
A Formal Specification of the MIDP 2.0
Security Model

Santiago Zanella Béguelin1, Gustavo Betarte2, and Carlos Luna2

1 FCEIA, Universidad Nacional de Rosario, Argentina
szanella@fceia.unr.edu.ar

2 InCo, Facultad de Ingenieŕıa, Universidad de la República, Uruguay
{gustun,cluna}@fing.edu.uy

Abstract. This paper overviews a formal specification, using the Cal-
culus of Inductive Constructions, of the application security model de-
fined by the Mobile Information Device Profile 2.0 for Java 2 Micro
Edition. We present an abstract model of the state of the device and
security-related events that allows to reason about the security prop-
erties of the platform where the model is deployed. We then state and
sketch the proof of some desirable properties of this model.

Keywords: Calculus of Inductive Constructions, Coq, formal specifi-
cation, MIDP 2.0, security.

1 Introduction

Mobile devices, like cell phones, manipulate sensitive personal data (e.g con-
tact lists and call recordings), and are capable of establishing connections with
external entities. Users of such devices may, in addition, download and install
potentially dangerous applications. Since any security breach may expose sensi-
tive data, prevent the use of the device, or allow applications to perform actions
that incur a charge for the user, it is essential to provide an application security
model that can be relied upon – the slightest vulnerability may imply millionaire
losses due to the scale the technology has been adopted.

Java 2 Micro Edition (J2ME) is a version of the Java platform targeted at
resource-constrained devices. J2ME comprises two kinds of components: con-
figurations and profiles. A configuration is composed of a virtual machine and
a set of APIs that provide the basic functionality for a particular category of
devices. Profiles further specify the target technology by defining a set of higher
level APIs built on top of an underlying configuration. This two-level architec-
ture enhances portability and enables developers to deliver applications that
run on a range of devices with similar capabilities.

The Connected Limited Device Configuration (CLDC) is a J2ME configu-
ration designed for devices with slow processors, limited memory and intermit-
tent connectivity. CLDC together with the Mobile Information Device Profile
(MIDP) provides a complete J2ME runtime environment tailored for devices
like mobile phones and personal data assistants. MIDP defines an application
life cycle, a security model, and APIs that offer the functionality required by
mobile applications, including networking, user interface, push activation and
persistent local storage. Many mobile device manufacturers have adopted MIDP

2 S. Zanella Béguelin, G. Betarte, C. Luna

since the specification was made available. Literally millions of MIDP enabled
devices are deployed worldwide and the market acceptance of the specification
is expected to continue to grow steadily.

In the original MIDP 1.0 specification [1], any application not installed by
the device manufacturer or a service provider runs in a sandbox that prohibits
access to security sensitive APIs or functions of the device (e.g. push activation).
Although this sandbox security model effectively prevents any rogue application
from jeopardising the security of the device, it is excessively restrictive and does
not allow many useful applications to be deployed after issuance.

MIDP 2.0 [2] introduces a new security model based on the concept of
protection domains. Each sensitive API or function on the device may define
permissions in order to prevent it from being used without authorisation. An
installed MIDlet suite is bound to a unique protection domain that defines
a set of permissions granted either unconditionally or with explicit user au-
thorisation. Untrusted MIDlet suites are bound to a protection domain with
permissions equivalent to those in a MIDP 1.0 sandbox. Trusted MIDlet suites
may be identified by means of cryptographic signatures and bound to more per-
missive protection domains. This security model enables applications developed
by trusted third parties to be downloaded and installed after issuance of the
device without compromising its security.

Some effort has been put into the evaluation of the security model for MIDP
2.0; [3, 4] analyse the application security model, spot vulnerabilities in various
implementations and suggest improvements to the specification. Although these
works report on the detection of security holes, they do not intend to prove their
absence. The formalisation we overview here, however, provides a formal basis
for the verification of the model and the understanding of its intricacies.

We developed our specification using the Coq proof assistant [5, 6], an im-
plementation of the Calculus of Inductive Constructions (CIC). CIC is a de-
pendently typed lambda calculus that extends Coquand and Huet’s Calculus of
Constructions [7] with inductive definitions as first-class objects. The interested
reader may refer to [8, 9] for further background on these calculi.

