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ABSTRACT. Different approaches for deploying resilient optical networks of low cost consti-

tute a traditional group of NP-Hard problems that have been widely studied. Most of them are

based on the construction of low cost networks that fulfill connectivity constraints. However,

recent trends to virtualize optical networks over the legacy fiber infrastructure, modified the

nature of network design problems and turned inappropriate many of these models and algo-

rithms. In this paper we study a design problem arising from the deployment of an IP/MPLS

network over an existing DWDM infrastructure. Besides cost and resiliency, this problem inte-

grates traffic and capacity constrains. We present: an integer programming formulation for the

problem, theoretical results, and describe how several metaheuristics were applied in order to

find good quality solutions, for a real application case of a telecommunications company.

Keywords: telecommunications network; multi-layer network design; metaheuristics.

1 INTRODUCTION

In this paper we address the problem of finding the optimal -minimum cost- configuration
of a logical topology over a fixed optical network. The input data set is constituted by: the
optical layer topology -DWDM network-, the client nodes of the data network -IP/MPLS
nodes- and the potential links between them, as well as the data traffic demand to satisfy
between each pair of nodes and the per-distance-cost in the optical network associated
with the bitrates of the optical connections to deploy over it. The decision variables are:
what data links do we have to implement, which bitrate must be assigned to each of them
and what path do their optical implementations have to follow in the optical layer. For
being a feasible solution a configuration must be capable of routing every traffic demand
over the remaining active links of the data layer, for every single physical link failure.

Because of the changes in the technology this model is significantly different from former
models -referred in next section-, so are the algorithms to find solutions.

This problem is NP-Hard and due to its complexity we developed several metaheuristics
to find good quality solutions for real size scenarios. Best results were found with GRASP.
To achieve good performance, many theoretical results needed to be integrated during
the design process of the algorithms.
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A remarkable feature of this work is that we analyzed the performance of the proposed
metaheuristics using real-world scenarios provided by the Uruguayan national telecom-
munications company (ANTEL).

The main contributions of this article are: i) a model to represent a common network
overlay design problem; ii) theoretical results useful to find and discard solutions under
certain hypotheses; iii) the design of a GRASP metaheuristic suitable to find good quality
solutions; iv) the experimental evaluation based on real-world network scenarios.

This paper is organized as follows. A history perspective is given in Section 2. A mixed-
integer programming model will be presented in Section 3. In Section 4 we will analyze
the intrinsic complexity of the problem and some theoretical results useful to construct
exact solutions for simple but important cases. In Section 5 we describe a real-world
application case with many scenarios, present a battery of metaheuristics used to find
good quality solutions, benchmark and analyze their results. Finally, in Section 6 we
analyze the most important results of this work.

2 HISTORIC PERSPECTIVE

Some decades ago the increasing importance of the telephony service pushed most telecom-
munications companies (TELCOs) to deploy optical fiber networks. In order to guarantee
appropriate service availability, these networks were designed in such a way that several
independent paths were available between each pair of nodes, and in order to optimize
these large capital investments several models and algorithms were developed.

Already the optimal design of a single layer network is a challenging task that has been
considered by many research groups, see for instance: (4), (8) and (14). Throughout this
work this optical network is referred to as the physical layer.

Some years afterwards, the exponential growth of Internet traffic volume, demanded for
higher capacity networks. This demand led to the deployment of dense wavelength di-
vision multiplexing (DWDM) technology. This technology allows multiplexing several
connections -lightpath connections- over one single cable of optical fiber using different
wavelengths, and rapidly became very popular with telecommunications companies be-
cause it allowed them to expand the capacity of their networks without laying more fiber.
Today, DWDM has turned out to be the dominant network technology in high-capacity
optical backbone networks. Repeaters and amplifiers must be placed at regular intervals
for compensating the loss in optical power while the signal travels along the fiber; hence
the cost of a ligthpath is proportional to its length over the physical layer. DWDM
supports a set of standard high-capacity interfaces (e.g. 1, 2.5, 10 or 40 Gbps). The cost
of a connection also depends of the capacity but not proportionally. For economies of
scale reasons, the higher the bitrate the lower the per-bandwidth-cost. The client nodes
together with these lightpath connections form a so-called logical layer on top of the
physical one.

The increasing number of per-physical-link connections -intrinsic to DWDM- may cause
multiple logical link failures from a single physical link failure (e.g., fiber cut). This issue
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led to the development of new multi-layer models aware of the stack of network layers.
Most of these models share in common the 1+1 protection mechanism, i.e., for every de-
mand two independent lightpaths must be routed such that in case of any single physical
link -or even node- failure, at least one of them survives. The following references: (5)
and (9) are good examples of this kind of models. The combined optimization of two
layers significantly increases the complexity of the planning task, especially if we attempt
to optimize both layers simultaneously as it is the case for the referenced articles.

Those multi-layer models are suitable for certain families of logical layer technologies such
as: synchronous optical networking (SONET) or synchronous digital hierarchy (SDH)
since both standards have 1+1 protection as their native protection mechanism.

During many years the connections of IP networks were implemented over SONET/SDH
-for simplicity we will only mention SDH from now on-. As a consequence, the IP
layer -the third and top layer of this stack- rarely suffered unplanned topology changes.
Most recently: multiprotocol label switching (MPLS), traffic engineering extensions for
dynamic routing protocols (e.g. OSPF-TE, ISIS-TE), fast reroute algorithms (FRR)
and other new features were added to the traditional IP routers. This new technology
bundle known as IP/MPLS, opens a competitive alternative against traditional protection
mechanisms based on SDH.

Since IP/MPLS allows recovering from a failure in about 50ms, capital savings may
come from the elimination of the intermediate SDH layer. Another improvement of
this technology is that the number of paths to route demands between nodes is not
pre-bounded; so it might exist in fact a feasible different configuration for most failure
scenarios. Moreover, there is no need to pre-establish all of these paths explicitly: if the
appropriate information is fed to the routing protocols and the network is designed with
care, the dynamic routing algorithms usually construct solutions of very good quality.
Since IP/MPLS allows the elimination of an intermediate layer, manages Internet traffic
natively, and makes possible a much easier and cheaper operation for virtual private
network (VPN) services, it is gaining relative importance every day.

Unlike the referenced SDH over DWDM models, where both layers are optimized simul-
taneously, in our case we assume that the physical layer is already installed and cannot
be changed. This is a consequence of the application case, because the TELCO we de-
veloped this work for (ANTEL) did not have any intention to modify its optical fiber
network. Furthermore, important portions of this physical layer are rented to interna-
tional carriers, making some physical changes impossible.

Setting aside technical details, the IP/MPLS technology does not fit well with two nat-
ural features of the SDH technology. The first one is the need of SDH to keep different
demands between the same nodes. In IP/MPLS networks all the traffic from one node to
another follows the same path in the network referred to as IP/MPLS tunnel. Although
possible, splitting the traffic between a pair of nodes into more than one tunnel requires
complex configurations. The second remarkable difference is how these technologies han-
dle the existence of parallel links in the logical layer. In SDH the existence of parallel
links is typical but in IP/MPLS parallel links may conflict with some applications so we
will avoid them.
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3 MATHEMATICAL MODEL

We will now introduce the basic mixed-integer programming model that arises from the
detailed interaction of technologies.

