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An algorithm for the serial capacitated economic lot-sizing problem 
with non-speculative costs and stationary capacities

Pedro Piñeyro*, Omar Viera, Héctor Cancela

Instituto de Computación, Facultad de Ingeniería, Universidad de la República,

 Julio Herrera y Reissig 565, CP 11300, Montevideo, Uruguay

Abstract. We address the serial capacitated economic lot-sizing problem under 

particular assumptions on the costs and the capacity pattern. We prove that when 

the involved costs are non-speculative with respect to the transfer to future periods 

and the capacity pattern is stationary for all levels, the optimal plan for each level 

can be obtained independently in O(T 3) time. This leads to an O(T 3L) algorithm 

for the problem with L levels. 

Keywords: Capacitated Economic Lot-Sizing Problem; Inventory Control.

1.  Introduction
We analyze the serial extension of the capacitated economic lot-sizing problem for a 

single item. The problem can be stated as follows. There is a customer demand for a 

single product, which is known in advance for each one of the periods over a finite 

planning horizon. Demand must be satisfied on time, either by distributing new items 

from a retailer in the last level or by using previously stocked items in the customer 

storage. In turn, the requirements of the retailer in level   are satisfied on time by a 

retailer in an upstream level )1( − , until reaching the supplier/producer at the first level. 

We point out that backlogging demand is not allowed at any level. The numbers of units 

produced and distributed are limited by maximum values, known in advance for each 

period and level, and can be stocked, if they are not used to serve the requirements. 

Costs are incurred when a positive amount is produced or distributed in a certain period 

and for carrying stocked items from a period to the next. All costs and values mentioned 

above are dynamic, i.e., possibly different for each period, activity and level. The 

objective is determine the activity quantities (i.e., production and distribution quantities) 

for each level and period of the planning horizon in order to meet the customer demand 
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requirements on time, fulfilling the capacity constraints and minimizing all the involved 

costs. We refer to this problem as the Serial Capacitated Economic Lot-Sizing Problem, 

and briefly as SCLSP.

Problems such as described above occur in a wide range of practical situations, e.g. 

when there is a coordinated supply chain management for both production and 

distribution activities. It is known today that coordinating these decisions, rather than 

considering each one of them in isolation, can cut costs for all participants in the supply 

chain, even in the case of different participants. Perspectives and benefits of coordinated 

supply chain management are further described in Arshinder et al. [3]. Some real-word 

examples of these chains are mentioned in Kaminsky and Simchi-Levi [16] for the 

pharmaceutical industry and in van Hoesel et al. [25] for the third-party logistics 

industry. A recent innovation in this direction is the Vendor-Managed Resupply 

strategy, in which the supplier manages the inventory replenishment of its customers, 

ensuring that no stock-out occurs (Campbell et al. [7] and [8]; Jans and Degraeve [15]).

We point out that in this paper we consider capacity constraints for all levels, i.e. 

supplier and retailers. The SCLSP is NP-hard in general since the single-level case of 

the problem, named CLSP, is NP-hard not only in the general case but even for many 

special cases (Florian et al. [14]; Bitran and Yanasse [5]). On the other hand, the CLSP 

can be solved in polynomial time for concave cost functions and stationary capacity-

pattern. Therefore, we analyze the SCLSP under these common assumptions. As we 

will see later, we need to impose an additional assumption on the cost functions in order 

to provide an efficient algorithm for the problem. We refer to this assumption as non-

speculative motives with respect to the transfer, i.e., it is profitable to transfer the 

production or distribution quantity from one period to another future period in the 

planning horizon. Adding this assumption on the costs, we are able to develop an 

algorithm of O(T 3) time for each level, thus improving the running-time of the Florian 

and Klein [13] algorithm of O(T 4) for this particular case of the CLSP. This 

improvement is based on the introduction of a new kind of capacity constrained 

sequences that we refer as ascending capacity constrained sequences. For the SCLSP 

with L > 1 number of levels, the running-time of the proposed algorithm is O(T 3L).