The rest of the paper is organized as follows, Section 2 defines the notation
used, Section 3 describes the formalisation of the MIDP 2.0 security model.
Section 4 presents some of its verified properties, and finally Section 5 concludes.

2 The Notation Used

We use standard notation for equality and logical connectives (∧,∨,¬,→,∀,∃).
Implication and universal quantification may be encoded using CIC dependent
product, while equality and the other connectives can be defined inductively.
Anonymous predicates are introduced using lambda notation, e.g (λ n . n = 0)
is a predicate that when applied to n is true iff n = 0.

We extensively use record types; a record type definition

R
def= {field1 : type1, . . . , fieldn : typen} (1)

generates a non-recursive inductive type with just one constructor, mkR, and
projections functions fieldi : R → typei. We often write 〈a1, . . . , an〉 instead

A Formal Specification of the MIDP 2.0 Security Model 3

of mkR a1 . . . an when the type is obvious from the context. Application of
projections functions is abbreviated using dot notation, i.e. fieldi r ≡ r.fieldi.
For each field fieldi in a record type we define a binary relation 'fieldi over
objects of the type as

r1 'fieldi r2
def= ∀ j, j 6= i → r1.fieldj = r2.fieldj . (2)

A parametric inductive type T : type1 → . . . → typen → sort is defined by
giving for each constructor ck an introduction rule of the form

P1 a1 . . . an · · · Pm a1 . . . an

T a1 . . . an

ck

where Pj , j = 1, . . . ,m are predicates over the parameters of the type. We
assume as predefined inductive types, the parametric type option T with con-
structors None : option T and Some : T → option T , and the type seq T of
finite sequences over T . We denote the empty sequence by [], and the construc-
tor that appends an element a to a sequence s as s a a. We represent with ⊕
the concatenation operation on sequences.

3 Formalisation of the MIDP 2.0 Security Model

In this section we present the formal specification of the security model.

3.1 Sets and Constants

In MIDP, applications (MIDlets) are packaged and distributed as suites. A MI-
Dlet suite can contain one or more MIDlets and is distributed as two files, an
application descriptor file and an archive file that contains the actual classes
and resources. A suite that needs access to protected APIs or functions must de-
clare the corresponding permissions in its descriptor. MIDlet suites may declare
permissions either as required or as optional.

Let Permission be the total set of permissions defined by every protected
API or function on the device and Domain the set of all protection domains. Let
us introduce, as a way of referring to individual MIDlet suites, the set SuiteID
of valid suite identifiers. We will represent an application descriptor as a record
composed of two predicates, required and optional, that identify respectively
the set of permissions declared as required and those declared as optional,

Descriptor
def= {required, optional : Permission → Prop} . (3)

For the sake of conciseness let us introduce a record type to represent installed
suites, with fields for its identifier, associated protection domain and descriptor,

Suite
def= {sid : SuiteID, domain : Domain, descriptor : Descriptor} . (4)

Permissions may be granted by the user to an active MIDlet suite in either of
three modes, only once (oneshot), until it is terminated (session), or until it

4 S. Zanella Béguelin, G. Betarte, C. Luna

is uninstalled (blanket). Let Mode be the enumerated set of user interaction
modes – {oneshot, session, blanket} – and ≤m an order relation such that

oneshot ≤m session ≤m blanket . (5)

We will assume for the rest of the formalisation that the security policy of the
protection domains on the device is an anonymous constant of type

Policy
def= { allow : Domain → Permission → Prop,

user : Domain → Permission → Mode → Prop }
(6)

such that allow d p holds when domain d unconditionally grants the permission
p and user d p m when domain d grants permission p with explicit user authori-
sation and maximum allowable mode m (w.r.t ≤m). The permissions effectively
granted to a MIDlet suite are the intersection of the permissions requested in
its descriptor with the union of the allowed and user granted permissions.

