

An approach to Subroutine Elimination

Leonardo Rodríguez Viacava
lrodrigu@fing.edu.uy

INCO – PEDECIBA

Facultad de Ingeniería
Universidad de la República

Uruguay

Project Lemme
Sophia Antipolis

INRIA
France

Abstract

Subroutines seem to be more a problem than a solution for the Byte Code
Verifier’s world, especially with resource constrained devices like Java Card. The
elimination of subroutines form the Java bytecode would allow the construction of
more efficient and precise Byte Code Verifiers. Here we specify a transformation
for eliminating subroutines and we prove that its preserves the semantics of the
Java program been transformed. Al this is done on top of the COQ Proof Assistant.

Keywords : Byte Code Verifiers, subroutines, Java Card, COQ, formal proofs

1. Introduction

Since its beginnings Java was a well suited programming language for development of Web applications
using web applets, and later also for distributed applications, Java Card applications and mobile
applications, among others. All this applications take full advantage of the possibility of downloading
untrusted code from different sources and executing it without endangering the environment. As always,
this feature is not for free, it introduces serious security issues that must be solved out.

The Byte Code Verifier (BCV) [2] is one of the most crucial components used by the Java Virtual
Machine (JVM) to address this security issue. The objective of the BCV is to verify that certain
properties, e.g. type correctness, are fulfilled by the applications before the execution, avoiding the
execution of malicious code that might try to perform an attack. Performance and correctness are qualities
of major importance for and BCV algorithm, since an inefficient algorithm would degrade the general
performance of the VM, and a bug in it could lead to dangerous security issues.

As it is documented in the JVM specification [2] the subroutines of the JVM Language (JVML) are a
major source of complexity for the BCV algorithms. In order to resolve the difficulties introduced by the
subroutines, BCV algorithms should increase its complexity, reduce its performance and also reduce its
precision. As studied in [1] the advantages of using subroutines might not be worth the degradation in the
performance and precision that it introduces. One alternative to solve these problems would be
eliminating subroutines from the bytecode. Subroutines can be easily using other JVML instructions.
New virtual machines like the K Virtual Machine (KVM) [7] which is a Java virtual machine especially
designed for small, resource-constrained devices such as cellular phones, pagers, PDAs, and so forth;
already don’t support subroutines, so some kind of subroutine elimination transformation should take
place before loading the Java code intro the VM.

This paper addresses this need by proposing a simple subroutine elimination transformation that could be
applied to any Java program to eliminate all subroutines occurrences form it. In addition to this it will also
formally prove that this transformation preserve the semantics of the Java program for a defined JVML
instructions subset. By doing so both BCV’s desired qualities can be achieved, performance because the
elimination of subroutines allow the construction of BCV more efficient and simple; and correctness
since a formal proof of correctness is done for this transformation.

The formal platform used to specify the transformation and to perform the proofs is COQ Proof Assistant
[10, 11]. The transformation is implemented and tested over a formal executable specification of the Java
Card Virtual Machine (JCVM) that is implemented in COQ. This implementation was done by the
Certicartes Project [8]. This work has not been completed yet, so this paper presents its current state.

The remaining sections of the paper are organized as follows. In Section 2 we present a general overview
of Byte Code Verifiers. Section 3 introduces the concept of subroutines in the Java bytecode, has a
discussion of the advantages and disadvantages of using them, and presents an intuitive idea of the
elimination procedure to use. Section 4 describes the platform used for the implementation and describes
the actual transformation. Section 5 presents the proof to be done in order to ensure the correctness of the
transformation. Finally, Sections 6 and 7 conclude and introduce future work to be done in this area.

2. Overview of Byte Code Verifiers

2.1 Introduction to Byte Code Verifiers

The Byte Code Verifier is one of the components used by the JVM to enforce its security. This is done by
performing a static analysis of the bytecode before its execution, assuring that it fulfills certain properties.
The most important properties that must be checked by the verifier are: type correctness (Java bytecode is
a typed language, so it guarantees that all instructions receive arguments of the correct types), stack
overflow and underflow, program counter bounds (the program counter must be kept inside the methods
bytecode) and object initialization (when a new object is created, one of the constructors of the object
must be called before the object can be used) [2, 4].

A BCV algorithm must procure two fundamental qualities, correctness and performance. The algorithm
must be correct because it is meant to enforce security in the JVM and also it may be used in platforms
like Java Card where security is a major issue. A bug in the BCV may lead to many new security issues
exploitable by malicious bytecode. Special efforts should be expended in assuring its correctness. Several
formalization efforts have been made to achieve this goal, for example [3, 5, 15].

The algorithm must also be efficient, since the verification is a process that every application must go
through before it can be executed. An inefficient algorithm would degrade the general performance of the
virtual machine. Another argument is that the algorithm must be able to perform verification in low
resources devices like Java Card. The verification process is done by performing a static analysis of the
application’s class files. Doing the verification statically is fundamental to achieve performance because
the bytecode verification takes place only one time when the class is been loaded (before its execution).

Although the JVM specification [2] state that the BCV must be independent of the compiler and must be
capable of verifying code forma any actual or future compiler, currents BCV implementations don’t fulfill
this requirement. They do this to obtain better performances for the verification algorithm.

Intuitively in order to type check a class the BCV algorithm should analyze the bytecode of each class’s
method and trace all possible execution paths checking that for each step of execution the bytecode is
well typed. In practice analyzing each execution path independently is not feasible because the time and
resources needed to do it. Actual BCV algorithms tend to assume some restrictions for the bytecode and
perform some approximations during the analysis of the bytecode in order to improve performance. As a
consequence, the BCV algorithm some times rejects correct bytecode, so the precision of the algorithm is
reduced.

Different techniques have been used to perform the verification. The first verification algorithm was
proposed by Sun [2], and it combines techniques of abstract interpretation [6] and dataflow analysis [6] to
perform the verification. Abstract interpretation is used to perform an abstract execution of the bytecode
only considering the types of the local variables and stack values. In order to deal with branches, a
dataflow analysis technique is used, allowing analyzing each possible execution flow. The algorithm
proposed by Sun performs a mono-variant analysis, maintaining one state per instruction in the bytecode
[2, 4]. Having only one state per instruction implies that for instructions that are target of more than one
execution path, the states of all paths should be merged in one state. This merging some times can lead to

a loss of precision in the analysis. The mono-variant analysis has the advantage that is simple, consumes
few resources and has a reasonable performance.

2.2 Subroutines

The concept of subroutine came up to the Java world to allow compilers the generation of size optimized
bytecode. A subroutine is a set of instructions included in the method’s bytecode that can be called from
any part of the method and share the same activation record with its caller. They are present only at the
bytecode level and they are completely transparent to the Java Source. In the JVML there are two
instructions designated to manage the subroutines, the jsr (Jump-SubRoutine) instruction that allow the
call of a subroutine and the ret instruction that is used to return from a subroutine.

The main use of the subroutines is to implement the try-catch-finally block of Java [2], because the
semantic of the finally demands that its code must be the last code executed of the try-catch-finally
block. For example, as we can see in Figure 2.1, the finally should be called from line 9 after the normal
(without unhandled exceptions) termination of the try block, it should be called from line 18 if the
exception is raised and it should be called from line 21 if an unhandled exception is raised. For a more
detailed explanation see section 7.13 of [2].

public void example1() {
int lv1, lv3, lv3;
L0 aload_0 //push reference from lv0

dup //duplicate top stack word
getfield Test.i //push contents of field Test.i
iconst_1 //push 1 onto stack
iadd //add the two ints on the stack
putfield Test.i //set field Test.i

L1 jsr L4 //push address of next opcode then goto L4
goto L5 //goto L5

L2 astore_1 //pop reference into lv1
aload_0 //push reference from lv0
dup //duplicate top stack word
getfield Test.i //push contents of field Test.i
iconst_1 //push 1 onto stack
iadd //add the two ints on the stack
putfield Test.i //set field Test.i
jsr L4 //push address of next opcode then goto L4
goto L5 //goto L5

L3 astore_2 //pop reference into lv2
jsr L4 //push address of next opcode then goto L4
aload_2 //push reference from lv2
athrow //throw reference currently on stack

L4 astore_3 //pop reference into lv3
aload_0 //push reference from lv0
dup //duplicate top stack word
getfield Test.i //push contents of field Test.i
iconst_1 //push 1 onto stack
isub //subtract int at stack top from int below it
putfield Test.i //set field Test.i
ret 3 //return from subroutine. Use address in lv3

L5 return //return void from method
catch java/lang/Exception

Start offset(L0), End offset(L1), Handler offset(L2)
catch ANY (finally)

Start offset(L0), End offset(L3), Handler offset(L3)
}

public class Test{
private int i = 0;
public void example1() {
try{

i++;
}catch (Exception e){

i++;
}finally{

i--;
}

}
}

Java Source Java Compiled Bytecode

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

Figure 2.1: try-catch-finally compilation example

The subroutines can also be useful to the compilation of the synchronized statements, in order to avoid
the repetition of the code that frees the locks before leaving the synchronized block, for an example see
[1]. But this approach is not in the JVM specification and is not widely use by compilers.

