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Abstract
The aim of this paper is to encourage the use of orbital integrators in the
classroom to discover and understand the long term dynamical evolution of
systems of orbiting bodies. We show how to perform numerical simulations
and how to handle output data in order to reveal the dynamical mechanisms
that dominate the evolution of arbitrary planetary systems in timescales of
millions of years using a simple but efficient numerical integrator. Through
some examples we reveal the fundamental properties of planetary systems: the
time evolution of the orbital elements, the free and forced modes that drive
oscillations in eccentricity and inclination, the fundamental frequencies of the
system, the role of the angular momenta, the invariable plane, orbital reso-
nances, and the Kozai–Lidov mechanism.

Keywords: planetary systems, orbital dynamics, numerical methods

(Some figures may appear in colour only in the online journal)

1. Introduction

With few exceptions, astronomers cannot conduct experiments and are instead limited to
observe the universe. The laboratory for the astronomer usually takes the form of computer
simulations. This is the most important instrument for the study of the dynamical behavior of
gravitationally interacting bodies. A planetary system, for example, evolves mostly due to
gravity acting over very long timescales generating what is called secular evolution. This
secular evolution can be deduced analytically by means of the theory of perturbations, but can
also be explored in the classroom using precise numerical integrators. Some facilities exist to
visualize and experiment with the gravitational interactions between massive bodies [1–3].
All of them can show the dramatic dynamical effect due to strong gravitational interactions in
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a short timescale. However, in general, they are not devised to study the slow changes that
planetary systems exhibit in timescales of millions of years or longer. On the other hand,
astronomers have several precise orbital integrators to study the long term dynamics of
planetary systems [4, 5], but their handling require some expertise because they are not
thought to be used for educational purposes. Despite the existence of excellent examples
halfway between those extremes [6, 7], we prefer to present a simpler numerical integrator
whose code can be easily examined and modified. The tool we will use here, Orbital Evol-
ution (ORBE), was designed to be precise and fast in the computation of long term inter-
actions, and very simple to use: it contains only one plain text input file with initial conditions
and only one plain text output file with the time evolution of the orbital elements of the
interacting bodies. Both files can be edited with the preferred plain text editor and the results
can be plotted with the preferred graphic utilities. The code, usage details, and several
examples can be found on its website [8]. This paper is organized as follows: first, in section 2
we will introduce a brief explanation on orbital elements and orbital integrators, and then in
section 3 we will show how to discover the fundamental properties of planetary systems
through some numerical experiments. Finally, in section 4 we present our conclusions.

2. Orbital elements and orbital integrators

In orbital simulations of the solar system the reference system is usually composed by the
plane xy defined by the orbit of the Earth as it was in the year 2000, with the x axis pointing to
the J2000.0 dynamical equinox, or Aries point. The z axis is orthogonal and directed
according to the sense of the Earth’s orbital revolution around the Sun. The center of the

Figure 1. The angular orbital elements i, Ω, and ω. The spatial orientation of the orbital
plane is defined by i and Ω, and the orientation of the axis of the ellipse in the orbital
plane is defined by ω.
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system is usually the Sun, which is not inertial due to planet attractions, but this is not a
problem for representing relative motion. Of course, the equations of motion are first written
in an inertial frame with the origin in the barycenter of the system, and then the origin is
changed to the Sun [9]. Cartesian positions and velocities are not appropriate for the repre-
sentation of orbital evolutions because they vary quickly according to the revolutions around
the central star. Instead, astronomers use orbital elements, which are slowly varying para-
meters. Orbital elements emerge assuming that the orbit is instantaneously a conic section.
The semimajor axis, a, expressed in astronomical units and eccentricity, e, define the size and
shape of the orbit, respectively. -( )a e1 and +( )a e1 are the perihelion and aphelion, or
minimum and maximum, distance to the Sun, respectively. The inclination,   i0 180 ,
and longitude of the ascending node,   W 0 360 , are the two angles that define the
orientation of the orbital plane with respect to the reference plane xy. The argument of the
perihelion,  w 0 360 , or the longitude of the perihelion, v w= W + , define the
orientation of the axis of the ellipse in the orbital plane. Finally the mean anomaly,

