
BIG DATA PROCESSING WITH

PEER-TO-PEER ARCHITECTURES

GOH WEI XIANG
(

B. Comp. (Hons), NUS; Dipl.-Ing., Télécom SudParis
)

A THESIS SUBMITTED FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

NATIONAL UNIVERSITY OF SINGAPORE

2014

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ScholarBank@NUS

https://core.ac.uk/display/48736175?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

“Tell me, Sir Samuel, do you know the phrase ‘Quis custodiet ipsos

custodes?’?”

It was an expression Carrot has occasionally used, but Vimes was not in

the mood to admit anything, “Can’t say that I do, sir”, he said. “Something

about trifle, is it?”

“It means ‘Who guards the guards themselves?’ Sir Samuel.”

“Ah.”

“Well?”

“Sir?”

“Who watches the Watch? I wonder?”

“Oh, that’s easy, sir. We watch one another.”

“Really? An intriguing point. . . ”

– Terry Pratchett, Feet of Clay

Declaration

I hereby declare that this thesis proposal is my original work and it has

been written by me in its entirety. I have duly acknowledged all the

sources of information which have been used in the thesis proposal.

This thesis proposal has not been submitted for any degree in any

university previously.

Goh Wei Xiang

18 June 2014

ii

Acknowledgements

Nanos gigantium humeris insidentes.

I stand on the shoulders of giants in hope that one day, I too

may provide the leg-up for those who come after. To the titans

before me, I can only offer, for now, my words of gratitude:

I would like to thank Ms. Toh Mui Kiat, Ms. Loo Line Fong,

Ms. Agnes Ang Hwee Ying, Mr. Bartholomeusz Mark Christo-

pher, Ms. Irene Ong Hwei Nee and all the other management

staffs for the administrative support; the endless correspondence

of emails makes the world go round.

I would like to thank the entire Technical Services team for clear-

ing up the mess when I screwed up the various systems one way

or another; allow me to salute the unsung heroes of technical

support.

I would like to thank Prof. Khoo Siau Cheng for helping me when

I was in France and again when I came back; je vous remercie

infiniment.

I would like to thank Prof. Chan Chee Yong and Prof. Stéphane

Bressan for all the critical comments; the hottest fire makes the

strongest steel.

I would like to thank Prof. Chin Wei Ngan for introducing me

to functional programming languages; this has led me to delve

into the abstract nonsense called Category Theory.

I would like to thank Prof. Ooi Beng Chin for introducing me

to the works of structured peer-to-peer overlays; your lectures

on Advanced Topics in Databases (CS6203) are the beginning of

this work.

Most importantly, I would like to sincerely thank Prof. Tan

Kian-Lee for . . . everything. Thank you, sir.

Lastly, on a personal side, I would like to thank, as well as

apologize to, my family — my father, mother and brother —

for their continual support in all aspects of my life so that I can

selfishly satisfy my personal indulgence in research work; some

words are easier written than said: thank you, and sorry.

Contents

Contents v

List of Figures xi

List of Symbols xiii

1 Introduction 1

1.1 Recent Developments . 1

1.2 Desirable System Qualities 15

1.3 Structured Peer-to-Peer Architectures 21

1.4 Contributions . 25

1.5 Organization . 28

2 Related Work 31

2.1 Structured Peer-to-Peer Overlays 31

2.2 MapReduce Frameworks . 41

2.3 Summary . 49

v

Contents

3 Scalability: Katana 51

3.1 Motivation . 51

3.2 Programming Model . 54

3.3 Model Realization . 66

3.4 System Architecture . 72

3.5 System Internals . 75

3.6 Experimental Study . 84

3.7 Summary . 95

4 Robustness: Hardened Katana 97

4.1 Motivation . 97

4.2 Model of Fault-Tolerance . 100

4.3 Robust Katana Operations 110

4.4 Experimental Study . 121

4.5 Summary . 125

5 Elasticity: EMRE 127

5.1 Motivation . 127

5.2 Differences in Execution Environment 129

5.3 Observations . 130

5.4 System Design . 132

5.5 Elastic Job Execution . 147

5.6 Experimental Study . 166

5.7 Summary . 175

vi

Contents

6 Conclusion 177

Bibliography 181

A Group Theory 199

B Category Theory 209

vii

Summary

Recent developments in the realm of computer science have

brought about the introduction of, what some may classify as,

disruptive technologies into the peripheral of both researchers

and developers alike. In present-day academic and industrial

parlance, we frequently hear the mention of the adoption of the

Big Data paradigm, or the deployment with cloud computing,

or the NoSQL movement, or the use of the MapReduce frame-

work. While some may have their reservations on the novelty or

the longevity of these newly introduced concepts, their continual

widespread adoption in the industry undoubtedly indicates pre-

viously unsatisfied needs for certain systemic providence from

the software solutions of yesteryear. Three such desirable quali-

ties of a system architecture can be identified: massive horizon-

tal scalability, robust distributed processing, and elastic resource

consumption.

Currently, the predominant architecture adopted for modern

data processing system is that of the master/workers architec-

ture; the main rationale for this adoption is said to be for the

simplicity of the system design. However, it is perhaps prof-

itable to investigate more elaborated alternatives, especially if

systemic qualities may be enhanced as a result. Extrapolat-

ing from the desirables, it appears that structured peer-to-peer

(P2P) overlays present as a good match to the conditions estab-

lished by the industry. This thesis sets out to demonstrate the

feasibility of adopting a structured P2P overlay in the design of

modern data processing system such that some of the identified

systemic qualities may be magnified.

On horizontal scalability, work has been done to develop a gen-

eralized data processing framework, much like the MapReduce

framework except that the programming model and the system

architecture are completely decentralized. The Katana frame-

work builds on the algebraic structure exhibit by many struc-

tured P2P overlays to materialize its programming model, which

encompasses the expressiveness of the MapReduce programming

model. Experimental results indicate that the augmented ex-

pressiveness, coupled with the decentralization of control, pro-

vides performance improvement in execution over widely scaled

clusters.

In terms of robust processing, research has been conducted to in-

vestigate the incorporation of the decentralized fault-tolerance of

structured P2P overlays into modern data processing system. In

particular, the robust processing of the MapReduce framework

can be generalized into an abstract model of fault-tolerant pro-

cessing called the cover-charge protocol (CCP). The Katana

framework is extended to incorporate the CCP so as to render

its operations fault-tolerant. Experimental studies indicate that

the overhead incurred by the CCP for the operations in the ex-

tended Katana framework, called hardened Katana framework,

is comparable to, if not lesser than, that of the MapReduce

framework. Moreover, the robustness induced within hardened

Katana is derived directly from its decentralized architecture,

and not some external mechanism.

For the notion of elasticity, the feasibility of enhancing the elas-

ticity of the MapReduce execution by embedding a structured

P2P overlay into its execution architecture has been explored.

By deploying the elastic overlay over the worker sites, the pro-

cessing element of this new execution architecture, called Elastic

MapReduce Execution (EMRE), is able to stretch or shrink in

response to resource allocation, thus allowing elastic process-

ing without any changes to the exposed interface. Furthermore,

since the overlay also presents as a distributed index, the infa-

mous shuffle phase of MapReduce can be pipelined, resulting

to overall improvement in running times. In addition, simu-

lated progressive availability of resources in experiments shows

that EMRE has superior capability to handle such a situation

as compared to unmodified MapReduce.

List of Figures

2.1 Cayley graph for (Z8,+8) with the generating set S = {1, 2, 4}

(2.1a) and a corresponding imperfect Chord topology (2.1b) 35

2.2 BATON with 13 sites and fingers of site (2, 3) 38

2.3 Example of bounded broadcast on Chord from site 0 40

2.4 MapReduce system architecture 44

2.5 YARN architecture . 47

3.1 Example of type graph, data graphs and joint data graph . 57

3.2 Example execution of kata job for document length 61

3.3 System architecture of a processing site in the Katana frame-

work . 72

3.4 Max/Mean ratios of different Chord schemes under simula-

tion . 77

3.5 Identification of a spanning tree for a kata job 80

3.6 Effects of virtual sites on spanning tree of a kata job . . . 83

3.7 Running times of Document-Length (N = cluster size) . . . 88

xi

List of Figures

3.8 Data transfer rate of Document-Length (N = 16,SF = 64) . 89

3.9 Running times of Equi-Join (N = cluster size) 90

3.10 Data transfer rate of Equi-Join (N = 16,SF = 64) 92

3.11 Running times of Aggregation-Query (N = cluster size) . . 94

4.1 Example of cover, charge and delegation 106

4.2 Rearrangement of the spanning tree of bounded broadcast . 115

4.3 Example of a secondary delegation 117

4.4 Normalized running times of Document-Length (N = 16,

SF = 64) upon site failure 123

4.5 Normalized running times of Equi-Join (N = 16, SF = 64)

upon site failure . 124

5.1 Data transformation of MapReduce processing model 131

5.2 EMRE system components 132

5.3 Maximum/Mean ratios of some structured P2P overlays . . 144

5.4 Order of processing of the partitions 155

5.5 Running times for Word-Count 169

5.6 Effects of number of reducers for Word-Count 170

5.7 Running times for Inverted-Index 171

5.8 Running times of Self-Join 172

5.9 Running times for Adjacency-List 174

xii

List of Symbols

Mathematical Symbols

N Natural number set, N , {i | i ∈ Z, i ≥ 0}

R Real number set

Z Integer set, Z , {. . . ,−2,−1, 0, 1, 2, . . . }

Z
+ Positive integer set, Z+ , {i | i ∈ Z, i > 0}

Generic Functions

⌊·⌋ Floor function, ∀x ∈ R,

⌊x⌋ = max({i ∈ Z | i ≤ x})

P(S) Power set of S, P(S) , {S ′ | ∀S ′ ⊆ S}

max (x1, x2, . . . , xn) Multi-variable maximum function

min (x1, x2, . . . , xn) Multi-variable minimum function

argmin
x

f(x) Argument of the minimum of f(x)

Probability Notions

exp (λ) Exponential distribution with λ as the rate

parameter

xiii

List of Figures

Pr (X) Probability that event X occurs

CDF Cumulative distribution function

E(X) Expected value of the random variable X

Other Mathemtical Notations

G = (V , E) Graph G is an ordered pair of a set of vertices

V and a set of edges E

Type Notations

v :: T Variable v is of type T

[T] A list/array of type T

(T1, T2) An ordered pair of type T1 and T2

T1 → T2 A function mapping type T1 to type T2

xiv

Chapter 1

Introduction

1.1 Recent Developments

The perpetual acceleration in the growth of digital data handled has now

been, more or less, taken as an irrefutable fact in all academic and indus-

trial discussions in the database community; and it is rightfully so. Gantz

and Reinsel (2012) estimated that the size of all digital data created and

consumed in 2012 was about 2,837 exabytes and this number will double1

approximately every two years from 2012 to 2020. It is believed that in 2012,

23% of the digital data created would be useful for analytics but only 3% was

captured and curated (Gantz and Reinsel, 2012); even so, 11% of surveyed

data managers already reported to have petabyte-scale data stores (McK-

endrick, 2012) indicating that we have not yet experienced the full potential

of the continual digitalization of the world. Devlin (2011) projected that

the compound annual growth rate (CAGR) of unstructured business data

1It will not be surprising if the actual size exceeds this estimate; previously, Gantz
et al. (2007) estimated that the size of the digital data created and consumed in 2010
should be 988 exabytes when it was actually about 1,227 exabytes based on actual find-
ings (Gantz and Reinsel, 2012).

1

Section 1.1 Recent Developments

is about 60% while the CAGR of structured business data is projected to

be about one-third of that; therefore the below-par data acquisition also

indicates that data sources will become increasingly varied. Boosted by

such radical underlying change, there has been an unprecedented furor of

activities in the database community:

Paradigms challenged. Increasingly, we have witnessed the database com-

munity accepting revisions to well-established ideologies. For exam-

ple, the Atomicity-Consistency-Isolation-Durability (ACID) quadru-

plets have long been the fundamentals in database management for

assuring reliable data processing. In seeking to cope with wider ser-

vice demands, Fox et al. (1997) were the first2 to propose using soft

state and eventual consistency to augment availability but the idea

was not immediately well-received partly because it was deemed as an

antithesis to that of the ACID properties (Brewer, 2012). It was until

Brewer (2000) explored this idea further with what is now known as

the Brewer’s Theorem (Gilbert and Lynch, 2002) that the community

began to look into the consistency-versus-availability argument, thus

promoting the movement that advocates the relaxation of the ACID

properties at some levels in a system (Cattell, 2011). Currently, such

a school of thought has become an legitimate consideration in main-

stream system designs (Brewer, 2012).

Limits breached. The resources invested in handling data seem to mirror

its exponential growth such that yesterday’s limit becomes today’s

baseline. In May 2010, Facebook broke new ground by announcing

that it had deployed the then-largest single Hadoop cluster consisting

2Though the idea of eventual consistency has always been a design considera-
tion (Saito and Shapiro, 2005) and was conceptualized as early as 1975 (Johnson and
Thomas, 1975).

2

Chapter 1 Introduction

of 2,000 nodes and 21 petabytes of storage (Borthakur, 2010). Just a

year later, there were at least 22 reported petabyte-scale clusters, of

which Yahoo! possessed the largest one, which consisted of a total of

42,000 nodes with about 200 petabytes of data (Wong, 2013); Monash

(2011) estimated Yahoo!’s biggest single Hadoop cluster to be a little

over 4,000 nodes. In fact, across the board from 2010 to 2011, the av-

erage Hadoop cluster size rose from 60 nodes to 200 nodes (Monash,

2011); adoption rate of Hadoop is also expected to double in the com-

ing years (McKendrick, 2012).

Contexts evolved. As the world gets progressively digitalized, new envi-

ronmental contexts are injected into the mix of database researches.

Today, we talk about the concept of Internet of Things whereby ev-

ery physical object may have a virtual representation on the Inter-

net (Atzori et al., 2010). We experience an avalanche of social net-

working services (e.g., Facebook, Twitter and Google+) where even

non-physical objects (e.g., personal relationships, human conditions

and social community) may have virtual representations on the In-

ternet. Furthermore, mobile computing have progressed to the point

that, virtual presences on the Internet never cease and may be per-

petually on-the-move. Uncovering these uncharted lands have brought

about new foci of research in the database community (e.g., Aggarwal

et al., 2013; Fernando et al., 2013; King et al., 2009).

While the sheer size of digital data has a direct impact on database de-

velopments, the latter also positively affects the former in return, creating

the virtuous (perhaps vicious3) cycle of digitalization. Equipped with better

data engineering and more sophisticated processing tools, not only the limit

3Just kidding.

3

Section 1.1 Recent Developments

on the size of managed data is lifted, the utility of data as deemed by the

industry is also expanded, thus promoting the interest in further digitalizing

information of all types. This is evident in that 19% of surveyed data man-

agers indicated that already 25% or more of their data is unstructured (i.e.,

not trivially relational) and 65% of the respondents further confirm that the

amount of unstructured data is expected to increase (McKendrick, 2012).

Such is the perpetual dynamics on this commodity that we call “data”.

Set in such a volatile backdrop, new ideas are continually being introduced

into the landscape; there are some concepts, or buzzwords as some may

prefer, that consistently come to attention. In the parlance of database, we

frequently hear about the mention of the adoption of the Big Data paradigm,

or the deployment with cloud computing, or the NoSQL movement, or the

use of the MapReduce framework. Being rather novel, these concepts actu-

ally do not yet have globally-accepted definitions. As such, these concepts

tend to have overlapping jurisdiction whenever they are brought up. To

make matters worse, many refer to some of them as synonymous while oth-

ers may deem a couple of them to be encompassing the others. While it may

be pointless, and certainly futile, at this point, to try to give these concepts

exact formal definitions, it is worthwhile to investigate the raison d’être of

their frequent co-occurrences in the discussion of database as a prelude to

the presentation of some desirable qualities of the architecture of a modern

data processing system4.

1.1.1 Big Data

Dealing with limit-breaking volume of data is not a novel theme; ever since

the invention of direct-access storage in the 1960s, computer scientists have
4The term data processing system is used to refer collectively to any system that is

devised to perform some form of data processing.

4

Chapter 1 Introduction

been pre-occupied with the management of ever-increasing data size. Then,

Codd (1983) introduced in his seminar paper the groundbreaking concept

of the relational data model, which basically requires that all information

in a database be cast in terms of values in relations. Such formal and

yet simple approach to data management sparked the mass adoption of

relational database management systems in the industry. From then, the

relational model remains the most fundamental model in the commerce of

data. Though other alternatives (e.g., graph model and object model) or

extensions (e.g., object-relational model) had been introduced, the under-

lying concept of mainstream database seems to be extracting some form of

structure as a mean to manage and to process data. Thus, for some rela-

tional purists, it is blasphemy to accept revisions to such a time immemorial

concept and yet current trends seem to be proposing precisely that.

Given that computer scientists have somehow always been dealing with data

size that is too large, the fact that the adjective “big” is assigned to this par-

ticular paradigm does suggest certain degree of grandeur to the scale of data

in question. Indeed, as previously mentioned, the data currently handled is

already of petabyte-scale while, at the time of writing, the largest magnetic

disk drives remain in the terabytes range. Moreover, the CAGR of the disk

areal densities is projected to be about 19% from 2011 to 2016 (Fang, 2012)

while the CAGR for data is projected to be 53% over the same period (Nad-

karni and DuBois, 2013). If data size is the only issue, then the entire Big

Data paradigm could have been resolved with a distributed storage solution;

however, the changes do involve other dimensions that challenge traditional

data management tools, particularly when the operations go beyond storage

and retrieval (i.e., data analytics).

Typical description of the Big Data paradigm begins by identifying N “V-

5

Section 1.1 Recent Developments

word” dimensions, where N ≥ 3; each dimension measures one aspect of

the data handled such that the current state of digitalization is represented

by the perpetual augmentation along all the axes. As expected, one of the

dimensions cited is always volume, depicting the growth the data generated.

The basic three dimensions (Douglas, 2012) definition also includes veloc-

ity, depicting speed of data generation, and variety, depicting the growth of

unstructured data. Other definitions include dimensions such as variability

(variance in meaning, in lexicon), value (industrial benefits), veracity (de-

gree of correctness) and visualization (importance of graphical aggregation).

However, given the unbounded extent of interest, trying to classify Big Data

from a data-centric approach is almost like trying to know the “unknown

unknowns”5. Instead it may be easier classify the novel industrial needs so

as to understand the scope of Big Data. Cohen et al. (2009) identified three

new aspects of data management and processing: magnetic, agile and deep

(MAD). The authors intended them to be used to classify the skills set of a

modern data analyst but when inversely applied, they also happen to be a

succinct classification of the current industrial needs:

Magnetic sourcing. Due to the structured mentality towards data man-

agement, traditional data warehouses have an inclination towards pro-

cessing “clean” data; thus in contrast, unstructured or semi-structured

data has poor affinity under these systems. However, as evident in re-

cent trend, regardless of causality, unstructured data is the principal

driver of data growth; therefore, modern data management needs to

be magnetic in that it should be able to attract and accommodate

these “uncleaned” data sources.

5As in the (in)-famous “There are known knowns”-speech made by then United States
Secretary of Defense, Donald Rumsfeld in 2002.

6

Chapter 1 Introduction

Agile processing. Traditional data analysis requires elaborate resource

planning that may take multi-months preparation. Given that data

acquisition gets increasingly fast (note the velocity dimension) and

varied (note the variety dimension), such sophisticated design and

planning phase may no longer be applicable in mission-critical data

analysis for ad hoc decision making. Thus, modern data analytics have

to be more agile to adapt to the rapid pace of changes; in particular,

there is advantage now for data preparation to be kept minimal.

Deep analytics. With the expanded data sources, which are also increas-

ingly more varied, data analytics have correspondingly become more

sophisticated, possibly beyond that of traditional online analytics pro-

cessing (OLAP) and data cube operations (e.g., slice, dice, roll-up).

Such deeper analytics are often beyond the assistance of structure ex-

tractions and pre-computations. Furthermore, the excessive volume of

data being analyzed makes deeper analytics particularly challenging.

The advent of relational database management systems promoted activities

of business intelligence to center around the structuring of data. However,

while the data model and the supporting computer system may be scaled

to encompass the Big Data paradigm, the surrounding human activities

already seem to be bursting at the seams; after all, it is well-known that hu-

mans are not scalable. All three aspects of the MAD classifications actually

challenge precisely the “human”-aspect of the data analytics, thus providing

considerable legitimacy to the revision suggested by the Big Data paradigm.

1.1.2 Cloud Computing

Cloud computing is perhaps the most fuzzily defined among all the recently

popularized concepts. One reason for such ambiguity may be due to the fact

7

Section 1.1 Recent Developments

that similar or related notions have always been in development throughout

the history of computer science. Each of these notions has now somehow

become associated with cloud computing in one way or another. Some of

the preceding developments include the following:

Utility computing. The most ancient notion of cloud computing most

likely comes from the suggestion of utility computing by John Mc-

Carthy in 1961 (Garfinkel, 1999). The basic philosophy is to let com-

putational resources be available under a “pay-per-use” basis much

like public utility; the intention is to maximize their productivity.

The feasibility of such a concept lies in the economies of scale and the

exploitation of shared services via resource scheduling. Since then,

computer science researchers have come a long way to materialize this

vision to some extent with the current state of cloud computing.

On-demand services. The nomenclature of cloud computing frequently

includes various “-as-a-service” hosted software architectures of dif-

ferent abstractions (e.g., platform-as-a-service, software-as-a-service,

database-as-a-service) (Sakr et al., 2011). The basic idea is to apply

the principle of separation of concern (Dijkstra, 1982) at the enter-

prise level such that various aspects of a system may be hosted by

external service providers; this may be considered in some ways as

utility computing being conducted at the enterprise level. Despite the

common association with cloud computing, on-demand services actu-

ally predate that of cloud computing; as early as 2001, the industry

of application service providers (ASP) is already a multi-billion dollar

market (Tao, 2001), indicating that outsourcing of part of a system

has been well incorporated into enterprise practices. Perhaps the ex-

8

Chapter 1 Introduction

periences of ASPs serve indirectly as a lead-in for cloud computing in

terms of architectural integration and system implementation.

Distributed computing. Any study of processing and operations within

a networked system can be considered as distributed computing, thus

distributed computing is actually a very mature area of research. And

in recent years, this field seems to have become the centerpiece of

all computing disciplines. The main contributing factor for this phe-

nomenon may very well be simply necessity due to the massive amount

of data to be handled in operation (Sakr et al., 2011). Facing data

size of limit-breaking scale, parallel solutions offer performance match-

up where sequential ones fall short. Perhaps, this is the reason for

the frequent tie-in between distributed computing and the Big Data

paradigm. As cloud computing is deployed over an array of commod-

ity servers (i.e., horizontal scaling), its operations are almost definitely

based on some distributed solutions. Therefore, a cloud system may

be deemed as a very large manifestation of distributed computing.

The above mentioned notions are by no means an exhaustive listing of all

that is related to cloud computing. Nevertheless, it is noteworthy to indi-

cate that it is the nature of cloud computing to seek to encompass all these

notions and thus share their philosophies. Also, the descriptions are merely

high-level gross overviews of the subject matter; part of the importance

of cloud computing is the innumerable amount of details, be it technical,

economical or even legal, that comes into play to bear fruit to the cloud

computing that we know of. Notable critical technological improvements

that catalyzed the development of cloud computing include improvements

in hardware virtualization (Manohar, 2013), adoption of service-oriented

9

Section 1.1 Recent Developments

architecture solutions (Duan et al., 2012) and vastly improved network con-

nectivity (Kachris and Tomkos, 2012). Each of these improvements deserves

a detailed coverage that is relative to their importance but unfortunately,

this has to be skipped for the sake of brevity.

1.1.3 NoSQL

As previously mentioned, the relational data model coupled with ACID-

compliant relational database systems has been the principal platform for

data management and data analytics. Since its establishment as the sta-

ple diet for enterprise system developments, attempts were made to extend

or to replace the model for various systemic gains but they often resulted

in limited adoption; that is until recently. With the introduction of the

Big Data paradigm and the corresponding need to massively scale data

management horizontally, the relational data model and the ACID transac-

tional properties become rather restrictive for some operations. Thus, the

NoSQL6 movement began to gain traction in mainstream database systems;

the movement advocates the relaxation of traditional data model and also

processing guarantees to some extent in exchange for the qualities to cope

with augmented amount of data.

The central ideology of NoSQL is the use of looser consistency model (i.e.,

eventual consistency) as a mean to increase horizontal scaling of the sys-

tem. The proponents of this movement often cite the Brewer’s Theorem

as a justification for such relaxation, though it remains debatable whether

the Brewer’s Theorem has been correctly applied (Brewer, 2012). Never-

theless, such an approach is able to achieve scaling beyond that of rela-

tional database management systems (Cattell, 2011). Without a governing

6Possibly (and hopefully) stands for Not Only SQL.

10

Chapter 1 Introduction

consistency model like that of ACID, the relational data model cannot be

sustained well. Therefore, NoSQL systems also employ the use of a myriad

of alternative reduced data models (e.g., key/value store, document store

and column store) (Hecht and Jablonski, 2011), which differ to some degree

from one product vendor to another; this lack of standardization does pro-

voke some very legitimate criticisms on the interoperability of incorporating

NoSQL elements into a system (Mohan, 2013).

Through the relaxed consistency and the reduced data model, the operations

exposed in a NoSQL system tend to be correspondingly limited (Hecht and

Jablonski, 2011); in fact, NoSQL systems typically only allow key lookups,

and reads and writes of a data element in contrast to the complex queries

or joins of a relational database system. Note that these operations may

be considered as embarrassingly parallel7, thus explains how the massive

horizontal scalability is achieved. The point here is not to criticize the

sacrificial gain of NoSQL systems but rather to note the paradigm shift in

the focus of operations. Traditional relational database systems are meant

to be generalized solutions, allowing a wide range of queries from simple

create-retrieve-update-delete (CRUD) operations to complex mathematical

analysis. However, with the Big Data paradigm shift, executed operations

have become increasingly specialized, resulting to the maladjustment of

traditional systems (Stonebraker et al., 2007). One particular specification

is precisely the need for simple CRUD operations to scale and achieve wide

availability, which results in the rise of NoSQL. Another is the need for an

easier way of expressing deeper processing (note the MAD properties) over a

massive scale (Ordonez et al., 2010), which will be covered in the following

section. In any case, it may very well be that the NoSQL movement is

7A embarrassingly parallel problem is defined as one for which little effort is required
to separate the problem into a number of parallel tasks.

11

Section 1.1 Recent Developments

simply a square peg satisfying a square hole that we have on hand ; as we

shall see, this is a recurring theme throughout this chapter.

In a distributed system, especially a web-scale one, data replication8 is per-

haps the only practical technique currently available to controllably imple-

ment some form of reliability and fault-tolerance into the system operations.

Adopting a looser consistency model means that NoSQL systems favor nat-

urally the use of asynchronous resolution of inconsistent replicas as opposed

to eager replicas synchronization. Note that the use of lazy replication is

not flawless; in general, lazy replication suffers from reconciliation rate that

is polynomial to the system size (Gray et al., 1996). However, recall that

the specialization of operations is one of the trademarks of modern systems;

under specific context, lazy replication can produce remarkable performance

in actual production clusters (DeCandia et al., 2007).

1.1.4 MapReduce

Note that any form of operation of which the processing logic is separated

into distinct tasks located at different sites can be considered as a form of

distributed processing (Özsu and Valduriez, 1999, Chapter 1); such classi-

fications include distribution according to functionalities and/or controls.

However, due to the advent of the Big Data paradigm, data-distributed pro-

cessing has implicitly become synonymous with this umbrella term; data-

distributed processing refers to the distribution of processing logic according

to the horizontally-partitioned data elements without distinction on the na-

ture of the processing. With the size of data handled, otherwise simple op-

erations (e.g., text searches and simple aggregations) become prohibitively

8On a side note, the discussion on replication can be seen as one of the pioneer
discourses on the subject of availability versus consistency (Bernstein and Goodman,
1984).

12

Chapter 1 Introduction

heavy. In order to alleviate this workload due to input size, investigations

into exploiting data-distributed processing solutions led to the development

of the MapReduce framework (Dean and Ghemawat, 2008).

The MapReduce framework began as a data processing framework used in-

ternally by Google for parallel processing over immensely large data sets. It

is said that the framework came about because developers at Google noticed

many of the required data processing jobs may be accomplished with very

similar steps (i.e., a distributive map phase followed by a local aggregative

reduce phase), which gave the framework its iconic name; though as we shall

see in later chapters, this phenomenon is hardly coincidental. Given that

integrating similar processing jobs under a single framework facilitates the

resource and jobs management, the MapReduce framework was created.

Its seminal publication brought about immediate interests and criticisms

from both research and industrial circles alike. Since then, the MapReduce

framework is gradually being established in the industry as the de facto

distributed data processing solution for data-intensive applications (Sakr

et al., 2013) despite continual questioning on its fundamentals (Pavlo et al.,

2009). The popularity of using MapReduce is also significantly promoted

by the fact that its most notable manifestation (i.e., Apache Hadoop) is

an open source software suite and is also freely9 available for all. Detailed

examination of the MapReduce framework will be covered in later chapters;

the interest of this section is to examine the impact that such a framework

has made in the database community.

As previously mentioned, the MapReduce framework falls precisely within a

focus of specialized operations that has gained much attention under the Big

9As in free beer.

13

Section 1.1 Recent Developments

Data paradigm: web-scale deep processing. Though the MapReduce frame-

work has frequently been criticized for its lack of efficiency10 (e.g., Anderson

and Tucek, 2010; Pavlo et al., 2009; Rowstron et al., 2012), it is undeniable

that the MapReduce framework achieves unprecedented horizontal scaling

as indicated by previously quoted statistics on Hadoop cluster size; though

that too has received some criticisms (Appuswamy et al., 2013). In addition,

it is noteworthy to indicate that the MapReduce framework brings about

not just the raw processing capability; there is actually much industrial

emphasis on the elasticity and the fault-tolerance of the MapReduce pro-

cessing model (Jiang et al., 2010; Lee et al., 2011; Sakr et al., 2013). Given

the massive data and cluster size in the current context, processing failure

is now taken as a relatively common phenomenon; this is arguably a novel

viewpoint highlighted by the introduction of the MapReduce framework.

Should the processing halt or restart upon singly failures, the framework

cannot be deemed as “functioning” under the current context; therefore, the

fault-tolerance mechanism of MapReduce framework whereby only failed

tasks are restarted becomes a critical inclusion in the design of modern

processing systems (Yang et al., 2010). Also, with the spread of resources

consumed for processing, the elasticity provided by the MapReduce pro-

cessing model is a much required relief to the immense task of resource

management; with elastic processing, resources can be allocated through

optimized scheduling, thus enabling better processing throughput.

The use of the MapReduce framework has close associations with the pre-

viously discussed concepts, though, as usual, it is difficult to determine the

causality of the influence. Under the Big Data paradigm, it seems too much

of a coincidence that MapReduce framework can be seen as the exact tool

10To be fair, it is Hadoop (and not Google’s MapReduce framework) that is used for
experiments most of the time.

14

Chapter 1 Introduction

required for modern data analytics; its semi-structured approach to data

processing and the expressiveness of its programming model satisfy pre-

cisely the MAD qualities (Herodotou et al., 2011). Strictly speaking, even

though the data model of MapReduce (i.e., key/value pair) corresponds

to that of some NoSQL systems, it cannot be classified as NoSQL stor-

age system since most common implementations do not allow record-level

CRUD operations; at best, it can be seen as a “data analytics branch” of

the NoSQL movement. Nevertheless, it is interesting to note that many

NoSQL systems also offer MapReduce application programming interfaces

(API) (e.g., MongoDB, Stratosphere and Riak) but this is perhaps an ef-

fect of the popularity of such processing mechanism. The popularity of the

MapReduce framework, particularly its processing model, has become so

widespread that many cloud vendors offer pre-configured Hadoop architec-

ture optimized as a cloud utility (e.g., Amazon Elastic MapReduce).

1.2 Desirable System Qualities

Much can be gleaned from the discussion of these recent developments.

Though it is not the position of this thesis to scrutinize their popularity

or their justification, it is noteworthy to mention that their widespread

continual adoption does infer certain boons in their constitutions. Among all

the desirable qualities that has led to the preservation of these novel trends,

this thesis identifies three core qualities that can be deemed as quintessential

of the architecture of a modern data processing system: massive horizontal

scalability, elastic resource consumption and robust system operations.

15

Section 1.2 Desirable System Qualities

1.2.1 Scalability

One thing that all the previously mentioned trends have in common is the

insistence on the handling of large data size. Recall that volume is one of

the basic dimensions of the Big Data paradigm. Also, in a way, the utility

nature of cloud computing can be seen as a mean to lower the entry-level

of acquiring large data management through the economies of scale. And

the advent of NoSQL systems and MapReduce systems is precisely due to

the need to handle specialized operations on large data sets.

Note that some have disputed the emphasis on the data size (e.g., Row-

stron et al., 2012); the argument is that even with the Big Data paradigm

shift, most processing jobs are not “big”. Indeed, Ananthanarayanan et al.

(2012) revealed that about 90% of the processing jobs consist of input size

of 100 gigabytes or less. Appuswamy et al. (2013) further indicated that the

median size of processing jobs of two identified analytics production clusters

is under 14 gigabytes. Processing tasks of these sizes can usually be handled

rather comfortably with a relatively small cluster or even with just a single

dedicated machine. However, it is undeniable that at least some jobs are

still overwhelmingly large. This might seem to some as pushing the “no-

body ever got fired for buying x” argument, where x is some product that

requires considerable financial investment. Nevertheless, this thesis holds

the position that it is of academic interest for computer scientists to devise

solutions for the most adverse scenario, especially since through empirical

observations on current trends, it is evident that the digitalization of the

world is accelerating beyond the bounds of hardware; recall that the CAGR

of data is projected to be almost three times that of disk areal densities.

16

Chapter 1 Introduction

For handling large data set, currently, distributed solution over a cluster of

computers (i.e., horizontal scaling) is often preferred over the centralized

processing with a single machine of significant capability (i.e., vertical scal-

ing). One reason is perhaps to account for possible (and from the standpoint

of this thesis, very probable) future growth of data set of interest. Under-

stand that the capability of a distributed system can often be augmented

through the addition of more resources, granted that the improvement is

almost definitely sub-linear to the amount of resources added. On the other

hand, improving the capability of a single machine is limited by the hard-

ware technology available at that time and thus present as an unknown fac-

tor. Therefore, a system solution intended to meet the demands of current

and future context should ideally possess the ability to scale horizontally.

1.2.2 Robustness

Perhaps one of the greatest problems of adopting massive horizontal scaling

is that the aggregated mean time between failure (MTBF) may decrease

with each added resource. Such a seemingly paradoxical phenomenon occurs

when the overall wellbeing of the system depends entirely on the sum of all

the states of the participating machines:

Proposition 1.2.1

As the cluster size increases, the minimum MTBF approaches zero.

Proof. Suppose that the machine failures are independent and follows

a Poisson distribution, which is a legitimate simplification under the

assumption of the Law of Rare Eventsa, then the MTBF of each ma-

chine follows that of exponential distributionb. Let X1, X2, . . . , Xn be

17

Section 1.2 Desirable System Qualities

n random variables representing the MTBF where

Xi ∼ exp(λi), ∀i = 1, 2, . . . , n

Note that E(Xi) =
1
λi

by the property of exponential distribution. Con-

sider the minimum of all the variables, Xmin , min (X1, X2, . . . , Xn):

Pr (Xmin > x) = Pr (∩n
i=1Xi > x)

=
∏

n
i=1 Pr (Xi > x) by independence of variables

=
∏

n
i=1e

−xλi by CDF of exp (·)

= e−x
∑

n
i=1λi

Therefore, Xmin also follows exponential distribution:

Xmin ∼ exp
(

∑

n
i=1λi

)

Furthermore, note that this observation has the ramification that the

expected mean E(Xmin) = 1∑
n
i=1λi

= O(1
n
). Extrapolating this value,

this means that lim n→+∞E(Xmin) = 0, which is to say that as the

cluster size increases, the minimum MTBF approaches zero!
aHopefully, it is legitimate to consider machine failures as “rare” events.
bTo be really specific, the machine failures actually follow the Weibull distri-

bution (Weibull, 1951) due to possible varied failure rate (e.g., “infant mortality”
and aging hardware); however, such detailed exposition is beyond the scope of this
discussion and besides, the conclusion drawn is actually the same.

As inferred from the mathematical model, such a horizontally scaled system

will not be practical as its size becomes its Achilles’ heel, which is ironic since

the selling point of horizontal scaling is precisely its grandeur. Thus, the

only solution is to ensure that the overall wellbeing of the system does not

depend entirely on the sum of all the states of the participating machines.

18

Chapter 1 Introduction

From the previous discussions, it can be observed that this is generally the

mentality adopted.

As previously mentioned, data replication is the primary technique used

to ensure robust operations over horizontally scaled system. To put into

the perspective of this section, replication allows operations intended for

a failed machine to be redirected to the machine holding the appropriate

replica such that on the whole, as long as at least one replica persist, the

entire system will not be burdened by singly machine failures. However, the

premise of the feasibility of such a mechanism lies again on the simplicity

of the operations (e.g., CRUD operations). As expected, robust processing

requires another level of fault-tolerance on the processing model itself.

The processing model of MapReduce framework is known to emphasize not

just on its scalability and elasticity, from the original design, the devel-

opers has already built in fault recovery mechanism so as not to inhibit

the completion of the job. Understand that fault-tolerant processing is

not a groundbreaking concept (Aviziens, 1976); before the introduction of

the MapReduce processing model, fault-tolerance has generally been trans-

parently implemented. What makes the MapReduce framework particularly

robust and efficient is that the fault-tolerant mechanism is, in a way, explicit

in its processing model (i.e., idempotence of tasks) such that the model is

able to retain as much intermediate work as possible (Dinu and Ng, 2012).

Given the horizontal extent of modern systems, fault-tolerance has actu-

ally become a critical prerequisite for the modern system architecture. As

evident from the success of the MapReduce processing model, it seems ac-

ceptable to lose the transparency of system fault-tolerance for augmented

attention on the efficiency of the overall processing.

19

Section 1.2 Desirable System Qualities

1.2.3 Elasticity

The ability to dynamically adjust resource usage based on varying work-

load or resource allocation is generally known as elasticity. While this is a

basic computing notion, elasticity has received renewed attention recently

due to the scale of resources currently handled. It is noteworthy to mention

that even though elastic resource consumption often co-occurs with hori-

zontal scalability in the architecture of a modern data processing system,

strictly speaking, they are actually orthogonal qualities; typically, scalabil-

ity is taken as a planned providence while elasticity is more of a reactive

behaviour (Fardone, 2012). From the discussion of recent trends, it can

be observed that elasticity can be incorporated at different levels; a sys-

tem deployed on a cloud platform often demonstrates the elasticity of a

distributed system (Suleiman et al., 2012) while the MapReduce processing

model exhibits the property of elasticity in processing (Jiang et al., 2010).

Elasticity has often been identified as one of the trademarks of cloud com-

puting, even though some has suggested that elasticity is a side-effect from

the utility nature of hosted services (Bias, 2010); in any case, it is undeni-

able that the dual qualities of scalability and elasticity are some of the main

selling points of on-demand services. From the cloud subscriber’s point of

view, horizontal scalability coupled with “pay-per-use” pricing model allows

better enterprise planning; in fact, this prevents precisely the mongering of

fear, uncertainty and doubt (FUD) by overzealous ASP products salesmen.

