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Abstract. Since the work by Osher and Sethian on level-sets algorithms
for numerical shape evolutions, this technique has been used for a large
number of applications in numerous fields. In medical imaging, this nu-
merical technique has been successfully used for example in segmentation
and cortex unfolding algorithms. The migration from a Lagrangian im-
plementation to an Eulerian one via implicit representations or level-sets
brought some of the main advantages of the technique, mainly, topology
independence and stability. This migration means also that the evolution
is parametrization free, and therefore we do not know exactly how each
part of the shape is deforming, and the point-wise correspondence is lost.
In this note we present a technique to numerically track regions on sur-
faces that are being deformed using the level-sets method. The basic idea
is to represent the region of interest as the intersection of two implicit
surfaces, and then track its deformation from the deformation of these
surfaces. This technique then solves one of the main shortcomings of the
very useful level-sets approach. Applications include lesion localization
in medical images, region tracking in functional MRI visualization, and
geometric surface mapping.
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1 Introduction

The use of level-sets for the numerical implementations of n-dimensionall shape
deformations became extremely popular following the seminal work of Osher and
Sethian [17] (see for example [I4/I8] for some of the applications of this tech-
nique and a long list of references). In medical imaging, the technique has been
successfully used for example for 2D and 3D segmentation [5ITOT2JT5120021].

! In this note we consider n > 3.



The basic idea is to represent the deformation of an n-dimensional closed sur-
face S as the deformation of an n 4 1-dimensional function @. The surface is
represented in an implicit form in @, for example, via its zero level-set. For-
mally, let’s represent the initial surface S(0) as the zero level-set of @, i.e.,
S(0)={X e R™ : $(X,0) = 0}. If the surface is deforming according to

AS(t)
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5 BN, (1)
where Ns is the unit normal to the surface, then this deformation is represented
as the zero level-set of &(X,t) : IR" x [0,7) — IR deforming according to

9P(X, 1)
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where 3(X,t) is computed on the level-sets of &(X,t). The formal analysis of
this algorithm can be found for example in [6//7].

The basic idea behind this technique is that we migrate from a Lagrangian
implementation (particles on the surface) to an Eulerian one, i.e., a fix Cartesian
coordinate system. This allows for example to automatically follow changes in
the topology of the deforming surface S, since the topology of the function @ is
fixed. See the mentioned references for more details on the level-sets technique.

In a number of applications, it is important not just to know how the whole
surface deforms, but also how some of its regions do. Since the parametrization
is missing, this is not possible in a straightforward level-sets approach. This
problem is related to the aperture problem in optical flow computation, and it is
also the reason why the level-sets approach can only deal with parametrization
independent flows that do not contain tangential velocities. Although tangential
velocities do not affect the geometry of the deforming shape, they do affect the
‘point correspondence’ in the deformation. For example, with a straight level-
sets approach, it is not possible to determine where a given point Xg € S(0)
is at certain time ¢. One way to solve this problem is to track isolated points
with a set of ODE’s, and this was done for example in grid generation and
surface flattening; see [9[18]. This is a possible solution if we are just interested
in tracking a number of isolated points. If we want to track regions for example,
then using ‘particles’ brings us back to a ‘Lagrangian formulation’ and some of
the problems that actually motivated the level-sets approach. For example, what
happens if the region splits during the deformation? What happens if the region
of interest is represented by particles that start to come too close together in
some parts of the region and too far from each other in others?

In this note we propose an alternative solution to the problem of region
tracking on surface deformations implemented via level-setsld The basic idea is
to represent the boundary of the region of interest R € S as the intersection

2 A different level-set approach for intrinsic motions of generic 3D curves, together
with very deep and elegant theoretical results, is introduced in [1]. This approach
is difficult to implement numerically, and in some cases not fully appropriate for
numerical 3D curve evolution [I6]. A variation of this technique, with very good



of the given surface S and an auxiliary surface S both of them given as zero
level-sets of n + 1-dimensional functions & and & respectlvelyﬁ The tracking of
the region R is given by tracking the intersection of these two surfaces, that is,
by the intersection of the level-sets of & and é. In the rest of this note we give
details on the technique and present examples.

Note that although we use the proposed technique to track regions of interest
on deforming surfaces, with the region deformation dictated by the surface defor-
mation, the same general approach here presented of simultaneously deforming
n hypersurfaces (n > 2) and looking at the intersection of their level-sets can
be used for the numerical implementation of generic geometric deformations of
curves and surfaces of high co-dimension

2 The algorithm

Assume the deformation of the surface S, given by (), is implemented using
the level-sets algorithm, i.e., Equation (@)). Let R € S be a region we want
to track during this deformation, and OR its boundary. Define a new function
é(X, 0) : R" — IR (a distance function for example), such that the intersection
of its zero level-set S with S defines 9R and then R. In other words,

OR(0) :=S(0)NS(0) = {X € R" : $(X,0) = $(X,0) = 0}.

The tracking of R is done by simultaneously deforming ¢ and &. The auxiliary
function @ deforms according to

OB(X,t) 4 .
PO — i) | V(K1) 3)
and then S deforms according to
oS
=N ()

We have then to find the velocity ,3 as a function of 3. In order to track the
region of interest, R must have exactly the same geometric velocity both in
@) and (@). The velocity in @) (or (@) is given by the problem in hand, and is

experimental results, is introduced in [II]. The Ambrosio-Soner approach and its
variations deal with intrinsic curve-velocities and do not address the surface-velocity
projection needed for the tracking in this paper.

