

PEDECIBA Informática
Instituto de Computación – Facultad de Ingeniería

Universidad de la República
Montevideo, Uruguay

Reporte Técnico RT 14-09

 Recovering Historical Climate Records using

Artificial Neural Networks in GPU

 Juan Pablo Balarini, Sergio Nesmachnow

2014

Recovering historical climate records using
Artifical neural networks in GPU
ISSN 0797-6410
Reporte Técnico RT 14-09
PEDECIBA
Instituto de Computación – Facultad de Ingeniería
Universidad de la República
Montevideo, Uruguay, 2014

Recovering Historical Climate Records

using Artificial Neural Networks in GPU

Juan Pablo Balarini, Sergio Nesmachnow

Centro de Cálculo, Facultad de Ingeniería, Universidad de la República, Uruguay

{jpbalarini,sergion}@fing.edu.uy

Abstract. This article presents a parallel implementation of Artificial Neural

Networks over Graphic Processing Units, and its application for recovering his-

torical climate records from the Digi-Clima project. Several strategies are intro-

duced to handle large volumes of historical pluviometer records, and the paral-

lel deployment is described. The experimental evaluation demonstrates that the

proposed approach is useful for recovering the climate information, achieving

classification rates up to 76% for a set of real images from the Digi-Clima pro-

ject. The parallel algorithm allows reducing the execution times, with an accel-

eration factor of up to 2.15×.

Keywords: artificial neural networks, image processing, climate records, GPU

1 Introduction

Studying the behavior of climate variables through time is crucial for science, in-

dustry, disaster prediction, and many other applications. Climate prediction is very

important in short-term decision making, i.e. in agriculture, but also for long-term

situations, i.e. to know sea levels in the next hundred years. Specific applications,

such as bombing control on sewer systems, or water level prediction in a flood warn-

ing system can benefit of knowing long-term series (30+ years) of climate variables.

The scientific community is interested on recovering climate data stored through

the years. When the search looks back in time, climate records are very scarce and

difficult to recover. Furthermore, the preservation of records gathered in the pre-

digital era is in danger of destruction. In Uruguay, we keep a systematic recording of

climate variables from the early 1900s, most of them stored in paper. This data is of

great value for science, but it has limited utilization in nowadays computerized sys-

tems, mainly due to the paper storage, and of course its preservation is in danger.

A transcription is needed for the historical information to be properly used on

nowadays systems. In some cases, just like for pluviometer records, the transcription

can be automatized by using digitalization and data recovering. The Digi-Clima pro-

ject [1] proposes developing an efficient application for digitalizing the scanned out-

put of pluviometers, originally collected in graphic paper bands, recovering the cli-

mate data, and storing it in a database of historical climate records.

2

Previous articles have presented the application of parallel scientific computing

techniques to solve the problem tackled in the Digi-Clima project. In [2, 3] the solu-

tions developed by applying parallel computing techniques in cluster and grid compu-

ting platforms were described. Both approaches were appropriate to solve the prob-

lem, achieving accurate speedup values when executing in dedicated computing infra-

structures. The approach described in [4] is based on using volunteer-computing plat-

forms. All the previous works were based on using specific image-processing tech-

niques for recovering the information, which use several features of advanced

MATLAB routines, including interpolation, counting, noise reduction, and others. In

this article, we introduce a novel approach to tackle the problem using soft computing

techniques: we apply neural networks (ANN) trained on Graphic Processing Units

(GPU), to recover the rain information stored in paper data bands.

 The main contributions of this article are: i) introducing an ANN approach for re-

covering historical climate information, ii) a deployment over GPUs that allows re-

ducing the execution times significantly, and iii) the experimental analysis performed

using a set of representative images from the Digi-Clima project, which demonstrates

the efficacy of the proposed approach, achieving classification rates up to 76%.

