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L2 regularity of measurable solutions of a
finite-difference equation of the circle†

MICHAEL ROBERT HERMAN

Mathematics Institute, Warwick University, UK
and

Centre de Mathematiques, Ecole Polytechnique, Plateau de Palaiseau,
91120 Palaiseau, France

We show that if ϕ is a lacunary Fourier series and the equation ψ(x) − ψ(x + α) =
ϕ(x), x mod 1 has a measurable solution ϕ, then in fact the equation has a solution in L2.

(1) We consider the circle T = R/Z and the translations (or rotations) Rα = x →
x + α(α ∈ T).

For 1 ≤ p ≤ +∞, let Lp = Lp(T, dx,C) with the norm ‖·‖p . The only measure
considered is the Haar measure of T, dx = m. All equalities are to be consideredm-almost
everywhere.

(2) Let ϕ ∈ L1 and α ∈ T; we try to solve

ψ − ψ ◦ Rα = ϕ (*)

with ψ measurable and the equality almost everywhere.
If one supposes that ψ is in L1, then by identification of Fourier coefficients if

ϕ(x) =
∑
k∈Z

ϕ̂(k)e2xikx ,

then one has

ψ(x) =
∑
k∈Z

ϕ̂(k)

1 − e2π ikα
e2πikx,

(with the convention that 0/0 = 0). (Of course one has 0 = ∫
T
ϕ(x) dx).

(3) The case when a = p/q (mod 1), (p, q) = 1. Then a necessary and sufficient
condition for measurable solutions to (*) is

q−1∑
i=0

ϕ ◦ Riα = 0. (1)

If (1) is satisfied then the equation (*) has solutions just as regular as is ϕ.

† This work of Michel Herman appeared only as a preprint of the Mathematics Institute, University of Warwick,
dated May 1976. It was turned into TEX format by Claire Desescures. Minor editorial work was done by
Albert Fathi.
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(4) The case when α is irrational. It is easy (by Fourier series) to construct ϕ ∈ L1 with∫
T
ϕ(x) dx = 0 and an irrational α such that the equation (*) has no solution in L1. By the

ergodicity of Rα, measurable solutions of (*) differ by a constant.
If one looks for solutions of (*) which are only measurable then Anosov has shown that

one has necessarily ∫
T

ϕ(x) dx = 0 (for ϕ ∈ L1).

Furthermore, Anosov has constructed ϕ ∈ Cω(T) with
∫
T
ϕ(x) dx = 0 and an irrational α

such that

sup
k �=0

∣∣∣∣ ϕ̂(k)

1 − e2πikα

∣∣∣∣ = +∞,

but nevertheless the equation (*) has a measurable solution ψ (of course not in L1)
(see [1]).

We will show that the examples of Anosov cannot happen when ϕ is a lacunary Fourier
series.

It is then easy to construct a ϕ with
∫
T
ϕ(x) dx = 0 and an irrational α such that the

equation (*) has no measurable solution ψ (since there is no L2 solution).
For other examples see [6].

(5) Let�+ = ni be a lacunary sequence of positive integers: n0 = 1 and nn+1/ni ≥ q > 1
for all i.

Let � = �+ ∪ {0} ∪ (−�+) be the symmetric sequence of integers.
One denotes

L
p
� = {ϕ ∈ Lp | ϕ̂(n) = 0 if n /∈ �}.

One says that ϕ ∈ L1 is a lacunary Fourier series if there exists a lacunary sequence � as
above such that ϕ ∈ L1

�. Then one has, for all 1 ≤ p < +∞, ϕ ∈ Lp�; and all the norms
‖ · ‖p are equivalent on L2

�(see [5]).

(6) We propose to prove the following.

THEOREM. Let ϕ ∈ L2
� and α ∈ T. If the equation

(∗)ψ − ψ ◦ Rα = ϕ

has a measurable solution ψ , then the equation has a solution in L2
� and if α ∈ T − Q/Z

then in fact, by the ergodicity of Rα,ψ ∈ L2
�.

To prove the theorem one needs the following lemmas.

(7)

LEMMA. Let f : T → T be a bijection preserving the Haar measure m.
Let K be a measurable set of T. Let ε > 0 and the set of integers

A = {n ∈ Z | m(K ∩ f n(K)) ≥ m(K)2 − ε}.
The set of integers A is relatively dense: there exists a positive integer k, such that
{j, . . . , j + k} ∩ A �= φ, for all j ∈ Z.

For a proof see [3, p. 31].
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(8)

LEMMA†. Let L2
� be given. There exist constants C > 0 and b (0 < b < 1) such that if

B ⊂ T is measurable with m(B) ≥ b, then for all ϕ ∈ L2
� one has

C

( ∫
B

|ϕ(x)|2 dx
)1/2

≥ ‖ϕ‖2.

Proof. Let 0 < a < 1 and ϕ ∈ L2
� with ‖ϕ‖2 = 1. Let

A(ϕ) ≡ A = {x ∈ T | |ϕ(x)| ≥ a}.
We have ‖ϕ‖2

2 = 1 = ∫
T−A|ϕ(x)|2 dx + ∫

A|ϕ(x)|2 dx ≤ a2 + ∫
A|ϕ(x)|2 dx.

One has by the Hölder inequality

1 ≤ ‖ϕ‖4(m(A))
1/4 + a.

Since the norms ‖ · ‖2 and ‖ · ‖4 are equivalent on L2
�, one has ‖·‖4 ≤ k‖·‖2, k being a

constant greater than 1.
It follows that

m(A) ≥
(

1 − a

k

)4

; (2)

choose

b = 1 − 1

2

(
1 − a

k

)4

.