The remainder of this paper is organized as follows. In the next section we provide the 

literature review. A detailed description of the SCLSP, along with the mathematical 

formulation and an analysis of the problem are given in Section 3. In Section 4 we 

provide certain properties related to the form of the SCLSP optimal solutions under the 

particular assumptions described above. The algorithm for the SCLSP is provided and 

shown in Section 5. Finally, Section 6 concludes the paper with some suggestions for 

future research.

2. Literature Review
The single-level economic lot-sizing problem with capacity constraints is commonly 

referred as CLSP in the literature. The CLSP is NP-hard in the general case, and even 

for special cases on the cost structures and/or the capacity pattern (Bitran and Yanasse 

[5]; Florian et al. [14]). On the other hand, for the case of concave cost functions and 

stationary capacity (i.e., equal capacity upper-bound for each period) Florian and Klein 

[13] developed a polynomial-time algorithm of O(T 4) based on a dynamic programming 

approach. The effectiveness of the proposed algorithm is based on the fact that there 

exists an optimal production plan composed only by capacity constrained sequences, 

i.e., each sequence has at most one period with positive production less than capacity. 

An improved algorithm of O(T 3) time was then suggested by van Hoesel and 

Wagelmans [26] for the particular case of linear holding inventory costs. Bitran and 

Yanasse [2] developed polynomial-time algorithms for several particular cases of the 

CLSP. The authors introduced a notation for classifying the different capacitated lot-

sizing problems, distinguishing the form of the set-up and variable production costs, the 

inventory holding costs and the capacity pattern, respectively. Recent works dealing 

with this classification are Chung and Lin [11], van den Heuvel and Wagelmans [24], 

and Chen et al. [9]. For NP-hard cases of the CLSP, van Hoesel and Wagelmans [27] 

were the first to provide a fully polynomial approximation scheme (FPTAS). Later, 

faster implementations have been presented by Chubanov et al. [10] and Ng et al. [19] 

for certain particular cases on the costs and the capacity pattern. For surveys on the 

CLSP, we refer to Karimi et al. [17] and Brahimi et al. [6].

While the literature related to the lot-sizing problems is very large, papers dealing with 

both capacity constraints and more than one level, are scarce. Kaminsky and Simchi-

Levi [16] analyzed a two-stage supply chain, with production capacity constraints in 



both stages and with costs consisting of a set-up charge and variable unit costs. By 

means of non-speculative assumptions on the costs, the authors were able to reduce the 

original problem to an equivalent single-stage model. For this equivalent problem, the 

authors provided an algorithm of O(T 4) time. In the case of concave cost functions for 

the transportation and stationary capacity pattern, they were able to provide an 

algorithm of O(T 8). In van Hoesel et al. [25] a serial lot-sizing problem is investigated 

with capacity constraints only in the first level, i.e., the production level. They provided 

a network flow formulation for the case of concave cost functions, and derived several 

properties related to the form of the optimal solutions. Based on a dynamic 

programming approach similar to that of Florian et al. [14], they also provided a 

polynomial time algorithm of O(T 7) time for the problem. The authors showed that the 

algorithm can be easily adapted to cover positive initial inventories. For the general case 

of L levels and stationary capacity, a pseudopolynomial-time algorithm of O(LT 2L+3) 

time is developed. Finally, real polynomial-time algorithms are provided for the multi-

level case with both fixed-charge transportation cost without speculative motives and 

linear transportation costs. We note that one of the three directions proposed for future 

research by the authors is the inclusion of capacity constraints on the distribution levels. 

There are many papers, as the seminal works of Zangwill [28] and Crowston and 

Wagner [12], that were not considered in this review for one or more of the following 

reasons: 1) capacity constraints are not considered on both production and distribution 

simultaneously; 2) demand is assumed deterministic and stationary; 3) more restrictive 

cost functions are employed. We refer the reader to Robinson et al. [23] and Ben-Daya 

et al. [4] for recent overviews of this kind of problems. We especially wish to 

emphasize recent works dealing with the capacitated economic lot-sizing problem in 

different and important directions out of the scope of this present paper. Anily and Tzur 

[2] and Absi and Kedad-Sidhoum [1] consider multi-item and capacity vehicles for the 

distribution activity; Mitra [18] and Pan et al. [20] analyze the problem with product 

returns.