Furthermore, given that system workloads can be rather bursty depending

on the nature of the industry (e.g., Ali-Eldin et al., 2012; Brebner, 2012),

from the developer’s point of view, implementing elasticity into a system

allows more timely reaction to the required changes in resource allocation.

20

Chapter 1 Introduction

Now, most operations required of a cloud system are relatively short-lived

and of direct nature (e.g., CRUD operations), which explains the compat-

ibility of NoSQL systems on cloud platform (Konstantinou et al., 2011).

However, when the operations are more complex (e.g., deep analytic jobs),

the processing may have poor elasticity, Therefore, the elastic processing

model of the MapReduce framework has additional appeal; with such an

elastic processing mechanism, the system may scale even in the midst of

processing a job. Moreover, because of the economy, and hence popularity,

of hosted services, multi-tenancy of varied job profiles is a common phe-

nomenon of the cloud platform; thus, elastic processing allows more optimal

resource management at the vendor’s side through appropriate scheduling.

Even with a private cluster, recall that the MapReduce framework was

devised for integrating jobs management, therefore having an elastic pro-

cessing permits better throughput of multiple jobs over the resource usage.

Therefore, there is actually a critical incentive in incorporating elasticity

into the architecture of a modern data processing system.

1.3 Structured Peer-to-Peer Architectures

Currently, the predominant architecture adopted for modern data process-

ing system is the master/workers architecture (e.g., Chen et al., 2012; Das

et al., 2013; Isard et al., 2007). Simply said, the master/workers architec-

ture consists of an assigned processing site11 (i.e., the master site) that has

unidirectional control of all the other participating sites (i.e., the worker

sites) for the coordinations of operations in the system. Note that other

than for the sake of simplicity (e.g., Dean and Ghemawat, 2008), there are

11The term processing site (or just site) is used to refer to a generic encapsulated
processing unit that is logically distinguishable from one and other.

21

Section 1.3 Structured Peer-to-Peer Architectures

arguably not much other incentives in adopting the master/workers archi-

tecture; moreover, “textbook” computer science will dictate that the single

master design necessarily presents eventual limitations (e.g., single point

of failure and communication bottleneck). In fact, additional implemen-

tations often have to supplement the master/workers architecture so as to

incorporate additional desirable system qualities. For example, in order

to prevent the master site from being overwhelmed by massive horizontal

scaling, delegation of control can be put in place to spread the loci of com-

munication (e.g., Apache, 2012; Hindman et al., 2011). Also, in order to

assure continual existence of a master site (i.e., high availability), hot stand-

bys are often maintained to allow real-time fail-over whenever the master

site fails (e.g., Myers, 2012).

As a disclaimer, it is critical to emphasize that the importance of simplicity

should not be therefore undermined. In general, master/workers architec-

tures elegantly segregate the system control from the processing mechanism;

it is precisely such functionality-based distribution that facilitates desirable

system qualities to be injected. However, as the cliché goes, “[solutions]

should be made as simple as possible but not simpler”; therefore, it is per-

haps profitable to investigate more involved alternatives through the per-

spectives of the previously discussed desirable qualities.

At the opposite end of the spectrum, peer-to-peer (P2P) architectures differ

from master/workers architectures precisely in that there are no non-trivial

distinctions on the role played by the sites participating in a P2P architec-

ture. Without a centralized controller site, the participating sites have to

keep track of each other, thus constructing a logical network overlay whereby

each participating site maintains a small set of links to some other sites (i.e.,

fingers). Naturally, the ensemble of the fingers will form a strongly connected

22

Chapter 1 Introduction

graph. The ramification of such a construction is that all forms of control

mechanisms have to be implemented in a decentralized manner (i.e., based

on some graph algorithms); these mechanisms include data location, mes-

sage passing and processing coordination, which can otherwise be directly

controlled by the master site in a master/workers architecture. Therefore, it

may seem that P2P architectures will have indeterministic operational per-

formance; indeed, many P2P architectures support only operations of lim-

ited scale (Androutsellis-Theotokis and Spinellis, 2004). However, if some

form of structured symmetry is enforced on the overlay, P2P architectures

can actually provide many systemic qualities; these architectures are com-

monly known as structured P2P overlays. This thesis maintains the position

that structured P2P overlays are able to sustain the previously discussed

desirable system qualities:

Scalability. Without being limited by the capability of a single site (i.e.,

the master site), a decentralized architecture such as that of a P2P ar-

chitecture typically allows an even higher number of participating sites

simply because the system state maintenance is shared by all the sites.

For example, Rasti et al. (2006) indicated that the Gnutella network

grew beyond three million sites in 2006. For structured P2P overlays,

such scalability of participation is retained; moreover, the operations

are typically known to degrade only sub-linearly (e.g., logarithmically)

to the overlay size (e.g., Ratnasamy et al., 2001; Rowstron and Dr-

uschel, 2001; Stoica et al., 2001; Zhao et al., 2004).

Robustness. As previously mentioned, the operational environment of

structured P2P overlays is particularly unstable, therefore fault-tolerance

of the system and its operations is usually one of the foci of the overlay.

23

Section 1.3 Structured Peer-to-Peer Architectures

Note that due to its decentralized nature, a structured P2P overlay

does not suffer from single point of failure unlike its centralized coun-

terpart (i.e., master/workers architecture). Moreover, data replication

is usually part and parcel of the design of the overlay (e.g., Ratnasamy

et al., 2001; Stoica et al., 2001).

Elasticity. Understand that structured P2P overlays are created for an

environment that is much more malignant than that of a computer

cluster; under the P2P paradigm, site displacements are expected to

be much more dynamic and frequent (Androutsellis-Theotokis and

Spinellis, 2004). Therefore, these overlays are designed for very effi-

cient and robust adaptation to unstable site population. This is pos-

sible partly because of the distribution of system state maintenance;

any update to the system state often affects only a small constrained

subset of participating sites. Hence, the relatively fluid changes to

resource allocation of a computer cluster will not pose a problem to

structured P2P overlays.

It is interesting to point out that unlike the case for the master/workers

architecture where these qualities have to be intentionally injected through

deus ex machina (i.e., extra-architectural) reinforcement, they are already

inherent in the design of structured P2P overlays. Therefore, there are sev-

eral notable examples of modern data processing systems that have adopted

some form of structured P2P overlays in their designs (e.g., DeCandia et al.,

2007; Kallman et al., 2008). However, most of the time, these systems treat

the P2P overlay as an embedded substrate and as not the primary defin-

ing architecture; this is to say that the individual characteristics of the

structured P2P overlays are not really being exploited in any way in the

24

Chapter 1 Introduction

systemic operations. Here lies the central theme of this thesis, which shall

be elucidated in the following section.

However, to be fair, things are not as simple as depicted so far. As previ-

ously mentioned, it is relatively direct to introduce elasticity and robustness

when operations are simple and short-lived; therefore, the structured P2P

overlays embedded in modern data processing are used mainly for CRUD

operations. Recall that a focus of modern data processing centers around

deep analytics, therefore it is particularly intriguing to question if a web-

scale data processing model can be decentralized and if such a model may

retain elasticity and robustness.

1.4 Contributions

This thesis is a documentation of a broad-scale investigative research on

structured P2P overlays in the current changing world. Using the scalability-

robustness-elasticity triplets as the principal dimensions, the intent is to

uncover possibilities whereby structured P2P overlays may be used as the

underlying architecture of a modern data processing system such that per-

formance may be augmented. The collective contribution of this research is

two-fold. Firstly, the results obtained from the experiments conducted are

the direct testimony of the suitability of structured P2P overlays in handling

various profiles of data processing. Secondly, even though the prototypes

implemented are products of academic investigations, there are reasons to

believe that they may be the basis of new data processing systems given

the time-tested advantages of structured P2P overlays. Specifically, within

their individual dimensions, the contributions of this thesis are documented

in the following. Work of this thesis can also be found in (Goh and Tan,

2013, 2014)

25

Section 1.4 Contributions

1.4.1 Scalability: The Katana Framework

While structured P2P overlays are known to exhibit demonstrable scala-

bility in their systemic operations (i.e., CRUD queries), a distributed pro-

gramming model, like that of the MapReduce framework, on P2P overlays

is rather unheard of. As such, structured P2P overlays are not known for

executing deep queries (e.g., analytics) despite their obvious architectural

advantages. The challenge lies in that fact that such a programming model

has to be decentralized as well, so as to conform to the P2P philosophy. The

Katana framework is a novel creation that seeks to provide such a feasible

solution.

The Katana framework consists of a generalized distributed programming

model much like the MapReduce programming model except that it is en-

tirely decentralized; this possibility comes from the identification of certain

algebraic structure within commonly known structured P2P overlays. The

result of a formal approach is that many popular structured P2P overlays

may be adapted to use the Katana programming model. At the same time,

due to the affinity between the programming model and the formal structure

of the overlay, the Katana programming model exhibits augmented expres-

siveness, as compared to the MapReduce programming model, thus provid-

ing better execution performance. Furthermore, the Katana programming

model is shown to be able to emulate any MapReduce algorithm.

1.4.2 Robustness: Hardened Katana

Fault-tolerance has become indispensable in modern data processing sys-

tems especially when horizontal scalability is the mainstream consideration

26

Chapter 1 Introduction

in the design of system architecture. With regards to implementation, one

can argue that the more challenging aspect of fault-tolerance in an architec-

ture is the assurance of robustness during processing, especially if query is

deep and if agility is of utmost concern (i.e., MAD qualities). In this regard,

the MapReduce framework shines as it can be said to be a framework that

implicitly embeds fault-tolerance into its processing with its programming

model, which is heuristically known to be expressive. Such a mechanism

can be generalized into an abstract model of fault-tolerant processing called

the cover-charge protocol (CCP).

If a processing task conforms to the requirements of the CCP, the protocol

describes a demonstrable fault-tolerant mechanism of processing that task.

It happens that the protocol is applicable to many system-wide operations

of a structured P2P overlay. Hardened Katana is an extension to the Katana

framework that seeks to incorporate the CCP into the Katana programming

model. The approach taken by the hardened Katana framework can be said

to be superior to some of the common reinforcement techniques (e.g., fast

fail-over backup site) in that the robustness induced within the enhanced

framework is derived directly from the architecture, and not some deus ex

machina mechanism.

1.4.3 Elasticity: Elastic MapReduce Execution

The industry has known the MapReduce framework for its massive horizon-

tal scalability, thus promoting wider and more intensive usage. However,

with increasingly larger deployments, the MapReduce framework begins to

face technical deficiencies in its execution architecture. In order to cope

with such limit-pushing amount of resources, there are independent devel-

opments of supplementary frameworks (e.g., Apache, 2012; Ching et al.,

27

Section 1.5 Organization

2012; Hindman et al., 2011) that isolate resource management from the job

coordinations. While these resource managers are meant to support job

executions, they also expose potential increased elasticity in job execution

that has not been fully exploited by the current state-of-the-art execution

architecture.

The Elastic MapReduce Execution (EMRE) is an enhanced execution archi-

tecture for the execution of MapReduce jobs. It leverages on a structured

P2P overlay to induce elasticity into the job execution without compro-

mising on the fault-tolerance. As opposed to the current execution ar-

chitecture where the processor elements (i.e., the worker sites acting as

mapper or reducer) are relatively oblivious to the overall execution, the

worker sites under EMRE are the execution architecture itself in a P2P

manner. EMRE presents an example where even if the global architecture

is of master/workers relationship, embedding a structured P2P element in

the operations of the system can inherit the qualities of structured P2P

overlays, thus vastly improving the overall performance.

Note that the improvement on the execution architecture is entirely trans-

parent such that compatibility of job definition can be retained under EMRE.

On top of the induced elasticity and the backward compatibility, because a

decentralized, distributed index (i.e., the structured P2P overlay) is used,

the execution architecture is pipelined such that execution under EMRE

also experiences improvement in running times.

1.5 Organization

This chapter is essentially a broad overview of current developments and

aggregated observations; its purpose is to serve as a prelude to the conducted

research work proper. The rest of the thesis is organized as follows:

28

Chapter 1 Introduction

• Work that is related to the research development is presented in

Chapter 2. Two main areas of work are covered in this chapter.

Firstly, structured P2P overlays are presented. The concept of consis-

tent hashing, which is employed in many structured P2P overlays, is

introduced. Then, two specific structured P2P overlays that are used

in the implementations are presented: Chord (Stoica et al., 2001) and

BATON (Jagadish et al., 2005). This is followed by an introduction

of bounded broadcast, a technique used in some structured P2P over-

lays to broadcast efficiently. The second area of work presented is a

more detailed description of the MapReduce framework and its related

concept (e.g., programming model and system architecture).

• Chapter 3 is dedicated to the discussion of the Katana framework.

The Katana programming model is formally introduced, followed by

a derivation of a mechanism to realize the model on typical structured

P2P overlays. The overview system architecture with the details of

some of its more important internal mechanisms are briefly described

so as to demonstrate the operations within the Katana framework.

Experimental results from extensive explorations are finally presented;

these results consist of comparisons between algorithms on the Katana

framework, algorithms on the MapReduce framework, as well as em-

ulated MapReduce algorithms on the Katana framework. In all the

studies, the algorithms on the Katana always outperform that on the

MapReduce framework.

• The issue of robust processing is explored in Chapter 4. The mecha-

nism employed by the MapReduce framework to handle site failures

during processing is first reexamined to extract the premises in which

the fault-tolerant processing of MapReduce is built on. From the iden-

29

Section 1.5 Organization

tified premises, the CCP is constructed and it is demonstrated to be

a generalization of the fault-tolerance mechanism of the MapReduce

framework. The hardened Katana framework is introduced as an ex-

tended version of the Katana framework with incorporation of the

CCP into its internal operations. Comparative experimental stud-

ies indicate that the overhead incurred for the corrective measures

taken by the cover-charge protocol for operations of the hardened

Katana framework is comparable to, if not lesser than, that of the

MapReduce framework.

• The EMRE architecture is covered in Chapter 5. The chapter starts

with an overview of how the current state-of-the-art MapReduce exe-

cution architecture suffers maladjustment to the newly introduced ex-

ecution environment. Then the core system components of the EMRE

architecture are described with respect to their roles (i.e., master site

and worker site) in EMRE; in addition, a modified version of BATON

that is more suitable in the context of MapReduce is introduced. The

job execution under EMRE is described with details, in which an-

other foreign technique used in EMRE is introduced: work stealing.

Work stealing helps to even up the load imbalance that is inherent

in all structured P2P overlays. Through a series of benchmark exe-

cutions, experiments indicate that MapReduce jobs run faster under

EMRE as compared to the MapReduce framework with varied amount

of available resources under various execution conditions (i.e., stable

and dynamic environments).

• Finally, Chapter 6 concludes the thesis with a few afterwords on the

recent developments and on the contributions offered by the research

works presented.

30

Chapter 2

Related Work

In this chapter, some important precedent works are presented; the works

covered are exploited, in one way or another, by the developments docu-

mented in later chapters; therefore, it is of academic interest to lay out

a compilation of the central concepts of these works as a prelude to the

presentation proper of the research work conducted for this thesis.

2.1 Structured Peer-to-Peer Overlays

2.1.1 Consistent Hashing

While literatures on structured P2P overlays are rather diverse in their

implementation approach, majority of them distributes data (and index

structures) via distributed hash table (DHT). With the DHT approach,

data elements are identified and distributed by deterministic hashing on

their identity values (i.e., primary key in the relational model and fully

qualified filenames for files); in this case, fair distribution of the workload

31

Section 2.1 Structured Peer-to-Peer Overlays

is largely dependent on the uniformity of the hash function. The table

of hash values itself is distributed across the processing sites to form the

routing table that directs the message passing. The various DHT-based

P2P overlays differ largely in the manner the hash tables are distributed but

in general, they follow the principles of consistent hashing (Karger et al.,

1997) allowing relatively dynamic participation of processing sites without

resorting to much rearrangement due to changes of the network parameters.

Strictly speaking, the concept of consistent hashing does not dictate the way

data elements are allocated to the processing sites; it formalizes a number

of properties that when achieved, can have some performance guarantees.

In the following, the formal definition of consistent hashing will be pre-

sented; note that there are some refinements made on the authors’ original

presentation.

Let I be the set of data elements and B be the set of buckets ; a view v

is defined to be a non-empty subset of B, therefore v ∈ VB , P(B)\∅.

Given v ∈ VB, a ranged hash function is defined as fv : I → v; the indexed

collection of functions FB , {fv | v ∈ VB} is called a ranged hash fam-

ily. A hashing scheme for a particular I is defined entirely by B and the

corresponding FB; it is considered as consistent hashing if it satisfies the

following properties:

Balance. FB is balanced if given v ∈ VB, with high probability,

∀f ∈ FB, ∀b ∈ B,
|f−1(b)|

|I|
= O

(

1

|v|

)

A balance distribution is actually a standard requirement on any hash

function. However, a balanced FB further assures that regardless of

32

Chapter 2 Related Work

the view, the data elements will remain well distributed among the

buckets.

Monotonicity. FB is monotone if v1 ⊆ v2 ⊆ B,

∀i ∈ I, fv1(i) ∈ v2 ⇒ fv1(i) = fv2(i)

The crux of the problem with using standard hash function for decen-

tralized distribution of data elements is that there is no constraints

on the data re-allocation upon changes on hash parameters; though,

some may define this as a mark of a good hash function (i.e., crypto-

graphic hash function), however this is obviously unacceptable in the

distributed context. Therefore, a monotonic FB is important as it will

assures that data elements migrate only for the preservation of even

distribution.

Low spread. Given V ⊆ VB, spread σV of a data element i ∈ I is defined

as

σV (i) = |{fv(i) | v ∈ V }|

The spread of i ∈ I tracks the migration of i with varying views.

FB has low spread if the maximum spread of data elements under an

arbitrarily chosen V ⊆ VB is low (i.e., O(log |I|)). Having a low spread

on FB means that the distribution of I remains relatively stable as

the view evolves.

Low load. Given V ⊆ VB, the load λV of a bucket b ∈
⋂

v∈V v is defined

as

λV (b) =
∣

∣

{

f−1
v (b)

∣

∣v ∈ V, b ∈
⋂

v∈V
v
}∣

∣

The load of b ∈
⋂

v∈V v tracks the changes to the number of items

33

Section 2.1 Structured Peer-to-Peer Overlays

held at b with varying views. FB has low load if the maximum load of

buckets under an arbitrarily chosen v ⊆ VB is low (i.e., O
(

log |I|
)

).

The load of VB is an alternative interpretation of its spread but taken

from the perspective of the buckets; having a low load on VB means

that the capacity remains stable as the view evolves.

Karger et al. (1997) provided a construction of FB whereby two random

hash functions are identified: rB : B → [0, 1) and rI : I → [0, 1). Given

i ∈ I and v ∈ VB,

fv(i) , argmin
b∈v

(

|rB(b)− rI(i)|
)

(2.1)

Note that this construction of FB is well-defined if and only if rB is injective

such that argminb∈v
(

|rB(b) − rI(i)|
)

is a singular value. Fortunately, this

is a common assumption on hash functions. As it turns out, this is very

similar to the hashing scheme adopted by the Chord overlay (Stoica et al.,

2001). However, not all hashing mechanisms has to follow such a definition;

for example, the Content-Addressable Network (CAN) (Ratnasamy et al.,

2001) does not adopt such a scheme though there are reasons to believe that

the hashing mechanism of CAN is consistent hashing.

2.1.2 Chord

At the turn of the millennium, a series of structured P2P overlays were

introduced into the research circles that brought about renewed interests

in DHTs; some examples include CAN, Tapestry (Zhao et al., 2004) and

Pastry (Rowstron and Druschel, 2001). Among these work, Chord stood out

for its simplicity, robustness and performance as a DHT. For these qualities,

34

Chapter 2 Related Work

0

1

2

3

4

5

6

7

(a)

0

1

3

6

5

(b)

Figure 2.1: Cayley graph for (Z8,+8) with the generating set S = {1, 2, 4}
(2.1a) and a corresponding imperfect Chord topology (2.1b)

a myriad of literatures has been established on the Chord overlay (e.g.,

Lee et al., 2011; Leong et al., 2006; Park et al., 2010; Sánchez-Artigas and

García López, 2010).

In Chord, the buckets B of the processing sites are assumed to inherently

unique and can be independently determined (e.g., the IP addresses). Given

the difficulty to handle [0, 1), which has the same cardinality as R, the

codomains of rB and rI are approximated with ZN where N is a preconfig-

ured system parameter such that N ≥ |B|. In a fully-assigned Chord, the

processing sites will have a table of routes (i.e., fingers) to exponentially-

distanced processing sites. In this case, the network is exactly isomorphic to

Cay(ZN ,+N , S) where S = {2i | 0 ≤ i < ⌊log2 N⌋} (refer to Definition A.3

and Definition A.9). In fact, Figure 2.1a will correspond to the Cayley

graph representation of a fully-assigned Chord with eight processing sites

and N = 8. In reality, the assignment is almost definitely less-than-perfect;

therefore the edges that point to inexistent vertices will be directed to the

processing site with the smallest identifier that is larger than the intended

35

Section 2.1 Structured Peer-to-Peer Overlays

one (i.e., the immediate successor) such that the Cayley graph is emulated

by each processing site seemingly having multiple identities. For example,

in Figure 2.1b, all edges intended for site 4 will have to be directed to its

immediate successor (i.e., site 5); conversely speaking, the physical site 5

holds the identities of both site 4 and site 5.

Remark 2.1.1

Recall that all Cayley graphs are vertex transitive (refer to Theorem A.2).

Note that a vertex transitive graph has the property that the graph

“looks the same” from any vertex of the graph due to the automorphism.

This quality has many interesting implications in implementation of

network topology (i.e., the overlay). Firstly, for example, load may be

uniformly distributed through all sites since each site is indistinguish-

able from one another meaning there is no topological reason that one

site will be burdened more than others. Secondly, vertex transitivity

also means that the same algorithm can often be initiated indiscrimi-

nately at any site since they are essentially the same; this simplifies the

definitions of system-wide operations (e.g., routing and broadcasting).

Thirdly, the fact that none of the sites is “special” means that none of

the sites is essential and indispensable to the overall functioning of the

overlay; this is a very useful quality for the enforcement of fault-tolerant

operations.

Due to the inexact emulation, Chord modifies slightly the definition of FB

of (2.1) for its data allocation. Under Chord, given i ∈ I and v ∈ VB,

fv(i) , arg min
b∈v

(

dist
(

rB(b), rI(i)
)

)

(2.2)

36

Chapter 2 Related Work

where

∀x, y ∈ ZN , dist(x, y) =

x− y if x ≥ y,

N − y + x otherwise.

(2.3)

Under the definition of (2.2), data elements will be allocated to the im-

mediate successor of an inexistent processing site so as to suit the emula-

tion by Chord of the Cayley graph. In this way, the routing of messages

will be same as selecting the routes corresponding to the elements of the

generating set S to obtain the destined value. Consider the case of find-

ing a route from site a to site b. Trivially, b = a +N a−1 +N b. Since S

is the generating set, ∃sa1, . . . , s
a
p, a−1 = sa1 +N · · · +N sap and ∃sb1, . . . , s

b
q,

b = sb1 +N · · · +N sbq. Therefore, the route from site a to site b consists

of the iterative following of the fingers corresponding to the following or-

der: sa1, . . . , s
a
p, s

b
1, . . . , s

b
q. Now, by the closure of +N , ∃c ∈ B such that

c = sa1 +N · · · +N sap +N sb1 +N · · · +N sbq. A particularity of Chord is the

construction of its generating set (i.e., S = {2i | 0 ≤ i < ⌊log2 N⌋}); there-

fore, if N = 2x for some x, then every element of B can be expressed as

a linear combination of distinct elements from the generating set, which is

rather optimal at the logical level; note that the length of the routing path

is thus |S| = O(log N). Under Chord, such a selection is implemented in a

decentralized manner by greedily choosing the “largest” possible element in

the generating set.

The inserting of a new processing site involves, first, finding the appropriate

position by the routing mechanism as mentioned. Then, the new site has to

be inserted before the located site due to the emulation; this is assisted by

maintaining a route to the predecessor. When found, the new processing

site has to share the load with its predecessor and propagate the updates

to all the neighboring processing sites, which requires O(log2 N) time. The

37

Section 2.1 Structured Peer-to-Peer Overlays

(0,1)

(1,1) (1,2)

(2,1) (2,2) (2,3) (2,4)

(3,2) (3,6) (3,7)

child �nger

routing �nger

adjacent nger

(a,b) level=a, number=b

(3,1) (3,4) (3,8)

Figure 2.2: BATON with 13 sites and fingers of site (2, 3)

removal of a processing site is practically the reverse process.

2.1.3 Balanced Tree Overlay Network

While the literatures on modern P2P overlays are dominated by DHT-based

approaches, the Balanced Tree Overlay Network (BATON) (Jagadish et al.,

2005) is a unique entity because it is the first P2P overlay based on a

balanced sorted binary tree structure with range-based partitioning. As a

result, BATON supports both exact matches and range queries on the data

elements while DHT-based overlays only support exact matches in their

original conceptions.

Each site keeps track of a continuous sub-range of keys that it is govern-

ing. In addition, like all P2P overlays, each site in a BATON overlay will

maintain a table of routes (i.e., fingers) to other sites; in particular, there

are three types of fingers to other sites:

• fingers to its children if they exist,

38

Chapter 2 Related Work

• fingers to its adjacent sites (where adjacency is determined by the

in-order traversal of the tree), and

• selective fingers to sites at the same level.

Figure 2.2 shows an example overlay and the different fingers. Due to the

joining algorithm, the tree structure of BATON will always be balanced.

Each new left (right) child will share lower (upper) half of the load of its

parent, thus maintaining a non-overlapping partitioning over the entire key-

space. In this way, as long as the data elements are sorted locally, the

adjacent fingers allow us to traverse the data elements in a sorted manner,

thus allowing range queries to be done.

Note that a fully-assigned BATON is not really isomorphic to a group.

However, it can be said that a fully-assigned BATON emulates a Cayley

graph of an integer group (ZN ,+N) with {2i | 0 ≤ i ≤ log N} as generating

set, much like Chord. The emulation is done by adding a “virtual vertex”

together with some “virtual edges” to complete the graph (Lupu et al., 2008);

the omission of the site corresponding to the virtual vertex and the routes in

the fully-assigned BATON is not an issue because the routing of messages

does not require them at all.

Since BATON is ranged partitioned, allocation of data elements is triv-

ial; the routing of messages is done in a similar manner as compared to

Chord except that the routes are bidirectional in BATON, thus the length

of the routing path is O(log N). As compared to DHT-based overlays,

the joins and departures of a processing site in BATON is relatively more

complicated. The problem comes from the maintenance of all the routes,

particularly the adjacent routes that maintain the sorted order of the pro-

cessing sites. The mechanism employed is much akin to the rotation of

39

Section 2.1 Structured Peer-to-Peer Overlays

0
15 1

2

3

4

5

6

7
8

9

10

11

12

13

14

[1,2)

[2,4)

[3,4)

[4,8)

[5,6)

[6,8)

[7,8)

[8,0)

[9,10)

[10,12)
[11,12)

[12,0)

[13,14)

[14,0)

[15,0)

Figure 2.3: Example of bounded broadcast on Chord from site 0

an AVL-tree; the complexity taken for performing joins and departures of

processing sites in BATON are both O(log N).

2.1.4 Bounded Broadcast

Bounded broadcast is a technique employed in some DHTs (e.g., Vishnevsky

et al., 2008) to efficiently broadcast messages without resorting to flooding.

To broadcast, each message will be tagged with a particular bound on some

form of site identification; the recipient will forward the message to sites

among the fingers that fall within the bound and each forwarded message

will be tagged with an appropriate partition of this bound. Thus, a require-

ment for efficient bounded broadcast is a way to enforce total order on the

participating sites; for example, bounded broadcast can be done easily on

a Chord overlay with bounds on the site IDs because its site IDs constitute

a factor ring.

Figure 2.3 shows an example of a bounded broadcast on a fully-assigned

Chord overlay with 16 sites starting from site 0. Site 0 has four fingers:

40

Chapter 2 Related Work

site 1, site 2, site 4 and site 8. These identity numbers will form bounds

covering Z16: [1, 2), [2, 4), [4, 8) and [8, 0) respectively. Thus, site 0 will

forward the message to all its fingers with their respective bounds. Each

of these fingers, upon receiving the message together with the bounds, will

forward the message to its own fingers under that bound. For example,

site 4 will receive the bound [4, 8) and it will forward the message to site 5

with bound [5, 6) and site 6 with bound [6, 8); it will not forward to site 8

and site 12, which are its fingers, because 8 /∈ [4, 8) and 12 /∈ [4, 8). Due

to the total order enforced on the identities, the message is guaranteed to

reach all sites and each site will receive the message only once (i.e., optimal

broadcast); this is the case even for imperfect Chord assignment.

2.2 MapReduce Frameworks

When discussing the original MapReduce framework, it is important to note

that the framework is an encapsulation of both a parallel programming

model and a system architecture equipped with a complete distributed file

system (e.g., Ghemawat et al., 2003; Mundkur et al., 2011). It is generally

because of the prowess of these two components in handling large data sets

in a massively parallel manner that boosted the popularity of the framework

and the emergence of the hybrid MapReduce frameworks.

2.2.1 MapReduce Programming Model

As previously mentioned in Section 1.1.4, the programming model arises as

an effort to generalize special-purpose computations at Google that process

large amount of raw data. In their own words, the authors said that the

41

Section 2.2 MapReduce Frameworks

generalization is inspired by the map and reduce primitives in Lisp; they

claim that most of their computations involve mapping each data element to

a set of intermediate key/value pairs and then reducing the values according

to the key, or formally:

map :: (k1, v1)→ [(k2, v2)] (2.4)

reduce :: (k2, [v2])→ [v3] (2.5)

Actually, it should not come as a surprise that a lot of computations on a

(very long) list of data elements can be expressed as a map action followed

by a reduce action. It is largely unknown if this model was a formal devel-

opment or an empirical conception but such a model is the reminiscence of

catamorphism on list; recall that any function (i.e., homomorphism) on a

list may be uniquely represented with a map (i.e., list functor) followed by

a fold (i.e., catamorphism).

Adopting the MapReduce programming model requires the programmer to

obey, at the minimum, the type signatures of the map and reduce functions.

Conceptually, the map function is applied on each data element and a list

of intermediate key/value pairs is generated accordingly. The MapReduce

framework will handle the grouping of the intermediate key/value pairs

according to the key. And finally, the reduce function is applied to each

list of values of a particular key and the final result is written to disk.

Notice that the programming model does not require the programmer to

explicitly control the parallelism of the processing; this is accomplished by

the framework. The class of operations expressible with the MapReduce

programming model can be said to be embarrassingly parallel due to the

fact that it is possible to distribute the work load such that minimal inter-

site communication is required during the bulk of the operation. Thus,

42

Chapter 2 Related Work

Gustafson’s law (Gustafson, 1988) predicts that such a framework will be

massively scalable and it has been demonstrated to be so.

Empirically, the MapReduce programming model is rather expressive in

implementing operations on large data sets. Works have been done to adopt

this model as the query language despite being criticized as being too low

level (Pavlo et al., 2009). For example, SQL/MapReduce (Friedman et al.,

2009) adopts the MapReduce programming model to express user-defined

functions in a SQL database management system (DBMS). Other works

have been done to create a higher-level language on top of the MapReduce

programming model to achieve better expressiveness for end-user API; some

examples include Pig Latin (Olston et al., 2008), Sawzall (Pike et al., 2005)

and HiveQL (Thusoo et al., 2009).

However, due to the specificity of the model, it is difficult to reason formally

about the MapReduce programming model. Notice that the map and re-

duce functions are in no way similar to their functional counterparts, other

than that both have the spirit of generic programming on lists of data ele-

ments. It has been demonstrated that the map and reduce functions can be

implemented using the map and reduce primitives of a functional program-

ming language (Lämmel, 2007) in a similarly parallel manner; this suggests

that the MapReduce programming model may very well be a specification

of catamorphism.

2.2.2 MapReduce System Architecture

The system architecture of the MapReduce framework usually works in con-

junction with some distributed file system (DFS); in its original design, the

DFS used is naturally the Google File System (GFS) (Ghemawat et al.,

43

Section 2.2 MapReduce Frameworks

Input Output

mappers

reducers

GFS

GFS

master

u
m
b
ilic

a
l

Figure 2.4: MapReduce system architecture

2003). Even though both systems are independent from one another, they

are intended to be implemented over the same large cluster of commodity

hardware; though this is not compulsory (e.g., Heintz et al., 2013). Under

each system, a processing site will be identified as the master site while the

others are worker sites (refer to Figure 2.4); this means that, in actuality,

the system architecture of a MapReduce framework consists of two over-

lapping master/workers architectures: one for the DFS and another for the

processing of MapReduce jobs.

For many DFSs used for MapReduce systems, the abstract concept of a

“file” consists actually of a collection of physical files (typically about 64

megabytes) under the underlying file system of the operating system; the

term sub-file shall be used to refer to these underlying physical files. The

worker sites, under the DFS, will hold these sub-files possibly under some

replication scheme. On the other hand, the master site will manage all the

meta-data (e.g., physical location, filename and pathname) corresponding

44

Chapter 2 Related Work

to the sub-files. The master site will also maintain the consistency of the

sub-files and manage the state of the worker sites.

The processing architecture of a MapReduce framework also consists of an

identified coordinating master site with a large collections of worker sites;

the master site will keep track of the progress and validity of the worker

sites and the tasks in their charges. Upon accepting a MapReduce job, the

master site coordinates the entire operation. The input file is first split up

into chunks; for most DFSs (e.g., GFS), the optimal split is the same as the

sub-file size such that each input sub-file corresponds to a map task. Then

the master identifies the idle worker sites and assigns them map tasks (i.e.,

mappers) and reduce tasks (i.e., reducers) in accordance to the processing

phase. The mappers will begin by retrieving the appropriate chunks; it will

be optimal if the chunk happens to be local to the mappers. The mappers

proceed on applying the map function on each key/value pair and produce

the intermediate key/value pairs; typically, these intermediate pairs have to

be sorted locally after the map task. The completed mappers will inform

the master site about its completion upon which an identified reducer will

retrieve a portion of the intermediate pairs corresponding to a particular

key. The number of reducers is a user-defined parameter of the job. When

a reducer has all the required portions, it will apply the reduce function

on each key/values block and the result is written directly to file system.

Note that the retrieval phase by the reducer (i.e., shuffle phase) is usually

the single most expensive phase out of the entire MapReduce job, which

is to be expected since this is the phase when the bulk of the inter-sites

communication is done.

As noted in Section 1.2.2, deploying a web-scale system such as the Map-

Reduce framework over a large cluster of machines does provoke the chal-

45

Section 2.2 MapReduce Frameworks

lenge of augmented aggregated MTBF. Furthermore, even if MTBF is not

a problem, given that MapReduce jobs are often relatively long-running, it

is extremely inefficient to restart the processing upon failure. This is the

reason why the design of the MapReduce processing defines a job as a direct

summation of relatively idempotent tasks. In this way, whenever a task is

detected to have failed, that task can be restarted without affecting the

progress of the other in-progress tasks; recall that the map task depends

on only the corresponding sub-file while the reduce task depends on all the

map tasks and none of the other reduce tasks. Such idempotent nature also

helps with tasks that take abnormally long time to process (i.e., stragglers)

by running a backup task in parallel so that the first task among the two to

complete will be chosen to commit. On a side note, it is interesting to high-

light that such fine granularity processing of idempotent tasks as a mean

to complete a job is only possible because it is explicit in the MapReduce

processing model.

2.2.3 Resource Managers

With deployments over increasingly massive cluster, developers begin to feel

the need to re-examine the internals of the MapReduce framework as the

single master design necessarily presents eventual limitations (e.g., single

point of failure and communication bottlenecks) on both the storage engine

and the execution architecture. With regards to the storage engine (e.g.,

HDFS, which is an open-sourced clone of GFS for Hadoop), high avail-

ability is induced through the maintenance of a backup master site (i.e.,

NameNode) on hot standby such that fast fail-over may be done in times

of failure (Myers, 2012). In handling the execution aspect of MapReduce,

46

Chapter 2 Related Work

ApplicationsManager Scheduler

ResourceManager

NodeManagerNodeManager

NodeManager NodeManager

Application

Master

Container

Container

Container

Container

Container

Application

Master

Container

Container

application-speci
c

com
m

unication

application-speci c

communication
s
ta

tu
s

re
p
o
rtin

g

re
s
o
u
rc

e

re
q
u
e
s
ts

Figure 2.5: YARN architecture

there are several independent developments of resource management frame-

works for MapReduce deployment (e.g., Ching et al., 2012; Hindman et al.,

2011) The purpose of these frameworks is to isolate resource management

from job coordinations by providing multiple “virtual” master/workers clus-

ters such that singly failures of the master sites (i.e., JobTracker) will not

be propagated to the entire cluster and that each cluster manages its own

job coordinations.

YARN (Apache, 2012) is the result of an overhaul effort in version 0.23

by the Apache Hadoop development team to address the deficiencies of

the Apache Hadoop MapReduce framework with regards to scalability and

performance given the observed trends towards larger deployed clusters.

The following presents a high-level description of this architecture as an

overview of the new execution environment; the discussion assumes the

nomenclature typical of the Hadoop MapReduce framework.

The fundamental idea of YARN is to split up the role of the traditional Map-

Reduce JobTracker site into two separate entities: the ResourceManager

47

Section 2.2 MapReduce Frameworks

and the per-application (i.e., job) ApplicationMaster.

On deployment, one processing site in the cluster will be assigned as the

ResourceManager while the others will each be running a NodeManager dae-

mon. Figure 2.5 depicts the architecture of a cluster with one ResourceM-

anager and four NodeManagers. Each NodeManager manages the collection

of resources (e.g., memory) on that particular site where the resources are

encapsulated in units of Container based on the amount (e.g., memory

size) requested by the application through the ResourceManager. The Re-

sourceManager consists of two main components: an ApplicationsMaster

managing the application submissions and a customizable Scheduler han-

dling the allocations of the Containers.

When an application (e.g., a MapReduce job) is submitted to the Resource-

Manager, it registers with the ApplicationsMaster and one Container is

instantiated in one of the NodeManagers to run the application-defined Ap-

plicationMaster. The ApplicationMaster will then negotiate with the

Scheduler for the collection of Containers required to execute the appli-

cation in question. The Scheduler, at the discretion of its implementa-

tion, will instantiate and allocate the Containers in the NodeManagers and

communicate the allocations to the ApplicationMaster. The Applica-

tionMaster then performs its computations, whatever it may be, on these

allocated Containers. The ApplicationMaster is free to release the Con-

tainers or request for more Containers throughout its execution lifetime.

Under YARN, a MapReduce job is just one type of the applications sub-

mittable to a Hadoop cluster; the developers envisioned other processing

frameworks to be deployed within a Hadoop cluster.

48

Chapter 2 Related Work

Upon submission, the MapReduce ApplicationMaster will request for at

least one Container for each map task. As the ApplicationMaster re-

ceives the Container allocations, it will launch a mapper process in each

Container for each map tasks with preference on the data locality. The

mapper process will first fetch the data from the file system as indicated in

the definition of the map task and then proceed to apply the map function

on each key/value pair. After each mapper process completes its work, it

will sort and partition the intermediate output according to the pre-defined

number of reducers and store them locally. The ApplicationMaster will

have to keep track of the locations of all these partitions.

