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Dynamical detection of network 
communities
Marcos G. Quiles1, Elbert E. N. Macau2 & Nicolás Rubido3,4

A prominent feature of complex networks is the appearance of communities, also known as modular 
structures. Specifically, communities are groups of nodes that are densely connected among each 
other but connect sparsely with others. However, detecting communities in networks is so far a major 
challenge, in particular, when networks evolve in time. Here, we propose a change in the community 
detection approach. It underlies in defining an intrinsic dynamic for the nodes of the network as 
interacting particles (based on diffusive equations of motion and on the topological properties of 
the network) that results in a fast convergence of the particle system into clustered patterns. The 
resulting patterns correspond to the communities of the network. Since our detection of communities 
is constructed from a dynamical process, it is able to analyse time-varying networks straightforwardly. 
Moreover, for static networks, our numerical experiments show that our approach achieves similar 
results as the methodologies currently recognized as the most efficient ones. Also, since our 
approach defines an N-body problem, it allows for efficient numerical implementations using parallel 
computations that increase its speed performance.

A remarkable feature observed in several complex networks is the presence of communities, namely, modular 
structures1–4, as it is observed, for example, on the Internet5, metabolic networks6,7, financial time-series8, or 
even in networks representing quantum systems9. Communities are groups of densely connected nodes within a 
network, while connections between nodes belonging to different communities are proportionally sparser. They 
characterize highly interactive local areas in a network, hence, their identification is important to understand the 
formation, growth mechanisms, and key structures of a network10,11. Moreover, the structure of communities 
shows similarities in regards to the characteristics of the nodes that compose them4,12. Thus, through the identifi-
cation of communities we obtain fundamental information about the network characteristics.

Recently, various mechanism have been proposed for the emergence of communities13–17, which also derive 
the heavy-tail degree-distribution and high clustering commonly observed in real-world networks. Nevertheless, 
detecting communities in any observed network is still an extensive task. Let us take the simplest case of com-
munity detection: dividing a network into two parts of equal size such that the number of links connecting these 
two parts is minimal. This is already a complex task since the computational time to resolve it is non-polynomial, 
i.e., it is a NP-Complete problem2. In general, real networks may consist of an arbitrary number of communi-
ties, with several sizes, and hierarchical structures within themselves (namely, a community composed by other 
sub-communities)4, or even having soft17 or fuzzy18 communities (namely, nodes belonging partially to various 
communities), hence, the problem is even harder. Consequently, and given the importance and complexity of the 
community detection problem, several models have been proposed18–40. However, to the best of our knowledge, 
a method that efficiently detects these broad community scenarios and gives a physical interpretation for its pro-
cess, is still missing.

Furthermore, real-world networks are usually time-varying, with sizes and structures that evolve continuously, 
complicating the community detection even further. For example, if we take a social network such as Facebook, 
new users (nodes) are added or removed daily and new friendships (links) are formed or eliminated. Similarly, 
an ecological network can change its trophic or symbiotic interactions, namely, the relationship between preda-
tors and preys or the intra-species interactions due to predations or competitions. Although several models for 
community detection in time-varying networks have been proposed, most are based on a static view-point of the 
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network4, neglecting its intrinsic evolution. Specifically, these models work as follows. A static snapshot of the 
network at time t is obtained and the communities of the snapshot are detected by some algorithm. After the net-
work changes, another snapshot is taken at time t +  δ and the algorithm is reapplied. Thus, the network structures 
previously glimpsed are disregarded, as well as the community evolution from time t to t +  δ.

Here, we propose a change in the community detection approach. We consider the nodes of the network as 
particles obeying a particular dynamics that promptly converges to clustered patterns, namely, the network com-
munities. As a result, our approach makes a fast and optimal community detection, in particular, for time-varying 
networks. Moreover, is numerically efficient, since N-body problems allow for parallel computations, and is 
adjustable, since the choice of dynamics for the particles is flexible. This allows to conceive different algorithms 
which can be tailored to suit different data-sets, increase computational speed (i.e., convergence to the clustered 
patterns) or improve cluster separation (i.e., communities distinguishability).

