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Abstract—In this paper we address a fundamental problem
in communication systems. A fully-connected system is modelled
by a complete graph, where all nodes have identical capacities.
A message is owned by a singleton. If he/she decides to forward
the message simultaneously to several nodes, he/she will take
longer (exactly, the number of simultaneous nodes times a single
forwarding scheme). The only rule in this communication system
is that a message can be forwarded by a node only if it fully
known. The makespan is the completion time, precisely when
the message is fully known by all nodes. The average waiting
time is the average among the completion time of all individual
nodes. The problem under study is to select the communication
strategy that minimizes both the makespan and average waiting
time. Intuition and current design of real networks say that one-
to-many systems should perform better than one-to-one systems,
however this is not usually true. A previous study claims that
a sequential or one-to-one forwarding scheme minimizes the
average waiting time, but they do not offer a proof. Here, a formal
proof is included. Furthermore, we show that the sequential
strategy minimizes the makespan as well. The paper is closed
with comments on potential applications in scheduling of parallel
machines, content delivery networks, peer-to-peer systems and
rumour spreading.
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I. MOTIVATION

The Internet is supported by the client-server architecture,
where users connect with a specific server to download files.
This architecture has some benefits. The service is both simple
and highly predictable. However, the server infrastructure is
not scalable when demand is increased. A natural idea to
overcome this scalability issue is to consider content po-
pularity, where the most popular contents can be shared by
the users. The server invites users to communicate and offer
those files which are normally replicated in the network.
An abstraction of this concept is accomplished with peer-to-
peer systems (P2P for short). They are self-organized virtual
communities developed on the Internet Infrastructure, where
users, called peers, share resources (content, bandwidth, CPU-
time, memory) to others, basically because they have common
interests. From a game-theoretic point of view, cooperation is
better than competition. From an engineering point of view,
we understand that the power of user-cooperation in P2P
systems is maximized, but the real-life design is jeopardized by
other factors. Indeed, broadband resources are better exploited
with cooperation. The altruistic behaviour in P2P networks
is achieved with incentives, using a give-to-get concept [1],
[2]. Nevertheless, the design of a resilient P2P network has

several challenges. Most important are: the Internet access
infrastructure is usually asymmetric, hindering peer exchange;
peers arrive and depart the system when they wish [3]; some
peers (called free-riders) exploit network resources but do not
contribute with the system; a failure in the underlying network
usually damage the P2P service; there is an explicit trade-
off between the full knowledge of the network (topology,
peers resources) and payload, which directly impacts in the
throughput and network performance.

The main purpose of this paper is to understand how busi-
ness models, heterogeneous users and non-altruistic behaviour
can damage the best cooperative scenario. If we could come
back to history, we would ask ourselves which is the best
communication system. This is a key question we address in
this paper, and we answer it in the context of a fully-connected
homogeneous system with completely altruistic users. Even
though we motivate this paper by P2P systems, our main
result apply to several communication systems: scheduling
in parallel unrelated machines, social networks and content
delivery networks, among many others.

Our work is inspired by a fundamental problem posed for
the first time by Qiu and Srikant, where they state that it should
be clear that a good strategy is the one-to-one forwarding
scheme [4]. Even though the authors study the service capacity
of a file sharing peer-to-peer system, its formulation is general
enough. For practical purposes they find a closed formula for
the average waiting time following a one-to-one forwarding
scheme when the population N is a power of two. In [5], a
formal proof that the one-to-one forwarding scheme achieves
the minimum waiting time is included, when the population is
a power of two. Here, we formally prove that it is not only
good, but also optimal, for both makespan and waiting time
measures. The result holds for an arbitrary population size. We
remark that the optimum forwarding scheme rarely appears in
real-life systems. We discuss this phenomenon showing the gap
between this theoretical result and real-life implementations of
communication systems. The main contributions of this paper
are two-fold:

1) The best solution of a fundamental communication
system is introduced, with a formal proof.

2) A discussion of the gap between the best theoretical
forwarding scheme and real-life implementations is
provided.

This paper is organized as follows. Section II presents the
evolution of cooperative systems as a realistic framework.



