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SUMMARY 

Engineering systems are constantly facing various sources of uncertainty due to 

factors such as dynamic market place, evolving technology and changing 

operational environment. If uncertainties are not managed properly, they may 

cause large capital lost. Therefore, how to handle various uncertainties has 

become a pressing need for advancing the fields of system design. This is 

particularly motivated by recent rapid emergence of complex engineering systems 

which often feature intensive investment and long life. One important way to 

manage uncertainties is to incorporate flexibility/real options into the system 

design. Flexibility is a lifecycle system property which allows system to continue 

delivering value by adapting to unfolding uncertainties. Substantial efforts from a 

wide range of disciplines have been devoted to developing various flexibility 

designs, yet the issue of how to design flexibility in complex engineering systems 

under multiple uncertainties remains a challenging problem. It is in the context of 

this problem that this thesis designs a systematic framework for flexibility design.  

This thesis proposes a two-stage decision framework to discover, value, and select 

real options “in” complex engineering systems under multiple sources of 

uncertainty.  A six-step screening process is proposed as the first stage to screen a 

system for locating the promising system elements for real options in the stage of 

real option identification. Firstly, a matrix-based simulation approach is proposed 

and utilized to analyze the change propagation behaviors and impacts of 

subsystems due to multiple sources of uncertainty. Secondly, two indicators, 

which measure the change propagation impact of a subsystem received and 

supply to others, are proposed. Based on the two proposed indicators and the 

identified cycle-causing subsystems, comprehensive recommendations are 

proposed to identify flexible subsystems and insensitive (robust) subsystems.  



 vi 

A practically implementable and theoretically consistent valuation approach is 

proposed as the second stage to assess the value of the embedded options with the 

objective of selecting the best combination of real options and determining the 

optimal timing to exercise the real options. The proposed valuation approach 

integrates Monte Carlo simulation and decision tree techniques. Numerical 

simulations have been conducted to demonstrate the effectiveness of the proposed 

approach. 

The proposed two-stage decision framework has been demonstrated using an 

Unmanned Arial Vehicle (UAV) platform developed for multiple purposes. The 

results have confirmed the effectiveness of the proposed decision framework. 
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1  Introduction 

1.1  Background 

Currently, there has been growing research interest in designing and managing 

complex engineering systems, such as transportation networks, airport 

infrastructure, electrical grids, manufacturing supply chains, and health care 

delivery system. As understood by MIT’s Engineering Systems Division (ESD), 

the term “engineering systems” mainly refers to (a) large-scale and socio-

technical systems, which are composed of complicated interactions and designed 

by humans, with the purpose of fulfilling functional requirements of stakeholders 

and (b) the study of multidisciplinary approaches to address the engineering 

issues across social, political, environmental, and technical areas (ESD 2011). 

This research mainly involves the study of approaches to design and manage 

engineering systems and thus falls into the second meaning.  

The “design to specifications”, as a conventional paradigm, has been wildly 

accepted in many system engineering methods. In this paradigm, future 

uncertainty is rigidly projected into a small number of representative scenarios 

where requirements and operating conditions are pre-specified based on some 

probabilistic analysis (de Neufville, de Weck et al. 2004);optimization techniques 

are applied to maximize the expected value or minimize the life cycle cost (LCC) 

of a system; unexpected uncertainties are usually mitigated by employing risk 

management method, which focuses on eliminating possible negative 

consequences and lays emphasis on delivering reliable systems that “do not fail”.  

The “design to specifications” paradigm restricts the engineering practice to only 

technical domain, while leaving the specification of value or performance of a 

system to its prospective owners or users (Hassan and de Neufville 2006). 

Moreover, it simplifies the system requirements to some fixed specifications.  
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Generally, the “design to specifications” paradigm remains suitable for systems 

which are designed and operated under relative stable or unchanging 

environments. However, it is insufficient in dealing with a large number of 

modern engineering systems with large scale and complexity. Over the last two 

decades, many engineering systems have become more complex, expensive and 

have longer life than ever before. The tremendous growth in scale and complexity 

of engineering systems has led to significant increase in the number of uncertain 

factors. These uncertain factors, which can be caused by changes in customer 

requirements, variety in economic conditions, viability of innovated technology, 

etc., greatly affect the lifetime value of the systems. Moreover, these uncertainties 

are further complicated due to the fact that most large-scale engineering systems 

are anticipated to have heavy capital investments and a long lifecycle. A 

representative example is the XM’s spacecraft system which services in the 

United States and Canada, operated by Sirius XM Radio. It has a long expected 

lifetime of 17 years and requires an investment of over $600 million. Due to the 

wide variety of uncertainties, along with intensive capital investments and long 

lifetimes, the system development, operation and management have become more 

challenging. Moreover, the “design-to-specification” paradigm has become 

fundamentally flawed and inadequate when dealing with such expensive and 

complex systems with various uncertainties. The main reason is that it is beyond 

human’s ability to specify the future requirements for complex technical systems 

explicitly when multiple uncertain factors vary extensively over years. Another 

important reason is that the “design to specification” paradigm narrowly focuses 

on preventing “technological failure” which will lead it to disregard uncertainties 

that create unexpected opportunities.   

To rise to the challenge of the modern engineering systems featuring wide variety 

of uncertainty, intensive investment and long lifetime, the importance of effective 

and systematic uncertainties management has been attracted and it has attracted 

considerable research interests. 
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1.2  Motivation 

Many brilliant and innovative researchers and practitioners have recognized that 

flexibility is a critical factor for increasing the long-term value or effeteness of 

complex technical systems over a wide range of uncertain scenarios. By adopting 

flexibility in the stage of conceptual design, designers can mitigate adverse risks 

and exploit attractive opportunities. Unfortunately, it is a challenging task to 

integrate the technical and operational flexibility to the system architecture. 

Currently system designers largely rely on their intuition and ad hoc methods. By 

this way, only simple flexible opportunities can be identified. Moreover, in 

practices, considering flexibility in a complex system design is not straight 

forward due to the fact that it requires explicit recognition of uncertainties, 

knowledge of the system in both technical and non-technical domains, as well as 

insight into the dynamic behavior of that system. This work is motivated by the 

need to develop a systematic way to facilitate the exploration, analysis and 

selection of most promising areas in physical aspect of the system to embed 

flexibility such that the flexible system is able to adapt to multiple sources of 

uncertainty and maintain a high value or performance over it long life time.    

 

1.3  Flexibility in Engineering Systems  

Flexibility has long been a key attribute in a variety of different fields, such as 

manufacturing (Sethi and Sethi 1990), infrastructure planning (Zhao and Tseng 

2003), software architecture (Lassing, Rijsenbrij et al. 1999), product and 

organization design (Sanchez and Mahoney 2002), and information system (Byrd 

and Turner 2000). It refers to the ability of a system to change and adapt to 

environmental uncertainty. Saleh et al. (Saleh, Mark et al. 2009) provided an 
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comprehensive review about the concept of flexibility in multiple disciplines and 

proposed a research agenda for designing flexible systems. In the field of 

engineering systems, flexibility is defined as the ability to cope with uncertainties, 

mitigate unfavorable risks and take advantage of upside opportunities.   

Multiple sources of flexibility exist in engineering systems during their design 

and management stages. They are usually referred to as real options in literature. 

A real option is defined as a right, but not as an obligation, to take certain actions 

(e.g. deferring, expanding, contracting, switching and abandoning) in the future. 

Real options analysis (ROA) is one way to value flexibility by framing 

managerial flexibility or technical flexibility in terms of financial options. By 

valuing flexibility using ROA framework, the concept of flexibility is transformed 

into a quantifiable attribute of a system. According to the ways of exploiting 

flexibility in the engineering systems, there are two types of real options: real 

options “on” systems and real options “in” systems (Wang and De Neufville 

2005). Real options “on” systems are related to managerial flexibility and provide 

decision makers the ability to make strategic decisions based on both current and 

projected environmental conditions. Different types of real options “on” systems 

are well identified and valuated in the literature. Research efforts in this field 

mainly focus on evaluating the flexibilities in project investments as well as on 

making strategic and capital budgeting decisions. The key feature of real options 

“on” systems is that engineering design and technology are treated as a black box.  

Real options “in” systems, on the other hand, is related to technical flexibility, and 

created by changing or modifying technical design of a system in order to adapt to 

changing technologies and operational conditions. Identifying real options “in” 

systems requires a good understanding of the system components and their 

interactions inside as well as outside the system. Real options “in” systems are 

able to enhance system performance by providing contingent decisions which 

limit a system’s exposure to downside risks and capitalize the system under 

favorable conditions. For example, in a case study of a satellite communications 
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system (De Weck, De Neufville et al. 2004), candidate architecture designs for 

satellite system are developed in different stages to meet the demand under 

various scenarios. When the demand increases, additional satellites are launched. 

If the demand drops, further investment is suspended or even canceled. 

Furthermore, the higher the uncertainty is, the more value the flexible system 

provides.  However, the value of flexibility is associated to a cost. Therefore, 

proper evaluation techniques should be applied to assess how much flexibility to 

embed into the system and what strategies to take in order to maximize the overall 

value.  

While traditional design focus on an optimal point design, the methods for 

flexibility “in” systems attempt to explore various kinds of design alternatives in 

the design space at the conceptual design phase, and delay critical design 

decisions until exogenous uncertainties are resolved or new information become 

available (Silver and de Weck 2007). Flexibility or real options “in” systems is  

the study of how to identify the sources of flexibility and how to develop an 

appraisal mechanism to assess and select them (Cardin and De Neufville 2008). It 

allows for a system change, and may not contribute to system value if left 

unexercised. Identifying real options within the technical systems requires a good 

understanding of the system and modular architecture. They may exist in the 

system or be incorporated on purpose by overdesigning some components of the 

system to enable future system modifications and evolutions Building a parking 

garage (Richard de Neufville, Scholtes et al. 2006) is a representative example. 

An initial four levels of parking garage with reinforced footings and columns is 

built to accommodate the current demand, and additional floors can be added later 

if future demand grows. Options embedded in the systems will increase initial 

construction costs. Higher initial cost will need to be invested to acquire more 

options for flexibility.    
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1.4  Staged Strategies for Flexibility 

Based on historical study of engineering system design, staged or flexible 

platform strategies are common ways to incorporate flexibility in a system. 