Specifically, our approach associates the nodes of a network, e.g., Fig. 1(a), to an spatially distributed system of 
interacting particles, e.g., Fig. 1(b), hence, it introduces a physical interpretation to the detection of communities 
in networks. We choose the interaction between the particles to be either attractive (for nodes in the network that 
are adjacent, i.e., a link exists that connects them) or repulsive (for nodes in the network that are non-adjacent). 
The functional form for the interactions is chosen such that the system quickly achieves a clustered state, namely, 
the equilibrium one [Fig. 1(e)], where different particle clusters correspond to different network communities. 
This functional form is set following the general idea behind diffusive dynamical systems, where a potential func-
tion defines the particle dynamics so that the system evolves towards an asymptotically stable equilibrium. Hence, 
our approach is mathematically tractable within the dynamical system’s framework and solves elegantly the top-
ological problems of community detection for any network, either static or time-varying. Also, by defining an 
N-body problem, it allows for efficient numerical implementations with parallel computations that increase its 
speed performance. In particular, we find that without parallel computations, our implementation has an 
 ×T N( )2  performance, N being the size of the network and T the number of iterations (see Supplementary 
Material for performance details).

Results
Model: complex networks as interacting particles. Let us consider a complex network G V E= { , }, 
where   [] is the set of nodes [edges], for which we assign a set of particles in a D-dimensional space. We set 
D =  3 and start by placing the particles randomly, although neither the dimensionality of the space nor the initial 
distribution of particles seems critical. Our empirical findings show that results are nearly invariant if D ≥  3, 
hence, D =  3 is the numerically most efficient and graphically straightforward situation we can choose, and the 
community detection is based on the asymptotic state of the particle system, hence, close but randomly placed 
particles suffice. The i-th node in the network ( = …i N1, , ) is then associated to a particle’s position, 

=x t x y z( ) ( , , )i i i i , that evolves according to

α β= +�� �� ��
x F F , (1)i i

A
i
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Figure 1. Evolution of our system of interacting particles for the detection of communities in a complex 
network. Panel (a) shows a network with 6 communities analyzed by our particle approach. We consider each 
node of the network as a particle. The particles interact with each other according to attractive (nodes that 
are connected in the network by a link) or repulsive (nodes in the network that are disconnected since a link 
is missing) forces. An arbitrary initial distribution (t =  0) of particles is shown in panel (b) that corresponds 
to the nodes in panel (a). The snapshots of the particles’ evolution at t =  3 [panel (c)], t =  5 [panel (d)], and 
t =  10 [panel (e)] show the fast convergence of the system to an equilibrium state and the resultant community 
detection from the particle clusters [encircled on panel (e)].
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where 
��
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A( )
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] is the attractive [repulsive] interaction force that particle i is subject to due to the other particles 

(namely, the rest of the adjacent [non-adjacent] nodes) and α >  0 [β >  0] is the relative strength for the attractive 
[repulsive] force magnitude. These strengths constitute control parameters of our approach.

Let us now set the interaction between particles i and j such that, whenever nodes i and j in the network are 
connected, namely, the adjacency matrix ij-th entry is Aij =  1, the corresponding particles feel a mutual attraction, 


I ij
A( )

. Contrary, if the adjacency matrix Aij =  0, the corresponding particles feel a mutual repulsion, 


I ij
R( )

. 
Consequently, the nodes that are [not] linked together correspond to particles that are [repelled] attracted to each 
other. These forces are designed so that the cumulative effect of all forces acting upon each particle (namely, 
= ∑
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), for optimally chosen values of α and β, drive the system of interacting parti-

cles to an asymptotic stable configuration in which the particles are attracted to different clusters. These clusters 
of particles are associated to the communities in the network, where particles that end in the same cluster identify 
a particular community in the network. Conceptually, we assume that if a community exists, the nodes within a 
community have a larger proportion of their links being shared within the community than the proportion of 
links connecting those nodes to other nodes outside their community. Hence, the corresponding particles within 
a community will have interactions that are more attractive than repulsive. Here, we consider the following inter-
action forces
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where γ >  0 is the characteristic decay rate for the repulsive interaction as a function of the distance between 
particles, namely, − x xi j , Aij ≥  0 is the adjacency matrix of the network, ≡ ∑ =k Ai j

N
ij1  is the node’s degree, and 

δ≡ − − ≥R A1 0ij ij ij  is the matrix of the absent links. We stress that other choices for the attractive and repul-
sive interactions are possible31, leading to a faster convergence or other clustered patterns (Supplementary 
Material), although the choice of placing an exponential term in the repulsion is done to guarantee the particles’ 
confinement. Without loss of generality, γ =  1 throughout our work.