Once all the mappers are launched, the ApplicationMaster will make re-

quests for the Containers required by the reduce tasks. In each of the

then-allocated Containers, the ApplicationMaster will launch a reducer

process. The reducer process will first fetch the appropriate partitions of

the intermediate map output as located by the ApplicationMaster (i.e.,

the shuffle phase) and then merge them to build the input for the reduce

function. Once the reduce input is ready, the reducer process will apply the

reduce function on each key/values chunk of this intermediate input and

produce the final output. The completion of all the reducer processes will

complete the MapReduce job.

2.3 Summary

Structured P2P overlays are well-studied system architectures that have led

to much developments in both the research and the industrial circles. Most

structured P2P overlays function as a DHT in operation, in which case, the

principle of consistent hashing applies most of the time. By following the

49

Section 2.3 Summary

principle of consistent hashing, these DHTs are guaranteed systemic qual-

ities on their functioning as distributed indices. Being one of the pioneer

implementations of structured P2P overlays, Chord stands the test of time1

arguably because of its algebraic simplicity and implementation robustness;

the beauty of Chord as an overlay lies with its association with group theory

such that formal theories can be formed on the practical system. Among all

the structured P2P overlays, BATON presents as a special class on its own

because it distributes data elements efficiently through range partitioning

rather than hashing, which allows range queries to be executed. The logical

topology formed by the fingers of a structured P2P overlay permits algo-

rithms to be implemented logically; one of such algorithms is the bounded

broadcast whereby messages are broadcast with identification of the fingers

and without resorting to flooding.

The MapReduce framework is made up of a specific programming model

executed over a distributed system. The MapReduce programming model

consists of two user-defined primitive functions (i.e., the map and reduce

functions) that is able to express a wide range of algorithms due to their re-

semblance to formal generic programming (i.e., catamorphism). The Map-

Reduce system architecture is actually the collaboration between a DFS

(e.g., GFS) and the MapReduce execution architecture, both of which are

typically based on some master/workers architecture. Through the use of

replication, the MapReduce system is able to assure fault-tolerance in both

storage and the execution itself. Recent developments in MapReduce in-

troduces the externalization of resource managers such that each job is

processed in a “virtual” cluster; the purpose is to provide an additional level

of delegation such that scalability may be augmented.

1Literally; Chord shares the 2011 ACM SIGCOMM Test of Time Paper Award to-
gether with CAN (Ratnasamy et al., 2001).

50

Chapter 3

Scalability: Katana

3.1 Motivation

As the MapReduce framework gains popularity as a generalized, massively

parallel processing framework, developers begin to observe insufficiency in

its expressiveness to cater certain operations; a particular example will be

the notorious relational join operation. As such, various hybrid versions

of the MapReduce framework appear in recent literature. Most of these

hybrids involve the inclusion of an additional step other than the original

map phase and reduce phase. For example, the Map-Reduce-Merge frame-

work (Yang et al., 2007) adds an additional merge phase after the reduce

phase. The merge function takes the outputs of two separate MapReduce

tasks and produces another output of its own based on the keys of the out-

puts of the reduce tasks. Yang et al. (2007) demonstrate that traditional

relational join algorithms, such as sort-merge join, hash join and nested-

loop join, can be expressed in this hybrid Map-Reduce-Merge framework.

On the other hand, the Map-Join-Reduce framework (Jiang et al., 2011)

51

Section 3.1 Motivation

includes an optional join phase after the map phase. The join function

takes the outputs of several map functions and performs equi-join based

on the keys of the outputs of the map tasks. For the Map-Join-Reduce

framework, although the join is restricted to equi-joins, multi-way joins are

allowed. Other works that seek to expand or incorporate the MapReduce

programming model includes SQL/MapReduce (Friedman et al., 2009) and

Nephele/PACTs (Battré et al., 2010). These hybrid frameworks are rather

efficient in augmenting the expressiveness of the original MapReduce pro-

gramming model1; however, they may not be addressing the core of the

problem with regards to the lack of expressiveness.

Furthermore, as previously mentioned in Section 1.3, it is said that the

MapReduce framework uses a master/workers architecture for the sake of

simplicity; while the MapReduce framework has been demonstrated to scale

up to thousands of processing sites (Monash, 2011), the single master de-

sign necessarily presents eventual limitations (e.g., single point of failure and

communication bottleneck). In fact, works have been committed precisely

in these regards. Resource management frameworks (e.g., YARN (Murthy

et al., 2011), Mesos (Hindman et al., 2011) and Corona (Ching et al., 2012))

are developed to isolate the resource management from job coordinations.

On the other hand, high availability is induced through the maintenance of

a backup NameNode on hot standby such that fast failover may be done in

times of failure (Myers, 2012). Instead of building up on the pre-existing

architecture, the problem is approached by adopting an alternative architec-

ture: structured P2P overlays. In Section 1.3, it has already been suggested

that structured P2P overlays are worthy alternative architectures to con-

sider since structured P2P overlays are known to be more scalable than the
1Note that these works are orthogonal to those that seek to achieve expressiveness

by building on top of the MapReduce programming model (e.g., Olston et al., 2008; Pike
et al., 2005; Thusoo et al., 2009).

52

Chapter 3 Scalability: Katana

master/worker architecture; they also resolve the issues with single point of

failure and communication bottleneck.

In addition, the MapReduce programming model may not be apt for pro-

cessing under a P2P environment, thus there is a need to devise a different

model for the framework. Revisiting the origin of MapReduce, recall that

the MapReduce programming model is inspired by the map and the reduce

functions of functional programming languages. Both functions operate

on the list data type, which corresponds to the list-based input and output

under MapReduce. Now, the combination of the two functions is a specifica-

tion of a generic programming mechanism known as catamorphism (Meijer

et al., 1991), which operates on arbitrary algebraic data types (i.e., lists and

trees). Given that many of the structured P2P overlays can be abstracted

as a Cayley graph (Lupu et al., 2008), this becomes the bridge to connect

P2P overlays and generalized data processing.

This chapter presents a novel P2P-based generalized processing framework:

the Katana framework. It can be deployed on many of the currently known

structured P2P overlays. The following are some of the contributions of the

Katana framework:

• The framework provides a programming model in which processing

logic may be implicitly distributed with universality and expressive-

ness, much like the MapReduce framework.

• The Katana programming model encompasses that of MapReduce;

any MapReduce algorithm can be emulated by the Katana program-

ming model without going into the details of the definition.

• The Katana framework is deployable over a broad class of structured

P2P overlays, including Chord and CAN.

53

Section 3.2 Programming Model

• On top of the enhancements to the systemic qualities, experimental

results indicate that the expressiveness of the programming model also

accounts for much better running times.

3.2 Programming Model

The programming model can be distinguished into a data model and a

processing model. The discussion in this section is conceptual; the logical

correspondence between the programming model and the structured P2P

overlays (i.e., the model realization) will be covered in Section 3.3. Note

that the data model and the processing model, together with the model

realization, are symbiotic in nature but for the presentation, they have to

be discussed sequentially.

3.2.1 Data Model

The Katana framework adopts a key/value data model with possible dupli-

cated keys to represent the data elements; in other words, each key corre-

sponds to a list of values. As such, a data set can be defined as follows:

Definition 3.2.1: Data Set

Under the Katana programming model, a data set is defined to be a

distinguishable collection of data elements with the same type signa-

tures for the keys and values. Given a data set ∆ with key type K and

value type V , it may be defined as a total function: ∆ :: K → [V].

54

Chapter 3 Scalability: Katana

3.2.1.1 Conceptual Structure

The processing of many frameworks assumes the data models to be list-

based. For example, relational model considers a relation to be a list of

tuples and MapReduce assumes a list of key/value pairs as input and output.

Such conceptual representation does not necessarily indicate the physical

storage; a relation may be stored actually as a B+-tree while the data

under the MapReduce framework is distributed into chunks.

The Katana data model adopts a conceptual graph structure. Similar to its

list-based counterparts, the conceptual graph does not necessarily indicate

the manner in which data elements are stored though they are definitely

related. Astute readers may notice that this alludes to Cayley graphs and

ultimately to structured P2P overlays. However, for now, readers may con-

sider the theoretical analogy whereby each key corresponds to an unique

processing site; as such, the graph structures discussed in the following are

derived directly from the Cayley graph. The actual realization is slightly

more involved and will be elaborated in Section 3.3.

The introduction of a conceptual graph structure beseech the re-examination

of a trivial notion in list-based data models: the traversal of data elements.

Generally speaking, in order to assure program correctness, list-based data

models give the illusion of an one-by-one sequential traversal of the entire

conceptual list. For example, relational operations seem to iterate the re-

quired relation completely, disregarding the possible presence of indices; the

MapReduce framework maintains the list-based processing by also distribut-

ing the processing logic and having a shuffle phase between the executions

of its two signature functions. In the case of the Katana framework, the

55

Section 3.2 Programming Model

conceptual graph structure requires a more sophisticated illusionary traver-

sal of data elements, which is a post-order traversal of a spanning tree. Such

a manner of traversal of data elements will be re-visited in the discussion of

the processing model.

3.2.1.2 Type Graph and Data Graph

Definition 3.2.2: Type Graph

Given a key type K, there exists an unique directed graph GK = (VK , EK)

called the type graph whereby the vertices VK are all the keys with the

type K. For now, it shall be assumed that the edges EK are arbitrary

but they strongly connect the graph. Recall that a strongly connected

graph is one whereby there exists a path (i.e., a sequence of connected

edges) from each vertex to any other.

Definition 3.2.3: Data Graph

For each data set ∆ :: K → [V], a graph called data graph can be

derived such that the vertices and edges are defined as

V∆ =
{

(

k,∆(k)
) ∣

∣ k ∈ VK
}

and

E∆ =
{

(v1, v2)
∣

∣ (k1, k2) ∈ EK , v1 =
(

k1,∆(k1)
)

∧ v2 =
(

k2,∆(k2)
)

}

respectively. G∆ can be said to be the actual representation of the

data set ∆ under the type graph of K. Analogically, the type graph

represents the overlay while the data graph represents the allocation of

56

Chapter 3 Scalability: Katana

0 1

23

(a) GK , K = {0, 1, 2, 3}

0 1

23

3,0

1,4

2

(b) ∆1 :: K → [int]

0 1

23

w

a

d,g

y,i

(c) ∆2 :: K → [char]

0 1

23

(d)
∆3 :: K → [int, char]

Figure 3.1: Example of type graph, data graphs and joint data graph

data elements; thus the data graph naturally inherit the edges of the

type graph.

Definition 3.2.4: ⊙ Operator

Now given two data sets with the same key type, ∆1 :: K → [V1] and

∆2 :: K → [V2], the ⊙ operator is defined such that (∆1 ⊙∆2) :: K →
[

(V1, V2)
]

. The result of the ⊙ operator is the canonical join of the

two data sets, meaning ∀k ∈ K, (∆1 ⊙ ∆2)(k) = ∆1(k) × ∆2(k).

The resulting joint data set will be represented by the data graph

G(∆1⊙∆2) =
(

V(∆1⊙∆2), E(∆1⊙∆2)

)

. The execution of the ⊙ operator is

immediate since data graphs with the same key type has the same type

graph (i.e., data co-location).

Figure 3.1 shows a type graph GK with K = {0, 1, 2, 3} having two example

57

Section 3.2 Programming Model

instantiations (i.e., data graphs) for ∆1 :: K → [int] and ∆2 :: K → [char]

and the two instantiations have a ⊙-product (i.e., ∆3 = ∆1 ⊙∆2).

3.2.2 Processing Model

Instead of the signature map and reduce functions of the MapReduce model,

the Katana framework introduces a different couple of functions: ana and

kata2.

ana ::
(

K1, [V1]
)

→
[

(K2, V2)
]

(3.1)

kata ::
(

(

K3, [V3]
)

,
[

V4

]

)

→ [V4] (3.2)

Contrary to the MapReduce programming model, the ana and kata func-

tions are independent from one another and are not required to be executed

one after another. Just like MapReduce, the definition of an ana function

or a kata function implies a series of applications of the function in a de-

termined manner over the data elements (i.e., a job). Similar to that of

MapReduce, the Katana processing model intends to hide the parallelism

mechanism from the users. Conceptually, users can consider the data ele-

ments to be processed sequentially by a single processing site. As previously

mentioned, the manner of access will be a post-order traversal of an arbi-

trary spanning tree of the corresponding data graph.

The ana function is applied to each vertex (i.e., key K1 with its list of

values [V1]) of the input data graph as traversed using the spanning tree.

Each application of the ana function may produce a list of key/value pairs

(i.e., of type [(K2, V2)]). The ensemble of these lists will be recombined

2The name Katana comes from the concatenation of the two Greek words, κατά
(katá) and ἀνά (aná), which symbolize catamorphism and anamorphism respectively;
please don’t ask why it is not called Anakata.

58

Chapter 3 Scalability: Katana

and grouped according to the key; the result will then be used to produce

another data graph based on the type graph (i.e., GK2) of the output key.

The execution of an ana job does not require a specific traversal of the

spanning tree; this specificity is meant for the execution of the kata job,

which is reflected in the recursive-like call of the kata function on the tree.

With the spanning tree, the kata function is applied on each vertex together

with the output values from the application of the function on its child

vertices as the second input variable (i.e., of type [V4]). Hence this explains

the post-order traversal since the applications on the child vertices must be

completed before the application on the vertex can execute. The leaf vertices

will have empty lists as input for the second variable. The application of the

kata function on the root of the spanning tree will produce the final result.

This idea of recursion comes from the original definition of catamorphism.

Note that the definition of the kata job requires neither the specification nor

the fixture of the spanning tree; the spanning tree is completely arbitrary.

Generally speaking, kata jobs are used to perform aggregation of some

sort over the data elements, hence the size of the result is envisioned to

be relatively small; therefore the result is simply a list of arbitrary values

(i.e., of type [V4]) and is not represented under the data model (i.e., no

corresponding data graph). On the other hand, ana jobs are used to build

(large) data sets based on currently existing data elements; this means to

produce data graphs out of a data graph.

3.2.3 Examples

Some examples shall be discussed at this point to illustrate the usage of

the programming model and to demonstrate its prowess in expressing some

typical queries.

59

Section 3.2 Programming Model

Algorithm 1 Ana job for Inverted Index
input: (Index :: K → [V])

output: (InvertedIndex :: V → [K])
1: procedure ana(K source, [V] targets)
2: for each target in targets do

3: emit (target, source)
4: end for

5: end procedure

3.2.3.1 Inverted Index

Given a mapping Index from sources to targets in the form of a data set

(hence, data graph), this example seeks to generate the inverse mapping

InvertedIndex from targets to sources. This can be done with a single ana

job (refer to Algorithm 1).

After the execution of this ana job, the sources as “indexed” by their targets

will be recombined and grouped according to the targets. Recall that the

data model permits the possibility of duplicated keys, thus the result of the

ana job will be the required inverted index in the form of a data set (hence,

data graph).

3.2.3.2 Document-Length

Given a (text) data set (hence, data graph) with the lines in the document

as values under some arbitrary key (e.g., line number), then the number of

words can be counted with a single kata job (refer to Algorithm 2).

Figure 3.2 shows the execution of the kata job on an example spanning

tree. With the post-order traversal, the applications of kata function will

begin at the leaves (i.e., vertices a and b). A leaf application will have empty

others as input, so it will simply count the number of words of the lines

60

Chapter 3 Scalability: Katana

Algorithm 2 Kata job for Document-Length()
input: (Document :: K → [String])

output: (DocumentLength :: [int])
1: procedure kata(K key, [String] lines, [int] others)
2: int total← 0
3: for each line in lines do

4: total← total + num_words(line)
5: end for

6: for each other in others do

7: total← total + other
8: end for

9: emit total
10: end procedure

kata(c, {"Weep"}, {11}) = 12

kata(d, {"and you weep alone"}, {1,6}) = 11

kata(a, {"Laugh"}, {}) = 1kata(b, {"and the world", "laughs with you"}, {}) = 6

Weep

Laughand the worldlaughs with you b a

d

c

and you weep alone

6 1

11

12

Figure 3.2: Example execution of kata job for document length

at that vertex. A non-leaf application (i.e., vertex d) will have the emitted

values of its child vertices as the others parameter; the application on the

vertex d will use the emitted values 1 and 6 as others. The application on

the root vertex (i.e., vertex c) will emit the total count, which is 12 as seen

in Figure 3.2.

From the document length example, it can be inferred that many aggregation-

like queries (e.g., top-K query and extrema query) can be trivially and ef-

ficiently expressed with a kata job. Note that this may not be the case

for MapReduce as similar queries under MapReduce require either explicit

mapping to a single reducer or external processing to further aggregate the

61

Section 3.2 Programming Model

Algorithm 3 Ana jobs for MapReduce emulation
input: (DataSet :: K1 → [V1])

output: (Temp :: K2 → [V2])
1: procedure anamap(K1 key, [V1] values)
2: for each value in values do

3: emit map(key, value)
4: end for

5: end procedure

input: (Temp :: K2 → [V2])
output: (Result :: K3 → [V3])
1: procedure anareduce(K2 key, [V2] values)
2: emit reduce(key, values)
3: end procedure

result, both of which can be rather inefficient.

3.2.3.3 Generic MapReduce Algorithms

In fact, the Katana programming model is able to emulate any MapReduce

algorithm without going into the details of the definition. Given

map :: (K1, V1)→
[

(K2, V2)
]

(3.3)

reduce ::
(

K2, [V2]
)

→
[

(K3, V3)
]

(3.4)

the MapReduce algorithm can be emulated on a data set (hence, data graph)

with the executions of the following two ana jobs (refer to Algorithm 3).

This shows that the Katana programming model is at least as expressive

as MapReduce. However, such direct translation may not guarantee the

most efficient solution; for example, instead of a single ana job execution

to generate the inverted index, the emulated approach will require two.

Similarly, this also highlights the edge that the Katana programming model

has over the MapReduce programming model; just as seen for examples on

62

Chapter 3 Scalability: Katana

Algorithm 4 Ana job for Equi-Join

input:
(

(∆1 :: K → [V1])⊙ (∆2 :: K → [V2])
)

output:
(

Result :: K → [(V1, V2)]
)

1: procedure ana(K key, [(V1, V2)] values)
2: for each value in values do

3: emit (key, value)
4: end for

5: end procedure

inversed index and word count, instead of two steps (i.e., map followed by

reduce), often only one (i.e., either kata or ana) is required to express the

same query.

3.2.3.4 Equi-Join

The Katana programming model can express equi-join naturally. This is an

example whereby the Katana framework is able to outperform the MapRe-

duce framework due to its data model. Suppose there are two data sets with

the same key type (i.e., ∆1 :: K → [V1] and ∆2 :: K → [V2]), an equi-join

can be performed with the following ana job with the ⊙ operator (refer to

Algorithm 4).

For a foreign-key join, it can be accomplished with an additional ana job to

“re-hash” the foreign data set according to the foreign key before performing

the ⊙ operator; in essence, this will be similar to performing a distributed

hash-join. Notice that unlike approaches in implementing equi-join on the

MapReduce framework, the expression by the Katana programming model

does not require any extra-algorithmic constructs (e.g., artificial tagging of

data elements for reduce-side join (Blanas et al., 2010)) in order to express

the join.

63

Section 3.2 Programming Model

3.2.4 Expressiveness of Programming Model

As mentioned in Section 2.2.1, the expressiveness of programming models

such as MapReduce can be quite vague to specify. For one, we understand

that the primitive functions used in MapReduce (i.e., the map and reduce

functions) are not actually equivalent to their counterparts in functional

programming languages (Lämmel, 2007). Furthermore, one could trivially

implement any algorithm under MapReduce by having all the data elements

mapped to a single reducer and execute the algorithm in question locally.

Therefore, any definition of expressiveness of such programming models

should include some notions of efficiency in it in order to be absolutely

honest.

Fortunately, for the Katana programming model, there exists a substantial

mathematical foundation to provide a glimpse of its expressiveness in this

regard. In the following, categorical notions (refer to Appendix B) shall be

used to describe the expressiveness of the ana and kata jobs.

The spanning tree constructed for the execution of a kata job is concep-

tually an algebraic data structure. By construction, this tree can be ab-

stracted with an appropriate polynomial endofunctor F on the category of

sets, Sets (i.e., F : Sets → Sets), such that for an object X in Sets,

F (X) = 1+K×X where K is the coproduct of k terminal objects and k is

the maximum number of leaves of a node in the spanning tree; note that this

is a canonical depiction of a tree algebraic data type (Bird and Meertens,

1998). Defining the endofunctor naturally induces the definition of the cat-

egory of F -algebras (and dually, of F -coalgebras); note that the category of

F -algebras (F -coalgebras) on Sets has an initial (terminal) object (refer to

64

Chapter 3 Scalability: Katana

Proposition B.10). Thus, defining the kata function is equivalent to defin-

ing the F -algebra, ϕ : F (X) → X, in the following commutative diagram

where the isomorphism in : F (µF)→ µF is the initial object:

F (µF) µF

F (X) X

in

F

(

Lϕ M
)

in−1

Lϕ M

ϕ

(3.5)

As such, the execution of the kata job is exactly the evaluation of a cata-

morphism (i.e., Lϕ M = ϕ ◦ F (Lϕ M) ◦ in−1) on the induced category. There-

fore, a kata job is able to express all recursive functions on Sets (i.e.,

catamorphism) based on F much like generic programming of functional

programming languages (i.e., the fold operator) (refer to Remark B.23) since

in : F (µF)→ µF is the initial object in the category of F -algebras (Hutton,

1999); recall that an initial object is an unique object with unique arrows to

all other objects. This recursion execution is evident in example execution

depicted in Figure 3.2. Furthermore, if the branches of the tree are clustered

according to locality, as seen later in Section 3.3, the execution of a kata

job can essentially achieve data parallelism across the different branches.

On the other hand, despite the origin of its name, an ana job is not quite

directly related to an anamorphism on the induced category of F -coalgebras

(i.e., Mϑ L= out−1 ◦ F
(

Mϑ L
)

◦ ϑ where out : ϑF → F (ϑF) is the terminal

object). Though staying true to the significance, ana serves the purpose

of data sets construction: an ana job indeed creates a new data graph

from a pre-existing data graph. By analogy of category theory, the result is

somewhat similar to that of anamorphism in that it transforms a set into

some “structured set”. However, the execution is unlike that of anamor-

phism where the set is transformed directly into an algebraic structure (i.e.,

65

Section 3.3 Model Realization

expressible with a polynomial endofunctor). Instead, it is much more useful,

and certainly more efficient, if the set is transformed to the “intermediate”

data graph such that the tree structure is implicit since the endofunctor F

is only (implicitly) defined upon the execution of the kata job.

Therefore, the dual functions of kata and ana are meant to be able to

express analytic jobs on data sets such that the ana jobs are used to con-

struct increasingly rich information as preparation, if required, while the

kata jobs are used to aggregate these informations.

3.3 Model Realization

This section shall elaborate the raison d’être of the particularities mentioned

in Section 3.2. In essence, the data model is conceptualized for the sake of

being a bridge between the processing model and structured P2P overlays.

A trivial approach to realize the programming model is through the theo-

retical analogy that considers the abstracted Cayley graph of a structured

P2P overlay as the type graph since Cayley graphs are strongly connected

by nature. A data graph will then represent the actual allocation of the

data elements in the overlay. This will effectively distribute the execution

of an ana job or a kata job across the processing sites. However, such an

approach is infeasible because it will require a rather oxymoron definition

of an isomorphic hash function together with an overlay size that is as big

as the key space so that each key is allocated to a distinct processing site.

Therefore, a different approach is required.

66

Chapter 3 Scalability: Katana

3.3.1 Cayley-Metric Distributed Hash Table

Definition 3.3.1

Let T be the set of all data types. Given t ∈ T, Dt is defined to be the

set of data elements of the type t.

Definition 3.3.2

A hash function on type t ∈ T, ht, is a function mapping from Dt to a

set of hash buckets, B.

Given a common set of hash buckets B, an indexed family {ht : Dt → B}t∈T

of hash functions can be identified. A DHT can be said to be built on top

of an identified {ht}t∈T, which is usually based on some cryptographic hash

(e.g., SHA).

For many DHTs, distribution is achieved by first assigning an unique iden-

tity value from B to each participating site and data elements are assigned

to the site where its bucket is the “nearest” to the identity value.

Definition 3.3.3: Identity Assignment

Given a site s ∈ S0, where S0 is the set of all possible processing sites, its

association with its assigned identity value defines an injective function

id : S0 7→ B. id(·) is usually implemented with a cryptographic hasha

on the IP address of the processing site.
aA cryptographic hash function being injective in this case is a common assump-

tion in practice.

67

Section 3.3 Model Realization

Definition 3.3.4: Metric DHT

A Metric DHT (M-DHT) is a DHT such that there exists a metric

function d : B × B 7→ R
+ such that for the set S ⊆ S0 of participating

sites, the bucket b ∈ B is allocated to the processing site s ∈ S if and

only if ∀s′ ∈ S, d
(

b, id(s)
)

≤ d
(

b, id(s′)
)

.

Definition 3.3.5: Allocation Functions

The allocation mechanism of an M-DHT defines an indexed family of al-

location functions {allocS : B 7→ S}S⊆S0
where given S ⊆ S0 and b ∈ B,

allocS(b) is the site allocated with the bucket b. Note that allocS(·) is

surjective since ∀s ∈ S ⊆ S0, allocS
(

id(s)
)

= s; there is at least one

bucket allocated to any site.

The definition of hash buckets B often defines a integer group (refer to

Definition A.3) (e.g., Chord) or a direct product (refer to Definition A.6) of

integer groups (e.g., CAN), which is a group with the canonical modular

arithmetic as its binary operator. Thus, a Cayley graph of such hash buckets

can be identified based on some generating set (refer to Definition A.8). For

many DHTs, the routing algorithm indirectly employs this kind of Cayley

graph to build the routing table such that we can essentially superimpose

a Cayley graph on top of the overlay (Lupu et al., 2008).

Definition 3.3.6: Cayley DHT

A Cayley DHT (C-DHT) is a DHT whereby given a set S ⊆ S0 of

participating sites, there exists a Cayley graph G = (B, E) such that

68

Chapter 3 Scalability: Katana

∀b1, b2 ∈ B, if (b1, b2) ∈ E then either allocS(b1) = allocS(b2) or there is

an entry in the routing table of allocS(b1) to allocS(b2).

For most C-DHTs, the routing table has “redundant” routes as part of the

design, usually for the sake of routing efficiency or structural robustness.

This is reflected in the fact that the generating set in question is not minimal

(i.e., the smallest generating set). Therefore, we can also distinguish the

generating set into the disjoint union of a minimal generating set and an

auxiliary set; the auxiliary set corresponds to the “redundant” routes. We

refer to the Cayley graph generated by the minimal generating set as the

minimal Cayley graph.

Definition 3.3.7: Cayley-Metric DHT

A Cayley-Metric DHT (CM-DHT) is meant to be both an M-DHT and

a C-DHT. In addition, the metric function used in a CM-DHT has to

be a word metrica based on the minimal Cayley graph.
aA word metric measures the length of the shortest path in the Cayley graph

between two elements.

The requirement of using word metric as the underlying metric function en-

sures that the corresponding Cayley graph also encapsulates the notion of

locality, which, as seen in Section 3.5, will aid the efficiency of the implemen-

tation. For the sake of brevity, it shall be claimed without proof that some

examples of CM-DHT include CAN, Chord, Viceroy (Malkhi et al., 2002),

and Cycloid (Shen et al., 2006); though not explicitly alluding to CM-DHT,

Lupu et al. (2008) demonstrates how one may proceed in proving them.

69

Section 3.3 Model Realization

3.3.2 Realization

Proposition 3.3.1

The definition of {ht}t∈T of a CM-DHT realizes the type graph while

the definition of its {allocS}S⊆S0
realizes the data graph.

Proof. With a CM-DHT, the type graph of a particular type t ∈ T

can be constructed by distinguishing it into two levels: the global level

graph and the local level graph. The global level graph is exactly the

P2P overlay. It is strongly connected because firstly, a Cayley graph

is strongly connected and secondly, ∀b1, b2 ∈ B, if there is a path from

b1 to b2 in the Cayley graph, then there will be a path from allocS(b1)

to allocS(b2) in the overlay since allocS(·) is surjective. The vertices

of a local level graph are the keys assigned to a particular site; sup-

pose Vs is the set of vertices of the local graph at site s ∈ S, then

Vs = {d | d ∈ Dt, allocS(ht(d)) = s}. The local level graph can be

considered to be arbitrarily strongly connected since this depends on

the local data structure, which will be covered in Section 3.5.1.

As a result, the entire overlay gives a global level graph of local level

graphs. This graph of graphs can be “collapsed” by assigning an edge

between two arbitrary vertices of different local level graphs G1 and G2

for each edge that connects the site of G1 and the site of G2 in the global

level graph. Notice that the resultant collapsed graph is necessarily

strongly connected. This collapsed graph is a type graph because the

definition of {ht}t∈T assures that the assignment of the edges to the

vertices only rely on the key type (i.e., hash values). The allocation of

70

Chapter 3 Scalability: Katana

data elements (i.e., key/value pairs) according to the hashing of keys

will, thus, induce the data graph since hashing of keys of the same type

will preserve the groupings.

Note that due to the nature of M-DHT, we are given the implicit assurance

that data elements with the same key will be allocated to the same site; as

we shall see in Section 3.5.1, this will facilitate the implementation of the ⊙

join operator. In addition, the number of vertices in a local level graph (i.e.,

data elements assigned to a processing site) is expected to be significantly

larger than the number of vertices in the global level graph (i.e., the number

of sites), data parallelism is effectively induced across the processing sites

for the execution of the ana job or the kata job. The dual levels of graphs

also provide the flexibility of optimization of the actual processing both at a

local level within a processing site and at a global level across the overlays.

3.3.3 Emulation of MapReduce Combine Phase

The original design of the MapReduce framework incorporates a possible

optimization via an intermediate combine phase. If permitted, a definition

of the combiner function allows intermediate output of the map function

to be “pre-reduced” in situ before the shuffling phase. This will potentially

reduce the amount of data shipping required. Such a mechanism could have

been built into the Katana framework; alternatively, an emulation can be

adopted.

In Katana, there is a system-defined key called the site key, which allows

the local level graph to be collapsed while preserving the global level graph.

In most implementation, the site key is simply the identity value of the

site. Thus by defining an ana function that maps to the site key, no data

71

Section 3.4 System Architecture

Figure 3.3: System architecture of a processing site in the Katana framework

shipping will be done (i.e., M-DHT). Then, an intermediate ana function

can be defined to “combine” the values. Essentially, the combine phase is just

an additional (ana) job; as such the use of combiner functions have not been

considered in the experiments so as not to compound on the fundamental

comparisons of the frameworks.

3.4 System Architecture

The decentralization of the implementation is reflected in the system ar-

chitecture (refer to Figure 3.3). It is maintained that Katana is that of a

framework, meaning that it serves as a foundation in which generalized data

72

Chapter 3 Scalability: Katana

processing can be done in parallel under a decentralized architecture. The

architecture depicted is not the absolute extend; other related work may be

incorporated to augment its operative qualities.

3.4.1 Storage Engine

The storage engine is oblivious of the network; its sole purpose is to store

the data elements in the form of key/value pairs in an appropriate manner

so as to facilitate the processing. The data structures, of which the exact

implementation will be detailed in Section 3.5.1, manifest as flat files in the

storage engine; each data subset assigned to the processing site is stored as

a single file identified by the data set name. The lock manager is responsible

for the location and locking of the files on the file system. The lock manager

exposes the usual CRUD interface to the processor and the P2P engine.

Much of the operations is expected to be done in bulk, therefore the CRUD

interface has file level granularity. A finer granularity of operation is not

forbidden but at this point, it is deemed that such coarser granularity suffice

well.

3.4.2 Peer-to-Peer Engine

The P2P engine together with the storage engine will form the canonical

structured P2P overlay. The exposed interface allows the data owner to load

and retrieve data elements as per normal. An additional requirement on the

P2P engine is that it has to expose the routing table as an abstraction of a

Cayley graph to the processor; this is for the executions of the ana and kata

jobs. Notice that the P2P engine component presents as a variable in the

system. This is possible because the programming model only requires the

73

Section 3.4 System Architecture

structured P2P overlay to be a CM-DHT (refer to Section 3.3); therefore,

there will be a myriad of candidates that can be considered for the P2P

engine of the Katana framework. The choice of the P2P engine has been

kept open because each type of overlay has its suitability depending on the

context.

3.4.3 Processor

The processor component is the main novelty of the Katana framework;

it handles the execution of the ana and kata jobs, of which the exact

mechanism will be detailed in Section 3.5.3 and Section 3.5.4 respectively.

Recall that the data model is realized into two levels of strongly connected

graphs (refer to Section 3.3); this is reflected exactly in the relationships

the processor has with the storage engine and the P2P engine. At the local

level, the processor accesses the storage engine for the local data elements

required for the job. And at the global level, the processor has to access the

network for data shipping.

Within the processor, the job manager handles the coordination and the

flow control of the data shipping. In addition, due to possible concurrent

executions, the isolation and the queuing of the jobs is also done by job

manager. The exposed interface allows user to submit job request; this

involves the user writing the required job definition. In the implementation,

an ana job will require the user to indicate input data set names3 as well

as the output data set name on top of the ana function definition. On the

other hand, a kata job will require only the input data set names with the

kata function definition, the resulting data set will be shipped to the user

upon completion.

3Using multiple data set names implies the use of ⊙ join on all the input data sets.

74

Chapter 3 Scalability: Katana

3.5 System Internals

The definition of the Katana framework is rather liberal so as to provide

the flexibility of adopting different solutions to suit the applicative needs.

However, there are aspects of the framework that provoke the interest for

detailed discussion.

3.5.1 Data Storage

Recall that as per normal functioning of most structured P2P overlays, when

the data elements are loaded into the system, they are implicitly partitioned

and distributed across the processing sites in an entirely decentralized man-

ner; this is a systemic advantage of adopting structured P2P approach over

a master/worker architecture. It is the intent of the Katana framework to

exploit this implicit quality.

Up until now, it has been asserted that the local data structure manifests as

a complete graph of data elements so that when combined with the global

complete graph of the overlay, the required data model is realized. However,

implementing and maintaining a persistent graph structure can be rather

costly and inefficient in practice. Furthermore, as seen later, the logical

existence of the complete graph is actually not required for the execution

of the ana job and the kata job.

In actuality, the local data structure is a list structure. The data elements

in the form of key/value pairs are grouped first according to the bucket then

to the key. For most implementation, this can be done with an external sort

operation with an appropriate comparator on the key type (i.e., comparing

75

Section 3.5 System Internals

on the hash value before the key). Such arrangement facilitates the re-

distribution of data elements for the execution of the ana job. For the

kata job, recall that there is a need to identify an arbitrary spanning tree;

given that a list is also a spanning tree, this does not deviate from the data

model.

Even with the logical manifestation of the list structure, the conceptual

complete graph of data elements is still relevant. This is because a concep-

tual graph model provides the flexibility to “rearrange” the data elements

without corrupting the execution. This, as seen later, allows many oppor-

tunities for runtime optimization.

Both the ana function and kata function require input of local data ele-

ments in chunks of values of the same key (refer to Section 3.2.2). This can

be done easily by loading the key/value pairs into a temporary buffer until

the next key before submitting to the ana or kata function. Furthermore,

since the key/value pairs are already sorted according to the keys, the ⊙

join operator will not pose additional problem; each of the participating

data sets only requires one pass to create the joint chunks similar to that

of a relational sorted join operation.

The data set chunks can be considered as basic unit of work for the ana

function and kata function; the term data chunk is hereby used to refer

to the in-memory list of values of the same key. In fact, opening a file

handler to read a data set effectively gives an iterator of data chunks to the

processor during the execution of a job.

76

Chapter 3 Scalability: Katana

 0.5

 1

 2

 4

 8

 16

 4 16 64 256 1024 4096

M
a
x
/M

e
a
n
 R

a
ti
o

Number of Sites

Chord (no virtual sites)
Chord (log N virtual sites)
Chord (log N virtual sites, share ratio = 2)
Chord (log N virtual sites, share ratio = golden)

Figure 3.4: Max/Mean ratios of different Chord schemes under simulation

3.5.2 Load Balancing

The performance of a distributed processing framework is noticeably tied to

the uniformity of the distribution of data elements. Therefore, the Achillies’

heel in using structured P2P overlays for data processing is the inherent load

imbalance; this is because the use of hashing in structured P2P overlays

cannot guarantee uniform distribution of data elements across the sites. As

such, the design of DHTs based on consistent hashing (refer to Section 2.1.1)

advocates the employment of virtual sites to alleviate the load imbalance.

With the use of virtual sites, each physical processing site emulates sev-

eral logical (i.e., virtual) site instances, each with a different identity value

coupled with a complete routing table. In this way, the summation of the

load of each virtual site at a physical one will tend to be better balanced.

In Figure 3.4, it can be seen that a simulated Chord overlay with log2N

virtual sites has rather constant load imbalance while Chord without the

77

Section 3.5 System Internals

use of virtual sites experiences degrading load imbalance as the cluster size

increases.

Note that in Figure 3.4, the metric max/mean ratio is used as a mechanism

to measure load imbalance. This value is derived simply from the quotient

of the load of the most loaded site over the average load; a max/mean ratio

of 1 will indicate perfect distribution (i.e., the most loaded site is as loaded

as the average). Roughly speaking, suppose the processing task is linear

to the load, a max/mean ratio of 2 will indicate that the processing time

taken will be twice of that if the load was to be perfectly distributed; this is

because the total time taken is often determined by the slowest site. Despite

the fact that early version of the Katana framework performs rather well

with such an implementation (Goh and Tan, 2013), such a revelation bodes

ill for the prospect of using structured P2P overlay to support a processing

framework. This is because judging from the simulated max/mean ratio

of vanilla Chord (i.e., slightly more than 2), the performance achieved will

always be less than half of the theoretical capability of the cluster. Much

can be improved in this aspect.

The linchpin for the improvement of load balancing lies in the observation

that most structured P2P overlays are designed for a much harsher envi-

ronment whereby site participations are very dynamic. In comparison, even

though distributed processing frameworks (e.g., MapReduce) generally con-

sider site failures as a regular phenomenon, a deployed cluster still has a

relatively benign operating environment as compared to the ones structured

P2P overlays typically handle.

Under Katana, the joining procedure of Chord has been re-designed such

that each new (virtual) site will actively seek out the most loaded site to

78

Chapter 3 Scalability: Katana

share the load by setting its identity value between that site and its prede-

cessor. Note that such a mechanism will probably not work well under the

dynamic P2P environment but given the relative permanence of a cluster,

it can be argued that the compromise on the robustness for a much better

load balancing is a fair deal. With regards to sharing of load, the newly

joined site can simply halve the load of the most loaded site by setting its

identity value in the midpoint of the range governed by that site; however,

such a sharing mechanism leads to rather inconsistent, albeit occasionally

optimal, load balancing as seen in Figure 3.4 (i.e., share ratio = 2). To

determine an alternate share ratio, consider the following trace of sharing,

where each binary branching represents the joining of a new site and the

resulting leaves represent the load distribution:

1 x x2 . . .

x(1− x) . . .