Parameters The physical network is represented by an undirected graph (V, P ), and the
logical network is represented by another undirected graph (V,L). Both layers share the
same set of nodes. The links of the logical layer are potential -admissible logical links-
while the links of the physical layer are definite. In both graphs the edges are simple
since multigraphs are not allowed in this model.

For every different pair of nodes ∀p, q ∈ V it is known the traffic volume dpq to fulfill
along the unique path (tunnel) this traffic follows throughout a logical layer configuration.
These paths are unique at every moment, but in case of link failures they may change to
follow an alternate route. For simplicity we assume that the traffic volume is symmetric
(i.e. dpq = dqp).

Let B̂ = {b1, . . . , bB̄} be the set of possible bitrate capacities for the lightpaths on the
physical layer and therefore for the links of the logical one. Every capacity b ∈ B̂ has a
known per-distance cost cb. For economies of scale reasons it holds that if b′ < b′′ then
(cb′/b′) > (cb′′/b′′).

Since both graphs of this model are simple and undirected, we will express links as pairs
of nodes. For every physical link (ij) is known its length lij .

Variables This model comprises three classes of variables. The first class is composed of
the logical link capacity variables. We will use boolean variables τ b

pq to indicate whether

or not the logical link (pq) ∈ L has been assigned with the capacity b ∈ B̂. As a
consequence the capacity of the logical link (pq) could be computed as:

∑

b∈B̂ b · τ b
pq.

The second class of variables determines how are going to be routed the logical links over
the physical network. If

∑

b∈B̂ τ b
pq = 1 then the logical link (pq) ∈ L was assigned with

a capacity, it is going to be used in the logical network and requires a lightpath in the
physical one. yij

pq is a boolean variable that indicates whether or not the physical link
(ij) ∈ P is being used to implement the lightpath of (pq).

Since lightpaths cannot automatically recover from a link failure, whenever a physical link
(ij) fails all the logical links (pq) such that yij

pq = 1 do fail as well. The only protection
available in this model is that of the logical layer. For demands being protected against
single physical link failures, it is necessary to have a feasible route through the remaining
active logical links. The third and final class of variables is that that determines how the
IP/MPLS tunnels are going to be routed against any particular failure in a physical link.

xrs ij
pq is a boolean variable that indicates whether the logical link (pq) ∈ L is going to

be used or not, to route traffic demand drs > 0, under a faulty condition in the physical
link (ij) ∈ P .

NOTE: To keep the nomenclature of the variables as easy as possible we always placed:
logical links subindexes at bottom right position, physical links subindexes at top right
position and demands subindexes at top left position.
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Constraints This problem comprises three groups of constraints. The first group of
constraints establishes the rules that the routes of the lightpaths must follow to be
feasible.



















































































∑

b∈B̂

τ b
pq ≤ 1 ∀(pq)∈L. (i)

∑

j/(pj)∈P

ypj
pq =

∑

b∈B̂

τ b
pq ∀(pq)∈L. (ii)

∑

i/(iq)∈P

yiq
pq =

∑

b∈B̂

τ b
pq ∀(pq)∈L. (iii)

∑

j/(ij)∈P

yij
pq = 2θ̂i

pq
∀(pq)∈L,∀i∈V,

i 6=p,i 6=q.
(iv)

yij
pq − yji

pq = 0 ∀(pq)∈L,∀(ij)∈P. (v)

τ b
pq, yij

pq, θ̂
i
pq ∈ {0, 1}

∀(pq)∈L,∀(ij)∈P

∀b∈B̂,∀i∈V.
(vi)

(1)

The meaning of constraints in group equation (1) is the following: (i) establishes that
the number of capacities assigned to every logical link is at most 1 -it could be 0 if the
link is not going to be used-; (ii) and (iii) guarantee that if any particular link (pq) ∈ L
was assigned with a capacity (

∑

b∈B̂ τ b
pq = 1) then there must exist one and only one

outgoing -or incoming- physical link used for its lightpath.

Before going any further we will introduce a set of auxiliary variables: θ̂i
pq. These vari-

ables are defined for every combination of logical links (pq) ∈ L and physical nodes i ∈ V .
Hence, (iv) guarantees flow balance for routing the lightpaths through the remaining -not
terminal- nodes.

Finally (v) guarantees that the lightpaths go back and forth through the same path,
while (vi) stands the integrity of the variables.

The second group of constraints establishes the rules that the routes of the IP/MPLS
tunnels must follow in the logical layer.

The meaning of the constraints in equation (2) is similar to those of equation (1) except
for (i). The inequalities in (i) were added to guarantee that whatever the faulty scenario
is (∀(ij) ∈ P ), its associated routing configuration over the logical network keeps the
aggregated traffic load below the link capacity for every data link (∀(pq) ∈ L).

Constrains (ii) and (iii) from equation (1) and equation (2) are equivalent, except for the
fact that in the latter the existence of a tunnel relies on the existence of demand and this
is known in advance.

Another remarkable point is that equation (2) has as many possible routing scenarios as
arcs in P , so the number of variables is much greater than those of equation (1).
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∑

rs:drs>0

drs · xrs ij
pq ≤

∑

b∈B̂

b · τ b
pq ∀(pq)∈L,∀(ij)∈P. (i)

∑

q/(rq)∈L

xrs ij
rq = 1 ∀drs>0,∀(ij)∈P. (ii)

∑

p/(ps)∈L

xrs ij
ps = 1 ∀drs>0,∀(ij)∈P. (iii)

∑

q/(pq)∈L

xrs ij
pq = 2 · µ̂rs ij

p
∀drs>0,∀(ij)∈P,

∀p∈V,p 6=r,p 6=s.
(iv)

xrs ij
pq − xrs ij

qp = 0
∀drs>0,∀(pq)∈L,

∀(ij)∈P.
(v)

xrs ij
pq, µ̂rs ij

p ∈ {0, 1}
∀drs>0,∀(pq)∈L,

∀(ij)∈P,∀p∈V.
(vi)

(2)

Variables µ̂rs ij
p are homologous to θ̂i

pq; so are constraints from (iv) to (vi).

Before proceeding any further we must notice that equation (1) and equation (2) are not
independent. Many logical links may not be available for routing after a physical link
failure. Which logical links are in this condition, relies on how the lightpaths were routed
in the physical layer. Specifically, if some logical link (pq) uses a physical link (ij) for its
lightpath implementation then this logical link cannot be used to route any tunnel under
(ij) failure scenario.

xrs ij
pq ≤ 1 − yij

pq ∀rs:drs>0,∀(pq)∈L,∀(ij)∈P. (3)

The group of constrains equation (3) prevents from using (pq) to route any traffic ( xrs ij
pq =

0,∀rs : drs > 0) in any failure scenario which affects the link (when yij
pq = 1).

Objective The function to minimize is the sum of the cost of every logical link. Accord-
ing on what capacity was assigned to a logical link there is an associated per-distance-cost
(cb), and according on how the corresponding lightpath was routed over the physical layer
it has an associated length (

∑

(ij)∈P lijy
ij
pq).

