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Abstract—A Stochastic Binary System (SBS) is a
mathematical model of multi-component on-off systems subject
to random failures. SBS models extend classical network
reliability models (where the components subject to failure are
nodes or links of a graph) and are able to represent more
complex interactions between the states of the individual
components and the operation of the system under study.

The reliability evaluation of stochastic binary systems
belongs to the class of NP-Hard computational problems.
Furthermore, the number of states is exponential with respect
to the size of the system (measured in the number of
components). As a consequence, the representation of an SBS
becomes a key element in order to develop exact and/or
approximation methods for reliability evaluation.

The contributions of this paper are three-fold. First, we
present the concept of separable stochastic binary systems,
showing key properties, such as an efficient representation and
complexity in the reliability evaluation. Second, we fully
characterize separable systems in two ways, using a geometrical
interpretation and minimum-cost operational subsystems.
Finally, we show the application of separable systems in
network reliability models, specifically in the all-terminal
reliability model, which has a wide spectrum of applications.

Index Terms—Stochastic Binary System, Network Reliability,
Computational Complexity, Chernoff Inequality.

I. INTRODUCTION

In system reliability analysis, the goal is to find the
probability of correct operation of a system subject to
component failures. A common practical problem is to
design a system with maximum reliability meeting budget
constraints [1], [2], [3], [4].

Classical network reliability analysis shaped the body of
this field. In this basic setting, we are given a connected
graph G with perfect nodes, and the links work
independently with identical probability r. The all-terminal
reliability, RG(r), is the probability that the resulting
subgraph remains connected. This model and some variants
(such as perfect links and nodes subject to failure) has been
employed to model reliability of classical communications
networks, where the emphasis was on a fixed infrastructure
of sites holding communication equipment and of fixed links
connecting them. Nevertheless, these models have limitations
to represent the more diverse landscape of communication
networks infrastructure, relying on different equipment,
paradigms, and particularly in the case of wireless networks,
where usually there does not exist a fixed, predetermined
topology. Stochastic binary systems (SBS) generalize the

static reliability concept to any system composed of a
number of components subject to independent failures with
known probabilities, and where the operation or failure of
the system as a whole is a function of the state of the
individual components. In this sense, SBS are a more
flexible tool for evaluating and optimizing the reliability of a
wider spectrum of real systems, both in the networking area
and in other quite different applications area [5], [6], [7], [8].
At the same time, SBS present their own challenges in terms
of computational analysis, as the evaluation of the reliability
a general stochastic binary system belongs to the class of
NP-Hard problems. This has motivated different research
efforts, tackling efficient exact methods for some subclasses
of SBS, as well as approximations for the general case [9],
[10], [11], [12].

In this paper, we propose a novel representation of a
special subset of stochastic binary systems, called separable
systems. This representation is explored in order to better
understand its benefits and potential application in network
reliability analysis. The contributions of this paper can be
summarized in the following items:

• An efficient representation of separable systems is
proposed. It considers N + 1 real numbers, being N the
size of the system (measured as the number of
components subject to failure).

• A full geometrical characterization of separable systems
is introduced. Furthermore, a second characterization
considers minimum-cost operational subsystems and
minimum-capacity cutsets. Interestingly enough, these
characterizations provide a bridge between functional
analysis and system reliability.

• The concept of separability in graphs is introduced.
• The all-terminal reliability evaluation of separable graphs

is investigated.

This paper is organized as follows. Section II presents
fundamental concepts of stochastic binary systems. Separable
systems are introduced in Section III. They can be
represented more efficiently using N + 1 real numbers
instead of 2N numbers that are used to represent arbitrary
SBS. Two different characterizations of separable systems
are proposed in Section IV. A particular analysis of the
all-terminal reliability model is offered in Section V. Finally,
Section VII has concluding remarks and trends for future



work.

II. STOCHASTIC BINARY SYSTEMS

The following terminology is adapted from [13].

Definition 1 (Stochastic Binary System). A stochastic binary
system is a triad (S, r, φ):
• S = {1, . . . , N} is a ground set of components,
• r = (r1, . . . , rN ) are their elementary reliabilities, and
• φ : {0, 1}N → {0, 1} is the structure.

The concept of reliability is generalized to arbitrary
stochastic binary systems.

Definition 2 (Reliability/Unreliability). Let S = (S, p, φ) be
a stochastic binary system, and consider a random vector
X = (X1, . . . , XN ) with independent coordinates governed
by Bernoulli random variables such that P (Xi = 1) = ri.
The reliability of S is the probability of correct operation of
the system:

RS = P (φ(X) = 1) = E(φ(X)) =
∑

x:φ(x)=1

P (X = x). (1)

The unreliability of S is US = 1−RS .

A stochastic binary system is homogeneous if the
elementary reliabilities are identical (i.e., ri = r for all i). In
this paper we deal with homogeneous SBS.