From this section, it should be clear that P2P networks fully
disseminate files in a one-to-many fashion, in strong contrast
with our main result. The theoretical problem under study is
presented in Section III. The mathematical analysis provides
a full solution of the problem, which is derived in Section IV.
The gap between theory and real-life applications is considered
in Section V. Section VI contains the main conclusions and
trends for future work.

II. COOPERATIVE SYSTEMS AND BUSINESS

Napster was the first popular and centralized peer-to-peer
network [6]. Users were able to download MP3 music files
and many others. The Recording Industry Association of
America (RIAA) highly criticized these peer-to-peer networks
complaining that the sales went down. Definitely, digital music
associations were right, and Napster ended in the thumb
after a legal process. Clearly, the hierarchical structure of
Napster avoided a key element in the design of peer-to-peer
networks: the anonymity. However, the new paradigm woke-
up the imagination of platform providers and users as well.
Gnutella arrived with a very different concept. Now, all peers
are clients and servers at the same time, normally called
servents [7]. These peers find neighbours with elementary
primitives of communication, and look for new contents via
flooding. This completely distributed architecture showed its
strength to disseminate popular contents, via the cooperation
of neighbours. However, flooding was not effective for rare
contents. To make things worse, the names could incidentally
crash for different files, users were not forced to cooperate, and
malicious peers could even conspire with one peer, disturbing
its neighbours. Many other structured network overlays were
deployed in the beginnings of this century: Emule/Edonkey [8]
and BitTorrent [2] for instance. BitTorrent, created by Bram
Cohen, is an unstructured network overlay designed for fast
distribution and replication of media contents. The new con-
cept is inspired in incentives: give to get. The tit-for-tat solution
of a game theory problem (the Iterated Dilemmas Prisoner)
was included in this new design philosophy, and promotes an
altruistic behavior of players [9]. Several current implementa-
tions of P2P networks are BitTorrent based, even for bandwidth
sensitive applications such as live-streaming [10].

It is worth to remark that the forwarding scheme in real-
life pee-to-peer applications follows a one-to-many strategy.
Furthermore, many other communication systems (social net-
works, cellular systems) cooperate with a mesh-like virtual
topology. This is in strong contrast with the best theoretical
communication scheme assuming an altruistic fully-connected
scenario, as the following sections confirm.

III. PROBLEM

We are given N peers with identical capacity b (in bits
per second) and a message with size M (measured in bits). A
singleton has the message, and at time t1 = 0 he/she forwards
the message to one or to many other peers. Let us denote
τ =M/b the time-slot following one-to-one forwarding time.
If he/she decides to forward the message to c nodes, it will
take cτ seconds to perform the forwarding task. Let us denote
0 = t1 ≤ t2 ≤ . . . ≤ tN the corresponding completion times
of the N peers in this cooperative system. The makespan is
tN , while the average waiting time, t, is the average over the

set {t1, . . . , tN}. Clearly, t ≤ tN . In a one-to-many forwarding
scheme, every peer selects a fixed number c of peers to forward
the message. In general, in a simultaneous forwarding scheme
there is some peer i that, at time ti, simultaneously forwards
the message to more than one peer. In contrast, the only
remaining strategy is a sequential or one-to-one forwarding
strategy.

Here we formally prove that the one-to-one forwarding
strategy is optimal, in the sense that it minimizes both the
makespan and the average waiting time simultaneously. It is
worth to remark that only elementary analysis is considered.
For short, we will use n = dlog2(N)e and nc = dlogc(N)e.

IV. SOLUTION

A straightforward calculation provides the makespan and
average waiting time in the one-to-one forwarding scheme:

Lemma 1: The makespan in the one-to-one forwarding
scheme is nτ .

Proof: By definition of the one-to-one forwarding scheme,
there is one peer at time T0 = 0, and there are 2i−1 peers
whose completion time is Ti = iτ . Therefore, the message is
fully owned by 2i peers at time iτ , for i = 1, . . . , n− 1. The
remaining N − 2n−1 peers receive the message at time nτ .

Lemma 2: The average waiting time in the one-to-one
forwarding scheme is t = τ

N (nN − 2n + 1).

Proof:

t =
1

N
[

n−1∑
i=1

2i−1iτ + (N − 2n−1)τ ]

=
τ

N
[(n2n−1 − 2n + 1) + (N − 2n−1)n]

=
τ

N
(nN − 2n + 1).