2.3 Subroutines and BCVs

The mono-variant technique proposed by Sun to perform the bytecode verification has problems handling
bytecode that includes subroutines. By definition a subroutine can be called from any part of the method,
so a mono-variant algorithm would merge the states of all execution paths at the first instruction of the
subroutine. This merge usually results in a major loss of precision, which mainly affect variables not used
by the subroutine (this problem is explained in [1, 2, 3, 4, 9]). A direct consequence of this is the rejection
of much of the bytecode that includes subroutines even if this bytecode is correct. Solving this problem

considerably increase the complexity of the verification algorithm. Sun presents a solution for this
problem in its proposal [2].

This problem could also be treated using poly-variant analysis. Using this technique an independent state
can be maintained for each subroutine call, avoiding the merge of states that cause the loss of precision.
This approach was used to implement the Off-Card Bytecode Verifier of the Sun Java Card Development
Kit. This technique can solve the subroutines problem by obtaining higher precision, but it needs more
resources and tends to be less efficient than the Sun algorithm. This technique is too expensive to be
preformed inside a resource constraint device like a Java Card.

Model checking of abstract interpretation has also been used to perform the bytecode verification [12,
13]. It implements in some way the intuitive idea presented before (with poly-variant), checking all
possible states reached when executing a method. A technique like this doesn’t present any problem with
subroutines or with branches, but it is a very expensive process. Some research efforts have been made in
these directions [12] and some interesting results have been obtained, but the cost of using it is still too
high.

3. Subroutine Elimination

3.1 Advantages and disadvantages of subroutines

The subroutines where introduced in JVML in order to optimize the size of the bytecode generated by
compilers. They allow the encapsulation of method’s repetitive bytecode in a subroutine and call it from
anywhere it is needed to do so (always from within the method’s bytecode). But nothing comes for free,
as we previously presented using subroutines introduce some difficulties for BCVs. The studies made in
[1] about the advantages and disadvantages of having subroutines, suggests reconsidering the use of
subroutines. It may not be worthy using them in all platforms.

Subroutines increase the complexity of the algorithm that performs the bytecode verification. The simple
algorithm proposed by Sun in section 4.9.2 [2] would try to handle the subroutine call as a simple branch
in the bytecode. The result is merging the states of all execution paths that call the subroutine. This merge
take place at the first instruction of the subroutine. Potentially the type of all local variables that are not
used by the subroutine are different from one state to the others, so the result of merging those states may
have an undefined value in those variables. This imprecision in the approximation would be carried
through the subroutine body by the analysis algorithm and when it reaches the return point of the
subroutine would be carried also to the instruction after each call to the subroutine.

This loss of precision is unacceptable, and ends up in the rejection of most of the correct bytecode that
includes subroutines. This problem with the subroutines and local variables is commonly presented
saying that the subroutines are polymorphic over the local variables that they do not use. Sun presented an
informal solution to this problem in section 4.9.6 of [2], but there are also some other solutions proposed
in [3, 5, 6].

This increase in complexity came with an increase in the time and space needed by the verification
algorithm, and as a consequence the general performance of the JVM suffers degradation. This problem
became more important when working with embedded devices where resources are very limited.

The elimination of the subroutines generally generates an linear increase in the size of the bytecode, but if
we have nested subroutines we might have a exponential increase in the size of the code. This problem
was studied in [1] by taking some statistics from some example programs and they conclude that:

§ It is not common to find nested subroutines in the code, which mean that the size increase is

usually linear.
§ The examples studied show the size of the bytecode of the method where the subroutines where

eliminated was increased substantially but the increase of size of a whole program after the
subroutine elimination is not a great deal.

For all this reasons the optimization obtained by use of subroutines, may not be enough to compensate the
difficulties introduced. Sun has already eliminated the subroutines from the bytecode language for its new

Java KVM virtual machine, which is specially designed to work with resource-constrained devices. They
decided to do this presumably to simplify the on-device bytecode verification (for more information see
[7]). The KVM virtual machine comes with a tool for eliminating the subroutines form the bytecode.

3.2 Eliminating the subroutines

Different strategies could be used to eliminate subroutines from the bytecode. A simple one could be
performing inline substitution of the subroutine bytecode for each subroutine invocation (jsr). This
would be the technique used by our transformation. Other options have been studied in [1]. This
technique is simple but not trivial, there are some problems that must be considered:

§ Flow control instructions: The inline substitution replace on instruction (jsr) with all the

instructions of the subroutine. As a result, the bytecode after the jsr should be shifted, so all the
addresses of the flow control instructions (like goto or if_cond) may need to be recalculated.
Instructions like lookuptable that manage relative addresses also may need to be recalculated.

§ Exception Handlers: For the same reasons, the addresses of the protected area and the location of
the handler must be also recalculated after the transformation.

§ Exception Handlers inside the subroutine: Each copy of the subroutine must have the same
handlers as the original subroutine in order to preserve the semantics, so a copy of each
exception handler must be done and the protected area must be recalculated to cover the
instructions in the subroutine copy.

§ Exception Handlers for the finally block : Each finally block has its own handler, which covers
the try block and all of the catch blocks. This handler is a special handler that can catch any
type of exception. If any unhandled exception is raised in the try or in any of the catch blocks,
this handler will catch that exception and will execute the finally block before raising it again,
see sections 7.12 and 7.13 of [2]. In the Figure 2.1 the protected area of this handler covers lines
0 to 16 and the handler starts at line 17.

How the inline substitution should take place is a delicate matter, because if we follow our
intuition and only insert the bytecode of the subroutine at the position where the subroutine call
is, we would be changing the semantics of the try-catch-finally block. The problem is related
to the exception handlers because all the handlers that are over the try block, including the
finally handler are not supposed to catch exceptions produced inside the finally block
bytecode, but if this inline substitution is preformed in place, then the bytecode of the subroutine
would be inside the try block, and so inside the protected area of all the handlers that cover the
try block (including the finally block itself).So if an exception is raised inside this inserted
code, it might be cached by any of the handlers or even the finally block. This problem can be
easily overcome, a solution will be presented in next section. This problem is well documented
in [14].

The elimination of the subroutines from the methods’ bytecode simplifies the work that must be
performed by the bytecode verifiers. The verification algorithms would not have to deal with
polymorphism introduced by the subroutines any more. After the subroutine elimination we would have
one copy of the subroutine bytecode for each subroutine call, so each subroutine call would access its
own copy of the subroutine. State merging is not needed any more.

4. The transformation

4.1 The platform

The subroutine elimination transformation was implemented and tested over a formal executable
specification of the Java Card Virtual Machine that is implemented in the COQ Proof Assistant [10, 11].
This formal specification was built in the Certicartes project [8].

This formal specification allows the execution of any Java Card program (with some restrictions, see [8]).
It treats the whole set of Java Card instructions and it considers every important aspect of the platform.
The formalization may be used to reason about the Java Card platform itself and to prove properties about

Java Card programs. These properties are of great value for the proof of correctness of our
transformation, they allow us to test and to reason about the transformation. For more information see,
[8].

COQ is a proof assistant based on the Calculus of Inductive Constructions. It combines a specification
language (featuring inductive and record types) and a higher-order predicate logic (via the Curry-Howard
isomorphism). All functions in COQ are required to be terminating, recursive functions must be defined
by structural recursion. For more information see, [10, 11].

4.2 Brief description of the JCVM

Java Card programs are Java programs with some constraints (because the limitation in resources of the
platform) and some special features. These programs are compiled with a standard Java compiler and
then must go through another transformation process that checks that the constraints are satisfied and also
merge all the class files of the application package that is being loaded into a single file, called the CAP
file. The CAP file is the loading unit in Java Card, it contain all classes and interfaces of a single package.

Certicartes has defined its own representation of the CAP file (see [8]) and it provides the JCVM Tools
that converts a standard CAP file into a COQ expression that represents it (this expression is of the type
jcprogram). This new CAP file then can be loaded and executed in COQ. When the JCVM Tool
generates this new CAP file representation it also performs some key transformations:

§ A complete resolution and elimination of the constant pool component. The Certicartes JCVM

works with a structured representation of the CAP files and not directly with a byte stream
format that forms the CAP files. This structure eliminates the problems of having branches to the
middle of an instruction, which is a problem that usually has been taken into account to
implement the subroutine elimination. The JCVM Tools perform a complete resolution and
linking.

§ Transformation of relative target addresses into absolute target addresses.

Here we only mention the transformations that are relevant for our subroutine elimination problem, for
more information see [8].

The tool also ensures that some invariants required by Sun’s specification hold. The two invariants
relevant for us are:

§ The target address of branching instructions remains within the calling method
§ The apparition order of the handlers inspecting the same block of code is respected by the

transformation, so if we have a try with two catches, the first catch will appear first in the list
of handlers

4.3 Restrictions over the bytecode

Usually JVML (or JCVML) programs are written in Java and then translated to JVML bytecode by the
Java compiler, but these programs may be written directly using the bytecode language as well. Programs
written directly at bytecode level have much more freedom of what they do and how they do it. They
might be built in a completely unstructured way. On the other hand, programs generated by the compiler
usually have a well defined structure, as they are automatically translated from Java code.

Constructing and proving the correctness of a transformation that deals with all kind of bytecode is a
complex task and demands a great amount of effort. Considering the fact that almost all the bytecode (if
not all) will be generated by a compiler, it may be more convenient to put all the efforts in the compiled
bytecode. Our transformation is focused on well structured bytecode (the general case would be presented
as future work), so to define which is the bytecode accepted by our transformation we give a set of
properties that it must be fulfill in order to be correctly transformed. The definition of these restrictions
was based on the informal ideas presented in the Java specification [2] (of how a try-finally block
should be compiled) and also these restrictions were checked against the bytecode generated by the Sun
JDK 1.3.1 (for Linux), and all tests done show they were fulfilled.