Definition 3 (Pathsets/Cutsets). Let S = (S, r, φ) be a
stochastic binary system. A possible state or configuration
x ∈ {0, 1}N is a pathset (resp. cutset) if φ(x) = 1 (resp., if
φ(x) = 0).

The binary set {0, 1} is equipped with the partial order,
defined by 0 ≤ 0, 0 ≤ 1 and 1 ≤ 1. The set {0, 1}N inherits
a natural order in the Cartesian product. Given two partially
ordered sets A and B, a function f : A→ B is monotonically
increasing if f(a1) ≤ f(a2) whenever a1 ≤ a2. As usual, we
denote y < x if y ≤ x and y 6= x. Let us denote by 0N (resp.
1N ) the binary word with all bits set to 0 (resp. to 1), and by
δi the binary word with all bits in 0 except the bit in position
i which is set to 1.

Definition 4 (Stochastic Monotone Binary System (SMBS)).
The triad S = (S, r, φ) is a stochastic monotone binary system
if the structure function φ : {0, 1}N → {0, 1} is monotonically
increasing, φ(0N ) = 0 and φ(1N ) = 1.

Observe that SMBS represent well-behaved SBS, in the
sense that, given a working configuration, the system can fail
after the removal of some components, but can not fail if
some failed components start to work. Additionally, the
system does not work if it has no operational components,
and the full-system works.

Definition 5 (Minpaths/Mincuts/Rays). Let S = (S, r, φ) be
an SMBS:
• A pathset x is a minpath if φ(y) = 0 for all y < x.
• A cutset y is a mincut if φ(x) = 1 for all x > y.

• The x-ray is the set Sx = {y ∈ {0, 1}N : y ≥ x}.

It is worth to remark that an SMBS is fully characterized
by its mincuts (or its minpaths). In fact, if we are given the
complete list of minpaths, then the complete list of pathsets
is precisely the union of the x-rays for some minpath x.

We will denote by x the state complementary to x in bits
(i.e., 0 in x are set to 1 in x, and vice-versa). In particular,
φ(x) = 1 − φ(x). The following definition of duality will be
useful for our later analysis of monotonicity and bounds [14]:

Definition 6 (Duality). The dual of a stochastic binary
system S = (S, r, φ) has identical ground set S, elementary
reliabilities rdi = 1− ri, and structure φd(x) = 1− φ(x), for
all possible states x ∈ {0, 1}N . The dual is denoted by
Sd = (S, 1− r, φd).

The following examples provide an insight of the different
applications of stochastic binary systems. Classical examples
include a reference in the field for the interested reader.

1) All-Terminal Reliability: the ground set is precisely the
links of a simple graph. The system is up if the resulting
random graph is connected.

2) K-Terminal Reliability: in the same random graph, the
system is up if some distinguished node-set K, called
terminals, belong to the same connected
component [15].

3) Diameter Constrained Reliability: a diameter constraint
d is added to the K-Terminal Reliability. The system
is up if every pair of terminals are connected by paths
whose length is not greater than the diameter [16], [17].

4) Node-Reliability: the ground set is the set of the nodes of
a simple graph. The system is up if the resulting random
graph is connected.

5) Node-Edge Reliability: both links and nodes fail in a
random graph. The system is up if and only if the
resulting subgraph is connected [18].

6) k-N -Survivability: the system is up if and only if there
are at least k identical components in operational state
out of N . This homogeneous system is also known as
k-out-of-m system. We will denote φ(k,N) to its
structure [10].

7) k-N -Degraded: the system is down if and only if there
are at least k identical components in failure state out
of N . We will denote ψ(k,N) to its structure. Clearly:
ψ(k,N) = φ(N−k,N).

8) Feasibility: consider an arbitrary integer linear program
P a set of constraints Ax ≤ b, for instance coming
from a integer linear program P , with binary decision
variables x1, . . . , xN . If the x are not arbitrary but
instead correspond to events such that the elementary
reliability ri is the likelihood of the event xi = 1, or
pi = 1/2 if there is no available experiment, and the
structure is φ(x) = 1 if x is feasible for P , then the
reliability is the probability that the random vector x
meets the constraints.

There exists an interplay between SBS and propositional



logic. Recall that a theorem-proving procedure is the first
NP-Complete decision problem established by Stephen
Cook [19]. In other words, the recognition of a tautology is
a hard decision problem from propositional logic.

Theorem 1. The reliability evaluation of an arbitrary SMBS
belongs to the class of NP-Hard problems.

Proof. Arnie Rosenthal formally proved that the reliability
evaluation for the K-terminal reliability model belongs to
the class of NP-Hard computational problems [20]. Since
K-Terminal is a particular SMBS, the result follows by
inclusion.

Corollary. The reliability evaluation of an arbitrary SBS
belongs to the class of NP-Hard problems.

Theorem 2. The determination of a cutset in an arbitrary SBS
is an NP-Complete decision problem.

Proof. Consider an arbitrary propositional logic ϕ with m
literals. Build the corresponding SBS with m elements and ϕ
as the structure. Then, ϕ is a tautology if and only if the
corresponding SBS has no cutsets.

