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Abstract. This article presents a parallel implementation of Artificial Neural 

Networks over Graphic Processing Units, and its application for recovering his-

torical climate records from the Digi-Clima project. Several strategies are intro-

duced to handle large volumes of historical pluviometer records, and the paral-

lel deployment is described. The experimental evaluation demonstrates that the 

proposed approach is useful for recovering the climate information, achieving 

classification rates up to 76% for a set of real images from the Digi-Clima pro-

ject. The parallel algorithm allows reducing the execution times, with an accel-

eration factor of up to 2.15×. 
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1 Introduction 

Studying the behavior of climate variables through time is crucial for science, in-

dustry, disaster prediction, and many other applications. Climate prediction is very 

important in short-term decision making, i.e. in agriculture, but also for long-term 

situations, i.e. to know sea levels in the next hundred years. Specific applications, 

such as bombing control on sewer systems, or water level prediction in a flood warn-

ing system can benefit of knowing long-term series (30+ years) of climate variables. 

The scientific community is interested on recovering climate data stored through 

the years. When the search looks back in time, climate records are very scarce and 

difficult to recover. Furthermore, the preservation of records gathered in the pre-

digital era is in danger of destruction. In Uruguay, we keep a systematic recording of 

climate variables from the early 1900s, most of them stored in paper. This data is of 

great value for science, but it has limited utilization in nowadays computerized sys-

tems, mainly due to the paper storage, and of course its preservation is in danger.  

A transcription is needed for the historical information to be properly used on 

nowadays systems. In some cases, just like for pluviometer records, the transcription 

can be automatized by using digitalization and data recovering. The Digi-Clima pro-

ject [1] proposes developing an efficient application for digitalizing the scanned out-

put of pluviometers, originally collected in graphic paper bands, recovering the cli-

mate data, and storing it in a database of historical climate records.  
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Previous articles have presented the application of parallel scientific computing 

techniques to solve the problem tackled in the Digi-Clima project. In [2, 3] the solu-

tions developed by applying parallel computing techniques in cluster and grid compu-

ting platforms were described. Both approaches were appropriate to solve the prob-

lem, achieving accurate speedup values when executing in dedicated computing infra-

structures. The approach described in [4] is based on using volunteer-computing plat-

forms. All the previous works were based on using specific image-processing tech-

niques for recovering the information, which use several features of advanced 

MATLAB routines, including interpolation, counting, noise reduction, and others. In 

this article, we introduce a novel approach to tackle the problem using soft computing 

techniques: we apply neural networks (ANN) trained on Graphic Processing Units 

(GPU), to recover the rain information stored in paper data bands. 

 The main contributions of this article are: i) introducing an ANN approach for re-

covering historical climate information, ii) a deployment over GPUs that allows re-

ducing the execution times significantly, and iii) the experimental analysis performed 

using a set of representative images from the Digi-Clima project, which demonstrates 

the efficacy of the proposed approach, achieving classification rates up to 76%. 

The rest of the article is organized as follows. Section 2 describes the Digi-Clima 

project and reviews related works about historical climate data processing. Section 3 

introduces the main concepts about ANNs and GPUs for parallel computing. After 

that, the strategies for climate data classification using ANN are described in Section 

4. Section 5 reports the experimental evaluation of the proposed approach, studying 

the solution quality and computational efficiency. Finally, Section 6 summarizes the 

conclusions and formulates the main lines for future work. 

2 Digi-Clima: Recovering Historical Climate Records 

This section describes the Digi-Clima project and related works about recovering 

historical climate data. 

2.1 The Digi-Clima Project 

In Uruguay, the National Direction of Meteorology systematically stored climate data 

(manuscript reports, graphic records of pluviometers and other devices) from the early 

1900s. They are very useful for studying climate phenomena and for weather forecast-

ing using numerical models. However, analyzing and using the historical climate data 

is very difficult due to the paper-format in which they are stored, and their preserva-

tion is in danger, because of the paper deterioration when the records are handled. 

The Digi-Clima project proposes developing a semi-automatic method for digital-

izing the rain intensity records from weather stations across the country, in order to 

guarantee their preservation. The resulting data is stored in a database of historical 

climate records, making possible the utilization of the data in numerical models. 

