
 

 

University of Warwick institutional repository: http://go.warwick.ac.uk/wrap
This paper is made available online in accordance with 
publisher policies. Please scroll down to view the document 
itself. Please refer to the repository record for this item and our 
policy information available from the repository home page for 
further information.  
To see the final version of this paper please visit the publisher’s website. 
Access to the published version may require a subscription. 
 
Author(s): ANTHONY MANNING 
Article Title: The volume entropy of a surface decreases along the Ricci 
flow  
Year of publication: 2004 
Link to published 
version: http://dx.doi.org/10.1017/S0143385703000415 
Publisher statement: None 

 
 
 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/48751?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/wrap


http://journals.cambridge.org Downloaded: 02 Jun 2009 IP address: 137.205.202.8

Ergod. Th. & Dynam. Sys. (2004), 24, 171–176 c© 2004 Cambridge University Press
DOI: 10.1017/S0143385703000415 Printed in the United Kingdom

The volume entropy of a surface decreases
along the Ricci flow

ANTHONY MANNING

Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK
(e-mail: akm@maths.warwick.ac.uk)

(Received 5 June 2003 and accepted in revised form 23 June 2003)

Abstract. The volume entropy, h(g), of a compact Riemannian manifold (M, g) measures
the growth rate of the volume of a ball of radius R in its universal cover. Under the Ricci
flow, g evolves along a certain path (gt , t ≥ 0) that improves its curvature properties.
For a compact surface of variable negative curvature we use a Katok–Knieper–Weiss
formula to show that h(gt ) is strictly decreasing.

1. Introduction and statement of results
The volume of a ball of radius R in the universal cover (M̃, g̃) of a Riemannian manifold
(M, g) grows exponentially at a rate

h(g) := lim
R→∞ R−1 log vol(B(x,R, g)) ≥ 0

called the volume entropy of (M, g) [25]; see also [8, 28]. The geodesic flow on the unit
sphere bundle of a fixed Riemannian manifold (M, g) of negative sectional curvature has
the Anosov or hyperbolic property and is a major example of a structurally stable flow,
see [2] and [17, §17.6]. It is known that, in the case of non-positive sectional curvature
[25] or indeed of no conjugate points [9], the topological entropy of the geodesic flow for
(M, g) is equal to the volume entropy h(g). Various estimates have been found for this
topological entropy and for hλ(g), the entropy of the geodesic flow with respect to the
Liouville measure λ, see [9, 15, 16, 27, 30, 35].

Katok, Knieper and Weiss showed in [18, Theorem 3] that, for any C1 path t �→ gt of
C2 Riemannian metrics of negative sectional curvature on M , the entropy h(gt ) depends
C1 on t and has a derivative at t = 0 given by

h′(g0)/h(g0) = −1

2

∫
SMg0

(∂/∂t)|t=0gt (v, v) dµ0(v), (1)

where µ0 denotes the measure of maximal entropy for the geodesic flow for (M, g0) on its
unit tangent bundle SMg0 .
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The Ricci flow was introduced by Hamilton in [10]; see [6] for a recent survey.
Starting from (M, g0) this flow provides a path t �→ gt (t ≥ 0) of Riemannian metrics
satisfying the partial differential equation

∂

∂t
gij = −2Rij + 2

n
rgij , (2)

where Rij denotes the Ricci tensor, n is the dimension of M and r denotes the average
scalar curvature. The term (2/n)rgij ensures that the volume of (M, gt ) is constant. In the
case n = 2 that interests us, equation (2) reduces to

∂

∂t
gij = −2(K − K)gij , (3)

where K denotes the Gaussian curvature at a point of M and K is its average value.

Standing hypothesis 1. From now on we assume that M is a smooth closed surface of
negative Euler characteristic χ(M).