The following result is in strong contrast with Theorem 2.
It is useful to build pointwise reliability estimation in
SMBS [10]:

Proposition 1. A mincut can be found using m
rule-evaluations in an arbitrary SMBS.

Proof. The evidence is Algorithm 1. Clearly, it requires m
evaluations, and returns a cutset x. We will prove the statement
in two steps:

(1) The state x is also a mincut.
(2) Algorithm 1 is optimal in terms of rule-evaluations.

For (1), suppose that the output x is not a mincut. Therefore,
there exists some j ∈ {1, . . . ,m} such that φ(x + ej) = 0.
Let us denote x(j) the state for the iteration j in the for-
loop. Observe that x is (possibly) increased in each iteration.
Therefore, x(j) ≤ x ≤ x + ej . Since φ(x + ej) = 0 and φ
is monotonous, we get that φ(x(j)) = 0. But in this case the
j-esime bit would have been set to 1, and this bit is set to 0
in the output. This is impossible, since the bits in x are only
increased during the execution of Algorithm 1.
For (2), observe that in the worst case the null vector x = 0 is
a mincut. The only way to determine that 0 is a mincut is the
test φ(ei) = 1 for all possible canonical vectors {ei}i=1,...,m,
and it requires m rule-evaluations.

Algorithm 1 x = Mincut(m,φ)

1: x← 0
2: for i = 1 to m do
3: y ← x+ ei
4: if φ(y) = 0 then
5: x← y
6: end if
7: end for
8: return x

Proposition 1 is constructive. It provides an interplay with
propositional logic. Nevertheless, the algorithmic complexity
of finding a mincut in arbitrary SMBS is still an open problem.
In other words, we do not know yet if the quadratic algorithm
presented in Proposition 1 is optimal.

Les us close this section with three elementary properties
of the dual system that will be useful in our analysis. Now,
we additionally consider the elementary reliabilities
represented by the vector r. In specific context of network
reliability analysis, the determination of the cutset with
maximum probability is useful. Let us study the problem for
arbitrary SMBS. First, three elementary results [14]:

Lemma 1. The dual of the dual is the original system.

Proof. φd
d
(x) = 1− φd(x) = 1− (1− φ(x)) = φ(x).

Lemma 2. The dual of an SMBS is another SMBS.

Proof. Consider arbitrary states x ≤ y and a monotone
structure φ. Since x ≥ y, we get that φ(y) ≤ φ(x).
Therefore: φd(x) = 1− φ(x) ≤ 1− φ(y) = φd(y).

Since if the original system is homogeneous, the dual
system is homogeneous as well, and we get the following
result:

Corollary. Consider a homogeneous SMBS. Then, a state x
is a pathset with maximum probability if and only if x is a
cutset with maximum probability in the dual.

Proof. First, assume that x is a pathset with maximum
probability. Then φ(x) = 1, and φd(x) = 1− φ(x) = 0, so x
is a cutset in the dual system. Assume that x has precisely h
elements in operational state. Then P (x) = rh(1− r)m−h.
In the dual the elementary reliability equals 1 − r. Then, in
the dual the probability is P (x) = (1 − r)m−hrh, identical
to the probability of x in the original system. The converse
holds by Lemma 1.

From Corollary II, we can study pathsets instead of cutsets,
and the results under monotonicity hold. Recall that we want
to find a cutset with maximum probability in an SMBS.

Proposition 2. The determination of a pathset with maximum
probability in arbitrary SMBS belongs to the class of NP-
Hard problems.

Proof. Consider the K-Terminal Reliability model, in the
homogeneous case. Since the model is homogeneous, a



pathset with maximum probability is precisely a minimum
cardinality minpath. But in the K-Terminal model, this is the
Steiner Problem in Graphs, which belongs to the NP-Hard
class [21].

Corollary. The determination of a cutset with maximum
probability in arbitrary SMBSs belongs to the class of
NP-Hard problems.

Proof. Combine Proposition 2 with Corollary II and Lemma 2.
(Proposition)

Corollary II is a negative result that has a deep impact in
the understanding of SMBS. In the homogeneous
Source-Terminal Reliability model, finding a mincut with
maximum probability is precisely the problem of finding a
minimum cardinality s-t cutset. Using the theory of flows in
networks, it is known that the cardinal of such a mincut is
the maximum flow between s and t with unit capacities in
the links. Therefore, Corollary II discards any possibility of
the existence of finding in SMBS efficient algorithms similar
to those corresponding to maximum flow theory, unless
P = NP .

There is however a particular family of SBS where the
whole reliability polynomial can be obtained in
polynomial-time. In fact, if the number of pathsets is a
polynomial P (N) in the size N , the reliability can be
computed in polynomial time as the probability sum among
all pathsets.

Definition 7 (Weak SBS). An infinite sequence of SBS Sn =
(Sn, pn, φn) is a weak-sequence if the number of pathsets is
a polynomial in the number of components.