The rest of the article is organized as follows. Section 2 describes the Digi-Clima

project and reviews related works about historical climate data processing. Section 3

introduces the main concepts about ANNs and GPUs for parallel computing. After

that, the strategies for climate data classification using ANN are described in Section

4. Section 5 reports the experimental evaluation of the proposed approach, studying

the solution quality and computational efficiency. Finally, Section 6 summarizes the

conclusions and formulates the main lines for future work.

2 Digi-Clima: Recovering Historical Climate Records

This section describes the Digi-Clima project and related works about recovering

historical climate data.

2.1 The Digi-Clima Project

In Uruguay, the National Direction of Meteorology systematically stored climate data

(manuscript reports, graphic records of pluviometers and other devices) from the early

1900s. They are very useful for studying climate phenomena and for weather forecast-

ing using numerical models. However, analyzing and using the historical climate data

is very difficult due to the paper-format in which they are stored, and their preserva-

tion is in danger, because of the paper deterioration when the records are handled.

The Digi-Clima project proposes developing a semi-automatic method for digital-

izing the rain intensity records from weather stations across the country, in order to

guarantee their preservation. The resulting data is stored in a database of historical

climate records, making possible the utilization of the data in numerical models.

The rain records are stored in millimeter paper bands, where a pluviometer record-

ed the amount of rain accumulated in a certain period for a given zone of the country.

3

Each band contains the pluviometer records, and on the reverse, manuscript anno-

tations indicating the beginning/end of the register, and the scale for the maximum

value of the rain records for the band, among other significant information. The plu-

viometer draw a continuous line, reasonably smooth and (piecewise) monotonically

increasing, indicating the amount of rain accumulated on the device. The value grows

until the pluviometer capacity is reached. Then, a vertical fall to zero indicates that

the device is emptied, and the measuring process starts again.

Fig. 1 describes the recording process using pluviometers and presents an example

of the historical rain records. The sample band shows several of the troubles that

make the recovering problem difficult: a discontinuous ink line, ink stains, different

intensity levels, and other defects due to measuring using an analogic device. Fur-

thermore, manuscript annotations are also present in the band to account for addition-

al data, usually written by operators when removing the band from the pluviometer.

Fig. 1. Recording process and historical record band.

2.2 Related work

Some previous works have tackled similar problems, but using different approaches

than the semi-automatic recovering proposed by Digi-Clima. A number previous

works were focused on analyzing specific short-time climate phenomena, thus they

analyzed significantly fewer volumes of data than the ones handled by Digi-Clima.

One of the first initiatives for systematic recovering historical climate data was the

CLIWOC project [5], which built a database of climate observations based on thou-

sands records (date, location, weather, wind speed/direction, sea, ice, air temperature

and pressure) stored manually and in natural language from vessels logbooks between

1750 and 1850. CLIWOC also developed a dictionary that allowed unifying several

criteria and terminology used in the logbooks in more than 100 years.

The RECLAIM project [6] continues the work started in CLIWOC, by processing

data that were not included in the original process. At the long-term, RECLAIM pro-

poses processing records from the instrumental era (1853–nowadays).

4

The Old Weather Project [7] focuses on extracting data from digital images by us-

ing volunteer human operators. In order to make more attractive the task and gather-

ing more collaborators, the project developed an online game: a player subscribes and

chooses a real ship with climate data logbooks to digitalize, earning experience and

points by transcribing data, which allows him to be promoted to higher ranks.

The previous projects are related to Digi-Clima, since they propose transcribing

historical climate records, and demonstrate that the research community is interested

in the problem of recovering historical climate data stored in non-digital format.

Other works [2,3,4] applied parallel computing techniques in cluster, grid, and

cloud computing platforms to speed up the digitalization process in Digi-Clima.

The review of the related work allowed our research group to understand the state-

of-the-art about recovering historical data. However, none the similar projects have

developed efficient methods for automatic transcription of data, because all of them

are based on human operators. Furthermore, there are no antecedents of applying soft

computing/parallel computing techniques to the recovering process. Thus, the ap-

proach applied in this article is a contribution in this line of research, by proposing

using an efficient ANN approach to efficiently solve the digitalization problem.

