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A b s t r a c t .  This paper presents new results on switching control using 
neural networks. Given a set of candidate controllers, a pair of neu- 
ral networks is trained to identify the stabili ty region and estimate the 
closed-loop performance for each controller. The neural network outputs 
are used in the on-line switching rule to select the controller output to 
be applied to the system during each control period. The paper  presents 
architectures and training procedures for the neural networks and suf- 
ficient conditions for stability of the closed-loop system using the pro- 
posed switching strategy. The neural-network-based switching strategy 
is applied to generate the switching s t rategy embeded in the SIMPLEX 
architecture, a real-time infrastructure for soft on-line control system up- 
grades. Results are shown for the real-time level control of a submerged 
vessel. 

1 Introduction 

A common approach to control complex dynamic systems is to design a 
number of different controllers, each for a particular operating region or 
performance objective, and then to switch among the controllers in real 
time to achieve the overall control objective. This is, for example, the 
philosophy behind gain-scheduled controllers. Recently, switching control 
strategies have been proposed for adaptive control of unknown systems 
[1],[9], and to optimize the performance of stabilizing controllers for a 
known plant [8]. 

It is useful to view switching control systems as hybrid systems, that 
is, systems with both continuous state variables and discrete state vari- 
ables. The plant state variables (assuming a continuous-variable system) 
and possibly continuous state  variables in the  controllers constitute the 
continuous state of the switching control system; the index of the cur- 
rent controller being applied to the system, and possibly discrete vari- 
ables in the sequential switching logic, consti tute the discrete state. Sys- 
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tem performance and stability are also normal ly  defined in terms of the 
continuous-state trajectories. Analysis of switching control systems from 
either perspective is difficult because of the interaction between the con- 
tinuous and discrete dynamics  th rough  the switching rules. 

Given a collection of controllers for a nonlinear dynamic system, neural 
network techniques are presented for est imating the regions of stability 
and performance of each controller, and  an on-line switching strategy is 
proposed based on these neural  ne twork estimates. Sufficient conditions 
are presented for closed-loop stability of the switching control system. On 
the application side, we describe the  use of the neural network strategy 
to implement  the switching rules in the S I M P L E X  architecture, a real- 
time environment developed at the  Software Engineering Insti tute at 
Carnegie Mellon University tha t  provides protect ion against errors in 
control system upgrades  [11],[4] and  [1(3]. Results are presented for the 
real-time control of the  level of a submerged vessel. 

2 P r o b l e m  F o r m u l a t i o n  

We consider the problem of controlling a nonlinear system described by 
the state equations 

Xk+l = f ( x k , u k )  (1) 

Xk E S, uk E D 

where xk E R n is the  s tate  vector and  uk E R "~ the control input vector. 
The connected sets S C R '~, D C R ~ represent physical constraints 
on the system s ta te  and control, respectively. The  discrete-rime state 
equation reflects the  saznpled-daua implementat ion of a computer control 
system. The  control objective is to take the state to the origin. 

We assume M s ta te  feedback controllers have been designed for this 
system, with the i ~h control  law given by g~ : R r' -+ R m. We assume 
the origin is a stable equilibrium for each of the controllers in some 
(unknown) region. The  objective of the switching strategy is to select 
one of the control ou tpu t s  to apply the system at each control instant to 
achieve the largest possible region of stability for the closed-loop system 
with a good transient  response. 

The closed-loop sys tem created by the application of each controller is 
characterized by a stability region and a performance index. The region 
of stability for controller i is defined as 
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R' = { Xo: xik(Xo) e S, gi(x/k(Xo)) 6 D 

l~m x~(Xo)=0 } 
Vk >_ ko and 

(2) 

where x~(Xo) denotes the t rajectory of the system (1) with the initial 
state xo at k = 0 under  control law gi. We consider performance indices 
for the controllers of the form 

Ei(Xo) = B '  + E 6kUi(x/k(X°))' i =  1 , . . .  , M  (3) 
k----0 

where 0 < 6 < 1 is a discount factor, U'  : R" ~ R is a positive definite 
state cost function, and B i is the bias coe.~cient for the i th controller. 
We assume (3) converges for 6 = 1. 

