
PEDECIBA Informática
Instituto de Computación – Facultad de Ingeniería

Universidad de la República
Montevideo, Uruguay

Reporte Técnico RT 11-09

Solving the Generalized Steiner Problem
in Edge-survivable Networks

Pablo Sartor Franco Robledo

 2011

Solving the generalized Steiner Problem in edge-survivable networks
Sartor, Pablo; Robledo, Franco
ISSN 0797-6410
Reporte Técnico RT 11-09
PEDECIBA
Instituto de Computación – Facultad de Ingeniería
Universidad de la República
Montevideo, Uruguay, 2011

Solving the Generalized Steiner Problem in
Edge-survivable Networks

Pablo Sartor and Franco Robledo

Instituto de Computación, Facultad de Ingenieŕıa, Universidad de la República.
Julio Herrera y Reissig 565, Montevideo, Uruguay. CP 11.300.

psartor@um.edu.uy;frobledo@fing.edu.uy

http://www.fing.edu.uy

Abstract. The Generalized Steiner Problem with Edge-Connectivity
constraints (GSP-EC) consists of computing the minimal cost subnet-
work of a given feasible network where some pairs of nodes must satisfy
edge-connectivity requirements. It can be applied in the design of com-
munications networks where connection lines can fail and is known to
be an NP-Complete problem. In this paper we introduce an algorithm
based on GRASP (Greedy Randomized Adaptive Search Procedure), a
combinatorial optimization metaheuristic that has proven to be very ef-
fective for such problems. Promising results are obtained when testing
the algorithm over a set of heterogeneous network topologies and con-
nectivity requirements; in all cases with known optimal cost, optimal or
near-optimal solutions are found.

Keywords: Network Design; Edge-connectivity; Survivability; Steiner
Problems; Metaheuristics; GRASP

1 Introduction

The design of communication networks often involves two antagonistic goals.
On one hand the resulting design must have the lowest possible cost; on the
other hand, certain survability requirements must be met, i.e. the network must
be capable to resist failures of some of its components. One way to do it is by
specifying a connectivity level (a positive integer) and constraining the design
process to only consider topologies that have at least that amount of disjoint
paths (either edge or node disjoint) between each pair of nodes. In the most
general case, the connectivity level can be fixed independently for each pair of
nodes (heterogeneous connectivity requirements), some of them having even no
requirement at all. This problem is known as Generalized Steiner Problem (GSP)
[10] and it is an NP-Complete problem [18]. Some references on the GSP and
related problems are [1], [2], [3], [4], [6], [11], [12], [19], [20] most of them using
polyhedral approaches and addressing particular cases (specific types of topology
and or connectivity levels).

Topologies verifying edge-disjoint path connectivity constraints ensure that
the network can survive failures in the connection lines; while node-disjoint path

2 General Steiner Problem for Edge-survivable Network Design

constraints ensure that the network can survive failures both in switch sites as
well as in connection lines. Finding a minimal cost subnetwork satisfying edge-
connectivity requirements is modeled as a GSP edge-connected (GSP-EC) prob-
lem; whereas the corresponding problem involving node-connectivity require-
ments is known as the GSP-NC (node-connected) problem.

The remainder of this paper is organized as follows. Notation, auxiliary def-
initions and formal definition of the GSP-EC are introduced in Section II. The
GRASP metaheuristic and the particular implementation that we propose for the
GSP-EC are presented in Section III. Experimental results obtained when ap-
plying the algorithms on a test set of GSP-EC instances with up to one hundred
nodes and four hundred edges are presented in Section IV. Finally conclusions
are presented in Section V.

2 Problem Formalization and Definitions

We use the following notation to formalize the GSP-EC:

– G = (V,E,C) : Simple undirected graph with weighted edges;
– V : Nodes of G;
– E : Edges of G;
– C : E → R+ : Edge weights;
– T ⊆ V : Terminal nodes (the ones for which connectivity requirements exist);
– R : R ∈ Z|T |×|T | : Symmetrical integer matrix of connectivity requirements;
rij = rji ≥ 0,∀i, j ∈ T ; rii = 0,∀i ∈ T .

The set V models existing sites among which a certain set E of feasible links
could be deployed, being the cost of including a certain link in the solution given
by the matrix C. The set T models those sites for which at least one connectivity
requirement involving other site has to be met; these requirements are specified
using the matrix R. Nodes in the set V \ T (known as “Steiner nodes”) model
sites that can potentially be used (because doing so reduces the total topology
cost or because it is impossible to avoid using them when connecting a given
pair of terminals) but for which no requirements exist.

Using this notation the GSP-EC can be defined as follows:

Definition 1. GSP-EC. Given the graph G with edge weights C, the teminals
set T and the connectivity requirements matrix R, the objective is to find a
minimum cost subgraph GT = (V,ET , C) of G where every pair of terminals i, j
is connected by rij edge-disjoint paths.

3 The GRASP Metaheuristic

GRASP (Greedy Randomized Adaptive Search Procedure) is a metaheuristic
that proved to perform very well for a variety of combinatorial optimization
problems. A GRASP is an iterative “multistart local optimization” procedure
which performs two consecutive phases during each iteration:

General Steiner Problem for Edge-survivable Network Design 3

– Construction Phase (ConstPhase): it builds a feasible solution that chooses
(following some randomized criteria) which elements to add from a list of
candidates defined with some greedy approach;

– Local Search Phase (LocalSearchPhase): it explores the neigborhood of the
feasible solution delivered by the Construction Phase, moving consecutively
to lower cost solutions until a local optimum is reached.