3.  Problem Statement
We consider a dynamic multi-level and serial inventory system of a single item, with 

capacity constraints for all levels and a finite planning horizon of length T > 0. For each 

period Tt ,...,1= , there is a known customer demand 0≥tD  which must be satisfied on 



time by a retailer in the last level, which in turn is served by another retailer in the 

preceding level until reaching the supplier in the first level. Backlogging demand is not 

allowed at any level. There are costs for carrying on activities (production or 

distribution) and for storing positive quantities at each period and level. Henceforth, we 

assume that all the cost functions are concave on the closed interval [ )+ ∞,0 , and equal to 

zero when their argument is zero or negative.  For ease of exposition, we refer as 

production quantities to the quantities of the first level, and distribution quantities for 

the quantities of the other levels. In turn, we refer as activity quantities to the quantities 

of any level. Finally, it is assumed that the initial inventory and the lead-time for the 

activities is equal to zero for all levels. The objective is determine the optimal quantities 

for all levels and periods, in order to meet the periodic demand requirements on time 

and fulfilling the capacity constraints. We refer to the problem as the Serial Capacitated 

Economic Lot-Sizing Problem, SCLSP. The components of the problem are 

summarized below:

 0>T : Planning horizon length, with T < +∞.

 0>L : Number of levels, with L < +∞.

 0≥tD : Number of items demanded by the customer in period t, with 
Tt ,...,1= .

 0≥
tx : Number of items produced or distributed in period t, with L,...,1=

and Tt ,...,1= .

 + ∞<< 
tC0 : The capacity constraint in period t and level  , with 

L,...,1= and Tt ,...,1= .

 0≥
ty  : Inventory level of items during period t at level  , with L,...,1= and 

Tt ,...,1,0= .

 )(⋅
tf  : Function cost for the activity at level   and period t, with L,...,1= and 

Tt ,...,1= .

 )(⋅
th : Holding function cost at level   for period t, with L,...,1= and 

Tt ,...,1= .

The problem described above can be formulated as the following Mixed Integer Linear 

Programming (MILP) problem:
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Constraints (1) and (2) are the inventory equilibrium equations for the first (L – 1) levels 

and the final level L, respectively. Constraint (3) establishes that the initial inventory 

quantity must be zero for all levels. The capacity constraint for each level is given 

by (4). Finally, constraint (5) states the set of possible values for the decision variables.

Note that we can replace the decision variables 
ty  and L

ty  by )( 1
11

+− 
tt xx  and )( 11 t

L
t Dx −  

respectively, where 
ijx  denotes the accumulated activity quantities and ijD  the 

accumulated demand quantities between periods i and j with 1 ≤ i ≤ j≤ T and L,...,1= . 

Therefore, the problem formulated above reduces to the problem of finding feasible 

plans ),...,( 1

Txxx =  for each level  , in order to provide a complete solution 

),...,,...,( 1 Lxxxs =  of minimum cost of (P). We also note that the set of feasible solutions 

is not empty if and only if the accumulated demand of the first t periods does not exceed 

the accumulated capacities over these periods for any level  . Formally: 
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Therefore, from now on we assume that expression (6) is fulfilled. Since the objective 

function of (P) is a concave function and the constraints (1) – (5) define a closed 

bounded convex set, there is an optimal solution of the SCLSP that is an extreme point 

of this set. On the other hand, without loss of generality we can assume that the 

different plans of a feasible solution ),...,,...,( 1 Lxxxs =  of the SCLSP are composed by 

subplans ),...,( 
jiij xxS =  called sequences such that 0== 

ji yy  and 0>
ty , for all t in 

Tjti ≤<<≤0 and L,...,1= . Periods i and j are commonly referred as regeneration 

points. 
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For the CLSP, Florian and Klein [13] showed that the extreme-point solutions are 

composed only by sequences for which the production quantities of the periods are zero 

or equal to the capacity, except in at most one period, which is called the fractional  

period. This kind of sequences are known as capacity constrained sequences.  Based on 

this property, the authors proposed an O(T 4) algorithm for solving the CLSP under the 

assumption of stationary capacity-pattern. Unfortunately, this property is not true for the 