Restrictions for the structure of the bytecode:

§ Each subroutine call (jsr instruction) must be before the subroutine body in the method’s

bytecode.
§ We define the body of a subroutine as follows: it starts with a store instruction (that removes

the return address of the subroutine of the stack into a local variable) and ends with a ret
instruction. All instructions after the store instruction and before the ret instruction are part of
the body of the subroutine (including the store and ret instructions).

§ Each jump made inside a subroutine must keep the execution inside the subroutine (including the
tableswitch and lookupswitch instructions). Only with a ret instruction or an exception the
execution can jump outside the subroutine.

§ Each subroutine must have only one ret instruction (of its own, it can have more ret
instructions in its body it there are nested subroutines) and it can’t share it with another
subroutine.

§ The local variable used by the store instruction at the beginning of the subroutine must be only
used to store its return address through the method’s bytecode.

§ Given two subroutines s1 and s2, one of the next three properties must be valid: the body and
invocation of s1 are included in the body of s2, the body and invocations of s1 are completely
outside the body of s2 or the body and invocations of s2 are included in the body of s1.

§ The only way to stop executing bytecode inside the body of a subroutine is though the
invocation of the subroutine with a jsr instruction starting at the first instruction of the body.

Restrictions for the handlers:

§ For each handler, one of the next three properties must be true:

o The protected area and the code of the handler are included inside the subroutine body
o The subroutine body is completely inside the protected area of the handler.
o The subroutine body and invocations are completely inside of the code of the handler

Most of these restrictions are meant to simplify the determination of the subroutine’s body. Future work
should eliminate these restrictions and consider bytecode where the body of the subroutine is not so well
delimited. In [14] there is a well documented algorithm to determine the body of a subroutine.

4.4 Overview of the transformation

The goal of the transformation is eliminate all the subroutines form a given Java Card program,
represented by a CAP file (jcprogram in Certicartes). To do this it must eliminate all occurrences of a
subroutine from all the methods of all the classes in the CAP file. Formally, this transformation can be
defined as function T.

T: jcprogram->jcprogram

Considering the fact that our final goal is proving the equivalence between a program p and T(p),
defining the transformation in this way may difficult the proof. A transformation of these characteristics
where all subroutines in a program are eliminated implies changes all over the bytecode, increasing the
proof’s complexity. In order to reduce it, consider a new transformation T’ that only eliminate the first
occurrence (if there is any) of a subroutine in a given method. This transformation can be defined by:

T’: jcprogram->cap_method_idx->jcprogram

T’ receives a jcprogram, the index of one program’s method (in Certicartes method’s index are
represented by cap_method_idx) and it return a jcprogram. The returned program identical to the original
but the first occurrence of a subroutine was eliminated from the specified method. Each time the
transformation is applied it eliminates one subroutine invocation. The transformation searches for the first
jsr instruction in the bytecode and eliminate it. The elimination is preformed by inline substitution as it
will be explained ahead. The subroutine called by this invocation would be eliminated when all its
invocations were eliminated. In order to eliminate all the subroutines from a jcprogram the
transformation must be applied a finite number of times. All possible changes introduced by this
transformation would be only on the target method.

This transformation definition allows that the proof can be structured in a more convenient way. We can
prove the equivalence when only one invocation is eliminated (when T’ is applied) and then prove by
induction in the number of subroutines invocations that when all invocations are eliminated the original
and the transformed programs are equivalents. Proving the equivalence for transformation T’ is simpler
than for transformation T because it is well defined which parts of the program were affected by it.

The mechanism used to eliminate the subroutines is through inline substitution. As it was mentioned in
Section 3.2, there are some considerations that must be taken when performing the substitution in order to
preserve semantics of the try-catch-finally block. There are two different ways of doing the inline
substitution. The first option is replacing the subroutine call by a copy of the subroutine bytecode. In
order to preserve the semantics of the try-catch-finally block the handlers of the finally block must
be in two in order to leave the copy of the subroutine outside the handler. This process must be repeated
for each subroutine invocation. This approach have the disadvantage that it can produce an explosion in
the number of handlers needed (the maximum number of handlers per method are 255). This problem is
even worst if there are nested subroutines.

The second option is make a copy of the subroutine but instead of inserting it where the jsr instruction is,
it would be inserted outside the protected area of the finally block’s handler. By doing this there is no
need to split the handlers. Also the jsr instruction must be replaced by a goto jumping to the address
where the copy of the subroutine was inserted. In our transformation the copy is inserted at the end of the
subroutine. Remember that we are eliminating one call to a subroutine at a time, so usually the copies of
the subroutine will coexist with the subroutine itself.

Figure 4.1 shows an abstraction made over the structure of the method’s bytecode. This abstraction is
based on the restriction imposed over the bytecode in the previous section. The method’s bytecode can be
divided in four blocks.

Based on the restrictions imposed (in the previous section) over the bytecode, an abstraction in terms of
blocks of instruction could be made. As shown in Figure 4.1, the bytecode of a method that include
subroutines could be divided in four blocks. The first block goes from the first instruction up to the
instruction immediately before the first jsr instruction founded in the bytecode. The second block goes
from the instruction immediately after the first jsr up to the instruction immediately before beginning of
the subroutine (before the store). The third block is from the instruction immediately after the first
instruction of the subroutine (store) up to the instruction immediately before the last instruction of the
subroutine (the ret). Note that this block represents the subroutine being eliminated. The forth block goes
from the instruction immediately after the last instruction of the subroutine (the ret) up to the end of the
method bytecode.

From now on we will adopt the next naming convention when referring to the components of the methods
bytecode and some properties of it. The first invocation of a subroutine will be called first call (fc). The
address of the subroutine invoked by the first jsr will be called body start (bs). The bs is the first
instruction of the subroutine being eliminated and it is always a store. The address of the last instruction
of the subroutine will be called body end (be) and it is always a ret. The number of invocations to the
subroutine inside the method’s bytecode will be called number of calls (nc).

Bytecode

nc=1

nc >1
fc: goto be+1

bs: store v1

be: ret v1
nop

x: goto fc+1

B1’

B2’

B3

B3’

B3’

be: goto fc+1

fc: goto bs

bs: nop

B1

B2

B3

B4

fc: jsr bs

bs: store v1

be: ret v1

B1

B2

B3

B4

Figure 4.1: The transformation

Based on the abstractions presented in Figure 4.1, the transformation T’ can be divided in three cases:

§ There are no subroutine calls in the bytecode. In this case the method keeps unchanged.
§ There are subroutine calls in the bytecode and there are only one call to the subroutine been

eliminated, so nc=1. As shown in Figure 4.1, in this case the subroutine is eliminated only by
replacing the jsr by a goto jumping to the same address as jsr, witch is bs. Also the store
instruction is replaced by a nop and the ret instruction is replaced by a goto jumping to the
instruction immediately after the jsr, witch is fc+1. The reason to replace the store by a nop is
to simplify the proof as it will be explained in section 5.1.2. The rest of the code and the
exception handlers are not affected by the transformation.

§ There are subroutine calls in the bytecode and there are more than one call to the subroutine been
eliminated, so nc>1. As shown in Figure 4.1, in this case the block B3 (the subroutine body
without the first an last instructions, the store and ret) will be cloned and it will be inserted
immediately after the end of the subroutine, after be. Between the ret at be and B3’ there is a
nop, witch replace the store instruction of the subroutine body as explained in the previous case.
Also after the B3’ there is a goto jumping to fc+1 witch replace the ret (also as explained in the
previous case). All the address of the branching instructions in blocks B1, B2, B4 and B3’
should be corrected. The exception handlers inside B3’ should be cloned. Other exception
handlers should be recalculated.

The actual implementation of this transformation in COQ is a bit different. The transformation is splited
in two, one function that transforms the bytecode and one function that transform the handlers. By doing
it in that way it is easier to establish that after applying T’ the only areas of the program affected are the
bytecode and the handlers of the method received as a parameter. The definition of those functions is as
follows:

Definition subroutElim : (list Instruction)->subroutine->(list Instruction)

Fixpoint handler_correction [s:subroutine; l:(list handler_type)]:
 (list handler_type)

Both functions receive as a parameter a record of the type subroutine. This record stores pre-calculated
information about the bytecode of the method been processed. It contains the fc, bs, be address it also
contains the nc, the number of the local variable used by the subroutine to hold the return address, the
body of the subroutine been eliminated ready to perform the inline substitution (it already replace the
store by the nop, the ret by the goto and perform the address correction of the branch instructions) and
the length of the body. The COQ definition of the record is as follows:

Record subroutine : Set := {
 firstcall: bytecode_idx; (*Address of the first invocation*)
 numbercalls: nat; (*Number of calls to the subroutine*)
 retaddr: locvars_idx; (*Number of the local variable to hold the Return Address*)
 bodystart: bytecode_idx; (*Address of the subroutine begin*)
 bodyend: bytecode_idx; (*Address of the subroutine end*)
 body: (list Instruction); (* Bytecode of the sub-routine *)
 bodylen: nat; (* Length of the bytecode of the sub-routine *)
 processing: bool (*For internal use of the analyze algorithm*)
}.