1− x x(1− x)

(1− x)2

i

j

k

(3.6)

Note that x ∈ (0, 1) and 1
x

is the share ratio. Without loss of generality, it

can be assumed that x ≥ 1−x (i.e., branch i and j in (3.6)). An additional

guard condition can be enforced: 1− x = x2 (i.e., branch j and k in (3.6)).

This condition assures that the leaves only differ by at most a factor of x.

Solving, one will obtain the solution of x =
√
5−1
2

. Incidentally, the share

ratio is then 1
x
= 1+

√
5

2
= 1.618 . . . , which is the golden ratio. Thus, the

sharing can also be determined based on the golden ratio such that the load

balancing is relatively consistent across the number of sites, as evident in

Figure 3.4 (i.e., share ratio = golden).

79

Section 3.5 System Internals

s1

s2 s3

k1

k2

k3

k5

k4

s3

s2

s1

k1

k2k3 k5

k4

si

ki

remote result

local result

site

data chunk

head chunk

subhead chunk

Figure 3.5: Identification of a spanning tree for a kata job

3.5.3 Kata Job Execution

Recall that a kata job usually expresses some form of aggregation over the

data elements and for that purpose, as discussed in Section 3.2.2, a spanning

tree over the data elements (i.e., data graph) is identified. Given that the

data graph is distinguished into a global level graph for the processing sites

and a local level graph for the local data storage, the required spanning tree

is identified in a similar manner.

At the global level of the overlay, bounded broadcast (refer to Section 2.1.4)

is used to identify the global level spanning tree for the execution of the

kata job; this form of broadcasting is especially applicable for CM-DHTs,

especially with the use of word metric. At the local level, the kata func-

tion is applied on each data chunk with possible emitted values from the

applications of the kata functions on other data chunks; these other data

chunks are possibly located on remote site according to the global spanning

tree. The local level spanning tree is identified implicitly via the manner of

applications of the kata function on the data chunks.

80

Chapter 3 Scalability: Katana

At the local level, the kata function is applied on each data chunk with

several or no input from applications of the kata functions on other data

chunks; these other data chunks are possibly located on remote site accord-

ing to the global spanning tree. The local level spanning tree is identified

implicitly via the manner of applications of the kata function on the data

chunks. The flexibility of the identification of the spanning tree provides

the opportunity to optimize the processing a little; this involves the trans-

formation of the spanning tree (refer to Figure 3.5 for an example).

Figure 3.5 demonstrates a manner which is statically optimal for the exe-

cution of a kata job. As each processing site is potentially awaiting the

results from other processing sites, it will be optimal to perform as much

local processing as possible prior to the wait. Out of all the data chunks,

two chunks (i.e., the first two in the stored list) are arbitrarily selected: the

head chunk (i.e., chunk k4 in Figure 3.5) and the subhead chunk (i.e., chunk

k1 in Figure 3.5). For the other chunks, the kata functions are applied

as if they are leaves of the spanning tree and their results are used for the

application of the kata function on the subhead chunk. The result of sub-

head chunk will be used in the application of the kata function on the head

chunk. The application of the kata function on the head chunk will also

wait for the remote results (i.e., from site s1 and site s2 in Figure 3.5) and

it will send its result to the parent site (i.e., site s3 in Figure 3.5) according

to the global spanning tree.

Note that as long as the applications form the required spanning tree as

indicated in the programming model, there is no requirement (and should

not have any requirement) that the actual spanning tree should follow the

approach mentioned above, or any other pre-determined approach. For

example, a certain degree of parallel local execution can be explored by

81

Section 3.5 System Internals

dynamically identifying several sets of head and subhead chunks for the

execution. However, as of now, such local optimization scheme has not

been implemented in the prototype used in the experiments; the prototype

employs the static optimization approach displayed in Figure 3.5.

Recall that the result of a kata job is not modelled by the data model

and it is simply a list of arbitrary values (refer to Section 3.2.2); this is

reflected in the fact that the final results will be shipped to the user after

the execution of the kata function on the head chunk at the root processing

site as determined by the global spanning tree.

3.5.4 Ana Job Execution

Unlike the kata job, the ana job does not require causality in the execution;

ideally, the executions of the ana functions should be initiated simultane-

ously for all the processing sites. For this purpose, bounded broadcast is

employed again to disseminate the ana job. The spanning tree also serves

as the manner in which the job managers may monitor the job progress in

a decentralized manner (i.e., sites will monitor their child sites).

Upon receiving an ana job via the bounded broadcast, the ana function is

applied sequentially on the data chunks and the emitted key/value pairs are

stored together in a temporary flat file at the local site. The temporary file

will be sorted and re-distributed to other processing sites according to the

key with the locality information retrieved from the P2P engine. Therefore,

each processing site will be receiving from all the other processing sites some

data subsets. Given the concurrency of inter-site shipping of data elements,

non-blocking network I/O becomes indispensable in this phase of operation.

The processing site will merge the received data subsets until it has merged

82

Chapter 3 Scalability: Katana

4

0

2 6

5

71

3

site1

site2

0

1 2

3

4

5 6

7
site1

site2

4

0

2 6

5

71

3

site1

site1

site2

site2

site1

site2
0

1

4

5

2

3

6

7

Figure 3.6: Effects of virtual sites on spanning tree of a kata job

all the required data subsets into one. Since the data subsets are already

sorted, therefore the merging process will not pose a problem. Notice that

the resulting merged data subsets across the overlay necessarily form the

required data graph in accordance to the type graph of its key type.

Note that the sorting and re-distribution of the resulting data set is an ex-

pensive operation and should be avoided if they are not necessary. There-

fore, when storing the temporary data set, the Katana framework also take

note of spillage (i.e., data elements that do not belong to the processing site)

and out-of-order elements; sorting will be done if there is at least one out-

of-order element and similarly, re-distribution will be done when spillage is

detected.

3.5.5 Dual Overlays

While the use of virtual sites optimizes the load distribution of data ele-

ments, it disrupts the locality of the data elements. This is because each

83

Section 3.6 Experimental Study

physical site emulates a number of virtual sites, which may not be adjacent

with one another. As a result, each physical site has to process several local

spanning trees. Though this phenomenon does not affect the correctness

of the processing model, it has negative effect on the execution of a kata

job; in particular, it increases communication cost due to larger global span-

ning tree built for the kata job and it reduces degree of parallelism due to

shorter local pipelining (refer to Figure 3.6). Note that the execution of an

ana job is not affected much since the spanning tree is only used for job

dissemination.

The solution adopted is to deploy two distinct overlays over the same cluster

of processing sites; they are named the command overlay and the data

overlay. The command overlay does not utilize virtual sites and is used

for the propagation of job packages, hence construction of global spanning

tree. On the other hand, the data overlay deploys virtual sites as per normal

and is used for the allocation and location of data elements. As such, the

spanning tree constructed for a kata job is built using the global spanning

tree of the command overlay together with the chunks identified by the

data overlay. On the other hand, for an ana job, the job dissemination

is done with the command overlay while the resulting data set is allocated

according to the data overlay. In this way, the Katana framework enjoys the

load balancing of the data overlay while having the simpler graph (hence,

tree) of the command overlay for job executions.

3.6 Experimental Study

In order to gauge the performance of the Katana framework, a prototype4

is implemented over the modified Chord (as mentioned in Section 3.5.2)

4Source code available at: https://bitbucket.org/xanec/projectkhloe

84

https://bitbucket.org/xanec/projectkhloe

Chapter 3 Scalability: Katana

with Java 1.6 and extensive experiments against Apache Hadoop have been

conducted. The experiments are conducted on a 65 machines cluster. Each

machine is equipped with an Intel Xeon X3430 Quad Core CPU (2.4 Ghz),

8 GB memory, two 450 GB SCSI disks, and 1 Gbps Ethernet interface.

The operating system used in each machine is CentOS Linux 5.6. The

Java virtual machine installed is Java HotSpotTM 64-Bit Server VM (build

24.45-b08, mixed mode).

The experimental data is obtained via the Transaction Processing Perfor-

mance Council BenchmarkTM H (TPC-H) generator. The primary relations

used are the lineitem relation and the orders relation. The experiments

will run on data sets of different scale factor (i.e., SF ∈ {32, 64, 128}); when

SF = 128, the generator produces about 768 million records of lineitem

(119 GB) and 192 million records of orders (25 GB).

The performance evaluation consists of three experiments (i.e., Document-

Length, Equi-Join and Aggregation-Query) over different cluster sizes (i.e.,

N ∈ {16, 32, 64}). For each experiment, the same or similar algorithm is

implemented on different frameworks with different configurations to com-

pare the running times taken on these frameworks to achieve the same

result. Experiments have been conducted on the current revised version

of the Katana framework (i.e., labelled as Katana (revised)) as well as the

previous version5 (Goh and Tan, 2013) (i.e., labelled as Katana (previous)).

In addition, the MapReduce algorithm has been emulated in the manner as

mentioned in Section 3.2.3 on the revised Katana framework (i.e., labelled

as Emulated MapReduce). For each experiment, there will be a total of 45

5The previous version of the Katana framework comprises of the basic execution
engine without some of the optimizations mentioned in Section 3.5; in particular, it does
not employ the modified Chord (refer to Section 3.5.2) and the dual overlays (refer to
Section 3.5.5).

85

Section 3.6 Experimental Study

experimental runs (i.e., 5 frameworks × 3 cluster sizes × 3 scale factors);

the timing obtained for each experiment run is an average calculated from

three distinct executions.

For the MapReduce framework, Apache Hadoop 2.2.0, which is equipped

with YARN, is used. Based on experiences with MapReduce on YARN,

the MapReduce jobs can be quite sensitive to the number of reducers used

depending on the job profile, therefore the same job is executed using differ-

ent number of reducers (i.e., labelled as Hadoop (R=1) and Hadoop (R=2))

where the R-value is the multiplier used to determine the number of reduc-

ers based on the number of sites (i.e., the N -values). For example, if R = 2

and N = 32, the number of reducers used is R×N = 64. The choice of these

R-values is based on empirical observations that the fastest timings tend to

occur with these values. For the experiments on Hadoop, one additional

machine is dedicated to perform the role of the master site (i.e., resource

manager); for example, if N = 32, a total of 33 sites will be used. Most of

the configurations on Hadoop are unchanged; the only major modification

is the reduction of resources (i.e., memory) available per site from 8 GB to

4 GB as an effort to reduce external interference (i.e., experiments of other

researchers using the same cluster); naturally, the Katana framework has

been configured to match that of the Hadoop framework (e.g., sort buffer

size and I/O buffer size).

3.6.1 Document-Length

The Document-Length experiment counts the number of words in the line-

item relation of the TPC-H data set; value of non-textual field is considered

86

Chapter 3 Scalability: Katana

Algorithm 5 MapReduce job for Document-Length

1: procedure map(K key, String value)
2: int count← num_words(value)
3: emit

(

hash(key), count
)

4: end procedure

1: procedure reduce(int hash, [int] counts)
2: int total← 0
3: for each count in counts do

4: total← total + count
5: end for

6: emit (hash, total)
7: end procedure

to be counted as one word. The Katana algorithm used for the Document-

Length experiment is mentioned in Section 3.2.3; the MapReduce algorithm

used is as depicted in Algorithm 5.

As observed in Figure 3.7, it is evident that executions for Document-Length

on Hadoop are faster with fewer reducers (i.e., R = 1); this is largely due to

the fact that Document-Length has relatively light reduce tasks. In compar-

ison to the faster Hadoop execution, the Katana algorithm on the revised

Katana framework reduces the running times by 33.65% to 65.63% depend-

ing on the configuration of the experiment. In addition, when comparing to

the previous version of the Katana framework, there is an improvement of

16.84% to 35.87%.

Generally, the implemented Katana algorithm is much more efficient than

the MapReduce algorithm. This is directly due to the capability of the

Katana programming model to express what is required with more precision;

as a result, the processing task required on the Katana is lighter (i.e., a

single kata job versus a full MapReduce job) and without unnecessary

internal operations (e.g., shuffle phase). This phenomenon is more explicit

87

Section 3.6 Experimental Study

 0

 100

 200

 300

 400

 500

 600

 700

SF=32 64 128 SF=32 64 128 SF=32 64 128

R
u
n
n
in

g
 T

im
e
 (

s
)

Scale Factor (SF) / Cluster Size (N)

Katana (revised)
Katana (previous)
Emulated MapReduce
Hadoop (R=1)
Hadoop (R=2)

N = 16N = 32N = 64

Figure 3.7: Running times of Document-Length (N = cluster size)

particularly when looking at the performance of the emulated MapReduce

algorithm on the revised Katana framework.

Though the emulation still enjoys decent scalability, there is significant over-

head incurred by the lack of pipelining between the emulated map phase

and reduce phase; ultimately, the emulated MapReduce algorithm is still

two distinct processing jobs as opposed to a single contiguous processing

adopted by most MapReduce systems. Taking this overhead into consider-

ation, the fact that the Katana algorithm is able to outperform the Map-

Reduce algorithm on Hadoop is a clear indication that a better expressed

processing such as that of the Katana programming model can improve the

performance of generalized processing framework.

The running times on the revised Katana framework has improved quite

significantly as compared to the previous version; this can be attributed to

the new load balancing mechanism employed. Note that the performance

of a kata job is determined largely by the rate of disk reads because the

output data is expected to be small and the internal processing is usually

88

Chapter 3 Scalability: Katana

 0

 100

 200

 300

 400

 500

 600

 700

 0 50 100 150 200 250

T
ra

n
s
fe

r
ra

te
 (

M
B

/s
)

Time (s)

disk read (revised)
disk read (previous)

Figure 3.8: Data transfer rate of Document-Length (N = 16,SF = 64)

constrained due to its aggregation-like nature. Therefore, observed that in

Figure 3.8, the aggregated throughput of the kata job on the revised frame-

work has faster tapering as compared to the previous Katana framework.

This is an indication that the load is better balanced across the sites such

that the overall performance is not hindered by disproportionately loaded

sites.

3.6.2 Equi-Join

The Equi-Join experiment performs a foreign-key equi-join on the line-

item and orders relations of the TPC-H data set. The equi-join algo-

rithm used for the MapReduce is that of a reduce-side join (Blanas et al.,

2010). The Katana algorithm used for Equi-Join experiment is mentioned

in Section 3.2.3.

Observe that in contrast to the Document-Length experiment, from Fig-

ure 3.9, it can be seen that the executions for Equi-Join on Hadoop are

89

Section 3.6 Experimental Study

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

SF=32 64 128 SF=32 64 128 SF=32 64 128

R
u
n
n
in

g
 T

im
e
 (

s
)

Scale Factor (SF) / Cluster Size (N)

Katana (revised)
Katana (previous)
Emulated MapReduce
Hadoop (R=1)
Hadoop (R=2)

N = 16N = 32N = 64

Figure 3.9: Running times of Equi-Join (N = cluster size)

faster with more reducers (i.e., R = 2) this time; this is largely due to the

fact that Equi-Join has significantly heavier reduce tasks. Nevertheless, the

Katana algorithm on the revised Katana framework reduces the running

times by 59.03% to 68.09%. When compared to the previous version of

the Katana framework, the revised framework improves the running times

by 12.03% to 56.76%. Moreover, the emulated MapReduce algorithm also

outperforms its Hadoop counterparts; in comparison to the faster execution

on Hadoop, the emulation on the revised Katana framework reduces the

running times by 38.31% to 62.63%.

The phenomenon that the MapReduce emulation for Equi-Join on the

Katana framework actually outperforms the MapReduce algorithm on Hadoop

is consistent with the previous version of the Katana framework though the

improvement is much more significant. There are three main reasons for

this phenomenon. Firstly, as opposed to the Document-Length, the inter-

nal processing of reduce-side join is much more significant than the inherent

overhead of having two separate jobs. Secondly, due to the nature of an ana

90

Chapter 3 Scalability: Katana

job, there is actually an effect of push-based data shipping involved in the

emulated shuffle phase; as a result, there is less latency in commencing the

emulated reduce phase. Lastly, the fact that the reduce phase is emulated

by a complete ana job actually helps the processing in that the emulated

reducer task enjoys the use of all the available resources of the site (e.g.,

memory buffer) as opposed to the design of YARN within Hadoop where

the reduce task is mandated to be executed with only a fraction (i.e., half6

in the optimal configuration) of the available resources.

As compared to the MapReduce algorithm, the Katana algorithm for Equi-

Join also offers significant improvement; when compared to the emulated

MapReduce, the Katana algorithm reduces the running times by 12.15% to

35.51%. This improvement is a result of the capability of the data model.

Not only the Katana algorithm does not require artificial tagging, as in

reduce-side join, the execution also requires less data shipping. With the

use of ⊙ operator, the Katana implementation only requires one of the rela-

tions to the rehashed and re-distributed while reduce-side join requires both

relations to be re-distributed. The revised Katana framework itself also im-

proves the performance of the Katana algorithm. The rationale is the same

as that of the Document-Length experiment; the new load balancing mech-

anism provides much better load distribution, which benefits the processing

of both kata jobs and ana jobs. In fact, the improved load balancing even

results in the emulation on the revised framework to outperform the Katana

algorithm on the previous framework.

Figure 3.10 shows the aggregated transfer rates of the Katana algorithm

for Equi-Join; note the distinction of the profiles of the two executed ana

jobs. In the first job, we observe the overlapping phases of the processing

6By default, each reduce task under YARN requires 1 GB of memory.

91

Section 3.6 Experimental Study

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 100 200 300 400 500 600 700 800

T
ra

n
s
fe

r
ra

te
 (

M
B

/s
)

Time (s)

disk read
disk write
net read
net write

first job second job

parsing

data shipping

merging

parsing

Figure 3.10: Data transfer rate of Equi-Join (N = 16,SF = 64)

of the ana job; the overlaps come from the fact that the sites push data

to the appropriate destination and that the sites will produce output once

they received the required splits. Also in the first job, notice that the

network read rate actually coincides exactly with the network write rate;

this optimality in the latency can be attributed to the use of non-blocking

network I/O (i.e., implemented with Java NIO). In the second job, there

is actually no data shipping because this particular ana job produces data

elements that are guaranteed to be local to the processing sites.

3.6.3 Aggregation-Query

The Aggregation-Query experiment performs an aggregation query with the

lineitem and orders relations of the TPC-H data sets. The query can

be expressed in SQL as depicted in Figure 6. The MapReduce algorithm is

broken down into the following jobs:

92

Chapter 3 Scalability: Katana

Algorithm 6 SQL statement for Aggregation-Query

SELECT into temp linenumber, returnflag, linestatus,

SUM(totalprice * quantity) AS totalcost,

AVG(discount) AS avgdiscount

FROM lineitem l, orders o

WHERE l.orderkey = o.orderkey

AND l.commitdate BETWEEN 1994-01-01 AND 1996-12-31

GROUP BY l.linenumber, l.returnflag, l.linestatus;

SELECT * FROM temp ORDER BY totalcost DESC LIMIT 1;

Job 1: The first MapReduce job is the canonical reduce-side join with filter-

ing by commitdate during the map phase. The key of the result will be

the fields linenumber, returnflag and linestatus and the value will be

the calculated fields totalcost (= totalprice× quantity), avgdiscount

(= discount) and count (= 1).

Job 2: The second MapReduce job will perform the aggregation. The map

task is the identity map and the reduce task will sum up the fields

of totalcost, avgdiscount and count before dividing avgdiscount by

count to obtain the required average value for that group.

Job 3: The last MapReduce job will select the result with the largest

totalcost.

Notice that the last job may be replaced with just a simple retrieval and

selection; however, as the list of groups may be potentially large, it is not

done in this way.

While the Katana algorithm used is also implemented into several jobs, the

expression used in the Katana algorithm is more precise. Note that one

MapReduce job is roughly equivalent to two ana jobs. The Katana jobs

are as follows:

93

Section 3.6 Experimental Study

 0

 500

 1000

 1500

 2000

 2500

SF=32 64 128 SF=32 64 128 SF=32 64 128

R
u
n
n
in

g
 T

im
e
 (

s
)

Scale Factor (SF) / Cluster Size (N)

Katana (revised)
Katana (previous)
Emulated MapReduce
Hadoop (R=1)
Hadoop (R=2)

N = 16N = 32N = 64

Figure 3.11: Running times of Aggregation-Query (N = cluster size)

Job 1: The first job is an ana job on lineitem to “rehash” them according

to the orderkey with filtering on commitdate.

Job 2: The second job is an ana job on lineitem and orders (i.e., a

⊙ join); the result of the job the same as that of the Job 2 of the

MapReduce algorithm.

Job 3: The last job is a kata job that performs the required aggregation

on the local data of the results from Job 2 and emits the result with

the largest totalcost.

Since some heavier reduce tasks (i.e., the join operation) are required, it can

be observed that, in Figure 3.11, the executions for Aggregation-Query on

Hadoop are faster with more reducers (i.e., R = 2). In comparison to the

MapReduce algorithm on the faster configuration of Hadoop, the Katana

algorithm on the revised Katana framework reduces the running times by

25.2% to 51.45% depending on the configuration of the experiment. When

94

Chapter 3 Scalability: Katana

compared to the previous version of the Katana framework, the improve-

ment is 12.03% to 56.76%.

As a mixture of job profiles is involved in this experiment, the emulated

MapReduce algorithm on the revised Katana framework does not always

outperform Hadoop. In general, when the load per site is light (e.g., SF = 32,

N = 16) the emulation falls behind Hadoop; on the other hand, when the

load is heavy (e.g., SF = 128, N = 16), the emulation will outperform.

This phenomenon can be explained by the relative significance of the in-

ternal processing as compared to the inherent overhead; when the load is

lighter, the inherent overhead of the Katana framework when emulating the

MapReduce algorithm plays a more significant role.

In general, this experiment coalesces the effects previously described in Sec-

tion 3.6.1 and Section 3.6.2. As such, the improvement produced by the

Katana algorithm on the revised Katana framework can be explained by

the reasonings indicated previously (i.e., expressiveness of the program-

ming model and enhancement of the revised framework). The Aggregation-

Query experiment indicates that the optimization mechanism offered by the

Katana programming model and the revised framework transcends multiple

and varied jobs.

3.7 Summary

The Katana framework serves as an exploratory work in adopting P2P-

mentality in the design of generalized data processing systems; and the

findings indeed indicate such a potential. In both its programming model

and its system architecture, the Katana framework can be seen as a natural

generalization of the MapReduce framework.

95

Section 3.7 Summary

The example algorithms have demonstrated that the primitives (i.e., ana

and kata functions) are actually more expressive than that of the Map-

Reduce model; the fact that the Katana programming model encompasses

the MapReduce programming model does say a lot in this regards. Fur-

thermore, the coupling of the data model with the abstract structure of the

overlay allows a natural and implicit access to data locality without over-

burdening the “language” of the processing model; one particular result of

such a quality is the possibility of the ⊙ operator.

Due to the model realization, the execution of the processing model is en-

tirely decentralized, which allows the functioning of the Katana framework

to conform to the P2P philosophy. As a result, the qualities of the execution

architecture mirrors that of the system architecture. Since the system ar-

chitecture is based on structured P2P overlays, the derived system inherits

many of the systemic qualities. The Katana framework can exhibit better

horizontal scalability due the lack of centralized control.

Going beyond the central theme of this chapter, there are reasons to believe

that the Katana framework can provide more than just scalability (i.e., elas-

ticity and robustness). Moreover, this work already opens up many research

possibilities (e.g., distributed query optimization in the Katana framework)

that has not been considered yet. For now, these research avenues shall be

left to future works to explore.

96

Chapter 4

Robustness: Hardened Katana

4.1 Motivation

It has already been mentioned in Section 1.2 that as a distributed system

grows in deployment scale, its capability to handle system-wide operations

will come under increasing strain from augmented possibility of site failures.

As a result, the implementation of a tolerance mechanism to site failures, or

fault-tolerance, within a modern data processing system has become indis-

pensable. In order to assume fault-tolerant operations, under the context

of a modern data processing system, two system-wide architectural states

have been identified in this thesis that require explicit assurance on their

continual persistence: the system state and the processing state.

The fault-tolerance of the system state refers to the capability of the dis-

tributed architecture and system meta-data to persist in the event of singly

site failures. For a master/workers architecture, the implementation of such

an assurance is rather straight forward since the system state is usually

maintained by the master site in its entirety with the workers announcing

97

Section 4.1 Motivation

its liveness through periodic updates sent to the master site; in other words,

the master site acts as the resource manager whereby the worker sites are

treated as deployable resources (refer to Section 2.2.3). Naturally, the chal-

lenge in this case lies with the assurance of the persistence of the master site.

Therefore, this motivates various research works on the specific fortification

of the master site (e.g., Myers, 2012; Ryan, 2012).

Long running processing jobs (e.g., deep data analytics) typically do not

have the luxury of restarting upon exceptional failures; it is prohibitively

costly and renders the system unusable given the inverse relationship be-

tween the cluster size and the mean time between failures (refer to Sec-

tion 1.2.2). Therefore, the mechanism employed by the MapReduce frame-

work to handle site failures during processing (i.e., fault-tolerance of pro-

cessing state) gains recognitions. By defining a job to be a collection of

relatively idempotent tasks processed across an array of the worker sites,

the extent of failure can be kept minimal; the failures of the tasks need

not forestall the progress of the entire job. Again, for the master/workers

architecture, the maintenance of the processing state is done mostly by

the master site; in particular, the master site determines if a task has to be

restarted on surviving sites by keeping track of the progress of each task. For

the fault-tolerance of processing state at the master site, a master/workers

architecture typically resorts to relying on an element of higher availability

to aid processing state reconstruction. For example in YARN, the restarting

of the ApplicationMaster due to failure requires the ResourceManager to

restore the state of the job progress while the availability of the Resource-

Manager in turn has to rely on some high availability service (e.g., Hunt

et al., 2010).

As suggested in Section 1.3, the structured P2P overlay is a viable option for

98

Chapter 4 Robustness: Hardened Katana

web-scale system architecture in various aspects. To begin with, structured

P2P overlays, by design, already assures the persistence of the system state;

in fact, the main prowess of these architectures is their resilience against site

failures, which invites the preference of structured P2P architectures over

master/workers architectures. This chapter seeks to explore the feasibility

of using structured P2P overlays to augment the robustness of a modern

data processing system, particularly in the persistence of processing state.

To be specific, an extension to the Katana framework is proposed: the

hardened Katana framework.

The extension is intended to handle the fault-tolerance of the framework

together with techniques that are already available to structured P2P over-

lays, as well as novel inventions specific to the Katana framework. Note

that the Katana framework is used as the basis to explore the role of struc-

tured P2P overlay in assuring fault-tolerance in web-scale data processing

system because the Katana programming model is unique in that it is en-

tirely decentralized. Furthermore, the Katana data model is much akin

to the MapReduce-style of job constitution (i.e., definition of a job as a

summation of tasks), albeit with a tighter relationships between the “tasks”

(i.e., key/values chunks). The following are some of the contributions of the

hardened Katana framework:

• A generalized fault-tolerance scheme, called the cover-charge pro-

tocol, is proposed for system-wide operations in a distributed manner;

the cover-charge protocol generalizes the MapReduce-style fault-

tolerance.

• The cover-charge protocol is applicable to system-wide operations

in a structured P2P overlay (e.g., bounded broadcast).

99

Section 4.2 Model of Fault-Tolerance

• Execution of ana and kata jobs can utilize the cover-charge pro-

tocol to render their processing fault-tolerant.

• Experimental studies indicate that the overhead incurred by the cover-

charge protocol for the execution of ana and kata jobs is compa-

rable to, if not lesser than, that of similar jobs under Hadoop Apache.

4.2 Model of Fault-Tolerance

It is not known whether the requirement for fault-tolerant processing has

influenced the design of the MapReduce processing model or vice versa

but it is noticeable that the handling of singly site failures by the Map-

Reduce framework during processing is innately tied to the simplicity of

its programming model; the expression of the MapReduce programming

model translates into the tasks-based definition of a job while inversely, the

horizontally-oriented definition of tasks allows for robust execution that con-

strains the extent of failures. Therefore, the MapReduce framework may not

actually have a formal derivation for its provision of fault-tolerance. How-

ever, since the advent of the MapReduce framework, several similar generic

processing systems have been developed (e.g., Isard et al., 2007; Malewicz

et al., 2010); these systems seem to have indirectly adapted the mechanism

of robust processing under the MapReduce framework, or what Yang et al.

(2010) referred to as MapReduce-style fault-tolerance, into their individual

execution architecture.

Note that the fact that its fault-tolerance model and its programming model

are inherently related can be seen as a powerful revelation for the MapRe-

duce framework, especially since the MapReduce programming model enjoys

100

Chapter 4 Robustness: Hardened Katana

recognition for its scope of algorithmic application (refer to Section 2.2.1).

This is because the incorporation of the notion of fault-tolerance into its

programming model greatly alleviates the considerations involved in the

design of the execution architecture; some responsibility of fault-tolerance

has been offloaded to the programming model. This is evident in the fact

that allowing transparently fault-tolerant processing of generic programs in

a large cluster (e.g., a supercomputer) is a heavily invested research area

with on-going progress (e.g., Bosilca et al., 2009; Bougeret et al., 2011;

Cappello et al., 2009; Elnozahy et al., 2002; Ferreira et al., 2011) but works

on MapReduce frameworks often automatically assume fault-tolerance as

an innate quality of the framework (e.g., Doulkeridis and Nørvåg, 2014;

Lee et al., 2012; Li et al., 2014; Sakr et al., 2013); to be fair, the former

considers problems beyond the scale typically assumed even for the latter

(i.e., exabyte-scale processing) but the attitudes towards considerations of

fault-tolerance hold true.

Given the legitimacy and general acceptance of the MapReduce-style fault-

tolerance of processing state, it will perhaps be fruitful to “post-construct”

a model of fault-tolerance based on this mechanism and seek to generalize

it so as to further the goal of achieving robust processing over structured

P2P overlays.

4.2.1 MapReduce-Style Fault-Tolerance

Without resolving the causality of influence, the MapReduce-style fault-

tolerance for the maintenance of the processing state can be said to be built

on top of several premises on the nature of processing in question:

101

Section 4.2 Model of Fault-Tolerance

Divisibility. Each processing job is divided into a (large) number of dis-

tinct “sub-jobs”, or tasks. Under the context of MapReduce, this is

seen in the fact that each MapReduce job is divided into a collection

of map tasks and reduce tasks.

Linearity. The completion of the processing job is wholly defined by the

singular completion of each individual tasks. Note that a MapReduce

job is considered completed if and only if all the map and reduce tasks

have been completed.

Replicability. Each task can be repeated at another site, possibly with

preference on locality, upon failure. Recall that a map task is defined

by the sub-file, which is often replicated to several sites, and a reduce

task can be relocated at a different site to restart by retrieving the

already-existing intermediate map outputs.

Idempotence. Each task may be repeated without influencing the correct-

ness of the result of the processing job. For most implementations of

the MapReduce framework (e.g., Apache Hadoop), each map or re-

duce task manifests as one or more attempts and the task is considered

completed if at least one of the attempts succeeds.

With the assumption on the aliveness of the master site, these premises

allow the processing to persist even in the event of singly failures of the

worker sites through a rather direct and intuitive mechanism. Given the

divisibility and linearity of processing under MapReduce, the concern for

fault-tolerant processing of the entire job is simplified to the assurance of

completion of each individual task. Then, with the property of replicability

and idempotence, failed attempts of a task can prompt the relocation of the

task to a surviving site to resume the progress of the job without affecting its

102

Chapter 4 Robustness: Hardened Katana

correctness. Note that the notion of replicability implies the inheritance of

the accessibility and availability of data input (i.e., replicas) from the fault-

tolerance of system state. Under such a model, there are no presumptions

made on the dependencies between the tasks; in the case of MapReduce,

typically, the commencement of a reduce task is tied to the completion of

the map tasks. It is assumed that the dependencies, if any, are resolved as

part of the nature of the task. For example, under MapReduce, the reduce

tasks are entirely oblivious to the global state of the processing; they are

independent consumers of work, which is retrieved from the map tasks.

Therefore, if the dependencies are not managed well, locking of resources

may occur (refer to Figure 5.6 in Section 5.6.1).

4.2.2 Generalization of Notions

Even though the MapReduce-style fault-tolerance is tied to the framework

in which it is deployed, based on the previously identified premises of pro-

cessing, it is possible to extract framework-neutral notions so as to derive

an abstract depiction of how persistence of processing state may be en-

forced under this style of processing. In this section, the derivations of these

framework-neutral notions are introduced leading up to the description of

the generalization of the said fault-tolerance scheme.

4.2.2.1 Cover

With the properties of divisibility, linearity and replicability, the MapReduce-

style fault-tolerance suggests a notion of relatively-independent replicated

units of work awaiting to be processed for the fulfillment of the job. A con-

ceptual construct, called cover, is introduced to encapsulate this notion.

103

Section 4.2 Model of Fault-Tolerance

Definition 4.2.1: Cover

A cover is defined to be an identifiable unit of idempotent processable

work that is replicated across the processing system and can be reliably

located within the systema.
aNote that if the fault-tolerance of the system state is established, the require-

ment of reliable location of covers is assumed to be satisfied.

With the references to “replication” and “location”, it be inferred that the

concept of cover is abstracted from the notion of the (local) data input

to the processing task; the generalization also encompasses work that does

not need data input (e.g., bounded broadcast as seen later in Section 4.3.1)

and work that derives input at runtime (e.g., reduce task).

Despite their analogical similarities, the concept of a cover differs actu-

ally from that of a processing task (i.e., a map task or a reduce task). A

processing task is assigned at runtime to a processing site to execute; in the

case of a map task, the assigned site may not hold the required data input

locally. On the other hand, a cover already exists conceptually on at least

one of the processing sites (i.e., replication) and it is located and selected

at runtime to contribute to the processing job; roughly speaking, a cover

is always local.

4.2.2.2 Charge and Delegation

A processing job can be redefined as being made up of an union of disjoint

covers (i.e., divisibility and linearity) instead of a collection of processing

tasks; the covers can be assumed to be pre-identified according to the

job definition. Similar to its tasks-based definition, the job is considered to

be completed when all the identified covers, regardless of which replica

104

Chapter 4 Robustness: Hardened Katana

(i.e., replicability), have been processed. The selection of distinct covers

to process is the determinant factor in achieving robust processing; for this,

the notion of charge is introduced.

Definition 4.2.2: Charge

A charge is defined to be a sub-collection of cover identities that

requires processing. During the processing of a job, when a processing

site receives a charge, it is responsible for (i.e., in charge of) the com-

pletion of the processing of the covers identified within the charge;

in this case, the processing site is called the site in charge (of a partic-

ular charge). When all the covers identified in a charge has been

processed, the charge is said to be fully covered.

When a site receives a particular charge, it may, or may not, possess

the required covers as identified in the charge. For the local covers

that fall within the received charge, the site will proceed to process them;

however, for the covers that are within the charge but not found locally,

the site in charge have to forward a sub-collection of the charge (i.e., a

sub-charge), consisting of the missing cover identities, to the appropriate

sites. This forwarding is referred to as delegating.

Definition 4.2.3: Delegation

When a site is requested to process a missing cover, it will locate the

required cover via the system and send a sub-charge consisting of

the missing cover to the correct remote site (i.e., delegation). The

initial site in charge monitors the progress and aliveness of the said

cover periodically and re-delegates should the processing of the said

cover fails at the remote site. Upon completion, the delegated site will

105

Section 4.2 Model of Fault-Tolerance

a

b

c

covera={x,y}

coverb={w}

coverc={x,z}

chargea={x,y,z}

worka={x,y}

workb={ }

workc={z}

chargeb={z}

chargec={z}

chargex

coverx

workx

charge received at x

covers local at x

work done at x

delegation

Figure 4.1: Example of cover, charge and delegation

inform the initial site and the initial site will mark this cover as being

covered under the initial charge. The hierarchy of all the delegations

naturally forms a (spanning) tree-shape structure, which is called the

delegation tree.

Figure 4.1 shows an example of how the elements of cover, charge and

delegation are related in action. The process is initiated when site a receives

the charge of {x, y, z}. Site a will have detected that the covers x and y

are local while the processing of cover z will have to be delegated. In

the example, site a delegates the charge {z} to site b, which will have to

further delegate it to site c. Notice that that at site c, only the cover z

is processed even though cover x is one of the required covers; this is

because the charge received at site c contains only cover z.

As depicted in Figure 4.1, the charge can be delegated wrongly (i.e., del-

egation of charge= {z} to site b) and a further delegation is required.

While the determination of the target of a delegation is subjected to im-

plementation specificities, with reliable location of covers, as supported

106

Chapter 4 Robustness: Hardened Katana

by fault-tolerance of system state (i.e., via data replication), it can be as-

sumed that the delegation will eventually reach the appropriate site and

that “infinite delegation” will be avoided.

4.2.2.3 Cover-Charge Protocol

With the previously mentioned abstractions, the MapReduce-style fault-

tolerance can be seen as simply a collection of callback functions based on

the events generated regarding the covers and charges (refer to Algo-

rithm 7). These functions are collectively referred to as the cover-charge

protocol (CCP). The event-driven programming depiction allows simplistic

state management, which augments the robustness of the processing.

The job processing is started by having one of the processing sites (e.g., the

master site) receives the initial charge of all the required covers. This

will trigger the receiveCharge event. As depicted in Algorithm 7, the

onReceiveCharge function will proceed to process all the local covers

(Lines 4–9 in Algorithm 7) while delegating the remote cover identities

as sub-charges to other sites (Lines 11–15 in Algorithm 7); note that the

delegation will in turn trigger the receiveCharge event at the respective

remote sites. Should the processing site detect that one of its delegates

have failed, it will reprocess the assigned charge under the failed delegates

(Lines 21–29 in Algorithm 7); this is possible because idempotence is as-

sumed on the nature of processing (refer to Section 4.2.1). Once the pro-

cessing site has processed all the covers indicated by the assigned charge

(i.e., as detected on the workCompletion event), it will proceed to notify

the requester of the charge (Lines 35–39 in Algorithm 7), triggering the

workCompletion event at the requester site. This notification is recur-

sive and finally, the site that receives the initial charge will have to be

107

Section 4.2 Model of Fault-Tolerance

Algorithm 7 Callback functions of the cover-charge protocol
1: procedure onReceiveCharge(Site requester, Charge charge)
2: register charge under requester for completion notification
3:

4: for each cover in local_covers do

5: if cover in charge then

6: enqueue cover in work_queue
7: remove cover from charge
8: end if

9: end for

10:

11: for each cover in charge do

12: Site delegate← locate(cover)
13: delegate.sendCharge(myself, cover.id)
14: register delegate on cover for monitoring
15: end for

16: end procedure

17:

18: procedure onDetectSiteFailure(Site failedSite)
19: Cover[] covers← covers under failedSite
20:

21: for each cover in covers do

22: if cover is local then

23: enqueue cover in work_queue
24: else

25: Site site← locate(cover)
26: site.delegate(myself, cover.id)
27: register site on cover for monitoring
28: end if

29: end for

30: end procedure

31:

32: procedure onWorkCompletion(Cover cover)
33: mark cover as completed
34:

35: for all the registered charge containing cover do

36: if charge is fully covered then

37: notify registered requester of the corresponding charge
38: end if

39: end for

40: end procedure

108

Chapter 4 Robustness: Hardened Katana

notified of the completion of the job (i.e., the initial charge being fully

covered by the processed covers).

The CCP can be said to assure robust processing because the site in charge

will either process the required covers or delegate their processing to other

sites, and will eventually cover its assigned charge. This assurance is

built on the assumption of the reliable location of the replicated covers,

which is supported by the fault-tolerance of system state. Therefore, the

fault-tolerance of system state is a critical ingredient in this protocol. In

addition, the failure of the receiver of the initial charge is considered

as an exceptional situation that requires implementation-specific corrective

measures (e.g., consider the failure of the master site under MapReduce).