The particular choice of interaction forces [Eq. (2)] we use makes our dynamical approach [Eq. (1)] a gra-
dient system (Supplementary Material). Hence, it is a system that holds an attracting region, such that for any 
initial spatial distribution of particles close to the origin, the system converges to an equilibrium state. This final 
equilibrium-state corresponds to the network communities. In particular, to split these communities automat-
ically, we use a clustering algorithm based on a centroids-seed approach, as explained in sec:methodsMethods. 
The clustering algorithm is similar to the K-means clustering algorithm, but with K varying dynamically. We 
note that force-directed algorithms31,40 share similarities with our gradient system, where an energy model is 
defined and its global minimum is sought. These algorithms also use attractive (repulsive) force between adjacent 
(non-adjacent) nodes, which cluster the nodes achieving a graphical layout where communities are observed31. 
However, our particle approach also includes the weighing factors Aij/ki and Rij/ki that correspond to the unbiased 
random-walk probabilities of a diffusive processes on the network29,30,33,38,39, namely, the transition probabilities 
for a random walker to diffuse from node i to j in a stochastic models. Since our numerical findings show that we 
overcome the problem of finding a local energy minima, we conjecture that the reason is due to the inclusion of 
these weighing factors into the particle dynamics.

Numerical experiment: static networks. We use an explicit Euler scheme for the time discretization of 
the equations of motion [Eq. (1)] to have the fastest numerical evaluation, i.e., ∆+ − ∆� � ��dx dt x t t x t t/ [ ( ) ( )]/i i i  
with Δ t =  1, and we use the SNAP package41 to implement our networks. The Euler scheme is always viable when 
the dynamics is a gradient system as convergence is then guaranteed. On the other hand, α and β in Eq. (1) are 
chosen from experiments with several networks. Our findings show that there is always a combination of values 
for these parameters that result in particle clusters. Namely, for each value of α one can find a value of β where 
communities are detected with a minimal error, as seen in Fig. 2(a), where the color code indicates the success 
rate that our model has (i.e., 0[1] corresponds to an unsuccessful[successful] detection) for a Girvan-Newman 
(GN) network1 of N =  128 nodes. The relationship between α and β is formally deduced in the Supplementary 
Material.

We find that a successful community detection is possible for all static networks analysed when α =  1.0 and 
β ∈  (0.1, 0.4), as for example, is seen from Fig. 2(a). In general, if β .0 4, the repulsion is increased to a point 
where groups of particles are barely observed due to the influence of a strong repulsion. On the other hand, if 

β .0 1, the attraction between particles overcomes repulsion causing all the particles or clusters to merge. 
These are the reasons why, as we vary β while holding α fixed, we detect a hierarchical structure of communities 
in the network from the resulting particle clusters. Figure 3 shows the particle’s asymptotic states for different 
values of β and fixed α =  1.0 on a network with 9 communities [Fig. 3(a)]. For small values of β (≃ 0.01), the 9 
communities are merged into a single indistinguishable cluster of particles [Fig. 3(b)], however, as β is increased 
the particles start to cluster differently and communities are gradually detected, first 3 [Fig. 3(c)] and later 9 
[Fig. 3(d)]. This parameter tuning provides a useful hierarchical detection of communities, showing the versatility 
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of the particle approach, although, maintaining parameter robustness, namely, fine-tuning is generally unneeded 
(See the Supplementary Material for details on how to estimate β). In other words, we note that having a flexible 
choice for β allows us to have an algorithm which can detect soft17 or fuzzy18 communities as the parameter is 
tuned.