During the lifetime cycle of the system, staged deployment strategies are made 

progressively to optimize total system value, starting with a platform-like initial 

design which provides capability to meet current requirements. When uncertainty 

is resolved or new information become available, critical decisions are made to 

whether to transit the system from the current state to the next state by changing 

non-standard or modular elements. System states refer to different scenarios, 

applications, mission and operational modes for which the system can be used 

(Cardin, Nuttall et al. 2007). The ability to reconfigure modular components or 

sub-systems of a fielded system after initial deployment represents technical 

flexibility in the system. One of the key advantages of staged deployment 

strategies is that it avoids locking systems into all-at-once configurations, which 

are difficult to be adjusted to meet future needs. Examples of embedding 

flexibility in a system via staged deployment can be found in many research 

papers (De Weck, De Neufville et al. 2004; Wang and de Neufville 2005; Hassan 

and de Neufville 2006; Richard de Neufville, Scholtes et al. 2006).   

Options for flexibility enable staging of design decisions at the subsystem level or 

at the system (architectural) level. In former case, each design alternative can be 

viewed as “an instantiation of one system with modified subsystems”, and the 

switch costs are caused by changing among those subsystems (Silver and de 

Weck 2007). The optimal design variables for each alternative subsystem are 

chosen from Pareto-set in different scenarios where exogenous uncertainties are 

fixed. By contrast, configuration changes at the entire system architectural level 

are more radical. The possible transition paths between the initial architecture to 

higher capability ones have to be identified and understood in order to optimize 

overall system performance or value. This poses new challenging and complex 
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problems to the designers. The first problem is that the configuration of the 

architectural at every stage may not be Pareto-optimal. The non-dominated 

designs on the Pareto efficient front are the ideal candidates for staged 

deployment. However, the transitions between those designs are not necessarily 

feasible. This is because the numbers of design degrees of freedom for evolutions 

in subsequent stages of the system are reduced by initial configuration in the 

previously deployed stages. The second problem is that the switching cost to pay 

for the embedded options “in” systems and the associated switching risk are not 

able to be quantified easily. The reason is that the designers may be unclear or 

unable to accurately model the risks associated with changing the technical 

configurations, organizational setting, or introducing new technologies. These two 

problems can be addressed through explicitly assessing the value of flexible 

system under staged deployment using real option valuation (ROV). The 

valuation process can provide not only the decision on whether or not to 

incorporate the flexibility in system design but also the possible transition paths of 

the system status as well as transition timing for system management.  

However, ROV does not provide insights into which components and/or 

subsystem inside the initial system architecture should be modified or replaced to 

allow systems to adapt to multiple sources of uncertainties. It rather provide a way 

to quantify the financial value of real options, thus help to determine the optimal 

set of options and their optimal exercise timing under different scenarios of future 

uncertainty. This research focuses on embedding flexibility/real options in 

engineering system and staging design decisions at the system (architectural) 

level. The real options identification and valuation are integrated to provide a 

holistic study of real options “in” complex engineering system.  
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1.5  Research Question 

While the staged strategies for embedding technical flexibility in engineering 

systems are appealing, the identification of appropriate initial platform-like design 

and possible design alternatives, as well as valuation and selection of optimal 

deployment strategies for complex engineering systems are non-trivial. Several 

issues involved in the research of real options “in” engineering systems are 

discussed in more detail as below. 

1. Real options identification: It is challenging to determine where to embed 

flexibility and how to differentiate among these flexible opportunities in a 

complex system on the early conceptual stage. First of all, there is no well-

defined set of real options “in” complex system (Cardin and De Neufville 

2008). The reason is that every system is different and unique. Secondly, 

the issue of identifying where to embed flexibility “in” systems is difficult 

due to the fact that modern engineering systems have become much more 

capital intensive and highly interconnected. Complex engineering systems 

usually include a large number of system elements (e.g. subsystems, 

system components). It is a great challenge to make technical modification 

in system elements for flexibility due to the complex interactions among 

them. A technical change in one system element may trigger a series of 

changes in others and even result in system instability or a large capital 

cost. Thus, change propagation prediction is required to assess the value 

and risk of such change in a particular system element. However, 

predicting change propagation and its impact is further complicated by the 

complex interactions of system elements with multiple sources of 

uncertainty during system’s operational environment.  

2. Real options valuation: Despite the wide acceptance in academic sectors 

and the growing implementations in practice, the implementation of ROV 

approaches for assessing various industrial projects and complex 
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engineering systems is still limited due to the significant gaps between 

theory and practices. First of all, a number of practical ROV approaches, 

which have been adopted by real options practitioners, lack consistence 

with financial theory. Secondly, the theoretical ROV requires rigorous 

assumptions of “perfect markets”, which renders them inapplicable in 

reality. In addition, practical approaches trade accuracy for computational 

simplicity. Binomial lattice/tree with limit discrete steps has been widely 

employed in ROV practices. It is able to evaluate multiple flexible 

decisions by simply inserting decision node into its branches. But it is not 

able to handle multiple uncertainties. On the contrary, Monte Carlo 

simulation is able to handle multiple uncertainties and provide accurate 

statistical results, such as distributions for further risk analysis. But it has 

high computational complexity, which hinder its application in valuing 

various types of real options.  

 

1.6  Research Objectives 

The main objective of this research was to develop a systematic and 

comprehensive methodology for designing, valuating and managing flexibility 

“in” complex systems influenced by multiple sources of uncertainty.  The specific 

objectives of this research were to: 

1. Provide a simple, fast and accurate change prediction approach for 

depicting change propagation and its impact on system elements with  

multiple sources of uncertainty.  

2. Screen and recommend the promising system elements which can be 

changed easily or rapidly (flexibility), and the promising elements which 

are insensitive towards change (robustness), based on the change 

propagation analysis. 
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3. Provide practically applicable and theoretically consistent valuation 

approach for evaluating and selecting multiple real options “in” complex 

systems, hence provide the optimal timing to exercise these options in the 

management stage of flexibility.  

 

1.7  Research Approach 

This research has developed a comprehensive, two-stage integrated flexibility 

framework to exploring, valuing, selecting and implementing real options “in” 

complex engineering systems, as illustrated in Figure 1-1. 

 

Figure 1-1 Proposed real options framework 

In the design stage, a practical used and accurate matrix-based simulation 

approach was proposed to predict the direct and indirect change dependency 

among system elements under multiple environmental uncertainties.  A six-step 



11 

screening process using the developed simulation approach was proposed to 

search promising physical elements (e.g. system components and subsystems) 

where flexibility can be incorporated in by making technical modification in the 

initial design. The elements which cause the cyclic effects are identified and their 

impacts are re-estimated in the formulation of real options based on change 

propagation analysis. The candidate components for robustness and flexibility are 

screened and recommended according to two proposed indicators: environmental 

impact-received (EI-R) and internal impact-supply (II-S).  

In the valuation stage, a risk-adjusted cash flow simulation based approach was 

proposed.  The merit of this approach is that it is practically implementable. 

Moreover, it is consistent with the financial theory. From a practical perspective, 

the proposed approach can be implemented based on a cash flow model and only 

requires minimal subjective estimation with respect to input parameters.  From a 

theoretical perspective, the approach properly accounts for both systematic and 

project-specific risks by risk adjusting the cash flow based on CAPM model, and 

thus it is able to provide a correct valuation from a diversified invertors’ 

viewpoint. Moreover, by integrating Monte Carlo simulation and decision tree 

technique, the proposed approach is capable of incorporating multiple sources of 

uncertainty, evaluating the various types of real options and  providing statistic 

results (e.g. distributions, standard deviation) for further risk analysis. The 

valuation process not only provides value of the options for selection of the best 

ones but also provides the decisions on the optimal timing to exercise the real 

options.  

 

1.8 Thesis Outline  

This chapter presents the research background, objective and the overview of the 

proposed approach. The remainder of this thesis is organized as follows: 
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Chapter 2 firstly reviews the concept of value driving designs. Subsequently, the 

concept of flexibility is introduced. Thirdly, general frameworks for real options 

are reviewed. Fourthly, methodologies and techniques for real options 

identification and valuation are reviewed. Then the research gaps are identified. 

Chapter 3 presents a six-step screening approach for real options identification in 

complex engineering systems. 

Chapter 4 presents a risk adjusted Monte Carlo simulation integrated with 

decision tree approach for real options valuation in complex engineering systems. 

Chapter 5 formulates presents a case study of UAV manufacturing project. Both 

the real option identification approach proposed in Chapter 3 and real option 

valuation approach proposed in Chapter 4 are applied to demonstrate their 

effectiveness.  

Chapter 6 summarizes the work done in this thesis and discusses the future 

research directions.  
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2  Literature Review 

2.1  Introduction 

In the previous chapter, the need to embedding flexibility in systems under 

various uncertainties is highlighted. This chapter presents the review of the 

literature pertinent to this work to provide the intellectual foundation both in 

theory and practice. Since this work is multidisciplinary at its core, knowledge 

from diverse disciplines (e.g. system engineering, decision analysis, risk 

management, finance valuation, engineering design, etc.) are covered in this 

section. First, the concept of value driven design (VDD) as the theoretical 

construct for flexibility, and recapitulate some of the key ideas related to VDD, 

are introduced.  

 

2.2  Value Driven Design (VDD)  

In the last two decades, the design community has seen a shifting perspective 

from fulfilling functional requirements to making best decisions to provide the 

greatest value to stakeholders. In traditional system engineering process, system 

engineers focus on optimizing a point design to achieve system capabilities 

specified in a wide variety of requirements while minimizing life cycle cost 

(LCC). Uncertainty with respect to meeting user needs and want is managed by 

“best guess” extrapolations of current and future requirements, even though the 

forecasting of future is “always wrong”. To meet changing requirements and 

operating conditions, the requirement driven design methodology would lead to a 

more complex point solution with a significant incensement in cost, often 

resulting in cost overruns and unexpected schedule extension.  
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In contrast, VDD place an emphasis on maximizing the stakeholder value of a 

system. VDD is defined as “A proposed improved design process that uses 

requirements flexibility, formal optimization, and a mathematical value model to 

balance performance, cost, schedule, and other measures important to the 

stakeholders to produce the best outcome possible” by the American Institute of 

Aeronautics and Astronautics (AIAA), through a program committee of 

government, industry and academic representatives. In parallel, an identical 

design strategy, called value centric design (VCD) is developed by the US 

Defense Advanced Research Projects Agency (DAEPA). The terms VDD and 

VCD are interchangeable in this work. The essence of these two strategies is that 

good design decisions are made to provide the greatest stakeholder value rather 

than to merely satisfy requirements at lowest cost. VDD focuses on requirements 

flexibility and enable discovery of the best design configurations by maximizing 

system value in the entire solution space under uncertainties.   