3.2 Device State

To reason about the MIDP 2.0 security model most details of the device state
may be abstracted; it is sufficient to specify the set of installed suites, the
permissions granted or revoked to them, and the currently active suite in case
there is one. The active suite and the permissions granted or revoked to it for
the session are grouped into a record structure

SessionInfo
def= { sid : SuiteID,

granted, revoked : Permission → Prop } .
(7)

The abstract device state is described as a record of type

State
def= { suite : Suite → Prop,

session : option SessionInfo,
granted, revoked : SuiteID → Permission → Prop } .

(8)

Some conditions must hold for an element s : State in order to represent a valid
state for a device. These conditions are specified in the rest of this section.

A MIDlet suite can be installed and bound to a protection domain only
if the set of permissions declared as required in its descriptor are a subset of
the permissions the domain offers (with or without user authorization). This
compatibility relation between des : Descriptor and dom : Domain can be
stated formally as follows,

des o dom
def= ∀ p : Permission,

des.required p → allow dom p ∨ ∃m : Mode, user dom p m .
(9)

For s to be a valid state, every installed suite must be compatible with its
associated protection domain,

SuiteCompatible
def=

∀ms : MIDletSuite, s.suite ms → ms.descriptor oms.domain .
(10)

A Formal Specification of the MIDP 2.0 Security Model 5

Whenever there exists a running session, the suite identifier in s.session
must correspond to an installed suite,

CurrentInstalled
def= ∀ ses : SessionInfo, s.session = Some ses →

∃ms : MIDletSuite, s.suite ms ∧ms.sid = ses.sid .
(11)

The granted predicate should be valid, i.e. the set of permissions granted for
the session must be a subset of the permissions requested in the application
descriptor of the active suite, and the associated protection domain policy must
allow them to be granted for the session,

V alidSessionGranted
def= ∀ses : SessionInfo, s.session = Some ses →

∀ p : Permission, ses.granted p →
∀ms : MIDletSuite, s.suite ms → ms.sid = ses.sid →

(ms.descriptor.required p ∨ms.descriptor.optional p) ∧
(user ms.domain p session ∨ user ms.domain p blanket) .

(12)

Every installed suite shall have a unique identifier,

UniqueSuiteID
def= ∀ms1 ms2 : MIDletSuite,

s.suite ms1 → s.suite ms2 → ms1.sid = ms2.sid → ms1 = ms2 .
(13)

Additionally, for every installed suite with identifier sid, s.granted sid should
be valid with respect to its descriptor and associated protection domain
(V alidGranted s). It must also be ensured that any granted permission is not
being revoked at the same time and viceversa (V alidGrantedRevoked s). We
omit the detailed formalisation of these conditions.

3.3 Events

We define a set Event for those events that are meaningful with respect to our
abstraction of the device state (Table 1).

Table 1. Events. UserAnswer
def
= {ua allow m, ua deny m | m ∈ Mode}

Name Description Type

start Start of session SuiteID → Event

terminate End of session Event

request Permission request Permission → option UserAnswer → Event

install MIDlet suite installation SuiteID → Descriptor → Domain → Event

remove MIDlet suite removal SuiteID → Event

The behavior of the events is specified by defining their pre- and postcondi-
tions by means of the predicates Pre and Pos respectively. Preconditions (Table
2) are defined in terms of the device state, while postconditions (Table 3) are
defined in terms of the before and after states, and an optional response which
is only meaningful for the request event and indicates whether the requested
permission is given,

6 S. Zanella Béguelin, G. Betarte, C. Luna

Table 2. Event preconditions. The request event is omitted for reasons of space

Pre s (start sid)
def
=

s.session = None ∧ ∃ms : MIDletSuite, s.suite ms ∧ ms.sid = sid

Pre s terminate
def
= s.session 6= None

Pre s (install sid des dom)
def
=

des o dom ∧ ∀ms : MIDletSuite, s.suite ms → ms.sid 6= sid.