3 Artificial Neural Networks and GPU computing

ANNs provide a practical method for learning real, discrete, and/or vector-valued

functions from examples, by fitting a training set of input-output pairs. ANNs are

robust to errors in the training data and has been successfully applied to problems

such as image and speech recognition, and learning robot control strategies [8].

Fig. 2(a) presents the general schema of an ANN. There is a set of neurons con-

nected with each other. Each neuron receives several input data, perform a linear

combination and produces a result, which evaluates some function f(x) for the value x.

Fig. 2. (a) Schema of an ANN and (b) A single neuron.

The neurons are grouped in several layers: i) input layer: receives the problem in-

put; ii) hidden layer(s): receives data from the input layer or from another hidden

layer, and forwards the processed data to the next layer (there may be multiple hidden

layers with multiple neurons each); iii) output layer: determines the output of the

processing for a certain problem instance (may have multiple neurons).

Fig. 2(b) shows a schema for a neuron: first, a linear combination of the neuron in-

put data , weights , and an independent coefficient is made; then, the output is

evaluated at some well-known activation function, to produce the neuron output.

5

In this article, the ANN used to recover historical climate data is trained with the

backpropagation algorithm. Backpropagation learns the weights for a multilayer

ANN with a fixed set of units and interconnections, by applying the gradient descent

method (Algorithm 1) to minimize the squared error between the output values and

the target values. The learning problem faced by backpropagation implies searching

in a large space defined by all possible weight values for all neurons.

Backpropagation (training_examples, , , ,)

Each training example is a pair , is the vector of ANN input values, and is the vector

of target ANN output values; is the learning rate, is the number of ANN inputs, the

number of units in the hidden layer, and the number of output neurons.

The input from neuron i into neuron j is , and the weight from neuron i to neuron j is .

1. create a feedforward ANN with inputs, hidden units, and output neurons.

2. initialize all to small random numbers

3. while the termination condition is not met do

 for each in training_examples do

 input instance , compute output for every neuron {propagate input forward}

 for each output neuron , calculate the error term {propagate errors backward}

 for each hidden neuron , calculate the error term {propagate errors backward}

 , where {update each }

Algorithm 1. Stochastic gradient descent backpropagation algorithm for feedforward ANNs.

Backpropagation starts by constructing an ANN with the desired number of hid-

den/output neurons and initializing all weights to random numbers. Given this fixed

ANN structure, the main loop of the algorithm iterates applying the ANN to each

training example, computing the gradient with respect to the error on the example,

and then updating all weights in the ANN using the learning_rate constant. The gra-

dient step is iterated (using the same training examples multiple times) until the ANN

performs acceptably well [9]. The propagation of the input data through the ANN is

applied for evaluating a single instance. The presented ANN uses neurons of sigmoid

type with activation function .

GPUs provide a large computing power by using hundreds of processing units with

reasonable clock frequencies. In the last ten years, GPUs have been used as powerful

parallel hardware to execute applications efficiently. High-level languages were de-

veloped to exploit the GPU capabilities. NVIDIA CUDA [10] extends the C lan-

guage, providing three software layers: a low-level driver for CPU-GPU data trans-

fers, a high-level API, and a set of libraries for scientific computing. GPUs are able to

create, manage, and execute a large number of light processes (threads) in parallel,

with reduced overhead. Threads are grouped in blocks (with up to 512 threads), exe-

cuted in a single multiprocessor on the GPU. Three memory spaces are available: the

local memory of each thread, a shared memory for threads in a block; and the global

memory of the GPU. Two important features to achieve efficiency are avoiding thread

creation (reducing the thread creation overhead), and minimizing the access to slow

local and global memories, preferably using the shared memory which is placed with-

in the GPU chip, providing a faster way to store the data.

6

In this work, a specific version of the backpropagation algorithm was implemented

in GPU. We adapted Algorithm 1 to take into account the communication between the

GPU processing units. GPU threads are assigned to execute over certain neurons on

the ANN. Before executing a on the GPU, a function-dependent domain decomposi-

tion is applied to maximize the parallel execution, (i.e. each GPU thread works inde-

pendently from each other), and to avoid serializations in the memory access.