One key focus of VDD is the lifecycle value. In this work, the term “value” is 

defined as relative worth, utility, importance or quality of a thing with respect to 

its power and validity for its purpose or effect (Ross 2006). Two questions are 

generally concerned in respect of studies in value: “value for whom” and “best 

value according to what”.       

 

2.3  Flexibility 

2.3.1 Definition 

Flexibility has been viewed as a critical concept in multiple disciplines, 

particularly in most design efforts in engineering and management (Saleh, 

Hastings et al. 2003). A variety of definition for flexibility concerning system or 

project design exists, and there is no uniformly accepted definition. However, 
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most of these flexibility definitions are quite similar. (Fricke and Schulz 2005) 

characterize flexibility as “a system’s ability to be changed easily [by external 

agents]… to cope with changing environments.” The ESD symposium committee 

(Committee 2007) of MIT describe flexibility as “the ability of a system to 

undergoing changes with relative ease in operation, during design, or during 

redesign.” (Nilchiani and Hastings 2007) describe flexibility as “the ability of a 

system to respond to potential internal or external changes affecting its value 

delivery, in a timely and cost-effective manner.” From these definitions, it can be 

seen that flexibility is generally understood as the ability of a system to handle 

uncertainty by improving system performance with relative less effort (i.e. penalty 

in cost, time, or schedule).  

2.3.2 Flexibility and Other “ilities” 

There are three other “ilities” (usually but not always ending in “ility”) which are 

close linked to the concept of changeability: agility, adaptability, and robustness. 

These four “ilities” are subsets of changeability(Fricke and Schulz 2005).  

Changeability is defined as the ability of a system to change its form or function 

in response to environmental uncertainties with acceptable expenditure.  Agility is 

a system’s ability to be changed rapidly. Adaptability is a system’s ability to adapt 

itself (without external actuation) towards changing environments. Flexibility is a 

system’s ability to be changed easily by external actuation. Robustness is the 

ability of a system to be insensitive and continue delivering value towards 

changing environments. Flexibility, adaptability and agility all refer to the ability 

of a system to be changed. They can be distinguished by change agents and 

degree of changeability needed.  

Flexibility and adaptability are differentiated by asking who or what (change 

agent) instigate the change in the system. If a change in the system is instigated by 

a change agent who is internal to the system (i.e. the system recognized a need 

and changes itself autonomously without any external actuation), it is 
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characterized as an adaptability-type change.  If a change in the system is 

instigated by an external actuation implemented by an external change agent, it is 

characterized as a flexibility-type change. Therefore, the distinction between these 

two “ilities” relies on the location of the change agent with respect to the system 

boundary: insider (adaptable) or outside (flexible).  

It is much easy to distinguish flexibility and agility. Both flexibility-type change 

and agility-type are required implementation of changes from external necessary. 

These two “ilities” are differentiated by asking how much changeability has to be 

incorporated; e.g. is flexibility sufficient for a system to react towards changing 

environment, or a system is required to react rapidly?  

Despite this difference, flexibility, adaptability and agility are quantified and 

valued in the same way. For the purposes of this research the term flexibility is 

used as a broader concept of changeability which also includes adaptability and 

agility.    

 

2.3.3 Flexibility in Different Disciplines 

Saleh Mark et al. (2009) provide an elaborate literature review of flexibility in 

multiple disciplines, such as decision theory, real options, manufacturing systems 

and engineering design. Four distinct fields are selected for detailed literature 

review: decision theory, management, manufacturing systems, and engineering 

design.  

 

2.3.3.1  Flexibility in Engineering Design 

The concept of flexibility in engineering design is the main focus of this thesis. 

Multiple sources of flexibility are intentionally embedded in the system, either in 
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the design phase or as strategic decisions and modifications to the system during 

the operation phase. Two distinct problems has been considered in the literature 

are 1) flexibility in the design process, and 2) flexibility as an attribute of the 

system in the face of unexpected changes. In the first case, (Saleh, Mark et al. 

2009) make a distinction between flexibility in the design process and flexibility 

of the design itself.  

 

2.3.3.2  Flexibility in the Design Process 

Various researchers have developed a large numbers of approaches to capture 

uncertainty in the early stages of design (i.e. before the system is fielded) and 

offers flexibility in specifying the design requirements. Designer’s preferences 

with degrees of satisfaction in specifying design requirements have been 

incorporated in typical approaches. (Thurston 1991) presents a utility theory-

based preference function to reflect the designer’s preferences for sets of multiple 

attributes thus provide evaluation of design alternatives.  (Wallace, Jakiela et al. 

1996) propose a specification-based design evaluation method to emulate how 

specifications are used by product designers in concurrent design environment. 

(Chen and Yuan 1999) develop a probabilistic-based design approach to provide a 

range of solutions that satisfy a ranged set of design requirements. A design 

metric named Design Preference Index (DPI) is introduced to evaluate the 

goodness of a flexible design when both the design performance and the 

preference level of performance vary within the ranges.  

Flexibility in the design process has been understood as an ability to balance 

between “the customer’s ability and willingness to lower product expectations” 

and “the product developer’s willingness and ability to invest more resources to 

reduce technical risks and other gaps before grogram start.”(GAO-01-288 2001). 

While a slightly different understanding of flexibility in the design process is 

proposed by (Chen and Lewis 1999). Flexibility in design is achieved by finding 
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solutions to satisfy a range of requirements between different teams of designers 

working on separate subsystems of a complex engineering design. 

Flexibility of a Design 

There is increasing recognition that flexibility is a key property of a design which 

not only allows system to mitigates downside risks but also capture upside 

opportunities.  An increasing number of researchers have attempted to provide 

clearly articulated and unambiguous definitions of flexibility in design, assess its 

value, and propose useful indications on how to embed flexibility in the design of 

products or systems and how to trade the value of flexibility against the penalties 

(cost, performance, risk, etc.) associated with it. The penalties of embedding 

flexibility or named switching costs can be monetary cost (real dollars), or 

quantifiable costs associated with personnel considerations, political implications, 

or the time to switch (Silver and de Weck 2007). 

(Saleh, Hastings et al. 2003) define flexibility of a design as “the property of a 

system that allows it to respond to changes in its initial objectives and 

requirements – both in terms of capabilities and attributes – occurring after the 

system has been fielded, i.e., is in operation, in a timely and cost-effective way.” 

This definition distinguishes between requirements as capability, the ability for 

the system to “change its mode of operation”, and attribute, the ability for the 

system to modify its performance. Several examples in long-term systems 

illustrate that flexibility in design is valuable due to its ability to accommodate 

changing environment and customer requirements. The authors quantify the value 

of flexibility in terms of design lifetime extension. 

A variety of methods have been proposed to measure flexibility in different field. 

For example, in space systems, (Shaw, Miller et al. 1999) quantify flexibility in 

space systems by using adaptability metrics which measure “how flexibility a 

system is to changes in the requirements, component technologies, operational 

procedures or even the design mission.”   Flexibility in space systems is denoted 
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as type 2 adaptability which is defined “to be the proportional change in the CPF 

(Cost-per-Function) in response to a particular mission modification”,  

, 

where X is “just an identifier to specify the mission modification”. The CPF is “a 

measure of the average cost incurred to provide a satisfactory level of service to a 

single Origin-Destination pair within a defined market.” (Shaw, Miller et al. 

2000) further define flexibility as the ease of movement from one design point to 

another on the tradespace design surface. Each point in this tradespace shows the 

architecture design variables vs. the associated CPF metric which describes the 

‘ease’ of movement in the tradespace.  

(Nilchiani, Joppin et al. 2005) explored the flexibility for an orbital transportation 

network (OTN). The authors focus on provider-side flexibility for on-orbit 

servicing within the context of orbital transportation networks. The total provider-

side flexibility is calculated as the weighted sum of the three types of flexibility: 

mix flexibility, volume flexibility, and emergency service flexibility. Mix 

flexibility is described as the strategic ability to offer a variety of services with the 

given system architecture, quantified as  

, 

where mf  is the mix flexibility, E is the total system cost over, S is the total 

revenue and m denotes multiple types of services.  

Distinction between Process and Design Flexibility 

Both process flexibility and design flexibility, as defined earlier, refer to an ability 

to handle change. The major distinction is that process flexibility handles 
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requirement changes occurring before fielding a system, while design flexibility 

handles requirement changes after fielding.  

In current real options practices, flexibility can be embedded both in the initial 

design phase and operation phase through a sequence of strategic decisions to 

improve the system under the uncertain system environment. 

 

Figure 2-1 Time frame attached to a system 's life cycle, and periods associated with process 

flexibility versus flexibility of a design (Saleh, Mark et al. 2009) 

 

2.3.3.3  Flexibility in decision theory 

From a decision-theoretic perspective, flexibility can be viewed as an attribute of 

a decision problem and measured as the number of remaining alternatives to 

select after previous commitments are made.  (Gupta and Rosenhead 1968) were 

the first to measure the flexibility of a decision in terms of “the number of end 

states which remain as open options” after a first decision is made. (Mandelbaum 

and Buzacott 1990) develop a framework for the treatment of flexibility in a two-

period decision problem. 
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2.3.3.4  Flexibility in Manufacturing Systems 

The notion of flexibility has been wildly studied and applied in manufacturing 

systems, as discussed in (Browne, Dubois et al. 1984; Sethi and Sethi 1990; 

Gerwin 1993; De Toni and Tonchia 1998; Koste and Malhotra 1999; Bengtsson 

2001). The literature is mainly focus on two aspects: 1) the definition and 

classification of different types of flexibility; 2) the development of flexibility 

measure and optimization algorithms for flexible manufacturing systems (FMS). 