The rain records are stored in millimeter paper bands, where a pluviometer record-

ed the amount of rain accumulated in a certain period for a given zone of the country.  
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Each band contains the pluviometer records, and on the reverse, manuscript anno-

tations indicating the beginning/end of the register, and the scale for the maximum 

value of the rain records for the band, among other significant information. The plu-

viometer draw a continuous line, reasonably smooth and (piecewise) monotonically 

increasing, indicating the amount of rain accumulated on the device. The value grows 

until the pluviometer capacity is reached. Then, a vertical fall to zero indicates that 

the device is emptied, and the measuring process starts again.  

Fig. 1 describes the recording process using pluviometers and presents an example 

of the historical rain records. The sample band shows several of the troubles that 

make the recovering problem difficult: a discontinuous ink line, ink stains, different 

intensity levels, and other defects due to measuring using an analogic device. Fur-

thermore, manuscript annotations are also present in the band to account for addition-

al data, usually written by operators when removing the band from the pluviometer. 

 

 

Fig. 1. Recording process and historical record band. 

2.2 Related work 

Some previous works have tackled similar problems, but using different approaches 

than the semi-automatic recovering proposed by Digi-Clima. A number previous 

works were focused on analyzing specific short-time climate phenomena, thus they 

analyzed significantly fewer volumes of data than the ones handled by Digi-Clima. 

One of the first initiatives for systematic recovering historical climate data was the 

CLIWOC project [5], which built a database of climate observations based on thou-

sands records (date, location, weather, wind speed/direction, sea, ice, air temperature 

and pressure) stored manually and in natural language from vessels logbooks between 

1750 and 1850. CLIWOC also developed a dictionary that allowed unifying several 

criteria and terminology used in the logbooks in more than 100 years.  

The RECLAIM project [6] continues the work started in CLIWOC, by processing 

data that were not included in the original process. At the long-term, RECLAIM pro-

poses processing records from the instrumental era (1853–nowadays). 



4 

 

The Old Weather Project [7] focuses on extracting data from digital images by us-

ing volunteer human operators. In order to make more attractive the task and gather-

ing more collaborators, the project developed an online game: a player subscribes and 

chooses a real ship with climate data logbooks to digitalize, earning experience and 

points by transcribing data, which allows him to be promoted to higher ranks.  

The previous projects are related to Digi-Clima, since they propose transcribing 

historical climate records, and demonstrate that the research community is interested 

in the problem of recovering historical climate data stored in non-digital format. 

Other works [2,3,4] applied parallel computing techniques in cluster, grid, and 

cloud computing platforms to speed up the digitalization process in Digi-Clima. 

The review of the related work allowed our research group to understand the state-

of-the-art about recovering historical data. However, none the similar projects have 

developed efficient methods for automatic transcription of data, because all of them 

are based on human operators. Furthermore, there are no antecedents of applying soft 

computing/parallel computing techniques to the recovering process. Thus, the ap-

proach applied in this article is a contribution in this line of research, by proposing 

using an efficient ANN approach to efficiently solve the digitalization problem. 

3 Artificial Neural Networks and GPU computing 

ANNs provide a practical method for learning real, discrete, and/or vector-valued 

functions from examples, by fitting a training set of input-output pairs. ANNs are 

robust to errors in the training data and has been successfully applied to problems 

such as image and speech recognition, and learning robot control strategies [8].   

Fig. 2(a) presents the general schema of an ANN. There is a set of neurons con-

nected with each other. Each neuron receives several input data, perform a linear 

combination and produces a result, which evaluates some function f(x) for the value x. 

 

 

Fig. 2. (a) Schema of an ANN and (b) A single neuron. 

The neurons are grouped in several layers: i) input layer: receives the problem in-

put; ii) hidden layer(s): receives data from the input layer or from another hidden 

layer, and forwards the processed data to the next layer (there may be multiple hidden 

layers with multiple neurons each); iii) output layer: determines the output of the 

processing for a certain problem instance (may have multiple neurons). 

Fig. 2(b) shows a schema for a neuron: first, a linear combination of the neuron in-

put data , weights , and an independent coefficient  is made; then, the output is 

evaluated at some well-known activation function, to produce the neuron output. 
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In this article, the ANN used to recover historical climate data is trained with the 

backpropagation algorithm. Backpropagation learns the weights for a multilayer 

ANN with a fixed set of units and interconnections, by applying the gradient descent 

method (Algorithm 1) to minimize the squared error between the output values and 

the target values. The learning problem faced by backpropagation implies searching 

in a large space defined by all possible weight values for all neurons.  