The reliability polynomial can be fully obtained in
weak-sequences in polynomial time.

Tue dual system has complementary reliability with respect
to the original one:

Lemma 3. If S = (S, φ, p) is an SBS, then RSd = 1−RS .

Proof. Recall that the dual system has complementary
probabilities in every component. Therefore:
P d(X = x) =

∏
i:xi=1(1 − ri)

∏
i:xi=1(ri) = P (X = x).

Let P denote the path-sets of the original SBS. Then:

RSd =
∑

x:φd(x)=1

P d(X = x) =
∑

x:φ(x)=0

P d(X = x)

= 1−
∑

x:φ(x)=1

P d(X = x)

= 1−
∑

x:φ(x)=1

P (X = x)

= 1− P (x ∈ P) = 1−RS .

III. SEPARABLE SYSTEMS

Observe that {0, 1}N is the set of the extremal points of
the unit hypercube QN ⊆ RN . Let us assign labels to the
extremal points of QN according to a given structure φ.
Every hyperplane defines a partition of RN into two subsets.
Consider the family of hyperplanes H such that 0N and 1N
lie on different sides. For any member H of H, denote by
Q0 ⊆ QN the extremal points of the hypercube that belong
to the side of 0N ; and Q1 = QN − Q0. Define a structure
function φH such that its cutsets are precisely Q0, and its
pathsets are Q1. Consider an equivalence relation (H,∼)
such that H1 ∼ H2 if and only if φH1 = φH2 .

Recall that in the Euclidean space RN , a hyperplane is
fully characterized by a normal vector ~n and a point P that
belongs to the hyperplane: 〈~n,X − P 〉 = 0, where
〈x, y〉 =

∑N
i=1 xiyi is the inner product. If we denote

~n = (n1, . . . , nN ) and 〈~n, P 〉 = α0, the hyperplane can be
written as

∑N
i=1 nixi = α0.

Lemma 4. If φ = φH for some hyperplane H , then there
exists H2 ∼ H1 with non-negative normal vector such that
‖~n‖1 =

∑N
i=1 ni = 1.

Proof. Let φ = φH for the hyperplane H)
∑N
i=1 nixi = α0,

and suppose that there exists some index j such that nj < 0.
There are two exhaustive and mutually disjoint cases:

i There exists some mincut x = (x1, . . . , xN ) such that
xj = 0: in this case, we know that x + δj is a minpath,
so, φ(x+δj) = 1. By the definition of the hyperplane, we
get that

∑N
i=1 nixi ≤ α0 but

∑N
i=1 nixi +nj > α0. The

only possibility is that nj > 0. But we assumed nj < 0;
this is a contradiction.

ii All mincuts verify xj = 1: Consider an alternative
hyperplane H2)

∑N
i 6=j nixi = α0 − nj . We will prove

that H2 ∼ H . If x is a mincut, then
∑N
i=1 nixi ≤ α0,

and therefore
∑N
i 6=j nixi ≤ α0 − nj . If x is a minpath,

it must have xj = 1. Since
∑N
i=1 nixi > α0 we get that∑N

i 6=j nixi > α0 − nj . Observe that nj = 0 in the new
hyperplane H2, and H2 ∼ H as desired.

By an iterative replacement of all the negative coordinates we
obtain an equivalent hyperplane H2 ∼ H with non-negative
vector ~n′, expressed by H2)

∑N
i=1 n

′
ixi = α′ for some real

number α′. Finally, observe that 0N is always a cutset, so
0 ≤ α′. Analogously, 1N is always a pathset, so

∑m
i=1 n

′
i >

α′ ≥ 0. The result is obtained by a normalization of the normal
vector ~n2, which is possible since

∑N
i=1 n

′
i > 0.

Even though there exist infinite equivalent hyperplanes,
using Support Vector Machine (SVM) it is possible to find a
single hyperplane with the largest gap (this is, with the
largest distance to any of the vertices in the hypercube).
Using Lemma 4, we can replace it by an equivalent
hyperplane with non-negative versor. Without loss of
generality, we will assume a non-negative normal vector with
unit 1-norm.

Proposition 3. The structures φH are monotone.



Proof. By Lemma 4, in particular we can choose ni ≥ 0 in
the hyperplane H)

∑N
i=1 nixi = a0. Let us denote f(x) =∑N

i=1 nixi. If x1 ≤ x2, then f(x1) ≤ f(x2), and therefore
φH(x1) ≤ φH(x2).

A subtlety is that the mincuts from Lemma 4 are indeed the
points Q0 ⊂ QN that are closer to the original hyperplane. A
natural question is to determine if all SMBS can be represented
by a hyperplane. The answer is negative:

Proposition 4. There exist SMBS that cannot be represented
by a hyperplane.