4 Historical Climate Record Classification using ANN

This section describes the proposed strategies for recovering climate records using

ANNs. All approaches are based on using the data of a training set of images to train

the ANN to be used later to process other images in the Digi-Clima database.

4.1 Proposed strategies

We studied three strategies for solving the problem, which are described next.

Full image, one neuron per pixel. Our first idea was applying a common approach for

image processing with ANNs, using all the image data (one neuron per pixel) as input

(Fig. 3). This approach has been previously used for face recognition [10, 11], and we

adapted it for pluviometer image processing by including a second hidden layer and

the parallel GPU version. The output of the ANN is the time series of rain records.

Fig. 3. Using the full image information for an M´N (pixels) image.

After performing validation experiments, this approach was discarded mainly be-

cause the ANN gave much importance to noise (background, annotations), failing to

learn the correct information. Furthermore, for Digi-Clima images, we also detected

other drawbacks: i) both ANN/GPU did not properly handle full information from

large uncompressed images, ii) the GPU memory limit is easily reached, and iii) the

processing times increase significantly, making more difficult to validate the solution.

Swapping strategies: by zones and by rows/columns. Swapping strategies are based

on reducing the input information for the ANN. Initially, we divided the image in

zones, taking into account the relative position of each zone for the classification (Fig.

4(a)). This approach was unable to get a good learning behavior because the zones

that do not provide useful information confuse the ANN.

7

After that, we proposed swapping horizontally/vertically, using rows/columns as

the ANN input (Fig. 4(b)). After initial validation experiments performed on random

black and white images with size 32´30 pixels, we concluded that using columns is a

more useful approach, due to the continuity of the rain records and the reduced influ-

ence of noise. Swapping by rows confuses the ANN, mainly due to large discontinui-

ties on row values and due to existing more than one rain value per row.

Fig. 4. Swapping strategies: (a) by zones and (b) by rows/columns.

An improved technique was then included in the column swapping approach, using

information from nearby columns for the classification. This information is useful to

process regions with discontinuities and breaks in the ink line. We followed an incre-

mental strategy, by studying the ANN architecture and learning behavior for small

images (32´30 pixels) and then increasing the size and complexity of the images,

until finding a correct method for classifying representative Digi-Clima images.

4.2 ANN architecture and implementation details

Input and output. In order to reduce the information handled, the ANN input is en-

coded as real-valued numbers. Three approaches were studied for the ANN output: i)

using one (real) output neuron for the functional value for each column; ii) encoding

the value for a given column, having as many outputs as rows in the image: the ANN

output for a certain column is the index of the activated output, or the one with the

largest value if multiple neurons are active; and iii) encoding the value for a given

column in binary, thus only outputs are needed for an image with rows, and

those neurons corresponding to the output in “1” are activated. Preliminary experi-

ments demonstrated that the first and the second approach obtained the best results.

Activation function and weights. We use an activation function that provides a

trade-off between the activation/gradient variations, to enable the correct data flow in

both ways of the backpropagation and reducing discrepancies between layers (is

the number of input neurons, and is the number of hidden neurons) [9]:

 (1)

We applied initialization policies to have small weights centered at zero, for the

sigmoid activation function to operate in linear regime and maximize the gradient.

Learning process. Each column from each image on the training set is used to feed

the ANN for training. The input for each iteration is the processed column and a given

number (total_neighbours) of neighboring columns. The ANN input layer is loaded to

8

the GPU, using total_neighbours blocks, and as many threads per block as the number

of rows in the input image; each block will load a column from the image.

To decide whether a column was correctly classified or not, an error threshold is

used when contrasting the ANN output with the expected one. The classification rate

for a set of images is the average of correctly classified columns for the images in the

set. The training error for an image is the sum of the errors over all its columns.