In general, manufacturing flexibility is accepted as an ability to reconfigure 

manufacturing resources in order to effectively respond to changes in the system’s 

environments with little penalty in time, effort, quality (Upton 1994). Thus based 

on the types of change the production system can accommodate, different types of 

flexibility are defined, such as volume flexibility, routing flexibility, expansion 

flexibility and product mix flexibility. Other classifications for different types of 

flexibility in manufacturing are also discussed in the literature. For 

example,(Narasimhan and Das 1999) distinguish the level of: 1) operational 

flexibility which refers to flexibility in machine and shop level; 2)tactical 

flexibility which refers to flexibility in plant level; 3)and strategic flexibility 

which refers to firm or business level. (Koste and Malhotra 1999) provide five 

hierarchical levels of different types of flexibility, from machine and material 

handing flexibility, to shop floor flexibility, plant level flexibility, and strategic 

business unit flexibility.   

 

2.4  Flexibility and Real Options 

Flexibility is often referred to as real options for several reasons. Firstly, “Real 

option thinking” views the future investment opportunities as options in non-

financial or real assets where much of the option value arises from flexible 

decisions and learning over time. Secondly, this framing enables correctly 
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measurement of the monetary value of a flexible system under uncertainty. 

Flexibility increases the value of engineering systems by limiting downside loss 

and taking advantage of upside opportunities.  However, traditional valuation 

techniques such as DCF are unable to incorporate flexible decisions in the 

valuation procedures when new information obtained and uncertainty resolved 

over time, thus underestimating the value of a project or a system. In contrast, 

ROA applies dynamic modeling techniques (e.g. binomial lattices/trees, Monte 

Carlo simulation) to specify the asymmetrical distribution of possible outcomes 

with options. 

 

2.4.1 Simple and Complex Real Options 

Some real options occur naturally (e.g. by deferring, contracting, temporally 

shutting down or abandoning), while other can be created with extra cost: 

(1)  by staging large capital investments or large project into a sequences of 

stage; 

(2)  by introducing “modularity” in manufacturing and design; 

(3)  by investing in a platform-like initial infrastructure or design for 

potential future growth 

(4)  by developing new products or enhance system performance through 

R&D investment 

(5)  by investing in information acquisition 

2.4.2 Real Options “on” or “in” Projects/Systems 

Real options have been classified into two categories: real options “on” 

projects/systems and “in” projects/systems (Wang and de Neufville). For real 

options “on” projects, options are created by changing the scale and timing of 
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capital investments, while treating the engineering design as a black box. Real 

options “in” projects, on the other way, are planned and embedded in engineering 

systems by altering the technical designs of large complex engineering projects 

and systems. To discover and exploit this type of options “in” systems, in-depth 

knowledge in technical and non-technical domain is required.  

 

2.5  General Frameworks for Embedding 

Flexibility in Engineering Systems by 

Utilizing Real Options 

Real options literature generally presents a three step-wise framework based on a 

well-known decision-making process developed by (Simon 1977) for building 

flexibility in engineering systems, as shown in Figure 2-2. The first step is 

framing, where decision makers define the target system and its objectives, 

identify and model uncertainties that impact the system performance or value. The 

second step is design, where decision makers create the alternative designs to 

provide flexibility in operation and physic structure. The final step is choice, 

where decision makers assess the value of alternative designs and select the 

optimal subset of designs. A variety of research work in real options literature 

generally follows this framework, such as (Zhao and Tseng 2003; Wang and de 

Neufville 2005; Zhang and Babovic 2011).    

 

Figure 2-2 General framework of real options analysis 
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However, this simplified framework might have a limitation that readers might 

infer the design of flexibility as a front-end activity in physical domain rather than 

a lifecycle socio-technical interaction in physical and non-physical (e.g. human) 

aspects of the system. Since uncertainty inevitably occurs along the life time of 

system, more comprehensive frameworks are proposed to emphasize the lifecycle 

point of view, also to adapt to increasingly complexity of uncertainty and systems. 

Sussman defines engineering system as a “Complex, Large-Scale, Integrated, 

Open System (CLIOS)” and propose a three-phase framework for modeling the 

design and management process of complex socio-technical systems (Sussman 

2000). Figure 2-3 describes the structure of CLIOS. The three main phases are: 

representation; design, evaluation and selection; and implementation. The aims of 

the presentation phase to fully understand the structure and behavior of the 

system, thus helping articulate the performance measures and system goals in the 

next phase. The second phase is the design and evaluation phase that generates the 

optimal design strategies for the best performance of the system under uncertainty. 

The last phase is the implementation phase, where the selected strategies are 

implemented in both physical and social system dimensions.  By integrating and 

adding to the CLIOS modeling methodology, McConnell constructs a life-cycle 

flexibility framework for explicitly addressing flexibility/real options for 

uncertainty across the life time of complex systems  (McConnell 2007). Figure 

2-4 displays an overview of the life-cycle attribute of an option. A management 

loop is depicted for constantly managing monitoring and option exercise activities.  
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Figure 2-3 CLOS framework (Sussman 2000) 
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Figure 2-4 Life-cycle of option (McConnell 2007) 

 

2.6  Approaches for Real Options 

Identification 

2.6.1 Introduction 

One of the key challenges for applying real options in complex engineering 

systems is to identify potential locations within the system to create options for 

flexibility (Shah, Viscito et al. 2008). The identification of real options “in” 

system designs requires insight into the physical and non-physical aspect of 

system, reorganization of relevant sources of uncertainties, and the ability to 

evaluate the dynamic behavior of the system.  As the number of design variables 

grows and the interactions of system elements become more and more complex, 

the decision space for flexible designs increases greatly in size. It is even more 

challenging when facing multiple change scenarios through the lifetime of the 

system. This section classifies and discusses existing approaches for identifying 

flexible design opportunities “in” various complex systems. Currently, there are 

two broad classifications of analytical approaches for real options identification 

“in” lager engineering projects: direct and indirect interactions (screening) 

approaches. The direct interaction approaches utilizes various techniques 

developed in cognitive science, collaboration engineering and engineering design 

research, such as interviews, questionnaire, discussions and interactions, to help 
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designers directly generate flexibility idea when considering uncertainties. The 

second categories of real option identification approaches are screening (indirect) 

approaches which require knowledge in both physical and non-physical domains 

of the system, insight into main sources of uncertainty and dynamic behavior of 

the system (Shah, Viscito et al. 2008). Depending on the fidelity and type of the 

model, a system element can be a subsystem, design variable, and a physical 

component, etc. Screening approaches can be further classified into screening 

approaches and matrix-based approaches.  

 

2.6.2 Direct Interaction Approaches  

One intuitive way to identify the real options is through interviews of subjective 

matter experts (SMEs) and system stakeholders (Cardin and De Neufville 2008). 

The direct discussion and interaction with designers guide the designers to think 

about what types of changes to the system are likely to occur and potential areas 

to incorporate flexibility in response of such changes by their intuitions and 

experiences, without requiring explicit identifications and analysis of system 

components first. These approaches are usually referred to as direct interaction 

approaches. Without investigating details in system representation, these 

approaches rely on designers’ insights and experience in their own specific 

domains and provide high-level, low-fidelity perspective on real options “in” 

engineering projects and complex systems. They can help identify real options 

which are both agreed by the system owner and operators and are particularly 

effective for a limited number of change scenarios and simple systems where 

there is no need to consider change spreading between system components. 

However, currently the direct interaction approaches are still not well established 

and require to limit the biases carefully (Cardin, Kolfschoten et al. 2012).  
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2.6.3 Screening Approaches 

Effective screening models are required to reduce the number of alternatives to be 

examined in detail for further intensive capital investment.  They are used as an 

effective tool for exploring and identifying potential flexible design opportunities 

and have been exploited in system design and analysis for a long time. 

Preliminary screening models are proposed by (Jacoby and Loucks 1972) in water 

resource planning problems. Optimization and simulation techniques were applied 

for selecting alternative design configurations of reservoir systems. More 

applications of screening models in this area can be found in (Chaturvedi and 

Srivastava 1981), (Stedinger, Sule et al. 1983), (Srivastava and Patel 1992; 

Millspaugh 2010).  

In the screening process, analysis of complex engineering systems often starts 

with simplification of physical reality according to knowledge about a system and 

research purposes. Based on simplified representation methods adopted to 

describe and analyze engineering systems, screening models can be broadly 

classified into two major categories: mathematical equation-based and matrix-

based screening models. The following reviews previous work on screening 

models and approaches for flexible opportunities identification in the engineering 

design process.      

 

2.6.4 Mathematical Equation-based Screening 

Approaches 

The first category of screening models is mathematical equations based. 

Mathematical equations are used to describe objective functions and constraints of 

design problems, and then screening models are developed to identify essential 

design parameters of physical systems and explore flexible strategies under 
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uncertainties.  Global optimization techniques are often used to screen out such 

design candidates. For example, Zhao (2003) proposed a multistage stochastic 

optimization model to select design alternatives for high way development 

according to different initial conditions. Wang (2005) developed a deterministic 

mix-integer optimization programming model to identify optimal initial 

configuration of design parameters for the river basin development. In his 

screening model, the problem is simplified by using low-fidelity cost functions, 

reducing time periods and limiting numbers of possible scenarios.  Zhang (2008) 

presented an evolutionary real options framework for searching the optimal initial 

design and a portfolio of real options with their exercising conditions along 

different paths in a trinomial scenario tree.  

Although the above screening models are able to provide optimal and accurate 

results after some simplification, the computational complexity will pose a 

significant challenge for traditional optimization approaches with the expansion 

of decision spaces. To address this issue, some other mathematic equation based 

models have been developed to screen out a small group of design candidates 

which are most valuable for detailed design phase in the large decision spaces 

with less computational effort. Lin (2008) developed an analytical screening 

model with several design rules which integrate physical systems, project 

development and economics to explore flexible strategies in offshore oilfield 

production systems. Yang (2009) presented an adaptive searching model which 

combines Design of Experiments (DOE) methods (i.e. adaptive one-factor-at-a-

time and response surface methodology) with traditional optimization method (i.e. 

simulation-based linear programming) to explore planning decisions in 

automotive manufacturing systems under demand uncertainty. These models are 

able to rapidly search huge decision spaces and provide approximate results 

which are adequate in the early design phase.  

However, mathematical equations-based screening models are generally suitable 

for problems with limited numbers of design parameters and limited interactions 
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between them. These models do not take the structure and connectivity of system 

components into account. In reality, many complex large-scale engineering 

systems are composed of a large number of components. It is of great importance 

to consider the interdependence between these components in complex and large-

scale engineering system design problems.  