Backpropagation (training_examples, , , , ) 

Each training example is a pair ,  is the vector of ANN input values, and  is the vector 

of target ANN output values;  is the learning rate,  is the number of ANN inputs,  the 

number of units in the hidden layer, and  the number of output neurons. 

The input from neuron i into neuron j is , and the weight from neuron i to neuron j is . 

1. create a feedforward ANN with  inputs,  hidden units, and  output neurons. 

2. initialize all  to small random numbers 

3. while the termination condition is not met do 

  for each  in training_examples do 

            input instance , compute output for every neuron  {propagate input forward}              

        for each output neuron , calculate the error term  {propagate errors backward} 

  

        for each hidden neuron , calculate the error term  {propagate errors backward} 

  

        , where   {update each } 

Algorithm 1. Stochastic gradient descent backpropagation algorithm for feedforward ANNs. 

Backpropagation starts by constructing an ANN with the desired number of hid-

den/output neurons and initializing all weights to random numbers. Given this fixed 

ANN structure, the main loop of the algorithm iterates applying the ANN to each 

training example, computing the gradient with respect to the error on the example, 

and then updating all weights in the ANN using the learning_rate constant. The gra-

dient step is iterated (using the same training examples multiple times) until the ANN 

performs acceptably well [9]. The propagation of the input data through the ANN is 

applied for evaluating a single instance. The presented ANN uses neurons of sigmoid 

type with activation function . 

GPUs provide a large computing power by using hundreds of processing units with 

reasonable clock frequencies. In the last ten years, GPUs have been used as powerful 

parallel hardware to execute applications efficiently. High-level languages were de-

veloped to exploit the GPU capabilities. NVIDIA CUDA [10] extends the C lan-

guage, providing three software layers: a low-level driver for CPU-GPU data trans-

fers, a high-level API, and a set of libraries for scientific computing. GPUs are able to 

create, manage, and execute a large number of light processes (threads) in parallel, 

with reduced overhead. Threads are grouped in blocks (with up to 512 threads), exe-

cuted in a single multiprocessor on the GPU. Three memory spaces are available: the 

local memory of each thread, a shared memory for threads in a block; and the global 

memory of the GPU. Two important features to achieve efficiency are avoiding thread 

creation (reducing the thread creation overhead), and minimizing the access to slow 

local and global memories, preferably using the shared memory which is placed with-

in the GPU chip, providing a faster way to store the data.  
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In this work, a specific version of the backpropagation algorithm was implemented 

in GPU. We adapted Algorithm 1 to take into account the communication between the 

GPU processing units. GPU threads are assigned to execute over certain neurons on 

the ANN. Before executing a on the GPU, a function-dependent domain decomposi-

tion is applied to maximize the parallel execution, (i.e. each GPU thread works inde-

pendently from each other), and to avoid serializations in the memory access. 

4 Historical Climate Record Classification using ANN 

This section describes the proposed strategies for recovering climate records using 

ANNs. All approaches are based on using the data of a training set of images to train 

the ANN to be used later to process other images in the Digi-Clima database. 

4.1 Proposed strategies 

We studied three strategies for solving the problem, which are described next. 

Full image, one neuron per pixel. Our first idea was applying a common approach for 

image processing with ANNs, using all the image data (one neuron per pixel) as input 

(Fig. 3). This approach has been previously used for face recognition [10, 11], and we 

adapted it for pluviometer image processing by including a second hidden layer and 

the parallel GPU version. The output of the ANN is the time series of rain records.  

 

Fig. 3. Using the full image information for an M´N (pixels) image. 

After performing validation experiments, this approach was discarded mainly be-

cause the ANN gave much importance to noise (background, annotations), failing to 

learn the correct information. Furthermore, for Digi-Clima images, we also detected 

other drawbacks: i) both ANN/GPU did not properly handle full information from 

large uncompressed images, ii) the GPU memory limit is easily reached, and iii) the 

processing times increase significantly, making more difficult to validate the solution. 