  M0 360 , defines the position in orbit; for example, with = M 0 being the perihelion
and = M 180 being the aphelion. Figure 1 shows the angular orbital elements wWi, , with
respect to the reference system xyz. It is possible to show that in the case of a regular
evolution a, e, and i have small amplitude periodic oscillations and are related to the action
canonical variables; meanwhile, v WM, , also includes variations proportional to time and
related to angle canonical variables [10]. In the numerical integrations, for each object we
must specify the set of initial elements wW( )a e i M, , , , , , which is equivalent to
( )x y z v v v, , , , ,x y z , and the mass m in units of solar masses ( )M . Burns [11] presented a
useful analytical deduction of the equations for the time evolution of orbital elements due to
different kinds of perturbations when expressed analytically. Our approach is completely
numerical and restricted only to gravitational perturbations, which in fact dominate the long
term evolution of planetary systems.

To obtain the position and velocity at time = + D+t t ti i1 starting from position and
velocity at time ti for a particle under acceleration a i, elementary numerical algorithms
usually implemented to resolve general problems are roughly of the type

= + D+
   · ( )r r v t, 1i i i1

a= + D+
   · ( )v v t. 2i i i1

For the case of orbital dynamics, Encke [9] proposed a very clever alternative taking into
account that the total acceleration acting on each particle, a , is in fact the addition of a large
acceleration due to the Sun, a s, plus a small acceleration or perturbation, a p, due to other
bodies and other eventual non-gravitational effects, like the forces generated by comet
emissions or the several forces due to solar radiation acting on the surfaces of the bodies [12].
The heliocentric part of the acceleration does not need to be numerically integrated because it
has an analytical solution given by the well-known two-body problem. We only need to
integrate the perturbation given by a p, which is of the order of 1000 times smaller than the
heliocentric acceleration, and then we can use timesteps 1000 times greater, consequentially
speeding up the numerical integration. A rough scheme for Encke’s method is as follows. We
call Si the heliocentric, non-perturbed part of the solution defined by the initial conditions ( )r v,i i :

=  ( ) ( )S S r v, . 3i i i
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The new position at +ti 1 is given by Si evaluated at +ti 1:

¬+ +
 ( ) ( )r S t . 4i i i1 1

However, the velocity at +ti 1 corresponds to +( )S ti i 1 plus the perturbation integrated in Dt:

a¬ + D+ +
 ( ) ( ) · ( )v S t i t. 5i i i1 1 p

Now, the new heliocentric solution at +ti 1 can be defined as

=+ + +
 ( ) ( )S S r v, , 6i i i1 1 1

and the procedure continues. Note that the only step that is numerically integrated is that in
equation (5) because S is an analytical expression. Another very clever idea is to construct the
algorithm such that in each step of the numerical integration energy is preserved. The
leapfrog scheme [13], for example, is one such method for accomplishing this. These are the
key ideas that allowed astronomers to investigate planetary systems by means numerical
integrations of billions of years. We can be confident in these results because using different
algorithms elaborated by different researchers the main results are essentially the same. The
ORBE integrator is a very simplified version of the code Evorb [14], which was presented by
Brunini and Gallardo and follows the aforementioned ideas, also uses Encke’s method and
integrates the perturbations by a leapfrog scheme with a timestep of the order of 1/40 of the
smallest orbital period, which is a known good compromise between computation velocity
and precision [15]. In its present state ORBE only takes into account the Newtonian
gravitational interactions, and no General Relativity corrections or other forces are
considered. Another limitation is that it handles events of very close encounters between
two orbiting bodies with low precision.

3. Fundamental properties of planetary systems

3.1. Secular evolution

One of the most impactful results of the planetary theory developed by Lagrange and Laplace
in the eighteenth century was the analytical proof of the stability of our planetary system.
They showed that despite the complexity of the mathematical problem, the planetary orbital
eccentricities and inclinations have only bounded amplitude oscillations while the semimajor
axes are almost constant in time [10]. This can be illustrated by integrating the solar system
by 1 million years (Myr) with ORBE, using the initial conditions given in table 1 and plotting

Table 1. Initial conditions for the 1 Myr solar system simulation. Angles in degrees.
Data taken from ssd.jpl.nasa.gov.