Since n = dlog2(N)e, we conclude that both the makespan and
average waiting time grow logarithmically with the population
of the system and linearly with respect to the time-slot τ when
the one-to-one strategy is considered. Let us contrast the result
with a one-to-many strategy in what follows, where each peer
forwards the message to c−1 different peers, for some c > 2.

Lemma 3: The makespan in the one-to-many forwarding
scheme of type c− 1 is nc(c− 1)τ .

Proof: By definition of the one-to-many forwarding
scheme of type c− 1, there are Ni = ci−1(c− 1) peers whose
completion time is Ti = i(c−1)τ , and one peer at time T0 = 0.
Therefore, the message is fully owned by ci peers at time Ti,
for i = 1, . . . , nc− 1. The remaining N − cnc−1 peers receive
the message at time Tnc = nc(c− 1)τ .

Lemma 4: The average waiting time in a one-to-many for-
warding scheme of type c−1 is tc−1 = τ

N [nc(c−1)N−cnc+1].



Proof:

tc−1 =
1

N
[

nc−1∑
i=1

NiTi + (N − cnc−1)Tnc

=
1

N
[

nc−1∑
i=1

ci−1(c− 1)i(c− 1)τ + (N − cnc−1)Tnc ]

=
τ

N
[ncc

nc−1(c− 1)− (cnc − 1) + (N − cnc−1)Tnc ]

=
τ

N
[nc(c− 1)N − cnc + 1].

We can check that tc−1 equals t when c = 2, as expected.
In fact, the one-to-one strategy is the one-to-many if c−1 = 1.
On the other hand, we will see that tc−1 > t for every c > 2.
The makespan is studied first:

Lemma 5: The makespan in the one-to-one strategy is
never greater than in the one-to-many strategy.

Proof: If c = 2 we see that n2 = n, so (c − 1)nc = n.
It suffices to prove that (c − 1)nc ≥ n for any c ≥ 3, being
n = dlog2(N)e and nc = dlogc(N)e:

(c− 1)nc ≥ logc(N c−1) = (c− 1)logc(2)log2(N)

= logc(2
c−1)log2(N) > log2(N);

where the last inequality follows from the fact that 2c−1 > c
whenever c ≥ 3. Since (c− 1)nc is an integer, we obtain that
(c− 1)nc ≥ dlog2(N)e, and the result follows.

A technical lemma will be used in the main result:

Lemma 6: Given two partitions of N =
∑m
i=1 xi =∑m

i=1 yi such that xi ≥ yi ≥ 0, ∀i = 1, . . . ,m − 1 and
0 ≤ xm < ym. Consider an arrange of times 0 ≤ t1 ≤
t2 ≤ . . . ≤ tm, and a partition for each ti, ti =

∑mi

j=1 tij ,
where 0 ≤ tij ≤ ti. Given any related partition of xi,
xi =

∑mi

j=1 xij , then W x = 1
N

∑m
i=1

∑mi

j=1 xijtij is strictly
lower than W y = 1

N

∑m
i=1 yiti.

Proof:

W x =
1

N

m∑
i=1

mi∑
j=1

xijtij <
1

N

m∑
i=1

xiti

=
1

N
(

m−1∑
i=1

xiti + xmtm)

=
1

N
(

m−1∑
i=1

(xi − yi)ti +
m−1∑
i=1

yiti − ymtm + xmtm)

=W y +

m−1∑
i=1

(xi − yi)ti − (ym − xm)tm

=W y +

m−1∑
i=1

(xi − yi)ti − (

m∑
i=1

(xi − yi))tm < W y.

In words, if more peers own the message at any time ti
using strategy x instead of y (xi ≥ yi, i = 1, . . . ,m− 1) and
the population is constant (N is constant, so xm < ym), then
x outperforms y in terms of average waiting time.
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Fig. 1. Makespan for different strategies.
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Fig. 2. Average waiting time for different strategies.

Lemma 7: The average waiting time in the one-to-one
strategy is never greater than in the one-to-many strategy.