Proof. Consider the SMBS defined by the mincuts
M = {(1, 1, 0, 0), (0, 0, 1, 1)}. Observe that the set of states
P = {(0, 1, 0, 1), (1, 0, 1, 0)} is a subset of minpaths.
Suppose for a moment that there exists some separator
H)

∑4
i=1 nixi = α for some real numbers α, n1, . . . , n4.

Since (1, 1, 0, 0) and (0, 0, 1, 1) are mincuts, we get that∑4
i=1 ni ≤ 2α. However, (1, 1, 0, 0) and (0, 0, 1, 1) are

minpaths, so
∑4
i=1 ni > 2α; a contradiction.

Definition 8 (Separable System). An SBS is separable if the
cutsets/pathsets can be separated by some hyperplane.

An interpretation of separable systems recalls Riesz
representation theorem for Hilbert spaces [22]. Indeed, the
structure of a separable system can be written as an indicator
that an inner-product exceeds some threshold in a Hilbert
space:

φ(x) = 1〈x,~n〉≥α0
. (2)

Even though separable systems accept an efficient
representation, the reliability evaluation is hard in nature:

Proposition 5. The reliability evaluation of separable systems
belong to the class of NP-Hard problems.

Proof. By reduction from PARTITION . Consider an
instance of natural numbers A = {a1, . . . , aN}, and let
S =

∑N
i=1 be the sum over the elements of the list. Let us

define αi = ai
S , αmin = mini=1,...,N{αi}, and consider the

separable systems S1 and S2:
1) The separable system S1 characterized by the hyperplane∑N

i=1 αixi = 1
2 + αmin

2 ;
2) The separable system S2 characterized by the hyperplane∑N

i=1 αixi = 1
2 ;

Observe that the difference of the reliability of both systems
evaluated at p = 1/2 is:

RS2(1/2)−RS1(1/2)

= P (

N∑
i=1

αiXi ≥
1

2
)− P (

N∑
i=1

αiXi ≥
1

2
+
αmin

2
)

= P (

N∑
i=1

αiXi =
1

2
)

=
#{(x1, . . . , xN ) ∈ {0, 1}N :

∑N
i=1 αixi = 1

2}
2N

,

and the last number is positive if and only if there exists a
subset B ⊆ {1, . . . , N} such that

∑
i∈B αi = 1

2 . In that case,
if we multiply on both sides by S we get that

∑
i∈B ai = S

2 ,
and the answer to PARTITION for the list A is YES.
Otherwise, the answer to PARTITION is NO. Therefore, the
reliability evaluation of separable systems is at least as hard
as PARTITION, and it belongs to the class of NP-Hard
problems.

The reader can appreciate that Proposition III is a
generalization of Theorem 1. In the following, we build
reliability bounds for separable systems, and as a corollary
we find bound for arbitrary SBS.

IV. CHARACTERIZATION OF SEPARABLE SYSTEMS

A natural question is to characterize separable systems in
terms of pathsets and cutsets. Let us denote CH(P) and
CH(C) the convex hull of the pathsets and cutsets
respectively.

Theorem 3. An SBS is separable iff CH(P) ∩ CH(C) = ∅.

Proof. If the intersection is empty, Hahn-Banach separation
theorem for convex sets asserts that there exists a hyperplane
H that separates those convex sets [22]. As a consequence,
φ = φH for some hyperplane H .

For the converse, we know that the SBS is separable.
Therefore, there exists some hyperplane
H =

∑N
i=1 nixi = α0 such that

∑N
i=1 nixi ≤ α0 for cutsets,

and
∑N
i=1 nixi > α0 for pathsets. Suppose for a moment

that CH(P) ∩ CH(C) 6= ∅. There exists some element
z ∈ RN such that:

z =

r∑
j=1

αjxj =

s∑
k=1

βkyk, (3)

for some states x1, . . . , xr ∈ P , y1, . . . , ys ∈ C, and non-
negative numbers such that

∑r
j=1 αj =

∑s
k=1 βk = 1. If we

denote xj = (xj1, . . . , xjN ) we know that
∑N
i=1 nixji > α0.

Therefore, for z = (z1, . . . , zN ) we get that:

N∑
i=1

nizi =

N∑
i=1

ni(

r∑
j=1

αjxji)

=

r∑
j=1

αj [

N∑
i=1

nixji]

> (

r∑
j=1

αj)α0 = α0.

Analogously, using the fact that z =
∑s
k=1 βkyk we get that∑N

i=1 nizi ≤ α0, which is a contradiction. Therefore we must
have CH(P) ∩ CH(C) = ∅, and the result holds.

By Proposition 3 we have a full geometrical
characterization of separable systems, which accept an
efficient representation.