The product of both terms is the cost of a particular logical link and the sum of these
products for all the logical links is the total cost of the solution. The direct arithmetic
expression for the previous statement would be:

∑

(pq)∈L(
∑

b∈B̂ cbτ
b
pq)(

∑

(ij)∈P lijy
ij
pq) =

∑

(pq)∈L,(ij)∈P,b∈B̂ cblij · τ
b
pqy

ij
pq.

Although straightforward, this approximation is inappropriate because it is non-linear.
The subproblem equation (4) expresses the objective value with an equivalent linear
expression. We used the real variable ηb ij

pq instead of τ b
pqy

ij
pq and added some extra con-

straints to guarantee the consistency. This consistency comes from the following obser-
vations: the result of τ b

pqy
ij
pq is also a boolean variable, and since ηb ij

pq is being multiplied
by a positive constant in a minimization problem it will take its lowest value whenever
this is possible. This value would be zero because of constrains (iii) of equation (4).
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min
∑

(pq)∈L
(ij)∈P

b∈B̂

cblij · ηb ij
pq (i)

ηb ij
pq ≥ τ b

pq + yij
pq − 1

∀(pq)∈L,∀(ij)∈P,

∀b∈B̂.
(ii)

ηb ij
pq ≥ 0

∀(pq)∈L,∀(ij)∈P,

∀b∈B̂.
(iii)

(4)

The only exception is when the values of τ b
pq and yij

pq are both 1, in which case the value

of ηb ij
pq should be 1 as well to keep consistency. This is guaranteed by constrain (ii) of

equation (4).

The complete MIP is the result of merging: equation (1), equation (2), equation (3) and
equation (4).

4 COMPLEXITY AND EXACT SOLUTIONS

Until now we expressed the problem through two layers. Although this is an accurate
approximation of what really happens, we could go forward and think about this problem
as a three layers model.

Figure 1: A three layers conceptual model.

Besides the formerly defined Logical and Physical layers, there is another layer on the
top of them: the user’s perspective about the problem. Clients are typically unaware of
how their traffic is routed within the Data Network, and cannot control how is treated
by lower layers. However, since traffic volume is a primary component of the input data
set, those impacts deeply in the shape of the result, it is helpful to keep in mind the main
characteristics of the graph associated to traffic demands.

7



Complementary, in this problem, traffic between nodes cannot be split into more than one
path. Since the task of arranging tunnels over the logical layer itself, it is a remarkable
subtask, closely related to -and basically as hard as-: Integer Knapsack or Number
Partition Problem (NPP); both well known NP-Complete problems, the shape of the
traffic layer, directly impacts in the complexity of the problem instance.

4.1 Complexity

There is another work of our team (under reviewing process) where the NP-Completeness
proof of this problem was based on the interaction between traffic and logical layers.
That is: the mere routing of the IP/MPLS tunnels over the Data Network -even without
considering faulty physical links- is NP-Hard.

In this article we present an alternate proof based on the interaction between logical
and physical layers. This complementary proof has the extra value to show that the
mathematical problem detailed in Section 3 is indeed the composition of solely very hard
to solve problems.

Proposition 4.1. The problem presented in Section 3 is NP-Hard.

Proof. Proof lies under reduction of 2ECSS (Two-Edge-Connected Spanning Subgraph)
to our particular problem that we will refer to as MORNDP (Multi-Overlay Robust Net-
work Design Problem). 2ECSS problem consist in finding a minimum-weight subgraph
of a weighted graph, in which every pair of vertices is two-edge-connected. 2ECSS is a
very well known NP-Hard problem (see for instance (2)).

We will use decision versions of both problems to validate instances. Let πk be the
decision problem consisting in finding whether exists a feasible solution for MORNDP of
cost k, so that for every k′ < k the answer to πk′ is negative.

Analogously, let π′
k be the decision problem consisting in finding whether exists a feasible

solution for 2ECSS of cost k, so that there is not other solution of lower weight.

(⇒) Given an instance G = (V,E, W ) of 2ECSS -for simplicity we will assume that
all the weights are positive integers- we create an instance of MORNDP by taking:
B̂ = {N(N − 1)/2}, N = |V |, logical and physical graphs with the same topology of G,
lij = wij ∀(ij) ∈ P (weights of G arcs) and dij = 1, ∀1 ≤ i < j ≤ N . cb = 1 for the
unique available capacity.

If the given instance satisfies the decision problem π′
k, it is because there exists G′ ⊆ G

of weight k so that G′ is two-edge-connected and there is not other solution of lower
weight. The rules to construct a solution for πk from G′ are the following:

1. Take every edge of G′ and dimension its homologous logical link with capacity b1.

2. The remaining logical links will not be used.

3. Implement every effective logical link using its associated physical link.
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It is immediate that the cost of the previous solution is k. Complementarily, logical link
failures are one-to-one with physical link ones and therefore single physical failures affect
at most one logical link. Due to the fact that logical layer copies the topology of G′, the
logical layer remains connected against any single physical link failure.

Finally, the capacity used in the logical links guarantees that none can be saturated.
Hence, due to the fact that the construction mechanism turns connectivity into feasibility,
the solution proposed for πk is feasible.

It suffices to observe that it cannot be another feasible solution for πk of lower cost,
because that would imply that it also exists a lower cost solution for π′

k. The formal
arguments are basically the same ones used in the following part of the proof.

(⇐) First, we claim that given any solution to a positive instance of πk constructed by the
previous mechanism from some π′

k, it holds that its lightpaths are edge-disjoint. Indeed,
suppose that (ij) and (i′j′) were two logical links whose lightpaths intersect, like in
Figure 2. Then, another solution can be built by exchanging (ij) and (i′j′) by the logical
links associated to their lightpaths implementations, like it is sketched in the second half
of Figure 2.

Figure 2: Non-disjoint lightpahts implementation and an alternate configuration.

If during the transformation we found that one of the new logical links is already present,
we just skip this particular appending.

The transformation preserves -may even surpass- the logical connectivity in every failure
scenario. It is also cheaper because the physical links between p and q are only used once
in this solution. The last feature cannot hold because it would exist a solution whose
cost is lower than k, which is explicitly forbidden in this decision problem. This ends the
proof of our claim.

As a corollary of the previous property, we can proof that given any solution to a pos-
itive instance of πk, it is always possible to build an equivalent one where topologies of
logical and physical layers match. The transformation process is based on the following
recurrence:

1. If any effective logical link is not implemented using its corresponding physical link,
we must replace it with the logical links associated to the links of the lightpath.

2. If during the previous step a logical link is repeated, the former is replaced by
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the logical links associated to the links of its lightpath. This can always be done
because implementations must be disjoint.

3. Repeat the process until logical and physical networks match.

Since this transformation preserves the usage of links in the physical network, the cost
of the solution and the failure scenarios are not affected.

Remains to be seen that the topology found (G′ = (V,E′)) is Two-Edge-Connected, so
it is also a solution to π′

k. Certainly, whenever a physical link l ∈ E′ fails the remaining
operational links of the logical layer (E′\{l}) must be capable of delivering the traffic.
But since there is traffic demand between each pair of nodes, this is equivalent to state
that: ∀l ∈ E′, G′\{l} is connected, so it is immediate that G′ ⊆ G is a two-edge-connected
graph.