 

2.6.5 Matrix-based Screening Approaches 

2.6.5.1 System Representation by Matrix-based Models 

As the second category of screening models, matrix-based approaches are applied 

for system modeling and analysis. The commonly used matrix-based models in 

system engineering and project management are design (also called dependency) 

structure matrix (DSM), domain mapping matrix (DMM), and multiple-domain 

matrix (MDM). The last two matrices are the enhancements of DSMs. These 

models are widely used in systems engineering and project managements to 

provide a concise visualization for the structures of  complex systems and product 

development processes (Browning 2001).  

Design Structure Matrix 

First invented by Steward (Steward 1981), DSM is a simple, compact and visual 

representation and analysis tool and is widely applied in both research and 

industrial practice, even though some of the DSM methods (e.g. partitioning and 

tearing) has been in use since the 1960s.  
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Figure 2-5 the DSM representation and the associated directed graph 

A DSM is a square matrix with identical row and column labels. Each row (and 

the respective column) label corresponds to a system element (e.g. a sub-system, 

process, task or system component). The DSM is a matrix representation of a 

directed graph. Figure 2-5 shows three configurations that characterize a system 

by DSM representation and directed graph representation.  The value or mark in 

the off-diagonal entries of the matrix body depicts the relationships between the 

column and the row elements. For instance, if there is a directed arc from node A  

to node B , then the entry value in column A  and row B  is marked with  “X” or  

“1”. 

According to the types of the system elements, a DSM can represent the 

relationships among components of an engineering system, teams for 

organizational design, activities of a design process and parameters for an activity 

or a process (Browning 2001).  

Typically, DSMs are intra-domain matrices which represent the system elements 

only within a single domain. For example, only components and their relations are 

modeled in a DSM. Analytical methods available for common DSMs, like 

partitioning and tearing, do not capture the system interactions with the 

environments.  
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Domain Mapping Matrix 

Extending from DSM methodology, a domain-mapping matrix (DMM) is an 

inter-domain matrix which links elements in two different domains. Developed by 

Danilovic and Browning, the DMM uses rectangular matrix to relate two DSMs 

in different domains: the rows represent elements in one domain, while the 

columns represent elements in another domain (Danilovic and Browning 2007). 

The authors mainly focus on product development projects and present studies on 

linkages between five important project systems/domains: “the goals domain of 

the product (or service, or result) system; the process system (and the work done 

to get the product system); the system organizing the people into departments, 

teams, groups, etc.; the system of tools, information technology solutions, and 

equipment they use to do the works; and the system of goals, objectives, 

requirements, and constraints pertaining to all systems.”  

Multiple-domain Matrix 

Multiple-domain matrices (MDM) or multiple design structure matrices are the 

combination of DSMs and DMMs. Figure 2-6 shows an example of MDM which 

consists of elements groups in different domains and a symmetric alignment of 

elements on both row and column heads. The DSMs align along the MDM 

diagonal, and the DMMs align in the upper and lower triangular.  
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Figure 2-6 An example MDM (Eichinger, Maurer et al. 2006) 

Eichinger et al. (2006) identify five domains (i.e. components, functions, 

parameters, resources and tasks) for constructing MDM for product developments, 

and propose an analysis process to determine the indirect relations between 

elements using data stored in the matrices.  

Engineering System Matrix (ESM) 

Similar to MDM, Bartolomei (2007) developed the engineering system matrix 

(ESM) to include multiple aspects, multiple relations and changes over time for 

engineering system representation. Figure 2-7 displays an ESM representation of 

an engineering system composed of technical, social and environmental aspects. 

The ESM methodology specifies an engineering system in six interrelated 

domains: environmental or system driver, social or stakeholders, functional 

including objectives and functions, physical or objects, and process or activities.  

System drivers represent non-human components that are beyond stakeholders’ 
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control, like social, political, economic and technical system influences. 

Stakeholders represent individuals or organizations that affect or are affect by the 

system. Objectives represent the objectives, goals and purposes of the system. 

Functions represent the functions or functional requirements of the system. 

Objects represent physical components of the system. Activities represent the 

processes, sub-processes, and tasks that are performed for the system objectives 

accomplishment. Parameters represent the system parameters for the internal 

stakeholders, objects, and activities. The ESM can be constructed by using 

extensive document review and interview approaches. Bartolomei (2007) 

provides detailed insights and elaborates a nine-step guide to create an ESM. 

 

Figure 2-7 The ESM representation of an engineering system composed of technical, social 

and environmental aspects (Bartolomei, Hastings et al. 2006) 

 

According to design purposes, requirements and available information during 

each stage of the design process, designers can construct and specify the ESM 
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with appropriate complexities and levels of abstraction. With the growing 

numbers of system elements and the increasing connectedness of them, the 

complexity of the ESM will also increase in size and density. However, by 

dividing a large, complex ESM into sub-matrices, with DSMs aligning along the 

diagonal and DMMs off-diagonal, the designers can focus on subset of domains 

according to their specific design problems, such as system driver domain and 

physical components domain. In addition, different levels of abstraction on 

system elements in different domains of the ESM are determined based on 

available information and the designers’ experiences. In the early design 

conceptual stage, the information regarding specific physical components may be 

unavailable, thus the designers can only construct higher level of abstraction, like 

sub-systems.  Since the focus of this screening approach is the physical area in the 

early conceptual stage, the required ESM is constructed with high-level 

abstractions (e.g. sub-systems). Yet the resulting analysis for flexibility 

opportunities identification can be applied in all levels abstraction of the ESM.  

Additional information is stored in the ESM to provide comprehensive system 

representation.  For instance, components and relations in the ESM can be 

described with attributes which define the characteristics for each particular 

components or relations. These attributes may include specific numeric values, 

mathematical equations, relationship types (e.g. material, information, spatial and 

energy relations).  

 

2.6.5.2  Change Propagation Analysis 

To identify important system elements (e.g. sub-systems, physical components) 

for flexibility, the system behaviours in response to external change should be 

analysed. How a particular system or system element responds to change 

dependent on its potential ability to absorb and generate, which is determined by 

its change margins and the functional reaction to change. By examining the 
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degree of change a system or system element can absorb and the degree of change 

it deliver, (Eckert, Clarkson et al. 2004) identify four types of change behaviours:  

1. Constants are “unaffected by change.” They do not generate change by 

themselves or absorb other changes.  

2. Absorbers can absorb more change than they themselves generate.  

3. Carriers “absorb a similar number of changes to those that they cause 

themselves” 

4. Multipliers “generate more changes then they absorb.” 

It should be note that the change behavior of an element depends on both the scale 

and nature of the change and also the state of the design. An element may be an 

absorber under small change, but which it is affected by a large change, it may 

become a carrier or even worse a multiplier. Therefore, not only the direction of 

change spread in the system but also the scale of change should also be taken into 

account in change propagation analysis.  

 

2.6.5.3  Change Prediction Method 

Predicting change propagation is not straightforward. Due to the connectivity of 

system elements, a change in one element is more likely to trigger changes in 

other elements, which in turn may propagate to more elements. Direct change 

occurs when change in one element cause change in another element without 

going through a third element (Clarkson, Simons et al. 2001). Indirect change 

occurs when change in one element trigger change in another element indirectly, 

by going through other element(s).  Indirect change further increases the 

complexity of the analysis.  
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Change prediction method (CPM) developed by (Clarkson, Simons et al. 2001) 

computes the risk of change propagation between system elements. This method 

follows three stages: system representation, change prediction, and change 

management. In the first stage, system elements and the connectivity between 

them are modeled by a change propagation network and represented by a binary 

DSM. The scale of change is measured as a probabilistic cost or risk, which is the 

product of the likelihood and impact of the change occurring. By replacing the 

entries of the binary DSM with values between 0 and 1, direct likelihood DSM 

and direct impact DSM are generated and combined to represent the direct risk of 

change relationships between system elements. In the second stage, the combined 

risk of a particular change in one element propagating to its direct and indirect 

elements is calculated by a numerical searching-based algorithm, termed Forward 

CPM (Hamraz, Caldwell et al. 2012). The numerical algorithm views the change 

propagation of from an initial an element IE to a specific affected element AE  as 

a logic tree. The tree is formed by searching all the possible paths that could be 

followed from  to AE . This searching manner is called a brute-force search or 

exhaustive search. Combined likelihood and risk value are calculated along the 

tree through a combination of And and Or evaluations, where And represents 

intersection operation in the joint of two vertical paths and Or represents union 

operation in the joint of a number of horizontal paths. Figure 2-8 depicts an 

example logic tree and the equation for computing the combined likelihood of 

change propagation from node a to nodeb .In the third stage, the combined risk 

matrix is used for change mitigation or exploration in complex engineering 

system and human activities management.    

IE
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Figure 2-8 And/Or summation for a propagation tree 

2.6.5.4  Identify Critical Elements for Flexibility 

Based on CPA, Suh et al. (2007) presented a flexible platform design framework 

to identify critical platform components for build-in options. The authors 

introduce a metric, Change Propagation Index (CPI) to measure the degree of 

change propagating through a system element by the difference between its 

change flows in and out. The change inflow and outflow of an element are 

quantified by the number of incoming and outgoing edges of that element as 

shown in Figure 2-9.The elements which multiply or carry changes in a system 

are identified as potential candidates for flexible design. However, the CPI is 

calculated by only counting the numbers of direct change inflow and outflow of a 

system element.  The scale of change is taken into account after the identification 

of critical elements for flexibility. An element may be affected by a number of 

changes, if all these changes are minute, it may remain unchanged. Moreover, the 

indirect change interactions are not considered in the CPI calculation.  

 

Figure 2-9 Change inflow and outflow of a system element 
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Instead of identifying potential area to incorporate flexibility directly, Kalligeros 

(2006) developed a methodology to identify a platform as collection of invariant 

components according to Design Rules (Baldwin & Clark 2000). The 

methodology is based on the extended sensitivity-DSM (Yassine and Falkenburg, 

1999) to model the changes of system components due to the external effects, and 

an algorithm is developed to identify the platform components as they are directly 

unaffected by any other components and all external functional requirements. 

Bartolomei (2007) proposes a nine-step process which incorporates and extends 

the Kalligeros and Suh’s work by using ESM to identify system “hotspots”. A 

system hotspot is a system component which is very to be desired to change and 

has a high switch cost associated with the change, or has a low switch cost 

associate with the change yet high perceived benefit to the system performance. 