Figure 1 presents a generic GRASP pseudo-code. The procedure inputs include
metaparameters MetaParams which set the size of the list of candidates and
other behaviour of the ConstPhase procedure; the amount of iterations to run
MaxIter; and a seed for random number generation. After having run MaxIter
iterations the procedure returns the best solution found. Details of this meta-
heuristic can be found in [21], [13]. In the next sections we introduce algorithms
for implementing the Construction and Local Search Phases, as well as the main
GSP algorithm invoking both phases to solve the GSP-EC.

Procedure GRASP(MetaParams,MaxIter,RndSeed)

1: bestSol← NIL
2: for k = 1 to MaxIter do
3: greedySol← ConstPhase(MetaParams,RndSeed)
4: localSearchSol← LocalSearchPhase(greedySol)
5: if cost(localSearchSol) < cost(bestSol) then
6: bestSol← localSearchSol
7: end if
8: end for
9: return bestSol

Fig. 1. GRASP pseudo-code

3.1 Construction Phase Algorithm

The algorithm, shown in Figure 2, proceeds by building a graph which satisfies
the requirements of the matrix R; it starts with an edgeless graph and in each
iteration one new path is added to the solution under construction. It takes
as inputs the graph G of feasible edges, the edge costs C, the set of terminal
nodes T and the matrix of requirements R. In line 1 we initialize the solution
graph under construction Gsol with the nodes of T and no edges; the matrix
M = (mij)i,j∈T which records the amount of connection requirements not yet
satisfied in Gsol between the terminal nodes i and j; the sets Pij that will be
used to record the rij disjoint paths found for connecting the nodes i, j; and an
auxiliary matrix A = {Aij} used to record how many times it was impossible to
find one more path between two terminal nodes i, j whose requirements rij were
not yet covered. In line 2 we alter the costs of the matrix C as we explain below

4 General Steiner Problem for Edge-survivable Network Design

to satisfy a desirable property that previous algorithms did not satisfy.
Loop 3-15 is repeated until all terminal nodes have their connectivity require-
ments satisfied, or until for a certain pair of terminals i, j, the algorithm fails to
find a path a certain number of times MAX ATTEMPT.
Each iteration works the following way. Line 4 selects two terminal nodes i, j at
random for which there are pending connectivity requirements. Line 5 computes
the graph obtained by removing from G the edges of all paths already computed
to connect i and j; thus, any path computed in G′ will be edge-disjoint from the
former (i...j) paths in Pij . In line 6, the edges already present in the solution
under construction are given cost 0; by doing this, they will be taken as cost-
less when considering the cost of any new path, enabling edge-reusing among
different pairs of terminals. Line 7 computes the shortest path (regarding costs)
connecting i and j, considering as feasible the edges from G′ and with costs given
by C ′. In case this turns to be impossible, this is acknowledged in line 9 by incre-
menting the counter Aij and resetting the path set Pij , hoping that computing
a different sucession of paths for i, j allow to satisfy the rij requirements. In case
a path p was found, it becomes part of the solution under construction (lines
11-12), and the general-update-matrix procedure on line 13 updates the pending
connection requirements of the matrix M , by applying the Ford-Fulkerson’s al-
gorithm with all capacities equal to 1, to detect if the adoption of the new path
turned to satisfy other requirements besides the one for the pair i, j. Finally, the
algorithm ends by returning the feasible solution Gsol together with the path set
P which “certifies” that all requirements R were satisfied.

Procedure ConstPhase(G,C, T,R)

1: Gsol ← (T, ∅);mij ← rij∀i, j ∈ T ;Pij ← ∅∀i, j ∈ T ;Aij ← 0∀i, j ∈ T
2: C ←alter-costs(C)
3: while ∃mij > 0 : Aij <MAX ATTEMPT do
4: let i, j be any two terminals with mij > 0
5: G′ ← G \ Pij

6: let C′ = (c′uv) : c′uv ← [0 if (u, v) ∈ Gsol; cuv otherwise]
7: p← shortest-path(G′, C′, i, j)
8: if 6 ∃p then
9: Aij ← Aij + 1;Pij ← ∅;mij ← rij

10: else
11: Gsol ← Gsol ∪ {p}
12: Pij ← Pij ∪ {p};mij ← mij − 1
13: [P,M]← general-update-matrix(Gsol, P,M, p, i, j)
14: end if
15: end while
16: return Gsol, P

Fig. 2. ConstPhase pseudo-code

General Steiner Problem for Edge-survivable Network Design 5

The algorithm here proposed satisfies the following property provided an
appropriate function alter-costs is used in line 2.

Property 1.

lim
iterations→∞

probability(get an optimal solution) = 1

in other words, we can guarantee that any desired level of certainty of getting
an optimal solution can be reached provided as many iterations as needed are
run.

Proof. The complete proof can be found in Appendix A.

Similar construction phases previously proposed in [15], [14] do not satisfy this
property, which can be shown even with trivial instances of the GSP as can be
seen in Appendix A where we also show that the property is satisfied when the
alter-costs function is such that all altered edge costs take values in (0,+∞)
with any probability distribution that assigns non-zero probabilities to any open
subinterval of (0,+∞). In our tests we used an exponential distribution with
parameter 1/c being c the real cost of the edge. Moreover, by altering costs the
proposed algorithm proceeds by just computing the shortest path in its main
loop, instead of computing a set of “simultaneously disjoint shortest paths”
and then randomly choosing one (as in previous algorithms), thus involving less
computing.