Finally, it cannot exist another feasible solution to π′
k of cost k′ < k, because the outcome

of the transformation described in (⇒) to this solution would be a feasible solution to πk

of cost lower than k. Let us keep in mind that the construction process turn connectivity
into feasibility.

Since all the transformation are of polynomial complexity it stands that π′
k 4 πk, and

due to the fact that 2ECSS is NP-Hard, MORNDP is NP-Hard too.

Although finding optimal solutions to this problem it is usually very hard to accomplish,
discarding them may be much easier. The following necessary condition proved to be a
very useful tool for that.

4.2 Bonds and necessary condition

A “bond” is a well-known part of the graph theory glossary. It is called so to any
minimal (but not necessarily minimum), proper, not empty set of edges whose removal
disconnects the graph, splitting it into two components. We will extend this definition
to our problem:

Definition 4.2. Let MORNDP be a problem as presented in Section 3. Any bondP

(regular bond of the physical layer), will also be called a “bond of MORNDP” when:
being (V ′, P ′) and (V ′′, P ′′) the two connected components of (V, P )\bondP , it holds
that: (V ′, L

⋂

V ′2) and (V ′′, L
⋂

V ′′2) are both connected components too. For simplicity
we will refer to L

⋂

V ′2 and L
⋂

V ′′2 as: L′ and L′′ respectively.

We will also define bondL,P = {e ∈ L / e = pq, p ∈ V ′, q ∈ V ′′}, which is actually a
regular bond of (V,L) induced by bondP .

The following property proved to be very useful during our algorithm implementation
because stands a very simple way to discard solutions.
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Lemma 4.3. Let MORNDP be a problem as presented in Section 3. Given any solution
to this problem, let L̄ ⊆ L be the subset of arcs assigned with positive capacities. In order
for this solution to be a feasible solution, it must hold that for every possible bondP the
condition:

∑

p∈V ′,q∈V ′′

dpq ≤ bB̄

⌊

|bondL̄,P |(|bondP | − 1)

|bondP |

⌋

(5)

must be satisfied.

Proof. The proof is based on a particular case of the “Pigeonhole Principle”. This is
because regardless of how links in bondL̄,P are implemented over the physical layer, they
must use some link of bondP to connect (V ′, P ′) with (V ′′, P ′′). Then, there must exist at
least one physical edge e ∈ bondP , used at least

⌈

|bondL̄,P |/|bondP |
⌉

times by lightpaths
of bondL̄,P (Pigeonhole Principle).

As a consequence, if the physical link e fails, the remaining capacity to route traffic
from (V ′, L′) to (V ′′, L′′), falls down to at most: bB̄(|bondL̄,P |−

⌈

|bondL̄,P |/|bondP |
⌉

). If
this capacity is below traffic demand between components (

∑

p∈V ′,q∈V ′′ dpq) the logical
network cannot satisfy demands. The previous condition it is numerically equivalent to
state that if:

∑

p∈V ′,q∈V ′′

dpq > bB̄

⌊

|bondL̄,P |(|bondP | − 1)

|bondP |

⌋

there is always an edge e ∈ bondP , used so many times, that its fault leaves the resultant
operational data network without enough capacity in bondL̄,P to route traffic between
nodes of V ′ and V ′′.

It is worth mention that the previous property it is a generalization of (8) to our model.

Figure 3: Extended version of Bonds to problem MORNDP.

For instance, in Figure 3 when bB̄ = 1 Gbps, the best bandwidth scenario between
components is that where all links are assigned with 1 Gbps (i.e.: L̄ = L).
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But |bondL,P | = 5 and |bondP | = 3 so necessarily one link of bondP must be used at least
twice to implement bondL,P lightpaths. If this link fails, the remaining capacity between
(V ′, L′) and (V ′′, L′′) falls to at most 3 Gbps. If aggregated traffic requirements between
components were above this value the solution could not be feasible.

The condition is not sufficient as we show below.

4.2.1 Counterexample to the bond condition

Consider the following problem: V = {v1, v2, v3, v4}, P = L = {(v1v2), (v2v3), (v3v4),-
(v4v1), (v1v3)}, B̂ = {1} and d13 = d24 = 1. Physical and Logical topologies are repre-
sented in the left side of Figure 4, while the second half sketches the traffic demands.

v1 v2

v3v4

v1 v2

v3v4

Figure 4: Counterexample to bonds conditions.

Because of symmetry, ({v1}, {v2v3v4}), ({v2}, {v1v3v4}) and ({v1v2}, {v3v4}) comprise
the representative failing scenarios for bonds. Let us start by checking out that equa-
tion (5) is satisfied for these scenarios:

1)1 ≤ 1

⌊

3(3 − 1)

3

⌋

= 2; 2)1 ≤ 1

⌊

2(2 − 1)

2

⌋

= 1, 3)2 ≤ 1

⌊

3(3 − 1)

3

⌋

= 2.

The bond condition it is always satisfied.

Let us guess some candidate solution is given for this instance. In spite of how lightpaths
are implemented, there must be some physical link whose fault affects logical link v1v3

lowering down the operational logical layer to at most C4. Since traffic from v1 to v3

and from v2 to v4 must cross into some link and B̂ = {1}, the reduced logical networks
cannot satisfy the demands.

This condition assists the analysis of candidate solutions but stronger results were needed
to construct the solutions themselves.
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4.3 Exact solutions

Because of the complexity of the problem it is not expectable to find analytic solutions
for the general case. Despite that, the analysis of particular cases was a key factor since
many practical results were obtained from it.

Planarity is a common characteristic to most optical fiber networks, because most of
them are deployed over earth’s surface.

Due to the fact that most physical networks can be decomposed into faces, we aimed
to find analytic solutions for this case as a foundation, over which construct feasible
solutions. The following results correspond to limit cases of this kind of structure.

Theorem 4.4. Given Kn and Cn respectively as logical and physical layers, and if de-
mands conform to: dpq ≤ D, it is always possible to find minimal feasible solutions when:
bB̄ = 2D and n is odd, or when bB̄ = 3D and n is even.

Moreover, the solution when dpq = D and n is odd requires the usage of all the links of
Kn, whereas if n is even only diagonal links can be discarded, except for n = 4.

Proof. This proof has several steeps. First of all let us observe that dpq = D it is the
hardest demand case, so proving that if dpq = D and n is odd, the entire Kn with links
dimensioned with a capacity 2D is an optimal solution for the logical layer, would be
enough for the feasibility (if dpq < D) and the optimality (when dpq = D) for the odd
case. Analogously, for n even we will prove that: Kn minus diagonals links, dimensioned
with a capacity 3D is optimal.

The next part of the proof consist in determining lower bounds for the capacity bB̄ and
the number of logical links to implement when dpq = D. After that we will show how to
construct a feasible solution using that bounds. The minimal nature of that construction
will close the optimality of the solution.