The function that pre-calculates all this values is called AyzStruct (analyze structure) and it is defined as
follows:

Definition AyzStruct : (list Instruction)->subroutine

The subroutine elimination function subroutElim receives a list of instructions (the bytecode) and it
returns another list of instructions where the first invocation to a subroutine was eliminated. The
handler_correction function receives a list of handlers and returns another list of handlers where all the
recalculation or cloning needed has been preformed.

5. Reasoning on the correctness of the transformation

Working on top of COQ and having the full implementation of de JCVM makes possible to reason on the
correctness of the transformation proposed. By correctness we mean that the transformation should
preserve the semantics of the Java program being transformed and also the BCV acceptance. The BCV
acceptance state that if a given program is accepted by the BCV before applying the transformation it
must also be accepted after applying the transformation. Note that in the opposite direction the property
do not necessary have to hold.

Section 5.1 presents the work done up to the moment in the formal proof of equivalence. Section 5.2
gives an intuitive idea of why the BCV will accept the transformed program.

5.1 Equivalence proof

5.1.1 Proof’s goals

The goal is proving that the transformation preserves the semantics of a Java program. This will be done
by proving for a program p, the execution of the program with subroutines and without subroutines (after
the transformation) lead to equivalents states. Those states are not equal, the differences are in the frames
of execution associated to the transformed method, but those differences don’t affect the result of the
execution of the methods. This would be explained in more detail in section 5.1.3.

5.1.2 Proof strategy

The strategy that we will use for the proof will be based on a commutation diagram. In order to prove the
equivalence of both programs, we will prove that the execution of the original program commute with the
execution of the transformed program. We take two special considerations to simp lify the proof without
losing generality in it. These considerations also contribute to a clearer and more direct proof.

The first consideration is related to the strategy used in the definition of the transformation. Intuitively it
is easier to prove that the two programs are equivalent if they are “similar”. Defining the transformation
to eliminate only the first subroutine invocation founded in the bytecode as it was defined in section 4.4
simplifies considerably the proof because the proof can be focused in one method and one subroutine
invocation rather than the whole program.

The second consideration is related to the number of execution steps needed by the original and
transformed programs to reach equivalent states. This number may be a different number for each
program. The proof‘s complexity would be lower if we have the same number of steps. During the inline
substitution when the subroutine body is cloned, the store instruction at the beginning of the subroutine
is useless (because we don’t have to deal with the return address any more), so it can be eliminated. The
consequence of this elimination would be that the transformed program would need one less step to
execute the subroutine. Ergo, to avoid this unpleasant problem the transformation instead of eliminating
the store instruction it will replace it by a nop instruction. This instruction doesn’t affect the state and it
corrects difference in the steps. Having the same number of execution steps for both bytecode makes
possible the next simplification; we can prove that the execution is equivalent for one step of execution
rather than an arbitrary number of steps.

In order to avoid having useless instructions in the code like the nop instruction, it should be easy to
implement another transformation that eliminates all the nop instructions from the code and then proving
the equivalence of both programs. But this will be left as future work.

So with these two simplifications in mind we can build the commutation diagram as we can see in Figure
5.1. Given a jcprogram and a state we reach the same state returned_statet by executing one step of
the original code and then applying the state transformation function (rtransf) or by first executing the
subroutine elimination transformation (subroutElim) and state transformation function (transf) and then
execute one step over the transformed code.

(jcprogramt, returned_statet)(jcprogramt, jcvm_statet)

(jcprogram, returned_state)
exec_1_step

exec_1_step

subroutElim +
transf

rtransf

(jcprogram, jcvm_state)

Figure 5.1: Commutative diagram

A jcvm_state is basically formed of a heap, a static heap and a stack of frames. A frame is responsible of
having a method’s state of execution. As it is shown ahead, in each frame there are the local variables, the
operand stack and the program counter for a specific method. For more information refer to [8].

Record frame : Set := {
 opstack:(list valu); (* operand stack *)
 locvars:(list valu); (* local variables *)
 method_loc: cap_method_idx; (* location of the method *)
 context_ref: Package; (* context information *)
 analyzed: bool; (*This is for the BCV*)
 p_count: bytecode_idx (* program counter *)
}.

The function exec_1_step receives a program and a state and it execute the next step of execution based
on the frame in the top of the stack. This function is defined as follows:

Definition exec_1_step: jcprogram->jcvm_state->returned_state :=
 [cap:jcprogram; state:jcvm_state]
Cases (head (Snd (Snd state))) of
 (Some h) => (Cases (get_instruction (method_loc h) state cap) of
 None => (AbortCode instruction_error state) |
 (Some i) => (exec_instruction i state cap)
 end) |
 (None) => (Normal state)
end.

5.1.3 State mapping functions

This section is meant to explain how the state mapping functions transf and rtransf actually work. The
differences between a state corresponding to the original bytecode execution and the one corresponding to
the transformed bytecode execution are located in the stack of frames. To be more precisely, they are
located in the frames associated to the method being eliminated. Consequently to transform the original
state (result of the execution of the original bytecode) to the transformed state (result of the execution of
the transformed bytecode) we need to analyze each frame in the stack and transform it.

The components of the frame that may need to be transformed are the program counter, the set of local
variables and the operand stack. To clarify why each of these components may need to be modified, let’s
consider the example shown in Figure 5.2.

a)
...
jsr x
...
x: store v1
...
y: ret v1
...

b)
...
goto y
...
x: store v1
...
y: ret v1
z: nop
...
w: goto
...

Figure 5.2: Bytecode before (a) and after elimination (b)

In this example we can see the original bytecode (a) and the transformed bytecode (b) after the
elimination of the first subroutine invocation. This example is in the hypothesis that there is more than

one invocation to the subroutine being eliminated. Now let’s see why the program counter may need to be
transformed. If the original state’s program counter is inside the subroutine (between x and y) then the
transformed state’s program counter would have two possible values. If the subroutine was called form
the invocation at fc the program counter would be between z and w. In the other hand it the subroutine
was called form other invocation then the program counter would be between x and y.

The state mapping transformation uses the value of the return address to decide which invocation calls the
subroutine. The return address can be at the local variable or the operand stack, depending on the position
in the bytecode. This is one of the reasons that motivate the restriction that each subroutine have its own
local variable and that it can only be used by the store instruction at de beginning of the subroutine and
the ret instruction at the end. Without this restriction we can’t decide where the invocation was
originated.

Similar considerations must be taken to transform the local variables. If we are executing inside the
subroutine and it was called by the jsr instruction at fc, in the original state the local variable of the
subroutine must be set with the return address. On the other hand, this local variable in the transformed
state must be unset because the return address is not needed any more (in Certicartes an unset variable
have a default value). If we are executing inside the subroutine but it was called form a different jsr than
the one at fc, the value of the return address must be kept.

Local variables presents have another problem that is related to nested subroutines. The presence of
nested subroutines inside the subroutine been eliminated demands that the return addresses stored by
these subroutines in the local variables may need to be recalculated. These addresses are recalculated
depending where the subroutine was called (this can be know examining the local variable at the original
state). Consequently the transformation must scan the set of local variables and recalculate all return
addresses that need so.

When the subroutine has just been called the operand stack stores the return address until the store
instruction remove it. This return address may need to be removed form the original state; this depends on
who made the call to the subroutine. If the called was made form fc the return address must be removed,
in any other case it must be kept. The operand stack also has the same problem of the local variables with
nested subroutines. This implies that the transformation must scan the operand stack and transform return
addresses that need so.

In the case where there is only one invocation to the subroutine, the state transformation function is
simpler. The program counter never needs to be transformed, because there are not significant changes in
the structure of the bytecode (see Figure 4.1). We still have to check if we have to unset the return address
from the local variable or remove it from the operand stack, but we don’t have the nested subroutine
problem any more.

Both functions transf and rtransf use the same state transformation algorithm, the only difference is
that transf process a jcvm_state [8] and rtransf process a returned_state [8]. Actually the functions
implemented to make these transformations were:

s2s: cap_method_idx->subroutine->stack->stack (* impl. transf *)
r2r: cap_method_idx->subroutine->returned_state->returned_state (* impl. rtransf *)

The first one s2s (state to state) receive the index of the method being transformed, a subroutine element
(it is a record with information about the method being transformed), and the stack of frames and return a
transformed stack of frames. The second one r2r receive also the index of the method, a subroutine
element and a returned_state and return a transformed returned_state. r2r uses s2s to perform the
state transformation.

5.1.4 Testing the commutation experimentally

Now that all the functions of the commutation diagram (Figure 5.1) are defined, the property that must be
satisfied to prove the commutation can be established. This property would be as follows:

(r2r mid a (exec_1_step jp (sh, (hp,(cons f lf)))))=
 (exec_1_step jpt (sh, (hp, (s2s mid a (cons f lf)))))

In the property mid represents the index of the method where the elimination would be preformed. The
original jcprogram program is represented by jp and the transformed program by jpt. The state is
represented by giving its components which are hp the heap, sh the static heap and (cons f lf) the stack
of frames. Note that the stack of frames must have at least one frame represented by f.

