performs qualitatively well,

obtaining a similar shape of the Fish Net Tunnel than the one adopted in the

towing tank. The model is able to represent the coupled behavior and interac-

tion between the fishnet, the fishing load and the fluid. The mesh angle shows

a contraction at the middle of the net, and in the bulb takes higher values as

expected.

The combination of direct computation of drag and induced mass forces
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for the smaller fishnet elements, and use of immersed boundary method for

the larger freely moving objects seems to perform adequately.

Further research is required to quantitatively assess the accuracy of the

method, more rigorous towing tank, in order to tune the spring rates and the

tuning coefficient of the load radius, should be performed to reproduce the

expected mesh angles along the net. Further, the computational efficiency of

the method can be improved, incorporating a parallel implementation of the

DEM, coupled with the already parallel CFD method.

5.2 Vorticity Wind Turbine

For the modeling of the VWT, bending moment transmission was incorporated

to the already developed DEM applied to the fish net, whereas the elements

of the fishnet are loose ropes, so there is no bending moment transmission in

between the elements. Another important variation applied to the method

was the approach used for integrating the equations of motion. In the case

of the fishnet, a fourth order Runge-Kutta was implemented for solving the

ordinary differential equations system, while for the VWT a centered finite

difference, as the proposed by Ivanov (2001), was used for the integration. It

would be interesting, in order to improve the computational efficiency of the

simulation, to incorporate a higher order method, such as the one used for the

fishnet system, or even to consider the incorporation of an adaptive time step,

a potential future development that was beyond the scope of this research.

The three-dimensional coupled method for elastic and flexible structures

seems to represent qualitatively well the dynamics of the VWT. The amplitude

of the oscillations obtained in the simulations is consistent with the results

of the structural calculations from Section 3.1, as it was expected to obtain

oscillations with an approximated amplitude of 1.4 times the diameter at the

top end of the mast, compared to the amplitude of twice the diameter from

the simulation.

Another indication of the consistency of the model is that the frequency

of the oscillation (f) is practically the same to the vortex shedding frequency

(fvs), managing to capture the lock-in effect. And the vortex shedding fre-

quency is similar to the frequency calculated from the Strouhal number (St),

tabulated for cylinders as a function of the Reynolds number.

Although the displacement of the device is well captured for the transversal
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direction, it has to be taken into consideration that the study does not involve

all the parameters of a real situation, as in this simulation the force in the along

wind direction would not be transmitted to the rod, because the measurement

of the displacement in this direction is not considered relevant for the study.

Drag forces acting over the mast are quantitatively important, and they would

produce larger displacements in the stream-wise direction, this effect has not

been studied in this research.

However, this could be improved, for instance with a limiting hoop around

the rod. This is a physical and practical solution, and the representation in

the numerical model would be feasible by limiting the motion of the rod within

a hoop of radius Rlim, if the position of the last bar of the rod (r) is greater

or equal to Rlim, then only the component (Feθ), perpendicular to (r), of the

immersed boundary force (Fimb) is taken in consideration. Which is exactly

the kind of limitation that would be imposed to the movement in real settings

by an actual hoop.

Figure 5.1: Scheme of the limiting hoop

The limiting hoop was partially tested in the model, but the performance

was not as predictable as expected, and further research is needed, so that

modification to the device was not included in the simulations for the results

presented here. With respect to this, is worth clarifying that the modeling

of the generator that has been implemented is rather simple and performs

well for linear displacements only. If the aim was to harvest energy from

displacements in every direction, then other kind of power take off system

should be considered, for instance a joystick-type generator that could generate

with any angular displacement.
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Anyway, the simulation for the implemented generator performs quantita-

tively well, with values that are comparable in terms of peak and integrated

efficiencies to the ones presented by Bernitsas et al. (2008b,a) in experimental

physical tests for the VIVACE generator. Even taking into consideration that,

at least in the simulation stage, the vorticity turbines is less efficient than cur-

rent blade turbines, the practicality of the method in terms of cost, simplicity of

the installation, maintenance and affordability of updates and enhancements,

makes it a convenient and scalable solution that could complement rather well

other conventional means.