The proposed approach for selecting the controller at each sampling in- 
stant is illustrated in figure I. Neural  networks are used to compute 
estimates of the stability r e.gions RiA. and performance indices J~ at t h e  
current state, denoted by R' and J}, respectively. The index of the con- 
trol input to be applied for the next period, denoted ik, is then selected 
a s  

i~ =arg  .i. {3~(x~)} (4) 
iEI(xk,Lk) 

where 

I(xk, Lk) = {ilxk e &',and if i # ik-1, Yl(xk) < L~}. 

with Lk = {L~,... ,L M} and for i =  1 , . . .  ,M 

I 
o o  

L~ ~- Lk_ l 
Jn  ^i  i rn {J}(zk) ,L~,_ l}  

if k = 0 or xk ~/~i~_x 
i f i # i k  
if i = i k  

In words, the schedlfler selects the controller with the minimum estimate 
performance index from among the controllers for which the current state 
is in the estimated stability region and, for the controllers other than the 
current controller, the current est imated performance index is less than 
the corresponding bound L/k. The limits L~ guarantee a controller is not 
re-selected once it has been used until its performance index has de- 
creased below the lowest value reached when it was last active. If the 
system leaves the stability region of the controller used during the previ- 
ous period, all controllers become candidates again by setting L~, = oo 
for all i = 1 , . . .  , M. This selection criterion is motivated by the rain- 
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switching strategies based on Lyapunov functions proposed in [8] and 
[6]. The strategy proposed in this pape r  replaces the Lyapunov functions 
with the neural  network est imates  of the  performance measure, maldng 
it viable for systems for which the dynamics  are not  known precisely or 
Lyapunov functions cannot  be found by analysis. 

3 N e u r a l  N e t w o r k s  

Neural networks are used in two ways in the  proposed scheme. The sta- 
bility region estimator is a classifier, identifying when the system is stable 
for a given state. The  performance estimator produces an estimate of the 
cost-to-go function (3) f rom a given state.  In both  cases a two-layer feed- 
forward network is used for its capacity as an universal approximator 
with a size that  is small relative to the  size of the data  set [3]. 
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F i g .  1. C o n t r o l  Schedu l ing  d i a g r a m .  
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The input-output behavior of the two-layer network with linear outputs 
units is described by 

y = bo + I~VoTx + W~ ~ ( b 2  + W f  ¢1(bl + WTx)), (5) 

where x E 7~ "° is the input vector, y E 7~ ns the output vector, Wi E 
7~ r''xn~-~ , i = 1,2 ,3  and Wo E 7~ r'3xn°, the weight matrices for each 
layer of n i  umts, bi E ~ n i  the threshold vectors for each layer and 
¢i : 7~ n~ --~ ~ m  i = 1, 2; the nonlinear functions for each hidden layer. 
The functions ¢i( . )  for the hidden units of the neural network are all 
chosen to be the hyperbolic tangent functions applied to each component 
of its input vector (i.e. ¢i3(x) - t anh(x j )  ). In our application, the input 
vector x is the s ta te  of the plant for both the stability region estimators 
and performance estimators. 

3.1 E s t i m a t i n g  S t a b i l i t y  R e g i o n s  

For the stability region estimators, the neural network output y is a two- 
dimensional vector wi th  components ranging roughly between -1 and 1 
in the region of approximation. The ideal output values are (yl,y2) - 
(1 , -1 )  when x belongs to R i and (yl, y2) = ( -1 ,  1) when x is not in 
R i. To make a distinct classification in the non-ideal case (i.e., when the 
components of y are not  equal to d=l ), two positive threshold parameters, 
9 and 6, are selected to implement the following decision rule: 

S tab i l i ty  R e g i o n  Class i f ier :  Declare x belongs to R i if and only if: 

1. m (x )  - > e ,  and 

2. ttvx(m(x)-u2(x))lf < z, 

where the notation Vx denotes the gradient with respect to x. 