Any Riemannian metric g0 on M of area 1 is conformally equivalent to a metric, g∞ say,
of constant curvature and area 1. By Gauss–Bonnet, the value of this constant curvature is
2πχ(M) < 0 and then

h(g∞) = √−2πχ(M), (4)

the growth rate of any unstable Jacobi field. All metrics in the flow t �→ gt are in the
same conformal equivalence class, that is gt = e2ut g∞ for functions ut : M → R with∫
M

e2ut dA∞ = 1, where dA∞ denotes the area form on (M, g∞). Katok showed that

h(g0)/h(g∞) ≥ 1

/∫
M

eu0 dA∞ > 1, (5)

unless (M, g0) itself has constant curvature; see [15], and note that the argument in
[16, p. 141] applies to h(g0) and not only to the topological entropy of the geodesic flow
on (M, g0).

In [5], Besse discussed trends in Riemannian geometry including entropy and the Ricci
flow (but not the relation between these). In [11, Theorem 3.3], Hamilton showed that, for
any initial Riemannian metric g0 on a surface, the Ricci flow converges to the metric g∞
of constant curvature. Moreover, if (M, g0) has negative curvature then so does (M, gt )

for t > 0 and the convergence is exponential. The Ricci flow has the differentiability we
need to apply (1) because, by [37, Theorem 6.1] and [22], if g0 is C2 (or only in H 2) then
ut (x) is C∞ on M × (0,∞).

THEOREM 1. Let M denote a smooth closed surface of negative Euler characteristic.
Let g0 denote a Riemannian metric on M of non-constant negative curvature and area 1,
and let gt , t ≥ 0 denote the Ricci flow starting from g0. Then the volume entropy h(gt ) is
a strictly decreasing function of t .

Remark 1. h(gt ) converges to the value
√−2πχ(M) for constant curvature exponentially

fast, using Theorem 3.3 of [11] and Sinaı̆’s estimate [36] that h lies in [(n−1)k2, (n−1)k1]
when n = dim M and all sectional curvatures lie in [−k2

1,−k2
2]. Volume entropy seems

unrelated to the entropy − ∫
M K log K shown by Hamilton to be increasing (provided

K > 0), see [11, Theorem 7.2].
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Note that, under the Ricci flow, the Riemannian metric gt evolves to lengthen paths
in regions of stronger than average negative curvature and to shorten them in regions of
weaker than average curvature in order to bring the curvature towards a common value,
while maintaining the area at a constant value. For fixed large R, the disc B(x,R, gt )

evolves to reach further in the direction of geodesics passing through weaker than average
negative curvature and less far in the direction of geodesics along which the curvature
is more strongly negative than average, while the area of a fundamental domain is kept
constant. The theorem states that the combined effect is always to reduce the growth
rate. This accords with the intuition that, as t increases, B(x,R, gt ) gains translates of
a fundamental domain along narrower strips than the broad neighbourhoods of geodesics
experiencing stronger negative curvature where it relinquishes such translates.

If (M, g0) has conjugate points, then its geodesic flow does not satisfy the Anosov
property [3, 19, 24]. In [33] Ruggiero shows that, in the space of C2 Riemannian metrics
on M with the C2 topology, the open set of metrics for which the geodesic flow on the
unit tangent bundle satisfies the Anosov property is the interior of the closed set of those
metrics that have no conjugate points.

THEOREM 2. Let M denote a smooth closed surface of negative Euler characteristic and
g0 a C2 Riemannian metric. If the geodesic flow for (M, g0) is Anosov, then there is T > 0
such that h(gt ) is a strictly decreasing function of t on [0, T ).

2. Proofs and questions

Proof of Theorem 1. An easy argument, using

B(x,R(1 − ε), ĝ) ⊂ B(x,R, g) ⊂ B(x,R(1 + ε), ĝ)

if the ratio of the g-length to the ĝ-length of all vectors is between 1 ± ε, shows that
h(gt ) depends continuously on t . We choose τ > 0 and argue that h′(gτ ) < 0. Because
h(gτ ) > 0, it suffices from (1) to show that

1

2

∫
SMgτ

(∂/∂t)|t=τ gt (v, v) dµτ (v) > 0. (6)

By the definition of the Ricci flow (3), we need∫
SMgτ

−(K − K) dµτ (v) > 0 (7)

or, equivalently,∫
SMgτ

−K dµτ (v) >

∫
SMgτ

−K dµτ (v) = −K = −2πχ(M) > 0. (8)

This is a requirement that the measure of maximal entropy gives more weight to vectors in
those parts of M where the curvature is more strongly negative.