It should also be said that the conical shape of the mast was designed as

a means to achieve a perfect synchronization of the vortex shedding all along

the mast. Considering that the wind velocity increases with height in the

atmospheric boundary layer, the diameter of the oscillating structure should

also increase with height to favor the synchronization. In this research, only

uniform flows have been tested, but it would be very enriching to simulate the

efficiency of this devices under the dynamics of an atmospheric boundary layer.

Also further research would allow to determine the most efficient shape for

the mast to optimize the synchronization and therefore maximize the output

power. Nevertheless, the lock in effect was well captured in the simulations,

and synchronization was roughly achieved for the uniform flow. But there

is plenty of room for increasing accuracy in upcoming studies looking at the

same technology, incorporating new variables and more precise models, and

obtaining more predictive simulations.

It is worth mentioning the potential of the method to predict output power

for this type of systems, because the ability to test different designs or types of

applications would be easily implemented just by introducing the correspond-

ing changes in the code. For instance, those incorporations could allow testing

a more sophisticated power take off system or even considering the adaptation

of the device to produce energy underwater, harvesting the motion of waves

and currents.

Finally, with further research the computational method could be modified

to make a more complete representation of the dynamics in the rotor of a

conventional wind turbine. The method would allow to analyze in greater

detail the behavior of the blades by dividing them in many parts (that would

be analog to the representation of the rod in this work), and accounting both

normal and shear force, as well as bending and torsional moments in between
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each element composing the blade. With this implementation, a simulation of

a wind turbine rotor would provide meaningful results, more consistent with

reality, in terms of the mechanics of the blade as a deformable solid, and

its interaction with the fluid, with the correspondent extract of power from

the fluid. Such a model would allow to evaluate the elastic behavior of the

blade, including its effect on to energy production. Still, further research in

the methods of simulation would be required to achieve this goal.
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Appendix 1

Structural Analysys

For making the along-wind and across wind calculations, it is needed to firstly

characterize the local wind that will act over the studying structure, this is

where the structure is located or where it is expected to build it.

1.1 Wind Velocity and Pressure

In order to obtain the design values of wind and calculating the Peak Wind

Velocity Pressure the next steps are made according to the data given in the

Guide for the assessment of wind actions and effects on structures, Advisory

Committee on Technical Recommendations for Construction (2010). This data

corresponds to measurements made in Italy, but as in the case of the vorticity

wind turbines, the expectations are to place them not only in a specific place,

this data is used for the characterization.

1.1.1 Basic reference wind velocity

It is define as the maximum value of the 10-minute mean wind velocity at a

height of 10m above flat open country with roughness length z0 = 0.05m, for

a design return period TR = 50 years. Due to the lack of specific data, that

takes into account site roughness, terrain topography and wind direction, the

basic reference wind velocity vb is given by Eq. 1.1, where the basic reference

wind velocity at sea level is vb,0 = 27m/s, and the altitude coefficient is ca = 1,

thus:

vb = vb,0 · ca = 27m/s (1.1)
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1.1.2 Design return period and design reference velocity

Is the maximum value of the 10-minute mean wind velocity in same conditions

as the previous section, for a design return period TR = 50 years. Once again,

in the lack of accurate data, equation 1.2 is used, where the return coefficient

cr = 1.

vr = vb · cr = 27m/s (1.2)

1.1.3 Exposure category

It is assume that these devices are built in areas with roughness class D,

occasional isolated obstacles, such as open countryside, farmlands or pastures.

According to this the exposure category is II, with the following coefficients

values:

kr = 0.19 z0 = 0.05m zmin = 4m

1.1.4 Topography coefficient

This coefficient considers the contraction of the wind at the top of hills or the

funneling in valleys. In this case as the site is open country the topography

coefficient is ct = 1.

1.1.5 Mean Velocity

This value depends on the height above ground, and the exposure category.