Planet a(au) e i Ω ω M mass ( )M

Mercury 0.387098 0.205640 7.00 48.32 29.14 143.52 1.660136×10−7

Venus 0.723329 0.006759 3.39 76.66 54.53 24.82 2.447838×10−6

Earth 0.999988 0.016717 0.00 175.41 287.62 257.61 3.040432×10−6

Mars 1.523674 0.093437 1.85 49.54 286.56 226.11 3.227155×10−7

Jupiter 5.202040 0.048933 1.30 100.51 274.18 223.70 9.547919×10−4

Saturn 9.551249 0.054508 2.49 113.63 340.06 38.63 2.858859×10−4

Uranus 19.176263 0.048094 0.77 73.96 98.52 169.39 4.366244×10−5

Neptune 30.098703 0.006894 1.77 131.78 264.31 283.25 5.151389×10−5
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Figure 2. Time evolution of semimajor axes for the terrestrial planets from present to
1 Myrs towards the future showing numerically what the theory by Lagrange and
Laplace predicted in the 18th century. This figure was obtained by plotting column 3
versus column 1 of the output file orbeout.dat. t=0 corresponds to present day.

Figure 3. Time evolution of eccentricity for the terrestrial planets from present to
1 Myrs towards the future. This figure was obtained by plotting column 4 versus
column 1 of the output file orbeout.dat.
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a,e, and i versus time using the output data. Two centuries after the analytical prediction we
can verify it numerically in a few minutes.

Figure 2 shows the time evolution of the semimajor axes of the four terrestrial planets
obtained from the same simulation. No secular trends are observed, although there are high
frequency oscillations with amplitudes of a few 10−6 au that cannot be discerned in this scale
but can be observed by looking at the output data file. Figure 3 shows the time evolution of
the eccentricities that seem to be the result of various oscillations. The inclinations show
similar behavior to eccentricities. Note that at present Earth’s eccentricity is smaller to that of
Mars, but this situation was not always so in the past and will not always remain this way in
the future. The variations in orbital eccentricity have a known impact in the insolation that a
planet receives from the Sun, which is an external cause of climate variations [16].

The time evolution of the system is not altered if we add the dwarf planets Ceres or Pluto
or any asteroid, transneptunian object, or comet. If we drop Mercury instead, the outer solar
system is not greatly affected, but changes in e(t) and i(t) for Venus and Earth clearly appear
after ~105 years of orbital evolution. Do the experiment by yourself.

3.2. Angular momentum

It is clear from figure 3 that the eccentricities of Earth and Venus evolve in opposed phases.
This is more evident for the Jupiter–Saturn pair shown in figure 4, which used the output of
the same numerical integration performed earlier. As we explain below, this is because these
pairs are coupled such that the angular momentum of these subsystems tend to remain
constant.

The orbital angular momentum for a planet with mass m is a vector orthogonal to its
orbital plane and by definition is the vectorial product = ´

  
L r mv , which written in terms of

the orbital elements becomes [10]

Figure 4. Coupling between Jupiter and Saturn’s eccentricities due to the quasi-
conservation of the angular momentum of the Jupiter–Saturn subsystem.
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Figure 5. Coupling between eccentricities of Jupiter and a pseudo Saturn with the same
orbital elements of Saturn except its inclination, which was taken = i 178.5 . In this
experiment Jupiter and the pseudo Saturn have their angular momenta in opposed
directions.

Figure 6. Time evolution of the eccentricity of a fictitious particle with orbital elements
typical of the asteroids perturbed only by Jupiter.
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=
+

- W W
 


 ( ) ( ) ( )L

mM

m M
GM a e i i i1 sin cos , sin sin , cos , 72

where G is the gravitational constant, Me is the mass of the Sun, and +  ( )mM m M m
because  m M . Then for the Jupiter–Saturn pair for example, taking into account that they
are almost coplanar ( ~ i 0 ) we obtain:

- + -  ( ) ( ) ( )L m GM a e m GM a e1 1 . 8JS J J J
2

S S S
2

Since aJ and aS remain constant, an increase in eJ must be correlated to a decrease in eS. This
effect is seen in figure 4. If this reasoning is correct and we run a numerical integration with a
‘Saturn’ in a retrograde orbit, that is orbiting contrary to Jupiter with ~ i 180S , we will
obtain eJ and eS evolving in phase. The result of this experiment is shown in figure 5.
Planetary systems composed of only two planets orbiting a star always exhibit coupling
between eccentricities.