Swapping strategies: by zones and by rows/columns. Swapping strategies are based 

on reducing the input information for the ANN. Initially, we divided the image in 

zones, taking into account the relative position of each zone for the classification (Fig. 

4(a)). This approach was unable to get a good learning behavior because the zones 

that do not provide useful information confuse the ANN. 
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After that, we proposed swapping horizontally/vertically, using rows/columns as 

the ANN input (Fig. 4(b)). After initial validation experiments performed on random 

black and white images with size 32´30 pixels, we concluded that using columns is a 

more useful approach, due to the continuity of the rain records and the reduced influ-

ence of noise. Swapping by rows confuses the ANN, mainly due to large discontinui-

ties on row values and due to existing more than one rain value per row. 

  

Fig. 4. Swapping strategies: (a) by zones and (b) by rows/columns. 

An improved technique was then included in the column swapping approach, using 

information from nearby columns for the classification. This information is useful to 

process regions with discontinuities and breaks in the ink line. We followed an incre-

mental strategy, by studying the ANN architecture and learning behavior for small 

images (32´30 pixels) and then increasing the size and complexity of the images, 

until finding a correct method for classifying representative Digi-Clima images. 

4.2 ANN architecture and implementation details 

Input and output. In order to reduce the information handled, the ANN input is en-

coded as real-valued numbers. Three approaches were studied for the ANN output: i) 

using one (real) output neuron for the functional value for each column; ii) encoding 

the value for a given column, having as many outputs as rows in the image: the ANN 

output for a certain column is the index of the activated output, or the one with the 

largest value if multiple neurons are active; and iii) encoding the value for a given 

column in binary, thus only  outputs are needed for an image with  rows, and 

those neurons corresponding to the output in “1” are activated. Preliminary experi-

ments demonstrated that the first and the second approach obtained the best results. 

Activation function and weights. We use an activation function that provides a 

trade-off  between the activation/gradient variations, to enable the correct data flow in 

both ways of the backpropagation and reducing discrepancies between layers (  is 

the number of input neurons, and  is the number of hidden neurons) [9]: 

 ( 1 ) 

We applied initialization policies to have small weights centered at zero, for the 

sigmoid activation function to operate in linear regime and maximize the gradient. 

Learning process. Each column from each image on the training set is used to feed 

the ANN for training. The input for each iteration is the processed column and a given 

number (total_neighbours) of neighboring columns. The ANN input layer is loaded to 
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the GPU, using total_neighbours blocks, and as many threads per block as the number 

of rows in the input image; each block will load a column from the image. 

To decide whether a column was correctly classified or not, an error threshold is 

used when contrasting the ANN output with the expected one. The classification rate 

for a set of images is the average of correctly classified columns for the images in the 

set. The training error for an image is the sum of the errors over all its columns. 

4.3 GPU implementation 

ANN training is a key component of the algorithm, which is performed entirely on 

the GPU. Fig. 5 shows the steps to train the ANN, for the entire training data set. 

 

Fig. 5. Diagram of ANN training in GPU. 

 

Fig. 6. Parallel ANN in GPU: forward from input layer to hidden layer. 

The GPU architecture is mostly exploited when performing training and classifica-

tion. For example (see Fig. 6), when forward is performed from the input layer to the 

hidden layer, the parallel algorithm creates as many blocks as hidden neurons exists. 

Each block will work with one neuron from the hidden layer and each thread in a 

block will compute the linear combination of the weights that go to that neuron by the 

data that comes from the input layer (the algorithm works using as many threads per 

block as input neurons are). Similar levels of parallelism are achieved on the rest of 

the used functions, changing the role of each block and each thread on a block. 
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5 Experimental Analysis 

This section reports the experimental evaluation of the proposed ANN approach for 

recovering historical climate records, studying the classification rate and computa-

tional efficiency of the proposed GPU implementation. 

5.1 Evaluation platform and problem instances 

Evaluation platform. The parallel algorithm was developed in C++, using CUDA, 

Python (for auxiliary programs), and Fedora 15 (64 bits) OS. The experimental evalu-

ation was performed on an Intel Core i7-2600 3.4 GHz processor with 16 GB RAM 

DDR3 and Fedora 15 (64 bits), using a GeForce GTX 480 GPU, with 1.5 GB RAM. 

