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Abstract

Let G = (V,E) be a digraph with a distinguished set of terminal vertices K ⊆ V
and a vertex s ∈ K. We define the s,K-diameter of G as the maximum distance
between s and any of vertices of K. If the arcs fail randomly and independently
with known probabilities (vertices are always operational), the Diameter-constrained
s,K-terminal reliability of G, Rs,K(G,D), is defined as the probability that surviv-
ing arcs span a subgraph whose s,K-diameter does not exceed D.

The Diameter-constrained network reliability is a special case of coherent system
models, where the domination invariant has played an important role, both theo-
retically and for developing algorithms for reliability computation. In this work, we
completely characterize the domination of diameter-constrained network models,
giving a simple rule for computing its value: if the digraph either has an irrelevant
edge, includes a dicycle or includes a dipath from s to a node in K longer than D,
its domination is 0; otherwise, its domination is -1 to the power |E| − |V |+ 1.
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1 Introduction and reliability model

A communication network can be modeled by a digraph (directed graph)
G = (V,E) where V and E are the set of vertices and arcs respectively of G.
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Moreover the failures of the network components can be represented by as-
signing probabilities of failure to the vertices and/or arcs of its underlying
digraph. A widely used probabilistic model is the one where the arcs fail ran-
domly and independently with known probabilities, and where the vertices
are always operational; from this point on, when we mention a probabilistic
digraph, we will refer to this model.

Let G = (V,E) be a probabilistic digraph, with terminal vertex set K ⊆ V ,
vertex s ∈ K, and distance bound D; the s,K-diameter of G is the maximum
distance from s to any vertex u ∈ K. The Diameter-constrained s,K-terminal
reliability Rs,K(G,D) is defined (7) as the probability that the surviving arcs
span a subgraph of G whose s,K-diameter does not exceed D, or equivalently,
as the probability that for each vertex u ∈ K, there exists an operating s, u-
dipath from s to u of at most D arcs. This reliability measure subsumes the
classical Source-to-K-terminal reliability Rs,K(G) of a probabilistic digraph
G, which is the probability that the surviving arcs span a subgraph where
there exists an operational s, u-dipath between s and u, u ∈ K: noting that
the longest s, u-dipath in G has at most n− 1 arcs, where n is the number of
nodes of G, we have that Rs,K(G) is equal to Rs,K(G,D) for D = n− 1.

We introduce here additional definitions and notation:

(i). Let G = (V,E,P(E)) be a probabilistic digraph with a distinguished set
K ⊆ V , vertex s ∈ K, and D ∈ Z+, with 1 ≤ D ≤ n − 1, where n = |V |,
and where P : E 7→ [0, 1] are the operational probabilities of the arcs in
set E. We represent the operational probability of an arc (or arc reliability)
x ∈ E as p(x) = 1− q(x) (q(x) is the probability of failure).

(ii). Let the sample space Ω represent the set of all possible subsets of E, corre-
sponding to sets of operational arcs (i.e. Ω = 2E).

(iii). Under the assumption of independent arc failures, each H ∈ Ω has occur-
rence probability

P (H) =
∏
x∈H

p(x)
∏
x/∈H

q(x).

(iv). H ∈ Ω is a pathset or operating state if H spans a subgraph whose s,K-
diameter is at most D.

(v). Let OD
K(E) = {H ∈ Ω : H is a pathset }.

(vi). An operating state H of OD
K(E) is called a minpath if H − {xi} /∈ OD

K(E),
for all xi ∈ H (i.e, a minpath is a minimal operating state).

(vii). A K-tree T of a digraph G is a tree, rooted at s, covering all the vertices of
K, and such that any pendant vertex u of T belongs to K. In addition, a
K-tree whose s,K-diameter is at most D is called a D,K-tree.

(viii). G is called a D,K-digraph, if every arc of G lies in some D,K-tree. Taking
into account definition (vii), we know that if G is a D,K-digraph, then node
s has indegree 0; and every arc of G belongs to a path from s to some node
in K; we say that G is rooted at s.

2



The following lemma gives a characterization of the minpaths M of OD
K(E):

Lemma 1 For a digraph G = (V,E), terminal set K, vertex s ∈ K, and
bound D, then M is a minpath of G if and only if it is a D,K-tree.