The executablility of the Certicartes JCVM platform allow to experimentally test the commutation of the
diagram using the functions previously defined subroutElim, handler_correction, r2r, s2s,
exec_1_step. We implement a state equivalence check function that receives as input parameter the
original program, the number of steps (n) to execute and the number of subroutine eliminations to
perform (m). This function checks that for each execution step (between 0 and n) the original program
commute with the transformed program. The transformed program is the result of applying subroutElim
m times to the method).

These tests help us to detect some bugs in our functions in an early stage, avoiding the unpleasant
moment of finding them during the proofs, which may result in having to make the whole proof again.

5.1.5 The theorem of equivalence

The theorem of equivalence ensures that the commutation property presented in the previous section
holds for an arbitrary combination of a program and a state. The statement of the theorem is as follows:

1 Theorem EQ:
2 (jp:jcprogram)(sh:sheap)(hp:heap)
3 (lf:(list frame))(f:frame)(m, mti: Method)

4 let state = (sh, (hp, (cons f lf))) in
5 let mid = (method_loc f) in
6 let a = (AyzStruct (bytecode m)) in
7 let ltr = (subroutElim (bytecode m) a) in
8 let h = (handler_list m) in
9 let ht = (handler_correction a (handler_list m)) in
10 let mt = (mod_hb m ht ltr) in
11 let jpt = (Build_jcprogram
 (classes jp)
 (l_update_nth (methods jp) mid mt)
 (interfaces jp)) in
12 ((Some Method m)=(Nth_elt (methods jp) mid))->
13 ((Some Method mti) = (Nth_elt (methods jpt) mid))->
14 (mti=mt)->

15 (checkStructure (bytecode m))->
16 (handlerSub h (bodystart a) (bodyend a))->

17 (r2r mid a (exec_1_step jp state))=
 (exec_1_step jpt (sh,(hp,(s2s mid a (cons f lf))))).

The arbitrary program and state are represented by the jp and state variables respectively (line 4). The
state is specified by its components, the static heap (sh), the heap (hp) and stack of frames. Note that the
stack of frames must have at least one frame (f). The rest of the stack is represented by lf which is a list
of frames.

The subroutine elimination is preformed over the method m of jp. The method m is at position mid, at line
12. The result is a new program jpt where only the bytecode and handlers of the method m were
modified. The transformation is applied to the bytecode (line 7) and the handlers (line 9) of the method m
separately, giving as a result a new bytecode (ltr) and a new list of handlers (ht). The transformed
method mt is the result of replacing ltr and ht with m’s bytecode and m’s list of handlers respectively. In
line 11 the jpt program is constructed by replacing original method m by the transformed method mt.

An extra restriction is imposed in line 5; the frame in the top of the stack (f) must be associated to the
method m. Consequently this theorem will prove the commutation of the diagram when the next step of
execution is over method m. The general statement shouldn’t impose this restriction, it should cover this
case and the case where the next step of execution is over a frame not associated to m. Definitely, the case

covered by the theorem is most challenging of both. The only interesting part of the other case is when
the next instruction to execute raises an exception and it is handled by the transformed method. The other
cases can be trivially proved because those methods were not affected by the transformation. In our
theorem statement we opt for leaving this case out because we consider that it didn’t really contribute to
the proof. This case will be proposed as future work.

The theorem also imposes three different groups of restrictions:

• Restrictions over the structure of the bytecode of the transformed method. Those restrictions are
imposed by the checkStructure term at line 15.

• Restrictions over the list of handlers of the transformed method. Those restrictions are imposed
by the handlerSub term at line 16.

• Restrictions over the state where the commutation property should be valid. In order to simplify
the theorem’s statement these restrictions were not included in it.

Those restrictions are explained in greater detail above.

Restrictions over the bytecode

The aim of these restrictions is establish the structure that the bytecode of the method to be transformed
must have. These restrictions were presented informally in the section 4.3. Formally they are defined by
inductive predicates. The checkStructure is an inductive predicate that receives the bytecode of a
method as a parameter and it checks that all the restrictions are satisfied by it. This predicate is defined as
follows:

Inductive checkStructure: (list Instruction)->Prop

To exemplify how the restrictions are formally defined using inductive predicates, consider the first
restriction imposed over the bytecode in section 4.3:

“Each subroutine call (jsr instruction) must be before the subroutine body in the method’s bytecode”

The inductive predicate that defines this restriction is:

Inductive checkJSRltSTOREi : Instruction->nat->Prop :=
 cons_jsr_other: (i:Instruction)(n:nat) (isOther i) -> (checkJSRltSTOREi i n) |
 cons_jsr_jsr: (b:bytecode_idx)(n:nat) (gt b n)->(checkJSRltSTOREi (jsr b) n) |
 cons_jsr_store: (t:type)(l:locvars_idx)(n:nat) (checkJSRltSTOREi (store t l) n) |
 cons_jsr_load: (t:type)(l:locvars_idx)(n:nat) (checkJSRltSTOREi (load t l) n) |
 cons_jsr_ret : (l:locvars_idx)(n:nat) (checkJSRltSTOREi (ret l) n).

Inductive checkJSRltSTORE: (list Instruction)->Prop :=
 nil_chkJltS: (checkJSRltSTORE (nil Instruction)) |
 cons_chkJltS: (i:Instruction)(li,lr:(list Instruction))(n:nat)
 (checkJSRltSTORE li)->(p_length li n)->(p_ins_back i li lr)->
 (checkJSRltSTOREi i n)->(checkJSRltSTORE lr).

This predicate checks that each jsr instruction points to an address greater than its own address. If this
predicate is fulfilled for all jsr instruction the body of the subroutines will be always after its calls .

The inductive predicate is divided in two different predicates. checkJSRltSTOREi receives a instruction
and its position in the bytecode, and it checks if the restriction is fulfilled. checkJSRltSTORE receives a
list of instructions and it checks that the restriction holds for all instruction. isOther, p_length,
p_ins_back are all auxiliary inductive predicates.

Restrictions over the handlers

These restrictions check if the given list of handlers fulfills the handler’s restrictions presented informally
in the section 4.3. These restrictions are also formally defined by an inductive predicate, called
handlerSub. It receives as a parameter a list of handlers, the address where the subroutine start (bs) and
the address where the subroutine ends (be); and it checks that all the handlers in the list are inside or
outside the subroutine.

In Certicartes a handler is defined by the structure handler_type. It is defined as follows:

Definition handler_type := (bytecode_idx*bytecode_idx*class_idx*bytecode_idx).

The first two elements define the range where the exception handler is active, the protected area. The
third element defines the class of exceptions that the handler must catch, whereas the last element points
to the first instruction of the handler code that should be executed when the exception is catched. For
more information see [8].

The predicate handlerSub is defined as follows:

Inductive handlerSub: (list handler_type)->bytecode_idx->bytecode_idx->Prop :=
 nil_hSub: (b, e:bytecode_idx) (handlerSub (nil handler_type) b e) |
 cons_hSub1: (l:(list handler_type))(h:handler_type)(b, e:bytecode_idx)
 (handlerSub l b e)->
 ((lt (Fst h) b)/\(lt (Fst (Snd h)) b))->
 (lt (Snd (Snd (Snd h))) b)\/(gt (Snd (Snd (Snd h))) e)->
 (handlerSub (cons h l) b e) |
 cons_hSub2: (l:(list handler_type))(h:handler_type)(b, e:bytecode_idx)
 (handlerSub l b e)->
 ((gt (Fst h) e)/\(gt (Fst (Snd h)) e))->
 (gt (Snd (Snd (Snd h))) e)->
 (handlerSub (cons h l) b e) |
 cons_hSub3: (l:(list handler_type))(h:handler_type)(b, e:bytecode_idx)
 (handlerSub l b e)->
 ((lt (Fst h) b)/\(le e (Fst (Snd h))))->
 (gt (Snd (Snd (Snd h))) e)->
 (handlerSub (cons h l) b e) |
 cons_hSub4: (l:(list handler_type))(h:handler_type)(b, e:bytecode_idx)
 (handlerSub l b e)->
 ((gt (Fst h) b)\/(eq bytecode_idx (Fst h) b))/\(le (Fst (Snd h)) e)->
 (gt (Snd (Snd (Snd h))) b)/\(lt (Snd (Snd (Snd h))) e)->
 (handlerSub (cons h l) b e).

The predicate have four possible constructors:

• conshSub1: In the case that both the protected area and the handler code are before bs or the
protected area is before bs and the handler code is after be.

• conshSub2: In the case that both the protected area and the handler code are after be.
• conshSub3: In the case that the subroutine is inside the protected area of the handler and the

handler code is after be.
• conshSub4: In the case that both the protected area and the handler code are inside the

subroutine.

Restrictions over the state

The assertion that the commutation diagram should hold for all state is not completely true, because not
all possible states are valid JCVM states. By valid JCVM states we mean states that can be reached by a
valid jcprogram that fulfill the restrictions established in section 4.3. The restriction defined in this sub-
section defines the set of valid states in which the commutation diagram will hold. In order to simplify the
equivalence theorem’s statement this restrictions were not included in it.

Some examples of the restrictions that where imposed over the states are:

• In every frame associated to the method where the transformation was applied, the local variable
used by the each subroutine to store the return address must exist. The statement of this
restrictions is as follows:

((fr:frame) (method_loc fr) = mid ->
 {v:valu | (Nth_elt (locvars fr) (retaddr a)) = (Some valu v)})

• The next restriction is only valid in the case where number of calls is one. It establishes that for
every frame associated to the method where the transformation was applied, subroutine
instruction (the store) is about to be executed, a return address must be on the top of the stack.