Now

h(gτ ) = hµτ ≤ χµτ , (9)
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where µτ is the measure of maximal entropy for the geodesic flow in SMgτ and χµτ is
its positive Lyapunov exponent, namely the exponential growth rate of Jacobi fields along
µτ -almost every geodesic, see [32, 23, 4]. The inequality is due to Ruelle, see [34] and
[23, §IV.12].

In [27, Theorem 1], we analysed the Riccati equation

da/ds = −a2(s) − K(s) (10)

coming from the Jacobi equation along an orbit of the geodesic flow φs, s ∈ R for (M, gτ )

that is typical for the Liouville measure λτ . Let us apply this analysis to an orbit that is
typical for the measure µτ of maximal entropy. Then, for µτ almost every v ∈ SMgτ , we
have

χµτ = lim
S→∞ S−1

∫ S

0
a(φs(v)) ds

=
∫

SMgτ

a dµτ

≤
√∫

SMgτ

a2 dµτ

=
√∫

SMgτ

−K dµτ .

This estimate (which is a special case of Corollary II.1 in [9]), together with (4), (5), (9),
implies that

∫ −K dµτ > −2πχ(M) as required for (8). �

Proof of Theorem 2. Choose T by structural stability [2, 17] so that the geodesic flow for
(M, gt ) is Anosov for t ∈ [0, T ). Expression (1) comes from Theorem 3 of [18], proved
for negative curvature. But that Theorem 3 depends on the estimates in Proposition 8,
whose proof also works for a small perturbation of an Anosov geodesic flow by comparing
length in the two metrics for each almost uniformly distributed closed orbit. Thus (1) still
holds in our case and the same argument goes through. �

Question 1. Does the Ricci flow starting at a metric with geodesic flow of Anosov type
stay within the class of such metrics or can conjugate points develop? Is the class of such
metrics path connected?

Question 2. A surface (M, g) of negative curvature can, through a large perturbation that
glues a small pair of pants with two caps of positive curvature in place of a small disc,
develop conjugate points and large topological entropy with only a small change to the
volume entropy (to maintain area 1) [26]. Is the volume entropy strictly decreasing under
the Ricci flow in the presence of conjugate points? One might restrict attention to the
subspace of minimizing geodesics [29] and [7, Theorem 1.1].

Question 3. In [15, 27], the Liouville entropy hλ(g) is shown to be less than in the case
of constant curvature. Is hλt (gt ) a strictly increasing function of t? (It is a C1 function
by [20].) By [11], hλt (gt ) certainly converges exponentially to the value

√−2πχ(M)

using [27] or Pesin’s formula [32] and [23, §IV.13].
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Question 4. In [16, §4], Katok shows that the Cheeger isoperimetric constant Cg0

(the infimum of the quotient of the length of a long simple closed curve L in (M̃, g̃0)

by the area it encloses) is at most
∫
M eu0 dA∞

√−2πχ(M) which is less than Cg∞ =√−2πχ(M), the value in the case of constant curvature 2πχ(M); and he argues that Cg0 is
approached when L : [0, �0] → M̃ is a closed curve of constant geodesic curvature. Is Cgt

a strictly increasing function of t? (Hamilton shows in [13] that a certain isoperimetric
constant on the 2-sphere improves along the Ricci flow.)

Question 5. Is there any result similar to Theorem 1 in dimension greater than 2, say in
a neighbourhood of a metric of constant curvature? It is not clear whether one should
follow the Yamabe flow [21, 1], which converges to a metric of constant scalar curvature
within the conformal class, or the Ricci flow, which is not currently known to converge to
an Einstein metric of constant Ricci curvature, [12, 14]; but see [31] (where the entropy
seems unrelated to the volume entropy).
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