In order to evaluate the performance of our approach for community detection on general settings, we use 
the methodology considered in ref. 32. Particularly, we perform a set of experiments using the Girvan-Newman 
(GN)1 and Lancichinetti-Fortunato-Radicchi (LFR)42 benchmarks with the same parameters as in these refer-
ences. On the other hand, in order to compare systematically our results on these benchmarks with other com-
munity detection methods [namely, Girvan-Newman1 (GN), Fast-Greedy23 (CNM), page-ranking30 (InfoMAP), 
label-propagation25 (PL), and Walk-trap29 (RAK) methods] we use the normalized mutual information (NMI)2, 
which measures the effectiveness that a community-detection method has to distinguish communities in any 
given network (see Methods for details).

The community structure of the networks in the GN and LFR benchmarks is controlled by a parameter known 
as the mixing parameter, μ. μ defines the proportion of links that a node in a community has connecting it 
to nodes from other communities. Meaning that, if μ =  0.0, the communities are completely isolated, namely, 
inter-community links are absent. If μ =  0.5, half of the node’s links are connections with other nodes in its own 
community (i.e., intra-community links), and the other half of the links are inter-communities links. Hence, as 
μ increases the distinction between communities is gradually lost, which constitutes a test for the robustness and 
reliability of the community-detection method.

For any method, as μ is increased from 0 to 1 and communities are gradually merged, the value of the NMI 
changes from 1 (i.e., all communities are properly detected) to 0 (i.e., no communities are detected). Ideally, the 
transition of the NMI values from 1 to 0 happens smoothly when µ .0 5, which corresponds to the situation 
where communities start being indistinguishable. In this sense, we see from Figs 2(b) and 4 that our approach 
detects communities effectively for both benchmarks, GN and LFR respectively, and even outperforms (on aver-
age) the other state-of-the-art community detection methods1,23,25,26,29,30 when μ is large. For example, we observe 
that our model can detect communities on the LFR benchmark to values up to µ .~ 0 8 [Fig. 4(a)], which is a 
scenario where the community distinction is extremely subtle.

Numerical experiment: time-varying network. As an illustration of the efficiency of our approach in 
detecting the communities of time-varying networks, we show the results obtained for a particular scenario in 
Fig. 5. Using the methodology proposed in43, we start with a network of N =  128 nodes with 4 communities con-
taining an even number of nodes (namely, 32), as shown in Fig. 5(a) (where inter-community links have been 
discarded on the graphical representation for the sake of clarity). Then, the communities evolve dynamically by 
growing/shrinking and merging/splitting. On a particular instant, after this modification on the network struc-
ture, two communities are effectively merged into a single community of 64 nodes, which leaves the network 
with a total of three communities [Fig. 5(d)]. As Fig. 5(f–j) show for each instant snapshot on Fig. 5(a–e) [t =  101, 
t =  103, t =  107, t =  110, and t =  120, respectively], the spatial configuration of particles after a few iterations 
rapidly converges into a new steady-state, that again, corresponds to the correct detection of the communities 
present in the modified network. Since the new community structure detected by our approach is obtained by 
running the algorithm from the former clustered state, the convergence speed is increased in comparison to that 
of a random initial condition (see Methods for details and implementation details).

Figure 2. Community detection rates as a function of our parameters (left) and community 
distinguishability (right) in GN networks. The detection rates are measured by the normalized mutual 
information2 (NMI), which gives 1 [0] for a correct [an incorrect] detection (see Methods for details). 
Community distinguishability in Girvan-Newman (GN) networks1 is controlled by μ, a mixing parameter 
which blurs the community distinction as it is increased. Panel (a) shows the NMI (color code) that our 
algorithm gives as a function of the attractive and repulsive parameters, α and β, respectively, for a GN network 
with N =  128 nodes and μ =  0.45. Panel (b) shows the NMI for different state-of-the-art methods, namely, GN1, 
Fast Greedy23 (FG), Info MAP30 (IM), Label Propagation25 (LP), Walk Trap29 (WT), and our method (OM) 
[Eq. (1)] using α =  1 and β =  0.36, which achieves the best detection rate.
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Numerical experiment: real-world network. For the sake of completeness and to test the accuracy of 
our approach, we provide an experiments on a real-world social network. The experiment is conducted using the 
network of American football games introduced in ref. 22. This network contains 115 nodes, which represents the 
teams of the Division IA college games in the 2000 season. The links between nodes (teams) are the matches. The 
teams are split into twelve conferences of 8 to 12 teams. The matches between teams are more frequent between 
teams belonging to the same conferences, thus, we might expect the formation of communities. In our experi-
ment, we perform a hierarchical detection of communities by varying the parameter β from 0.01 to 0.7. As it is 
shown in Fig. 6, the formation and the division of communities increases as the parameter β is increased. When 
β ≥  0.55, the communities revealed by our method are compatible to those observed in the real division of the 
conferences22.