3.2 Local Search Phase Algorithms

The local search phase starts with a feasible solution obtained from the construc-
tion phase and proceeds by consecutively moving to neighbour solutions which
reduce the cost of the solution graph until it reaches a local optimum. Any lo-
cal search algorithm needs a precise definition of the neighbourhood concept;
we propose two different ones, which we chain inside our suggested LocalSearch-
Phase algorithm. They are defined in terms of a certain structural decomposition
of graphs that we define below, together with some other auxiliary definitions.

Definition 2. key-node: Given a GSP-EC instance and a feasible solution Gsol,
we define a key-node as a non-terminal node with degree at least three in Gsol.

Definition 3. key-path: Given a GSP-EC instance and a feasible solution Gsol,
we define a key-path as a path in Gsol such that all intermediate nodes are non-
terminal with degree two in Gsol and whose endpoints are either terminal nodes
or key-nodes.

Definition 4. key-star: Given a GSP-EC instance, a feasible solution Gsol and
any node v of Gsol, we define as the key-star associated to v the subgraph of
Gsol obtained through the union of all key-paths with v as an endpoint.

6 General Steiner Problem for Edge-survivable Network Design

Path-Based Local Search Neighbourhood Our first neighbourhood is based
on the replacement of any key-path k by another key-path with the same end-
points, built with any edge from the feasible connections graph G (even some
of Gsol), provided no connectivity levels are lost when reusing edges. Let k be a
key-path of a certain solution Gsol and P a set of paths which “certificates” its
feasibility (as the one returned by ConstPhase). We will denote by Jk(Gsol) the
set of paths {p ∈ P : k ⊆ p}. These are the paths which contain the key-path k.
We will also denote by χk(Gsol) the edge set

χk(Gsol) =
⋃

q=i...j∈Jk(Gsol)

E(Pij \ q)

where i...j stands for a path with extremes i and j. These are the edges that,
if used to replace the key-path k in P (obtaining a path set P ′), would turn
to be shared by some paths from Gsol with the same endpoints, thus invalidat-
ing the resulting set P ′ as a feasibility certificate. We can now define our first
neighbourhood.

Definition 5. Neighbourhood1: Given a GSP-EC instance and a feasible so-
lution Gsol, it is the set of all graphs obtained by replacing any key-path k of
Gsol by another path p such that cost(p) < cost(k) and the edges of p are chosen
from the set E \ χk(Gsol) and/or k. (Recall that E represents the feasible edges
between nodes).

Based on these definitions we built the path-based local search algorithm Lo-
calSearchPhase1 shown in Figure 3. The algorithm receives as inputs the graph
G of feasible connections, the edge cost matrix C, the terminals set T and a path
set S which build up a feasible solution. Line 1 initializes the flag improve which
indicates wheter an improved solution has been found or not. Line 2 computes
the decomposition in key-nodes and key-paths of the set S. Loop 3-20 looks for
succesive cost improvements until no more can be done. Each iteration proceeds
as follows. The loop 5-19 analyzes each key-path k trying to find a suitable re-
placement with lower cost. Line 6 computes the edge set E(k) ∪ (E \ χk(S)),
where edges are to be chosen from to build the replacing key-path. This set is
such that, as seen above, ensures no loss of connectivity levels in the new solu-
tion obtained, while allowing the reuse of edges already present in the current
solution S. Line 7 computes a new cost matrix C ′, zeroing the cost of all edges
of S that are not included in the key-path k, to reflect the fact that using any of
those edges to build the replacing key-path adds no extra cost to the modified
solution. Line 8 computes the path with lower cost according to the matrix C ′

over the subgraph computed in line 6. Line 9 verifies if the adoption of the new
key-path implies a cost reduction. If so, it is acknowledged by the flag improve
and k is replaced in all paths of S which included k. Care is taken to remove
cycles and recompute the k-decomposition if a certain node happens to have a
degree greater than two after the replacement (lines 12-14); if the latter does not
happen, line 16 simply updates the k-decomposition by replacing the key-path
(and a full new k-decomposition is avoided). After exiting the main loop, line

General Steiner Problem for Edge-survivable Network Design 7

21 returns a feasible solution whose cost can no more be reduced by moving to
neighbour solutions.

Procedure LocalSearchPhase1(G,C, T, S)

1: improve← TRUE
2: κ← k-decompose(S)
3: while improve do
4: improve← FALSE
5: for all kpath k ∈ κ with endpoints u, v do
6: G′ ← the subgraph induced from G by E(k) ∪ (E \ χk(S))
7: C′ ← (c′ij)/c

′
ij = 0 if (i, j) ∈ S \ k; c′ij = cij otherwise

8: k′ ← shortest-path(G′, C′, u, v)
9: if cost(k′, C′) < cost(k, C′) then

10: improve← TRUE
11: update S : ∀p ∈ Jk(S)(p← (p \ k) ∪ k′)
12: if ∃z ∈ V (k′), z /∈ {u, v}, degree(z) ≥ 3 in S then
13: remove-cycles(Jk(S))
14: κ← k-decompose(S)
15: else
16: κ← κ \ {k} ∪ {k′}
17: end if
18: end if
19: end for
20: end while
21: return S