To determine lower bounds we will apply Lemma 4.3 using the bond defined by any node
(e.g.: v1) to its complement. Since we are seeking lowest values for bB̄ the maximum
degree of logical connectivity will be allowed. Since v1 has 2 neighbors in the physical
layer and (n−1) neighbors in the logical one, using Lemma 4.3 we have that: D(n−1) ≤
bB̄⌊(n − 1)/2⌋. If n is odd this inequality turns to be: D(n − 1) ≤ bB̄(n − 1)/2 and bB̄

must satisfy: bB̄ ≥ 2D in order for existence of solutions.

On the other hand, if n is even the inequality turns to: D(n − 1) ≤ bB̄(n − 2)/2 and bB̄

must satisfy: bB̄ ≥ 2D(n − 1)/(n − 2). Since traffic between each pair of nodes is D and
our problem does not allow to split this traffic through more than one path (tunnel),
the capacity of any logical link has to be an integer multiple of D to be useful. In other
words: none tunnel can fit within a fraction of D. The first integer multiple of D greater
or equal to 2D(n − 1)/(n − 2) is 3D, so practical solutions actually require that bB̄ ≥ 3D.

It is time now to prove that those boundaries allow building feasible solutions. If n = 3
then Kn matches Cn links of both layers one-to-one. Hence, whenever a link fails the
only way to deliver traffic is through the link with the remaining logical neighbor and
capacity 2D is enough for that.
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The case n = 4 is slightly tricky. The first half of Figure 5 shows the best choice for
the path of each lightpath. The failure scenarios that affect most links are: (v1v4) and
(v2v3), reducing the logical layer to what is sketched in the second half of Figure 5.

Figure 5: Optimal solution found for K4 over C4, with dpq = D and B = {3D}.

For this path configuration and if bB̄ = 3D the solution is feasible too. Actually, this
configuration was found with CPLEX as the optimal solution for the set of parameters.

For values of n greater than 4 a more general rule must be used. Let us guess that n > 4
and odd, so n = 2k + 1. The proposed implementation uses all of the logical links (Kn)
and the shortest number of physical hops to implement the lightpath of each one. Since
n is odd this implementation is unique for each lightpath.

To route traffic between nodes in the non-faulty state, the direct route may be used
-all nodes are neighbors-. For simplicity we will assume that nodes are numbered like:
(v0, . . . , v2k). Due to the fact that Cn and Kn have cyclic symmetry, we can analyze a
particular failure without loss of generality. Let (v0v2k) be the physical link in faulty
state. This fault condition affects all logical links of the form (vi′vi′′) where:

i′ = 0, 1, . . . , k − 1
i′′ ∈ {k + i′ + 1, . . . , 2k − 1, 2k}

}

(6)

On the first half of Figure 6 we represented an example of the effects of this fault over
the logical layer, for n = 5 (k = 2).

Dashed lines represent affected links. For those tunnels not affected by the fault, the
direct logical route will be preserved. The surviving logical links still have a gap of
capacity of magnitude D, and we must find a way to deploy affected tunnels over them.
The strategy is the following: take affected nodes in decreasing order of severity and
attempt to detour all its affected tunnels in the minimum number of hops. This can be
accomplished in 2 hops for v0 -the most affected one- and in 3 hops for the remaining
nodes.

The alternative route for those tunnels that followed a path of the form (v0vi′′) now
turns to be: {(v0vi′′−k), (vi′′−k, vi′′)}, i′′ = k +1, . . . , 2k− 1, 2k. All the remaining faulty
tunnels will be detoured in 3 hops according to the following rule: a faulty tunnel (vi′vi′′)
will follow the path {(vi′vi′′−k), (vi′′−k, vi′′−i′), (vi′′−i′ , vi′′)}, i′′ = k+i′+1, . . . , 2k−1, 2k.
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v4

Figure 6: Example case for n = 5.

This new configuration is also sketched in Figure 6, where different kinds of dashed lines
in the second diagram correspond to the route of the associated faulty tunnel.

To be sure this configuration is feasible we must check that: logical links are operational
in this state and none is used more than once. Both are straightforward:

• Since all links are forward links with a number of hops less or equal than k, by
construction they cannot be using (v0v2k) and must stand operational.

• The first logical link used to detour (v0vi′′) always starts at v0, while the second
leap always has k hops. Since none link for the 3 leaps group has such length or
origin, both set cannot intersect.

• Within each set, logical links cannot be repeated by construction.

We used lower bounds to dimension logical links and wasted all of them, so this feasible
solution is minimal and must be optimal, regardless of the lengths of the physical layer.

The final step of this proof is for n greater than 4 and even. Let us say n = 2k. As it
was seen, bB̄ = 3 it is a lower bound for the capacity so we will attempt to use this value
as a starting one. Unlike the n odd case, in this, we opted by suppressing diagonal links
of the logical layer. This decision keeps unique the election of the lowest number of hops
to implement lightpaths. The remaining aspects of the construction stay equal, except
for some paths followed by the tunnels within the logical layer.

Since in the this construction we cannot use diagonals, the traffic between vi and vi+k

(0 ≤ i ≤ k−1) will be routed through {(vivi+k−1), (vi+k−1, vi+k)}, i = 0, . . . , k−1. This
leaves a remaining capacity of 2 or 3 in all of the logical links.

Instead of going into details of the construction of the tunnels within the logical layer in
the representative fault state (v0v2k−1), we will present an illustrative workaround.
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Figure 7: Example case for n = 6.

Figure 7 outlines in its first half a diagram for the logical layer when n = 6, and remarks
with dashed lines the logical links affected by a failure in the physical link (v0v5). The
second half of the picture details the operational logical links in this faulty state. If
instead of this figure we look back to the second picture of Figure 6, we might conclude
that both graphs look very similar. In fact, besides v5 they only differ in links (v3v5) and
(v4v5). Moreover, in both cases demand between v0 and v4 must be reestablished, but
instead of demands between v0 and v3, and between v1 and v4, in this case we have to
figure out a solution to detour tunnels for pairs: (v0, v5) and (v1, v5). An easy workaround
would be to use the former solution for n = 5 and adapt it to the new case. This can
be achieved appending (v3v5) to the known tunnel between v0 and v3, and appending
(v4v5) to the known tunnel between v0 and v4. The previous ideas can easily generalized
for any k > 6 and even.

Corollary 4.1. It is always possible to find minimal feasible solutions when:
1) The logical layer is Kn,
2) The physical layer is a 2-vertex-connected graph G (on the n vertices of the logical
layer), such that each of its k blocks is a cycle,
3) The demands conform to: dpq ≤ D,
4) bB̄ = 3D if n is even or n odd and k even, or bB̄ = 2D if n and k are odd.

Proof. First of all, notice that any graph G in the condition of 2), is made by identifying
k − 1 vertices of a cycle on n + k − 1 vertices. These vertex identifications originate the
cut-vertices of G and can be made at once or in steps. Since the graph G is 2-connected,
there will be vertices that are not cut-vertex. Applying Lemma 4.3 to such vertex, we
obtain:

(n − 1)D ≤ bB̄

⌊

(n − 1)

2

⌋

.