Pre s (remove sid)
def
=

(∀ ses : SessionInfo, s.session = Some ses → ses.sid 6= sid)∧
∃ms : MIDletSuite, s.suite ms ∧ ms.sid = sid

Table 3. Event postconditions. The request event is omitted for reasons of space

Pos s s′ r (start sid)
def
=

r = None ∧ s 'session s′ ∧ s′.session = Some 〈sid, (λx.False), (λx.False)〉
Pos s s′ r terminate

def
= r = None ∧ s 'session s′ ∧ s′.session = None

Pos s s′ r (install sid des dom)
def
=

r = None ∧ (∀ms : MIDletSuite, s.suite ms → s′.suite ms)∧
(∀ms : MIDletSuite, s′.suite ms → s.suite ms ∨ ms = 〈sid, dom, des〉)∧
s′.suite 〈sid, dom, des〉 ∧ s′.session = s.session∧
(∀ p : Permission,¬s′.granted sid p ∧ ¬s′.revoked sid p)∧
(∀ sid1 : SuiteID, sid1 6= sid →

s′.granted sid1 = s.granted sid1 ∧ s′.revoked sid1 = s.revoked sid1)

Pos s s′ r (remove sid)
def
=

r = None ∧ s 'suite s′ ∧
(∀ms : MIDletSuite, s.suite ms → ms.sid 6= sid → s′.suite ms)∧
(∀ms : MIDletSuite, s′.suite ms → s.suite ms ∧ ms.sid 6= sid)

Pre : State → Event → Prop
Pos : State → State → option Response → Event → Prop .

(14)

For example, an event representing a permission request not authorized by
the user can only occur when the active suite has declared that permission in its
descriptor and is bound to a protection domain that specifies an user interaction
mode for the permission (otherwise, the request would be immediately accepted
or rejected). Furthermore, the requested permission must not have been revoked
or granted for the rest of the session or the MIDlet suite life,

Pre s (request p (Some (ua deny m))) def=
∃ ses : SessionInfo, s.session = Some ses∧
∀ms : MIDletSuite, s.suite ms → ms.sid = ses.sid →

(ms.descriptor.required p ∨ms.descriptor.optional p)∧
(∃m1 : Mode, user ms.domain p m1)∧
¬ses.granted p ∧ ¬ses.revoked p∧
¬s.granted ses.sid p ∧ ¬s.revoked ses.sid p .

(15)

A Formal Specification of the MIDP 2.0 Security Model 7

When m = session, the user revokes the permission for the rest of the ses-
sion, therefore, the response denies the permission, and the state is updated
accordingly,

Pos s s′ r (request p (Some (ua deny session))) def=
r = Some denied ∧ s 'session s′ ∧
∀ ses : SessionInfo, s.session = Some ses →
∃ ses′ : SessionInfo,

s′.session = Some ses′ ∧ ses′ 'revoked ses ∧ ses′.revoked p ∧
(∀ q : Permission, q 6= p → ses′.revoked q = ses.revoked q) .

(16)

3.4 One-step Execution

When an event occurs for which the precondition does not hold, the state must
remain unchanged. Otherwise, the state may change in such a way that the event
postcondition is established. The behavioral specification of the execution of an
event is given by the ↪→ relation with the following introduction rules:

¬Pre s e

s ↪
e/None−−−−−→ s

npre Pre s e Pos s s′ r e

s ↪
e/r−−→ s′

pre
. (17)

3.5 Sessions

A session is a period of time spanning from the start of a session to its termina-
tion. A session for a suite with identifier sid (Fig. 1) is determined by an initial
state s0 and a sequence of steps 〈ei, si, ri〉 (i = 1, . . . , n) such that the following
conditions hold,

– e1 = start sid ;
– Pre s0 e1 ;
– ∀ i ∈ {2, . . . , n− 1}, ei 6= terminate ;
– en = terminate ;
– ∀ i ∈ {1, . . . , n}, si−1 ↪

ei/ri−−−→ si .

s0 ↪
start sid/r1−−−−−−−−→ s1 ↪

e2/r2−−−→ s2 ↪
e3/r3−−−→ · · · ↪

en−1/rn−1−−−−−−−→ sn−1 ↪
terminate/rn−−−−−−−−−→ sn

Fig. 1. A session for a suite with identifier sid

To define the session concept it is better to introduce before the concept of
partial session. A partial session is a session for which the terminate event has
not yet been elicited; it may be defined inductively by the following rules,