For heights not exceeding z = 200m the mean wind velocity profile, with

TR = 50 years, is given by equation 1.3.

vm(z) = vr · cm(z) (1.3)

Where cm is the mean wind velocity profile coefficient provided by equation

1.4

cm(z) = kr · Ln
(
zmin
z0

)
· ct(zmin) = 0.833 for z 6 zmin (1.4a)

cm(z) = kr · Ln
(
z

z0

)
· ct(z) = 0.19 · Ln

(
z

0.05

)
for z > zmin (1.4b)
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And then, the mean wind velocity profile is,

vm(z) = 22.49m/s for z 6 zmin (1.5a)

vm(z) = 5.13 · Ln
(

z

0.05

)
for z > zmin (1.5b)

The mean wind velocity profile associated with the design retun periods TR =

1 year and TR = 500 years, can be determined by multipling this profile,

respectively, by the return coefficients cr = 0, 75 and cr = 1, 207.

Figure 1.1: Graph of the mean wind velocity for returns
periods of 1, 7, 50 and 500 years

1.1.6 Atmospheric turbulence

The turbulence intensity is the standard deviation of the longitudinal turbulent

component divided by the mean wind velocity.

Iv(z) =

[
Ln

(
zmin
z0

)
· ct(zmin)

]−1

= 0.228 for z 6 zmin (1.6a)

Iv(z) =

[
Ln

(
z

0.05

)]−1

for z > zmin (1.6b)

The turbulence length scale represents the average size of the eddies formed
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Figure 1.2: Graph of the turbulence intensity

in the atmospheric turbulence.

Lv(z) = L ·
(
zmin
z

)k
= 39.23 for z 6 zmin (1.7a)

Lv(z) = L ·
(
z

z

)k
= 300 ·

(
z

200

)0.52

for z > zmin (1.7b)

Figure 1.3: Graph of the integral length of turbulence
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1.1.7 Peak velocity pressure

The peak wind velocity pressure qP is the expected value of the maximum

wind velocity pressure over a time T = 10min.

qp(z) = 1/2 ρ v2
r ce(z) (1.8)

Where ρ is the air density (ρ = 1.25 kg/m3) and ce(z) is the exposure factor

given by the equation:

ce(z) =k2
r · Ln

(
zmin
z0

)
· ct(zmin)·[

Ln

(
zmin
z0

)
· ct(zmin) + 7

] for z 6 zmin (1.9a)

ce(z) =k2
r · Ln

(
z

z0

)
· ct(z) ·

[
Ln

(
z

z0

)
· ct(z) + 7

]
for z > zmin (1.9b)

Calculating with the values in previous sections the coefficient ce takes the

following form:

ce(z) = 1.80 for z 6 zmin (1.10a)

ce(z) = 0.036 · Ln
(

z

0.05

)
·
[
Ln

(
z

0.05

)
+ 7

]
for z > zmin (1.10b)

Thus, the peak wind velocity pressure for a return period TR = 50 years is:

qp(z) = 820N/m2 for z 6 zmin (1.11a)

qp(z) = 16.4 · Ln
(

z

0.05

)
·
[
Ln

(
z

0.05

)
+ 7

]
for z > zmin (1.11b)
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Figure 1.4: Graph of the Exposure coefficient

Figure 1.5: Graph of the peak wind velocity pressure for
return periods of 1, 7, 50 and 500 years
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1.2 Actions in the along-wind direction

The document first determines the aerodynamic actions in the along-wind

direction. For this the peak aerodynamic action per unit length is expressed

in Eq. (1.12), where qP (z) = peak wind velocity pressure; l = the reference

length; cfX = the force coefficient per unit length, calculated in Eq. (1.13).

fX(z) = qP (z) · D(z ) · cfX (1.12)

cfX = cfXo
(Re) ·Ψλ (1.13)

Here cfXo
is the coefficient per unit length for structures of infinite length, and

Ψλ takes account of edge reduction effects. These coefficients are calculated

as expressed in Eq. (1.14) to Eq. (1.16). Note that the same calculations can

be done to the transversal component force in y−direction and the torsional

moment in z−direction, which results theoretically zero in structures with

polar symmetry.

cfX o = 1 .255 +
0 .197 · log (10 · k/D)

1 + 0 .4 · log (Re/10 6 )
(1.14)

Ψλ = 0.45 + 0.25 · log λ (1.15)

λ =
L

Dref

(1.16)

Here k is the roughness of the surface, k = 0.005mm for a carbon-glass fiber

polished surface; and λ is the slenderness factor. As the coefficient per unit

length, cfXo, depends on the Reynolds number, which depends of the wind ve-

locity and the diameter of the structure, both variable with z, the calculations

are made at 14 different heights, results are resumed in Table 1.1.