Discussion
Our findings show that, treating a network as a set of interacting particles, where the force between particles is 
attractive [repulsive] when nodes are adjacent [non-adjacent] and is weighed by the random walk probability of 
transitioning between the nodes, allows to detect communities with high accuracy and low parameter sensitivity, 
outperforming several state-of-the-art community-detection algorithms. In summary, the main contributions 
from our approach are various. First, its dynamical nature. This means that, if a change in the network topology 
occurs, such as the inclusion or removal of a node or link, it is naturally interpreted as a perturbation in the 
particle system, thus reaching a new equilibrium state after a short transient. In this way, we avoid reapplying 
our approach when structural changes happen. On the contrary, most of the community detection methods are 
unable to deal with time-varying networks straightforwardly, since the algorithms must be reapplied every time a 
structural change is observed. Second, the adjustment of the interaction parameters allows us to detect commu-
nities hierarchically, which could also allow to identify networks with soft communities17. Third, the flexibility of 
our particle approach allows the choice of other functional forms for the interactions between particles, hence, 
designing different community-detection algorithms.

Figure 3. Hierarchical community detection of a network using the interacting particles’ approach. Our 
approach [Eqs. (1)–(2)] is applied to the network in panel (a), where the dots in the matrix represent a link in 
the network connecting node i (row) to j (column) and the color code is introduced to highlight the distinction 
between the 9 communities in the network. The network has N =  288 nodes, = =k k 16max , μ1 =  0.25 (for the 
micro-communities, which have sizes of 32 nodes), and μ2 =  0.08 (for the macro-communities, which have sizes 
of 96 nodes). Panels (b–d) show the final state of the particle system for different repulsion strengths (β) and 
fixed attraction strength (α =  1.0), starting from an arbitrary initial distribution of particles, as in Fig. 1(b). The 
community distinction emerges gradually and hierarchically as β is increased, which allows for soft community 
detection17.

Figure 4. Community detection rates as a function of community distinguishability in LFR networks. 
The panels show the normalized mutual information2 (NMI) values as a function of the mixing parameter, 
μ (namely, the degree of community distinguishability), for the algorithms considered in Fig. 3(b) on 
Lancichinetti-Fortunato-Radicchi networks32. Four network scenarios are shown: N =  1000 and N =  5000 
nodes with “small” (S) [panels (a,c)] and “big” (B) [panels (b,d)] communities (see Methods for details on the 
community sizes). Each point on the curves correspond to the average of the NMI value over 200 network 
realizations, excluding the GN analysis for N =  5000 because of its high computational cost. The symbols follow 
the labels set in Fig. 3(b) for each algorithm and the parameters for our algorithm are: α =  1 and β =  0.15 [panel 
(a)], 0.12 [panels (b,c)], and 0.09 [panel (d)].
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We note that, although the use of particle systems to solve a wide range of problems is well-known19 dat-
ing back to the use of molecular dynamics simulation techniques for hydrodynamic problems and celestial 

Figure 5. Evolution of our dynamical model of interacting particles for community detection on a time-
varying complex network. Snapshots of the network evolution are shown in panels (a–e). The evolution starts 
with a network composed of 4 communities with 32 nodes each. From (a–e), using the methodology proposed 
in Granell, et al.43, the communities evolve dynamically by growing/shrinking and merging/splitting. Panels 
(f–j) depict the clustered particles’ steady-state of the networks in panels (a–e). Panel (k) illustrates in color code 
the evolution of the communities evolving in time and panel (l) illustrates the outcome of our approach, namely, 
the identification of the nodes belonging to one of the three or four communities present in panels (a–e). Panel 
(m) shows the NMI achieved by our model and by the Infomap30.