SCLSP with more than one level, as we will see further in Section 4.3. This means that 

for the SCLSP in general, i.e. with any number of levels, it may be that the plans of an 

extreme-point solution are not composed only by capacity constrained sequences. 

Hence, it is unlikely that we can develop an efficient algorithm for solving the SCLSP 

in general. However, in the following section we introduce an additional assumption on 

the cost functions through which we can conclude that there is an optimal solution of 

the SCLSP such that all the plans are composed only by a new kind of capacity 

constrained sequences. 

4. The optimal solutions of the SCLSP under particular assumptions
In this section we present some properties related to the optimal solutions of the SCLSP 

under particular assumptions on the cost functions and the capacity pattern. We say that 

the cost functions of the SCLSP are non-speculative with respect to the transfer if it is 

profitable to transfer all or part of the production or distribution quantity from one 

positive period to another future period in the planning horizon. Formally, the cost 

functions are non-speculative with respect to the transfer when the expressions below 

are fulfilled for all L≤≤ 1  and Ttk ≤≤≤1 .:
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To interpret these conditions, note that in (7.1) all the production is transferred from one 

(7.1)

(7.2)



period to other future period that was inactive, while in (7.2) all or part is transferred 

forward between two positive periods. Expressions (7.1) and (7.2) are fulfilled in 

different settings of practical interest; one example is when all the costs involved are 

stationary and defined as follows:

LcKxcKxf t ≤≤≥>+=  1  and  0 ,0with ,)(
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We note that constraint (10) can be justified as value is added in the lower levels of the 

supply chain (Kaminsky and Simchi-Levi [16]). 

Proposition 1. Assume that the cost functions of the SCLSP are non-speculative with 

respect to the transfer. Then, the solutions of the SCLSP for which the plans of the 

different levels consist only of capacity constrained sequences are dominant, i.e., given 

a feasible solution of the SCLSP for which there is at least one plan that is not 

composed by capacity constrained sequences, we can determine a new feasible solution 

with all plans composed only by capacity constrained sequences with at most the same 

cost as the original.

Proof: Let ( )Lxxxs ,...,,...,1 =  be a feasible solution of the SCLSP. Without loss of 

generality, suppose that all the plans of s are composed only by capacity constrained 

sequences except by x  with only one sequence 
α βS  which is not capacity constrained. 

In order to determine a new feasible solution ( )Lxxzxxz ,...,,,,..., 111 +−=   composed only 

by capacitated constrained sequences we proceed as follows. For each consecutive pair 

of periods i and j of 
α βS  , with βα ≤<≤ ji , such that 

ii Cx <<0  and 
jj Cx <<0 , define 

{ }
jjjiii xCyyyx −= −+ ,,...,,,min 11ε . The new plan for level   is obtained as follows:
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The new plan z  consists only of capacity constrained sequences, since at least one of 

the three following cases is fulfilled: 1) 0=
iz ; 2) 

jj Cz = ; or 3) 0=
ty  for some t in 

jti <≤ . We note that if case 1) is fulfilled, i.e. 0=
iz , the original sequence 

α βS  is 
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decomposed into two new capacity constrained sequences 
iSα  and 

βiS . As we are 

transferring all or part of the activity quantity from period i to the future period j, by 