The stability region classifier is motivated by the necessity of obtaining 
conservative approximations for the stability regions. The parameter 0 
is chosen after the network is trained so that the classification is correct 
for all the training and validation data. The parameter 6 is chosen much 
smaller than the maximum of the norm of the gradient of the network 
output over the domain. 

The training of the neural network for the stability region estimator is 
based on supervised learning procedures. This approach is widely used 
for pattern recognition and classification applications [3]. To initialize the 
training for each controller, the  following three regions A C B C C are 
defined, based on a priori knowledge of the  closed-loop system behavior: 
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1. Inner region A. A very conservative region which includes all the 
states from which covergence to the  origin is certain. 

2. Study region B. The region on which the training procedure is going 
to be conducted. 

3. Unsafe region C. The bounding region in which the system is either 
unstable or the state is outside the operating region of interest. 

By making experiments with the controllers starting at states belonging 
to region B, and observing if the evolution leads the system to region A 
or to region C, data  is obtained for region B to train the neural network. 
This procedure is carried out initially using off-line data, but training 
can continue on line as the system operates. 

Comparisons of the neural network stability region estimator with other 
approaches to stability region approximation have been presented in [7]. 
We have found that in all cases, with a reasonable amount of training, 
the neural network obtains an estimate of the stability region which is 
much less conservative than most other  methods. Moreover, since it is 
not model-based, the neural network classifier can be applied to systems 
using empirical data. 

3.2 E s t i m a t i n g  P e r f o r m a n c e  I n d i c e s  

Estimating performance indices such as (3) is a standard problem in 
Neuro-dynamic programming [2]. A Heuristic Dynamic Programming 
(HDP) algorithm [13] is used to train the networks. The training algo- 
rithm uses an estimation of the cost-to-go at xk given by 

= g '  ) + (6) 

where J j ' (xk)  is the desired value for the network for state xk. Equation 
(6) is motivated by the defimtion of J~ (x) (3) neglecting the bias term B i 

which is added directly to the output  of the network. In our applications, 
U i (x) is a s tandard quadrat ic  form, 

Ui(x) = x T P x, p T  = p > 0, i = 1 , . . . ,  M. 

The HDP training procedure,  illustrated in figure 2, is descm~bed l~riefly 
as follows. Given the new state value xk+t at time k + 1, the neural net- 
work with parameters  from time k, denoted NNi(k), is used to predict 
both 3~(xk) and 3~(xk+x). The lat ter  value is used to compute 3~*(xk) 
as defined in (6). The  difference ek = J~'(xk) - 3~(xk) is used, in a back- 
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propagation algorithm, to update the parameters in the neural network 
to produce NN~(k + 1) (indicated by the arrow through the N.'Ni block). 

HN,\I,,, >:I + 
F i g .  2. HDP learning scheme. 

Analytical results for related problems in the context of Q-learning [5] 
and temporal differences [12] indicate that convergence should be ex- 
pected under rather mild conditions. A principal difference between our 
application and most work on learning cost-to-go performance indices 
is that the estimated values of the performance indices do not influence 
the control laws. We assume, rather, that each of the given controllers 
stabilizes the system and the feedback laws remain fixed. 

4 Analysis of Closed-Loop Performance 

We first consider the system behavior in the perfect information case, 
that is, when the performance measures and stability regions are known 
for each controller. We then consider the effect of using the neural net- 
work estimators rather than the exact values. 