This return address must be pointing to the address fc + 1. The statement on this restriction is as
follows:

((fr:frame) (method_loc fr) = mid ->
 (p_count fr) = (bodystart a) ->
 (EX lv:(list valu) |
 (opstack fr) =
 (cons ((Prim ReturnAddress),(inject_nat (S (firstcall a)))) lv)))

• The local variable used by instructions like store must exist in every frame that is associated the

method where the transformation was applied. The statement of this restriction is as follows:

((fr:frame) (method_loc fr) = mid ->
 {v:valu | (Nth_elt (locvars fr) l) = (Some valu v)})

As it was explained at the beginning of this section, the theorem will only prove for one step of
execution over a frame associated to the method affected by the transformation. This is the
reason why this restriction only consider the frames affected by the transformation.

Another restriction imposed over the state says that when the program counter is at bs (so the subroutine
has just been invoked) the value of the local variable that keeps the return address must be unset. To be
more precisely the value will be the default value of the local variable which is represented by
default_valu. This restriction means that the subroutine only can be called one time per method
execution. Clearly this is a limitation for a generic bytecode, but it is not for the bytecode generated to
compile the finally block. When the bytecode is from a finally block a subroutine is usually called one
time per method execution. The reason to need this restriction is that if at bs the local variable could take
different values, the state mapping function will not have enough information to decide which is the
correct value. To know the value it would need to simulate the execution of the method or use another
complex mechanism. This statement of this restriction is as follows:

((fr:frame)(v:valu) (method_loc fr) = mid ->
 (p_count fr) = (bodystart a) ->
 (Nth_elt (locvars fr) (retaddr a)) = (Some valu v) ->
 v = default_valu)

Analyzing a different approach for avoid this restriction will be leaved as future work.

Only a portion of all the restrictions have been presented here. Most of the state restrictions appear while
the proof was developed. Since the proof has not been developer completely, it is highly probable that
many state restrictions will appear with the rest of it.

5.1.6 Proof structure

Partitioning

The definition of the structure of the proof was mainly directed by one goal, reduce and manage the
proof’s complexity. To address this issue the proof is structured in five layers (see Figure 5.3). Each layer
proves a specific sort of property. To prove a property in layer n we will use the properties of the lower
layers.

The first four layers are also partitioned vertically. These divisions are based on the value of the field nc
of the subroutine record. The division is based on the three cases presented in Section 4.4, which are
nc=0 (no subroutine calls), nc=1 (only one subroutine call) and nc>1 (more than one subroutine calls).

nc = 1nc = 0 nc > 1

Analyze function properties

JSR
pc=FC

STORE
pc=BS

RET
pc=BE

BLOCK
(0,FC)
(FC,BS)
(BS,BE)
(BE,..)

JSR
pc=FC

STORE
pc=BS

RET
pc=BE

B1
(0,FC)
(FC,BS)

B2
(BS,BE)

B3
(BE,..)

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Relations between original and transformed bytecode

Commutation proof for each block

General Commutation Proofs

Equivalence Theorem

Figure 5.3: Proof’s structure

Each layer has a specific objective, those objectives are:

• Layer 1: It establishes the relation between the bytecode of the method to be transformed and the
subroutine record obtained by applying the AyzStruct function to it. The main goal if this layer
is to precisely establish the mining of the analytical information generated by the AyzStruct
function. This layer is composed by ten lemmas that state the properties. Those lemmas are
proved based on the AyzStruct function. By working on top of this layer, we don’t have to
worry any more about the AyzStruct function in the proofs of the subsequent layers

• Layer 2: It establishes relations between the original and the transformed method. It basically

states the changes in the bytecode and handlers introduced by the subroutine elimination
transformation. This layer grasps the effects of the transformation, so by working on top of this
layer we don’t have to worry any more about the transformation’s particular implementation.

The effects of the transformation are particular for each case nc=0, nc=1 and nc>1. The case nc=0
where nothing change is trivial, both bytecode are the same. The effects for the other two cases
can be extracted from Figure 4.1. A summary of those effects is presented above.

Case nc = 1:

o Blocks B1, B2, B3 and B4 remains unchanged
o At the position of the jsr instruction (fc) there is a goto instruction with the same

target address of the jsr
o At the position of the store instruction (bs) there is a nop instruction
o At the position of the ret instruction (be) there is a goto instruction. Its target address

is fc +1

Case nc > 1:

o Blocks B1’ and B2’ basically are the same as B1 and B2 respectively but the address of
the brunch instructions are recalculated

o At the position of the jsr instruction (fc) there is a goto instruction. Its target address
is be + 1

o At the position of the store instruction (bs) there is the same store instruction
o Block B3 of the transformed bytecode remains unchanged
o At the position of the ret instruction (be) there is the same ret instruction
o At the position be + 1 there is a nop instruction
o Block B3’ basically is the same as B3 but the address of the brunch are shifted
o At the position be + body length (is the length of the subroutine body including the

store and ret instructions) there is a goto instruction. Its target address is fc +1

o Block B4’ basically is the same as B4 but the address of the brunch instructions are
recalculated

• Layer 3: It establishes correspondences among the original and transformed bytecode. To

understand what correspondence mean here, let’s analyze the state mapping function. As it was
previously said, one of the elements of a frame that the state mapping function may transform is
the program counter. This new program counter would point to the correspondent instruction of
the transformed bytecode. That is precisely what correspondence means. An instruction in the
original bytecode may have one or two correspondent instructions in the transformed bytecode.
This layer states the correspondences and also proves that the execution of each pair of
correspondents commutes.

Following the relations established by the previous layer we state the correspondences between
blocks of instructions or between instructions individually. The correspondences are shown in
Figure 5.4.

B4’B4B4

ret, gotogotoret

B3, B3’B3B3

store, nopnopstore

B2’B2B2

gotogotojsr

B1’B1B1

Transformed (nc>1)Transformed (nc=1)Original

Figure 5.4: Bytecode correspondences

This figure state that block B1’ in the case nc > 1 corresponds to block B1 in the original
bytecode. If the program counter is inside B1 the state mapping function transforms it to point to
its correspondent instruction in B1’. In the other hand the block B3 of the original bytecode has
two correspondent blocks when nc > 1.

In order to structure the proofs in layers 2 and 3 we introduce an extra vertical subdivision, in
addition to the original one (see Figure 5.3). This subdivision only affect the cases nc = 1 and nc
> 1. These divisions are related to the correspondences of Figure 5.4. Each division has a lemma
that proves its commutation. In the case of nc = 1 we have four lemmas or subdivisions, one for
each instruction (jsr, store, ret) and one for the four blocks. In the case of nc > 1 we have six
subdivisions, again one for each instruction and then one for the first two blocks, other for the
subroutine body (B3) and another for the last block (B4).

• Layer 4: For each case nc = 0, nc = 1 and nc > 1, it proves that the execution of the original
method commute with the execution of the transformed. This proof is done by performing
induction on the program counter value.

Here again the state mapping function has a crucial role, because for each program counter value
the function would transform it to the correspondent in the transformed bytecode. This means
that for each instruction in the original bytecode the state mapping function give us the
correspondent instruction of the transformed bytecode. The commutation of these two
instructions is trivially proved with the lemmas of the previous layer.

• Layer 5: It proves the Equivalence Theorem based on previous layers.

Quoting the proof

It is a fact that proving all the lemmas and theorems for the five layers is a huge task, so we decide to
quote the proof’s scope. The proof will be done for a subset of the JCVM instruction set. The instructions
chosen to be in this subset are the most affected by the transformation. These instructions are:

• jsr, ret and store: Needed to consider nested subroutines
• push and pop: Because they manipulate the operand stack, which is one of the instructions

affected by the state mapping function
• store and load: Because they manipulate the local variables, which is the other instructions

affected by the state mapping function
• goto: As a brunch instruction it is directly affected by the transformation’s address recalculation
• invokeinterface: Because it is a method call function that can potentially raise exceptions

(when the reference of the invoked object is null) or create a new frame in the frame stack (the
normal execution scenario)

• nop: The no operation was only included because is used by the transformation

The tableswitch or lookupswitch instructions are also particularly affected by the transformation but
we decide not to include them at this time, we propose this as future work.

The final instruction subset is:

Instruction_subset =
 {jsr, ret, pop, push, store, load, goto, nop, invokeinterface}

Examples

Now we will exemplify the first four proof layers by giving the statement of one or more it’s lemmas. The
theorem of the layer number five is the general theorem already introduced. For the first layer we present
two lemmas.

Lemma eqAyz1: (m:Method)

 let a = (AyzStruct (bytecode m)) in
 (lt (S (firstcall a)) (bodystart a))/\(lt (bodystart a) (bodyend a))/\
 (~(bodystart a)=(0))/\(~(bodyend a)=(0))->
 (gt (numbercalls a) (0))->
 (checkStructure (bytecode m))->

 {idx: bytecode_idx |
 (Nth_elt (bytecode m) (firstcall a)) =
 (Some Instruction (jsr idx))/\(idx=(bodystart a))}.

This lemma states that the instruction whose position is determined by the field fc of the structure
returned by AyzStruct must be a jsr instruction. This is valid only if the method’s bytecode have the
correct structure and at least one subroutine was found.