4.2.3 MapReduce-Style Fault-Tolerance as CCP

Since the CCP is a generalization of the MapReduce-style fault-tolerance,

naturally the operations of the MapReduce framework can be framed ana-

logically under the context of the CCP.

The submission of a MapReduce job is equivalent of assigning the initial

charge to the master site. In this case, the initial charge consists of

cover identities where each map or reduce task is represented by one

unique cover. Note that as each worker site under MapReduce is capa-

ble of executing any of the assigned task, though in the case of map tasks,

preferences on data locality are taken into account. Therefore, conceptu-

ally, this will mean that each worker site contains all the covers while the

master site contains none of the covers. On a side note, this rightfully

indicates that the concept of locality is sometimes lost under MapReduce

since local processing is only a preference.

109

Section 4.3 Robust Katana Operations

The MapReduce tasks assignment process is modelled by the behaviour

that, upon receiving the initial charge, the master site will have detected

that none of the required covers are local; therefore, it will have to dele-

gate the charges to the appropriate site. The specialization of the CCP

protocol under MapReduce is that all the delegates of the master site will

cover the assigned charge because of the nature of the cover under Map-

Reduce. Upon site failures, the master site will re-delegate the charge to

an appropriate worker site, which is equivalent to the reattempting of the

task under MapReduce. The rest of the MapReduce processing model (e.g.,

reading of input, shuffling and tasks assignment scheduling) is considered

as implementation specificities as they do not affect the fundamental mech-

anisms of the CCP.

This thesis asserts that the MapReduce-style fault tolerance is a specializa-

tion of the CCP; in other words, the mechanism of the MapReduce-style

fault tolerance is exactly the mechanism of the CCP with a few specificities.

Similar to the CCP, the robustness of the MapReduce-style fault tolerance

is built on top of the fault-tolerance of system state, which is manifested as

the fault-tolerance of the HDFS (i.e., the replicated file splits) and of the

resource manager (i.e., aliveness of resources). However, the caveat is that

the master site will be left vulnerable and thus requires specific fortification

and perhaps some higher availability service, as previously mentioned.

4.3 Robust Katana Operations

Given the generality of the CCP, this section seeks to apply the model of

fault-tolerance on the operations within the Katana framework. Note that

the CCP can be applied to a distributed processing job if and only if the

110

Chapter 4 Robustness: Hardened Katana

said processing job can be expressed as a charge of covers; in particular,

the definition of cover must be adhered to.

4.3.1 Robust Bounded Broadcast

Since the implementations of most of the system-wide operations under the

Katana framework are supported by the bounded broadcast operation (refer

to Section 3.5), it will be fruitful to describe how the bounded broadcast

can be enforced using CCP.

Note that the current Katana framework utilizes dual overlays (refer to

Section 3.5.5). This introduces two types of covers under the Katana

framework in accordance to the identities derived from the two overlays:

the command covers and the data covers.

Definition 4.3.1: Command Cover

Given a processing site in the Katana framework, its command cover

is an unit of processable work identified by the local space bounded

by its site identity and its succeeding neighbours (i.e., those which the

site has fingers pointing to) according to the word metric based on the

minimal Cayley graph as extracted from the command overlay.

For the Chord-variant of Katana, this will be the range [i, j) where i is

the identity value of the site in question and j is that of its successor.

This local space is called the command cover identity.

Definition 4.3.2: Data Cover

Given a processing site in the Katana framework, one of its data cover

is a unit of processable work identified by the local space bounded by

111

Section 4.3 Robust Katana Operations

one of its virtual site identity and its preceding neighbours (i.e., those

with fingers pointing to the site) according to the word metric based on

the minimal Cayley graph as extracted from the data overlay.

For the Chord-variant of Katana, this will be the range (i, j] where j

is the virtual identity of the site and i is that of its predecessor. This

local space is called the data cover identity.

By the definition of the CM-DHT, both the command covers and the data

covers are each necessarily non-overlapping and cover the entire overlay.

Other than the fact that command covers are derived from the command

overlay and data covers are derived from the data overlay, note that com-

mand covers are based on the successors while the data covers are based

on the predecessors. This is because command covers represent com-

mands/queries given to the processing sites, hence it follows the forwarding

fingers. On the other hand, data covers represent processable work, which

is defined by the location and allocation of data elements, hence it follows

the predecessors. More shall be talked about this in Section 4.3.4.3. Given

the nature of virtual sites, the framework will act as a natural surjective

mapping from the data cover identities to the command cover identities;

in other words, the collection of data covers is partitioned according to

command covers.

Proposition 4.3.1

A command cover can be seen as replicated across the Katana frame-

work and can always be reliably located.

Proof. For the command overlay, when the cover is lost (due to site

failure), its preceding site will implicitly cover the lost cover due to

112

Chapter 4 Robustness: Hardened Katana

Definition 4.3.1. Therefore, logically, any command cover can always

be located (i.e., replication and reliable location) as long as at least one

processing site exists.

The nature of a command cover differs from that of a data cover. A

command cover concerns with the processing site itself and from a “com-

mand” point of view, each processing site is indistinguishable from one an-

other. Therefore, a site can always cover for any failed site in terms of

command covers. However, a data cover is tied to the notion of data

input, therefore each site is no longer indistinguishable from one another; if

a site fails, the data that it holds may be lost if no replica is maintained by

the covering site. Therefore, in order to assure the replicability of the data

cover, replication of data elements, which is quintessential to all modern

data processing systems, must be implemented.

Similar to the implicit covering of lost command covers as described in

Proposition 4.3.1, the succeeding virtual site will implicitly cover a lost data

cover; this is due to Definition 4.3.2. Therefore, it is natural to store each

replica of data cover at the succeeding site. In fact, replicas can be stored

at N succeeding sites for augmented assurance; the value N+1 (i.e., one for

the original data) is commonly called the replication factor. Note that, the

replication strategy adopted coincides with that of many structured P2P

architectures (e.g, DeCandia et al., 2007; Ratnasamy et al., 2001; Stoica

et al., 2001). In the implementation, the replication factor used is 1
2
log2 N ,

where N is the number of sites.

Corollary 4.3.2

As long as some replicas persist, a data cover can be reliably located.

113

Section 4.3 Robust Katana Operations

Proof. This is analogous to Proposition 4.3.1 with the additional con-

dition of the survivability of replicas.

Corollary 4.3.3

If the processing in question is idempotent, a Katana cover (i.e., a

command cover or data cover) is a cover in terms of the CCP.

Proof. This follows directly from Definition 4.3.1 and Proposition 4.3.1,

and Definition 4.3.2 and Corollary 4.3.2.

Proposition 4.3.4

Bounded broadcast is an execution of the CCP on command covers.

Proof. Given the definition of word metric, the command cover iden-

tities are non-overlapping and their union will cover the entire identity

space (i.e., disjoint union). Therefore, the bounds in the determination

of forwards under bounded broadcast conforms to the definition of a

charge over the command covers while the forwards are the same

as delegations. In this case, the execution of the onReceiveCharge

function coincides to that of the forwarding mechanism under bounded

broadcast.

The specificity of bounded broadcast as an application of the CCP is

that each site has to keep track of the reception of the broadcast message

so as to assure the idempotence of the processing (i.e., no double records

of message).

On top of expressing bounded broadcast as the CCP on command covers,

Proposition 4.3.4 also indicates how reachability of the broadcast can be

114

Chapter 4 Robustness: Hardened Katana

a

b

c

d

a

b

c

d

"b" failed

covera=[a,b)

coverb=[b,c)

coverc=[c,d)

charge
a=[a,x)

c
h
a
rg

e
b =

[b
,x

)

charge
a=[a,x)

covera

=[a,c)

=[a,b)+[b,c)

coverc=[c,d)

re-d
eleg

ation
s

Figure 4.2: Rearrangement of the spanning tree of bounded broadcast

assured. In particular, with the CCP depiction, each site in charge has

the responsibility for the broadcast under its assigned charge and for the

corrective measures if some covers under its charge fail. Note that when

corrective measure is effected, the spanning tree of the broadcast may be

rearranged but this will not affect the correctness of the broadcast due to the

nature of idempotence. For example, in Figure 4.2, the charge of site a is

[a, x), which includes the covers [a, b), [b, c) and [c, d). Other than its own

cover, site a will delegate the charge [b, x) to site b in accordance to the

bounded broadcast. Recall that when a site detects a failed delegate, it will

re-delegate the charge to the appropriate site according to the bounded

broadcast spanning tree extracted from the by-then-corrected finger tables.

In Figure 4.2, when site b fails, site a will take over the charge of site b

since it happens to be the appropriate site and thus will also handle its

cover. When the “root” of the bounded broadcast, which is in charge of the

entire span of covers, fails, some surviving site, preferably its successor1,

will have to take charge of the entire span; this will not incur a severe

1The preference of the successor to take over comes from the fact that there is a
higher chance of the delegation tree resulting from the successor to coincide with the
original tree, hence reducing possible extra work; in actuality, any site can cover for the
failed “root” site.

115

Section 4.3 Robust Katana Operations

performance penalty regardless of the nature of the cover since most of

the required covers (i.e., all except one) are already catered for. Note that

this possibility of an “internal” processing site being able to take over the

charge of the entire processing is a novel capability that comes from the

decentralized nature of the Katana framework; more shall be talked about

on this later in Section 4.3.4.2.

4.3.2 Robust Kata Job

Recall that for the processing of a kata job, bounded broadcast provides

the global spanning tree (refer to Section 3.5.3). Therefore, by allowing

the (intermediate) results to piggyback on the completion notification of

CCP, the bounded broadcast mechanism as implemented over the CCP

essentially implements the robust processing of a kata job. However, some

complications arise from the utilization of dual overlays. Note that the

bounded broadcast done for the processing of a kata job (and a ana job) is

based on the command overlay; therefore, when a site fails, the re-delegated

site that covers it may not possess the corresponding data covers. This is

a noteworthy issue for both kata and ana jobs.

In order to overcome this problem of disassociation between the command

covers and the data covers, a mechanism specific to the Katana frame-

work, called secondary delegation is employed. Recall that the deployment

of the dual overlays essentially creates a mapping between the command

covers and the data covers (i.e., surjective from data covers to com-

mand covers). Therefore, through the recording of this mapping, the re-

delegated site to cover a failed site can identify the required data covers

that it is supposed to cover. It then seeks out these data covers and

delegates their processing accordingly.

116

Chapter 4 Robustness: Hardened Katana

a
b

coverb
cmd=[b,c)

coverb
data1

coverb
data2

coverb
data3

covera
cmd=[a,b)

chargea=[a,c)

a
b

coverb
data1

coverb
data2

coverb
data3

covera
cmd

=[a,c)

=[a,b)+coverb
cmd

chargea=[a,c)

"b" failed

secondary delegations

Figure 4.3: Example of a secondary delegation

Figure 4.3 shows an example how secondary delegation is conducted. In

Figure 4.3, the charge of site a is [a, c), of which it delegates the sub-

charge [b, c) to site b. When site b fails, site a is in charge of re-delegating

the lost charge, which it happens to be the correct covering site. However,

site a may not possess the data covers of site b (i.e., coverdata1b , coverdata2b

and coverdata3b) even though its corrected command cover covers the com-

mand cover [b, c). In this case, site a will have to seek out these lost

data covers, which are covered by their respective successors, via the data

overlay to perform the secondary delegation.

As mentioned, the (intermediate) results from the application of the kata

function shall piggyback on the completion notification of the delegates,

this includes the secondary delegates. Firstly, recall that by the construct

of the processing model, the application of the kata function on each data

cover is intended to be idempotent. And, note that the processing model

of the kata job does not dictate the structure of spanning tree (refer to

Section 3.2.2), therefore the rearrangement of the spanning tree, due to the

changes in delegation (i.e., both primary and secondary), will not affect the

correctness of the processing.

117

Section 4.3 Robust Katana Operations

4.3.3 Robust Ana Job

For the processing of an ana job, bounded broadcast on the command

overlay is used as the mean to disseminate the job package (refer to Sec-

tion 3.5.4), therefore it faces the similar problem of the disassociation be-

tween the command covers and the data covers and thus the processing

of an ana job will also use secondary delegations to solve this problem as

described in Section 4.3.2.

However, for the ana job, the covers play not just the role of data input,

they are also placeholders for the reception of the data shipment of the

output from the applications of the ana function by the other sites; recall

that the purpose of an ana job is to create a data graph out of a pre-

existing data graph and under the processing of the ana job, the soon-

to-be created new data graph is, in a way, a type graph waiting to be

filled up (i.e., a placeholder) by the output of the ana function (refer to

Section 3.5.4). Therefore, the re-delegated data covers for the ana job

hold the responsibility to broadcast their inclusion into the processing of the

job so as to receive the output from the other covers; this is done through

the robust bounded broadcast as mentioned in Section 4.3.1.

Finally, for the ana job, as similar to the kata function, the application of

the ana function on each data cover is intended to be idempotent. Cou-

pled with the fact that the data covers represent a subset of the vertices

of a type graph (refer to Section 3.2.1), this means that re-delegation will

not affect the correctness of the processing provided that each processor of

the data cover keeps track of the sender (i.e., data cover identity) of the

ana output.

118

Chapter 4 Robustness: Hardened Katana

4.3.4 Discussion

The incorporation of CCP for the processing of Katana operations has some

points worthy of further discussion; they are presented in the following.

4.3.4.1 Shape of Delegation Tree

Notice that both MapReduce-style fault-tolerance and “Katana-style” fault

tolerance can be seen as specifications of the CCP but their corrective

mechanisms seem to differ; under MapReduce, a single site controls the

re-delegations while under Katana, the responsibility of re-delegations is

distributed across to a number of sites. This is because of the nature of

delegation, which is dependent on the framework-specific (reliable) location

service. For MapReduce, all forms of location and re-location are directed by

the master site, therefore it manifests into a strict one-level-only delegation

tree. However for the Katana framework, location service is a decentral-

ized service, thus the delegation tree coincides with the spanning tree as

obtained via bounded broadcast.

4.3.4.2 Architectural Robustness

Due to the decentralized nature of the Katana framework, fault-tolerance

is assured wholly by the participating sites and does not require the in-

tervention of external availability services. The failure of the master site

under MapReduce requires external recovery; recall that the recovery of

the ApplicationMaster requires the intervention of the ResourceManager

while the recovery of the ResourceManager requires some further external

fortification. On the other hand, under Katana, the failure of the “root” of

119

Section 4.3 Robust Katana Operations

the bounded broadcast just need any surviving site to take over the initial

charge; this applies for the processing of both kata and ana jobs. This

essentially eliminates the single point of failure; in other words, the induced

robustness of the hardened Katana framework is derived directly from its

P2P architecture.

4.3.4.3 Definitions of Katana Covers

A possible point of confusion about the definition of the Katana covers

is the fact that the command cover is defined by the successors while the

data cover is defined by the predecessors. The data cover has to be

defined by the predecessors because, as per the nature of CM-DHT, data

elements are mapped to the bound between the site and its predecessors.

However, on the other hand, the command covers need not be defined by

the successors; in fact, any partitioning of the processing sites would suffice

since the CCP allows for wrong delegation. So as long as the cover can be

located, the CCP will work. Nevertheless, by defining the command cover

in accordance to the bounded broadcast2, the CCP can work off the local

information from the finger table and need not utilize the global service; in

other words, the delegations and the associated sub-charges can be com-

puted directly from the finger table without any remote communications.

4.3.4.4 Distribution of Correction Load

The Katana framework utilizes dual overlays so as to reduce communication

cost. In coping with the disassociation between the command covers and

2Notice that a command cover corresponds to the smallest bound under bounded
broadcast.

120

Chapter 4 Robustness: Hardened Katana

data covers, secondary delegation has to be done upon site failure. How-

ever, the use of secondary delegation also brings about some unexpected

gains. Notice that, upon a site failure, the re-delegated data charges

are likely shared by V distinct surviving sites (i.e., several data charges),

where V is the number of virtual sites employed by the data overlay. There-

fore, the overhead incurred is theoretically only a fraction of the running

time taken to complete the charge in question. This accounts for the rapid

recovery time (i.e., lower overhead) of the CCP in Katana as seen in the

experiments (refer to Section 4.4).

4.4 Experimental Study

In order to gauge the performance of the hardened Katana framework, the

cover-charge protocol is embedded into the prototype3 developed for

Chapter 3. Naturally, the implementation is developed with Java 1.6. The

experiments are conducted on a 17 machines cluster (i.e., a subset of the

configuration used in Section 3.6). Each machine is equipped with an Intel

Xeon X3430 Quad Core CPU (2.4 Ghz), 8 GB memory, two 450 GB SCSI

disks, and 1 Gbps Ethernet interface. The operating system used in each

machine is CentOS Linux 5.6. The Java virtual machine installed is Java

HotSpotTM 64-Bit Server VM (build 24.45-b08, mixed mode).

The experimental data is obtained via the Transaction Processing Perfor-

mance Council BenchmarkTM H (TPC-H) generator. The primary relations

used are the lineitem relation and the orders relation. The experiments

will run on data sets generated specifically with the scale factor (SF) of

64. The performance evaluation consists of two of the three runs of the

3Source code available at: https://bitbucket.org/xanec/projectkhloe

121

https://bitbucket.org/xanec/projectkhloe

Section 4.4 Experimental Study

previously used experiments (i.e., Document-Length and Equi-Join). The

Document-Length experiment test the performance of a kata job upon site

failure while the Equi-Join experiment test the performance of ana jobs

upon site failure.

For the MapReduce framework, Apache Hadoop 2.2.0, which is equipped

with YARN, is used. As mentioned in Section 3.6, the MapReduce jobs

are quite sensitive to the number of reducers used. Therefore, according

to the results obtained, the R-value selected is the one that produce the

faster timings (i.e., R = 1 is used for Document-Length while R = 2 is used

for Equi-Join). The rest of the configuration is the same as that used in

Section 3.6. In particular, for the experiments on Hadoop, one additional

machine is dedicated to perform the role of the master site (i.e., resource

manager); experiments on Katana uses N = 16 sites while experiments on

Hadoop uses N + 1 = 17 sites. Most of the configurations on Hadoop are

unchanged; the only major modification is the reduction of resources (i.e.,

memory) available per site from 8 GB to 4 GB as an effort to reduce external

interference (i.e., experiments of other researchers using the same cluster).

As inspired by the experiments conducted by Dinu and Ng (2012), in order

to test the performance penalty incurred by site failure, the experiments are

carried out with the killing of a randomly selected site at specific point of

the execution. The running time measured is taken as a quotient over the

average running time if no sites have failed to obtain the normalized running

times; this normalized values will indicate fairly the overhead incurred due

to the corrective measures taken by the respective fault-tolerance mecha-

nism. Similarly, the time of fault injection is also normalized as a percentage

of the average running time without failure. For each experiment, there will

be a total of 20 experimental runs (i.e., 10 runs with varied fault injection

122

Chapter 4 Robustness: Hardened Katana

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

R
u
n
n
in

g
 T

im
e
 (

n
o
rm

a
liz

e
d
)

Time of Failure Injection (normalized)

Katana
Hadoop

Figure 4.4: Normalized running times of Document-Length (N = 16,
SF = 64) upon site failure

point × 2 frameworks); the timing obtained for each experiment run is an

average calculated from three distinct executions.

4.4.1 Robust Kata Job: Document-Length

Figure 4.4 shows the normalized overhead caused with respect to the point

of site failure. Note that Dinu and Ng (2012) has demonstrated that Hadoop

suffers from excessive overheads upon site failures due to various conditions

on the current execution phase when the failure occurs. However, the study

was conducted on the previous version of Hadoop (i.e., not equipped with

YARN); Figure 4.4 suggests that such a problem may have been eradicated

via YARN. Similarly, the same uniformity in performance can be observed

on Katana; moreover, the normalized overhead in Katana is also lesser.

For MapReduce, since Document-Length has a heavier map phase as com-

pared to its reduce phase, a significant portion of the work will be lost when

123

Section 4.4 Experimental Study

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 1.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

R
u
n
n
in

g
 T

im
e
 (

n
o
rm

a
liz

e
d
)

Time of Failure Injection (normalized)

Katana
Hadoop

Figure 4.5: Normalized running times of Equi-Join (N = 16, SF = 64)
upon site failure

a site fails. On the other hand, Katana outperforms Hadoop in this experi-

ment mainly because the Katana algorithm utilizes only a single kata job,

which maintains minimal amount of internal states as compared to Map-

Reduce due to the processing model; the liberty in identifying the spanning

tree allows faster repetition of the lost work on a replica. An interesting

phenomenon that occurs occasionally in Katana in this experiment is that

the failure of a site may actually improve the running time (i.e., normalized

running time of less than 1). This abnormality happens if by chance, the

failed site is a heavily loaded one and the replicas of its data covers are

distributed across lightly loaded sites; as a result, the overall running time

is ironically reduced. This indicates an opportunity for some optimization

schemes to be put in place with regards to query processing but for now,

such exploration shall be left for future discussions.

124

Chapter 4 Robustness: Hardened Katana

4.4.2 Robust Ana Job: Equi-Join

Figure 4.5 shows the normalized overhead caused with respect to the point

of site failure. The notable differences between this experiment and that

in Section 4.4.1 are that the Katana algorithm uses two ana jobs and that

the MapReduce algorithm used is heavier on the reduce tasks. The penalty

incurred for Katana is slightly higher than Document-Length because ana

jobs, in general, have to maintain a higher amount of intermediate data

as compared to kata jobs; recall that for ana jobs, the covers are also

placeholder to receive output from the applications of the ana function.

Nevertheless, this overhead is lesser than that of Hadoop on the average.

For Hadoop, the overhead incurred has large variance due to the fact that,

under YARN, there is a larger variance in allocating reduce tasks; there is

a higher chance that a site failure may not affect the overall progress (i.e.,

the selected site is not handling any reduce tasks).

Also, on a side note, notice that when failure is injected at 10% into the

processing (i.e., normalized time of failure injection is 0.1), the running

times of Hadoop is relatively low with high variance; this is because the

MapReduce algorithm is still at the map phase implying that the cost of

correction can be mild as compared to the overall processing depending on

the map tasks assignment.

4.5 Summary

The proposed mechanism to maintain the persistence of processing state,

the CCP, is a sound fault-tolerance scheme with abstract generality. The

MapReduce-style fault-tolerance can be seen as a specialization of the CCP.

125

Section 4.5 Summary

Taken into the context of the Katana framework, various system-wide op-

erations (e.g., bounded broadcast) can be adapted to employ the CCP to

ensure robust operations during processing. Furthermore, as the processing

of kata and ana jobs employ bounded broadcast as their basic communi-

cation operator, they too can employ the CCP to render their operations

as fault-tolerant. Moreover, due to the utilization of dual overlays, the dis-

persion of re-delegation of covers upon failure inadvertently help reduce

the potential overhead of correction.

Experimental studies on the hardened Katana framework indicate that the

overhead incurred by the deployed CCP on the processing of kata and

ana jobs is comparable to, if not significantly lesser than, that of the

MapReduce-style fault-tolerance under Hadoop Apache. This suggests that

the structured P2P overlay, when using the CCP to assure the persistence

of processing state, is a viable option for web-scale processing even in terms

of fault-tolerance, especially since the robustness is derived entirely from

the architecture and does not require external intervention.

126

Chapter 5

Elasticity: EMRE

5.1 Motivation

The externalization of resource managers, as mentioned in Section 2.2.3,

provides many of the systemic qualities desired by large clusters; other

than augmented reliability and scalability, resource managers also better

manage multi-tenancy by means of more sophisticated resource schedulers.

In a sense, one can say that resource managers play supplementing roles in

the support of job executions. However, note that such abstraction exposes

optimization opportunities that are not yet fully exploited by the current

state-of-the-art MapReduce execution architecture. In particular, with the

new environment of larger clusters and higher degree of tenancy, resource

managers present potential elastic job execution that has arguably not yet

been considered.

In the current architecture, elasticity in job execution is achieved through

the observation that the ensemble of map and reduce tasks usually outnum-

bers the available processing sites and that tasks are executed greedily on

127

Section 5.1 Motivation

available resources. However, since the number of reduce tasks is a variable

fixed by the job submitter, this effectively locks the degree of parallelism

expressed during the shuffle phase and the reduce phase, thus limiting the

elasticity of the entire job execution. Job submitters typically have to rely

on some rule-of-thumb formula based on the amount of available resources

to determine the number of reduce tasks. Such an approach is obsolete when

the availability of resources is largely unknown and is subjected to runtime

changes, which is the case when the degree of tenancy is high. Thus, it will

be optimal if the number of reduce tasks can be adjusted dynamically with

respect to allocated resources.

The challenge in having a dynamic number of reduce tasks is that the map-

pers (i.e., the sites executing the map tasks) currently need to know this

number in advance so as to statically partition the sorted intermediate map

output for the reducers (i.e., the sites executing the reduce tasks). Thus

it can be observed that having a dynamically adjustable partitioning is the

key to having a dynamic number of reducers. Should one re-imagine this

requirement as wanting to dynamically allocate and locate data elements

over an undetermined number of sites, notice that this is precisely the prob-

lem solved by consistent hashing (refer to Section 2.1) which means one can

leverage on structured peer-to-peer (P2P) overlays as potential solutions.

This chapter presents an enhanced execution architecture to run MapRe-

duce job, which is highly elastic to the amount of resources allocated; it is

called Elastic MapReduce Execution (EMRE). The work is developed with

YARN as the target resource manager and there are reasons to believe that

the ideas presented can be easily adapted for other resource management

frameworks. The following are some of the contributions of EMRE:

128

Chapter 5 Elasticity: EMRE

• EMRE is the first development to leverage on embedding a struc-

tured P2P overlay so as to incorporate elasticity into MapReduce job

execution.

• In addition to elasticity, the distributed index of the structured P2P

overlay allows EMRE to push intermediate map output to the reduc-

ers, thus allowing pipelined execution of jobs.

• The structured P2P overlay allows the worker sites to share some of

the maintenance of execution state so as to alleviate the load on the

master site.

• From the experiments, the elasticity and pipelined execution of EMRE

greatly improves the performance of MapReduce jobs.

• EMRE maintains fault-tolerance despite the improvements to the in-

ternal execution.

• EMRE preserves compatibility to the original MapReduce job defini-

tion; the experiments run MapReduce jobs with no modifications at

all.

5.2 Differences in Execution Environment

Picking up from the discussion in Section 2.2.3, even though the MapReduce

execution under YARN deviates from the original design of JobTracker and

slot-based TaskTrackers, it assumes similar discrete work-oriented manner

of processing. This probably stems from the desire to maintain backward

compatibility. However, there are several significant contextual changes

with the executions under YARN where the current MapReduce execution

can be rather maladjusted to:

129

Section 5.3 Observations

• With the potential number and variety of application executions, the

availability of resources (i.e., Containers) can be quite volatile; other

than singly execution, it is difficult to divine the optimal number

of reducers, if one even exists under such dynamic environment, to

configure for the submission.

• More resources may be requested and allocated at any point of time

throughout the execution; under the current MapReduce execution

architecture, expansion of resources is only catered for during the map

phase.

• The main commodities under YARN are the processing resources but

the current MapReduce execution architecture still works with input

workload (i.e., tasks) as the main units of execution; such mismatch

causes the MapReduce to behave somewhat sub-optimally, such as

releasing Containers after the completion of each task even when the

execution is still ongoing.

This thesis holds the position that it is possible to accommodate these new

changes in the MapReduce execution without compromising on the com-

patibility; the key, as previously mentioned, is to incorporate a dynamically

adjustable partitioning on the intermediate map output.

5.3 Observations

The original design of the MapReduce processing model identifies horizontal

partitioning to the execution architecture, thus defining the different phases

of execution (refer to Figure 5.1). Notice that under the horizontal parti-

tioning, the MapReduce processing can be described as a process of data

130

Chapter 5 Elasticity: EMRE

re
d
u
c
e

m
e
rg

e
s
h
u

e
m

a
p

partition

input file

input split

map output

map output split

reduce input

reduce output

Figure 5.1: Data transformation of MapReduce processing model

transformation through the phases, from the input to the intermediate data

and finally to the output.

Now, focusing only on one specific range of hash values, one will essentially

create a vertical slice on data elements of the map output and of the reduce

input. The point of interest is that this vertical slice is a single pipelined,

relatively independent unit of work in that, as long as the required data is

available at any point, it can proceed with the next transformation without

any other synchronizations with others. Therefore, it can be argued that the

MapReduce processing model is, by nature, a “push-based” model. However,

most MapReduce systems adopt a more “pull-based” model simply because

the mappers do not know where to push its output to if the required reducers

are not present.

In addition, it is trivial to note that none of the merging process can com-

mence without the completion of all the map tasks, and a reduce task cannot

begin without some output from the merging process. These wait condi-

tions that are embedded in the processing model indicate that the concept

131

Section 5.4 System Design

BATON

overlay monitor

umbilical server

umbilical client

tasks

dispatcher
resource

allocator

MR/client server

job runner resource manager

job submitter YARN

m
a
s
te

r

w
o
rk

e
r

MR/client protocol AM/RM protocol

umbilical protocol

splits router

mapper

reducer

splits

manager

to other workers

Client/RM protocol

.....

n
o
d
e

m
a
n
a
g
e
r

container protocol

....ranges

cache

Figure 5.2: EMRE system components

of “phases” is already implicit in the data transformation itself; therefore,

there is really no need for an external entity for the explicit execution of

the phases.

The design philosophy of EMRE differs from that of the current execution

architecture, which considers a MapReduce job as simply a collection of map

and reduce tasks. Instead, EMRE views a MapReduce job as a collection of

vertical data transformation pipelines. In this way, these pipelines can be

easily collated together or be distributed across multiple sites (i.e., elastic

job execution); a structured P2P overlay (i.e., BATON) provides a dynamic

and robust manner in which the pipelines can be distributed.

5.4 System Design

As EMRE is meant to be deployed within YARN (and other resource man-

agers), it inherits the master/workers architecture. However, as opposed to

132

Chapter 5 Elasticity: EMRE

the current execution architecture where the master site plays the main co-

ordinator and the worker sites are mere processors of tasks (i.e., oblivious of

the one another), the worker sites under EMRE play a bigger role partly as

an effort to alleviate the load on the master site. Figure 5.2 displays a rough

outline of the relationships between the system components in EMRE.

5.4.1 Master Site

The master site of EMRE, running the ApplicationMaster process, plays

four main roles in the execution architecture:

• requesting and allocating resources from the ResourceManager,

• monitoring the P2P overlay,

• dispatching the map tasks, and

• determining the completion of job.

Notably, the master site no longer coordinates the execution phases of Map-

Reduce; the worker sites will coordinate the execution phases among them-

selves in a distributed manner.

5.4.1.1 Resource Allocator

As mentioned in Section 2.2.3, the current MapReduce execution architec-

ture requests for resources in accordance to the global phase that the exe-

cution is in, under the coordination of the ApplicationMaster. This can

be seen as a direct effect from the more work-oriented mentality adopted

in that architecture. As a result of such mentality, a MapReduce job is

133

Section 5.4 System Design

defined as a direct summation of all the map and reduce tasks; and to pro-

cess the job, the ApplicationMaster requests and allocates Container to

run a processor for each task in a bijective manner. We can say that the

current MapReduce execution architecture treats assigned resources as a

manifestation of the work.

On the other hand, EMRE adopts a more resource-oriented mentality whereby

it is the resources that are the commodities; such is the case for YARN. Upon

submission, the ApplicationMaster will request for as many Containers

as possible with preference on the locality of the input sub-files. For each

allocated Container, the ApplicationMaster will launch a worker site in

that Container indiscriminately. Note that the launched worker sites will

persist until the end of the job. This means that each allocated Container

will only be voluntarily released at the end; it is believed that this is a more

appropriate manner in handling allocated resources since there is no reason

to release Containers when the application still requires more Containers.

Even if there are no assignable map tasks for a particular worker site, it can

still potentially contribute to the job as a reducer. As it shall be revealed

later, during the course of execution, it is the tasks that are assigned to

the worker sites; while such an approach resembles the original slot-based

design of MapReduce, there is significant difference in the role the worker

sites play in the architecture of EMRE.

5.4.1.2 Overlay Monitor

For EMRE, BATON (Jagadish et al., 2005) has been chosen as the under-

lying structured P2P overlay. Even though BATON offers many systemic

advantages particularly in the handling range queries, it has been chosen

for reasons that are quite different from what the authors intended. In fact,

134

Chapter 5 Elasticity: EMRE

in EMRE, its support for range queries has been discarded by distributing

according to the hash values of the keys, rather than the keys themselves;

more will be discussed about this in Section 5.4.2.

Compared to many DHTs, the functioning structure of BATON is relatively

independent to the number of participating sites. Note that, for example

given N number of participating sites, Chord (Stoica et al., 2001) requires

log2 N virtual sites to be well-balanced and CAN (Ratnasamy et al., 2001)

suggests using a dimension of log2 N
2

; such variable structure is problematic

because under the new execution environment, we do not know how many

sites are or will be participating. Under BATON, load share at each site

may be adjusted with negotiations between its adjacent sites (i.e., without

perturbation to the overall structure of the overlay). Such confined disrup-

tion facilitates the implementation of some form of work stealing mechanism

in the execution architecture. Understand that the Achillies’ heel in using

P2P structures for processing is the inherent load imbalance, therefore hav-

ing a work stealing mechanism is critical to optimal processing. Even if

the load balancing is perfect, the heterogeneity in processing capabilities,

due to either heterogeneous hardware or imbalance in resource scheduling,

makes work stealing a useful feature to have.

Strictly speaking, since a P2P overlay is adopted, there should not be a

need for an external centralized monitor to maintain the state of the system.

This is because the worker sites should be able to represent the global state

by themselves in a distributed manner, which is really the whole point of

adopting a P2P overlay. However, there are actually three reasons that the

ApplicationMaster still has to play a monitoring role over the worker sites

in EMRE.

135

Section 5.4 System Design

Firstly, the stability of BATON requires a “virtual site” to monitor the root

site of the tree (Lupu et al., 2008). Note that this “virtual site” neither

stores any data elements nor perform any processing; its only purpose is to

restructure the overlay if the root site fails. Thus, it does not take much

effort for the ApplicationMaster to perform such a role.

Secondly, other than for reporting purposes, there is a need to manage the

status of all the tasks and to recover them in times of failures so as to

maintain correctness of execution. For this, the ApplicationMaster has

to also keep track of the assignments of tasks to the worker sites, which is

similar to what the current execution architecture does for the locations of

the intermediate outputs.

Finally, the ApplicationMaster determines the completion of the MapRe-

duce job execution. Note that, the determination of job completion can be

done individually by the worker sites in a distributed manner. However, for

a more robust execution, it has been decided to rely on the Application-

Master to monitor the completion. Actually, since the ApplicationMaster

has to monitor the job progress as part of the design of MapReduce, it is

trivial to extend this monitoring to cover the determination of job comple-

tion.

5.4.1.3 Tasks Dispatcher

Once a worker site has been successfully launched in a Container, it will

commence in sending periodic heartbeat messages to the ApplicationMas-

ter via the umbilical protocol. Similar to the mapper and reducer processes

in the current execution architecture, these heartbeat messages carry the

status reports of the tasks assigned to the particular site. In addition, the

136

Chapter 5 Elasticity: EMRE

response messages for these heartbeat messages also carry the assignments

of map tasks.

The mapper component of a worker site will indicate in the heartbeat mes-

sages whether it is currently performing any work. If the mapper compo-

nent reports that it is available for tasks, the tasks dispatcher will check for

any unassigned map task with preference on data locality to assign to that

worker site. If there are, this assignment will be registered with the overlay

monitor for purposes mentioned previously and the information (e.g., input

sub-file location) of an unassigned map task will be included in the response

message for that mapper to execute. Note that such an assignment mecha-

nism will also enjoy the balancing effect that the faster sites will be assigned

more map tasks.

5.4.2 Worker Sites

As evident in Figure 5.2, the components within the worker site are much

more complex than just a mapper or a reducer; in fact, each worker site con-

sists of both a mapper component and a reducer component. Each worker

site is also equipped with a BATON component, which has also been slightly

modified to suit the execution context. At the core of each worker site is

a splits1 manager that manages the storage, distribution and processing of

all the intermediate data produced during the execution.

1Given that the data elements (i.e., key/value pairs and key/values chunks) are sorted
and grouped according to their hash values, the term split shall be used to refer to a
contiguous block of data elements over a range of hash values.

137

Section 5.4 System Design

5.4.2.1 Intrinsic Synchronization

Before delving into the designing of the worker sites under EMRE, it is per-

haps pertinent at this point to introduce a rather intriguing phenomenon

experienced by the worker sites during the execution: intrinsic synchroniza-

tion.

Definition 5.4.1: Intrinsic Synchronization

Due to a number of reasons, such as the wait conditions as discussed

in Section 5.3, there is often an illusion of coordinations between the

worker sites during the course of execution even though no such coordi-

nation is put in place nor is it required. As such, the worker sites end up

doing the same thing at the same time (or at least within a short time

frame). Such a phenomenon is defined as intrinsic synchronization.

For example, through empirical observations, all the mapper components

seem to complete their tasks at almost the same time; this is likely due to

the fact that map functions are usually quite similar in execution. Also, all

the worker sites will commence the merging process simultaneously; this is

caused by the completion of the last map task being the “starting pistol.”

Though not particularly a problem by itself, such intrinsic synchronization

aggravates the load of many of the processing works done in EMRE if not

handled properly. Take the merging process for example, as all the worker

sites start to read from hard disk at the same time, the Containers that

co-locate in the same machine will affect the disk seeks and page caching of

each other such that overall throughput will be degraded significantly. In

the course of the discussion, readers shall come across several such examples

and how EMRE cater for them. On a side note, under the current execution

138

Chapter 5 Elasticity: EMRE

architecture, disk I/O for merging is reduced by holding as much of the

fetched data in memory as possible and merging them directly.

5.4.2.2 Mapper

As previously mentioned, the mapper component will indicate its availabil-

ity through the heartbeat messages sent via the umbilical protocol. Upon

the assignment of a map task, it will proceed with applying the map function

on each key/value pair similar to that of the current execution architecture.

The main difference between the mapping process in EMRE and that in the

current architecture is the partitioning of the intermediate map output.

In the current execution architecture, the intermediate output will be sorted

and partitioned according to the number of reducers as defined by the job

submitter; and the file offset and length of each partition will be recorded

into an index file. The indexing of the intermediate output is essential to

facilitate the reducers to fetch the appropriate partition. In EMRE, such

indexing is also required for similar reason but there are some additional

deliberations in determining the granularity of the partition size. This de-

cision is very critical because it directly affects the unit of work adopted in

EMRE, more about this shall be discussed in Section 5.5.

Recall that with the paradigm of consistent hashing, the data elements will

first be grouped according a set of buckets, which is achieved via some hash

function, and then they are distributed in buckets across the participating

sites. If the bucket size is too small (i.e., large set of buckets), the index file

will bloat up; consider the case where there are 232 buckets (i.e., hashing

to 32-bit integers), then with an index entry of an file offset (e.g., 64-bit

unsigned integer) and a partition length (e.g., 64-bit unsigned integer), the

139

Section 5.4 System Design

index file of each intermediate output will be 64 gigabytes. On the other

hand, if the bucket size is too big (i.e., small set of buckets), the architecture

quickly loses the elasticity aspect of the execution; note that this is precisely

the case for the current execution architecture, where the number of buckets

is equal to the number of reducers. An additional consideration is that even

if the granularity for the intermediate map output is optimally determined,

the same granularity may be too limiting for the reducer because the reducer

will be dealing with only a subset of the buckets and should be able to handle

a finer granularity.