The approach to analyzing the closed-loop system follows the technique 
for the rnin-switching strategy suggested in [8] for the continuous-time 
case. To restate the basic Lyapunov results for our discrete-time context, 
suppose for each control law g'  there is a known Lyapunov function Vi(x) 
for the closed-loop system under that controllaw within the region of 
stability R i. Moreover, suppose the control applied at each sample instant 
is chosen according to the min-s~-itching strategy, that is, the control is 
selected which corresponds to a Lyapunov function with the minimum 
value among all the Lyapunov functions evaluated at the current state. 
The following theorem is the discrete-time version of the result in [8]. 
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T h e o r e m  1. If the system given by (1) is controlled by the rain-switching 
strategy applied to a set of known Lyapunov functions, the origin is 
asymptotically stable in the region R = U Ri.  Moreover, the function 

w(x)  = {V'(x)} (7) 
i e { i  I x e ~ } 

is a Lyapunov function on R. 

Proof. Follows from the cominuous-time result in [8], mutatis mutandis. 

We now apply this result to the min-switchlng strategy considered in 
this paper by observing that  if the performance indices J~ (3) converge 
(6 = 1), they are in fact Lyapunov functions for the respective controllers. 

T h e o r e m  2. Given the system defined by (1) and a collection of con- 
trol laws gi , i  = 1, . . .  ,M.  Suppose for each control law the origin is 
asymptotically stable for the closed-loop system 

xk+l = Fi (xk)  

in a connected region R i, and J~ given by (3) converges for 6 = 1. Then 
there exists a 6" E (0, 1) such that the origin is asymptotically stable in 
the region R = t.J R i for the closed-loop system controlled by the rain- 
switching strategy [8] for any 6 e (6", 1]. Moreover, for any 6 e (6", 1] 
the function 

J , =  rain }{J}} (8) 
iE~ Ix E R/ 

is a Lyapunov function on R. 

Proof. For each i, if J~ converges, it follows from the definition of J~ 
that it is continuous in 6 and therefore there exists some 6~ E (0, 1) 
such that for all 6 E (6~, 1] J~ is a L yapunov function for the closed- 
loop system under control law i on R'. The theorem follows by letting 
6 "  = maz(   , . . . , 6"M ) .  

We now turn to the min-switching strategy using the neural network 
estimators. In the following we assume the stability region estimators 
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are all conservative, t ha t  is, for all i = 1 , . . .  , M, /~ i  C R i. Moreover, we 
assume a/1 the stability region est imates are nonempty  and connected. 
These assumptions are reasonable given the properties of neural network 
classifiers and the  ability to init iate the training for the stability region 
estimators based on a priori knowledge of the capabilities of the given 
controllers. 

T h e o r e m  3. Suppose the assumptions of Theorem 2 are satisJ~ed and 
the performance estimates a~re computed using 6 q (6", 1] where ~" is as 
specified in Theorem 2. Furthermore, suppose J~ is continuous on R i. I f  
for some e > 0 the performance estimates satis-fy 

I / ~ ( x ) -  J~(~)l < ~ for an x c ~', i =  1, . . .  ,M (9) 

and the rain-switching strategy is applied for some xo 6 R = U [~i re- 
sulting in a state trajectory such that there exists K 6 A; for which 
x~ 6 ~ ~i ,  Vk > K,  then x~ -+ X~ where 

xo = Ux~ = U{x I J~(~) _< sup J~(~)} (~o) 

and 

Proof. For a given Xo 6 t%, let ik be the sequence of controllers selected 
by the rain-switching rule. If there  exists some K and 1 6 { I , . . .  , M}  
such that  ik = l for all k > K,  the  theorem is t rue since the origin is a 
stable equilibrium for  controller l. On the other hand, if the controller 
switches infinitely often, there  mus t  be one controller l whir/1 is selected 
infinitely often. Let the  sequence of t ime indices 0 < kt < k2 . . .  be an 
infinite sequence of sampling instants  when controller l is selected with 

^ . 

xk 6 ['] R' ,  V k > kt .  The  mln-switching rule implies 

^l 

because of the limits Lki-  Since the  ]](xk~ ) are bounded from below, the  

sequence J~(xki) converges to some constant  C. 