3.3. Forced and free modes, fundamental frequencies, and chaos

To understand the time evolution of the eccentricities shown in figure 3 we will make a
simple experiment considering only Jupiter and a fictitious particle (m=0) with initial
arbitrary asteroid-like orbital elements given by    ( )2.3 au, 0.035, 0.5 , 90 , 270 , 0 and
integrate it by 40000 years. The time evolution of its eccentricity is shown in figure 6. It
seems to be a kind of sinusoid, but its true meaning is revealed when we plot the data in the
plane v v= =( )k e h ecos , sin , thus obtaining figure 7. Here, it is evident that the
instantaneous, also called osculating, e(t) is the composition of a circulation with almost
constant amplitude ( ~e 0.012free ). This is called free mode, and circulates with a proper
frequency around a fixed point at ( )0.025, 0.007 with modulus ~e 0.026forced called the
forced mode. In the plane = W = W( )q i p icos , sin the evolution is also the addition of a

Figure 7. Same as figure 6, but plotting the orbital states in the space v=k e cos , and
v=h e sin showing the forced and free modes in eccentricity. The orbital element ϖ

is obtained by adding columns 6 and 7 in orbeout.dat.
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constant forced mode and a free circulation [10]. Experimenting with the same asteroid but
with different perturbing planets it is possible to explore how the free and forced modes
arrange to provide the same initial osculating eccentricity.

Figure 8. Earth’s eccentricity in a planetary system with and without Jupiter. In the last
case the strong forced mode due to Jupiter is not present.

Figure 9. Power spectrum of variable v=( )k t e cos for the Earth, showing the most
important fundamental frequencies affecting the time evolution of elements e and ϖ.
The amplitude of each line corresponds to the amplitude of the oscillation in e
introduced by each frequency. The largest ones correspond to g5, g2, and g3.

Eur. J. Phys. 38 (2017) 035002 T Gallardo

9



If we consider a system of perturbing planets instead of the simple system composed by
Jupiter alone, we will verify that the forced mode is a composition of several vectors each
with a different frequency. If we eliminate Jupiter from the solar system, the component of the
forced mode due to Jupiter vanishes and Earth’s eccentricity for example will have a
smoother time evolution. Figure 8 shows the time evolution of Earth’s eccentricity in the
actual solar system and in an hypothetical solar system in which Jupiter was eliminated.

A spectral analysis of the time evolution of the variables q(t) or p(t), and k(t) or h(t)
corresponding to a member of the solar system will show the presence of a set of well-known
frequencies, called fundamental frequencies, of the solar system and are denoted as fi for the
variables (q, p) and gi for the variables (k, h). For example, in figure 9 we show the power
spectrum of k(t) for the Earth. Three relevant frequencies in units of yr−1 appear with large
amplitude: ´ -3.3 10 6, ´ -5.7 10 6, and ´ -13.5 10 6. They correspond to the fundamental
frequencies g5 due to Jupiter, g2 due to Venus, and g3 due to Earth [10]. There is another less
relevant frequency at ´ -21.8 10 6 yr−1, known as g6, which corresponds to Saturn. The
existence of these well-defined frequencies is a strong indicator of the stability of the system.
On the other hand, a planetary system with poorly defined frequencies or varying frequencies
is an indicator of its chaotic nature [17]. Several sophisticated tools have been developed to
diagnose chaos in the dynamics of the planetary systems. Although not the focus of this
paper, we can have a hint at the magnitude of the chaos in a planetary system by looking at
the time evolution of the semimajor axes or analyzing how well-defined the fundamental
frequencies are [18]. In fact, our planetary system has its fundamental frequencies well
defined in timescales of millions of years, but in timescales of billions of years, small
variations have been detected [17], which means that in long timescales the solar system is
chaotic but not necessarily evolving to disruption [19].