The former inequality gives rise to bB̄ ≥ 3 if n is even and 2 if n is odd. Consider now,
the implementation of the paths of the logical layer onto Cn+k−1 given by Theorem 4.4.
Since the edges of Cn+k−1 after identifying the corresponding vertices, are the same edges
of G, a failure in an edge of G produce the same effect than in the corresponding edge of
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Cn+k−1. Thus, the implementation is a feasible solution if n is even or if n and n+ k− 1
are odd.

If n odd and n + k − 1 even, a deeper analysis should be done. First, observe that
Lemma 4.3 can be applied to each block of the graph forgetting the rest of the network.
Indeed, since each routing is a simple path, i.e., a routing joining vertices of the same
block cannot exit that block. Thus, everything between vertices of a block is independent
from the rest of the network. Now, if n odd and n+ k− 1 even, then there exists a block
with an even number of vertices. Thus, applying Lemma 4.3 to this cycle, we conclude
that bB̄ ≥ 3, so we can continue as in the previous cases.

The previous results are very helpful to design within physical faces highly populated
with logical links; situation that arises when demands overflow links capacity. On the
other hand, there is another interesting property for the simplest possible case:

Proposition 4.5. Given Cn as the physical layer and any logical layer L so that: Cn ⊆ L,
if demands conform to: dpq ≤ D it is always possible to find minimal feasible solutions
when: bB̄ = Dn2/4 and n is even, or if bB̄ = D(n2 − 1)/4 and n is odd.

Moreover, the solution in both cases reduces to use Cn as the logical layer.

Proof. The proof in this case relays on finding the most critical bond for the solution. Let
us take Cn as the effective topology for the logical layer, where all links are dimensioned
with capacity bB̄ . We will prove the feasibility for the hardest case (i.e.: dpq = D).

if n is even we will take bondP = {(v1vn), (vn/2vn/2+1)}. This bond splits V into V ′ =
{v1, . . . , vn/2} and V ′ = {vn/2+1, . . . , vn}. Let us observe that: |bondP | = |bondL̄,P | = 2.
Applying Lemma 4.3 to this instance it gets that:

∑

p∈V ′,q∈V ′′

D =

n/2
∑

p=1

n
∑

p=n/2+1

D =
(n

2

)2

D ≤ bB̄

if n is odd we will take bondP = {(v1vn), (v(n−1)/2v(n+1)/2)}. This bond splits V into
V ′ = {v1, . . . , v(n−1)/2} and V ′ = {v(n+1)/2, . . . , vn}. Again in this case: |bondP | =
|bondL̄,P | = 2, but now Lemma 4.3 turns to:

∑

p∈V ′,q∈V ′′

D =

(n−1)/2
∑

p=1

n
∑

p=(n+1)/2

D =
(n − 1)

2

(n + 1)

2
D =

(n2 − 1)

4
D ≤ bB̄

Given n we will take the corresponding limits as the value for bB̄ . Due to the low
connectivity of this topology each logical link must to be implemented using its associated
physical link, otherwise lightpaths would intercept in some physical link and the logical
network would be disconnected by its fault.

We only need to check now that this implementation is feasible. If n is even and some
physical link fails, the logical layer reduces to a sequence of connected nodes. Without
loss of generality, the arcs of the logical layer could be: {(v1v2), (v2v3), . . . , (vn−1vn)}.
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Given any of these arcs (vk, vk+1), 1 ≤ k < n, the traffic across this link would be:
∑k

1

∑n
k+1 D = k(n − k)D. If n is even this function takes its maximum at n/2 which

image is Dn2/4, the value chosen to dimension links. If n is odd this function takes its
maximum at (n− 1)/2 and (n + 1)/2 which image is D(n2 − 1)/4, and also matches the
dimension of the logical link.

Intermediate cases are much harder to analyze. It is worth mentioning that our team
used CPLEX to find solutions, but even over these trivial topologies we couldn’t find
solutions for n ≥ 10 when dpq was constant, or for n ≥ 15 when d1q was constant and
dpq = 0,∀p, q, 1 < p < q ≤ n. Best computation times -by far- were associated to limit
cases of Theorem 4.4 and Proposition 4.5.

5 A REAL-WORLD APPLICATION CASE

In order to find solutions for real applications we used metaheuristics, but before going
any further we will present some aspects of the concrete problem of ANTEL.

5.1 Context and characteristics

Internet is actually a network disaggregated into several separate smaller networks also
known as Autonomous Systems (AS). Typically, every AS is a portion of the global
Internet owned/governed by a particular Internet Service Provider (ISP). Network nodes
and content servers of ISPs are geographically distributed over POPs (Point-of-Presence).

Internet users access content residing in servers of: companies, universities, government
sites or even from other residential customers (e.g. P2P applications). Most of these
servers as well as servers of Content Delivery Networks (CDN) -e.g. Google or Akamai-
are installed in datacenters. Since traffic interchange is necessary among different ISPs,
the Internet architecture needs special POPs known as Network Access Points (NAPs).

The previous high-level structure is shared among ISPs all over the world; additional de-
tails are proper of the design criteria established by each one. Regarding our application
case, ANTEL had two different IP/MPLS networks referred to as: aggregation network
and public Internet network. The aggregation network is geographically dispersed all over
the country and it is responsible of gathering and delivering the traffic of the customers,
to the public Internet network.

The public Internet network is where the AS of this ISP is implemented; centralizes
the international connections with other ISPs as well as those to Datacenters of local
content providers. The public Internet network is geographically concentrated and only
has POPs in the Capital City and in an important NAP of the US territory (see grey
clouds in Figure 8).
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Figure 8: Structure of the particular network architecture.

In terms of the model covered in this article we may stand that: the physical network
has all of its nodes but one -the NAP- within the national boundaries; the aggregation
and public Internet networks are both logical. The public Internet network only has
presence in a few POPs of the Capital City (Montevideo) and in the NAP; and although
the aggregation network has full-national presence it does not span to the NAP.

Several planning concerns arose from the situation exposed:

• Is it convenient the current architecture? or Would it be better to merge both
IP/MPLS networks?

• Are profitable the IT infrastructure investments necessary to increase the percent-
age of local content?

• Which would be the optimal network to fulfill every demand requirement at lowest
cost possible?

• How much sensitivity is this cost to changes in demands?

To answer these questions we identified representative scenarios and used metaheuristics
to find good quality solutions for them. Scenarios were selected varying the following
factors: traffic volume, network architecture and the percentage of locally terminated
traffic. We selected eight remarkable scenarios to detail in Table 1. The costs and traffic
information shown in the rest of this article are only referential.

According on traffic forecasts, it is expected that some years from now the total volume of
traffic would be placed somewhere between 56 and 100 (reference values). Additionally,
if some IT investments and agreements were made, it is expected that the percentage
of locally terminated traffic (national traffic) could be greater (High). Both factor were
consider to determine scenarios.
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Table 1: Referential results for representative scenarios.

scenario aggregated % local merged number required total
index traffic demand content networks of nodes lightpaths cost

1 100 Low False 56 81 10,000,000
2 100 Low True 68 133 7,662,651
3 100 High False 56 81 7,578,234
4 100 High True 68 118 5,713,563
5 57 Low False 56 75 6,319,470
6 57 Low True 63 105 4,872,987
7 57 High False 56 75 5,108,587
8 57 High True 63 94 4,064,597

Those scenarios where merged networks is set to False inherit the current network archi-
tecture -two separates IP/MPLS networks-, whereas True indicates that both networks
-aggregation and public Internet- have been integrated into one. In order to compare
solutions fairly, the column “total cost” represents the combined cost of both networks
-when they are not combined into one-. However, column “required lightpaths” only
considers those of the aggregation network.