For each i -- 1 , . . .  , M let rli(x) denote  the error in the i th performance 
estimate at state x where k is assumed ]~i(x)[ _< e for some e > 0. This 

implies that  when the  i rh controller is applied at a state x 6 / ~ ,  
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z~i~(,,) ~= J~(F'(x))- J~(x) 
= ~J~(x)  + .'(F~(x)) - . ' (x)  
< ~J~(~) + 2~. 

Since J~ is a Lyapunov funct ion for the  system under  controller i, AJ~(x) _< 
0. Returning to the  specific controller l, suppose that  there are an infimte 
number  of the xk~ tha t  remain a f ~ t e  distance from the set 

This would imply the sequence A3] (xk j )  is negative and bounded away 

from zero infinitely often, contradic t ing J ] (xki  ) -+ C. Therefore, xk i -+ 
X~. More precisely, given any g > 0, there  exists some K~ such that  the 
distance d(xkj, X~) < g for all kj > K~. This  is i l lustrated in figure 3. 

While controller l is applied, J ] (xk)  is monotone  non-increasing since 
J] is a Lyapunov function for the  system. Therefore, J ] (xk)  _< J~(xkj), 
for k >_ kj until another  controller becomes active (see figure 3). Define 
L = {k E A/'Jik = l} and J] = sup J] (~) .  Then,  for any given/3 > 0 we 

iEX~ 
hc~ve 

J~(~)  < sup J~(~kj) < l~ +/3 w E z,,k > K~ 
kj, 

because of the continuity assumpt ion  on J] (x). Since this has to be true 
for any l, after a finite /4 in which all the  controllers that  are not used 
infinite number  of times do no t  become active anymore, the sequence xk 
is arbitrarily close to X~. 

This theorem indicates tha t  when  the  performance estimates are used 
rather than the exact performance indices, the  rain-cost switching strat- 
egy will drive the state to a ne ighborhood  of the origin determined by 
the magnitudes of the errors in the  performance estimates for each con- 
troller. Theorem 3 does no t  guaran teed  the neighborhood is arbitrar- 
ily small, however. Moreover, the  exact performance measures are not 
known in general, so the ne ighborhood  in Theorem 3 could not  be com- 
puted even if the bound on the  es t imat ion error was known. These dif- 
ficulties are eliminated when 6 -- 1, however, since in this case we have 
~J~(x) = - U(x). 
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Coro l l a ry  4. Under the assumptions of Theorem 3 with 6 = 1, if the 
rain-switching strategy is applied for some xo E R = U ~i  resulting in a 

^ .  

state trajectory such that xk -+ N R*, then 

-+ e R"tU(x) _< 2,}. 

5 An Appl ica t ion  

One of the principal motivations for developing the controller swiWhing 
strategy presented in this paper  is to provide a method for implement- 
ing the switching rules in the SIMPLEX architecture, a real-time environ- 
ment developed at the Software Engineering Institute at Carnegie Mellon 
University that provides protect ion against errors in control system up- 
grades. Figure 4 shows a typical configuration for SLMPLEX in which there 
are three controllers: a safety controller, a reliable baseline controller, and 

F i g .  3. T ra j ec  
to Xe. 

an experimental controller representing a new, untested control modulel 
The basic idea of the  SLMPLEX system is to guarantee that the base- 
line controller performance is maintained if there are problems in the 
experimental controller. This is accomplished by monitoring the control 
outputs and system performance when the experimental controller is in- 
stalled, and switching control back to the baseline controller if problems 
are detected. The safety controller is invoked when it is necessary to take 
more extreme action to re turn  the system to the operating region for the 
baseline controller. 
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Clearly the ability for the  SLMPLEX system to provide the desired pro- 
tection against errors in the experimental  controller depends entirely on 
the rules used to switch between controllers. These rules are very diffi- 
cult to create and mainta in ,  even for small systems. The neural network 
approach proposed in this paper  provides a mean~ of obtaining less con- 
servative est imates of the  stability regions for the controllers, and also a 
me thod  for de te rmining  when to switch from the safety controller back 
to the  baseline controller  based on estimates of their performance. 