(7.1) and (7.2) we have that the total cost of the new solution z is less or equal than the 

original solution s. Thereby, we have constructed other feasible solution with at most 

the same cost as the original, where in addition all the plans are composed only by 

capacity constrained sequences. ■

Proposition 1 states that we can focus on those SCLSP solutions composed only by 

capacity constrained sequences for all levels in order to find an optimal solution, 

whenever the costs involved are non-speculative with respect to the transfer. Although 

this last assumption reduces the number of solutions that we must consider, it is not 

enough to develop an efficient algorithm. As we mentioned earlier, the CLSP is NP-

hard for the case of arbitrary capacity patterns (Florian et al. [14]). Nevertheless, the 

CLSP is polynomial-time solvable in the case of stationary capacity and concave cost 

functions (Florian and Klein [13]). Hence, from this point on, for the remainder of the 

paper we consider a stationary capacity-pattern for all levels, i.e.  CCt =  for all 

L,...,1=  and Tt ,...,1= .

If we add the assumption of stationary capacity, the result of Proposition 1 can be 

extended to a new kind of sequences. We say that a sequence is an ascending capacity  

constrained sequence (ACC sequence) whenever the period with a positive quantity 

below capacity, if it exists, is the first among the positive periods in the sequence. 

Proposition 2. Assume that the cost functions  of the SCLSP are non-speculative with 

respect to the transfer and the capacity pattern is stationary, i.e.   CCt = , for all levels 

L,...,1=  and periods Tt ,...,1= . Then, the solutions of the SCLSP with plans composed 

only by ACC sequences are dominant.

Proof. Consider a feasible solution ( )Lxxxs ,...,,...,1 =  of the SCLSP with plans composed 

only by capacity constrained sequences. By Proposition 1 we know that this kind of 

solutions exists. Without loss of generality, suppose that there is only one level   with 

only one sequence 
α βS  that is not an ACC sequence, i.e., there are at least two 

consecutive periods i and j such that 0>>= 
ji xxC  with βα ≤<≤ ji  and L≤≤ 1 . 



Then, we can determine a new feasible solution z equal to s except by the plan of level 

 , defining { }
jjii xCyyy −= −+ ,,...,,min 11ε  and by means of expressions (11) – (13) given 

in Proposition 1. Then, at least one of the two following cases is fulfilled: 1)  Cz j = ; or 

2) 0=
ty , for some t in jti << . If case 1) is fulfilled, then the activity quantity of period 

i in the new solution is below capacity, i.e.,  Czi < . If period i is not the first positive 

period in the sequence, we determine a new ε  for period i and the immediately previous 

period k of the sequence such that 0>>= 
ik xxC , with βα ≤<≤ ik . If case 2) is 

fulfilled, we note that the sequence 
α βS  has been decomposed into two new sequences 


tSα  and 

βtS  for some t in jti <≤ . Note that sequence 
βtS  is an ACC sequence, since all 

the positive periods are at capacity. We also note that period i may be the only period 

below capacity  in the ACC sequence 
tSα . If this is the case, we proceed as we explained 

for case 1) for period i and the immediately previous period k of the sequence. Since we 

are always transferring a production or distribution quantity from one period to another 

future period in the sequence, and we are assuming the costs are non-speculative with 

respect to the transfer, by (7.1) and (7.2) the total cost of the new solution z is less or 

equal than the original solution s. Thereby, we have constructed another feasible 

solution with at most the same cost as the original with all plans composed only by 

ACC sequences for all levels. ■

5. The algorithm for the SCLSP under particular assumptions
In this section we describe a recursive algorithm suggested for optimally solving the 

SCLSP under the assumptions that the costs are non-speculative with respect to the 

transfer and that the capacity-pattern is stationary. By Proposition 2 of Section 4, we 

know that there is an optimal solution of the SCLSP that is composed only by ACC 

sequences. Hence, we provide the algorithm in terms of this kind of sequences. The 

algorithm has four inputs: the level to process  ; the requirements vector ),...,( 1 TrrR = ; 

the on-going solution ),...,( 1 LxxX +=  ; and the best solution up to the moment denoted by 

optS . If the level to be processed is the first one, i.e., 1= , then a new solution is 

constructed and evaluated in order to determine the optimal. Otherwise, 
RΨ , the set of 

all feasible plans composed only by ACC sequences for the current level   and 



requirements R , is determined. Then, for each plan x  of 
RΨ , the algorithm is 

recursively invoked with a level equal to 1− , the requirements x , the new on-going 

solution ),...,,( 1 LxxxX +=   and optS . 