Proof: When ti = i(c− 1)τ we know that ci peers have
the message using the one-to-many forwarding scheme of type
c− 1 versus 2i(c−1) using the one-to-one forwarding scheme.
Following Lemma 6, it suffices to prove that 2i(c−1) ≥ ci

whenever c ≥ 3. Taking logarithms in both sides it is
equivalent to show that c− 1 ≥ log2(c), which is true.

In order to illustrate the previous results, Figures 1 and 2
present the makespan and average waiting times respectively
for one-to-one and one-to-many strategies in representative
cases.

Lemma 8 (Local Replacement): If we are given a strategy
where some peer x forwards the message to k new peers in a
given time-slot [t, t+T ], and there exists an alternative strategy
where x forwards the message to k′ > k peers in the same
time-slot, then the local replacement for the alternative strategy
in x reduces both the makespan and average waiting time if



all the k′ nodes behave as in the original strategy.

Proof: During the specific time-slot [t, t+T ], the message
is fully owned by more peers. By Lemma 6, the local re-
placement has lower average waiting time. Analogously, there
are more successors of x, so they feed more peers and the
makespan is lower as well.

Theorem 1 (Main Result): The one-to-one forwarding
scheme is optimal for both makespan and average waiting
time.

Proof: If some peer deliberately produces a positive delay
in the forwarding, there is a corresponding shift in both
makespan and average waiting time. Therefore, delays are not
included in an optimal strategy. If some peer x forwards the
message to c− 1 > 1 nodes, we can consider a local replace-
ment into the one-to-one strategy for x. By Lemmas 5 and 7,
the one-to-one forwarding scheme offers lower makespan and
average waiting times. By Lemma 8, a local replacement
improves both measures. A local replacement is conducted in
every node that forwards the message to many nodes. The
result is a one-to-one forwarding scheme.

V. DISCUSSION

As far as we know, the problem was posed for the first
time by Xiangying Yang and Gustavo de Veciana [4]. The
authors study the service capacity of a file sharing peer-to-
peer system, and the problem under study serves as a fluid
model for replication. They literally state that it should be clear
that a good strategy is the one-to-one forwarding scheme. For
practical purposes they find a closed formula for the average
waiting time following a one-to-one forwarding scheme when
N is a power of two. In [5], a formal proof of Lemma 7 is
provided when the population is a power of two. Here, we
formally prove that it is not only good, but also optimal, for
both makespan and waiting time measures. The result holds
for an arbitrary population size.

Theorem 1 is counterintuitive, and could be used in several
fields of knowledge. For instance, the earliest-finish-time in
the context of parallel computing systems is precisely our
makespan, and forwarding strategies are identified with a
formal scheduling on this machines [11], [12]. The main goal
in a Content Delivery Network is to minimize the delivery
time, which is strictly related with makespan and average
waiting time [13], [14], [15]. The time needed to distribute
information in a social network, or a virus by an epidemic,
are one of the main factors studied in these disciplines [16],
[17].

Several real networks use one-to-many forwarding
schemes. This suggests that in practice at least one assumption
does not hold. First, we remark that full connectivity holds in
overlay networks, but does not hold in most real-life scenarios,
such as social networks. Second, there is no matching between
modelling and reality when identical capacity is assumed.
Last but not least, in an information-centric network the
behaviour of nodes could be affected with information. As
future work, we would like to have a better understanding
on the gaps between modelling and real-life systems. Observe
that we considered cooperative systems as our framework and
terminology, but our theoretical analysis holds under our (quite
restricted) assumptions.

VI. CONCLUSIONS AND TRENDS FOR FUTURE WORK

In this paper we show that under fully symmetric complete
scenarios a one-to-one forwarding scheme provides both the
lowest makespan and average waiting time. The goodness
of this strategy was suggested by previous authors in the
context of peer-to-peer systems for average waiting times. This
fundamental result has potential applications to scheduling in
parallel unrelated machines, social networks and content deliv-
ery networks, among many other complex systems. As a future
work, we would like to extend our analysis to incomplete
graphs with heterogeneous and dynamic nodes. Observe that
the optimum forwarding scheme is completely deterministic.
As future work, we would like to better understand the gap
between the theoretical predictions from this paper and real-
life applications such as social networks and cellular systems.
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