A Non-Disclosure Agreement (NDA) signed between ANTEL and our University, protects
more accurate information and details.

5.2 Usage of Metaheuristics

Based on the scenarios detailed in Table 1, our team explored the implementation of
heuristics and metaheuristics to find answers to the former questions.

The main aspects and results for them are summarized next:

1. Two Stages Approximation - Instead of attempting to optimize the entire prob-
lem at once as described in Section 3, this approximation splits the problem into
two non-independent stages. The fist stage aims on the construction of lightpaths
for the logical links, whereas the second stage focus on capacity assignments and
how traffic can be routed in failure scenarios.

CPLEX was used as the central optimization toolbox for this heuristic.

Solutions could not be found for scenarios with merged networks (2,4,6 and 8 in
Table 1). Even for the remaining scenarios, instances had to be reduced to east
and west regions (see Figure 8) to find solutions.

For further information on this heuristic, see (10).

2. Genetic Algorithms - The application of sequential and parallel evolutionary
algorithm to this problem showed promising results. To be practical, the model had
to limit to two the number of logical routing configurations -whereas the original
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model allowed as many as fault scenarios-. Nevertheless, with this implementation,
scenarios: 3, 5 and 7 could be solved. The best solution to scenario 3 was found
with this algorithm, even though search-space was smaller than those of the rest.

For further information on the usage of this metaheuristic to the problem see (13).

3. Variable Neighborhood Search and Tabu Search - Unlike the previous ex-
amples, in this case both metaheuristics were used to optimize the problem as a
whole -as described in Section 3-. Solutions could only be found when east and
west regions were treated as isolated networks. Even so, results were useful because
topology depicted in Figure 8 for scenarios with separates aggregation and Internet
networks (indexes: 1, 3, 5 and 7), allowed to optimize each region separately as a
different traffic tributary to the capital city.

For further information on the usage of this metaheuristic to the problem see (1).

4. Greedy Randomized Adaptive Search Procedure - According to our bench-
marks, this implementation proved to be the most suitable to find solutions for
instances summarized in Table 1. Indeed, this was the only algorithm that found
solutions for all scenarios, and all the solutions but one in this table, were found
with GRASP. Because of its outstanding behavior we will describe this algorithm
in further detail.

5.3 GRASP Implementation

As for every GRASP implementation this algorithm has a loop with two phases. The
construction phase builds a randomized feasible solution, from which a local minimum
is found during the local search phase. This procedure is repeated MaxIter times while
the best overall solution is kept as the result. Further information and details in GRASP
algorithms can be found in (11) or in (12).

initialization
overlay

routing
feasible?

selective

link removal
feasible?

start/end MaxIter?
untested

links?

undo link

removal

yes

no no
yes

yes

noyes

no

Local SearchRandomized Feasible

Solution

Figure 9: Block-diagram of the GRASP implementation used.

Figure 9 outlines a block diagram of the GRASP implementation. On next subsections
we analyze -phase by phase- the most relevant characteristics of this implementation.
Many of them are based on the results presented in Section 4.
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5.3.1 Input data-set and initialization

Because of strategical and economical matters, ANTEL decided to consider only 10 Gbps
as a possible speed to assign to logical links. This allowed us to simplify a portion of the
model described in Section 3.

According on the characteristics of each scenario some logical links must be included in
the input data-set while others are forbidden. It is tempting to include all non-forbidden
logical links in the input data-set, in order to count with the greatest possible search
space. Unfortunately, stability and execution time of the Randomized Feasible Solution
phase, degrades when too many logical links are present.

Besides mandatory logical links, the remaining ones are included to meet constrains from:
Lemma 4.3, Theorem 4.4 and Proposition 4.5. For this purpose the faces of the plain
representation of the physical layer are analyzed one-by-one. To determine how many
logical links should be included within each face, the following rules were used:

1. Preserve traffic demands between nodes of the same face.

2. Distribute uniformly traffic terminating in nodes outside of the current face, among
nodes contained both: into the current and neighbor faces.

3. Set up logical links according to Theorem 4.4 and Proposition 4.5.

For instance: Figure 10 present an hypothetical case where thin-black lines represent
physical links and thick-grey ones correspond to logical internal to faces. When consid-
ering {v1, v2, v3, v4, v5}, if by example d17 = 3 then this demand is temporarily omitted
and remaining demands are updated so: d′12 = d12 + 1, d′13 = d13 + 1 and d′14 = d14 + 1.
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Figure 10: Logical links internal to faces.

All internal links of the face delimited by: {v1, v2, v3, v4, v5} were included because the
number of nodes is odd and after computing new demands -step 2 of transformation-,
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some of them was close -above 60%- to bB̄/2. A similar situation arose for {v4, v3, v7, v10,-
v12, v13}, although in this case some demand was near bB̄/3. Diagonals were omitted
because last face has an even number of nodes, as states Theorem 4.4.

In the case of faces delimited by: {v3, v2, v6, v7} and {v10, v11, v12}, demands were below
4bB̄/n2 and 4bB̄/(n2 − 1) respectively, corresponding to limits established in Proposi-
tion 4.5; then the cycle was used as the reference topology. The same situation arose for
{v7, v6, v8, v9, v10} but the gap in this case was narrow. That issue, together with the
fact that the number of neighbor faces for this case is above the average, led us to add an
extra link (v6v10) to facilitate detouring of traffic through this face in failure scenarios.

Besides logical links between nodes of the same face, nodes between faces were added to
increase diversity of solutions. In order to do that, bond condition (equation (5)) was
applied to several selected bonds, like for instance in Figure 11. In this case links are
added until the gap between terms of equation (5) applied to the bond represented with
a semi-dashed line, surpassed 50%. The process is repeated for several bonds.
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Figure 11: Logical links between faces.

Although possible, we did not intend to automatize the previous process. The truth is
that doing it manually was not a hard task and it added the value to integrate intuitive
decision together with network designers, taking advantage of the experience of them.
This work was always stated as a tool to assist decisions, not as a substitute of designers.

5.3.2 Initializations

The initialization phase performs computations whose results are invariants among iter-
ations. One of them is the shortest path and distance over the physical layer between
each pair of nodes.

Finding a base for structural bones it is another remarkable computation realized during
this phase. We apply Lemma 4.3 to increase the construction speed, discarding candidate
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solutions with few computations. That, would be cheap if there was an easy way to
generate cycles automatically, because it is a well-known graph theory property that:
“bonds of a plain graph are those whose edges form a cycle in the dual graph” (see (15)).

Unfortunately, finding all cycles within a graph, even for a planar and cubic graph, is
NP-Hard. The previous is direct from (3) where it was proved that decision problem: “to
find out if a planar, cubic and 3-conex graph is Hamiltonian, it is an NP-Hard problem”.