Figure 1: Algorithm for solving the SCLSP

A sketch of the algorithm, named SCLSP_Alg, is given in Figure 1. In the pseudo-code 

presented, )(⋅F  is the cost of a SCLSP solution, with ∞=({})F , and the operator ⊕  

takes a vector x  and a vector of vectors ),...,( 1 nyy  and returns the vector of vectors 

),...,,( 1 nyyx . In order to solve a SCLSP instance we need to compute 
{}){},,,1(SCLSP_Alg DL + . Assuming that the time for computing the cost functions is 

constant, the running time of the algorithm depends on the number of plans at each level 

that we must consider. We analyze this issue in the following section.

5.1. Determining the plans composed only by ACC sequences

First we note that all the feasible ACC sequences that we must consider at each level 

can be determined in O(T 2) time, as it is argued in Florian et al. [14]. Secondly, by 

Florian and Klein [13], we know that for any capacity constrained sequence 

),...,,( 1

jiiij xxxS += , there are K periods at capacity, at most one positive period below 

capacity and the remaining periods equal to zero, with ε+==++ CKRxx ijji ....  , where R 

is the requirement vector imposed for the consecutive level )1( +  or the demand vector 

:),,,(SCLSP_Alg optSXR

    If 1=  {
        Determine 1

RΨ ;

        For each 11
Rx Ψ∈  {

            If )()( 1
optSFXxF <⊕  {

                XxSopt ⊕= 1 ;
            };
        };
    }
    Else {
        Determine 1−Ψ 

R ;

        For each 11 −− Ψ∈ 
Rx {

            XxX ⊕= − 1 ;
            ),,,1(SCLSP_Alg 1

optSXx −−  ;
        };
    };



D if L= . The authors proposed an acyclic network in order to find the feasible 

capacity constrained sequences between any pair of periods, which results in a O(T 2) 

time procedure. Nevertheless, in order to determine the ACC sequences, we can develop 

a simpler and faster procedure, as we show below.

For a given pair of periods i and j at any level  , we must determine an ACC sequence 

),...,( 
jiij xxA =  fulfilling the requirements ),...,( jiij RRR =  with ε+= CKRij . . Without loss 

of generality, we assume that 0>iR . If C<< ε0 , then it must be ε=
ix , otherwise 

 Cxi = , and the remaining positive periods at capacity. The next one will be the earliest 

period t such that 
iit xR > , with jti ≤< . We continue until all the K positive periods at 

capacity have been reached. If ii Rx <= ε  or for some period t we have that 
itit xR = , then 

there is not a feasible ACC sequence between periods i and j. As we are producing or 

distributing as late as possible, by (7.1) the ACC sequence obtained is optimal. Note 

that there is at most only one ACC sequence between any pair of periods.

With a short analysis we can see that the procedure described above is linear in the 

number of periods and independent of the requirements. Thus, the set of all feasible 

plans composed only by ACC sequences, 
RΨ , can be determined in O(T 3) for each level 

L,...,1=  and any vector of requirements R. Therefore, the running time of the algorithm 

SCLSP_Alg is O(T 3L). 

5.2. An example of applying the algorithm

We show the algorithm suggested above by solving the following SCLSP instance of 

three levels and four periods, i.e. L = 3 and T = 4. Cost functions, demand and capacities 

values are based on those given in Florian and Klein [13] for the CSLP. The cost 

functions are defined as follows:

[ ] 3,2,1,4,3,2,1,)3(25)6)(()( ==−++−=  txtxxf tttt δ

3,2,1,4,3,2,1,)( ===  ttxxh ttt

where 1)( =xδ  if 0>x  and 0)( =xδ  otherwise. We note that the costs are non-speculative 

with respect to the transfer, since (7.1) and (7.2) are fulfilled. The vector demand is 