If B ⊂ T with m(B) ≥ b and if ϕ ∈ L2
� with ‖ϕ‖2 = 1, we have

m(A(ϕ) ∩ B) ≥ 1

2

(
1 − a

k

)4

by (2), so ∫
B

|ϕ(x)|2 dx ≥ 1

2
a2

(
1 − a

k

)4

=
(

1

C

)2

.

The result follows by

C

( ∫
B

|ϕ(x)|2 dx
)1/2

≥ ‖ϕ‖2. �

(9)

LEMMA. Let ϕ ∈ L2. A necessary and sufficient condition for a ψ ∈ L2 that verifies
ψ − ψ ◦ Rα = ϕ to exist is that supn∈N ‖ϕn‖2 < +∞ with ϕn = ∑n−1

i=0 ϕ ◦ Riα .

For the proof see [4]. In fact it results from the more general lemma, which uses the fact
that the unit ball of a reflexive Banach space is weakly compact, and the Markov–Kakutani
fixed point theorem (affine version).

† I thank Y. Meyer who brought to my attention the fact that Carleson has proved a stronger lemma (unfortunately
unpublished): For every B with m(B) > 0 there exists C(m(B), q) > 0 such that one has the conclusion of the
lemma. I thank B. Maurey for the proof proposed.
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LEMMA. Let L be a reflexive Banach space of norm ‖·‖ and u : L → L a continuous
linear operator. Given x ∈ L, a sufficient condition for the existence of a y ∈ L satisfying
y − u(y) = x to exist is that

sup
n∈N

∥∥∥∥
n−1∑
i=0

ui(x)

∥∥∥∥ < +∞;

the condition is necessary if supn∈N ‖un‖ < +∞.

(10) Proof of the theorem. LetL2
� be given and be determined by item (8) (and that depends

on �).
Let ε > 0 with (1 − ε)2 − ε ≥ b.
One starts with a measurable solution of

ψ − ψ ◦ Rα = ϕ, (*)

with ϕ ∈ L2
�. There exists a compact set K ⊂ T of measure ≥ 1 − ε, such that ψ|K is

continuous. By (*) one has

ψ − ψ ◦ Rnα =
n−1∑
i=0

ϕ ◦ Riα ≡ ϕn.

It follows that
( ∫

K∩Rnα(K)
|ϕn(x)|2 dx

)1/2

≤ 2 sup
x∈K

|ψ(x)| < +∞.

Let A = {n ∈ Z | m(K ∩ Rnα(K)) ≥ (1 − ε)2 − ε ≥ b}. By item (7), the
subset A is a relatively dense sequence of integers, and let k be the integer of (7).
Let B = {−k,−k + 1, . . . , k}. Since ϕn ∈ L2

� by (8) one has

sup
n∈A

‖ϕn‖2 = C1 < +∞.

Let C2 = supn∈B‖ϕn‖2 < +∞. Since every n ∈ Z can be written as n = n1 + n2 with
n1 ∈ A and n2 ∈ B and if n1, and n2 are positive integers, we have

ϕn1+n2 = ϕn1 ◦ Rn2α + ϕn2 ;
finally we deduce that

sup
n∈Z

‖ϕn‖2 ≤ C1 + C2

and the theorem results from (9).

(11) From the theorem we deduce the following: if ϕ ∈ L2
α , α is irrational, and ψ is

measurable and satisfies ψ − ψ ◦ Rα = ϕ, then ψ ∈ Lp for every 1 ≤ p < +∞ since ψ
is a lacunary Fourier series. In general, ψ /∈ L∞ even if ϕ is of class Cω as we will show
by a classical example.
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Construction of an irrational α. Let α = 1/(a1 + (1/(a2 +· · · ))) be the continued fraction
of an irrational α (ai ≥ 1, ai ∈ N).

If pn/qn are the convergents of α, one has q0 = 1, q1 = a1 and qn = anqn−1 + qn−2,
if n ≥ 2. If x ∈ R and |||x||| is the distance of x to the nearest integer, one has

|||qnα||| < 1

qn+1
≤ 1

an+1qn
.

If one chooses the sequence (ai) so that it increases sufficiently rapidly, one easily
constructs an irrational α such that, for every n ≥ 2, one has

|||qnα||| ≤ e−qn. (+)

Let us remark that, for every irrational α, (q2n)n∈N is a lacunary sequence of positive
integer (in fact we have q2n+2/q2n ≥ 2 and also q2n+1/q2n−1 ≥ 2).

Construction of ϕ. Let n ≥ 1 be a sequence of complex numbers satisfying

∞∑
n=1

|c2n|2 < +∞ but
∞∑
n=1

|c2n| = +∞.

Let ϕ(x) = ∑∞
n=1 c2n(1 − e2πiq2nα)e2πiq2nx .

If α satisfies (+), then ϕ ∈ Cω(T,C) (and one has 0 = ∫
T
ϕ(x) dx).

Let ψ(x) = ∑∞
n=1 c2ne

2πiq2nx ; one has ψ ∈ L2 (and ψ is a lacunary Fourier series).
Furthermore, one has

ψ − ψ ◦ Rα = ϕ.

But ψ /∈ L∞, for if this was the case then, since ψ is a lacunary Fourier series, we would
have

∑∞
n=1|c2n| < +∞, which is contrary to the choice of the sequence (c2n) (see [5]).

(12) We have shown a proposition in [2] that implies the following remark.

Remark. Let ϕ : T → R be continuous (but not necessarily lacunary) and α irrational.
We suppose that there exists ψ ∈ L∞ with ψ −ψ ◦Rα = ϕ; then ψ is almost everywhere
equal to a continuous function.
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