4.3 GPU implementation

ANN training is a key component of the algorithm, which is performed entirely on

the GPU. Fig. 5 shows the steps to train the ANN, for the entire training data set.

Fig. 5. Diagram of ANN training in GPU.

Fig. 6. Parallel ANN in GPU: forward from input layer to hidden layer.

The GPU architecture is mostly exploited when performing training and classifica-

tion. For example (see Fig. 6), when forward is performed from the input layer to the

hidden layer, the parallel algorithm creates as many blocks as hidden neurons exists.

Each block will work with one neuron from the hidden layer and each thread in a

block will compute the linear combination of the weights that go to that neuron by the

data that comes from the input layer (the algorithm works using as many threads per

block as input neurons are). Similar levels of parallelism are achieved on the rest of

the used functions, changing the role of each block and each thread on a block.

9

5 Experimental Analysis

This section reports the experimental evaluation of the proposed ANN approach for

recovering historical climate records, studying the classification rate and computa-

tional efficiency of the proposed GPU implementation.

5.1 Evaluation platform and problem instances

Evaluation platform. The parallel algorithm was developed in C++, using CUDA,

Python (for auxiliary programs), and Fedora 15 (64 bits) OS. The experimental evalu-

ation was performed on an Intel Core i7-2600 3.4 GHz processor with 16 GB RAM

DDR3 and Fedora 15 (64 bits), using a GeForce GTX 480 GPU, with 1.5 GB RAM.

Problem instances. Three sets of images were used in the experimental analysis: i) 30

small images (32×30 pixels) randomly generated for debug and validation: 10 images

(320 training samples) in the training list, and 10 images (320 samples) in both vali-

dation sets (test1 and test2); ii) 30 medium-size images (2096×456 pixels), without

noise and one active row for each column: 10 images (20960 training samples) in the

training list and 5 images (10480 validation samples) in both test1 and test2; and iii)

58 pre-processed Digi-Clima images, built by applying filters to eliminate irrelevant

data on the original images (size 7086×1496 pixels, JPEG, 400 DPI, 3 color channels,

24 bits) and scaled down to 2096×456 pixels: 28 images (58688 training samples) in

the training list, and 15 images (31440 validation samples) in both test1 and test2.

5.2 Results and discussion

In order to validate the algorithm, we considered that the rate of correctly classified

records for instances never seen by the ANN should be greater than 75%, meaning

that we can rebuild the pluviometer graph without losing relevant information, ac-

cording to our empirical experience from the Digi-Clima project.

The ANN training is performed using all the images on the training set, and then

the performance is evaluated using the images from sets test1 and test2 (concluding a

cycle). Depending on image size (due to execution times), training and evaluation

over all images is performed times (epochs) to conclude an execution cycle. The

reported values are the average of 5 execution cycles.

Solution quality. In the classification experiments, we first studied the classifica-

tion rates for small images, in order to later scale the solution. We report the results

using the swapping by column strategy, as it computed the best results overall.

The results for 32×30 images are presented in Table 1, using one hidden layer with

5 and 20 neurons, and using two hidden layers, with 50 and 10 hidden neurons each.

The results correspond to 100 epochs and using 30 outputs, one for each row in the

image. The considered accepted error rate was 0%, meaning that the classification for

some column is correct if it exactly matches its expected value.

It is observed that classification rates up to 93.90% are obtained when using 20

neurons in the hidden layer. However, increasing the number of hidden neurons does

10

not allow achieving better results; despite of representing a more complex function, it

is more difficult to learn the correct information. The differences on the classification

rates between the parallel and the sequential algorithm is due to the different represen-

tation for floating point numbers in CPU and GPU.