Bartolomei demonstrates the proposed approach through experiment of the 

hotspot identification in Micro Air Vehicle platform. No formal sensitivity 

analysis and change propagation analysis was conducted.  

 

2.7  Approaches for Real Options Valuation 

Since real option theory is derived from financial option theory (Black and 

Scholes 1973; Myers 1977), this section first introduces financial option and 

option pricing methods, followed by real options. 

2.7.1 Option Pricing 

In finance, an option is a contract which gives the owner the right, but not the 

obligation to buy or sell an underling asset (e.g. stocks, stock indices, foreign 

currencies, commodities, futures contracts and debt instruments) at a 

predetermined strike price on or before a specified date. The cost to obtain an 

option is the option price. An underlying asset is the asset on which the price of a 
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derivative such as option depends, such as stocks, stock indices, foreign 

currencies, commodities, futures contracts and debt instruments. 

There are two basic types of options: calls and puts. A call (put) option provides 

the holder with the right to buy (sell) a specified quantity of an underlying asset at 

a fixed price (called a strike price or an exercise price) at or before the expiration 

date of the option. Financial options are also categorized by the time when they 

can be exercised. American options can be exercised at any time prior to its 

expiration, while European options can be exercised only at expiration. 

 

2.7.1.1  Modeling Uncertainty 

Mathematically, it is assumed that the value of an underlying asset follows the 

same stochastic process of stock price in financial option theory: a geometric 

Brownian motion (GBM) process (illustrated in Figure 2-10).  

 

Figure 2-10 Brownian motion (source: www.wikipedia.org) 

A stochastic process of a stock price tS  is said to follow a GBM if it satisfied the 

following stochastic differential equation (SDE):  

t t t tdS S dt S dW     (2.1) 

http://moneyterms.co.uk/derivatives/
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tdW t   (2.2) 

where tS  is the value at time t  , dt  is the time step,   is the drift,   is the 

volatility, tW  is a standard Weiner process or Brownian motion, and   is a 

normal distribution with a mean of 0 and standard deviation of 1. Both of and  

are constant. Using Ito’s lemma
1
: 

2

ln ( )
2

t td S dt dW


      (2.3) 

From this equation, the change in ln S  between 0 and t  is normally distributed, 

so that S  follows a lognormal distribution. The discrete-time expression for the 

lognormal distribution of S is: 

2

( ) t
2

t

t t tS S e


    

               (2.4) 

Equation (2.4) indicates that the volatility of a stock price t tS   at time t t is the 

standard deviation of the return provided the stock price tS  at time t , and the 

return is expressed using continuous compounding.     

 

2.7.1.2  Standard Option Pricing Techniques 

The value of an option can be calculated by a variety of quantitative techniques 

based on two assumptions: GBM of the underlying asset and no arbitrage. The 

first assumption is discussed in previous section. Arbitrage refers to the 

simultaneous purchase and sale in different markets to achieve a certain profit. In 

                                                 
1
Ito’s lemma states that if the value of a variable x follows an Ito process of the form,

( , ) ( , )ddx a x t dt b x t W   where W  is a Wiener process, then any smooth function ( , )G x t  

follows the process,

2
2

2

1
( )

2

G G G G
dG a b dt bdW

x t x x

   
  

   
 where dW  is the same 

Wiener process. Thus, G also follows an Ito process. 

 
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market equilibrium, there must be no opportunity for profitable arbitrage. 

Otherwise one could make a certain profit by buying low (buying the undervalued 

asset) and selling high (selling the overvalued asset). There would be excess 

demand for the former and excess supply for the latter. The no arbitrage 

assumption is used in quantitative finance to calculate a unique risk-neutral price 

for an option. 

In general, the value of an option is determined by the following variables relating 

to the underlying asset and financial (Damodaran 2005):  

1. Current Value of the Underlying Asset 0S   

2. Strike Price of Option X   

3. Time to Expiration on OptionT   

4. Risk-Free Interest Rate fr  

5. Uncertainty (with Volatility as the Measurement) in Value of the 

Underlying Asset   

According to the paradigm used to represent the evolution in time of the model’s 

input variables, standard valuation techniques can be classified into two types: 

continuous- and discrete- time (Perlitz, Peske et al. 1999). In continuous-time 

approaches, closed-form equations, stochastic differential equations and Monte 

Carlo simulation are utilized. Multinomial lattices/trees are commonly used in 

discrete-time approaches.  

Black-Scholes Model 

Black-Scholes (B-S) model is one of the foundations for existing financial market 

(Black and Scholes 1973). It provides a close-form formula for valuing the prices 

of a European option on a non-dividend paying stock at time zero by constructing 

a risk neutral portfolio that replicates the returns of holding an option. The value 

of a European call option is calculated as 
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Where, 
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 
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and  N x  is the cumulative probability distribution function for a variable that 

that is normally distributed with a mean of zero and a standard deviation of 1.0. 

The B-S model is elegant and relatively simplistic to use so it requires almost no 

computation time or resources. However, one major limitation of the Black-

Scholes model is that it cannot be used to accurately price options with an 

American-style exercise as it only calculates the option price at one point in time 

– at expiration. It does not consider the steps along the way where there could be 

the possibility of early exercise of an American option.  

Stochastic Differential Equations  

Stochastic differential equations are continuous-time approaches which solve the 

partial differential equation (PDE) for option modeling. A number of numerical 

finite difference methods exist for desired option. While the numerical method is 

mathematically intensive thus is difficult to use by most practitioners without 

strong mathematical background.    

Monte Carlo Simulation 

Monte Carlo simulation (MCS) uses a simulation technique to randomly generate 

possible price paths of the underlying asset to simulate payoffs for the option 

which are then discounted at the risk-free rate. A distribution of the results is 

obtained and these results are averaged to calculate the expected value of the 

option. One of the strong points of MCS model is that it requires only a 
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predefined stochastic process of the underlying asset, and does not have any 

limitation on the number of assumptions on the options to be evaluated, thus it 

can be used for different models with varying assumptions (e.g. model for valuing 

multiple underlying assets, model with changing parameters). Despite its 

flexibility related to assumptions, a MCS model can be computationally intensive 

depending on the number of assumptions which must be built into the model.  

Also, it is more complicate for MCS to calculate American styled options and 

compound options than  for discrete-time model (e.g. lattice and tree based 

model). 

Binomial Lattice/Tree  

Binomial lattice/tree model is one of the most popular approaches for discrete 

time approximation for the value of the underlying asset and option. The original 

binomial lattices for option pricing is developed by Cox et al. (Cox, Ross et al. 

1979). It discretizes the GBM as a random walk. A random walk represents the 

price movement of the underlying asset as binomial for a number of discrete time 

intervals over the option’s life. In comparison to the use of an abstract value   to 

describe volatility, in B-S formula, the binomial model starts with binomial 

lattices to represent the stochastic movements of the underlying asset: up or down 

by a specified amount. By constructing a riskless portfolio to replicate the option 

payoff, a simple formula can be used to calculate the option price at each node in 

the lattice/tree. This technique is illustrated in a two-step binomial lattice, where a 

two-branch tree structure of a lattice traces the evolution of the underlying asset 

value 0S  , as well as option payoffs uf  and df   (Figure 2-11). In the binomial tree, 

the up factor u , down factor d  , and associated probability are calculated as 

follow: 
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  (2.6) 

The valuation process works backwards, form each final node of the lattice (at 

option expiration date) to the first node (at valuation date). The value at the first 

node is the value of the option. 

 

 

The discrete-time models (e.g. binomial lattice/tree) and their continuous-time 

counterparts (e.g. B-S model) are based on the same assumptions and portfolios 

replicating mechanisms. Theoretically, a binomial lattice method can approximate 

the value calculated by B-S model to the desired degree of precision. A binomial 

lattice model is considered more flexible than B-S model for several reasons. For 

instance, a binomial lattice can model the discrete future dividend payments at 

any time steps, and it can also model the early exercise of an option. However, 
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Figure 2-11 A two-step binomial lattice 
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there are also limitations of a binomial lattice model. First of all, it is usually 

applied for only one source of uncertainty and constant parameters, thus is 

difficult to calculate option value with multiple underlying assets and non-

constant parameters. Secondly, it is path independent which means that the payoff 

at each node is only determined by its state, not by the path it used to arrive at that 

node. To break path-independence, a binomial tree model can be used to provide 

separated chance node for each path, and its valuation method is the same as a 

binomial lattice one.          

 

2.7.2 Real Options Valuation (ROV) 

First coined by Stewart Myers (Myers 1977), a real option is defined as “the right, 

but not an obligation to take some action at a certain cost within or at a specific 

time period” (Trigeorgis 1996; Amram and Kulatilaka 1999; Schwartz and 

Trigeorgis 2001).   Amram and Kulatilaka claim: “Options are valuable when 

there is uncertainty. Many strategic investments create subsequent opportunities 

that may be taken, and so the investments opportunity can be viewed as a stream 

of cash flow plus a set of options”. Shortly, the management’s ability to react to 

uncertainties in many non-financial assets and liabilities can been viewed as a 

collection of such options, which are commonly called “real options”.  

 

2.7.2.1  Key Input Parameters for ROV 

The similarity of financial option and the option to alter decisions in a later time 

period opens the doors to build up the ROV technique. Both of them are exercised 

after the uncertainties are resolved. Early work on real options valuation 

demonstrates that if the analogous parameters in real options model can be 

appropriately estimated, any method used to value the financial options can be 
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applied in the ROV. The classical approaches on early ROV literature are 

prominently relied on standard option pricing techniques and the associated 

assumptions behind them (Brennan and Schwartz 1985; McDonald and Siegel 

1986; Dixit, Pindyck et al. 1994; Trigeorgis 1996; Amram, Kulatilaka et al. 

1999).  Leslie and Michaels (1997) examine the parameters in the Black-Scholes 

models and their analogies in the context of the real options framework. These 

relationships are summarized in Table 2-1.  

Table 2-1 Analogous parameters in financial and real options models 

B-S parameter ROV parameter Example Sources of 

Uncertainty 

Stock price, S Present value of the real 

investment project 

Market demand for 

products and services, 

labor supply and cost, 

materials supply and cost. 