Figure 10. Evolution in the space = Wq i cos and = Wp i sin of the giant planets from
= -t 1 Myr1 to = +t 1 Myr2 . This plot describes the evolution of the spatial directions

of the planetary angular momenta. The trajectory for each planet is labeled with the
planet’s starting letter. The cross indicates the direction of the total angular momentum
of the system, which is given by i 1.6 and W  108 .
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3.4. The invariable plane

As we have explained in section 2 it is a generalized practice to take reference plane xy as
coincident with Earth’s orbital plane for the year 2000. That choice is arbitrary from the
physical point of view because the Earth’s orbit is not dynamically privileged with respect to
other orbital planes. There is another plane with a clear physical meaning: the invariable
plane, which is defined as the plane perpendicular to the total angular momentum of the
system


LT :

å=
=

 
( )L L , 9T

i
i

1

8

where

Li for each planet is given by equation (7). Despite its large mass the contribution due

to the Sun can be neglected because it is very close to the barycenter and moving with very
low velocity. If we consider the system as isolated,


LT and the invariable plane will be

constant. According to equation (7) the projection of the angular momentum unity vector for
each planet on the reference plane xy is W W( )i isin cos , sin sin , where we can take i instead of

isin for low inclination orbits as is the case for the solar system. If we plot the orbital states in
the space = W = W( )q i p icos , sin for all the giant planets along 2Myr we obtain figure 10.
This figure shows that all planets have their angular momentum unity vectors oscillating
around a fixed direction marked with a cross, which is defined by the


LT of the system. An

analogy can be found between the oscillations of the

L of a given planet around


LT and the

precessional motion of a spinning top around the vertical. The invariable plane for planetary
systems has its analog in the horizontal plane for the physics laboratory. Traditionally we use

Figure 11. Evolution of 21 fictitious particles in the space (a, e) during 1 Myr. Particles
with ~a 2.5 aui are strongly affected by the 3:1 resonance with Jupiter, increasing
their eccentricity up to 0.7. The other particles undergo a bounded secular evolution in
eccentricity.
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the Earth’s orbital plane as the reference plane, but sometimes for some particular dynamical
studies the use of the invariable plane is preferred.

3.5. Orbital resonances

At present there are around 700 000 asteroids with determined orbital elements in public
databases [20], but their distribution between Mars and Jupiter is far from uniform and there
are profound gaps and areas of higher concentrations. This peculiar distribution in the
asteroids’ semimajor axes must be due to their different dynamical evolutions. Let us compute
the orbital evolution of a set of 21 fictitious particles, with mi=0, distributed with initial
semimajor axes between 2.4 and 2.6 au and initial ei=0.1, = i 5i , and arbitrary

wW = = = M 100i i i . We integrate by 1Myr and take snapshots of the system at each
1000 yrs, plotting (a, e) for all particles. Thus, we obtain figure 11. Particles with ~a 2.5 aui

are affected by a strong dynamical mechanism, a mean motion resonance, which means that
these particles have their orbital periods commensurable with the orbital period of a planet, in
this case Jupiter. The obvious effect of this resonance is to excite the eccentricities and
destabilize the orbits. By Kepler’s third law we know that the orbital periods T verify

= ⎜ ⎟
⎛
⎝

⎞
⎠ ( )T

T

a

a
. 10J J

3 2

Then, in the case of a particle with initial =a 2.5 au we have = ( )T T 5.2 2.5 3J
3 2 , and

it is said that the particle is in 3:1 resonance with Jupiter. This commensurability in the orbital
periods generates a non-random spatial distribution of the perturbations by Jupiter making the
orbital evolution of the resonant particles different from those that are non-resonant. There is
a profound gap at ~a 2.5 au in the semimajor axes distribution of asteroids generated by this
resonance, and it is not the only one [10]. The solar system is full of mean motion resonances
but only some of them have dynamical relevance [21]. Some resonances generate unstable
dynamics but there are also resonances that provide a very stable orbital evolution. The term
resonance is usually associated with a system that is approaching disruption, but in orbital
dynamics they are configurations of equilibrium that are sometimes unstable and sometimes
stable. The Hildas, for example, is a stable dynamical family of asteroids trapped in 3:2
resonance with Jupiter. In general the stability depends on the degree of eccentricity growth.
Large changes in eccentricity like in the resonance 3:1 make the asteroid approach other
planets, which, by gravitational pull or even collisions, remove the asteroid from the
resonance and thus generates the observed gap in the distribution of semimajor axes. A very
interesting case of mean motion resonance are the co-orbitals, that is, objects with the same
orbital period or trapped in the resonance 1:1. There are several examples of co-orbitals in the
solar system, and quasi-satellites are probably the most interesting [22]. They seem to be
satellites of a planet but are just revolving around the Sun with the exact same planetary
orbital period, sometimes ahead of the planet and sometimes behind, generating a relative
trajectory with respect to the planet that seems to be a satellite-like orbit. This happens not by
chance but is one of the possible configurations of equilibrium in the resonance 1:1. There are
precise methods to identify when an asteroid is locked in resonance but a useful indicator is
the ratio ( )a aP

1.5 according to equation (10), where aP is the semimajor axis of the planet and
must remain constant and very close to a simple fraction over some thousand years at least.