Figure 6. Hierarchical detection of communities on the American Football network. The color code in 
panel (a) corresponds to our hierarchical detection of the different communities that are observed in this 
network of N =  115 teams (nodes) where the football matches are the links. Each football team in this panel 
(horizontal axes) belongs to a community22, which is signalled by a number between 0 to 11. From top to 
bottom, as β is increased (i.e., the repulsive force strength), the communities that our approach detects start 
to split hierarchically, hence, more colors emerge. In particular, the NMI that we achieve on this network for 
different β values is shown in panel (b).
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mechanics N-body problems, this particle approach is novel when it comes to community detection in networks. 
Furthermore, since N-body problems allow for parallel computations and we choose a particle dynamics that 
derives from a potential function, our approach allows for the design of numerically efficient and stable algo-
rithms, namely, algorithms that require minimum floating point operations per iteration and allow for larger 
iteration time-steps.

Methods
Network benchmarks and the Normalized Mutual Information. We evaluate our methodology sys-
tematically following ref. 32 and using the normalized mutual information2 (NMI). Specifically, we perform a set 
of experiments taking networks that are considered benchmarks for testing community detection algorithms and 
evaluate the efficiency of our approach to detect communities on these networks by means of the resultant NMI 
value.

The benchmarks we choose are the Girvan-Newman (GN)1 networks and the Lancichinetti-Fortunato-Radicchi 
(LFR)42 networks, which are implemented using the same parameters as in these references. In particular, for the 
LFR networks the average degree was set to 20, the maximum degree to 50, the exponent of the degree distribu-
tion to − 2.0, and the exponent of the community size distribution to − 1.0. With these parameters, the following 
scenarios were considered: networks with 1000 nodes and community sizes varying from 10 to 50 nodes, which 
we name as small (S); networks with equal size but with communities varying from 20 to 100 nodes, which we 
name as big (B); and two scenarios more that follow the same range for the community size as the former two 
cases but with networks with 5000 nodes.

The effectiveness of the algorithms in detecting communities is quantified by the normalized mutual infor-
mation (NMI) measure2. This measure is calculated from a confusion matrix N, where rows correspond to the 
expected community structure and the columns correspond to the obtained community structure. The NMI is 
then defined by

=
− ∑ ∑
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where MR [MF] corresponds to the number of expected [found] communities, Nij represents the number of nodes 
belonging to the real community i but clustered within community j according to the algorithm’s outcome, Ni [Nj] 
defines the row [column] sum over i [j] of matrix N, and N represents the total number of nodes in the network.

Community Detection Algorithm: centroids-seed approach. The particles in our approach 
[Eqs. (1)–(2)] self-organize into clusters after a short transient. This transient period is evaluated by analysing the 
instantaneous variations in the average of the repulsive interactions between particles, Δ R(t), where
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If Δ R(t) at time t is below a certain threshold θr, an equilibrium state has been reached and the algorithm 
iterations can be stopped. This equilibrium state provides the community structure of the network for a given set 
of parameters (α and β).

In order to differentiate the particles belonging to different clusters automatically, after the transient, a 
centroids-seed approach is taken34. Namely, seeds are added randomly into the particle’s space with spatial posi-
tion given by =t rand rand rands ( ) ( (), (), ())k , with = …k S1, , , where S is the total number of seeds. These 
seeds s k are used to identify the communities according to their membership. In order to identify the community 
that each node belongs to, a variable yi is defined as the community label, i.e. if yi(t) =  1, it means that at time t 
node i, associated with particle xi, belongs to the community number 1, or in other words, is associated with the 
seed s1.

Hence, the community assignment of each particle is done by evaluating the distance from the particle, e.g., xi, 
to all existing seeds, s k, at time t by

= −
y t x t s t( ) arg{min ( ) ( ) }, (5)i k

i k

which means particle xi is always linked with its closest seed. We also calculate the quadratic error of each seed 
from
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where Δ k represents the set of particles associated with the seed sk and |Δ k| is the number of particles in the set 
Δ k. Consequently, the error E n( )sk

 is somewhat the average quadratic distance of all particles within a cluster at 
iteration n. Then,

1. if any seed has error zero, =E n( ) 0sk
, it means that this seed is isolated in the particle space, and it is 

associated with none or only one particle; consequently, the seed is removed;
2. if any seed has error greater than a threshold θs, θ≥E n( )s sk

, it means that this seed is associated with a 
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highly heterogeneous cluster of particles, which indicates that a new cluster must be created. Thus, a new 
seed is inserted.