Stock price 

volatility 

 σ 

Volatility of underlying cash 

flows 

Volatility in market 

demand, labor cost, 

materials cost correlation 

of model assumptions 

Exercise price, X Present value of required 

investment costs in real asset 

Availability, timing and 

price of real assets to be 

purchased 

Time to expiration, 

T 

Time period when the 

investment opportunity is alive 

Product life cycle, 

competitive advantage 

Dividend rate,δ Chas flow lost to competitors Convenience yield 

Risk-free interest 

rate, fr   

Risk-free interest rate Inflation, money market 

behavior 

 

Comparing with financial option, it is more complicate to quantify such 

parameters for non-financial or real investment.  
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Value of the Underlying Asset 

The value of the underlying asset in classical ROA approaches can be obtained by 

the assumptions that the real asset is traded in the market, or other traded assets 

can perfectly span the risk of the real asset, thus the value of the real investment 

project can be known from financial market. Unfortunately, most present value of 

underlying assets are not so straight-forward. In reality, for most projects with 

flexibility are not traded in capital markets, and other assets may (at best) partially 

span risk. For example, real assets such as a new product new technology in the 

research and development (R&D) projects are not being traded in the current 

markets. It might be hard or even impossible to find appropriate marketed 

securities, such as futures and stocks, to replicate the value movement of the real 

assets. 

Volatility 

Estimating an “accurate” volatility of stochastic process of the underlying asset is 

an important issue since it influences the option value. However, it is probably the 

most difficult input parameter to estimate in ROA (Mun 2006). For financial 

options the volatility can be estimated by observing the historical data of return 

distribution or calculating from traded option prices. However, it is difficult to 

quantify the volatility for many real options since neither historical return 

distribution nor traded option prices available. In addition, volatility for ROA is 

often determined by multiple sources of uncertainty. Three approaches are 

suggested for modeling volatility: twin security information, Monte Carlo 

simulation and educated estimates ((Luehrman 1998). Monte Carlo simulation is 

more widely used than the other two approaches since it does not require 

particular assumption except for the distribution of input variables. Copeland and 

Antikarov propose a standard process for estimating and aggregating volatility 

(Copeland and Antikarov 2001). In the simulation process, the distribution and 

correlations of multiple sources of uncertainty correlated to project cash flows are 
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entered as input variables. After a number of simulation runs, an estimated 

underlying asset value and volatility are obtained by discounting the future cash 

values in a pre-determined discount rate. However, Smith points out that the 

volatility estimated in this approach is overestimated (Smith 2005). This is 

because that theoretically the volatility of the project’s NPV is assumed to be 

constant and equal to the volatility of all cash flows in each time period, while 

during the simulation, the NPV of the project is calculated as the summation of all 

future cash flows which are generated in the simulation, and thus the calculated 

volatility is the combination of all future uncertainties. Brandão et al. suggests a 

modification to the specification of the volatility in Copeland & Antikarov 

simulation model. The volatility of the project value is only related to the 

stochastic cash flow 1C  in the first year, while cash flows in the following years 

are expressed as expected values conditional on the outcomes of 1C .     

The Exercise Price and Exercise Date 

For a ROA can be much difficult to estimate due to the reason that a real asset’s 

exercise price may change over time or be lumpy, and the exercise date may 

dependent on the exercise of another real option or dependent on the resolution of 

some uncertainty.  

Interest Rate 

The risk-free interest rate is used in classical real option approaches. However, in 

many real option problems some risk characteristics (private risk, as opposed to 

systematic risk) cannot be replicated by trading in marketed securities, which 

means the markets are incomplete. It would be questionable to use the risk-free 

rate for all discounting since the risk-free rate is supposed to be free of private 

risk. 

Dividends  
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Dividends in ROA are considered as a leakage in value (e.g. cash payouts, 

insurance fees, rental income) by Amram and Kulatilaka (Amram, Kulatilaka et 

al. 1999). While dividends of financial options are known in advance or can be 

quantified as a continuous payment over the option’s life, for real options, the 

amount and timing of the dividends may be unknown or dependent on exogenous 

uncertainty in project or market. Brandão et al. (BDH) estimate dividend of a 

project as a cash flow payout rate which is constant across all states for each 

period but variable in time and is a fixed proportion of the value of the project in 

that period (Brandão, Dyer et al. 2005). 

 

2.7.2.2  Classifications of Project Uncertainties and Market 

Conditions 

Unlike financial options which are only related to market-related uncertainties, 

options in non-financial or real assets are exposed to enormous uncertainties. In 

general, project uncertainties are divided into two parts: systematic (market-

related) uncertainties and project-specific uncertainties (Smith and Nau 1995; 

Borison 2005). Systematic uncertainties are perfectly positively correlated with 

market, thus can be tracked or hedged by traded securities (e.g. fund, stocks) in 

the capital markets. However, some uncertainties in new technology and product 

development projects may or may not be correlated with the economy as a whole, 

thus they may not be replicable with a portfolio of traded securities (Borison 

2005). These risk factors are project-specific. For example, a new drug 

development project for a pharmaceutical company may include risks that cannot 

be perfectly replicated by a traded asset, but the price of the product is clearly a 

“market risk”.   

With systematic risks along, market become complete: all the risks can be 

perfectly hedged by trading securities. The value of a project with systematic risks 

only can be valued by a straightforward application of standard option pricing 
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techniques. However, many engineering projects and systems inevitably face a 

partially complete market condition where their uncertainties can only be partially 

hedged by trading securities (Smith and McCardle 1998). For most real asset 

investments where project-specific uncertainties are inherent, there is as yet no 

fully developed sound theoretical framework for real option pricing.   

2.7.2.3 ROV in Practice 

The valuation approaches and associated assumptions which fit well for financial 

options are not necessarily suitable for real investments (Borison 2005; Triantis 

2005). To bridge the gap between theory and practice, more valuation approaches 

have been proposed. In the financial literature, ROV approaches can be generally 

summarized into five categories: the classical, the subjective, the MAD, the 

revised classical, and the integrated approach (Borison 2005; Copeland and 

Antikarov 2005). It has been widely pointed out that classic and subjective 

approach are impractical for valuing projects with project-specific uncertainties 

(Smith and McCardle 1998; Borison 2005; Mattar and Cheah 2006). In this 

section, the MAD, the revised classical and the integrated approach which are 

able to deal with more realistic and complex valuation situations are examined.  

MAD approach, proposed by Copeland and Antikarov (2001) is a approach 

named as which assumes that the best estimate of the market value of the project 

is the present value of the project itself, without flexibility. This assumption is 

known as market asset disclaimer (MAD). The MAD approach utilizes a binomial 

lattice to model the stochastic process of project value and can be applied to 

problems in cases where there is no market-traded asset. Under the MAD 

assumption, the value of the project without options serves as the underlying asset 

in the replicating portfolio, which implies that the markets are complete for the 

project with options. If the changes in the value of the project without options are 

then assumed to follow a lognormal distribution, geometric Brownian motion 

(GBM), then the options can be valued with traditional option pricing methods. 
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Another central assumption is that the firm is considered to be risk-neutral 

towards private risk. Therefore, the private risks are factored in relatively to their 

base case and their outcomes are discounted with the risk-free rate. Brandao et al. 

apply the MAD assumption and propose a binomial decision tree structure to 

approximate the GBM of the project value instead of the binomial lattice used in 

MAD approach (Brandão, Dyer et al. 2005). The authors suggest that modeling 

the evolution of project value and payoffs within the decision tree framework is 

more intuitive for practitioners and can be implemented using off-the-shelf 

decision analysis software. However, Smith comments on this approach and 

shows either tree or lattice yield similar numerical result if the calculation is 

correct (Smith 2005).   

The revised classic approach views that the states of nature of the corporate 

investments are divided into two types: market and private risks (Dixit, Pindyck et 

al. 1994). Real options analysis (ROA) is used when investments are dominated 

by the former type of risks, and dynamic programming or decision analysis (DA) 

should be applied when investment is dominated by the latter type. This method 

adds a second method to the classic approach to extend the problem to the case 

where private risks are dominating. The problem of the revised classic approach is 

that the two proposed methods are only able to value projects under two extreme 

states: either market risk dominated or private risk dominated.  

Instead of dividing the investments into two extreme states, the Integrated 

Approach suggests that the states of nature of an investment can be decomposed 

into two components: public and private risks (Smith and Nau 1995; Smith and 

McCardle 1998). It is assumed that public risks can be hedge by a replicating 

portfolio and assigned with “risk neutral” probabilities; private risks are valued by 

expected net present value discounted at the risk-free rate and are assigned with 

subjective probabilities. An integrated decision tree is used to explicitly model 

public and private risks and rolled back to calculate the option value.     
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While the above three approaches utilize binomial lattice or tree to model the 

uncertainties and calculate , the Datar-Methews (DM) method apply Monte Carlo 

technique to model the uncertainties and determine the real option value of a 

project by using the average of positive outcomes of the project:  

Real option value = Average [Max(operating profits launch cost,0] . 

where operating profits and launch costs are the appropriately discounted cash 

flows to time 0. Triangular distributions are used to simulate the cash flows.  

Using variables similar to traditional option pricing, the DM formula is  

0 0[max( )]t rT

T TC E S e X e                                         (2.7) 

where  and r are the discount rates, S is the operating profit, and X is the exercise 

or launch cost. 

 

2.8 Research Gap Analysis 

As described in Chapter 1, this research aims to provide two distinct but 

complementary approaches for embedding flexibility in engineering system 

design: a screening approach for technical options in system boundary, and a 

practical valuation approach for estimating the value of flexibility. Then the key 

questions are how the proposed approaches differ from previous research and 

what gaps in knowledge they address. 

 

2.8.1 Motivation for a New Screening Approach 

In Section 2.6, four screening approaches closely related to this research in real 

options identification were discussed in detail. Table 2-2 provides side-by-side 
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comparison of the proposed screening approach with published screening 

approaches. Based on the review of the real option identification literature, the 

following gaps are identified.  