Table 1. Classification rates, small images (32×30 pixels)

neurons
classification rate

learning parameters

input hidden output learning rate momentum

sequential

90 5 30 74.93% 0.90 0.30

90 20 30 93.92% 0.80 0.30

90 50+10 30 83.34% 0.90 0.30

parallel

90 5 30 68.62% 0.90 0.30

90 20 30 93.90% 0.80 0.30

90 50+10 30 78.27% 0.70 0.30

We studied different architectures using several numbers of neighboring columns

(0, 2, 4, 6, 8). The best classification results (93.43% for the sequential and 92.49%

for the parallel implementation) were obtained when using two neighbours, learning

rate 0.3, 90 neurons in the input layer, 20 in the hidden layer, and 30 output neurons.

Table 2 reports the results for 2096×456 images (raw and pre-processed) using:

one hidden layer with 30 and 90 neurons; two hidden layers, with 90 and 30 neurons

each; and 456 (one output per row) and one neuron. The results correspond to 100 and

500 epochs (for the best network architecture). The accepted error rate is 5%.

Table 2. Classification rates, medium-size images (2096×456 pixels)

neurons
epochs image type

classification
rate

learning parameters

input hidden output learning rate neighbours

sequential

1368 30 456 100 raw 36.68% 0.04 3

1368 30 1 100 raw 49.90% 0.05 3
1368 90 456 100 pre-processed 52.91% 0.10 3

1368 90+30 1 100 pre-processed 59.63% 0.20 3

1368 90+30 1 500 pre-processed 74.26% 0.20 3

parallel

1368 30 456 100 raw 34.98% 0.50 3

1368 30 1 100 raw 50.01% 0.05 3

1368 90 456 100 pre-processed 52.78% 0.10 3
1368 90+30 1 100 pre-processed 61.05% 0.20 3

1368 90+30 1 500 pre-processed 76.23% 0.20 3

The results in Table 2 indicate that the best classification rates are obtained when

using two hidden layers, with 90 and 30 neurons. When increasing the number of

epochs, the classification rate for the algorithm improves. Using a learning_rate 0.20,

classification rates of 76.23% are achieved using 500 epochs.

We conclude that the proposed approach is valid to address the historical records

recovering problem. We found an ANN architecture that uses a single output neuron

and obtains classification rates greater than 75% for new instances.

11

Execution times. Table 3 reports the execution time evaluation of the proposed

ANN implementation on GPU, when using different architectures and parameters

(number of neighboring columns and neurons in the input/hidden/output layer). The

execution times correspond to average and standard deviation computed in 10 inde-

pendent executions performed for each scenario. The speedup indicates the accelera-

tion when using the parallel implementation with respect to the sequential one.

Table 3. Performance evaluation of the proposed ANN on GPU

image size input hidden output time sequential(s) time parallel(s) speedup

2096×456 1368 30 456 4933.01± 12.91 4613.69±7.29 1.06

2096×456 1368 60 456 10523.91±28.95 6285.34±11.14 1.67

2096×456 1368 90 456 12037.62±74.37 7856.80±7.49 1.53
2096×456 1368 90+30 456 16907.92±27.90 11455.66±14.77 1.47

2096×456 1368 30 1 3330.55±7.09 2998.31±9.29 1.11

2096×456 1368 60 1 9081.93±11.46 4214.83±20.72 2.15
2096×456 1368 90 1 10358.51±22.38 5545.01±18.86 1.86

2096×456 1368 90+30 1 10598.11±27.37 5928.30±21.83 1.78

Table 3 shows that the proposed parallel implementation in GPU reduces the train-

ing times significantly when compared against a sequential implementation. The best

speedup is obtained for 60 neurons in the hidden layer: 1.67 when using one output

neuron per row, and 2.15, the best overall, when using only one output neuron. For

the architecture that obtained the best classification values (one output neuron, 90+30

hidden neurons), the speedup value is 1.78. These results suggest that the proposed

parallel ANN implementation in GPU is an efficient option to speed up the resolution

of the historical climate records classification problem.

6 Conclusions and future work

ANNs have proved to be effective for solving many real-world problems. However,

ANN are not popular when handling large data sets and/or complex problems, due to

the large training times required. Actually, parallel computing using GPUs achieves

significant performance improvements over traditional CPU implementations. This

article has presented a parallel GPU implementation of an ANN approach to solve the

historical climate records classification problem. The proposed approach provides a

general method for solving classification/recognition/image processing problems.