With these considerations, two different granularities for the index files on

the intermediate files is used depending on the phase of execution; they are

called major-partitioning and minor-partitioning.

Definition 5.4.2: Major- and Minor- Partitions

The major-partitioning (i.e., the one with coarser granularity) is used

for the immediate output from the mapper component. The minor-

partitioning (i.e., the one with finer granularity) is used for the output

produced from merging all the splits; this output is used as input for

the reducer.

For the experiments, the implementation uses a major-partitioning of 210

(= 1, 024) buckets and a minor-partitioning of 212 (= 4, 096) buckets. If the

hash values of the keys are also considered, which can be seen as buckets,

this will essentially create a three-levels hierarchy of buckets; in the imple-

mentations, the keys are hashed to a 30-bit integer, thus a major-partition

will contain 22 (= 4) minor-partitions and a minor-partition will contain 218

(= 262, 144) hash values.

140

Chapter 5 Elasticity: EMRE

Recall that, unlike most DHTs, BATON is unique in the way it distributes

data elements according to the sorted order of the keys so as to allow efficient

processing of range queries (refer to Section 2.1.3); this suggests that the

hashing of keys might actually be unnecessary, or even counter-productive.

In fact, as mentioned previously, by hashing the keys and dealing with the

hash values directly, this speciality of BATON is lost. Moreover, one could

have designed EMRE without the use of hashing while preserving the overall

functioning as described in this chapter. However, there are three main

reasons as to why an additional hashing is done in the deployed BATON

other than the fact that range queries is not of concern to EMRE:

• In most situations, the hash value is significantly smaller than the

actual key used. Thus, this will alleviate the memory usage in a lot

of the internal operations, such as the management of the splits and

the maintenance of the ranges cache. Furthermore, the serialization

of meta-data involving the sub-ranges will also be faster due to the

reduced size.

• Handling a system primitive type such as an integer is much faster

than handling a generic key type as defined by the user. In particular,

the sorting operation has much to gain from the faster (i.e., native

speed) integer comparison.

• From a development perspective, handling integers facilitates the im-

plementation of a lot of the internal operations such as estimation of

split size, load distribution, as well as various interval (i.e., range) op-

erations (e.g., intersection and union). These operations will be more

complicated to implement if the generic key types were to be used.

141

Section 5.4 System Design

5.4.2.3 Reducer

The reducer component of the worker site is concerned with only apply-

ing the reduce function on the key/values chunks when they are available.

Unlike its counterpart in the current execution architecture, the reducer

component in EMRE does not perform the fetching or merging of input

data; this is handled by the splits manager because this process is much

more sophisticated under EMRE. In the case for a map-only MapReduce

job, the reducer component will not be activated.

Note that for most MapReduce implementations (e.g., Apache Hadoop),

each reduce task will produce a distinct sub-file as a side effect of the pro-

cessing model; this is also the case for EMRE. Therefore, the number of

reducers determines informally the number of output sub-files. There may

be very rare situations where the job submitter requires a particular number

of output sub-files from the MapReduce job for purposes other than control

of parallelism, though no practical examples can come to mind. Thus in

these cases, EMRE will not meet the expectation of the job submitter and

may not be compatible to the usage of the original job since each worker

site is equipped with one reducer component implying that each worker

site corresponds to one reduce task in a full MapReduce job. However,

there is actually no specification in the MapReduce programming model

that dictates the number of output files. Nevertheless, this is probably the

only occasion where EMRE may have compatibility issues with the original

intent of the MapReduce job definition.

5.4.2.4 Splits Management

In EMRE, the intermediate outputs from the mapper component are trans-

ferred directly to the splits manager and the splits manager is also in charged

142

Chapter 5 Elasticity: EMRE

of dispatching input data to the reducer to process. In order to incorporate

elasticity, processing in EMRE is done in relatively small chunks, as com-

pared to the current execution architecture; in fact, map output splits are

merged in major-partitions while input to reducer is transferred in minor-

partitions. Therefore, one important role of the splits manager is to main-

tain the status of the splits (e.g., “available”, “merging” or “merged” for the

map output splits) to ensure correctness in the execution. Other than pro-

cessing, the re-distribution of the splits (i.e., shuffling and work stealing)

and the transformation of the intermediate map output splits into reduce

input are also coordinated by the splits manager. The role that the splits

manager plays in the overall job execution shall be described more in details

later in Section 5.5.

One important aspect of EMRE, and P2P architectures in general, is its

distributed nature with minimal or no central coordinations. Such a qual-

ity will further augment the scalability of the framework because the global

functioning of the entire system depends only on the individual correct func-

tioning of each local element. As previously mentioned, the incorporation

of the BATON overlay allows the maintenance of the system state; with

regards to the processing, on the other hand, the splits manager plays the

orthogonal role of maintaining the global processing state of the framework.

Note that in the case of a map-only MapReduce job, the execution is rela-

tively straightforward in that there is no requirement for the re-distribution

of splits; therefore the splits manager, just like the reducer component, will

not be activated for this kind of jobs.

143

Section 5.4 System Design

 2

 3

 4

 5

 6

 7

 8

 4 16 64 256 1024 4096

M
a
x
im

u
m

/M
e
a
n
 R

a
ti
o

Number of Sites

Chord (log N virtual sites)
Chord (4 virtual sites)

BATON (without restructuring)
BATON (modified)

Figure 5.3: Maximum/Mean ratios of some structured P2P overlays

5.4.2.5 Modified BATON

The original design of BATON considers restructuring as a rather common

phenomenon. After all, most structured P2P overlays are designed for a

much harsher environment whereby site participations are very dynamic.

As such, one critical ingredient for load balancing mechanism in BATON is

the forced restructuring of the overlay by an artificial departure of a lightly

loaded site. Such a mechanism will not be feasible in EMRE because a

departure of a site means that its load has to be migrated entirely to its

adjacent sites and with the potential amount of data held, this can be

prohibitively costly and, not to mention inefficient too.

Without restructuring, the load imbalance in BATON can quickly go out

of hand with just the sharing on join. Figure 5.3 shows that a simulated

BATON overlay without restructuring has load imbalance that is exponen-

tial to the number of participating sites. Note that the ratio of maximum

load over mean load is used as an measurement of the load imbalance; this

144

Chapter 5 Elasticity: EMRE

should be quite a fair metric since the overall performance of MapReduce

is tied to the slowest site.

To handle the conflicting problems of load balancing and data migration,

two simple modifications are applied to the BATON overlay used in EMRE.

Firstly, the adjacent fingers of the modified BATON are circular; this means

that the “left most” site will have a left adjacent finger pointing to the right

most site, and vice versa on the right adjacent finger of the “right most”

site. Secondly, rather than sharing half the load of its parent, the new

joining site will share the load of both its adjacent sites in a well-distributed

manner. For example, if the left adjacent site has Nl data elements and right

adjacent site has Nr data elements, the new site will get about N = Nl+Nr

3

data elements by retrieving the upper max(Nl − N, 0) data elements from

the left adjacent site and the lower max(Nr −N, 0) data elements from the

right adjacent site. In this way, each join will seek to re-balance the load,

at least locally.

Note that with just the two mentioned modifications, the load of the mod-

ified BATON becomes better balanced than Chord with constant number

(i.e., four) of virtual sites (refer to Figure 5.3); though it is not as well bal-

anced as Chord with log2 N virtual sites, which has issues implementing in

the execution context as previously mentioned. Nevertheless, having such

manageable load imbalance, the shortfall can be further covered relatively

well by a work stealing mechanism, which shall be described in Section 5.5.

The trade-off for incorporating these two modification is a more involved

joining algorithm; in particular, the sharing of loads from both adjacent

sites may cause a reduction in robustness of the original design. However,

as previously noted, even though the conceptualization of MapReduce con-

siders site failures as a regular phenomenon, a deployed MapReduce cluster

145

Section 5.4 System Design

still has a relatively benign operating environment as compared to the ones

structured P2P overlays are typically designed for. Therefore, such a com-

promise on the robustness for a much better load balancing is a fair deal.

5.4.2.6 Ranges Cache

Once the mapper component has completed a map task, its output will have

to be shipped directly to the corresponding worker sites. This requires the

discovery of the sub-ranges of all the participating sites. The underlying

problem is that, with intrinsic synchronization, this becomes a situation

whereby everyone has something to send to everyone else, meaning the sys-

tem has to process O(N2) messages instantaneously. Therefore, the problem

itself is not scalable.

Under EMRE, each site maintains individually a directory of other sites and

their sub-ranges (i.e., the ranges cache). When joined, each newly-joined

site will inherit its parent’s directory as an initial copy. Recall that the

BATON overlay has been modified to be circular. So, to propagate the

sub-ranges information, each worker site will periodically announce its sub-

range to its two adjacent sites, who will update their own ranges cache and

forward the information to their corresponding left or right adjacent sites.

Notice that the propagation mechanism only requires the system to process

O(N) messages, which is much more manageable than a broadcast. How-

ever, the trade-off is that mis-sends may occur due to outdated cache; the

recipient then has to re-send the split to its correct location. As the sites

that are closest in terms of adjacency to a particular site will first receive

the updated sub-range, we are guaranteed that the splits will eventually

reach the correct site due to the increasing precision of the directory as the

146

Chapter 5 Elasticity: EMRE

splits are re-sent. Naturally, each mis-send incurs penalty of additional I/O,

though our experience suggests that such propagation method works rela-

tively well even with larger clusters. This is because outdated ranges cache

result from changes in cluster size (i.e., resource allocation/deallocation)

rather than its actual size; note that the current architecture does not cater

to changes in cluster size and, as evident in the experiments, suffers much

more severely.

5.5 Elastic Job Execution

This section shall describe the MapReduce job execution under EMRE.

Note that even though the different aspects of the job execution are de-

scribed linearly, these different processes may be (and often are) running

concurrently. For example, there may be new launches of worker sites (i.e.,

due to delayed allocation) while some of the sites are still merging the map

output splits and the others are already applying the reduce function on the

reduce input splits. Recall that such dynamic processing can be performed

because the MapReduce execution can be partitioned “vertically” (refer to

Section 5.3). Essentially, with the vertical partitioning, EMRE breaks down

the concept of global phases in the current MapReduce execution architec-

ture. It is precisely such asynchronous work processing that allows very

elastic participation of the sites.

5.5.1 Worker Site Launch

A MapReduce job definition usually consists of some meta information re-

garding the data input; in particular, if a distributed file system (e.g.,

147

Section 5.5 Elastic Job Execution

HDFS) is used, it will indicate the locations of all the distributed input

sub-files. Upon job submission, the ApplicationMaster of the current ex-

ecution architecture will typically request for three Containers for each

sub-file:

• one with the host as the split (i.e., data-local),

• one within the same rack as the split (i.e., rack-local), and

• an arbitrary one as the last option.

The ApplicationMaster of EMRE performs the same request with the in-

put defined by the job definition. However, the difference is that with each

allocated Container during the startup (i.e., the map phase), the Applica-

tionMaster of the current execution architecture will assign the map task

to the Container with preference to the data locality but in EMRE, there

are no phases and the ApplicationMaster will launch a worker site process

in the Container regardless of the execution progress.

When launched, each worker site will start as a singular (i.e., not joined)

BATON site. In the periodic heartbeat messages to the ApplicationMas-

ter, the worker site will indicate its singular status as long as it is not

joined. The ApplicationMaster, upon the reception of such a heartbeat

message, will then identify a joined site (or the first site) and include its

location in the response message. Once the worker site receives the location

of a joined site, it will proceed with the BATON joining procedure to finally

locate the actual site to attach to as its child site. The difference here, as

noted in Section 5.4, is that this new site will negotiate with both its adja-

cent sites for the actual range of hash values that it will be governing (i.e.,

its sub-range). As mentioned previously, the new site will seek to re-balance

148

Chapter 5 Elasticity: EMRE

the load among its adjacent sites but, as we shall see later, this is subjected

to some statistical estimation. The new site will update its adjacent sites

of their new sub-ranges to finish the joining procedure and thus completing

the launch of the worker site. It is noteworthy to highlight that at this

point, only the sub-ranges are updated, the data elements will not yet be

migrated.

5.5.2 Map Task Execution

The tasks dispatcher of the EMRE ApplicationMaster is in charge of dis-

patching map tasks to the worker sites when they indicate in the heartbeat

messages that they are available. In addition, in order not to burden the

execution with too many concurrent activities, the tasks dispatcher will

only dispatch map tasks when a certain threshold of the currently launched

worker sites are already joined; in the implementation for the experiments,

this threshold is set at 80%. The map tasks assignment is done with pref-

erence to the proximity of the work site; that is to say that if there is an

unassigned data-local map task, it will be assigned first, followed by an

unassigned rack-local map task, and then finally an arbitrary one.

When the worker site receives the assignment of a map task, it will com-

mence the application of the user-defined map function on the key/value

pairs of the input data. At this point, the execution is exactly the same

as that of the current execution architecture, including the use of combiner

function if such optimization mechanism is defined. The output from the

map function (or the combine function) differs from the current execution

architecture in that it will be partitioned and indexed according to the

major-partitioning, as mentioned in Section 5.4. The intermediate output

149

Section 5.5 Elastic Job Execution

will be kept in its entirety with the local splits manager for recovery pur-

poses if required. To proceed with the execution, the output will have to be

copied, split and distributed to all the other worker sites. The split ranges

used to partition the output and the corresponding location to send the

splits are retrieved from the ranges cache (refer to Section 5.4.2.6) for the

most part. Due to anticipated dynamism in available resources (e.g., addi-

tion of sites from Scheduler or removal of failed sites), the worker site may,

at times, have an incomplete view of the overlay (i.e., gaps in the cache); in

this case, discovery via bounded broadcast may be employed.

As mentioned in Section 2.1, bounded broadcast is a technique employed in

some DHTs to efficiently broadcast messages without resorting to flooding.

In order to broadcast, each message will be tagged with a particular bound

on the site identification; the recipient will forward the message to the fingers

that fall within the bound and each forwarded message will be tagged with

an appropriate partition of this bound. Thus, a requirement for efficient

bounded broadcast is a way to enforce total order on the participating sites;

for example, bounded broadcast can be done easily on a Chord overlay with

bounds on the site IDs because its site IDs constitute a factor ring. A direct

way of implementing bounded broadcast on BATON is via the sub-ranges

since these ranges definitely form a total order. However, the range of a site

is such a fickle state, therefore the decision is made to use instead the site

ID of BATON as the bound; this is slightly more complicated because the

ID of a BATON site consists of a level/number pair. In order to enforce the

total order, suppose (l, n) represents the site ID where the level is l and the

number is n, (l, n) ∈ B where

B ,
{

(l, n) | (l, n) ∈ N× Z
+, n ≤ 2l

}

150

Chapter 5 Elasticity: EMRE

the following binary relation � on the site IDs can be defined:

Definition 5.5.1

(l1, n1) � (l2, n2) , f(l1, n1) ≤ f(l2, n2)

where

∀(l, n) ∈ B, f(l, n) , (2n− 1)

(

1

2

)l+1

Lemma 5.5.1

f is injective.

Proof. Given (l1, n1), (l2, n2) ∈ B, consider the following cases:

l1 = l2 ∧ n1 6= n2:

n1 6= n2 ⇒ (2n1 − 1) 6= (2n2 − 1)

⇒ (2n1 − 1)

(

1

2

)l1+1

6= (2n2 − 1)

(

1

2

)l2+1

by l1 = l2

⇒ f(l1, n1) 6= f(l2, n2)

l1 6= l2: Suppose f(l1, n1) = f(l2, n2), without loss of generality, assum-

ing l1 > l2,

(2n1 − 1)

(

1

2

)l1+1

= (2n2 − 1)

(

1

2

)l2+1

⇒
2n1 − 1

2n2 − 1
=

(

1

2

)l2−l1

⇒
2n1 − 1

2n2 − 1
= 2l1−l2

151

Section 5.5 Elastic Job Execution

⇒ 2n1 − 1 = 2l1−l2(2n2 − 1)

which is a contradiction since LHS (i.e., 2n1 − 1) is odd but RHS

(i.e., 2l1−l2(2n2 − 1)) is even, meaning f(l1, n1) 6= f(l2, n2).

Taking both cases together, this means that

∀(l1, n1), (l2, n2) ∈ B, (l1, n1) 6= (l2, n2)⇒ f(l1, n1) 6= f(l2, n2)

Therefore, f is injective.

Theorem 5.5.2

� establishes a total order on B.

Proof. Consider the following qualities:

totality:

This follows directly from the fact that f is a well defined function.

Therefore, ∀(l1, n1), (l2, n2) ∈ B, (l1, n1) � (l2, n2) or (l2, n2) � (l1, n1).

reflexivity:

This follows directly from the fact that f : B → R. Therefore,

∀(l, n) ∈ B, (l, n) � (l, n).

anti-symmetry:

Given (l1, n1), (l2, n2) ∈ B, if (l1, n1) � (l2, n2) and (l1, n1) 6= (l2, n2),

then

• f(l1, n1) ≤ f(l2, n2) by Definition 5.5.1, and

152

Chapter 5 Elasticity: EMRE

• f(l1, n1) 6= f(l2, n2) because f is injective.

This means that

f(l1, n1) < f(l2, n2)⇒ ¬
(

f(l2, n2) ≤ f(l1, n1)
)

⇒ ¬
(

(l2, n2) � (l1, n1)
)

transitivity:

Given (l1, n1), (l2, n2), (l3, n3) ∈ B,

(l1, n1) � (l2, n2) ∧ (l2, n2) � (l3, n3)

⇒ f(l1, n1) ≤ f(l2, n2) ∧ f(l2, n2) ≤ f(l3, n3)

⇒ f(l1, n1) ≤ f(l3, n3)

⇒ (l1, n1) � (l3, n3)

Since � is total, reflexive, anti-symmetric and transitive, therefore �

establishes a total order on B.

Having such a relation, total ordering can be enforced on the sites with just

binary comparisons; in fact, the order obtained with this binary relation

will be similar to that of the order of sub-ranges by the worker sites as

maintained by BATON.

Via bounded broadcast, the worker site with incomplete view can make

a request for the missing ranges to all the worker sites in the execution

architecture. However, this is potentially a costly operation, especially with

the possible occurrence of intrinsic synchronization; therefore this will be

performed only when the incompleteness is deemed heuristically as severe

(e.g., a gap of more than twice of either the ranges adjacent to the gap).

153

Section 5.5 Elastic Job Execution

Otherwise, estimated correction will be performed (e.g., missing range is

sent to least loaded site adjacent to the gap).

With the ranges, the mapper component from the worker site will select the

appropriate major-partitions out from the intermediate output using the

index file and send them to their corresponding locations. Note that this

is a true pipelined execution model for MapReduce; and it is only possible

precisely because the index is distributed and each worker site also functions

as a reducer such that it can know a priori where to send the splits to.

5.5.3 Splits Routing

The splits management is one of the most important element of the en-

tire EMRE architecture because it is the component that coordinates the

MapReduce processing in a distributed manner.

At any point of time during the execution, the splits manager may receive

splits from any of the worker sites (including from itself). There are two

types of splits that it may receive: map output split and reduce input

split. Map output splits are major-partitioned splits of intermediate output

from the mapper components; the splits manager can receive map output

splits directly from the mapper components or as part of the work stealing

mechanism. When the splits manager receives all the required map output

splits, it will proceed to merge them to produce a minor-partitioned reduce

input split, which will be transferred eventually to a reducer component

to process. Similarly, as part of the work stealing mechanism, the splits

manager may also receive yet-to-be-processed reduce input splits from other

worker sites.

154

Chapter 5 Elasticity: EMRE

order of processing next partition to process

stolen work stolen work

direction to steal

(for left adjacent)

unprocessed unprocessed

direction to steal

(for right adjacent)

Figure 5.4: Order of processing of the partitions

In order to have a more pipelined execution and also to allow finer-grained

work sharing, the processing of the received splits is done in chunks. When

the splits manager receives all the map output splits to cover a particular

major-partition range (i.e., a “slice” of the actual sub-range of the site), it

may proceed to merge these splits over this partition range to produce a

reduce input split. Similarly for reduce input split, either produced from

the merge or received from other sites, the data is transferred to the reducer

component in minor-partitions when they are available. The split manager

will select the partition, be it a major-partition of a map output split or a

minor-partition of a reduce input split, that is closest to the center of the

sub-range of that worker site to begin processing; subsequent selections of

the partitions will branch out left and right in a zig-zag manner from the

center (refer to Figure 5.4). Essentially, such a way of choosing partition

creates a double-ended work stealing queue of splits that allow further work

sharing for the joining of new worker sites or for the work stealing from

adjacent worker sites.

As seen in the launch of the worker sites, updates to the sub-ranges will

not reflect immediately on the splits actually held at a particular site. The

splits manager will instead run a periodic thread to adjust the splits held

locally with respect to the current sub-range. There are two reasons for

such a delayed reaction. Firstly, in order to have a more robust execution,

it is preferable that state updates (i.e., sub-ranges and fingers) be kept

155

Section 5.5 Elastic Job Execution

as brief as possible. Secondly, the sub-ranges of the worker sites will be

altered throughout the execution either due to the joining of new worker

sites or as part of the work stealing mechanism. Therefore, it is a common

phenomenon for a splits manager to receive splits that have ranges that do

not coincide exactly with its sub-range; there will be too much overhead to

immediately adjust the out-of-bound splits upon reception.

5.5.4 Reduce Task Execution

As the reducer component receives the minor-partitions, it will commence

the application of the user-defined reduce function on the key/values chunks

within each minor-partition of the reducer input. Again, this part of the

execution is exactly the same as that of the current MapReduce execution

architecture.

Given that the splits manager will transfer the minor-partitioned reduce

input splits to the reducer component for processing in a zig-zag manner.

This means that there will not be any assurance on the order in which the

reduce input is processed. Note that in the current execution architecture,

there is an implicit and unofficial assurance that the order of execution of

the key/values chunks is also sorted according to the key. However, under

EMRE, such assurance will be complicated, especially with the three levels

of buckets hierarchy. Therefore, if the ordering of execution is required

(e.g., for MapReduce sorting algorithm), the job submitter has to indicate

this desire so that the reducer will re-order the output accordingly before

committing to the final output. Otherwise, the reducer will simply write

the output as they are produced, which does not pose a problem for mass

majority of jobs and is much faster in operation.

156

Chapter 5 Elasticity: EMRE

Once the range of the processed reduce input covers the entire sub-range

of the worker site, the reduce task corresponding to that worker site can

be deemed to be completed. However, as we shall see later, such a status

may not be absolute because its sub-range may be enlarged due to various

reasons. Therefore, the ApplicationMaster has to play the final coordi-

nating role in determining the actual completion; the job is completed only

when all the map tasks have been dispatched and all the worker sites have

reported their completion. At that point of time, the ApplicationMas-

ter will indicate the completion on the responses to the periodic heartbeat

messages from the worker sites so that the reducer component of the worker

sites can proceed to commit the output into the file system.

5.5.5 Work Stealing

As previously mentioned, due to the inherent load imbalance of BATON and

possible heterogeneous processing capabilities, the processing of work will

not be uniform across the worker sites. Therefore, work stealing is a good

feature to have in EMRE to soften the load imbalance. Note that the work

of a site can only be stolen by its adjacent sites and the left (right) adjacent

site can only steal the lower (upper) data elements; such a restriction is

enforced to maintain the structural integrity of the execution architecture.

The work stealing mechanism is achieved with a mere adjustment to the sub-

ranges of the thief (i.e., the worker site that is stealing) and its adjacent

sites; recall that with the splits management, the splits will eventually be

redistributed accordingly with respect with the updated sub-ranges. To

initiate the stealing process, the thief will notify its adjacent sites of its

intention to steal and which direction it is stealing from. The target of

157

Section 5.5 Elastic Job Execution

the theft will decide on the amount of work to be stolen based on some

statistical heuristics on its performance and the thief’s performance, as well

as the number of partitions available for stealing (i.e., one of the unprocessed

parts in Figure 5.4). Roughly speaking, the number of partitions to be stolen

is calculated so as to balance the time taken to send the stolen work and to

process them locally.

Note that in order not to thrash the system with disk I/Os, it is preferable

that data shipping and processing (including merging) are not concurrent,

Therefore, in EMRE, the worker site alternates the checking of sub-ranges

and processing of tasks; as a result, the time consumed to complete a task is

the direct sum of the time taken to transfer (due to theft) and the time taken

to process. As such, temporary time statistics are collected with regards to

these two events. These statistics are collected and updated throughout the

processing of the job:

• Treceive, time taken to receive a partition,

• Tsend, time taken to send a partition, and

• Tprocess, time taken to process a partition

Each statistical value is calculated as a weighted average of collected values

based on their freshness. The most recent N values are stored together with

their time stamp where N is a pre-configured value: (T1, t1), . . . , (TN , tN).

For the experiments, the implementation uses N = 16. ∀i = 1 . . . N , Ti is

the ith value, ti is the ith time stamp and t1 > · · · > tN . Suppose tcurr is

the current time stamp, the weighted average is calculated as follows:

Tavg ,

∑N

i=1
Ti

tcurr−ti
∑N

i=1
1

tcurr−ti

158

Chapter 5 Elasticity: EMRE

Due to the nature of the work and the granularity of the partition, each

worker site has to maintain two independent sets of statistics (i.e., one for

map tasks and another for reduce tasks). For the brevity of discussion, the

specificity of the task will not be assumed as the concept applies similarly

for either map or reduce task.

Suppose site a intends to steal from site b and without loss of generality,

site a is on the left of site b it will send its Treceive value and Tprocess value

to site b, labelled T a
receive and T a

process respectively. Upon receiving the in-

tention to steal, site b will calculate the number of partitions to be stolen.

Firstly, the time taken to transfer a partition, Ttransfer, is calculated as

max(T a
receive, T

b
send). Let L be the number of partitions available on the left

and R be the number of partitions available on the right. Furthermore, let

T b
receive and T b

process be respectively the Treceive and Tprocess values of site b.

The number to be stolen, S, is calculated as

S =

min
(⌊

(L+R)×T b
process

Ta
process+T b

process

⌋

, L
)

if Ttransfer ≤ T b
process,

0 otherwise

Firstly, if Ttransfer > T b
process, then there is no incentives to ship any work

to the theft; it is optimal to process all remaining work locally. However,

if that is not the case, then the optimization lies in splitting the work such

that both site a and site b will ideally complete at the same time after the

shipping.

Typically, the work stealing mechanism is activated when a worker site has

completed its assigned workload so that it may share the some of the un-

processed partitions of its adjacent sites. Once a worker site begins stealing

159

Section 5.5 Elastic Job Execution

due to the completion of its work, it will continue stealing until both its

adjacent sites report that nothing is to be stolen.

Also, understand that worker sites may be joining at any point of time,

including when the site to join is already merging or reducing; thus, this

join should be also be seen as a form of stealing. Therefore, each join will

also use the same stealing mechanism to negotiate the sub-ranges. Special

cases are made when there are insufficient statistics or when the worker site

has not received all the map output splits; during these cases, the sharing

is done like the modified BATON as mentioned in Section 5.4.

5.5.6 Fault-Tolerance

As mentioned in Section 2.2, the popularity of using the MapReduce frame-

work for Big Data analytics arises not just because of its simple program-

ming model that happens to be able to express a wide array of distributed

computation, its widespread usage is also due to its robustness in execution,

particularly its tolerance in handling site failures; in processing Big Data

workload, it is particularly important that partial failures should not halt

the entire execution.

For robust execution, a data processing framework is generally interested in

• the structural integrity of the execution architecture,

• the availability of input data, and

• the persistence of processing.

160

Chapter 5 Elasticity: EMRE

Fortunately, the first two out the three aspects of fault-tolerance are already

accounted for by just the design of the EMRE architecture. Firstly, the in-

corporation of the BATON overlay, together with the ApplicationMaster

as the “virtual site”, assures that in the occasion of site failures, the tree

structure of the worker sites can persist by some logical rearrangement. The

original design has been modified slightly in that the replacing site has to

be one of adjacent sites of the failed site so that the rearrangement will not

disrupt the distribution of the sub-ranges, thus ensuring minimal data mi-

gration. Secondly, MapReduce systems typically rely on the fault-tolerance

of the underlying file system to assure data availability; if a distributed file

system is used, this aspect of the fault-tolerance manifests as the replication

of the sub-files, which is also what EMRE relies on to assure the availability

of input data.

As for the persistence of processing, a more sophisticated recovery mech-

anism, as compared to the current execution architecture, has to be put

in place. It can be seen that the adoption of the work-oriented mentality

by the current execution architecture is mainly to cater for a simpler work

recovery; this is why each task is relatively independent and is associated

with a rather idempotent processing such that the processing can always be

redone. Note that this is, by no means, trying to undermine the importance

of simplicity in the design of systems. However, this thesis holds the po-

sition that the recovery mechanism implemented in EMRE, albeit slightly

more involved than the current execution architecture, suffers no loss in the

robustness of its execution.

The key of the recovery mechanism is to reconstruct the intermediate data

generated and received by the failed worker site. Note that at any point

161

Section 5.5 Elastic Job Execution

of time, there are four main types of data that the splits manager may be

holding:

• map output from the mapper component,

• received map output splits,

• reduce input splits, and

• processed reduce input splits.

Fortunately, all these types of data can be reconstructed with minimal effort.

To begin with, when a particular worker site fails, its adjacent sites will have

to cover its sub-ranges equally; this is after the restructuring of the BATON

overlay. These adjacent sites will announce their updated sub-ranges via

bounded broadcast. All the participating worker sites, upon the reception

of such announcement, will locate in its own collection of map output (i.e.,

the ones kept for recovery purposes) and extract out the appropriate major-

partitions to send to these adjacent sites. Since the adjacent sites simply

experience an update in their sub-ranges, normal activity of the worker

site is sufficient to assure the correct continuity of the processing. The

ApplicationMaster will have had independently detected the failure of

the worker site due to the timeout of the heartbeat messages, so it will

proceed to set the map tasks associated with that failed worker site back to

unassigned status so that other worker sites may redo the processing of these

tasks. The worker sites will receive these failed map tasks and process them

as per normal (i.e., applying map function, sort and distribute the resulting

output); a slight optimization implemented is that the splits of the output

from these map tasks will not be sent to the worker sites if they already

162

Chapter 5 Elasticity: EMRE

possess them. The robustness of such a recovery mechanism lies in the fact

that other than the restructuring of the worker sites, all forms of activity

remains practically the same. Notice that there is no requirement to request

for more Containers, though it may be helpful if the ApplicationMaster

does; in this case, special attention will be put on the joining of the newly

allocated Container such that it will join in between the two adjacent sites

of the failed worker site.

Now, taking into account potential site failures together with out-of-bound

splits, it is possible that some map output splits are lost even with the above

mentioned recovery mechanism because they were stored at the failed site

while not being under its sub-range; note that reduce input splits will not

suffer this problem because they can always be reconstructed from the map

output splits. Therefore, an additional timeout is put in place for the case

when a worker site persistently lacks some map output splits. On timeout,

the worker site will announce its need for these splits via bounded broadcast.

If the worker sites that originally processed those splits have not failed, they

will respond to this exceptional request by extracting out the appropriate

major-partitions from its collection of map output and send them to the

requester directly. Even if in the situation where there is no site failure,

such a special request mechanism can also act as a mean to optimize the

throughput of the execution architecture (i.e., to minimize the number of

occasions of having idling sites).

5.5.7 Optimizations

Not only the restructuring of the execution architecture under EMRE per-

mits an enhanced manner of processing MapReduce jobs, it also exposes

163

Section 5.5 Elastic Job Execution

several optimization opportunities that EMRE can exploit. In the follow-

ing, some of the implemented optimization is discussed.

5.5.7.1 Buffer Reuse

Under the current execution architecture, a rather large memory buffer (i.e.,

100 MB by default) is instantiated per map task to sort the intermediate

map output; it is subsequently discarded after the completion of the task.

For EMRE, there presents the opportunity for the worker sites to re-use this

buffer for all the assigned map tasks. Moreover, this buffer is also useful

in reducing the number of disk accesses in other aspects of the execution

such as for data shipping and for merging. The same buffer can be reused

in these areas because they are actually mutually exclusive.

5.5.7.2 Merging Specificity

In general, the merging of intermediate map output of MapReduce jobs

should warrant additional attention because it is actually quite unlike tra-

ditional merging (e.g., the merging part of an external sort in a relational

database system). In particular, the merging process for MapReduce has

very large fan-in (i.e., proportional to input size) and relatively small in-

dividual split size (i.e., inversely proportional to the number of reducers).

Should the intermediate map output splits be stored as different files un-

der the local file system, a single pass within the merge process would be

bogged down by excessive disk seeks (i.e., at least one per split); this is

especially aggravated with the issue of intrinsic synchronization. Therefore,

for EMRE, it makes more sense to store all the splits of the same sub-range

within the same file and to load as much as possible with the reused memory

buffer to merge so as to reduce disk seeks.

164

Chapter 5 Elasticity: EMRE

5.5.7.3 Pre-fetching

Other than excessive disk seeks, high rates of page cache miss while reading

from disk is also problematic; this is an effect of the co-location of Con-

tainers within the same machine (i.e., same hard disk) and the fact that

all worker sites will commence merging at about the same time. The result

is that regardless of the replacement strategy, disk pages will be replaced

rapidly and temporal locality is lost. Fortunately, under EMRE, we know

the sequence of execution on the splits (i.e., the zig-zag order); this allows

EMRE to implement a pre-fetching mechanism such that the next partition

is pre-fetched while the current partition is being processed.

5.5.7.4 Restricted Concurrency

As an effort to reduce disk contention within a single machine in the light of

the phenomenon of intrinsic synchronization, there is an intentional restric-

tion on the concurrency of the processes within each worker site. Several

distinct periodic and sequential activities can be identified:

• Polling for network I/O (with non-blocking socket)

• Checking for readiness of map output splits

– If yes, perform merging and supply reduce input

• Adjusting splits to current sub-range

• Checking for completeness of reduce task

– If yes, initiate work-stealing

165

Section 5.6 Experimental Study

It would be very elegant academically if all these activities run within a

single thread but our experience shows that having a separate thread to

handle network I/O would be more responsive to work-stealing activities at

no cost to the local performance. Therefore, the EMRE splits management

consists of two threads running periodically: one thread that is dedicated

to the network I/O and another that handles the rest of the activities in

sequence.

5.5.8 Discussion: Autonomy of Execution

Notice that, other than the periodic heartbeat messages, the worker sites

do not communicate with the master site at all throughout the execution;

this includes the sharing of work, and data location and allocation. In fact,

the entire job execution does not require the intervention of the master site;

the master site is only required to dispatch tasks upon announcement of

availability through the heartbeat messages. By independently obeying a

set of locally-scoped rules (e.g., execution order and work stealing mech-

anism), the summation of the efforts of the worker sites defines implicitly

the global progression of the job execution. Such autonomy of execution

is only possible because EMRE embeds a P2P overlay into its execution

architecture resulting in the control element involved in a MapReduce job

being essentially distributed.

5.6 Experimental Study

An EMRE prototype2 have been implemented with Java 1.6. The ver-

sion of Hadoop used is 0.23.1 configured with most of the default settings.

2Source code available at: https://bitbucket.org/xanec/projectemily

166

https://bitbucket.org/xanec/projectemily

Chapter 5 Elasticity: EMRE

The experiments are conducted on a 65 machines cluster. Each machine is

equipped with an Intel Xeon X3430 Quad Core CPU (2.4 Ghz), 8 GB mem-

ory, two 450 GB SCSI disks, and 1 Gbps Ethernet interface. The operating

system is CentOS 5.6 (Linux 2.6.148).

As the cluster used is shared by other researchers, the amount of memory

resources available to each NodeManager is purposely reduced from 8 GB

to 4 GB so as to reduce possible external interference. Note that on the

current execution architecture, the ApplicationMaster requires a 2 GB

Container and each map or reduce task requires a 1 GB Container. For

EMRE, a worker site requires a 1 GB Container.

The experimental data is obtained from a subset of the Purdue MapRe-

duce Benchmarks Suite (PUMA) (Ahmad et al., 2012); the selected bench-

marks are namely Word-Count , Inverted-Index , Self-Join and Adjacency-

List . For the first two jobs, the data set used is 150 GB of web doc-

uments in text/xml format downloaded from http://dumps.wikimedia.

org/enwiki/ while Self-Join and Adjacency-List use 80 GB and 30 GB of

synthetic data respectively.

For each benchmark, the same job definition is executed on the current ex-

ecution architecture (i.e., a completely unmodified Hadoop) and on EMRE.

In addition, the program is also run on different cluster sizes (i.e., 16, 32,

64 sites of NodeManagers). For the current execution architecture, differ-

ent number of reducers have also been experimented with as indicated on

the x-axis as the r-values; for example, when the cluster size is 16 and the

r-value is 2, the corresponding number of reducers used is 16 × 2 = 32.

The experiment is also repeated with a simulated dynamic environment to

explore the elasticity of the architectures. This is achieved via a customized

167

http://dumps.wikimedia.org/enwiki/
http://dumps.wikimedia.org/enwiki/

Section 5.6 Experimental Study

Scheduler that increases linearly the amount of resources available at reg-

ular intervals (i.e., arbitrarily chosen to be 50s and 100s); for example, only

1 NodeManager will be available for the job at the beginning, after 1 in-

terval (e.g., 50s), 2 NodeManagers will be available. This growth continues

until the entire cluster is available or until the end of the job, whichever

is earlier. The running times under different execution environments are

labelled static, interval=50s and interval=100s where static indicates that

all the NodeManagers are available immediately upon submission. For each

experiment, there will be a total of 45 experimental runs (i.e., 3 execution

environments × 3 cluster sizes × (4 r-values + 1 EMRE run)); the tim-

ing obtained for each experiment run is an average calculated from three

distinct executions.

5.6.1 Word-Count

The Word-Count experiment is the “hello world” program of the MapReduce

framework; this simple job counts the occurrences of each word in a large

collection of documents. The input key is arbitrary (e.g., the line number)

and the value is each line in the document. For each application of the map

function, the line is separated into its words and emitted as 〈word, 1〉 pairs.

The reducer simply sums the values of each word.

Figure 5.5 shows the running times. Under the static environment, the

current execution architecture performs the best when r = 1. Comparing

to this best case, EMRE is able to provide an average of 21.76% reduction

in the running times; this is largely due to the pipelining of executions.

Under the dynamic environment, it is noticeable that there is no single r-

value that provides the best running times across the different cluster size;

168

Chapter 5 Elasticity: EMRE

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

r=0.5

r=1
r=2

r=3
EM

R
E

r=0.5

r=1
r=2

r=3
EM

R
E

r=0.5

r=1
r=2

r=3
EM

R
E

R
u
n
n
in

g
 t
im

e
s
 (

s
)

static
interval=50s
interval=100s

64 sites32 sites16 sites

Figure 5.5: Running times for Word-Count

in particular, note that for 32 sites, when the interval is 50s, the optimal r-

value is 0.5 but r = 1 is optimal when the interval is 100s. Regardless of the

r-value, EMRE persistently provides the better running times. When the

interval is 50s, EMRE provides, on the average, 23.96% to 53.77% reductions

in running times depending on the r-values. When the interval is 100s, the

reductions ranges from 23.27% to 57.35% depending on the r-values.