Problem instances. Three sets of images were used in the experimental analysis: i) 30 

small images (32×30 pixels) randomly generated for debug and validation: 10 images 

(320 training samples) in the training list, and 10 images (320 samples) in both vali-

dation sets (test1 and test2); ii) 30 medium-size images (2096×456 pixels), without 

noise and one active row for each column: 10 images (20960 training samples) in the 

training list and 5 images (10480 validation samples) in both test1 and test2; and iii) 

58 pre-processed Digi-Clima images, built by applying filters to eliminate irrelevant 

data on the original images (size 7086×1496 pixels, JPEG, 400 DPI, 3 color channels, 

24 bits) and scaled down to 2096×456 pixels: 28 images (58688 training samples) in 

the training list, and 15 images (31440 validation samples) in both test1 and test2.  

5.2 Results and discussion 

In order to validate the algorithm, we considered that the rate of correctly classified 

records for instances never seen by the ANN should be greater than 75%, meaning 

that we can rebuild the pluviometer graph without losing relevant information, ac-

cording to our empirical experience from the Digi-Clima project. 

The ANN training is performed using all the images on the training set, and then 

the performance is evaluated using the images from sets test1 and test2 (concluding a 

cycle). Depending on image size (due to execution times), training and evaluation 

over all images is performed  times (  epochs) to conclude an execution cycle. The 

reported values are the average of 5 execution cycles. 

Solution quality. In the classification experiments, we first studied the classifica-

tion rates for small images, in order to later scale the solution. We report the results 

using the swapping by column strategy, as it computed the best results overall.  

The results for 32×30 images are presented in Table 1, using one hidden layer with 

5 and 20 neurons, and using two hidden layers, with 50 and 10 hidden neurons each. 

The results correspond to 100 epochs and using 30 outputs, one for each row in the 

image. The considered accepted error rate was 0%, meaning that the classification for 

some column is correct if it exactly matches its expected value.  

It is observed that classification rates up to 93.90% are obtained when using 20 

neurons in the hidden layer. However, increasing the number of hidden neurons does 
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not allow achieving better results; despite of representing a more complex function, it 

is more difficult to learn the correct information. The differences on the classification 

rates between the parallel and the sequential algorithm is due to the different represen-

tation for floating point numbers in CPU and GPU. 

Table 1. Classification rates, small images (32×30 pixels) 

neurons 
classification rate 

learning parameters 

input hidden output learning rate momentum 

sequential 

90 5 30 74.93% 0.90 0.30 

90 20 30 93.92% 0.80 0.30 

90 50+10 30 83.34% 0.90 0.30 

parallel 

90 5 30 68.62% 0.90 0.30 

90 20 30 93.90% 0.80 0.30 

90 50+10 30 78.27% 0.70 0.30 

 

We studied different architectures using several numbers of neighboring columns 

(0, 2, 4, 6, 8). The best classification results (93.43% for the sequential and 92.49% 

for the parallel implementation) were obtained when using two neighbours, learning 

rate 0.3, 90 neurons in the input layer, 20 in the hidden layer, and 30 output neurons. 

Table 2 reports the results for 2096×456 images (raw and pre-processed) using: 

one hidden layer with 30 and 90 neurons; two hidden layers, with 90 and 30 neurons 

each; and 456 (one output per row) and one neuron. The results correspond to 100 and 

500 epochs (for the best network architecture). The accepted error rate is 5%.  

Table 2. Classification rates, medium-size images (2096×456 pixels) 

neurons 
epochs image type 

classification  
rate 

learning parameters 

input hidden output learning rate neighbours 

sequential 

1368 30 456 100 raw 36.68% 0.04 3 

1368 30 1 100 raw 49.90% 0.05 3 
1368 90 456 100 pre-processed 52.91% 0.10 3 

1368 90+30 1 100 pre-processed 59.63% 0.20 3 

1368 90+30 1 500 pre-processed 74.26% 0.20 3 

parallel 

1368 30 456 100 raw 34.98% 0.50 3 

1368 30 1 100 raw 50.01% 0.05 3 

1368 90 456 100 pre-processed 52.78% 0.10 3 
1368 90+30 1 100 pre-processed 61.05% 0.20 3 

1368 90+30 1 500 pre-processed 76.23% 0.20 3 

        

The results in Table 2 indicate that the best classification rates are obtained when 

using two hidden layers, with 90 and 30 neurons. When increasing the number of 

epochs, the classification rate for the algorithm improves. Using a learning_rate 0.20, 

classification rates of 76.23% are achieved using 500 epochs. 