Fig. 3. LocalSearchPhase1 pseudo-code

Key-Star-Based Local Search Neighbourhood Our second neighbourhood
is based on the replacement of key-stars, which frequently allow to improve fea-
sible solutions that are locally optimal when only considering Neighbourhood1.
In the case of the GSP-NC, as no node sharing is allowed among disjoint paths,
all key-stars are trees (named key-trees); a key-tree replacement neighbourhood
for the GSP-NC can be found in [15], [14]. Due to the possibilty of sharing nodes
among edge-disjoint paths, when working with GSP-EC problems, we have to
work with key-stars, and unlike [15] we will allow the root node to be a terminal
node in order to get a broader neighbourhood. In the GSP-NC any key-tree can
be replaced by any tree with the same leaves with no loss of connectivity levels.
In the GSP-EC, if the replacing structure is also a key-star the same holds true;
but it does not for other general structures (non-star trees included). We propose
an algorithm that given a key-star k, deterministically seeks for the lowest cost
replacing key-star k′ able to “repair” the paths from P broken when removing
the edges of k.

8 General Steiner Problem for Edge-survivable Network Design

Let k be a key-star in a certain feasible solution Gsol and P a set of paths
which “certificates” its feasibility (as the one returned by ConstPhase). For al-
lowing as much reusing of edges as possible, we can extend our previous definition
of Jk(Gsol) and χk(Gsol) to consider key-stars k instead of key-paths; and thus
we can define the key-star based neighbourhood as follows.

Definition 6. Neighbourhood2: Given a GSP-EC instance and a feasible solu-
tion Gsol, it is the set of all graphs obtained by replacing any key-star k of Gsol
by the lowest possible cost key-star k′ such that k′ preserves the same connectiv-
ity among the leaves of k and its terminal nodes, and the edges of k′ are chosen
from the set E \ χk(Gsol) and/or k.

We present the star-based local search algorithm LocalSearchPhase2 in Figure 4.

Procedure LocalSearchPhase2(G,C, T, S)

1: improve← TRUE
2: κ← k-decompose(S)
3: while improve do
4: improve← FALSE
5: for all kstar k ∈ κ do
6: [k′, newCost]← BestKeyStar(G,C, T, S, k)
7: if newCost < cost(k, C) then
8: improve← TRUE
9: replace k by k′ in all paths from S

10: κ← k-decompose(S)
11: abort for all
12: end if
13: end for
14: end while
15: return S

Fig. 4. LocalSearchPhase2 pseudo-code

Line 1 initializes the flag improve which indicates wheter an improved so-
lution has been found or not. Line 2 computes the decomposition in key-nodes
and key-paths of the set S. Loop 3-14 looks for succesive cost improvements
until no more can be done. Each iteration proceeds as follows. The loop 5-13
analyzes each key-star k trying to find a suitable replacement with lower cost.
Line 6 determines the lowest cost key-star k′ that could replace k and its cost
(computed assuming that edges from the current solution not in k have no cost
to promote edge reusing). To do so it uses the procedure BestKeyStar described
later. Line 7 verifies if the replacing key-star has lower cost than k; if it does,
lines 8-11 acknowledge the fact, the replacement is done over the set S, the k-
decomposition is recomputed and the “for all” loop is aborted to restart looking
for improvements.

General Steiner Problem for Edge-survivable Network Design 9

Figure 5 presents the algorithm BestKeyStar. Given a key-star k we denote
by θk its root node; by ψk the set of its leaf nodes; and by δ̂k,m (being m the
root node of k or one of its leaves) the highest amount of key-paths that join m
in k with any other node that is root or leaf in k.

Procedure BestKeyStar(G,C, T, S, k)

1: G′ ← the subgraph induced from G by E(k) ∪ (E \ χk(S))
2: C′ ← (c′ij)/c

′
ij = 0 if (i, j) ∈ S \ k; c′ij = cij otherwise

3: add a “virtual node” w to G′

4: Ω ← ψk

5: if θk ∈ T then
6: Ω ← Ω ∪ {θk}
7: end if
8: for all m ∈ Ω do
9: add δ̂k,m parallel edges (w,m) to G′ with cost 0

10: end for
11: cmin ← 0; kmin ← k
12: for all z ∈ V (G) do
13: k′ ← simult-shortest-paths(G′, δG′,w, z, w)
14: if k′ has δG,w paths ∧ cost(k′, C′) < cmin then
15: cmin ← cost(k′, C′); kmin ← k′

16: end if
17: end for
18: return [kmin, cmin]

Fig. 5. BestKeyStar pseudo-code

The algorithm is based on the idea of building key-stars by employing the
simult-shortest-paths algorithm (in our tests we used the one introduced in [5]).
Lines 1-2 compute the subgraph of G obtained by removing the edges that could
cause loss of connectivity level if reused; the altered cost matrix C ′ with cost
zero for reused edges; and adds a virtual node w whose purpose is explained
below. Lines 4-7 determine the set of leaf nodes that the key-star to build must
have. Lines 8-10 connect each of the latter to w with an appropriate number
of parallel zero-cost edges totalling δG′,w (degree of w in G′) edges. The loop
12-17 considers nodes of G that could be potencial roots z of the key-star to be
found, and then builds the lowest-cost one with root node z through the appli-
cation of the already mentioned simult-shortest-path algorithm on the graph G′

in line 13; δG′,w edge-disjoint paths connecting z and w are requested. If found
(lines 14-16) and with lower cost than k then the new key-star and its associated
cost are recorded as the best ones so far found. After having considered all possi-
ble root nodes, line 18 returns both the best key-star and its cost according to C ′.