Lemma eqAyz7: (m:Method)(i:nat)(ins:Instruction)

 let a = (AyzStruct (bytecode m)) in
 (lt (S (firstcall a)) (bodystart a))/\(lt (bodystart a) (bodyend a))/\
 (~(bodystart a)=(0))/\(~(bodyend a)=(0))->
 (gt (numbercalls a) (1))->
 (checkStructure (bytecode m))->
 (gt i (1))/\(lt i (pred (bodylen a)))->
 (Nth_elt (bytecode m) (plus (bodystart a) i)) = (Some Instruction ins)->

 (Nth_elt (body a) i) = (Some Instruction (address_recalc ins a)).

This lemma states that in the case where nc>1 the instructions in the field named body of the structure
returned by AyzStruct are the subroutine’s body instructions and that the address of those instructions
have been recalculated.

For the second layer we give other two examples:

Lemma ncOne1: (m:Method)(i:nat)

 let a = (AyzStruct (bytecode m)) in
 let ltr = (subroutElim (bytecode m) a) in
 let mbc = (bytecode m) in
 (checkStructure (bytecode m))->
 (lt (S (firstcall a)) (bodystart a))/\(lt (bodystart a) (bodyend a))/\

 (~(bodystart a)=(0))/\(~(bodyend a)=(0))->
 ((numbercalls a) = (1))->
 (~i=(firstcall a))->(~i=(bodystart a))->(~i=(bodyend a))->
 (lt i (length (bytecode m)))->

 ((Nth_elt (bytecode m) i) = (Nth_elt ltr i)).

This lemma state that when we only have one subroutine call, the blocks B1, B2, B3 and B4 (Figure 4.1)
of the original bytecode are not modified by the transformation.

Lemma ncOneJSR2: (m:Method;x:Instruction)(idx:bytecode_idx)

 let a =(AyzStruct (bytecode m)) in
 let ltr =(subroutElim (bytecode m) a) in
 (checkStructure (bytecode m))->
 (lt (S (firstcall a)) (bodystart a))/\(lt (bodystart a) (bodyend a))
 /\~(bodystart a)=(0)/\~(bodyend a)=(0)->
 (numbercalls a) = (1)->
 (Nth_elt ltr (firstcall a)) = (Some Instruction x)->
 (Nth_elt (bytecode m) (firstcall a)) = (Some Instruction (jsr idx))->
 x = (goto idx).

This lemma state that the jsr instruction located at fc will be replaced by a goto to the same target
position.

For the third layer we give another two examples:

Theorem NC1_JSR: (jp:jcprogram)(sh:sheap)(hp:heap)
 (lf:(list frame))(f:frame)(m, mti: Method)
 let state=(sh, (hp, (cons f lf))) in
 let mid = (method_loc f) in
 let a = (AyzStruct (bytecode m)) in
 let ltr = (subroutElim (bytecode m) a) in
 let h = (handler_list m) in
 let ht = (handler_correction a (handler_list m)) in
 let mt = (mod_hb m ht ltr) in
 let jpt = (Build_jcprogram
 (classes jp)
 (l_update_nth (methods jp) mid mt)
 (interfaces jp)) in
 ((Some Method m)=(Nth_elt (methods jp) mid))->
 ((Some Method mti) = (Nth_elt (methods jpt) mid))->
 (mti=mt)->
 (checkStructure (bytecode m))->
 (lt (S (firstcall a)) (bodystart a))/\(lt (bodystart a) (bodyend a))/\
 (~(bodystart a)=(0))/\(~(bodyend a)=(0))->
 ((numbercalls a) = (1))->
 ((p_count f)=(firstcall a))->
 (r2r mid a (exec_1_step jp state)) =
 (exec_1_step jpt (sh, (hp, (s2s mid a (cons f lf))))).

This theorem state that when we only have one subroutine call and the program counter of the actual
frame of execution is at fc, the execution of the jsr instruction of the original code (in a given state)
commute with the execution of the goto instruction of the transformed bytecode (in the transformed
state).

Theorem NC1_EQB: (jp:jcprogram)(sh:sheap)(hp:heap)
 (lf:(list frame))(f:frame)(m, mti: Method)
 let state=(sh, (hp, (cons f lf))) in
 let mid = (method_loc f) in
 let a = (AyzStruct (bytecode m)) in
 let ltr = (subroutElim (bytecode m) a) in
 let h = (handler_list m) in
 let ht = (handler_correction a (handler_list m)) in
 let mt = (mod_hb m ht ltr) in
 let jpt = (Build_jcprogram
 (classes jp)
 (l_update_nth (methods jp) mid mt)
 (interfaces jp)) in
 ((Some Method m)=(Nth_elt (methods jp) mid))->
 ((Some Method mti) = (Nth_elt (methods jpt) mid))->

 (mti=mt)->
 (lt (S (firstcall a)) (bodystart a))/\(lt (bodystart a) (bodyend a))/\
 (~(bodystart a)=(0))/\(~(bodyend a)=(0))->
 ((numbercalls a) = (1))->
 (checkStructure (bytecode m))->
 (~(p_count f)=(firstcall a))->(~(p_count f)=(bodystart a))->
 (~(p_count f)=(bodyend a))->
 (handlerSub h (bodystart a) (bodyend a))->
 (r2r mid a (exec_1_step jp state)) =
 (exec_1_step jpt (sh, (hp, (s2s mid a (cons f lf))))).

This theorem state that when we only have one subroutine and the program counter of the actual frame of
execution is on a location inside B1, B2, B3 or B4 the execution of the instruction of the original
bytecode at that position (in a given state) commute with the correspondent instruction in the transformed
bytecode (in the transformed state),

For the forth layer we give one example, for the case where nc = 1.

Theorem NC1: (jp:jcprogram)(sh:sheap)(hp:heap)
 (lf:(list frame))(f:frame)(m, mti: Method)
 let state=(sh, (hp, (cons f lf))) in
 let mid = (method_loc f) in
 let a = (AyzStruct (bytecode m)) in
 let ltr = (subroutElim (bytecode m) a) in
 let h = (handler_list m) in
 let ht = (handler_correction a (handler_list m)) in
 let mt = (mod_hb m ht ltr) in
 let jpt = (Build_jcprogram
 (classes jp)
 (l_update_nth (methods jp) mid mt)
 (interfaces jp)) in
 ((Some Method m)=(Nth_elt (methods jp) mid))->
 ((Some Method mti) = (Nth_elt (methods jpt) mid))->
 (mti=mt)->
 (lt (S (firstcall a)) (bodystart a))/\(lt (bodystart a) (bodyend a))/\
 (~(bodystart a)=(0))/\(~(bodyend a)=(0))->
 ((numbercalls a) = (1))->
 (checkStructure (bytecode m))->
 (handlerSub h (bodystart a) (bodyend a))->
 (r2r mid a (exec_1_step jp state)) =
 (exec_1_step jpt (sh, (hp, (s2s mid a (cons f lf))))).

This theorem prove that when nc = 1 the execution of the original program commute with the execution
of the transformed program. This theorem is proved by induction on the program counter value and using
the lemmas of the previous layer.

5.1.7 Proof status

The proof of this subset has not been finished yet; it is still a work in progress. The status of the proofs up
to the moment is summarized in Figure 5.5. The dark grey areas represent the lemmas and theorems
already proved. The light grey areas are the proofs that remain to be proved.

nc = 1nc = 0 nc > 1

Empty Axiom eqAyz8 Axiom :eqAyz7

Theorem: NC1 Axioms : NCx

Axiom eqAyz[1,2,3,4,5,6,9,10]

Theorem : nc0_EQB JSR
pc=FC

STORE
pc=BS

RET
pc=BE

BLOCK
(0,FC)
(FC,BS)
(BS,BE)
(BE,..)

JSR
pc=FC

STORE
pc=BS

RET
pc=BE

B1
(0,FC)
(FC,BS)

B2
(BS,BE)

B3
(BE,..)

Lemma :
ncOne1

Lemma:
ncOneRET[1,2,3]

Lemma:
ncOneSTORE[1,2,3]

Lemma:
ncOneJSR[1,2,3,4]

Axiom:
ncxJSR[1,2,3,4]

Axiom:
ncxSTORE[1,2,3,4]

Axiom:
ncxRET[1,2,3,4]

Axiom:
ncx1

Axiom:
ncx2, ncx3

Axiom:
ncx4

Theorem : nc0_EQB Theorem
:

nc1_EQB (JSR, RET,
STORE, LOAD, GOTO,
PUSH, POP, NOP,
INVOKEINTERFACE)

Theorem:
nc1_RET

Theorem:
nc1_STORE

Theorem:
nc1_JSR

Theorem:
ncx_JSR

Theorem:
ncx_STORE

Theorem:
ncx_RET

Axiom:
ncx_EQB1

Theorem:ncx_EQB2
(RET, GOTO, NOP,JSR)

Axiom:
ncx_EQB3

Theorem : nc0_EQB

Theorem : EQ

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Figure 5.5: Proof status

The first layer is composed of ten lemmas that state properties about the analyze functions were replaced
by axioms, because they don’t contribute to the equivalence proof and its proof is very tedious. For the
second layer (the one that state the relation between the original and transformed bytecode) was
completely proved for nc=0 and nc=1. In the case of nc>1 the lemmas are still axioms that remains to be
proved.