We conclude that the proposed approach is valid to address the historical records 

recovering problem. We found an ANN architecture that uses a single output neuron 

and obtains classification rates greater than 75% for new instances. 
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Execution times. Table 3 reports the execution time evaluation of the proposed 

ANN implementation on GPU, when using different architectures and parameters 

(number of neighboring columns and neurons in the input/hidden/output layer). The 

execution times correspond to average and standard deviation computed in 10 inde-

pendent executions performed for each scenario. The speedup indicates the accelera-

tion when using the parallel implementation with respect to the sequential one. 

Table 3. Performance evaluation of the proposed ANN on GPU 

image size input hidden output time sequential(s) time parallel(s) speedup 

2096×456 1368 30 456 4933.01± 12.91 4613.69±7.29 1.06 

2096×456 1368 60 456 10523.91±28.95 6285.34±11.14 1.67 

2096×456 1368 90 456 12037.62±74.37 7856.80±7.49 1.53 
2096×456 1368 90+30 456 16907.92±27.90 11455.66±14.77 1.47 

2096×456 1368 30 1 3330.55±7.09  2998.31±9.29        1.11 

2096×456 1368 60 1 9081.93±11.46 4214.83±20.72        2.15 
2096×456 1368 90 1 10358.51±22.38 5545.01±18.86        1.86 

2096×456 1368 90+30 1 10598.11±27.37 5928.30±21.83         1.78 

Table 3 shows that the proposed parallel implementation in GPU reduces the train-

ing times significantly when compared against a sequential implementation. The best 

speedup is obtained for 60 neurons in the hidden layer: 1.67 when using one output 

neuron per row, and 2.15, the best overall, when using only one output neuron. For 

the architecture that obtained the best classification values (one output neuron, 90+30 

hidden neurons), the speedup value is 1.78. These results suggest that the proposed 

parallel ANN implementation in GPU is an efficient option to speed up the resolution 

of the historical climate records classification problem. 

6 Conclusions and future work 

ANNs have proved to be effective for solving many real-world problems. However, 

ANN are not popular when handling large data sets and/or complex problems, due to 

the large training times required. Actually, parallel computing using GPUs achieves 

significant performance improvements over traditional CPU implementations. This 

article has presented a parallel GPU implementation of an ANN approach to solve the 

historical climate records classification problem. The proposed approach provides a 

general method for solving classification/recognition/image processing problems. 

The main contributions of this work include the design and implementation of an 

ANN-based algorithm that obtains accurate classification rates (over 75%) on reason-

able execution times. This method provides a new alternative for recovering historical 

climate data and it allows comparing against the image-processing algorithm devel-

oped in the Digi-Clima project. The proposed parallel strategy is based on executing 

multiple threads on a GPU, each one working with multiple neurons, trying to keep 

threads independent from each other. Each kernel function was designed to take ad-

vantage of the GPU platform (e.g., certain kernels are assigned to compute over more 

than one neuron, to avoid the thread creation overhead). Furthermore, the GPU shared 

memory was used in order to avoid the latency on the global memory access. 
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The experimental analysis shows that reasonable accurate classification results are 

obtained, and that the GPU implementation allows reducing the execution times when 

compared to a sequential implementation. A speedup of 2.15 is obtained when using 

an ANN with 1368 inputs, 60 hidden neurons and a single output. The architecture 

that obtained the best classification rates has a speedup of 1.78. 

The main lines for future work are focused on improving the efficacy and efficien-

cy of the presented algorithm and also tackle other classification/image processing 

problems using parallel ANN over GPUs. Regarding the first line of work, better 

execution times could be achieved if kernel invocation parameters are better adjusted 

to avoid problems such as thread divergence, or if a better GPU resource management 

is made (in the use of shared memory for example) for instances of considerable size. 

In addition, certain constants (such as momentum or learning_rate) could be auto-

tuned by the algorithm to obtain the best classification rates. Regarding the second 

line of work, the developed algorithm could be used for classification of similar types 

of images such as images produced by electrocardiograms, seismometers, etc. 
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