The use of multiple level-set functions was used in the past for problems like motion
of junctions [13]. Both the problem and its solution are different from the ones in
this paper.

After this paper was accepted for publication, we became aware of recent work by
Osher and colleagues using this general approach mainly to deform curves in 3D and
curves on surfaces [4]. This work also does not deal with the projection of velocities
as needed for our application.



BN s. Therefore, the velocity in () will be the projection of this velocity into
the normal direction N & (recall that the tangential component of the velocity
does not affect the geometry of the flow). That is, for (at least) IR,

BZﬂNS'Ng-

Outside of the region corresponding to R, the velocity 3 can be any function
that connects smoothly with the values in oRrR[

This technique, for the moment, requires to find the intersection of the zero-
level sets of @ and & at every time step, in order to compute B To avoid this,
we choose a particular extension of # outside of OR, and simple define f as the
projection of BN s for all the values of X in the domain of ¢ and 38 Therefore,
the auxiliary level-sets flow is given by
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and the region of interest R(t) is given by the portion of the zero level-sets that
belongs to &(X,t) N P(X, ¢):

OR(t) = {X € R": (X, t) = (X, t) = 0}. (5)

For a number of velocities (3, short term existence of the solutions to the level-
sets flow for @ (in the viscosity framework) can be obtained from the results of
Evans and Spruck [8].

This formulation gives the basic region tracking algorithm. In the next sec-
tion, we present some examples.

3 Examples and comments

We now present examples of the proposed technique. We should note that: (a)
The numerical implementation of both the flows for @ and @ follow the ordinary
level-sets implementations developed by Osher and Sethian [I7]; (b) Recently in-
troduced fast techniques like narrow bands, fast-marching [18], or local methods
[14], can also be used with the technique here proposed to evolve each one of the
surfaces; (¢) In the examples below, we compute a zero-order type of intersection
between the implicit surfaces, meaning that we consider part of the intersection
the full vortex where both surfaces go through (giving a jagged boundary). More

® To avoid the creation of spurious intersections during the deformation of & and
&, these functions can be re-initialized every few steps, as frequently done in the
level-sets approach.

5 Note that although S and S do not occupy the same regions in the n dimensional
space, their corresponding embedding functions ¢ and & do have the same domain,
making this velocity extension straightforward.



accurate intersections can be easily computed using sub-divisions as in march-
ing cubes. Recapping, the same numerical implementations used for the classical
level-sets approaches are used to implement the deformation of Qg, and finding
the intersection is straightforward from algorithms like marching cubes.

Four examples are given in Figure 1 and Figure 2, one per column. In each
example, the first figure on the top shows the original surface with the marked
regions to be tracked (brighter regions), followed by three different time steps of
the geometric deformation and region tracking.

Figure 1 shows two toy examples. We track the painted regions on the sur-
faces while they are deforming with a morphing type velocity [2I3]. (8(X,¢) is
simply the difference between the current surface ¢(X,¢) and a desired goal sur-
face (X, 00), two separate surfaces and two merged balls respectively, thereby
morphing the initial surface toward the desired one [3].) Note how the region
of interest changes topology (splits on the left example and merges on the next
one).

Next, Figure 2 presents one of the main applications of this technique. Both
these examples first show, on the top, a portion of the human cortex (white-
matter/gray-matter boundary), obtained from MRI and segmented with the
technique described in [19]. In order to visualize brain activities recorder via
functional MRI in one of the non-visible folds (sulci), it is necessary to ‘un-
fold’ the surface, while tracking the color-coded regions (surface unfolding or
flattening has a number of applications in 3D medical imaging beyond fMRI
visualization; see also [9]). In the first of these two examples (left column), the
different gray values simply indicate sign of Gaussian curvature on the original
surface (roughly indicating the sulci), while two arbitrary regions are marked in
the last example (one of them with a big portion hidden inside the fold). We
track each one of the colored regions with the technique described in this note.
In the first column, 3(X,t) = Wminﬂmh |k2|), where k1 and ko
are the principal curvatures. In the second column, we use a morphing type ve-
locity like before [2I8] (in this case, the desired destination shape is a convex
surface). See [9] for additional possible unfolding velocities, including volume
and area preserving ones. The colors on the deforming surfaces then indicate,
respectively, the sign of the Gaussian curvature and the two marked regions in
the original surfaces. Note how the surface is unfolded, hidden regions are made
visible, and the tracking of the colored coded regions allow to find the matching
places in the original 3D surface representing the cortex. This also allows for
example to quantify, per each single tracked region, possible area/length dis-
tortions introduced by the flattening process. In order to track all the marked
regions simultaneously in these two examples, we select the zero level-set of P
to intersect the zero level-set of @ at all these regions. If we have regions with
more than two color codes to track, as will frequently happen in fMRI, we just
use one auxiliary function & per color (region).

The same technique can be applied to visualize lesions that occur on the
‘hidden’ parts of the cortex. After unfolding, the regions become visible, and the
region tracking allows to find their position in the original surface. When using



Fig. 1. Two simple examples, one per column, of the algorithm introduced in this note
(brighter regions are the ones being tracked), demonstrating possible topological changes
on the tracked region.



Fig. 2. Unfolding the cortex, and tracking the marked regions, with a curvature based
flow and a 8D morphing one, left and right columns respectively.



level-sets techniques to deform two given shapes, one toward the other (a 3D
cortex to a canonical cortex for example), this technique can be used to find
the region-to-region correspondence. This technique then solves one of the basic
shortcomings of the very useful level-sets approach.
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