In the following, we consider an alternative
characterization, in terms of weighted cutsets and pathsets.
Consider an arbitrary assignment α1, . . . , αN of non-negative
numbers to the respective components of the system. The
condition

∑N
i=1 αixi ≥ α0 for all the pathsets is equivalent

to find the pathset x with minimum-cost, c(x) =
∑
i:xi=1 αi,

and test if c(x) ≥ α0. Analogously, the condition∑N
i=1 αiyi < α0 for all the cutsets is equivalent to test

whether the cutset y with minimum-cost, c(y) =
∑
i:yi=0 αi,

satisfies the test S − c(y) < α0, being S =
∑N
i=1 αi the cost

of the global system. Observe that, for convenience, the cost
of a cutset is defined as the sum of the components under
failure. In particular, we get the following characterization of
separable systems:

Theorem 4. An SBS is separable if and only if there exists
an assignment of non-negative costs to the components
{αi}i=1,...,N such that S < c(y) + c(x), being c(x) and c(y)
the pathset/cutset with minimum-cost respectively.

Proof. First, let us assume that we have a separable SBS
with hyperplane

∑N
i=1 αixi = α0. Using the previous

reasoning, the assignment {αi}i=1,...,N verifies c(x) ≥ α0

and S > c(y) + α0. Therefore, S > c(y) + c(x).
For the converse, let us fix α0 = c(x), the pathset with
minimum cost. Clearly, the specific pathset x meets the
condition

∑N
i=1 αixi ≥ α0; in fact the equality is met. By its

definition, the inequality holds for the other pathsets, since
they have greater cost. Finally, we use the fact that
S < c(y) + c(x) to verify that the cutset with minium-cost,
y, meets the inequality

∑N
i=1 αiyi < α0. The inequality for

the other cutsets is straight since y is a cutset with
minimum-cost. Therefore, the SBS is separable, concluding
the proof.

V. SEPARABILITY IN GRAPHS

Our characterization of separable systems has a straight
reading in the celebrated all-terminal reliability model.

Definition 9 (Separable Graph). A graph G = (V,E) is
separable if there exists an assignment of non-negative real
numbers α1, . . . , αm of its m links, and there exists a
threshold α such that c(E′) ≥ α if and only if the spanning
subgraph G′ = (V,E′) is connected.

Let G be a connected graph. Recall that Kruskal algorithm
provides efficiently the cost of the minimum spanning tree,
MST (G). Furthermore, the cutset with minimum-cost,
m(G), is obtained using Ford-Fulkerson algorithm.
Therefore, the following corollary of Theorem 4 holds for
graphs:

Corollary. A graph is separable iff there exists an assignment
{αi}i=1,...,N to the links such that S < MST (G) + m(G),
being MST (G) the cost of the minimum spanning tree, and
m(G), the mincut with minimum capacity.

Intuitively, if the graph is dense enough, it is hard to exceed
the global cost S of the graphs using the minimum spanning
tree and mincut. Our first result deals with complete graphs:

Proposition 6. A complete graph Kn is never separable for
any n ≥ 4

Proof. Consider an arbitrary assignment {αi}i=1,...,n(n−1)/2
to the links of Kn, and an arbitrary star-graph K1,n

contained in Kn. Since K1,n is connected, its cost is greater
than, or equal to the minimum spanning tree, so,
c(K1,n) ≥ MST (Kn). Furthermore, the complementary
links of K1,n, or the complementary graph KC

1,n, is a cutset
(it isolated a single node), so the cost must exceed the
mincut: c(KC

1,n) ≥ m(Kn). But then, the global cost is
c(Kn) = c(K1,n) + c(KC

1,n) ≥ MST (Kn) + m(Kn). The
conclusion is that c(Kn) ≥ MST (Kn) + m(Kn) for any
feasible assignment, and Kn is not separable.

Proposition 7. Given a graph G(V,E), we define a graph
G′(V,E′) with E′ = E ∪ {e}. if G is not separable then G′

either.

Proof. For the converse we suppose that G′ is separable.
Therefore, there exists an assignment of non-negative real
numbers {αi}i=1,...,n+1 of its links such that∑n
i=1 αi + αn+1 ≤ MST (G′) + m(G′). For Ford-Fulkerson

we know that m(G′) ≤ m(G) +αn+1. By definition we have
that MST (G′) ≤ MST (G). Therefore

∑n
i=1 αi + αn+1 ≤

MST (G′) + m(G′) ≤ MST (G) + m(G) + αn+1 thus∑n
i=1 αi + ���αn+1 ≤ MST (G) + m(G) + ���αn+1 . Since G is

not separable we get a contradiction.

Proposition 8. Given a graph G(V,E), we define a graph
G′(V ′, E′) with V ′ = V ∪ {v̂}, E′ = E ∪ {(v̂, x)}, x ∈ V
and v̂ /∈ V . if G is not separable then G′ either.

Proof. For the converse we suppose that G′ is separable.
Therefore, there exists an assignment of non-negative real
numbers {αi}i=1,...,N+1 (|V | = N and |V ′| = N + 1) of its
links such that

∑n+1
i=1 αi ≤ MST (G′) + m(G′). Without

losing generality we assume that αN+1 is the cost associated
to (v̂, x). It is clear that (v̂, x) ∈ MST (G′) so∑N
i=1 αi + ���αN+1 ≤ MST (G) + ���αN+1 +m(G′),∑N
i=1 αi ≤ MST (G) + m(G) where m(G′) ≤ m(G) is

used in the last inequality. Since G is not separable we get a
contradiction.