The main contributions of this work include the design and implementation of an

ANN-based algorithm that obtains accurate classification rates (over 75%) on reason-

able execution times. This method provides a new alternative for recovering historical

climate data and it allows comparing against the image-processing algorithm devel-

oped in the Digi-Clima project. The proposed parallel strategy is based on executing

multiple threads on a GPU, each one working with multiple neurons, trying to keep

threads independent from each other. Each kernel function was designed to take ad-

vantage of the GPU platform (e.g., certain kernels are assigned to compute over more

than one neuron, to avoid the thread creation overhead). Furthermore, the GPU shared

memory was used in order to avoid the latency on the global memory access.

12

The experimental analysis shows that reasonable accurate classification results are

obtained, and that the GPU implementation allows reducing the execution times when

compared to a sequential implementation. A speedup of 2.15 is obtained when using

an ANN with 1368 inputs, 60 hidden neurons and a single output. The architecture

that obtained the best classification rates has a speedup of 1.78.

The main lines for future work are focused on improving the efficacy and efficien-

cy of the presented algorithm and also tackle other classification/image processing

problems using parallel ANN over GPUs. Regarding the first line of work, better

execution times could be achieved if kernel invocation parameters are better adjusted

to avoid problems such as thread divergence, or if a better GPU resource management

is made (in the use of shared memory for example) for instances of considerable size.

In addition, certain constants (such as momentum or learning_rate) could be auto-

tuned by the algorithm to obtain the best classification rates. Regarding the second

line of work, the developed algorithm could be used for classification of similar types

of images such as images produced by electrocardiograms, seismometers, etc.

References

1. Nesmachnow, S., Usera, G., Brasileiro, F.: Digi-Clima Grid: procesamiento de imágenes y

computación distribuida para la recuperación de datos del acervo climático. IEEE Compu-

ting Latin America (2014)

2. Usera, G., Nesmachnow, S., Brasileiro, F., Da Silva, M., García S.: Recovering historical

climate records through grid computing. In: Latin American eScience Workshop 2013, São

Paulo, Brazil (2013)

3. Nesmachnow, S., García, S., Usera, G., Brasileiro, F.: Grid computing para la recuperación

de datos climáticos. In: VI Conferencia Latinoamericana de Computación de Alto Rendi-

miento, San José, Costa Rica (2013)

4. Nesmachnow, S., Da Silva, M.: Semi-automatic historical climate data recovering using a

distributed volunteer grid infrastructure. In: 5th International Supercomputing Conference,

Ensenada, México (2014)

5. García-Herrera, R., Können, G., Wheeler, D., Prieto, M., Jones, P., Koek, F.: CLIWOC: A

climatological database for the World’s oceans 1750–1854. Climatic Change, 73, pp. 1–12

(2005)

6. Wilkinson, C., Woodruff, S., Brohan, P., Claesson, S., Freeman, E., Lubker, S., Marzin, C.,

Wheeler, D.: Recovery of logbooks and international marine data: the RECLAIM Project.

Int. J. Climatology 31(7), 968–979 (2011)

7. Old weather project, http://www.oldweather.org, accessed May 2014.

8. Mitchell, T.: Machine Learning. McGraw Hill, New York (1997)

9. Glorot, X., Bengio, Y. Understanding the difficulty of training deep feedforward neural

networks. Journal of Machine Learning Research 9, 249–256 (2010)

10. Wilt, N.: The CUDA Handbook: A Comprehensive Guide to GPU Programming. Addison-

Wesley Professional, Boston (2013)

11. Balarini, J., Rodríguez, M., Nesmachnow, S.: Facial Recognition Using Neural Networks

over GPGPU. CLEI Electronic Journal 15(3), 1-12 (2012)

12. Bishop, C.: Neural Networks for Pattern Recognition.Clarendon Press, Oxford. (1995).