Note that execution under EMRE has as many reducers as there are Con-

tainers for the worker sites; therefore, it is natural to question how the

current execution architecture performs with that many reducers. A fur-

ther study is conducted on the current execution architecture on the effects

of the number of reducers and the results are shown in Figure 5.6.

Firstly, the performance of having the maximum number of reducers is

abysmal; this is because the architecture progressively degrades to having

only one mapper while having many incomplete map tasks. Secondly, just as

also evident in Figure 5.5, there is actually no “optimal” number of reducers

which supports the argument that we actually cannot determine the best

169

Section 5.6 Experimental Study

 0

 2000

 4000

 6000

 8000

 10000

 1 2 4 8 16 32 64 128 256

R
u
n
n
in

g
 t
im

e
s
 (

s
)

Number of reducers

19031.00

21847.00

static
dynamic (interval=50s)

Figure 5.6: Effects of number of reducers for Word-Count

number of reducers to set because it is very sensitive to various external

factors.

5.6.2 Inverted-Index

The Inverted-Index experiment takes a list of documents as input and gen-

erates word-to-document indexing. The input key is arbitrary (e.g., the line

number) and the value is each line in the document. For each application

of the map function, the line is separated into its words and emitted as

〈word, docID〉 pairs where docID is the identity of the document (e.g., file-

name of the document). The reducer aggregates the docIDs into a list for

each word.

Figure 5.7 shows the running times. Due to the fact that the job profile

(i.e., the processing load of the map and reduce tasks) of the Inverted-

Index experiment is identical to that of the Word-Count experiment, their

results are very similar and the causes leading to the results are the same

170

Chapter 5 Elasticity: EMRE

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

r=0.5

r=1
r=2

r=3
EM

R
E

r=0.5

r=1
r=2

r=3
EM

R
E

r=0.5

r=1
r=2

r=3
EM

R
E

R
u
n
n
in

g
 t
im

e
s
 (

s
)

static
interval=50s
interval=100s

64 sites32 sites16 sites

Figure 5.7: Running times for Inverted-Index

(refer to Section 5.6.1). Under the static environment, the current execution

architecture performs the best when r = 1. Comparing to this best case,

EMRE is able to provide an average of 21.62% reduction in running times.

When the interval is 50s, EMRE provides, on the average, 23.58% to 54.14%

reductions in running times depending on the r-values. When the interval

is 100s, the reductions ranges from 22.96% to 57.47% depending on the

r-values.

5.6.3 Self-Join

Despite its name, the Self-Join experiment is a syntactic job with not much

significance in its output. The input key is arbitrary (i.e., the line number)

and the value consists of k items tuple: {i1, . . . , ik}. The output of the

map function is the key/value pair of 〈{i1, . . . , ik−1}, ik〉. The reducer will

emit consecutive pairs of the received values; for example for an input of

〈{i1, . . . , ik−1}, {v1, . . . , vn}〉, the reducer will output value pairs of (vi, vi+1)

171

Section 5.6 Experimental Study

 0

 1000

 2000

 3000

 4000

 5000

 6000

r=0.5

r=1
r=2

r=3
EM

R
E

r=0.5

r=1
r=2

r=3
EM

R
E

r=0.5

r=1
r=2

r=3
EM

R
E

R
u
n
n
in

g
 t
im

e
s
 (

s
)

static
interval=50s
interval=100s

64 sites32 sites16 sites

Figure 5.8: Running times of Self-Join

for i = 1, . . . , n − 1. The Self-Join experiment is said to be similar to the

candidate generation step of the Apriori algorithm (Agrawal and Srikant,

1994).

Figure 5.8 shows the running times. Under the static environment, the

current execution architecture actually performs best when r = 2. This is

probably due to the significantly heavier reduce work that the time gained

from having more reducers outweighs the penalty of having lesser mappers.

Nevertheless, comparing to this best case, EMRE is able to provide an

average of 27.71% reduction in running times. Under the dynamic environ-

ment, EMRE provides 32.90% to 51.87% reductions in running times when

the interval is 50s and 29.24% to 56.11% reductions when it is 100s.

For the case of 16 sites when r = 0.5, it can be seen that the running times

of the current architecture are about the same regardless of the interval.

This is likely because there are so few reducers that the time taken to reduce

dominates. It can also be seen this effect in Figure 5.6 for the case when the

number of reducers are few. Given the experience of achieving optimality

172

Chapter 5 Elasticity: EMRE

when having few reducers under dynamic environment (e.g., 64 sites for all

the benchmarks), one might be tempted to purposely restrict the number

of reducers in expectation of a turbulent environment. However, the case

of 16 sites and r = 0.5 in Figure 5.8 is a clear indication that one may run

into the problem of being overzealous and become penalized instead.

Overall, EMRE provides even better improvement as compared to Word-

Count . This phenomenon can be attributed to the fact that the reduce task

of Self-Join is much more involved algorithmically (i.e., more processing per

data size), therefore the work-stealing mechanism can bring about better

work distribution. In the case of running in dynamic environment, the

elasticity of EMRE helps tremendously because the current execution does

not cater for resource augmentation during the reduce phase but EMRE

does.

5.6.4 Adjacency-List

The Adjacency-List benchmark generates the adjacency and reverse-adjacency

lists of vertices of a graph. The input key is arbitrary and the value is an

edge of a directed graph. For each 〈p, q〉, the map function produces the

vertex-to-dual-lists pair of 〈p, ({}, {q})〉 and 〈q, ({p}, {})〉 as output. The

reducer will union two lists according to the key.

Figure 5.9 shows the running times. Under the static environment, the cur-

rent execution architecture performs the best when r = 2, This is again

due to the significantly heavier reduce work. Comparing to this best case,

EMRE is able to provide an average of 21.54% reduction in running times.

173

Section 5.6 Experimental Study

 0

 1000

 2000

 3000

 4000

 5000

 6000

r=0.5

r=1
r=2

r=3
EM

R
E

r=0.5

r=1
r=2

r=3
EM

R
E

r=0.5

r=1
r=2

r=3
EM

R
E

R
u
n
n
in

g
 t
im

e
s
 (

s
)

static
interval=50s
interval=100s

64 sites32 sites16 sites

Figure 5.9: Running times for Adjacency-List

Under the dynamic environment, EMRE provides 35.64% to 53.08% reduc-

tions when the interval is 50s and 37.16% to 58.69% reductions when it is

100s.

Notice that the input data size used is relatively small (i.e., 30 GB) as

compared to the previous two benchmarks while the running times remain

comparable. This means that actually a large amount of intermediate data

is generated for this benchmark resulting to much heavier reduce work than

the previous two benchmarks. This difference accounts for even better im-

provement by EMRE as compared to Self-Join.

5.6.5 Discussion: Number of Reducers

As evident in the experimental results, the rule-of-thumb approach in de-

termining the number of reducers does not work well; this is because the

174

Chapter 5 Elasticity: EMRE

number is rather sensitive to the work profile and the execution environ-

ment. Furthermore, now that YARN does not adopt the archetypal dedi-

cated mappers or reducers slots, setting the wrong number of reducers can

bring about much penalty.

The point to note is that under the current execution architecture, mappers

last momentarily (i.e., about 45s) while reducers persist until the end of

the job. Even though the assignment of reduce tasks is dependent on the

map progress, the number set by the job submitter indicates the eventual

proportion of the Containers “locked” by the reducers. Thus, the number

of reducers becomes a trade-off between the parallelism exposed to the map-

pers and reducers. This is why a mapper-to-reducer ratio of 3 : 1 works the

best for some jobs while the equi-ratio of 1 : 1 is better for others. When

the execution environment is dynamic, the considerations become even more

complex. Therefore, in our opinion, adopting EMRE provides precisely the

solution to this problem.

5.7 Summary

Through the introduction of external resource managers into the MapRe-

duce framework, resource scheduling is decoupled from the execution archi-

tecture. As a result of such decoupling, the execution architecture experi-

ences dynamic resource allocation that is not unlike the typical environment

immersing structured P2P overlays, albeit less harsh.

Therefore, EMRE seeks to exploit such externalization of resource managers

by embedding a structured P2P overlay into the execution architecture in

order to tap into the said dynamism. BATON is chosen for such a struc-

tured P2P overlay because of its independence from the cluster size and its

175

Section 5.7 Summary

relatively limited inter-site dependencies. Note that due to the heavier cost

of data shipping, the BATON overlay used for EMRE has been modified to

assure that load sharing is as optimal as possible upon join.

With the worker sites deployed as a structured P2P overlay, work sharing

can be done dynamically as and when sites join through the allocation of

resources by the resource manager. Furthermore, staying true to the P2P

philosophy, each worker site represents a single pipeline of the MapReduce

execution that is identical from one another. Therefore, work sharing can

be done at any point of the processing; elasticity is vastly increased as a

result. A positive side-effect of such an approach is that the MapReduce

execution architecture is transformed from a pull-based model to a push-

based one; the result of such a transformation is improved performance in

running times. On the whole, much of the control of the execution has

been decentralized and shifted to the worker sites such that the master site

presents mostly as a monitor; arguably, due to this offload of control on the

master site, horizontal scalability has been extended.

EMRE demonstrates that even if the global architecture is not that of a

structured P2P overlay, by incorporating a structured P2P overlay at some

level, the system can benefit from some of the systemic qualities of the

overlay. For the case of EMRE, the execution elasticity is vastly augmented

due to the structural elasticity of the overlay. Furthermore, pipelining can

be done because of the distributed index provided by the overlay.

176

Chapter 6

Conclusion

Of late, the database community has been experiencing unprecedented waves

of paradigms-challenging trends. Even without taking sides in this war of

conservatism versus progressivism conducted on the battleground of data

mongering, by intersecting the domains of interests of these new trends,

one can single out specific qualities that have catalyzed the blooming of the

said trends. Three dimensions are highlighted in this thesis as the primary

medium to view these novel developments: scalability, robustness and elas-

ticity. It is now the mainstream consideration to adopt massive horizontal

scaling as the mean to cope with overwhelming workload. While a web-

scale distributed system has much to gain from horizontal scaling, it will be

inhibited by its own size due paradoxical augmented probability of failures;

therefore, the robustness of the system in the events of singly failures is now

an indispensable factor to take into consideration. With expanded scale of

computer clusters and multi-tenancy of processing jobs, elasticity of both

the system and the processing has become a powerful architectural quality.

While the predominant architecture adopted by modern data processing

systems is the simplistic master/workers architecture, this thesis pushes

177

the proposition that alternatives can be considered; particularly, struc-

tured P2P overlays are attractive candidates to be considered. The crux

of this thesis is dedicated to the investigations, conducted or proposed, into

various scenarios under the scalability-elasticity-robustness axes whereby

structured P2P overlays can be demonstrated as a performance boon. The

Katana framework demonstrates a manner in which a generalized program-

ming model may be fused with the topology of the overlay such that ex-

pressiveness is augmented; with better expressiveness, the queries are ex-

ecuted closer to what is intended and thus provides much better running

times. Hardened Katana is an extension to the original Katana framework

that seeks to induced decentralized fault-tolerance into Katana’s novel dis-

tributed programming model via a generalized fault-tolerance model called

the cover-charge protocol (CCP). The Elastic MapReduce Execution

(EMRE) shows that by embedding a structured P2P overlay into a mas-

ter/workers architecture (i.e., YARN), an even more elastic execution can

be adopted.

The presentation of this thesis is not the absolute extent of the works devel-

oped; there are many areas in which these works may be extended through

further investigations:

• The Katana framework is designed to be built on a class of structured

P2P overlays (i.e., CM-DHT) but as an introductory work, only the

Chord-variant has explored; it will be interesting to investigate how

other CM-DHTs fare in operation. In addition, with Katana as the

foundation, other frameworks can be developed. Higher-level language

that interprets into ana and kata jobs can be devised as a wrapper

over the Katana framework for better user-side API. Other popular

178

Chapter 6 Conclusion

modes of operation, such as iterative job execution and main-memory

processing, may be included in future works.

• With the depiction by the CCP, formal model of operations may now

be devised to study the processing in the framework in an abstract

form. While being a fault-tolerant implementation, hardened Katana

also highlights how the present Katana processing may have some

oversights that require further study; in particular, job processing,

especially under heterogeneous or load imbalanced environment, can

be further improved with some optimization scheme.

• EMRE, on the other hand, has a lot of optimization opportunities

that have yet to be explored. A way of achieving better load balanc-

ing, even in a heterogeneous environment, will be a beneficial addition

to the execution architecture. An intelligent manner of deciding work

load sharing, rather than a heuristic one, will deterministically re-

duce over-zealous work stealing. In addition, it will be interesting to

see how EMRE fares when deployed in other resource management

frameworks (e.g., Mesos and Corona).

While structured P2P overlays are not exactly extinct from the design of

modern data processing systems, most works that utilize structured P2P

overlays in one way or another have often neglected their individual char-

acteristics and have failed to exploit them. This thesis holds the position

that structured P2P overlays can and should have a bigger role in these

changing times. The findings from the experimented works, as well as the

proposed future developments seek to evince the feasibility of using struc-

tured P2P overlays in modern data processing systems and the benefits that

these architectures can bring.

179

180

Bibliography

Aggarwal, C. C., N. Ashish, and A. Sheth (2013). The Internet of Things:

A Survey from the Data-Centric Perspective. In C. C. Aggarwal (Ed.),

Managing and Mining Sensor Data, pp. 383–428. Springer US. 3

Agrawal, R. and R. Srikant (1994). Fast Algorithms for Mining Association

Rules in Large Databases. In VLDB ’94: Proceedings of the 20th Inter-

national Conference on Very Large Data Bases, San Francisco, CA, USA,

pp. 487–499. Morgan Kaufmann Publishers Inc. 172

Ahmad, F., S. Lee, M. Thottethodi, and T. N. Vijaykumar (2012). PUMA:

Purdue MapReduce Benchmarks Suite. Technical Report TR-ECE-12-11,

Purdue University School of Electrical and Computer Engineering. 167

Ali-Eldin, A., M. Kihl, J. Tordsson, and E. Elmroth (2012). Efficient Pro-

visioning of Bursty Scientific Workloads on the Cloud Using Adaptive

Elasticity Control. In ScienceCloud ’12: Proceedings of the 3rd workshop

on Scientific Cloud Computing Date, New York, NY, USA, pp. 31–40.

ACM. 20

Ananthanarayanan, G., A. Ghodsi, A. Wang, D. Borthakur, S. Kandula,

S. Shenker, and I. Stoica (2012). PACMan: Coordinated Memory Caching

for Parallel Jobs. In NSDI’12: Proceedings of the 9th USENIX conference

181

Bibliography

on Networked Systems Design and Implementation, Berkeley, CA, USA,

pp. 20–20. USENIX Association. 16

Anderson, E. and J. Tucek (2010, March). Efficiency Matters! SIGOPS

Operating Systems Review 44 (1), 40–45. 14

Androutsellis-Theotokis, S. and D. Spinellis (2004, December). A Survey of

Peer-to-Peer Content Distribution Technologies. ACM Computing Sur-

veys 36, 335–371. 23, 24

Apache (2012, February). Apache Hadoop NextGen MapReduce (YARN).

Accessed on April 2014, https://hadoop.apache.org/docs/current/

hadoop-yarn/hadoop-yarn-site/YARN.html. 22, 27, 47

Appuswamy, R., C. Gkantsidis, D. Narayanan, O. Hodson, and A. Rowstron

(2013, January). Nobody ever got fired for buying a cluster. Technical

Report MSR-TR-2013-2, Microsoft Research. 14, 16

Atzori, L., A. Iera, and G. Morabito (2010, October). The Internet of

Things: A survey. Computer Networks: The International Journal of

Computer and Telecommunications Networking 54 (15), 2787–2805. 3

Aviziens, A. (1976). Fault-Tolerant Systems. IEEE Transactions on Com-

puters C-25 (12), 1304–1312. 19

Battré, D., S. Ewen, F. Hueske, O. Kao, V. Markl, and D. Warneke (2010).

Nephele/PACTs: A Programming Model and Execution Framework for

Web-Scale Analytical Processing. In SOCC ’10: Proceedings of the 1st

ACM symposium on Cloud computing, New York, NY, USA, pp. 119–130.

ACM. 52

Bernstein, P. A. and N. Goodman (1984, December). An Algorithm for

182

https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html

Bibliography

Concurrency Control and Recovery in Replicated Distributed Databases.

ACM Transactions on Database Systems 9 (4), 596–615. 12

Bias, R. (2010, November). Elasticity is NOT #Cloud Computing . . . Just

Ask Google. Accessed on April 2014, http://cloudscaling.com/blog/

cloud-computing/elasticity-is-not-cloud-computing-just-ask-

google/. 20

Bird, R. S. and L. Meertens (1998, jun). Nested Datatypes. In J. Jeuring

(Ed.), LNCS 1422: Proceedings of Mathematics of Program Construction,

Marstrand, Sweden, pp. 52–67. Springer-Verlag. 64

Blanas, S., J. M. Patel, V. Ercegovac, J. Rao, E. J. Shekita, and Y. Tian

(2010). A Comparison of Join Algorithms for Log Processing in MapRe-

duce. In SIGMOD ’10: Proceedings of the 2010 international conference

on Management of data, New York, NY, USA, pp. 975–986. ACM. 63, 89

Borthakur, D. (2010, May). Facebook has the world’s largest Hadoop clus-

ter! Accessed on April 2014, http://hadoopblog.blogspot.com/2010/

05/facebook-has-worlds-largest-hadoop.html. 3

Bosilca, G., R. Delmas, J. Dongarra, and J. Langou (2009, April).

Algorithm-based Fault Tolerance Applied to High Performance Comput-

ing. Journal of Parallel and Distributed Computing 69 (4), 410–416. 101

Bougeret, M., H. Casanova, M. Rabie, Y. Robert, and F. Vivien (2011).

Checkpointing Strategies for Parallel Jobs. In SC ’11: Proceedings of 2011

International Conference for High Performance Computing, Networking,

Storage and Analysis, New York, NY, USA, pp. 33:1–33:11. ACM. 101

Brebner, P. C. (2012). Is your Cloud Elastic Enough?: Performance Mod-

elling the Elasticity of Infrastructure as a Service (IaaS) Cloud Applica-

183

http://cloudscaling.com/blog/cloud-computing/elasticity-is-not-cloud-computing-just-ask-google/
http://cloudscaling.com/blog/cloud-computing/elasticity-is-not-cloud-computing-just-ask-google/
http://cloudscaling.com/blog/cloud-computing/elasticity-is-not-cloud-computing-just-ask-google/
http://hadoopblog.blogspot.com/2010/05/facebook-has-worlds-largest-hadoop.html
http://hadoopblog.blogspot.com/2010/05/facebook-has-worlds-largest-hadoop.html

Bibliography

tions. In ICPE ’12: Proceedings of the 3rd ACM/SPEC International

Conference on Performance Engineering, New York, NY, USA, pp. 263–

266. ACM. 20

Brewer, E. (2012). CAP Twelve Years Later: How the "Rules" Have

Changed. Computer 45 (2), 23–29. 2, 10

Brewer, E. A. (2000). Towards Robust Distributed Systems. In PODC ’00:

Proceedings of the nineteenth annual ACM symposium on Principles of

distributed computing, New York, NY, USA, pp. 7–. ACM. 2

Cappello, F., A. Geist, B. Gropp, L. Kale, B. Kramer, and M. Snir (2009,

November). Toward Exascale Resilience. International Journal of High

Performance Computing Applications 23 (4), 374–388. 101

Cattell, R. (2011, May). Scalable SQL and NoSQL Data Stores. SIGMOD

Record 39, 12–27. 2, 10

Chen, J., C. Douglas, M. Mutsuzaki, P. Quaid, R. Ramakrishnan, S. Rao,

and R. Sears (2012). Walnut: A Unified Cloud Object Store. In SIGMOD

’12: Proceedings of the 2012 international conference on Management of

Data, New York, NY, USA, pp. 743–754. ACM. 21

Ching, A., R. Murthy, D. Molkov, R. Vadali, and P. Yang (2012, Novem-

ber). Under the Hood: Scheduling MapReduce jobs more efficiently with

Corona. Accessed on April 2014, https://www.facebook.com/notes/

facebook-engineering/under-the-hood-scheduling-mapreduce-

jobs-more-efficiently-with-corona/10151142560538920. 27, 47,

52

Codd, E. F. (1983, January). A Relational Model of Data for Large Shared

Data Banks. Communications of the ACM 26 (1), 64–69. 5

184

https://www.facebook.com/notes/facebook-engineering/under-the-hood-scheduling-mapreduce-jobs-more-efficiently-with-corona/10151142560538920
https://www.facebook.com/notes/facebook-engineering/under-the-hood-scheduling-mapreduce-jobs-more-efficiently-with-corona/10151142560538920
https://www.facebook.com/notes/facebook-engineering/under-the-hood-scheduling-mapreduce-jobs-more-efficiently-with-corona/10151142560538920

Bibliography

Cohen, J., B. Dolan, M. Dunlap, J. M. Hellerstein, and C. Welton (2009,

August). MAD Skills: New Analysis Practices for Big Data. Proceedings

of the VLDB Endowment 2 (2), 1481–1492. 6

Das, S., D. Agrawal, and A. El Abbadi (2013, April). ElasTraS: An Elastic,

Scalable, and Self-Managing Transactional Database for the Cloud. ACM

Transactions on Database Systems 38 (1), 5:1–5:45. 21

Dean, J. and S. Ghemawat (2008). MapReduce: Simplified Data Processing

on Large Clusters. Communications of the ACM 51 (1), 107–113. 13, 21

DeCandia, G., D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,

A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels (2007). Dy-

namo: Amazon’s Highly Available Key-value Store. SIGOPS Operating

Systems Review 41 (6), 205–220. 12, 24, 113

Devlin, B. (2011, November). The Seven Faces of Data - Rethinking data’s

basic characteristics. Technical report, 9sight Consulting. 1

Dijkstra, E. W. (1982). Selected Writings on Computing: A Personal Per-

spective, Chapter EWD447: On the Role of Scientific Thought, pp. 60–66.

Springer-Verlag New York, Inc. 8

Dinu, F. and T. E. Ng (2012). Understanding the Effects and Implications of

Compute Node Related Failures in Hadoop. In HPDC ’12: Proceedings

of the 21st international symposium on High-Performance Parallel and

Distributed Computing, New York, NY, USA, pp. 187–198. ACM. 19,

122, 123

Douglas, L. (2012, June). The Importance of ’Big Data’: A Definition.

Technical report, Gartner, Inc Survey. 6

185

Bibliography

Doulkeridis, C. and K. Nørvåg (2014, June). A Survey of Large-Scale An-

alytical Query Processing in MapReduce. The VLDB Journal 23 (3),

355–380. 101

Duan, Q., Y. Yan, and A. Vasilakos (2012, December). A Survey on Service-

Oriented Network Virtualization Toward Convergence of Networking and

Cloud Computing. IEEE Transactions on Network and Service Manage-

ment 9 (4), 373–392. 10

Elnozahy, E. N. M., L. Alvisi, Y.-M. Wang, and D. B. Johnson (2002,

September). A Survey of Rollback-recovery Protocols in Message-passing

Systems. ACM Computing Surveys 34 (3), 375–408. 101

Fang, Z. (2012). Storage Space Market Brief. Technical Report 12, IHS

iSuppli. 5

Fardone, G. (2012, May). Cloud elasticity and cloud scalability

are not the same thing. Accessed on April 2014, http://blog.

evolveip.net/index.php/2012/05/24/cloud-elasticity-and-

cloud-scalability-are-not-the-same-thing-2/. 20

Fernando, N., S. W. Loke, and W. Rahayu (2013, January). Mobile cloud

computing: A survey. Future Generation Computer Systems 29 (1), 84–

106. 3

Ferreira, K., J. Stearley, J. H. Laros, III, R. Oldfield, K. Pedretti,

R. Brightwell, R. Riesen, P. G. Bridges, and D. Arnold (2011). Evaluat-

ing the Viability of Process Replication Reliability for Exascale Systems.

In SC ’11: Proceedings of 2011 International Conference for High Per-

formance Computing, Networking, Storage and Analysis, New York, NY,

USA, pp. 44:1–44:12. ACM. 101

186

http://blog.evolveip.net/index.php/2012/05/24/cloud-elasticity-and-cloud-scalability-are-not-the-same-thing-2/
http://blog.evolveip.net/index.php/2012/05/24/cloud-elasticity-and-cloud-scalability-are-not-the-same-thing-2/
http://blog.evolveip.net/index.php/2012/05/24/cloud-elasticity-and-cloud-scalability-are-not-the-same-thing-2/

Bibliography

Fox, A., S. D. Gribble, Y. Chawathe, E. A. Brewer, and P. Gauthier (1997).

Cluster-Based Scalable Network Services. In SOSP ’97: Proceedings of the

sixteenth ACM symposium on Operating systems principles, New York,

NY, USA, pp. 78–91. ACM. 2

Friedman, E., P. Pawlowski, and J. Cieslewicz (2009). SQL/MapReduce:

A practical approach to self-describing, polymorphic, and parallelizable

user-defined functions. Proceedings of the VLDB Endowment 2 (2), 1402–

1413. 43, 52

Gantz, J. and D. Reinsel (2012, December). The Digital Universe in 2020:

Big Data, Bigger Digital Shadows, and Biggest Growth in the Far East.

Technical report, International Data Corporation. 1

Gantz, J., D. Reinsel, C. Chute, W. Schlichting, J. McArthur, M. Stephen,

X. Irida, A. Toncheva, and A. Manfrediz (2007, March). The Expanding

Digital Universe: A Forecast of Worldwide Information Growth Through

2010. Technical report, International Data Corporation. 1

Garfinkel, S. (1999). Architects of the Information Society: Thirty-Five

Years of the Laboratory for Computer Science at MIT. MIT Press. 8

Ghemawat, S., H. Gobioff, and S.-T. Leung (2003). The Google File Sys-

tem. In SOSP ’03: Proceedings of the nineteenth ACM symposium on

Operating systems principles, New York, NY, USA, pp. 29–43. ACM. 41,

43

Gilbert, S. and N. Lynch (2002, June). Brewer’s Conjecture and the Feasi-

bility of Consistent, Available, Partition-Tolerant Web Services. SIGACT

News 33, 51–59. 2

187

Bibliography

Goh, W. X. and K.-L. Tan (2013). Katana: Generalized Data Processing

on Peer-to-Peer Overlays. In IC2E ’13: Proceedings of the 2013 IEEE

International Conference on Cloud Engineering, Washington, DC, USA,

pp. 318–327. IEEE Computer Society. 25, 78, 85

Goh, W. X. and K.-L. Tan (2014). Elastic MapReduce Execution. In CC-

Grid ’12: Proceedings of the 2014 14th IEEE/ACM International Sym-

posium on Cluster, Cloud and Grid Computing, Washington, DC, USA.

IEEE Computer Society. 25

Gray, J., P. Helland, P. O’Neil, and D. Shasha (1996). The Dangers of

Replication and a Solution. In Proceedings of the 1996 ACM SIGMOD in-

ternational conference on Management of data, SIGMOD ’96, New York,

NY, USA, pp. 173–182. ACM. 12

Gustafson, J. L. (1988, May). Reevaluating Amdahl’s law. Communications

of the ACM 31, 532–533. 43

Hecht, R. and S. Jablonski (2011). NoSQL evaluation: A use case oriented

survey. In CSC ’11: Proceedings of the 2011 International Conference

on Cloud and Service Computing, Washington, DC, USA, pp. 336–341.

IEEE Computer Society. 11

Heintz, B., C. Wang, A. Chandra, and J. Weissman (2013). Cross-Phase

Optimization in MapReduce. In IC2E ’13: Proceedings of the 2013 IEEE

International Conference on Cloud Engineering, Washington, DC, USA,

pp. 338–347. IEEE Computer Society. 44

Herodotou, H., H. Lim, G. Luo, N. Borisov, L. Dong, F. B. Cetin, and

S. Babu (2011). Starfish: A Self-tuning System for Big Data Analytics.

In CIDR ’11: Proceedings of the fifth Biennial Conference on Innovative

Data Systems Research, Asilomar, CA, USA, pp. 261–272. 15

188

Bibliography

Hindman, B., A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. Katz,

S. Shenker, and I. Stoica (2011). Mesos: A Platform for Fine-Grained

Resource Sharing in the Data Center. In NSDI ’11: Proceedings of the 8th

USENIX conference on Networked systems design and implementation,

Berkeley, CA, USA, pp. 22–22. USENIX Association. 22, 28, 47, 52

Hunt, P., M. Konar, F. P. Junqueira, and B. Reed (2010). ZooKeeper:

Wait-free coordination for Internet-scale systems. In USENIXATC’10:

Proceedings of the 2010 USENIX conference on USENIX annual technical

conference, Berkeley, CA, USA, pp. 11–11. USENIX Association. 98

Hutton, G. (1999). A tutorial on the universality and expressiveness of fold.

Journal of Functional Programming 9 (4), 355–372. 65

Isard, M., M. Budiu, Y. Yu, A. Birrell, and D. Fetterly (2007, March).

Dryad: Distributed Data-Parallel Programs from Sequential Building

Blocks. SIGOPS Operating Systems Review 41, 59–72. 21, 100

Jagadish, H. V., B. C. Ooi, and Q. H. Vu (2005). BATON: A Balanced

Tree Structure for Peer-to-Peer Networks. In VLDB ’05: Proceedings of

the 31st international conference on Very large data bases, pp. 661–672.

VLDB Endowment. 29, 38, 134

Jiang, D., B. C. Ooi, L. Shi, and S. Wu (2010, September). The Perfor-

mance of MapReduce: An In-depth Study. Proceedings of the VLDB

Endowment 3, 472–483. 14, 20

Jiang, D., A. K. H. Tung, and G. Chen (2011, September). MAP-JOIN-

REDUCE: Toward Scalable and Efficient Data Analysis on Large Clus-

ters. IEEE Transactions on Knowledge and Data Engineering 23 (9),

1299–1311. 51

189

Bibliography

Johnson, P. R. and R. Thomas (1975, January). Maintenance of Duplicate

Databases. RFC 677, RFC Editor. 2

Kachris, C. and I. Tomkos (2012, Fourth). A Survey on Optical Intercon-

nects for Data Centers. IEEE Communications Surveys Tutorials 14 (4),

1021–1036. 10

Kallman, R., H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S. Zdonik, E. P. C.

Jones, S. Madden, M. Stonebraker, Y. Zhang, J. Hugg, and D. J. Abadi

(2008, August). H-Store: A High-Performance, Distributed Main Mem-

ory Transaction Processing System. Proceedings of the VLDB Endow-

ment 1 (2), 1496–1499. 24

Karger, D., E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and D. Lewin

(1997). Consistent Hashing and Random Trees: Distributed Caching

Protocols for Relieving Hot Spots on the World Wide Web. In STOC

’97: Proceedings of the twenty-ninth annual ACM symposium on Theory

of computing, New York, NY, USA, pp. 654–663. ACM. 32, 34

King, I., J. Li, and K. T. Chan (2009). A Brief Survey of Computational

Approaches in Social Computing. In IJCNN’09: Proceedings of the 2009

international joint conference on Neural Networks, Piscataway, NJ, USA,

pp. 2699–2706. IEEE Press. 3

Konstantinou, I., E. Angelou, C. Boumpouka, D. Tsoumakos, and N. Koziris

(2011). On the Elasticity of NoSQL Databases over Cloud Management

Platforms. In CIKM ’11: Proceedings of the 20th ACM international

conference on Information and knowledge management, New York, NY,

USA, pp. 2385–2388. ACM. 21

Lämmel, R. (2007). Google’s MapReduce Programming Model — Revisited.

Science of Computer Programming 68 (3), 208–237. 43, 64

190

Bibliography

Lee, K., T. W. Choi, A. Ganguly, D. I. Wolinsky, O. Boykin, and

R. Figueiredo (2011). Parallel Processing Framework on a P2P System

Using Map and Reduce Primitives. In In the 8th International Workshop

on Hot Topics in Peer-to-Peer Systems in Conjunction with IPDPS 2011.

14, 35

Lee, K.-H., Y.-J. Lee, H. Choi, Y. D. Chung, and B. Moon (2012). Parallel

Data Processing with MapReduce: A Survey. SIGMOD Record 40 (4),

11–20. 101

Leong, B., B. Liskov, and E. D. Demaine (2006, May). EpiChord: Paral-

lelizing the Chord Lookup Algorithm with Reactive Routing State Man-

agement. Computer Communications 29, 1243–1259. 35

Li, F., B. C. Ooi, M. T. Özsu, and S. Wu (2014, January). Distributed

Data Management Using MapReduce. ACM Computing Surveys 46 (3),

31:1–31:42. 101

Lupu, M., B. C. Ooi, and Y. C. Tay (2008). Paths to Stardom: Calibrating

the Potential of a Peer-based Data Management System. In SIGMOD

’08: Proceedings of the 2008 ACM SIGMOD international conference on

Management of data, New York, NY, USA, pp. 265–278. ACM. 39, 53,

68, 69, 136

Malewicz, G., M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,

and G. Czajkowski (2010). Pregel: A System for Large-Scale Graph Pro-

cessing. In SIGMOD ’10: Proceedings of the 2010 international conference

on Management of data, New York, NY, USA, pp. 135–146. ACM. 100

Malkhi, D., M. Naor, and D. Ratajczak (2002). Viceroy: A Scalable and

Dynamic Emulation of the Butterfly. In PODC ’02: Proceedings of the

191

Bibliography

twenty-first annual symposium on Principles of distributed computing,

New York, NY, USA, pp. 183–192. ACM. 69

Manohar, N. (2013). A Survey of Virtualization Techniques in Cloud Com-

puting. In V. S. Chakravarthi, Y. J. M. Shirur, and R. Prasad (Eds.), Pro-

ceedings of International Conference on VLSI, Communication, Advanced

Devices, Signals & Systems and Networking (VCASAN-2013), Volume

258 of Lecture Notes in Electrical Engineering, pp. 461–470. Springer In-

dia. 9

McKendrick, J. (2012, September). Big Data, Big Challenges, Big Op-

portunities: 2012 IOUG Big Data Strategies Survey. Technical report,

Unisphere Research, A Division of Information Today, Inc. 1, 3, 4

Meijer, E., M. Fokkinga, and R. Paterson (1991). Functional Program-

ming with Bananas, Lenses, Envelopes and Barbed Wire. In FPCA ’91:

Proceedings of the 5th ACM conference on Functional programming lan-

guages and computer architecture, New York, NY, USA, pp. 124–144.

Springer-Verlag New York, Inc. 53

Mohan, C. (2013). History Repeats Itself: Sensible and NonsenSQL Aspects

of the NoSQL Hoopla. In EDBT ’13: Proceedings of the 16th International

Conference on Extending Database Technology, New York, NY, USA, pp.

11–16. ACM. 11

Monash, C. (2011, July). Petabyte-scale Hadoop clusters (dozens of

them). Accessed on April 2014, http://www.dbms2.com/2011/07/06/

petabyte-hadoop-clusters/. 3, 52

Mundkur, P., V. Tuulos, and J. Flatow (2011). Disco: A Computing Plat-

form for Large-Scale Data Analytics. In SIGPLAN ’11: Proceedings of

192

http://www.dbms2.com/2011/07/06/petabyte-hadoop-clusters/
http://www.dbms2.com/2011/07/06/petabyte-hadoop-clusters/

Bibliography

the 10th ACM SIGPLAN workshop on Erlang, Erlang ’11, New York,

NY, USA, pp. 84–89. ACM. 41

Murthy, A. C., C. Douglas, M. Konar, O. O’Malley, S. Radia, S. Agarwal,

and K. V. Vinod (2011). Architecture of Next Generation Apache Hadoop

MapReduce Framework. Technical report, Apache Hadoop. 52

Myers, A. (2012, March). High Availability for the Hadoop Distributed File

System (HDFS). Accessed on April 2014, https://blog.cloudera.com/

blog/2012/03/high-availability-for-the-hadoop-distributed-

file-system-hdfs/. 22, 46, 52, 98

Nadkarni, A. and L. DuBois (2013, April). Storage for Big Data: Insight

into Usage Patterns. Technical Report 240372, International Data Cor-

poration. 5

Olston, C., B. R Reed, U. Srivastava, R. Kumar, and A. Tomkins (2008).

Pig Latin: A Not-So-Foreign Language for Data Processing. In SIGMOD

’08: Proceedings of the 2008 ACM SIGMOD international conference on

Management of data, New York, NY, USA, pp. 1099–1110. ACM. 43, 52

Ordonez, C., I.-Y. Song, and C. Garcia-Alvarado (2010). Relational versus

Non-Relational Database Systems for Data Warehousing. In DOLAP ’10:

Proceedings of the ACM 13th international workshop on Data warehousing

and OLAP, New York, NY, USA, pp. 67–68. ACM. 11

Özsu, M. T. and P. Valduriez (1999). Principles of Distributed Database

Systems. Prentice Hill. 12

Park, G., S. Kim, Y. Cho, J. Kook, and J. Hong (2010). Chordet: An

Efficient and Transparent Replication for Improving Availability of Peer-

to-Peer Networked Systems. In SAC ’10: Proceedings of the 2010 ACM

193

https://blog.cloudera.com/blog/2012/03/high-availability-for-the-hadoop-distributed-file-system-hdfs/
https://blog.cloudera.com/blog/2012/03/high-availability-for-the-hadoop-distributed-file-system-hdfs/
https://blog.cloudera.com/blog/2012/03/high-availability-for-the-hadoop-distributed-file-system-hdfs/

Bibliography

Symposium on Applied Computing, New York, NY, USA, pp. 221–225.

ACM. 35

Pavlo, A., E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden,

and M. Stonebraker (2009). A Comparison of Approaches to Large-Scale

Data Analysis. In SIGMOD ’09: Proceedings of the 35th SIGMOD in-

ternational conference on Management of data, New York, NY, USA, pp.

165–178. ACM. 13, 14, 43

Pike, R., S. Dorward, R. Griesemer, and S. Quinlan (2005). Interpreting

the data: Parallel analysis with Sawzall. Scientific Programming 13 (4),

277–298. 43, 52

Rasti, A., D. Stutzbach, and R. Rejaie (2006). On the Long-term Evolution

of the Two-Tier Gnutella Overlay. In INFOCOM 2006: Proceedings of

the 25th IEEE International Conference on Computer Communications,

pp. 1–6. 23

Ratnasamy, S., P. Francis, M. Handley, R. Karp, and S. Shenker (2001). A

Scalable Content-Addressable Network. In SIGCOMM ’01: Proceedings

of the 2001 conference on Applications, technologies, architectures, and

protocols for computer communications, New York, NY, USA, pp. 161–

172. ACM. 23, 24, 34, 50, 113, 135

Rowstron, A., D. Narayanan, A. Donnelly, G. O’Shea, and A. Douglas

(2012). Nobody ever got fired for using Hadoop on a cluster. In HotCDP

’12: Proceedings of the 1st International Workshop on Hot Topics in

Cloud Data Processing, New York, NY, USA, pp. 2:1–2:5. ACM. 14,

16

Rowstron, A. I. T. and P. Druschel (2001). Pastry: Scalable, decentral-

ized object location, and routing for large-scale peer-to-peer systems. In

194

Bibliography

Middleware ’01: Proceedings of the IFIP/ACM International Conference

on Distributed Systems Platforms Heidelberg, London, UK, pp. 329–350.