Proposition 9. Given a graph G(V,E), we define a graph
G′(V ′, E′) with V ′ = V ∪ {v̂}, E′ = E ∪ Ê, v̂ /∈ V and
Ê = {(v̂, x)|x ∈ V }. if G is not separable then G′ either.

Proof. Mathematical induction in |E′|.
Base case: |E| = 1 holds by Proposition 8.
Inductive step:
Assume that |E′| = p holds. Consider: |E′| = p+ 1
Let G′ be a graph with |E′| = p + 1 with E′ set of links
from v̂ (v̂ /∈ G) to G. Let denote ê a link belonging to E′.
Consider Ê = E′−{ê} and Ĝ = G′(V ′, E′−{ê}). We know



by inductive hypothesis that Ĝ is not separable. By proposition
7 we know that Ĝ∪{ê} (link ê has both vertices in Ĝ) is not
separable.

Proposition 10. Given a graph G(V,E) and a path graph
H(V̄ , Ē) = {(x, y1), (y1, y2), . . . , (ym, z)} with
V ∩ V̄ = {x, z}, we define a graph G′(V ′, E′) with
V ′ = V ∪ V̄ , E′ = E ∪ Ē. if G is not separable then G′

either.

Proof. Let G1 be a graph that G1 = G ∪ {(x, y1)}. By
proposition 8 G1 is not separable. Let G2 be a graph that
G2 = G1 ∪ {(y1, y2)}. By proposition 8 G2 is not
separable. Extending our reasoning let Gm be a graph that
Gm = Gm−1 ∪ {(ym−1, ym)}. By proposition 8 Gm is not
separable. Let Gm+1 be a graph that
Gm+1 = Gm ∪ {(ym, z)}. Clearly Gm+1 = G′. We know
that Gm is not separable. Given that ym ∈ Gm and z /∈ Gm
by proposition 8, Gm ∪ {(ym, z)} is not separable. Therefore
G′ = G ∪H is not separable.

Proposition 11. All graphs excluding cycle graphs and
2-connected graph (2-vertex-connected graphs and
2-edge-connected) are not separable.

Proof. Let G be a 2-connected graph that it is not a cycle
graph. Given that G is 2-connected, by Frederickson-Ja’Ja’
theorem there exists a decomposition such that G = H0 ∪
H1 ∪H2 ∪ · · · ∪Hm with H0 is a cycle and {Hi}i∈{1,...,m}
are H-paths over the previous graph. Let Ĝ be a graph that
Ĝ = H0 ∪H1. We know that Ĝ is a Monma graph therefore
it is not separable. Let us denote by Gi a graph such that
Gi = Ĝ ∪ H2 ∪ · · · ∪ Hi, with i ∈ 2 . . .m. By proposition
10 we know that Gi, with i ∈ 2 . . .m are not separable. They
are H-path aggregations over a non separable graph. By way
of Gm = G, G is not separable.

Proposition 12. The Halim graphs are not separable.

Proof. Let H be a Halim graph. H can be written as H =
T ∪C where T is a tree where all internal vertices have degree
greater than 2 and C is a cycle graph that pass by all tree leaves
in order. T is embebed in C. There exists a path graph P ⊂ T
such that C ∪P is a Monma graph. We denote G = C ∪P . Ĝ
is not separable. H is obtained from Ĝ adding links with one
or both extremal points in the graph under construction. In
any of the 2 ways, each aggregation results in a non-separable
graph. Therefore H is not separable.

Proposition 13. Given two cycle graphs G1 and G2 with
G1 ∩ G2 = ∅, let us define Ĝ = G1 ∪ ê ∪ G2 as the
concatenation of both cycles and a bridge edge (ê) between
them. Ĝ is separable.

Proof. Question: There exists an assignment of non-negative
numbers: {αi}i∈1,...,m1 to the links of G1, with |G1| = m1,
{βi}i∈1,...,m2 to the links of G2, with |G2| = m2, and α to ê
such that:

∑m1

i=1 αi +
∑m2

i=1 βi + α ≤ MST (Ĝ) + m(Ĝ). If
the answer is yes, Ĝ is separable. Without losing generality

we can assume that: α1 ≤ α2 ≤ α3 ≤ · · · ≤ αm1
and

β1 ≤ β2 ≤ β3 ≤ · · · ≤ βm2 . We know that
m(Ĝ) = min{α1 + α2, β1 + β2, α},
MST (Ĝ) = MST (G1) + MST (G2) + α,
MST (G1) =

∑m1−1
i=1 αi and MST (G2) =

∑m2−1
i=1 βi. We

have that

m1∑
i=1

αi +

m2∑
i=1

βi ≤
m1−1∑
i=1

αi +

m2−1∑
i=1

βi +m(Ĝ) (4)