We present results here on the implementat ion of the rain-switching con- 
trol strategy for a level-control sys tem for an  underwate r  vessel. This sys- 
tem has been designed in the Software Engineering Inst i tute  at Carnegie 
Mellon University as a tes tbed  for the development  of dependable and 
evolvable systems using the  SLMPLEX architecture.  The  experimental  sys- 
tem consists of a water tank  in which a vessel can move vertically by 
changing the size of the air bubble  inside it. Air is moved in and out of 
the vessel through a flexible t ube  connected to a cylinder-piston mech- 
anism. Figure 5 shows a schemat ic  diagram of the  system components.  
The control goal is to stabilize r.he vessel at an arbi t rary position inside 
the water tank. The  posit ion of  the  vessel and  the  size of the  air bubble 
are measured directly using u l t rasound  sensors. A s tepper  motor  controls 
the piston movement.  C o n s t r a i n t s  a r e  imposed by the  bo t tom of the t a n k  

and the water level. The control  inpu t  is l imited by the  maximum speed 
of the stepper motor.  
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Fig .  5. Schemat ic  d i a g r a m  for the  s u b m e r g e d  vessel sys- 
tem. 

A set point of yst - 25 in was selected. Two controllers were used to test 
the switching strategy. Both  controllers are state feedback controllers 
used in the original SLMPLEX architecture implementation. One controller, 
u l ,  has an acceptable performance close to the set point while the sec- 
ond controller, u2, performs be t te r  in a larger operating region using a 
bang-bang action, but with u .acceptable  oscillations near the set point. 
An analytical model was used for initial training of the neural network, 
then experimental data  from twenty m~n-q were used to adapt the pa- 
rameters of the neural networks to estimate the performance indices of 
both controllers. Figure 6 shows a typical da ta  profile to estimate the 
performance index of one of the  controllers and figure 7 shows a slice of 
the resulting performance estimate.  

Figures 8 shows a switching experiment for a step change in the setpoint 
value for yst from 13 to 25 inches. Figure 9 shows the estimated perfor- 
mance indices during the run. From the figure we observe that controller 
2 is preferred for larger values of y. After approximately 5.5 seconds J~ 
becomes smaller than J~ and the scheduler switches to controller 1. 
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Fig. 6. Data obtained from an experimental run for a con- 
troller. 

Performance Index 

0 . 3 4  . . . . . . .  i : . .... ; 

. . . .  O ~  0.2 

bubl~e size -0.02 (:liver position 

Fig. 7. Performance index estimate (~) = 0). 



140  

6 D i s c u s s i o n  

This paper presents a method for switching among a se~ of given con- 
trollers using muldlayer feed.forward neural networks and neuro-dynamic 
programming tecbnlques. In contrast to switching control srxa~egies aimed 
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Fig. 8. Level relative position of the vessel and bubble size 
during a switching experiment. 
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Fig. 9. Performance indices estimates for controllers for 
the submerged vessel during a switching experiment. 
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at adapting to unknown plant dynamics, the objective in this work is to 
select the best controller from among a set of controllers that have been 
designed for a known plant. This objective is most closely aligned with 
the switching control strategies proposed in [8] and [6]. By using neu- 
ral networks to estimate the stability regions and performance indices 
for the controllers, the switching strategy depends on experimental data 
from the actual system, rather than analytical models that may lead 
to misleading or incorrect switching rules. We present a new result on 
the stability of the rain-switching strategy using estimates of Lyapunov 
functions. 

The convergence and stability results in this paper are sufficient con- 
ditions. There are several open problems concerning the verification of 
these conditions in applications and the possibility of obtaining less con- 
servative results. For the closed-loop behavior, the ramifications of con- 
tinued learning and persistent excitation need to be studied further. It 
would be desirable to introduce techniques by which performance es- 
timate learning could be achieved for the controllers that are not cur- 
rently controlling the system, by introducing, perhaps, a model of the 
system being controlled. The introduction of adaptive control to deal 
with changes in the plant dy't~amics may also be important for some 
applications. 
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