Figure 6 depicts the process of determining which the best key-star to replace
a given one is. It illustrates (a) the feasible graph G with a key-star that keeps

10 General Steiner Problem for Edge-survivable Network Design

connected the leaf nodes t, u, v; (b) the graphG′ obtained after adding the virtual
nodes w linked with cost zero to each of t, u, v by the appropriate amount of edges
(as many as the degree of each in the key-star) and having chosen a “candidate”
root node z; (c) the shortest paths found to connect z and w (the sum of degrees
of t, u, v are requested); and (d) the new key-star obtained after removing the
virtual node w. For example, the node v has degree three in the key-star (a); so
it is connected by three parallel zero-cost edges to the virtual node w (b); then,
when requesting the simultaneously disjoint paths to link z and w in G′, three
disjoint paths will join z and v (if possible) (c); finally, those three paths will be
part of the new key-star with new root z (d).

Fig. 6. Computing the best key-star

3.3 GRASP algorithm description

Now we are able to put the pieces together and build a GRASP algorithm for
solving the GSP-EC. Figure 7 shows the resulting pseudo-code.

Basically the local search phase of this algorithm applies key-path replace-
ment based movements until no further improvements are possible; then it tries
to apply the best key-star replacement movement (once); if the latter is done
with a cost reduction, then key-path replacements are tried again, and so on,
until no further improvements are possible for both kinds of movements.
In line 1 the minimum cost found cmin is initialized to ∞ and an empty path
set Sopt is initialized. The main loop (2-18) is executed iters times and then the
best solution found is returned. Line 3 builds a feasible solution employing our
ConstPhase greedy randomized adaptive algorithm; being S the path set that
certifies feasibility. If the set S has less paths than the so far found best solution

General Steiner Problem for Edge-survivable Network Design 11

Procedure GRASP GSP(G,C, T,R, iters)

1: cmin ←∞;Sopt ← ∅
2: for i = 1 to iters do
3: [Gsol, S]←ConstPhase(G,C, T,R)
4: if |S| ≥ |Sopt| then
5: flag ←TRUE
6: OptLoop: [Gsol, S

′]←LocalSearchPhase1(G,C, S)
7: if flag ∨ cost(S′) <cost(S) then
8: flag ←FALSE
9: [Gsol, S

′′]←LocalSearchPhase2(G,C, S′)
10: if cost(S′′, C) <cost(S′, C) then
11: S ← S′′; go to OptLoop
12: end if
13: end if
14: if cost(S′, C′) < cmin then
15: cmin ←cost(S′′, C);Sopt ← S
16: end if
17: end if
18: end for
19: return Sopt

Fig. 7. GRASP GSP pseudo-code

Sopt (line 4) this iteration is discarded. This could happen if the last call to
ConstPhase was not able to satisfy all requirements of R and a previous call was
able to do it (or at least to satisfy a greater number); our first objective is to
satisfy as much requirements of R as possible. Line 6 applies the key-path based
movements by calling LocalSearchPhase1. If this was the first local search or if a
cost reduction was achieved then a best key-star movement is tried in line 9. In
case the latter succeeds in reducing the cost (verified in line 10), the execution
flow resumes at line 6, for trying a new cycle of chained improvements. When
no further local improvements are possible, lines 14-16 update the best known
solution in case an improvement was achieved.

4 Performance tests

This section presents the results obtained after testing our algorithms with
twenty-one test cases. The algorithms were implemented in C/C++ and tested
on a 2 GB RAM, Intel Core 2 Duo, 2.0 GHz machine running Microsoft Windows
Vista. All instances were run with the parameter iters set to 100.

4.1 Test set description

To our best knowledge, no library containing benchmark instances related to the
GSP-NC nor GSP-EC exists; we have built a set of twenty-one test cases that
are based in cases found in the following public libraries:

12 General Steiner Problem for Edge-survivable Network Design

– Steinlib [7]: instances of the Steiner problem; in many cases the optimal
solution is known, in others the best solution known is available;

– Tsplib [8]: instances of diverse graph theory related problems, including a
“Traveling Salesman Problem” section.