Pre s0 (start sid) s0 ↪
start sid/r1−−−−−−−−→ s1

PSession s0 ([] a 〈start sid, s1, r1〉)
psession start

(18)

8 S. Zanella Béguelin, G. Betarte, C. Luna

PSession s0 (ss a last) e 6= terminate last.s ↪
e/r−−→ s′

PSession s0 (ss a last a 〈e, s′, r〉)
psession app

. (19)

Now, sessions can be easily introduced as follows,

PSession s0 (ss a last) last.s ↪
terminate/r−−−−−−−−→ s′

Session s0 (ss a last a 〈terminate, s′, r〉)
session terminate

. (20)

4 Verification of (Security) Properties

In what follows we state some propositions about the specification. Although
detailed proofs of these propositions have been constructed and checked using
Coq, we only give here an outline of the proofs.

4.1 An Invariant of One-step Execution

We call one-step invariant a property that remains true after the execution of
every event if it is true before. We expect the validity of the device state to be
a one-step invariant of our specification.

Theorem 1. Let V alid be a predicate over State defined as the conjunction of
the validity conditions in Sect. 3.2. For any s s′ : State, r : option Response

and e : Event, if V alid s and s ↪
e/r−−→ s′ hold, then V alid s′ also holds.

Proof. By case analysis on s↪
e/r−−→s′. When Pre s e does not hold, s = s′ and s′ is

valid because s is valid. Otherwise, Pos s s′ r e must hold and we proceed by case
analysis on e. We will only show the case request p (Some (ua deny session)),
obtained after further case analysis on a when e = request p (Some a).

The postcondition (16) entails that s′.granted = s.granted, s′.revoked =
s.revoked, s′.suite = s.suite, and that there exists ses′ such that s′.session =
Some ses′, ses′.sid = ses.sid, ses′.granted = ses.granted and

∀ q, q 6= p → ses′.revoked q = ses.revoked q . (21)

Rewriting with these equalities, we immediately prove SuiteCompatible s′,
CurrentInstalled s′, UniqueSuiteID s′ and V alidGranted s′ from the valid-
ity of s. It remains to prove V alidGrantedRevoked s′.

Let q be any permission. If q 6= p, then from (21) ses′.revoked q =
ses.revoked q, and because q was not granted and revoked simultaneously be-
fore the event, neither it is after. If q = p, then we know from the precondition
(15) that p was not granted before, and so it is not granted after. This proves
V alidGrantedRevoked s′, and together with the previous results, V alid s′. ut

4.2 Session Invariants

We call session invariant a property of a step that holds for the rest of a session
once it is established in any step. Let P be a predicate over T , we define all P
as an inductive predicate defined over seq T by

A Formal Specification of the MIDP 2.0 Security Model 9

all P [] all nil
all P ss P s

all P (ss a s)
all app

(22)

Theorem 2. If s0 is a valid state, and PSession s0 ss, then

all (λ step . V alid step.s) ss . (23)

Proof. By induction on the structure of PSession s0 ss.

– When it is constructed using psession start, ss is like [] a 〈start sid, s1, r1〉
and s0 ↪

start sid/r1−−−−−−−−→ s1 holds. We must prove

all (λ step . V alid step.s) ([] a 〈start sid, s1, r1〉) . (24)

By applying all app and then all nil the goal is simplified to V alid s1, and
is proved from s0 ↪

start sid/r1−−−−−−−−→ s1 and V alid s0 by applying Theorem 1.
– When it is constructed using psession app, ss has the form ss1

alasta〈e, s′, r〉
and last.s ↪

e/r−−→ s′ holds. The induction hypothesis is

all (λ step . V alid step.s) (ss1
a last) (25)

and we must prove all (λ step . V alid step.s) (ss1
a last a 〈e, s′, r〉). By ap-

plying all app and then (25) the goal is simplified to V alid s′. From (25) we
know that last.s is a valid state. The goal is proved from last.s ↪

e/r−−→ s′ and
V alid last.s by applying Theorem 1. ut
The above theorem may be easily extended from partial sessions to sessions

by applying Theorem 1. State validity is just a particular property that is true
for a partial session once it is established, the result can be generalised for other
properties as in the following lemma.