Springer-Verlag. 23, 34

Ryan, A. (2012, June). Under the Hood: Hadoop Distributed Filesystem

reliability with Namenode and Avatarnode. Accessed on April 2014,

https://www.facebook.com/notes/facebook-engineering/under-

the-hood-hadoop-distributed-filesystem-reliability-with-

namenode-and-avata/10150888759153920. 98

Saito, Y. and M. Shapiro (2005, March). Optimistic Replication. ACM

Computing Surveys 37 (1), 42–81. 2

Sakr, S., A. Liu, D. Batista, and M. Alomari (2011, March). A Survey of

Large Scale Data Management Approaches in Cloud Environments. IEEE

Communications Surveys Tutorials 13 (3), 311–336. 8, 9

Sakr, S., A. Liu, and A. G. Fayoumi (2013, July). The Family of MapRe-

duce and Large-Scale Data Processing Systems. ACM Computing Sur-

veys 46 (1), 11:1–11:44. 13, 14, 101

Sánchez-Artigas, M. and P. García López (2010, February). Echo: A

peer-to-peer clustering framework for improving communication in DHTs.

Journal of Parallel and Distributed Computing 70, 126–143. 35

Shen, H., C.-Z. Xu, and G. Chen (2006, March). Cycloid: A Constant-

Degree and Lookup-Efficient P2P Overlay Network. Performance Evalu-

ation 63, 195–216. 69

Stoica, I., R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan

(2001). Chord: A Scalable Peer-to-peer Lookup Service for Internet Ap-

plications. In SIGCOMM ’01: Proceedings of the 2001 conference on

195

https://www.facebook.com/notes/facebook-engineering/under-the-hood-hadoop-distributed-filesystem-reliability-with-namenode-and-avata/10150888759153920
https://www.facebook.com/notes/facebook-engineering/under-the-hood-hadoop-distributed-filesystem-reliability-with-namenode-and-avata/10150888759153920
https://www.facebook.com/notes/facebook-engineering/under-the-hood-hadoop-distributed-filesystem-reliability-with-namenode-and-avata/10150888759153920

Bibliography

Applications, technologies, architectures, and protocols for computer com-

munications, New York, NY, USA, pp. 149–160. ACM. 23, 24, 29, 34,

113, 135

Stonebraker, M., S. Madden, D. J. Abadi, S. Harizopoulos, N. Hachem, and

P. Helland (2007). The End of an Architectural Era: (It’s Time for a

Complete Rewrite). In VLDB ’07: Proceedings of the 33rd international

conference on Very large data bases, pp. 1150–1160. VLDB Endowment.

11

Suleiman, B., S. Sakr, R. Jeffery, and A. Liu (2012). On understanding

the economics and elasticity challenges of deploying business applications

on public cloud infrastructure. Journal of Internet Services and Applica-

tions 3 (2), 173–193. 20

Tao, L. (2001, October). Shifting Paradigms with the Application Service

Provider Model. Computer 34 (10), 32–39. 8

Thusoo, A., J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu,

P. Wyckoff, and R. Murthy (2009, August). Hive: A Warehousing Solu-

tion Over a Map-Reduce Framework. Proceedings of the VLDB Endow-

ment 2, 1626–1629. 43, 52

Vishnevsky, V., A. Safonov, M. Yakimov, E. Shim, and A. D. Gelman (2008,

February). Scalable blind search and broadcasting over Distributed Hash

Tables. Computer Communications 31, 292–303. 40

Weibull, W. (1951). A statistical distribution function of wide applicability.

Journal of Applied Mechanics 18, 293–297. 18

Wong, J. (2013, January). Which Big Data Company has

the World’s Biggest Hadoop Cluster? Accessed on April

196

Bibliography

2014, http://www.hadoopwizard.com/which-big-data-company-has-

the-worlds-biggest-hadoop-cluster/. 3

Yang, C., C. Yen, C. Tan, and S. Madden (2010). Osprey: Implement-

ing MapReduce-Style Fault Tolerance in a Shared-Nothing Distributed

Database. In ICDE ’10: Proceedings of the 26th International Confer-

ence on Data Engineering, pp. 657–668. 14, 100

Yang, H.-C., A. Dasdan, R.-L. Hsiao, and D. S. Parker (2007). Map-reduce-

merge: Simplified Relational Data Processing on Large Clusters. In SIG-

MOD ’07: Proceedings of the 2007 ACM SIGMOD international confer-

ence on Management of data, New York, NY, USA, pp. 1029–1040. ACM.

51

Zhao, B. Y., L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. D. Ku-

biatowicz (2004). Tapestry: A Resilient Global-scale Overlay for Service

Deployment. IEEE Journal on Selected Areas in Communications 22 (1),

41–53. 23, 34

197

http://www.hadoopwizard.com/which-big-data-company-has-the-worlds-biggest-hadoop-cluster/
http://www.hadoopwizard.com/which-big-data-company-has-the-worlds-biggest-hadoop-cluster/

Bibliography

198

Appendix A

Group Theory

Definition A.1: Group

A binary operation on a set G is a function ⊕ that maps each element

(a, b) ∈ G× G to an unique element (a⊕ b) ∈ G, or ⊕a : G× G → G.

A group is a set G together with a binary operation that satisfies the

following axioms:

• The binary operation is associative such that

∀a, b, c ∈ G, (a⊕ b)⊕ c = a⊕ (b⊕ c) (A.1)

• There exists an identity element e ∈ G such that

∀a ∈ G, e⊕ a = a⊕ e = a (A.2)

• For each element a ∈ G, there exists an inverse element a−1 ∈ G

199

such that

a⊕ a−1 = a−1 ⊕ a = e (A.3)

aFor the ease of reading, an infix notation is used to depict the binary operation.

Remark A.2

Trivially, the group is finite if its corresponding set G has finite ele-

ments; otherwise it is infinite. In our discussion, we shall primarily

deal with finite groups because of its practical implication in reality.

A group (G,⊕) is called abelian if ⊕ is commutative; that is to say

∀a, b ∈ G, a ⊕ b = b ⊕ a. In addition, a group (H,⊕) is called a sub-

group of another group (G,⊕) if H is a subset of G and both groups

share the same binary operation ⊕.

Definition A.3: Integer Group

An integer group (Zn,+n) is a group with Zn , {0n, 1n, 2n, . . . , (n− 1)n}

as its set where ∀a ∈ Z, an is the congruence class of a modulo n, that

is

∀a ∈ Z, an = {. . . , a− 2n, a− n, a, a+ n, a+ 2n, . . . } (A.4)

and the modular addition +n as its binary operation, where

∀an, bn ∈ Zn, (an +n bn) = (a+ b)n (A.5)

Proof. Firstly, ∀a, b ∈ Z, (a+ b)n ∈ Zn by definition, therefore +n is a

binary operation (i.e., +n : Zn × Zn → Zn).

200

Chapter A Group Theory

Associativity. Given an, bn, cn ∈ Zn,

(an +n bn) +n cn = (a+ b)n +n cn by (A.5)

=
(

(a+ b) + c
)

n
by (A.5)

=
(

a+ (b+ c)
)

n
by (A.1)

= an +n (b+ c)n by (A.5)

= an +n (bn +n cn) by (A.5)

Identity. 0n is the identity element in (Zn,+n); ∀an ∈ Zn,

0n +n an = (0 + a)n by (A.5)

= an by (A.4)

= (a+ 0)n by (A.4)

= an +n 0n by (A.5)

Inverse. ∀an ∈ Zn, (an)
−1 = (−a)n; by definition, ∀k ∈ Z, kn ∈ Zn,

therefore, ∀an ∈ Zn, ∃(−a)n ∈ Zn such that

an +n (−a)n =
(

a+ (−a)
)

n
by (A.5)

= 0n by inverse of Z

=
(

(−a) + a
)

n
by inverse of Z

= (−a)n +n an by (A.5)

Therefore, (Zn,+n) is a group.

201

Definition A.4: Symmetric Group

Given a set S, a bijection π : S → S is called a permutation on S.

Suppose S contains n elements, let Sn denote the set of all the permu-

tations on S, (Sn, ◦) is a group called the symmetric group where ◦ is

function composition:

∀π1, π2 ∈ Sn, ∀s ∈ S, (π1 ◦ π2)(s) = π1(π2(s)) (A.6)

Proof. Note that a composition of bijective functions is bijective, there-

fore, ◦ is a binary operation (i.e., ◦ : Sn×Sn → Sn). Furthermore, func-

tion composition is, by definition, associative. The identity element is

the identity function i : S → S, where ∀s ∈ S, i(s) = s. Given π ∈ Sn,

the corresponding inverse element is trivially the inverse function π−1,

which is well-defined since π is bijective (i.e., its inverse exists) and π−1

is also bijective (i.e., π−1 ∈ Sn). Therefore, (Sn, ◦) is a group.

Definition A.5: Permutation Group

A subgroup of a symmetric group (Sn, ◦) is called a permutation group.

Definition A.6: Direct Product

Given two groups (G,⊕) and (H,⊗), the direct product of (G,⊕) and

(H,⊗) is a group with G×H as its set and ⊙ as the binary operation,

where ⊙ is defined as follows:

∀g1, g2 ∈ G, h1, h2 ∈ H, (g1, h1)⊙ (g2, h2) , (g1 ⊕ g2, h1 ⊗ h2) (A.7)

202

Chapter A Group Theory

Proof. Since

⊕ : G×G→ G and ⊗ : H ×H → H

then

⊙ : (G×H)× (G×H)→ (G×H)

Associativity. Given g1, g2, g3 ∈ G, h1, h2, h3 ∈ H,

(

(g1, h1)⊙ (g2, h2)
)

⊙ (g3, h3)

= (g1 ⊕ g2, h1 ⊗ h2)⊙ (g3, h3) by (A.7)

=
(

(g1 ⊕ g2)⊕ g3, (h1 ⊗ h2)⊗ h3

)

by (A.7)

=
(

g1 ⊕ (g2 ⊕ g3), h1 ⊗ (h2 ⊗ h3)
)

by (A.1)

= (g1, h1)⊙ (g2 ⊕ g3, h2 ⊗ h3) by (A.7)

= (g1, h1)⊙
(

(g2, h2)⊙ (g3, h3)
)

by (A.7)

Identity. Given eG identity element of (G,⊕) and eH identity element

of (H,⊗), (eG, eH) is the identity element of the direct product of

(G,⊕) and (H,⊗). ∀g ∈ G, h ∈ H,

(eG, eH)⊙ (g, h) = (eG ⊕ g, eH ⊗ h) by (A.7)

= (g, h) by (A.2)

= (g ⊕ eG, h⊕ eH) by (A.2)

= (g, h)⊙ (eG, eH) by (A.7)

Inverse. Given (g, h) ∈ G×H, suppose g−1 is the inverse of g in (G,⊕)

and h−1 is the inverse of h in (H,⊗), (g−1, h−1) is the inverse of

203

(g, h) in (G×H,⊙).

(g, h)⊙ (g−1, h−1) = (g ⊕ g−1, h⊗ h−1) by (A.7)

= (eG, eH) by (A.3)

= (g−1 ⊕ g, h−1 ⊗ h) by (A.3)

= (g−1, h−1)⊙ (g, h) by (A.7)

Therefore, (G×H,⊙) is a group.

Definition A.7: Homomorphism

In general, homomorphism is a “structure-preserving” function that

maps from one algebraic structure to another; the exact definition of

the preservation in question depends on the axioms of the algebraic

structure in question.

A group homomorphism mapping from a group (G,⊕) to another group

(H,⊗) is a function h : G→ H such that

∀a, b ∈ G, h(a⊕ b) = h(a)⊗ h(b) (A.8)

A graph homomorphism mapping from a graph G = (V,E) to another

graph G′ = (V ′, E ′) is a function h : V → V ′ such that

∀a, b ∈ V, (a, b) ∈ E ⇒
(

h(a), h(b)
)

∈ E ′ (A.9)

The algebraic prefix (i.e., “group” and “graph”) will be dropped and the

function will be denoted as just homomorphism when it is clear which

204

Chapter A Group Theory

kind of algebraic structure is referred to.

A homomorphism that is bijective is called an isomorphism. An iso-

morphism whose domain and codomain are equivalent is called an au-

tomorphism.

Theorem A.1: Cayley’s Theorem

Every group is isomorphic to some permutation group.

Proof. Given a group (G,⊕), for any g ∈ G, define a function λg : G→ G

such that ∀a ∈ G, λg(a) = g ⊕ a. λg is a bijective, hence permutation,

on G:

Injective. ∀a, b ∈ G, suppose λg(a) = λg(b),

λg(a) = λg(b)⇒ g ⊕ a = g ⊕ b by defn of λ

⇒ g−1 ⊕ (g ⊕ a) = g−1 ⊕ (g ⊕ b)

⇒ (g−1 ⊕ g)⊕ a = (g−1 ⊕ g)⊕ b by (A.1)

⇒ e⊕ a = e⊕ b by (A.3)

⇒ a = b by (A.2)

Surjective. ∀a ∈ G, define b = g−1 ⊕ a. Therefore,

λg(b) = g ⊕ b by defn of λ

= g ⊕ (g−1 ⊕ a) by defn of b

= (g ⊕ g−1)⊕ a by (A.1)

= e⊕ a by (A.3)

205

= a by (A.2)

Therefore, the set G , {λg | g ∈ G} forms a group together with the

function composition: (G, ◦).

Define the function φ : G → G such that ∀g ∈ G, φ(g) = λg. φ is a

homomorphism from (G,⊕) to (G, ◦); ∀a, b ∈ G, ∀x ∈ G,

φ(a⊕ b)(x) = λa⊕b(x) by defn of φ

= (a⊕ b)⊕ x by defn of λ

= a⊕ (b⊕ x) by (A.1)

= a⊕ λb(x) by defn of λ

= λa

(

λb(x)
)

by defn of λ

= (λa ◦ λb)(x) by (A.6)

φ is also bijective:

Injective. ∀a, b ∈ G, suppose φ(a) = φ(b), then ∀x ∈ G,

φ(a)(x) = φ(b)(x)⇒ λa(x) = λb(x) by defn of φ

⇒ a⊕ x = b⊕ x by defn of λ

⇒ (a⊕ x)⊕ x−1 = (b⊕ x)⊕ x−1

⇒ a⊕ (x⊕ x−1) = b⊕ (x⊕ x−1) by (A.1)

⇒ a⊕ e = b⊕ e by (A.3)

⇒ a = b by (A.2)

Surjective. ∀a ∈ G, ∃λa ∈ G such that φ(a) = λa by defn.

206

Chapter A Group Theory

Therefore, φ is an isomorphism from G to G.

Definition A.8: Generating Set

A generating set of a group (G,⊕) is a subset S ⊆ G such that ∀a ∈ G,

∃s1, . . . , sn ∈ S for some n ∈ Z
+, a = s1 ⊕ · · · ⊕ sn. The elements of S

are called the generators of (G,⊕).

Definition A.9: Cayley Graph

Given a group (G,⊕) with a generating set S, the Cayley graph, denoted

as Cay(G,⊕, S), of (G,⊕) is a graph representation that encodes the

abstract structure of (G,⊕). The vertices are the elements of G and

∀a, b ∈ G, there exists an edge (a, b) in Cay(G,⊕, S) if and only ∃s ∈ S,

such that b = a⊕ s.

Theorem A.2

Every Cayley graph is vertex transitive.

Proof. Recall that a graph G = (V,E) is said to be vertex transitive if

∀v1, v2 ∈ V , there is some automorphism of graph that maps v1 to v2.

Given a Cayley graph Cay(G,⊕, S), let a and b be two arbitrary ele-

ments of G, consider the function h : G → G where ∀x ∈ G, h(x) =

(b⊕ a−1)⊕ x.

Firstly, by Cayley’s Theorem, any group is isomorphic to a permutation

group, therefore this implies that h is bijective.

207

Secondly, note thath maps a to b,

h(a) = (b⊕ a−1)⊕ a by defn of h

= b⊕ (a−1 ⊕ a) by (A.1)

= b⊕ e by (A.3)

= b by (A.2)

Thirdly, h is an homomorphism, suppose there is an edge from x to y,

this means ∃s ∈ S, such that

y = x⊕ s⇒ (b⊕ a−1)⊕ y = (b⊕ a−1)⊕ (x⊕ s)

⇒ (b⊕ a−1)⊕ y = ((b⊕ a−1)⊕ x)⊕ s by (A.1)

⇒ h(y) = h(x)⊕ s by defn of h

which implies there is an edge from h(x) to h(y).

Therefore, h is an graph automorphism on Cay(G,⊕, S) that maps a

to b.

208

Appendix B

Category Theory

Definition B.1: Category

A category consists of a collection of objects and a collection of arrows

subjected to the following axioms:

• For each arrow f , there are two associated objects in the object

collection: source(f) and target(f). These are respectively the

source and target of f . The notation f : A→ B is used to indicate

that source(f) = A and target(f) = B.

• Given two arrows f : A → B and g : B → C, there is an arrow

f ◦g : A→ C in the arrow collection. The arrow f ◦g is called the

composite of f and g. This is often expressed with the following

commutative diagrama:

A

B C

f
f◦g

g

209

The composition of arrows is associative; that is to say, for all

f : A→ B, g : B → C, h : C → D, h ◦ (g ◦ f) = (h ◦ g) ◦ f :

A B

C D

f

g◦f
g

h◦g

h

• For each object A, there is an identity arrow 1A : A → A in the

arrow collection such that for all f : A→ B, f ◦ 1A = f = 1B ◦ f :

A B

A B

f

1A 1B

f

aIn a commutative diagram, all directed paths with the same start and endpoints
lead to the same result by composition; typically, identity arrows are not portrayed
unless required.

Remark B.2

Note that the definition of a category is entirely abstract; anything that

satisfies this definition qualifies as a category. Typically, uppercase and

bold characters (e.g., C and D) are used to represent categories; for

a category C, C0 denotes the corresponding collection of objects and

C1 denotes the corresponding collection of arrows. Also, in many ways,

a categorical arrow generalizes the notion of function or morphism;

therefore it also generalizes some of their properties.

Definition B.3: Isomorphism

An arrow f : A→ B is called an isomorphism (in a categorical manner)

210

Chapter B Category Theory

if there exists an arrow g : B → A such that f ◦ g = 1B and g ◦ f = 1A.

In this case, the arrow g is called the inverse of f . Naturally, inverses

are also isomorphism.

Definition B.4: Functor

A functor F : C → D is a mapping from a category C to another

category D such that objects are mapped to objects and arrows are

mapped to arrows subjected to the following axioms:

• F (f : A→ B) = F (f) : F (A)→ F (B)

• F (f ◦ g) = F (f) ◦ F (g)

• F (1A) = 1F (A)

Remark B.5

Notice that a functor is used as both a mapping of objects and a map-

ping of arrows; thus, in order to clarify the notation, lowercase charac-

ters (e.g., f and g) are used to represent arrows and uppercase charac-

ters (e.g., A and B) are used to represent objects.

Remark B.6

As categories are entirely abstract entities, there is a problem in dealing

with categories that are potentially “too big”. For example, observe that

functors composes in a similar manner as arrows and we can define

a trivial identity functor 1C : C → C that maps a category C to

itself by mapping objects and arrows to themselves. Therefore, there

211

can be possibly a category of categories: a category with all categories

as objects and all functors as arrows. Such a notion is particularly

problematic as much akin to the Russell’s paradox: will such a category

be an object of itself?

In category theory, categories can be distinguished according to the

“size”: a category is called small if both its collections are sets, otherwise

it is called large. In this manner, a category of all small categories,

Cat, can be defined instead; the category Cat is naturally large, thus

avoiding paradox. While small categories allow set-theoretic notions

to be employed, this class categories is too restrictive in application.

Therefore, in our discussion, we shall assume that all categories are

locally small instead.

Definition B.7: Locally Small Category

A category C is called locally small if for any two arbitrary objects A

and B in C, the collection of all the arrows with A as the source and

B as the target, denoted as HomC(A,B).

Definition B.8: Dual Statement

Given any sentence Σ in the language of category theory, a dual state-

ment Σ∗ by

• interchanging the occurrence of “source” and “target” and

• interchanging the order of the arrow composition.

212

Chapter B Category Theory

Such a statement is a well-formed sentence since only the symbols are

changed.

Proposition B.1: Formal Duality

For any sentence Σ in the language of category theory, if Σ follows from

the axioms for categories, then so does its dual statement Σ∗.

Proof. Firstly, notice that applying dual on the axioms of the categories

does not change the axioms at all. Secondly, dual statements preserve

the entailment since the substituted terms are treated as mere undefined

constants.

Proposition B.2: Conceptual Duality

For any statement Σ about categories, if Σ holds for all categories, then

so does the dual statement Σ∗.

Proof. For any category C, a dual category C∗ can be defined by inter-

changing the source and target of each arrows. Naturally, (C∗)∗ = C.

Firstly, notice that is a statement Σ holds for a category C, then Σ∗

holds for its dual category C∗. Now if Σ holds for all categories, nat-

urally, it holds for all dual categories. Thus, Σ∗ will hold for all dual

“dual categories” (i.e., all categories).

Remark B.9

Propositions B.1 and B.2 together form the duality principle of cate-

gories. The idea is that any categorical notion will have an equally valid

213

dual notion, which is formed by reversing the order of composition and

the words “source” and “target”.

Definition B.10: Initial and Terminal Objects

Given a category C, an object A is initial if for each object B, there

is an unique arrow from A to B. Or equivalently, by skolemization, an

object A is initial if there exists a mapping L · M from objects to arrows

such that for any object B, LB M : A→ B. Dually, given a category C,

an object A is terminal if for each object B, there is an unique arrow

from B to A. Similarly, by skolemization, an object A is terminal if

there exists a mapping M · L from objects to arrows such that for any

object B, MA L: B → A.

Proposition B.3

Initial (terminal) objects are unique up to isomorphism.

Proof. Given a category C with two initial objects, A and B, by defini-

tion, there exists an unique arrow f : A→ B and another unique arrow

g : A → B. Then, the following commutative diagram proves that f

and g are isomorphisms:

A B

A B

1A

f

g
1B

f

The uniqueness of terminal objects is proven dually.

214

Chapter B Category Theory

Definition B.11: Category of Cones

Given two categories, J and C, and let the functor D : J → C be

called a diagram of type J in C. A cone to a diagram D is created

with an identified object C in C together with a collection of arrows

in C, c : C → D(J), for each object J in J such that for each arrow

α : I → J in J, the following triangle commutes:

C

D(I) D(J)

cI cJ

D(α)

A morphism of cones ϑ : (C, cJ)→ (C ′, c′J) is an arrow ϑ in C such that

the following triangle commutes for all objects J in J:

C C ′

D(J)

ϑ

cJ c′J

Therefore, by the construction of cones and their morphisms, a category

can be identified with the cones as objects and the morphisms as arrows,

this category is called the category of cones: Cone(D).

Proof. Given a diagram D : J → C, for a cone on the object C in

C, the identity arrow of C, 1C is naturally the identity arrow of the

said cone; given a morphism of cones f : (C, cJ) → (C ′, c′J), the follow

215

commutes for all objects J in J:

C C ′

D(J) C C ′

D(J)

f

1C

cJ

c′J

1C′

1D(J)

f

cJ

c′J

Given the morphisms of cones, f : (A, aJ)→ (B, bJ), g : (B, bJ)→ (C, cJ),

and h : (C, cJ)→ (D, dJ), the following commutes:

A

B C

D(J) D

aJ

f
g◦f

bJ

h◦g

g

cJ
h

dJ

Therefore, Cone(D) is a well-defined category.

Definition B.12: Limit

A limit for a diagram D : J → C is a terminal object in Cone(D).

This is denoted as pI : lim←−J
D(J)→ D(I).

Remark B.13: Cocone and Colimit

By the duality principle of categories, the dual of cone, called cocone,

can be identified. In the category of cocones, Cocone(D), the initial

object, called the colimit, can be dually defined.

216

Chapter B Category Theory

The colimit is denoted as qI : D(I)→ lim−→J
D(J).

Definition B.14: Direct System

A directed set, (A,≤A), is a non-empty set A equipped with a binary

relation ≤A such that the following conditions hold:

Reflexivity. ∀a ∈ A, a ≤A a.

Transitivity. ∀a, b, c ∈ A, a ≤A b ∧ b ≤A c⇒ a ≤A c.

Upperbound. ∀a, b ∈ A, ∃c ∈ A, a ≤A c ∧ b ≤A c.

A direct system, Direct(A,≤A), is a category constructed with the

elements of A as objects and the arrows fij : i→ j such that

• fii is the identity arrow on i, and

• ∀i, j, k ∈ A, i ≤A j ≤A k ⇒ fik = fjk ◦ fij.

Proof. Firstly, the identity arrow is well-defined by construction. Sec-

ondly, due to the transitivity of ≤A, compositions of arrows exist and

they are associative. Therefore, Direct(A,≤A) is a well-defined cate-

gory.

Definition B.15: ω-Colimit

A ω-colimit is the colimit for the diagram D : J → C on an identified

category C, where J = Direct(N,≤), the direct system of natural

numbers.

217

Definition B.16: Product and Coproduct

Given two objects A and B in a category C, an object P is called the

product of A and B if there are arrows f1 : P → A and f2 : P → B

in C and P ∼= lim←−J
D(J), where D : J → C and J is a finite category

with two objects and only the identity arrows:

∗ ⋆

such that D(∗) = A and D(⋆) = B. The coproduct of two objects is

defined dually. Given two objects A and B, their product is usually

denoted as A×B while their coproduct is denoted as A+ B.

A category where every two objects have a product (coproduct) is said

to have products (coproducts).

Definition B.17: Preservation of Limits and Colimits

A function F : C→ D preserves the limits of type J if pI : lim←−J
D(J)→

D(I) is a limit for a diagram D : J→ C, then F (pI) : F
(

lim←−J
D(J)

)

→

F
(

D(I)
)

is a limit for the diagram FD : J→ D. Briefly,

F
(

lim←−
J

D(J)
)

∼= lim←−
J

F
(

D(J)
)

Dually, a function F : C→ D preserves the colimits of type J if

F
(

lim−→
J

D(J)
)

∼= lim−→
J

F
(

D(J)
)

for all colimits qI : D(I)→ lim−→J
D(J).

218

Chapter B Category Theory

Definition B.18: Polynomial Functor

Given a category C with products, coproducts and terminal objects,

a polynomial functor is an endofunctor F : C → C such that for all

objects X in C,

F (X) = C0 + C1 ×X + C2 ×X2 + · · ·+ Cn ×Xn

where

∀n ∈ Z
+, Xn =

X if n = 1,

X ×Xn−1 otherwise

and “Ck” represents a coproduct of Ck objects (e.g., “1” represents a

terminal object and “2” = 1 + 1).

Definition B.19: F -Algebra and F -Coalgebra

Given an endofunctor F : C→ C on a category C, a F -algebra consists

of an identified object A in C and an arrow α : F (A)→ A.

A homomorphism h : (A,α)→ (B, β) of F -algebras is an arrow h : A→ B

in C such that the following diagram commutes:

F (A) F (B)

A B

F (h)

α β

h

The category F -Alg(C) is identified with the F -algebras as objects and

their homomorphisms as arrows.

F -coalgebras can be dually defined and subsequently the category F -

219

Coalg(C) can also be identified.

Proof. The identity homomorphisms are the identity arrows in C. Given

the homomorphism h : (A,α)→ (B, β), the following commutes:

A B

F (A) F (B) A B

F (A) F (B)

α 1A

h

β

1B

F (1A)

F (h)

F (1B)

α

h

β

F (h)

Firstly, note that F (1A) = 1F (A). Given the homomorphisms of F -

algebras, f : (A,α)→ (B, β), g : (B, β)→ (C, χ) and h : (C, χ)→ (D, δ),

the following commutes:

A B

F (A) F (B) C D

F (C) F (D)

α
g◦f

f

β
g

h◦g

F (g◦f)

F (f)

F (g)
F (h◦g)

χ

h

δ

F (h)

Note that F (g◦f) = F (g)◦F (f). Therefore, F -Alg(C) is a well-defined

category. The proof of F -Coalg(C) is done dually.

Lemma B.4: Lambek’s Lemma

Given an endofunctor F : C → C on a category C, if i : F (I) → I is

an initial F -algebra in F -Alg(C), then i is an isomorphism, meaning

P (I) ∼= I.

220

Chapter B Category Theory

Proof. This is proven with the following diagram chase:

P (I) P
(

P (I)
)

P (I)

I P (I) I

i

P (α)

P (i)

P (i)

i

α i

The left part commutes because of i : F (I) → I being initial so there

is an unique arrow α : (I, i)→
(

P (I), P (i)
)

. Therefore, i is an isomor-

phism such that α ◦ i = 1I and i ◦ α = 1P (I).

Proposition B.5

If the category C has an initial object 0 and ω-colimit s, and the end-

ofunctor F : C→ C preserves ω-colimits, the F -Alg(C) has an initial

algebra.

Proof. Since 0 is the initial object, there exists an unique arrow from 0

to F (0): LF (0) M : 0→ F (0). Then, consider the “sequence”:

0
LF (0) M
−−−−→ F (0)

F

(

LF (0) M
)

−−−−−−→ F 2(0)
F 2
(

LF (0) M
)

−−−−−−−→ . . .

a corresponding ω-colimit must exist. Let I = lim−→n
F n(0). Since F

preserves ω-colimits, there is an isomorphism:

F (I) = F
(

lim−→
n

F n(0)
)

∼= lim−→
n

F
(

F n(0)
)

= lim−→
n

F n(0) = I

Therefore, given any arrow α : F (A)→ A, the following diagram com-

221

mutes:

I A

F (I) F (A)

LA M

LF (A) M
∼=

F

(

LA M
)

α

The arrows LA M : I → A and LF (A) M : I → F (A) come from the

fact I is the initial object due to the ω-colimit. Furthermore, F
(

LA M
)

is unique due to the composition of ∼= and LF (A) M. Therefore the

homomorphism LA M : (I,∼=)→ (A,α) is unique, meaning ∼=: F (I)↔ I

is the initial algebra of F -Alg(C).

Definition B.20: Category of Sets

The category of sets, Sets, is a category whereby the objects are sets

and the arrows are canonical set-theoretic functions. In this case, the

identity arrows are the identity functions and the compositions of arrows

are the compositions of functions.

Proof. The proof is immediate because by construction, Sets satisfies

all the axioms of categories due to the similarity of definition of “iden-

tity” and “composition”.

Proposition B.6

The empty set in Sets is an initial object while the singleton sets are

the terminal objects (i.e., isomorphic with one another).

Proof. From the empty set, there will be one function (i.e., the null

function) to any other set. And from any set, there is only one func-

222

Chapter B Category Theory

tion (i.e., maps all elements to the same element) to any singleton set.

By construction, singleton sets are also isomorphic with one another

because there is only one function that maps a singleton set {a} to an-

other singleton set {b} (i.e., f(a) = b) and it is definitely bijective (i.e.,

f−1(b) = a).

Proposition B.7

The cartesian product of sets is a categorical product in Sets while the

disjoint union of sets is a categorical coproduct in Sets.

Proof. Given two sets A and B in Sets, define two functions p1 : A×B → A

and p2 : A × B → B such that ∀(a, b) ∈ A × B, p1(a, b) = a and

p2(a, b) = b. For all sets Z such that there exists z1 : Z → A and

z2 : Z → B, there is an unique function u : Z → A × B such that

∀z ∈ Z, u(z) =
(

z1(z), z2(z)
)

. This means that the cone created with

A× B is the terminal object implying A× B is indeed the categorical

product of A and B.

The disjoint union is proven in a dual manner. Note that since both

cartesian products and disjoint unions are also sets, this means that

Sets has all products and coproducts.

Proposition B.8

Sets has ω-colimits.

Proof. Given the diagram D : Direct(N,≤)→ Sets, define the follow-

223

ing equivalence relationship: ∀n,m ∈ N, if n ≤ m, then

∀xn ∈ D(n), xn ∼ D(fnm)(xn)

Define the set D(∞) where the elements are the equivalence classes

under ∼ of the form [xn] where xn ∈ D(n), ∀n ∈ N such that [xn] = [ym]

if and only if ∃k ∈ N, m,n ≤ k and D(fnk)(xn) = D(fmk)(ym).

By this construction, there exists an unique function from D(n) to

D(∞) for all n ∈ N such that the element is mapped to its equivalence

class: un : D(n) → D(∞), ∀xn ∈ D(n), un(xn) = [xn]. And the

following commutes by the construction of D(∞):

D(0) D(1) . . .

D(∞)

D(f01)

u0

D(f12)

u1 ...

Therefore, this is a cocone to D; in fact it is the initial object (i.e., the

ω-colimit). Given any cocone to D with an identified set A such that

∀n ∈ N, ∃u′
n : D(n) → A, there is an unique function f : D(∞) → A

such that ∀[xn] ∈ D(∞), f([xn]) = u′(xn). Therefore, there is an

unique arrow from D(∞) to any cocone to D, meaning that it is the

initial object.

Proposition B.9

Polynomial functors on Sets preserves ω-colimits.

Proof. Given the diagrams D1, D2 : Direct(N,≤)→ Sets, ∀n,m ∈ N,

224

Chapter B Category Theory

if n ≤ m, then the following commutes due to the universality of prod-

ucts:
D1(n) D1(n)×D2(n) D2(n)

D1(m) D1(m)×D2(m) D2(m)

D1(fnm) D2(fnm)

and the following commutes due to the universality of coproducts:

D1(n) D1(n) +D2(n) D2(n)

D1(m) D1(m) +D2(m) D2(m)

D1(fnm) D2(fnm)

Therefore, products and coproducts do not affect the construction of

D(∞) in the proof of Proposition B.8. Therefore,

D1(∞) ∼= lim−→
n

D1(n) ∧D2(∞) ∼= lim−→
n

D2(n)

⇒D1(∞)×D2(∞) ∼= lim−→
n

D1(n)×D2(n) ∧

D1(∞) +D2(∞) ∼= lim−→
n

D1(n) +D2(n)

Furthermore, it is direct to see that any constant endofunctora on Sets

preserves ω-colimits. Consider the functor G : Sets → Sets such that

for all objects A in G(A) = K for some object K and for all arrows f

in Sets, G(f) = 1K . Given D : Direct(N,≤) → Sets, any cocone to

G(D) will have an unique morphism from K, implying that the cocone

identified on K remains the initial object in Cocone
(

G(D)
)

.

Taken together, the conclusion is that polynomial functor preserves ω-

colimits.

225

aA constant functor is one that maps all objects to a single object and all arrows
to the identity arrow

Proposition B.10

Given a polynomial functor on Sets, F : Sets → Sets, F -Alg(Sets)

has an initial algebra and F -Coalg(Sets) has a terminal coalgebra.

Proof. This follows directly by the fact that Sets has an initial object

(Proposition B.6) and ω-colimits (Proposition B.8) and by Proposi-

tion B.5, F -Alg(Sets), has an initial algebra. The terminal coalgebra

of F -Coalg(Sets) is shown dually.

Remark B.21

Given the uniqueness of initial objects, the initial algebra of F -Alg(C)

is often identified with the functor F , as such the object in C identified

with the initial algebra is labelled as µF such that the initial algebra in

F -Alg(C) is the arrow in : F (µF)→ µF in C. On the other hand, the

terminal coalgebra in F -Alg(C) is the arrow out : νF → F (νF) where

νF is the identified object in C for the coalgebra.

Definition B.22: Catamorphism and Anamorphism

Given the category F -Alg(C) with an initial algebra in : F (µF)→ µF ,

the unique arrow to any other F -algebra is called a catamorphism; for

any F -algebra ϕ : F (C)→ C, the following commutes with the unique

226

Chapter B Category Theory

catamorphism Lϕ M : (µF, in)→ (C,ϕ):

F (µF) µF

F (C) C

F

(

Lϕ M
)

in

Lϕ M

ϕ

Dually defined, given the category F -Coalg(C) with a terminal coalge-

bra out : νF → F (νF), the unique arrow from any other F -coalgebra to

the terminal coalgebra is called an anamorphism; for any F -coalgebra

ϑ : C → F (C), the following commutes with the unique anamorphism

Mϑ L: (C, ϑ)→ (νF, out):

C F (C)

νF F (νF)

Mϑ L

ϑ

F

(

Mϑ L
)

out

Remark B.23

Given a polynomial functor F : Sets→ Sets, the category F -Alg(Sets)

can be defined with an initial F -algebra in : F (µF) → µF . By Lam-

bek’s Lemma (Lemma B.4), F (µF) ∼= µF . In order words, µF repre-

sents as a fix-point for F . Also, due to the fact that the homomorphism

in is isomorphic, every catamorphism Lϕ M : (µF, in) → (C,ϕ) may be

expressed uniquely as Lϕ M = ϕ ◦ F
(

Lϕ M
)

◦ in−1, where in−1 is the

inverse of in.

As it turns out, a wide class of inductive data types (e.g., recursive

data types and algebraic data types) of the intuitionistic type teory can

227

be represented as polynomial functor F on Sets. This fact, together

with the universality of catamorphisms in F -Alg(Sets), means that all

forms of recursive set-theoretic function can be expressed uniquely as a

catamorphism.

Note that, dually, the same argument can be made on coinductive data

types for F -Coalg(Sets). Similarly, every anamorphism Mϑ L: (C, ϑ)→

(νF, out) may be expressed uniquely as Mϑ L= out−1◦F
(

Mϑ L
)

◦ϑ, where

out−1 is the inverse of out.

In functional programming languages, due to the common usage of list

structures (or arrays), and the universality and expressiveness of cata-

morphism, there is usually a fold (sometimes called reduce) primitive

that is an implementation of catamorphism on lists. In addition, as an

implementation of functors on lists, the functional programming lan-

guages also have a map primitive. For example, in Haskell, there are

two fold primitives and a map primitive:

map :: (a→ b)→ [a]→ [b]

foldl :: (b→ a→ b)→ b→ [a]→ b

foldr :: (a→ b→ b)→ b→ [a]→ b

With the notion of universality and expressiveness of catamorphism in

mind, one can say any function on a list may be uniquely (up to isomor-

phism) represented with a map followed by a fold. This is an immediate

result from the definition of homomorphism between F -algebras; the ap-

plication of a functor on a list is represented by the map primitive while

the recursive nature of the fold primitive is implicit in the axioms of

228

Chapter B Category Theory

homomorphism. If the data structure is a generic inductive data type,

similar constructs may be implemented in Haskell to express in terms

of catamorphisms.

229

	Contents
	List of Figures
	List of Symbols
	1 Introduction
	1.1 Recent Developments
	1.2 Desirable System Qualities
	1.3 Structured Peer-to-Peer Architectures
	1.4 Contributions
	1.5 Organization

	2 Related Work
	2.1 Structured Peer-to-Peer Overlays
	2.2 MapReduce Frameworks
	2.3 Summary

	3 Scalability: Katana
	3.1 Motivation
	3.2 Programming Model
	3.3 Model Realization
	3.4 System Architecture
	3.5 System Internals
	3.6 Experimental Study
	3.7 Summary

	4 Robustness: Hardened Katana
	4.1 Motivation
	4.2 Model of Fault-Tolerance
	4.3 Robust Katana Operations
	4.4 Experimental Study
	4.5 Summary

	5 Elasticity: EMRE
	5.1 Motivation
	5.2 Differences in Execution Environment
	5.3 Observations
	5.4 System Design
	5.5 Elastic Job Execution
	5.6 Experimental Study
	5.7 Summary

	6 Conclusion
	Bibliography
	A Group Theory
	B Category Theory