Resonances can also occur as a commensurability between the proper frequencies of the
particle and the fundamental frequencies of the planetary system given by the time evolution
of the variables q(t) or p(t), and k(t) or h(t). This situation generates a secular resonance and
large orbital changes usually occur [18]. Since the proper frequencies of a particle depends
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not only on its semimajor axis but also on its eccentricity and inclination, every planetary
system has dangerous routes in the space ( )a e i, , dominated by secular resonances, which
could generate drastic orbital changes in approaching asteroids, comets, or meteoroids.

3.6. The Kozai–Lidov mechanism

Non-resonant low eccentricity and low inclination orbits in general will undergo typical
secular time evolutions of e and i with small amplitude oscillations without links between
them, but for moderate values of eccentricities and inclinations there appears to be a clear link
between e, i, and ω. This was first studied by Lidov and Kozai [23]. Its origin is in the quasi-
conservation of the component Lz of the angular momentum of the body, and imposes

- ( )a e i1 cos constant2 according to equation (7). In particular, Lz is strictly constant for
a particle perturbed by an ideal planetary system composed by coplanar and zero eccentricity
orbits [24]. Indeed, in this idealized case the study of long-term evolution can be conducted as
originally proposed by Gauss, replacing our planetary system by a system of concentric
coplanar rings with each one corresponding to one planet, and with the radius and mass
corresponding to the semimajor axis and planet mass, respectively. This axisymmetric dis-
tribution of mass generates a gravitational force,


F , on a body located at


r that is not central

but is always coplanar with

r and the z axis. As the rate of change of the angular momentum

equals the applied moment,

= ´


 
( )L

t
r F

d

d
11

and it follows that

L td d is orthogonal to z, or =L td d 0z . In the real solar system the Lz of

asteroids or comets is quasi-constant.

Figure 12. Kozai–Lidov mechanism for a fictitious particle with initial = = e i0, 70
perturbed by the four giant planets in their actual orbits. This mechanism generates
large coupled excursions in eccentricity and inclination.
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This mechanism is responsible for very large excursions in e and i, and in some cases,
driving to collision with the central star. Such objects are known as sungrazers [25].
Thousands of sungrazer comets are known and some asteroids also have this type of orbit. In
figure 12 we show the obtained ( ) ( )e t i t, for a fictitious particle with initial circular orbit but
with = i 70 under the perturbation of the four giant planets. Its semimajor axis remains
almost constant but its eccentricity suffers large variations correlated with changes in incli-
nation. It is convenient to follow the evolution of the perihelion distance given by -( )a e1
because when it reaches the value ~ R 0.005 au a collision with the Sun is certain.

4. Conclusion

By means of numerical simulations using a physical model for a planetary system we will not
discover new fundamental laws of physics but we can discover new physical properties of
complex dynamical systems. These properties can be deduced by sophisticated perturbative
theories but can also be observed by means of a well-conducted analysis of the output of
numerical integrations. We have shown some of the basic dynamical properties of planetary
systems using our solar system but these properties can also be found in extrasolar [26] and
fictitious systems. Several experiments can be performed with a code like the one we have
presented here in order to explore and reveal the dynamics of planets and minor bodies. Some
examples can be found on the ORBE website; the initial conditions for the examples pre-
sented here can also be found there. We remark that as ORBE is only for educational
purposes, serious research must be conducted using other professional integrators. A plane-
tary system is usually imagined as a static collection of ellipses but very rich dynamics
emerge when we consider their mutual interactions. Regular oscillations with well-defined
frequencies or chaotic evolutions that sometimes lead to catastrophic ends are two well-
differentiated dynamical evolutions. Since the observed planetary systems are in general the
result of billions of years of orbital evolution it is largely more probable to find stable
planetary systems than unstable ones. Nevertheless, unstable planetary systems can be found
if they are in the first steps of their orbital evolution, like those that exhibit traces of the
accretion disk. It is exciting that we can explore them in the classroom with simple numerical
integrators.
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