These conditions need the definition of a threshold θs, which sets the maximum heterogeneity level allowed 
in each particle cluster. In particular, if any seed is removed or added, the particles are reassigned to the seeds 
[Eq. (5)]. Finally, the position of the seeds themselves are reassigned by

∑=
|∆ |

.
∀ ∈∆


s t x t( ) 1 ( )

(7)
j

j i
i

j

This process is repeated until the convergence of the seeds, which is observed when the variation of the errors 
of the seeds, E n( )sk

, are stabilized. Namely, when θ∆ ≤E n( ) c, where

∑ ∑∆ = − −E n E n E n( ) ( ) ( 1) (8)s sk k

and θc we set constant at 10−2. From our numerical experiments, we observe that the number of steps (n) required 
to reach the stopping condition has a linear relationship to the number of detected communities, which we note 
is identical to the linear relationship found for the run-time reported for the Potts model18.

The overall algorithm is summarized in Fig. 7 and can be found in44. Throughout this work, we set the thresh-
old parameters, namely, θr and θs, to 10−2 and 0.5, respectively.

Time-varying networks: algorithm implementation. In general, a time-varying network starts from 
an initial topology, namely, an initial network connectivity, and then it evolves its links according to some known 
or unknown function. Our method takes into account this initial network connectivity to calculate the equi-
librium state of the associated particle system (where particles start from a random initial placement but close 
to the origin). Then, it evolves the particle systems from this initial equilibrium state at the same time as the 
links in the network are modified due to the network’s evolution. Also, if the network grows or shrinks as time 
evolves (i.e., N increases or decreases), particles are added close to the origin or removed. However, the network’s 
topology evolution is carried at a slower time-scale than the clustering dynamics between particles. Hence, we 
can think that at any time, we are pausing the network’s evolution and computing its communities, thus, retriev-
ing a snapshot-like analysis. Nevertheless, we highlight the fact that our approach is applied continuously, con-
trary to the static-network snapshot method, hence, producing a real-time community-detection method that is 
unbiased.

The modified equations of motion for the particles are

∑
τ

τ
≡ −

−

−

τ

=

� �

� �
��
F t

A
k

x t x t

x t x t
( )

( )
( )

( ( ) ( ))

( ) ( )
,i

A

j

N
ij

i

i j

i j

( )

1

( )

∑
τ

τ
≡

−

−

τ
γ

=

− −
� �

� �
�� � �‖ ‖( )
F t

R
k

x t x t

x t x t
e( )

( )
( )

( ) ( )

( ) ( )
,

(9)
i
R

j

N
ij

i

i j

i j

x t x t( )

1

( )
( ) ( )i j

where x t( )i  is the i-th particle position at time t and Aij(τ) [Rij(τ)] is the adjacency [complementary adjacency] 
matrix, that, at time t, has evolved τ. Similarly, the number of nodes in the network, N(τ), and their degree, 
τ τ= ∑k A( ) ( )i j ij , which at time t has a value according to the evolution of the connectivity matrix Aij(τ). The 

Figure 7. Community detection algorithm with the centroids-seed pseudo-code. 
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time τ is the instantaneous time for the evolving topology, which in terms of t, is much slower. Namely, =t 1 
while τ ε=� � 1, which is treating the evolution of the particle forces and the evolution of the connectivity as the 
decoupling of a dynamical system between its fast and slow dynamics.

The algorithm in Fig. 8 summarizes how the method is applied to time-varying networks. It is worth noting 
that, in contrast to Fig. 7, both the model’s core and the clustering routine do not start from a random initial con-
dition, but from the condition built on the previous iteration. Thus, the number of steps necessary to reach a new 
equilibrium (position of the seeds) is lowered.
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