(14)

(15)



)3,8,6,3(=D  and the capacity constraints are 111 =C , 92 =C  and 73 =C  for periods 1, 2 

and 3 respectively. We must compute {}){},),3,8,6,3(,4(SCLSP_Alg . The algorithm starts 

by processing the last level, i.e. 3== L . The only plans to be considered in this case 

are (6,7,7,0) and (3,7,7,3) which correspond to the plans composed by the sequences 

}{ 04A  and },,{ 341301 AAA , respectively. Each of these plans for level 3 are the requirements 

for level 2, which in turn are the requirements for level 1. In Table 1 we show the 

different sets of plans composed only by ACC sequences for each one of the levels that 

the algorithm explores. The cost of the corresponding SCLSP solution is provided in the 

last column. 

7,3 3 == C 9,2 2 == C 11,1 1 == C Cost

(6,7,7,0) (6,7,7,0) (9,11,0,0) 586
(6,7,7,0) 596

(3,7,7,3) (8,9,0,3) (9,11,0,0) 585
(8,9,0,3) 587

(3,8,9,0) (9,11,0,0) 588
(11,0,9,0) 563
(3,8,9,0) 591

(3,7,7,3) (9,11,0,0) 594
(6,11,0,3) 594
(10,0,10,0) 566
(10,0,7,3) 575
(3,7,10,0) 595
(3,7,7,3) 604

Table 1. The ACC sequences for the example and its costs

The optimal SCLSP solution found by the algorithm is 

))3,7,7,3(),0,9,8,3(),0,9,0,11((),,( 321 =xxx  with an optimal value equal to 563 (values marked 

in bold in Table 1). We note that the solution ))3,6,7,4(),0,9,7,4(),0,9,0,11((),,( 321 =xxx is 

also optimal. However, the plans of levels 2 and 3 are not composed by ACC 

sequences. As we pointed out in Section 3, the extreme-point solutions of the SCLSP 

are not always composed by capacity constrained sequences.

6.  Conclusions and future research
In this paper we analyze the serial capacitated economic lot-sizing problem of a single-

item and finite planning-horizon, briefly SCLSP. We show that when the costs are non-

speculative with respect to the transfer and the capacity pattern is stationary, we can 

optimally solve the SCLSP with L levels in O(T 3L) time by means of a recursive 



algorithm. Thus, we improve the running time of the algorithm of Florian and Klein 

[13] for the single-level case from O(T 4) to O(T 3) for this particular case. The 

algorithm is supported by the fact that there is an optimal solution of the SCLSP whose 

plans are composed exclusively by a new kind of sequences that we named ascending 

constrained capacity sequences (ACC sequences). For this kind of capacity constrained 

sequences, the only fractional period, if it exists, is the first one of all the positive 

periods of the sequence.

Extensions of this work may be based on relaxing one or more of the assumptions like 

not allowing backlogging, supposing instantaneous lead-times or zero initial inventory 

levels. Other interesting extensions to be tackled are the cases of multi-item and/or 

multi-customer. For the multi-item case, a possible starting point may be to relax the 

assumptions on the costs structure considered by Anily and Tzur [2]. For the multi-

customer case, several works have appeared in the literature, but with more restrictive 

assumptions that those assumed in the present paper. We are also interested in 

extending this work by considering product returns and remanufacturing (Piñeyro and 

Viera [21] and [22]). These future researches may also include other cost functions 

assumptions or different capacity patterns, e.g. speculative motives or nondecreasing 

capacities. We note that for the case of speculative motives it is not clear how to transfer 

the production or distribution quantities from one period to another one in order to 

obtain a feasible sequence with only one fractional period. On the other hand, it is 

interesting to explore if there is a more efficient algorithm in the case of simpler 

functions, e.g., linear cost functions. 

With respect to the solution method, it may be interesting to propose and evaluate 

heuristics procedures for the SCLSP that allow to reduce the computing time, while 

maintaining good quality of the solution.
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