We know that αm1
≥ α2 ≥ α1 and βm2

≥ β2 ≥ β1. Let’s
take αm1

= βm2
= α2 = β2 = α1 = β1 = α̂, thus m(Ĝ) =

min{α̂ + α̂, α̂ + α̂, 2α̂} = 2α̂. We have that m(Ĝ) = 2α̂.
Replacing this result in equation 4 we have that

m1−1∑
i=1

αi + �̂α +

m2−1∑
i=1

βi + �̂α ≤
m1−1∑
i=1

αi +

m2−1∑
i=1

βi + ��2α̂

Taking αi = α̂ ∀i ∈ 1, . . . ,m1 βi = β̂, ∀i ∈ 1, . . . ,m2 and
α = 2α̂, with α̂ > 0 fixed, the separability of Ĝ holds.

VI. PROOF-OF-CONCEPT

Our goal is to understand the performance of our
bounding method for some sample situations. We consider a
wireless system subject to node failures. For this reason we
consider the all-terminal Node-Reliability model. Recall that
Node-Reliability is not an SMBS in general.

We considered the graphs sketched in Figures 1-4. For
each graph we consider the SBS given by Node Reliability
with structure φ. Then, we find the closest SMBS φm and
φu, the closest separator systems φ, φ and φ∗, solving the
respective ILP formulations and CPLEX optimization engine.
Tables I and II report the misclassification errors and
reliability bounds respectively, using ri = r = 1/2 for the
elementary reliabilities. The asterisk ∗ means that the
optimization reached the limit of three hours, and this value
is sub-optimal; this is the case of the Icosahedron graph (I).

0

12

3

4 5

Fig. 1. Elementary cycle C6
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Fig. 2. Monma graph M(3,3,2).
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Fig. 3. Petersen graph (P)
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Fig. 4. Icosahedron graph (I)

TABLE I
MISCLASSIFICATION ERROR

Case d(φ, φm) d(φ, φu) d(φ, φ) d(φ, φ) d(φ, φ∗)

C6 12 21 12 23 12
M10 106 720 113 759 113
P 175 390 314 425 190
I 302 958 537 958 379*

TABLE II
PERFORMANCE OF RELIABILITY AND BOUNDS

Case RS(φ) RS(φ
∗) RS(φ) RS(φ) LB UB

C6 0.3906 0.2031 0.2031 0.7500 0 1
M10 0.1846 0.0801 0.0742 0.9258 0 1
P 0.5449 0.5059 0.2383 0.9600 0 1
I 0.5317 0.4932 0.2695 0.9995 0 1

Observe that φ∗ achieves the minimum distance,
d(φ, φm) ≤ d(φ, φ), and d(φ, φu) ≤ d(φ, φ), as expected by
definition. However, the gaps are small. This suggests that
finding bounds for an arbitrary SBS by separable systems
(which are advantageous due to their small space
requirement for representation) may not entail a large loss of
precision when compared by bounds obtained using SMBS
approximations (which potentially need exponential space for
representation).

From Table II we can check that RS(φ) ≤ RS(φ) ≤ RS(φ),
while RS(φ∗) is closer to RS(φ). The last two columns UB
is the upper bound found applying Lemma ?? directly and
using the separator hyperplane for φ. Column LB is calculated
applying Theorem ?? and using the separator hyperplane for
φd. For the four cases under study, these formulations result
in trivial bounds.

Figures 5-8 display the exact reliabilities
RS(φ) ≤ RS(φ) ≤ RS(φ), together with Chernoff bounds,
for each network. The non-monotonicity of RS(φ) is
appreciated Icosahedron network topology. The bounds
provided by the separable systems are much tighter than the
Chernoff bounds. At the same time, there is a clear gap
between lower and upper bounds, specially for
medium-range values of p. When p approaches 1, the quality
of the bounds improve; and particularly the lower bound is
closer to the exact value. This is of interest, as usually when
designing or evaluating a system, the goal is to guarantee a
certain level of reliability (thus, making the lower bound a
relevant approximation).

Fig. 5. C6 graph



Fig. 6. M10 graph

Fig. 7. Petersen graph

Fig. 8. Icosahedron graph

VII. CONCLUDING REMARKS

An efficient representation of separable systems is here
introduced. This representation is analogous to Riesz
Representation Theorem for Hilbert spaces, but for particular
SBS, using a simple inner product. Supported by this natural
representation, we produce reliability bounds for arbitrary

SBS, exploiting duality and Chernoff inequality. The results
are highlighted in systems under the node-reliability model.

This interesting interplay between Stochastic Binary
Systems and Functional Analysis should be further studied.
As a future work, we would like to develop new reliability
bounds using the theory of Functional Analysis, and apply
these results to potential applications in real-life systems.
Other lines of research include taking into account
dependencies between the components’ states, and studying
how SBS structure can be exploited in a dynamic context
(i.e, when the time dimension is taken into account so that
the components’ states are evolving, i.e, failing and being
repaired, at different moments of the system evolution).
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