Lemma 1. For any property P of a step satisfying

e 6= terminate ∧ s ↪
e′/r′−−−→ s′ ∧ P 〈e, s, r〉 → P 〈e′, s′, r′〉 , (26)

if PSession s0 (ss a step⊕ ss1) and P step then all P ss1 holds.

Perhaps a more interesting property is that once a permission is revoked by the
user for the rest of a session, any further request for the same permission in the
same session is rejected.

Lemma 2. The following property satisfies (26),

(λ step .∃ ses, step.s.session = Some ses ∧ ses.revoked p) . (27)

Theorem 3. For any permission p, if PSession s0 (ss a step a step1 ⊕ ss1),
step1.e = request p (Some (ua deny session)) and Pre step.s step1.e, then

all (λ step .∀ o, step.e = request p o → step.r 6= Some allowed) ss1 . (28)

Proof. Since Pos step.s step1.s step1.r step1.e holds, p is revoked for the session
in step1.s. From Lemmas 1 and 2, p remains revoked for the rest of the session.
Let e = request p o be an event in a step step in ss1. We know that p is revoked
for the session in the state before step.s. If the precondition for e does not hold
in the state before1, then step.r = None. Otherwise, the postcondition for e is
true and in any case it entails step.r = Some denied 6= Some allowed. ut
1 Actually, it holds only when o = None.

10 S. Zanella Béguelin, G. Betarte, C. Luna

5 Conclusions

The informal specification in [2] puts forward an application security model that
any implementation of the profile must satisfy. Although testing implementa-
tions of that model might help discover vulnerabilities, it is not an exhaustive
technique and does not compare to the assurance level that gives a formal ver-
ification of the model.

We have produced an unprecedented verifiable formalisation of the MIDP
2.0 security model and have also constructed the proofs of several important
properties that should be satisfied by any implementation that fulfills the spec-
ification of the security model. It is shown in this paper that the formal spec-
ification is precise and detailed enough to study, for instance, the interference
between the security rules that control access to the device resources and mech-
anisms such as application installation. Two simplifying assumptions have been
made: 1) the security policy is static; 2) up to one suite may be active at a time.
Most implementations actually enforce these assumptions, however, it would be
interesting to further explore the consequences of relaxing them.

We strongly believe the specification we have produced can be formally
refined down to an executable specification. As a future work, we plan to com-
plete such a refinement and obtain executable functional code using the Coq
extraction mechanism.

References

1. JSR 37 Expert Group. Mobile Information Device Profile for Java 2 Micro Edition.
Version 1.0. Sun Microsystems, Inc. (2000).

2. JSR 118 Expert Group. Mobile Information Device Profile for Java 2 Micro Edi-
tion. Version 2.0. Sun Microsystems, Inc. and Motorola, Inc. (2002).

3. O. Kolsi and T. Virtanen. MIDP 2.0 Security Enhancements. In: Proceedings of
the 37th Annual Hawaii International Conference on System Sciences (HICSS’04)
(IEEE Computer Society, 2004), p. 90287.3.

4. M. Debbabi, M. Saleh, C. Talhi, and S. Zhioua. Security Analysis of Wireless
Java. In: Proceedings of the 3rd Annual Conference on Privacy, Security and Trust
(2005), pp. 1–11.

5. The Coq Development Team. The Coq Proof Assistant Reference Manual – Version
V8.0 (2004).

6. Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Develop-
ment. Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical
Computer Science (Springer-Verlag, 2004).

7. T. Coquand and G. Huet. The Calculus of Constructions. In: Information and
Computation, vol. 76 (Academic Press, 1988), pp. 95–120.

8. C. Paulin-Mohring. Inductive Definitions in the system Coq - Rules and Properties.
In: First Int. Conf. on Typed Lambda Calculi and Applications, edited by M. Bezem
and J. F. Groote, LNCS, vol. 664 (Springer-Verlag, 1993), pp. 328–345.

9. B. Werner. Une Théorie des Constructions Inductives. Phd Thesis, Université
Paris 7, France (1994).