Case V E T St Redund. Opt

b01-r1 50 63 9 41 1-EC 82

b01-r2 50 63 9 41 2-EC NA

b03-r1 50 63 25 25 1-EC 138

b03-r2 50 63 25 25 2-EC NA

b05-r1 50 100 13 37 1-EC 61

b05-r2 50 100 13 37 2-EC NA

b11-r1 75 150 19 56 1-EC 88

b11-r2 75 150 19 56 2-EC NA

b17-r1 100 200 25 75 1-EC 131

b17-r2 100 200 25 75 2-EC NA

cc3-4p-r1 64 288 8 56 1-EC 2338

cc3-4p-r3 64 288 8 56 3-EC NA

cc6-2p-r1 64 192 12 52 1-EC 3271

cc6-2p-r2 64 192 12 52 2-EC NA

cc6-2p-r123 64 192 12 52 1-EC(11),2-EC(36),3-EC(19) NA

hc-6p-r1 64 192 32 32 1-EC 4003

hc-6p-r2 64 192 32 32 2-EC NA

hc-6p-r123 64 192 32 32 1-EC(171),2-EC(189),3-EC(136) NA

bayg29-r2 29 406 11 18 2-EC NA

bayg29-r3 29 406 11 18 3-EC NA

att48-r2 48 300 10 38 2-EC NA

Table 1. Characteristics of the Test Cases

The main characteristics of the twenty-one test cases are shown in Table 1.
For each case we show the amount of nodes (V), feasible edges (E), terminal
nodes (T) and Steiner (non terminal) nodes (St). We also show the level of
edge-connectivity requirements “Redund.” (one, two, three or mixed) and the
optimal costs when available. GSP poblems solved with connectivity level one
are Steiner problems and in those cases we got the optimal solution cost from
Steinlib. Problems b01, b03, b05, b11 and b17 were taken from Steinlib’s problem
instances set “B” and are cases randomically generated with integer uniform
costs ranging from 1 to 10. The case cc3-4p belongs to Steinlib’s instance set
“PUC”; eigth terminal nodes are terminal and we solved two instances with
uniform connectivity requirements one and three. The cases cc6-2p and hc-6p
belong also to Steinlib’s instance set “PUC”; twelve and thirty-two terminal
nodes are terminal and we solved three instances for each one with connectivity
requirements one, two, and a mix of one to three (in the latter case, the table

General Steiner Problem for Edge-survivable Network Design 13

shows the amount of terminal pairs with connectivity level required one, two and
three). Finally the cases bayg29 and att48 were taken from the library Tsplib;
both correspond to real cases (twenty-nine cities from Bavaria, Germany; and
48 cities from USA). Source data of the twenty-one instances as well as the best
solutions found are available in [17].

Case Reqs. t(ms) Cost %LSI

b01-r1 36 77 82 3.0

b01-r2 42 80 98 3.4

b03-r1 300 2611 138 10.6

b03-r2 378 3108 188 4.1

b05-r1 78 298 61 9.2

b05-r2 144 1389 120 5.2

b11-r1 171 1477 88 13.8

b11-r2 324 4901 180 3.4

b17-r1 300 6214 131 10.2

b17-r2 531 15143 244 3.0

cc3-4p-r1 28 388 2338 10.0

cc3-4p-r3 84 2221 5991 4.6

cc6-2p-r1 66 2971 3271 2.4

cc6-2p-r2 132 4801 5962 10.2

cc6-2p-r123 140 6317 8422 9.8

hc-6p-r1 496 25314 4033 6.8

hc-6p-r2 992 28442 6652 3.5

hc-6p-r123 957 26551 7930 5.2

bayg29-r2 110 975 6856.88 4.6

bayg29-r3 165 2413 11722 4.2

att48-r2 90 1313 23214 13.0

Averages 265 6524 - 6.7

Table 2. Numerical Test Results

4.2 Numerical Results

Computational results of the tests can be found in Table 2. Here follows the
meaning of each column:

– Reqs.: total amount of terminal-to-terminal disjoint paths found in the best
solution (which, if the feasible connections network is compatible with all
the requirements given by R, should amount

∑
i,j rij/2.;

– t(ms): the average running time (in ms) per iteration;
– Cost: the cost of the best solution found;
– LSI: “local search improvement”: the percentage of cost improvement achieved

by the local search phase when compared to the cost of the solution delivered
by the construction phase, for the best solution found.

14 General Steiner Problem for Edge-survivable Network Design

In all cases with connectivity requirements equal to one (1-EC) for all pairs
of terminals (for which the optimal costs are known) every best solution found
is optimal, with the exception of the case hc-6p-r1 (found cost 4033 being the
optimal cost 4003). Note also that the average cost improvement over the solution
delivered by ConstPhase (LSI) amounts to 6.7% (when computed only for the
best solutions found). All solutions found are edge-minimal regarding feasibility
(no edge can be supressed without losing required connectivity levels); and in
all cases the maximum possible number of requirements are satisfied (i.e. for all
pairs of terminals i, j, whether their requirement rij was satisfied or fij disjoint
paths were found being fij the maximum achievable amount of disjoint paths
joining i and j given by the topology of the feasible connections graph G).

5 Conclusion

The algorithm GRASP GSP was shown to find good quality solutions to the
GSP-EC when applied to a series of heterogeneous test cases with up to 100
nodes and up to 406 edges. It was also shown to guarantee for all instances a
non-zero probability of finding an optimal solution avoiding local optima traps.
For all cases with known optimal cost the algorithm was able to find solutions
with costs no more than 0,74% higher than the optimal cost. Significant cost
reductions are achieved after applying the local search phase over the greedy
solutions built by the construction phase. Execution times were comparable to
the ones of previous similar works like [15] for the node-connected version of the
GSP.

A Appendix: Proof of Property 3.1

A.1 Local Optima Traps in Previous Algorithms

Previous algorithms introduced in [15], [14] do not satisfy the Property 3.1 as
evidenced by the example shown in Figure 8. In (a) an instance of the GSP-EC
is shown with three terminal nodes (black), one Steiner node (white) and nine
edges labelled with costs. Let us assume that the matrix R requires one path
to connect every pair of terminals. If the algorithm is run with the GRASP
parameter “candidate list size” (used in the mentioned previous works) set to
two, the 2-shortest-paths will always be paths with length one given by the
edges with costs 10 and 11. Some possible outcomes are shown in (b). The
algorithm will never find the optimal solution (with cost 18) built with the
three edges that have cost 6. Furthermore, none of the solutions buildable by
the Construction Phase can be transformed in the optimal solution through the
movements introduced in previous nor in this work (replacement of key-paths,
key-trees and key-stars). Therefore, there exist instances (even trivial ones) of
the GSP and parameterizations of previously introduced GRASP algorithms for
which an optimal solution will never be attained.