From the definition of Rs,K(G,D) and definition (v) one gets

RK(G,D) = Pr
(
OD
K(E)

)
=

∑
H∈OD

K(E)

∏
e∈H

p(e)
∏
e/∈H

q(e). (1)

We next discuss the definition of the domination invariant in the case of general
coherent systems, and in the case of diameter-constrained network reliability.

2 Domination

A graph invariant called the reliability domination of a graph G was introduced
by Satyanarayana and Prabhakar (8) for the classical network reliability mod-
els, and has since been explored by several researchers in reliability theory
(1; 2; 3; 5; 6). The reliability domination plays an important role, allowing to
efficiently implement the principle of Inclusion-Exclusion of probability theory
applied to the evaluation of reliability measures for general reliability systems.

Let E be a finite set, and P (E) be the power set of E. A nonempty subset
C ⊆ P (E) is called a clutter of E if for any two elements C1, C2 ∈ C, whenever
C1 ⊆ C2, then C1 = C2. A pair (E,C) will be referred to as a system and
a system is coherent if each element of E is contained in some element of C.
A formation of (E,C) is a collection of elements of C whose union yield E.
The signed domination of the system (E,C), denoted d(E,C), is defined as
the number of odd formations minus the number of even formations of E,
where a formation is said to be odd or even if it is of odd or even cardinality
respectively. Trivially by the previous definitions, a non-coherent system has
no formations, so its signed domination is 0.

The clutters associated with the operation and failure of a specific element
x ∈ E are defined as follows. Let C− x = {C − x : C ∈ C} and C−x = {C ∈
C : x /∈ C}. Now C−x is clearly a clutter but C−x may not be one. We define
C+x to be the collection of elements of C− x which are not proper supersets
of some element of C− x. For an element x ∈ E, C−x and C+x are called the
minors with respect to x of C. Huseby (5; 6) showed the following result:

Theorem 1 If (E,C) is a system, with x ∈ E, and minors C−x and C+x of
C, then d(E,C) = d(E − {x},C+x)− d(E − {x},C−x).
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We look now at the case of the diameter-constrained s,K terminal reliability
of a digraph G = (V,E) with K ⊆ V , s ∈ K, and diameter bound D. The
system underlying our model is (E,FD,K(G)), where E is the set of arcs of G,
and where FD,K(G) is the collection of D,K-trees of G. A formation F of G
is then a collection of D,K-trees of G whose union is E, the set of arcs of G.
The signed domination of a digraph G = (V,E), denoted d(E,FD,K(G)), with
respect to a given subset K ⊆ V , s ∈ K, and bound D, is the number of odd
minus the number of even formations of G.

For brevity, in what follows we will use the standard notation C to represent
FD,K(G), which is the clutter set in the diameter-constrained model. Also we
denote the domination d(E,FD,K(G)) as dD,K(G). In addition, we observe
that if x is an arc of G, then T is a D,K-tree of G such that x 6∈ T iff T is
a D,K-tree of G − x. Therefore d(E − {x},C−x) = dD,K(G − x). Using this
notation, the equation in Theorem 1 can be re-written as

dD,K(G) = d(E − {x},C+x)− d(E − {x},C−x) (2)

= d(E − {x},C+x)− dD,K(G− x), (3)

.

We next state the main results of this work, which are a characterization of
the domination for diameter-constrained reliability models, and we discuss
how these results can be used to compute the reliability of a network.

3 Characterization of the domination and application to reliability
evaluation

Let G = (V,E) be a digraph with terminal set K, e = |E| arcs, n = |V |
vertices, and let D be the diameter bound. We define the following operation:

• LP(G, s,K). If G is s,K connected, this operation returns the length of the
longest dipath from s to any vertex u ∈ K; otherwise it returns ∞.

The computation of LP(G, s,K) is in the NP -complete class; but it is of
polynomial complexity if G is an acyclic digraph.

We observe that if G is not a D,K digraph, there are some arcs in E which
are not covered by any D,K tree; so that the corresponding system is non
coherent, and there are no formations over the clutter FD,K(G) able to cover E.
As a result, the domination is zero. Consequently, from now on, we will restrict
ourselves to the case of D,K digraphs. For these digraphs, the domination is
completely characterized by the following theorems:
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Theorem 2 Let G = (V,E) be a cyclic D,K digraph with terminal set K,
n = |V | vertices, n > 2, and let D be the diameter bound. Then dD,K(G) = 0.