The proofs of commutation of the third layer were partially done. The theorems for the cases nc=0 and
nc=1 were completely proved for the defined instruction subset. In the other hand for the case nc>1 not all
the theorems were proved. The main theorems proved for this case were:

• ncx_JSR: Prove commutation when the program counter is first call. As it was established in the
table of Figure 5.4, this implies proving that the jsr instruction on the original bytecode is
equivalent to the goto instruction of the transformed bytecode.

• ncx_STORE: Prove commutation when the program counter is body start. This implies proving
that the store instruction on the original bytecode is equivalent to the store instruction and also
to the nop instruction of the transformed bytecode.

• ncx_RET: Prove commutation when the program counter is body end. This implies proving that
the ret instruction on the original bytecode is equivalent to the ret instruction and also to the
goto instruction of the transformed bytecode.

• ncx_EQB2: Prove commutation when the program counter is inside the subroutine body. This
implies proving that for each instruction of the subroutine body in the original bytecode
commute with the correspondent instruction in B3 and B3’ of the transformed bytecode. This
proof was done only for the ret, goto, jsr, nop instructions. It should be completed to the rest of
instructions of the defined subset.

The rest of the third layer remains to be proved.

The general commutation proofs in the forth layer were proved for the cases nc=0 and nc=1, nc>1 remains
to be proved. The general theorem also remains to be proved. The theorems of both layers are easily
proved having all the theorems in the previous layers.

To give a rough idea of the size of the proof in its actual status, let’s see the number of lines needed to
prove the first four layers:

o Layer 1: Axiom statements. 89 lines
o Layer 2: Bytecode relationships. 2080 lines
o Layer 3: Commutation proof. 5795 lines
o Layer 4: General commutation proof. 159 lines

o Bytecode’s well formed restrictions (inductive properties). 412 lines
o Utilities lemmas and axioms. 895 lines

5.2 Byte Code Verifier acceptance

The main goal of this section is show that if a given program is accepted by the BCV before applying the
subroutine elimination transformation it will be also accepted after applying it. The intention of this
section is not giving a formal proof for this property; it only gives an intuitive idea why the new bytecode
will is accepted by the BCV. Our analysis is based on the Sun BCV algorithm proposed at the JVM
specification [2].

During the verification process most BCV algorithms have to approximate the state of the subroutine’s
first instruction by merging the states of all possible execution paths that reach it. By eliminating the
subroutines BCV algorithms don’t need to perform this approximation any more. Consequently the BCV
algorithm enhances its precision and reduces the complexity and resources consumed by the verification
process. At each iteration the transformation reduces the number of execution paths that reach a given
subroutine.

Let’s base divide the analysis of the transformation it in two cases, when there is only one call to the
subroutine (nc=1) and when there is more than one (nc>1).

Case nc = 1

Before the transformation we have that:

• There is only one subroutine call which is the only way to access to the subroutine. This means
that there is only one possible branch of execution that goes through the first instruction of the
subroutine, which also implies that no approximation or state merge will happened at this point.

After the transformation we have that:

• The jsr is replaced by a goto pointing to the subroutine, so there is only one branch of
execution that accesses the subroutine. The goto jumps to an instruction inside the bytecode and
it can’t have type checking problems.

• The store is replaced by a nop. The nop can’t have type checking problems. The return address
that the jsr push into the stack is not pushed any more by the goto. And the local variable used
to store that address by the store is not used any more neither. There is a restriction that
establishes that this local variable can’t be used by any other instruction in the bytecode, so no
type checking problems will result for that reason.

• The ret instruction is replaced by a goto pointing the fc+1. This ret instruction is the only way
to return form the subroutine. The address fc+1 is inside the bytecode.

To summarize, the number of branches that reach a given instruction remains the same and the replaced
instructions don’t introduce type checking problems.

Case nc > 1

Before the transformation we have that:

• There are at least two subroutines calls to the subroutine being eliminated.
• These calls represent the only execution branches that may access the subroutine.

• The BCV will merge the state of those branches at the first instruction of the subroutine. This
may result on a loss of precision.

After the transformation we have that:

• The subroutine is cloned
• The jsr is replaced by a goto.

o There is one less call to the original subroutine. The approximation may have the same
precision or may improve it, but never have a loss of precision.

o The goto points to the cloned subroutine and is the only way to access it . This implies that if
that bytecode was previously accepted by the BCV now it must be accepted also. No
approximation is needed to exe cute the same bytecode.

o The goto can’t produce type checking problems
• In the cloned subroutine the store is replaced by a nop instruction.

o There is no need to manage the return address by the cloned subroutine, so the local variable
previously used will be uninitialized. This is not a problem because the restriction that no
other instruction could use this variable.

o The nop instruction can’t produce type checking errors.
o The address correction assures that all jumps inside the method’s bytecode keeps inside it.

• In the cloned subroutine the ret instruction is replaced by a goto instruction.
o The address of the goto is fc + 1 which is inside the bytecode
o The goto instruction can’t produce type checking errors.

The transformation doesn’t introduce any buffer overflow or underflow problem. Before the
transformation the stack was used to temporary store the return address only during the transition of
executing the jsr instruction to executing the store instruction. This is not needed any more after the
transformation.

6. Conclusions

Transformations like the one we build that transform programs developed to execute in a highly secure
environment like Java Card are not allowed to have bugs. So a formal proof of the correctness of the
transformation is not an option. Despite the fact that the proof is not completed yet, in the current status of
it we acquire great confidence on the correctness of the transformation.

Working on top of a formal environment like COQ came with great benefits. In our case proving the
semantic equivalence of the subroutine transformation helps us to discover bugs in the transformation.
This was the case of the problem “Exception Handlers for the finally block” presented at section 3.2. In
our first version of the transformation we didn’t know about the existence that this problem, so that
version of the transformation actually was changing the semantics of the Java program. During the proofs
we realize about this problem and then we also find out that this problem was documented in [14].

The possibility to actually execute a program in the Certicartes JCVM was another great benefit. Testing
the transformations before starting the proofs helps to detect dummy bugs in the transformation.

Some parts of this proofs seems to be mechanical and very tedious to do manually. In order to speed up
the proof a greater automation support is needed. This can be achieved by using more powerful tactics or
using a different formal tool, for example a theorem prover could be used.

7. Future Work

Since we only complete part of the proof there is still a lot of work to do. In order to finish the proof we
must prove the ten axioms of layer 1 and finish the proofs for layer 2 and 3. Through this article we have
mentioned various works to do in order to extend the work done in this article; here is a summary of
them:

• We also should prove that eliminating the nop instructions we have the same Java semantics and
we should formalize the proof of BCV acceptance.

• Remove the restriction imposed at the equivalence theorem that the frame at the top of the stack
must be executing over the modified method.

• Remove the restriction that a subroutine can only be called one time in a given method
execution.

• Extend the instruction set with tableswitch or lookupswitch instructions

In addition to finishing the proofs, it would be interesting to extend the transformation and the proof to
arbitrary subroutines. Another interesting challenge would be to reach higher levels of automation in the
proofs by evaluating other formal tools or creating helpful COQ tactics.

8. References

[1] The Costs and Benefits of Java Bytecode Subroutines
Stephen N. Freund
Department of Computer Science, Stanford University, 1998

[2] T. Lindholm and F. Yellin. The Java Virtual Machine Specification. The Java Series. Addison-
Wesley, 1999. Second edition.

[3] Simple Verification Technique for Complex Java Bytecode Subroutines
Alessandro Coglio
Kestrel Institute, 2001

[4] Java bytecode verification: an overview
Xavier Leroy
INRIA Rocquencourt and Trusted Logic S.A.

[5] On-card Bytecode Verification for Java Card
Xavier Leroy
Trusted Logic S.A.

[6] Principles of Program Analysis
N. Flemming, N. Henne Riis, H. Chris
Springer 1999

[7] KVM Porting Guide
Sun Microsystems

[8] A Formal Executable Semantics of Java Card: Defensive and Offensive Virtual Machines
G. Barthe, G. Dufay, L. Jakubiec, B. Serpette, S. Melo de Sousa
INRIA Sophia-Antipolis, France

[9] The Problem of Bytecode Verification in Current Implementations of the JVM
Robert F. Stärk and Joachim Schmid

[10] The Coq Proof Assistant User’s Guide. Version 6.3.1
B.Beckert, S.Boution, C. Cornes, J. Courant, Y. Coscoy, D. Delahaye, D. de Rauglaudre, J.-C.
Filliâtre, E. Giménez, H. Herbelin, G. Huet, H. Laulhère, P. Loiseleur, C. Muños, C. Murthy, C.
Parent-Vigouroux, C. Paulin-Mohring, A. Saïbi, and B. Werner
December 1999.

[11] The Coq Proof Assistant
http://coq.inria.fr

[12] Bytecode Model Checking: An Experimental Analysis
D. Basin, S. Friedrich, M. Gawkowski, J. Posegga
Proceedings of 9th International SPIN Workshop (ETAPS 2002)
Grenoble, France, April 2002.

[13] Java Bytecode verification using model checking
J. Posegga and H. Vogt
In the Workshop Fundamental Underpinnings of Java, 1998

[14] Java and the Java Virtual Machine
R. Stärk
Springer, 2001

[15] A Type System for Java Bytecode Subroutines
Raymie Stata, Martin Abadi