General Steiner Problem for Edge-survivable Network Design 15

Fig. 8. Counterexample for Property 3.1

A.2 Altering Costs

In order to introduce randomness in the Construction Phase as well as avoid
the local optima trap our algorithm begins by altering the edge costs by means
of a function that we called alter-costs. The idea is to leave with cost zero the
edges already having cost zero and at the same time altering the other costs in
a way where generally (but not always) edges having lower costs end up with
lower altered costs. Next we formalize these ideas and give a possible definition
for this function (the one we applied in our tests).We will seek that the following
properties be satisfied by the alter-costs function:

– If the edge cost is zero, the altered cost is also zero.
– Otherwise:
• Each edge cost will be altered independently from the others;
• The altered cost will be any value in (0,+∞) following a certain proba-

bility distribution that assigns non-zero probabilities to any open subin-
terval of (0,+∞). We will denote as Ĉij the random variable that follows
this distribution for a certain edge (i, j);

• The expected value of the cost will be the original edge cost;
• (cij < chk)→ (p(Ĉij < Ĉhk) > 1

2) for any pair of edges (i, j), (h, k).

The last condition is an heuristic one though not necessary for the proof
given below.

As a possible alternative we suggest employing the “exponential distribu-
tionl”, defined as follows (with a parameter λ):

fλ(x) = λe−λx

As parameter we will employ the reciprocal of the original edge costs; for each
edge (i, j) with original cost cij the suggested alter-costs function will return:

16 General Steiner Problem for Edge-survivable Network Design

– 0 if cij = 0
– a value given by a random variable with distribution f1/cij if cij > 0

The suggested distribution assigns values in (0,+∞) to each edge with non-
zero cost, satisfying all the above properties; its expected value equals the original
cost (which, for the exponential distribution, is the reciprocal of its parameter
i.e. cij). It also satisfies the last condition as can be seen analyzing the joint
distribution:

p(Ĉij < Ĉkh) =

∫∫
x<y

(1/cij)e
−x/cij (1/ckh)e−y/ckh dx dy =

c−1ij

c−1ij + c−1hk

where we see that the probability of (i, j) getting an altered cost lower than the
one of (h, k) grows as cij diminishes with respect to chk. Finally, the exponential
distribution assigns non-zero probabilities to any open subinterval of (0,+∞)
which is vital for the proof of the Property 3.1 given below. Next we show that
altering costs with such distributions make our algorithms satisfy the Property
3.1.

A.3 Buildable Solutions Space and Global Optima

Theorem 1. For all instances of the GSP, the algorithm ConstPhase has non-
zero probability of reaching an optimal solution; in other words it satisfies the
Property 3.1.

Proof. Let S be any example solution with optimal cost for the problem. Let us
suppose that the probability p of building exactly this solution when running the
algorithm is strictly positive i.e. p ∈ (0, 1]. Then, the probability of the algorithm
not finding that solution even once after running k times would be (1− p)k, and
the probability of building that solution at least once after k executions would
be:

pk(S) = 1− (1− p)k > 0

Then,

lim
k→∞

pk(S) = 1

what would complete the proof.

Now we will see that given any instance of the GSP and an optimal solution
S, the probability p of building S is different than zero. Let (S)i = s1, s2, ..., sr
with r =

∑
i,j∈T rij be an ordering of the paths in S obtained the following way:

– s1 is (any of) the path(s) in S having less non-zero cost edges;
– sk is (any of) the path(s) where the amount of non-zero cost edges not

belonging to any of the previous paths s1...sk−1 is minimal.

General Steiner Problem for Edge-survivable Network Design 17

Denoting as l∗(s) the amount of non-zero cost edges in a set s, and l∗1, ..., l
∗
r

the results from applying l∗ on a certain ordering of paths, formally (S)i is any
ordering such that

l∗

(
sk \

⋃
i=1...k−1

si

)
= min
s∈S\{s1,...,sk−1}

l∗

(
s \

⋃
i=1...k−1

si

)

The amount of possible orderings (arrangements with repetitions) of the
terminals pairs sequence (i, j) that the algorithm can follow (at random) to
generate the paths is given by ∑

i<j

rij

!

∏
i<j

(rij !)

and thus the probability that the algorithm generate the example paths fol-
lowing a source-destination terminals order coinciding with the one of (S)i is

porder(S) =

∏
i<j

(rij !)∑
i<j

rij

!

> 0

Let us assume now that the algorithm will generate the paths in the same
terminals order given by (S)i. We will see now that the probability of generating
the path si (or other with the same cost) in place i is non-zero; which would
allow to complete our proof finding a lower bound for p. To do so we build a
family of functions Ĉ for the altered costs that will make the algorithm choose
exactly the intended paths; and we will show that the probability of the original
alter-costs function resulting in one belonging to the family is non-zero.

Given a certain ε such that 0 < ε < 1
2|E| , and a certain k ∈ N, let Ĉk = (ĉk,ij)

be any cost assignment for the feasible edges satisfying:

– ĉk,ij = 0 if cij = 0;
– ĉk,ij ∈ (k − ε, k + ε) if cij > 0.