Theorem 3 Let G = (V,E) be a acyclic D,K digraph with terminal set K,
e = |E| arcs, n = |V | vertices, and let D be the diameter bound, then

dD,K(G) =

 (−1)e−n+1 : LP(G, s,K) ≤ D

0 : otherwise

Both theorems can be proved by complete induction over the number of edges
of the digraph, and using two different reductions, which preserve the existence
of dicycles and the relation of the length of the longest dipath and the diameter
bound. One reduction is applied when all the nodes adjacent to s have indegree
1; in this case, we can “contract” all the arcs leaving s, and obtain a new
digraph G∗ with diameter bound D − 1 and with the same domination value
as G. The other reduction is used when there is at least one node adjacent
to s with indegree greater than 2; if x = (s, u), then it can be proved that
d(E − {x},C+x) = 0, and by Equation 3 we have dD,K(G) = −dD,K(G− x).

We give a short proof outline:

• Lemma: if for all u adjacent to s, indegree(u)=1; then it is possible to con-
tract all the arcs from s, creating a new graph G∗. We define a corresponding
new terminal set K∗ with the following properties:
· if G is a D,K graph, G∗ is a D − 1, K∗ graph
· G∗ is cyclic iff G∗ is cyclic.
· LP (G∗) = LP (G)− 1
· dD−1,K∗(G

∗) = dD,K(G)
• Theorem: Suppose G is D,K graph (else, dom=0).

Induction hypothesis: theorems true for |E| ≤ m.
Thesis: true for |E| = m+ 1.
Proof:
Case a) if for all u adjacent to s, indegree(u)=1; then by lemma trivial.
Case a) if there exists u adjacent to s, indegree(u)> 1. Then consider

x = (s, u).
Prove that d(E − {x},C+x) = 0 (by looking at other edges leading to u,

which are irrelevant in the new clutter).
By Equation 3 we have dD,K(G) = −dD,K(G− x).
See that G − x is cyclic iff G is cyclic; and that LP (G − x) = LP (G).

Using then the induction hypothesis, the thesis follows.

When we take D = n − 1, we obtain the classical Source-to-K-terminal reli-
ability model as a particular case. As all dipaths are of length smaller than
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n− 1, then trivially LP(G, s,K) ≤ D unless the graph is not s,K connected.
In this case, the characterization reduces to the results in (8), i.e. that the
domination is 0 if there is a dicycle, and (−1)e−n+1 otherwise.

These results are useful for computing the reliability of a given network.
For a digraph G = (V,E), terminal set K, and vertex s ∈ K, let M =
{M1,M2, . . . ,Ml} be the set of minpaths of OD

K(E). Define Ei to be the event
that all the arcs of Mi operate. By Inclusion-Exclusion we obtain

Rs,K(G,D) =Pr

(
l⋃

i=1

Ei

)
=
∑
i

Pr(Ei)−
∑
i<j

Pr(EiEj) + . . .

+(−1)l+1Pr(E1E2 . . . El), (4)

where the event EiEj . . . Em is the event that all the arcs of the subgraph
obtained by the union of Mi,Mj, . . . ,Mm are operating.

In Equation (4), the terms correspond to subgraphs obtained by the union of
minpaths. As discussed previously, for the Diameter-constrained K-terminal
reliability of a digraph G, with terminal set K, vertex s ∈ K, and diameter
bound D, the minpaths are D,K-trees, the formations are sets of minpaths,
and the subgraphs areD,K-digraphs. The sameD,K-digraph can be obtained
from different formations; this means that it may appear in Equation (4)
more than once, sometimes with positive sign, and sometimes with negative
sign, depending if the corresponding formation has an odd or or an even
number of D,K-trees. In fact, its net contribution will be exactly the number
of odd minus the number of even formations of the graph, i.e., its domination
invariant. Thus using these facts and the above definitions, we can rewrite
Equation (4) as

Rs,K(G,D) =
∑
H∈H

dD,K(H)Pr(H), (5)

where H is the class of all D,K-digraphs of G, and Pr(H) is the probability
that the arcs of H are operative.
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