For the calculation of the equivalent along wind static force, Eq. (1.17),

the critical damping ratio is previously calculated as the sum of the structural

and aerodynamic damping ratios, ξ = ξs + ξa, where ξs is tabulated for the

different materials and ξa is calculated with properties of the structure and

flow. With this the dynamic factor is calculated, cdD.

FD = fX · L · cdD (1.17)

cdD =
GD

1 + 7 · Iv(ze)
(1.18)
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Table 1.1: Resumed calculations of the Peak aerodynamic action per unit length
of the VWT

z [m] d [m] vm (m/s) Re cfXo cfx fx [N/m]
1 0.1 22.49 145,097 0.277 0.227 11.1
2 0.500 22.49 725,484 0.420 0.344 111.3
3 0.542 22.49 785,941 0.425 0.348 140.6
4 0.583 22.49 846,398 0.430 0.352 168.0
5 0.625 22.49 906,855 0.434 0.355 194.7
6 0.667 24.56 1,056,337 0.450 0.369 227.4
7 0.708 25.35 1,158,496 0.458 0.375 256.9
8 0.750 26.04 1,259,789 0.464 0.380 286.5
9 0.792 26.64 1,360,638 0.470 0.385 316.2
10 0.833 27.18 1,461,310 0.475 0.389 346.2
11 0.875 27.67 1,561,977 0.479 0.392 376.5
12 0.917 28.12 1,662,755 0.483 0.396 407.0
13 0.958 28.53 1,763,723 0.487 0.399 437.9
14 1.000 28.91 1,864,934 0.490 0.402 469.0

GD = 1 + 2 · gD · Iv(ze) ·
√

B2 + R2
R (1.19)

Here GD = along wind gust factor; Iv(ze) = turbulence intensity at the ref-

erence height; dD = along wind peak factor; B = background factor; RR =

resonant response factor. Following Eq. (1.20) to Eq. (1.26) FD can be calcu-

lated.

B2 =
1

1 + 0.9 ·
(
Dref+L

Lv(z)

)0.63 (1.20)

R2
R =

π

4ξs
SD · RL · RD (1.21)

SD =
6.868 · fN · Lv(ze)/vm(ze)[

1 + 10.32 · fN · Lv(ze)/vm(ze)

]5/3 (1.22)

RL =
1

ηL
− 1

2η2
L

(
1− exp−2ηL

)
with ηL = 4

fN · L
vm(ze)

(1.23)

RD =
1

ηD
− 1

2η2
D

(
1− exp−2ηD

)
with ηD = 4

fN · Dref

vm(ze)
(1.24)
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gD =
√

2 · ln(vD · T ) +
0.5772√

2 · ln(vD · T )
(1.25)

vD = fN ·

√
R2
R

B2 +R2
R

(1.26)

Where Lv(ze) = turbulence length scale; T = mean wind velocity averaging

time, T = 600s. Table 1.2 summarize the calculations towards the value of

cdD.

Table 1.2: Resumed calculations for determining the Dynamic Factor for the VWT

Equation Parameter

Figure 3.1
Ltot = 14m
Dref = 0.77m
ze = 8.4m

Eq. (1.5) vm(ze) = 26.06m/s
Eq. (1.6) Iv(ze) = 0.196
Eq. (1.7) Lv(ze) = 154.71

Figure 3.2a fN = 2.09Hz
Section 3.1 ξ = 0.008
Eq. (1.20) B2 = 0.83
Eq. (1.22) SD = 0.0252
Eq. (1.23) ηL = 4.49
Eq. (1.24) ηD = 0.343
Eq. (1.23) RL = 0.198
Eq. (1.24) RD = 0.806
Eq. (1.21) R2

R = 0.3948
Eq. (1.26) vD = 1.187
Eq. (1.25) gD = 3.784
Eq. (1.19) GD = 2.642
Eq. (1.18) cdD = 1.114

The equivalent along wind static force is the product of the peak aero-

dynamic actions and the dynamic coefficient. So integrating along the ver-

tical axis of the structure (using Table 1.1) for a value of cdD = 1.114,

FD = 3, 377N .
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