In what follows we will work with costs given by Ĉk and denote ĉk(q) the
cost of a path q according to Ĉk. In general, a path s with l = l∗(s) non-zero cost
edges will have a cost ĉk(s) ∈ (kl−lε, kl+lε) and thus ĉk(s) ∈ (kl−1/2, kl+1/2).
Therefore, given two paths q and q′ with l∗(q) < l∗(q′), it will always be true
that ĉk(q) < ĉk(q′).

18 General Steiner Problem for Edge-survivable Network Design

Let us build Ĉ the following way. We will assign a cost according to Ĉ1

to every edge in s1. We will assign a cost according to Ĉ2 to every edge in
s2 \ s1. Similarly we will keep assigning costs according to Ĉk to every edge in
sk \ (s1 ∪ s2 ∪ ... ∪ sk−1). Finally we assign any cost higher than any already
assigned to the edges in G \ S. With this altered costs Ĉ, the first path to be
built will necessarily be s1; because any different path will have at least the
same amount of non-zero cost edges, and for every edge “interchanged” among
it and s1 the cost would be kept or increased. Similarly, the second path built
can not be other than s2, because the only way to minimize the cost is by adding
its edges. Extending this reasoning we see that the algorithm will generate the
exact path sequence (S)i.
Then we have:

– A non-zero probability porder(S) of randomically shuffling a terminals pairs
ordering equal to the one of (S)i;

– A non-zero probability palter(S) that the altering costs function assign costs
to the feasible edges of G according to our definition of Ĉ (because, for any
edge with non-zero original cost, there is a non-zero probability that our
altering costs function assign some cost in (k − ε, k + ε)).

The probability of getting both facts at the same time is porder(S)palter(S) > 0;
and being these cases a subset of the sampling space of all “shuffle and alter”
scenarios that lead to building S, we conclude that we have found a non-zero
lower bound for the probability p, thus completing the proof.

References

1. Ajit Agrawal, Philip Klein, and R. Ravi. When trees collide: An approximation
algorithm for the generalized steiner problem on networks. SIAM Journal on
Computing, 24(3):440–456, 1995.

2. M. Bäıou and A.R. Mahjoub. Steiner 2-edge connected subgraph polytope on
series-parallel graphs. SIAM Journal on Discrete Mathematics, 10(1):505 – 514,
1997.

3. Mourad Bäıou. Le problème du sous-graphe Steiner 2-arête connexe : Approche
polyédrale. PhD thesis, Université de Rennes I, Rennes, France, 1996.

4. Mourad Bäıou. On the dominant of the Steiner 2-edge connected subgraph poly-
tope. Discrete Applied Mathematics, 112(1-3):3 – 10, 2001.

5. R. Bhandari. Optimal physical diversity algorithms and survivable networks. In
Computers and Communications, 1997. Proceedings., Second IEEE Symposium on,
pages 433 –441, July 1997.

6. C.R. Coullard, A. Rais, D.K. Wagner, and R.L. Rardin. Linear-time algorithms
for the 2-Connected Steiner Subgraph Problem on Special Classes of Graphs. Net-
works, 23(1):195 – 206, 1993.

7. Thorsten Koch. Konrad-Zuse-Zentrum fr Informationstechnik Berlin. Steinlib test
data library. http://steinlib.zib.de/steinlib.php.

8. Ruprecht-Karls-Universitat Heidelberg. Tsplib network optimization problems li-
brary. http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95.

General Steiner Problem for Edge-survivable Network Design 19

9. H. Kerivin and A. Mahjoub. Design of Survivable Networks: A survey. Networks,
46(1):1 – 21, 2005.

10. J. Krarup. The generalized steiner problem. Technical report, DIKU, University
of Copenhagen, 1979.

11. A.R. Mahjoub and P. Pesneau. On the Steiner 2-edge connected subgraph poly-
tope. RAIRO Operations Research, 42(1):259–283, 2008.

12. C.L. Monma, B.S. Munson, and W.R. Pulleyblank. Minimum-weight two con-
nected spanning networks. Mathematical Programming, 46(1):153 – 171, 1990.

13. M.G.C. Resende and C.C. Ribeiro. Greedy randomized adaptive search procedures.
In F. Glover and G. Kochenberger, editors, Handbook of Metaheuristics, pages 219–
249. Kluwer Academic Publishers, 2003.

14. F. Robledo and E. Canale. Designing backbone networks using the generalized
steiner problem. In Design of Reliable Communication Networks, 2009. DRCN
2009. 7th International Workshop on, volume 1, pages 327 – 334, October 2009.

15. Franco Robledo. GRASP heuristics for Wide Area Network design. PhD thesis,
IRISA, Université de Rennes I, Rennes, France, february 2005.

16. Pablo Sartor. Problema General de Steiner en Grafos: Resultados y Algoritmos
GRASP para la versin Arista-Disjunta. M.Sc. thesis, Universidad de la República,
Montevideo, Uruguay, 2011.

17. Universidad de Montevideo. GSP-EC test set with best results found.
http://www2.um.edu.uy/psartor/grasp-gsp-ec.zip.

18. Pawel Winter. Steiner problem in networks: a survey. Networks., 17(2):129–167,
1987.

19. M. Stoer. Design of survivable networks. In Lecture Notes in Mathematics. Springer
Verlag, 1992., volume 1531.

20. H. Kerivin and R. Mahjoub. Design of survivable networks: A survey. Networks,
46(1):1 – 21, 2005.

21. T.A. Feo and M.G.C. Resende Greedy Randomized Adaptive Search Procedures.
Journal of Global Optimization, 6:109 – 133, 1995.