Since in the construction of the input data-set, we were very careful to guarantee feasi-
bility within each face, at this point we are mainly interest in bonds adjacent to borders
of faces. It is through these bonds that flow traffic between nodes of different faces.
Since physical degree for most nodes of the physical network was only two, we opted by
simplify the structure before computing the dual graph. The result is still NP-Hard but
since it is reduced to a bunch of nodes its complexity is manageable.

Figure 12: Structural bones defined by dual cycles.

Figure 12 shows how this idea applied to a hypothetical physical network (the left side
part of the image), outcomes to a much more simple problem. The structural physical
networks counts 8 nodes, whereas the original has 53. The second half of this picture
also represents the dual graph, with one node per face: {A, B, C, D, E, F} and one link
between every pair of nodes whose associated faces are adjacent. The dual graph it is
usually a multi-graph.

Through this example figure it is easy to show how bonds are determined from cycles.
For instance, there are three cycles that span nodes: {A, C,D}. They are determined by
the unique links between (A, C) and (C, D), combined with the three different links that
connect (A, D). Each of these cycles defines a structural bond, specifically for these cycles
they would correspond to: {PAY-SNR, ALG-YOU, PTO-CRC}, {PAY-SNR, ALG-YOU,
FRB-MRC} and {PAY-SNR, ALG-YOU, MAB-SJM}.
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5.3.3 Overlay routing

This block aims to build a feasible configuration of lightpaths over the physical layer.
Prior to do this a subset of input logical links must be chosen to be part of the solution.
In this stage of the construction the emphasis lies on determining which inter-faces logical
links are necessary. This process is very simple: for every structural bond (as seen in
Section 5.3.2) a subset of the logical links that traverse this bond it is randomly chosen
in order to minimally satisfy equation (5).

The second step of this block consists in performing a heuristic to construct a low cost
balanced routing configuration, for the remaining logical links.

The goal is to find a path for every lightpath, such that the number of physical link
intersections be minimum. It is also desirable that the total cost be as low as possible
but as a second priority. Unfortunately, this subproblem is NP-Hard (see (7)) so a pseu-
doaleatory heuristic was used. A detailed explanation of the heuristic implementation
used to find the configuration of the lightpaths, is out of the scope of this paper.

Regarding performance, there is an important feature of our implementation: it is much
cheaper to discard a solution than accept it as a feasible one. This is because to validate a
candidate solution, a different configuration must be found to route traffic in every failure
scenario, whereas to discard it, we take the result of the heuristic will be commented in
Section 5.3.4. This heuristic usually stops very quickly when there is not enough capacity
in some failure scenario. So, prior to pass to the local search phase, inter-faces links are
reinserted selectively until regain feasibility.

5.3.4 Local search

In opposition to the strategy followed in the previous phase, in this one, we take each
logical link of the solution -all of them, inter and intra-faces links- in decreasing order of
cost -lightpaths costs- and attempt to remove it from the solution. If the result remains
feasible, this link will be excluded from the solution; otherwise will be reinserted. The
process is repeated until all links are analyzed.

Although simply to express, the previous strategy lacks in performance if it is thoroughly
applied. This is because the problem of finding an exact answer to the question: Is
it feasible a network to route traffic under constraints of Section 3, is NP-Complete.
Arguments regarding this fact were commented in the first part of Section 4.

Instead of an exact algorithm, our implementation used an efficient heuristic. Actually,
an add-on is that the heuristic is based on a variation of the algorithm that commercial
routers implement over IP/MPLS networks, for automatic routing, with traffic engineer-
ing based on constrains. The base algorithm is called Constrained Shortest Path First
(CSPF), and our implementation improved the construction by sorting paths in decreas-
ing order of traffic demand before routing. This approximation integrates a well known
heuristic used to solve NPP, which is at turns an NP-Complete problem from which we
proved that the mere optimal routing over the logical layer was NP-Hard. For further
details on CSPF refer to (16) and for NPP refer to (6).
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Although it is possible for this heuristic to discard feasible solutions, it is unlikely. Further
detailed of the heuristic implementation is out of the scope of this paper.

6 CONCLUSIONS

The problem of designing an optimal and resilient IP/MPLS network over an existing op-
tical infrastructure, it is very hard. It integrates and combines several NP-Hard problems
into one. During design and construction of algorithms we hit hard problems in most
subroutines. Some of them are described in the results of Section 4, others, remarked
during description of the GRASP algorithm (Section 5.3.4 and Section 5.3.3). Even the
construction of the input data-set should be done carefully.

Because of the complexity of this problem, it is not expectable to find good quality
solutions manually.

Without opening reserved details, we must comment that results for scenarios summa-
rized in Table 1, helped ANTEL in several ways. First of all, there were cases where
savings coming from computed solutions exceeded 30%. Moreover, manually designed
networks suffered effects from physical faults more often and critically than solutions
created using this metaheuristic. So the usage of this algorithm helped not only to save
cost but also to improve the quality of the solutions.

For some aspects of design (questions of Section 5.1), it would have been impossible to
have accurate answers without computer assistance. For example: allowing some changes
to the current architecture, like merging both IP/MPLS networks into one, reported
extraordinary improvements in the quality of the solutions. An extended analysis allowed
us to isolate particular issues of the physical network responsible of these gaps. Many of
these issues were fixed or are under process of correction.

We are confident that the context this work deals with is not an exception, and improve-
ments should replicate from one ISP to the other.

Finally, we successfully integrated theoretical results during the design and implementa-
tion of some metaheuristics. GRASP was especially suitable to this, and we are confident
that the outstanding results obtained with it, are based in the high level of tuning this
metaheuristic allowed to introduce.
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branch-and-cut featuring MIP-based heuristics. Proceedings of the 3rd International Net-
work Optimization Conference (INOC 2007), Spa, Belgium.

[10] Parodi C. 2011 Integer Optimization Applied to the Design of Robust Minimum Cost
Multi-Layer Networks. Master Thesis. Universidad de la República, Uruguay. http://

premat.fing.edu.uy/IngenieriaMatematica/archivos/tesis_cecilia_parodi.pdf.

[11] Resende M. & Pardalos P. 2006 Handbook of Optimization in Telecommunication Springer
Science + Business Media.

[12] Resende M. & Riberio C. 2003. Greedy randomized adaptive search procedures. ATT
Research. http://www2.research.att.com/~mgcr/doc/sgrasp-hmetah.pdf.

[13] Risso C., Nesmachnow S. & Robledo F. 2012. A Parallel Evolutionary Algorithm for
Multilayered Robust Network Design. Selected proceedings of the 1st International Work-
shop on Soft Computing Techniques in Cluster and Grid Computing Systems (SCCG 2012),
Victoria, Canada. 291-296.

[14] Stoer M. 1992. Design of survivable networks. Lecture Notes in Mathematics.

[15] West D. B. 1995. Introduction to Graph Theory. Theorem 7.1.12. Prentice Hall Professional
Technical Reference, ISBN-13: 9780132278287.

[16] Ziegelmann M. 2007. Constrained Shortest Path and Related Problems. Constrained
Network Optimization. VDM Verlag Dr. Müller. ISBN 978-3-8364-4633-4..

27