1. Due to the complex engineering architecture and its interactions with 

multiple uncertainties in its operational environment, it is a great challenge 

to predict change propagation impact on system elements due to multiple 

external changes and to identify appropriate system elements to made 

technical change for flexibility. Kalligeros (Kalligeros 2006) and Suh are 

first attempts to identify promising system elements to design technical 

options. Despite many positives, there are two limitations of their 

screening approaches:  they both focus on the physical domain and only 

direct change relationships are considered. (Bartolomei 2007) address the 

first limitation by extending the system representation from physical 

domain to social and environmental domains using ESM. However, he 

only provides a conceptualization. (Wilds 2008) extends Bartolomei’s 

ESM methodology to explicitly consider multiple types of change 

relationship among system elements. The author also considers the 

combined risks via direct and indirect interactions. However, the change 

propagation analysis in Wild’s methodology assumes the change impacts 

on one elements causing by other elements are mutually exclusive, thus 

the change prediction results are overestimated. Despite a couple of 

research efforts on identifying technical options in complex systems, it not 

apparent that any have posed a general screening approach which 

explicitly analyze how multiple external changes from social and 

environmental domain propagate to physical domain and the identification 

of potential system elements to incorporate flexibility based on the 

multiple external change impacts on system elements and their impacts to 

the whole system due to external changes.  
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2. The second research gap relate to the computational complexity associated 

with using CPM for analyzing change behavior of system elements. CPM 

depicts how initial change propagates from both direct and indirect 

components, and how combined risk of this change is calculated 

(Clarkson, Simons et al. 2001). However, the algorithm using numerical 

equations for combined probability and risks calculation requires a brute-

searching of all possible change propagation paths from the initial element 

to a particular affected element. Other algorithms for approximation of the 

results either ignore the effect of cyclic paths or based on the assumption 

of independence between the direct edges also independence between the 

change propagation paths which leads to higher estimation of combined 

risks. In addition, the CPM only considers a single change cause and effect 

in the physical domain: only one initial change is considered.  Complexity 

will increase when many external changes are considered simultaneously. 

Table 2-2 Comparison between this research and closely related researches 

 

Multi-

Domain 

Analysis 

Direct 

Flexible 

Candidate 

Identificatio

n 

Combined 

Risk 

Scale of 

Change 

Multiple 

Environmental 

Uncertainties 

Cyclic 

Effects 

(Suh 2005) 
 

√   
  

(Kalligeros 

2006) 
√    

  

(Bartolomei 

2007) 
√  √  

  

(Wilds 2008) √ √ √ √ 
  

This 

Research 
√ √ √ √ √ √ 
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*(Bartolomei 2007) provides a conceptualization only.  

 

2.8.2 Motivation for a New Valuation Approach 

Despite the wide acceptance in academic research and a few implementations in 

practice, two fundamental conceptual difficulties of the practical real options 

approaches have hinder the adoption of ROV approaches for valuing various 

industrial projects and complex engineering systems. 

The first difficulty is related to the MAD assumptions adopted by many practical 

ROV approaches (e.g. BDH and DM method). The MAD assumption uses an 

exogenously determined risk-adjusted discounted rate to calculate the present 

value of the underlying investment. It totally ignores the market information on 

the value of the investment or important elements of that investment.  The other 

difficulty is related to the GBM assumption. Although it may be reasonable to 

believe that the motion of equilibrium prices in highly liquid, widely accessible 

markets is followed by GBM, it is problematic to assume the subjective 

assessments of the value of the underlying investment should follow GBM. In 

fact, the assessed value of the underlying investments may be driven by specific 

events in specific time periods in a manner that looks nothing like “random drift” 

(Borison 2005). Nevertheless, current practical ROV approaches which use 

binomial lattice or tree to model uncertainties typically consider no more than two 

sources of risk at a time (Benaroch 2002). Different uncertainties are either 

separated into two parts and treated differently or combined into a single 

representative uncertainty by Monte Carlo simulation. In reality, most engineering 

systems are exposed more than two sources of risks, which cannot be easily 

separated into systematic (market-related) and market-unrelated (project-specific) 

components.  
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3 Real Options Identification in 

Complex Engineering Systems 

3.1  Introduction 

The successful value delivery of an engineering system through its entire lifecycle 

is greatly affected by uncertainties in its operational environment. These 

uncertainties may be due to changing customer requirements, dynamic market 

conditions (e.g. demand, price and cost) and evolving technology. Real options 

embedded into the system architecture allow ease of late changes in the system 

components or subsystems to accommodate changing environments. However, to 

capture the value of flexibility, additional expenditure must be first invested into 

the system to make technical modification or replacement which enables future 

changes in the system. For example, having the capability to switch production 

from one kind of automobile to another requires an extra capital investment in the 

early construction stage of flexible manufacturing systems. One of the most 

challenging tasks to incorporate flexibility in engineering systems is the 

identification of potential areas, which can be changed with relative less effort but 

contribute significantly to system performance under uncertainty. Screening 

models are proposed for the purpose of identifying the potential areas. The 

general requirements for an effective analytic screening model for real options 

“in” complex systems are:  

1. It should be able to capture the characters of the main uncertainties 

(external changes) which will affect system performance in the 

management and operation environment of the system.  
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2. It should be able to model and analyze the change behaviors of subsystems 

or system components under uncertainties, in order to estimate the effect 

of subsystems or components to propagate change throughout the systems.  

3. It should be able to provide metrics to determine which elements are 

required efforts to embed flexibility based on their change behaviors.    

In the remaining of this chapter, a matrix-based simulation algorithm is developed 

in Section 3.2 to analyze the change behaviors of system elements. This 

simulation algorithm is able to predict change propagation effects from 

environmental uncertainties to system elements. Subsequently, a screening 

process is proposed Section 3.3 to identify the most promising locations in the 

system to create real options in the face of multiple system uncertainties. 

 

3.2  A Matrix-based Simulation Approach for 

Change Prediction  

3.2.1 Change Propagation Network and Change 

Propagation Tree 

The complex change interactions among system elements can be modelled as a 

network, where changes propagate among the network elements only along the 

links connecting the network elements. The change propagation network can be 

represented by a directed graph (DG) which comprises a set of nodes and a set of 

directed edges connecting these nodes (illustrated in Figure 3-1). A node 

represents a system element and an arc indicates a change relationship between 

two connected elements. Assume that a directed graph is denoted as ,G V E   , 

where 1 2{ , ,..., }nV v v v  is a set of nodes denoting n  elements, and 
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1 2{ , ,..., }nE e e e  is a set of directed edges denoting the path and the direction of 

change propagation. Each arc can be associated with a value between 0 and 1 to 

quantify the likelihood or impact of a direct change interaction. For instance, in 

Figure 3-1 an arc from node1  to node 2 with a probability value 1,2p  implies a 

cause or effect dependency relationship: a change in node 2 will be caused by a 

change in node 1 with a probability of 1,2p , or a change in node1 will  result in a 

change effect in 2 with a probability of . The instigating node 1 can be viewed 

as a parent of the affected node 2. 

 

 

Figure 3-1 Example  of directed graph (DG) and the corresponding DSM representation 

A cyclic path may exist in the DG. It indicates that an initial change in an element 

propagates back to that element through a number of intermediate elements. 

However, from system design perspective, cyclic effects are not allowed, since a 

cyclic effect will lead to 100% of change propagation likelihood and impact 

values, which will cause a disastrous consequence in system design. Redesign 

efforts should be taken to eliminate the cyclic effects by increasing tolerance 

margins on those cycle-causing elements. In CPM, cyclic change paths and self-

dependences are not considered by assuming that system designers include the 

effects of such loops in the estimation of change impacts instinctually (Hamraz, 

Caldwell et al. 2012). Therefore, to predict the combined risk of change 

propagating from 1 to 2, two cyclic paths are excluded by removing arc 21 and 

1,2p
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3  4. Figure 3-2 displays a directed acyclic graph (DAG) created from the 

example DG in Figure 3-1.  

 

Figure 3-2 An example of a directed acyclic graph  

All change propagation paths from node 1 to node 2 can also be visualized by a 

propagation tree (Figure 3-3). It is a tree representation of the DCG. In the 

propagation tree, paths returning to previously visited elements are not allowed.  

 

Figure 3-3 A change propagation tree 
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3.2.2 Proposed Matrix-based Simulation Approach 

Propagation trees allow consideration of combined effect of a change in the node

2   caused by a change in the node 1  via both direct and indirect links. The 

original algorithm used in the CPM (Clarkson, Simons et al. 2001) views 

propagation tree as logic tree and calculates the combined effect by tracking each 

possible path between an instigating node to a specific affected node. The detailed 

evaluation process is presented in Section 2.6.5.2.  

However, for large change propagation network, the original algorithm of CPM is 

computationally expensive due to a brute-force or exhaustive search in 

propagation tree and complex intersection and union operation in the joints of 

propagation paths. Several algorithms and tools have been applied to simplify the 

computation. The algorithm for change favorable representation (C-FAR) 

presented by (Cohen, Navathe et al. 2000) uses simple matrix multiplications 

without excluding cyclic paths. The Trail counting algorithm proposed by (Keller 

2007) exhaustively searches all the paths in the propagation tree but uses only 

intersection operator to calculate end-to-end likelihood for each propagation path 

and then the union operator to combine these likelihoods of all propagation paths. 

This algorithm assumes that the change propagation paths are independent of each 

other. This leads to higher combined probabilities than the original algorithm of 

CPM. The Matrix-Calculation-Based algorithm described by (Hamraz, Caldwell 

et al. 2012) also adopts this assumption and applies matrix multiplications on 

modified likelihood DSM accounting for cyclic propagation paths. Bayesian 

network can also be applied for computing change propagation probabilities, if 

“Noisy-OR” assumption is made (Mirarab, Hassouna et al. 2007). Off-the-shelf 

software like Netica® can be used to build Bayesian network for change 

prediction. However, it requires conditional probability table (CPT) for each 

node. When the size of the network increases, the size of CPT also increases 

explosively. In the remaining of this section, a simple matrix-based simulation 
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algorithm for computing combined likelihoods and risks is developed without 

using brute-force search and overestimating the combined probabilities.  

 

3.2.2.1  Proposed Algorithm for Directed Acyclic Graph (DAG) 

Construction 

Before the simulation, a DAG is constructed to identify and exclude edges that 

will cause a cycle in the original DG. The construction process starts from an 

instigating node. Figure 3-4 displays the algorithm of DAG construction. The 

inputs are the original DG , its associated likelihood DSM L, the 

instigating node a. The matrix element ( , )i jl v v of L indicates the existence of an 

edge from iv to jv .The purpose of the algorithm is to remove the cyclic paths 

from the DG and store the corresponding edges and nodes. The outputs are 

directed acyclic graph ' ', 'G V E   , set of edges excluded eE  and    

corresponding node set eV  .The algorithm travels the DG in a breath-first fashion 

thus removes the cycle-causing edges as late as possible, and attempts to remove 

the edges that have the least impact on the DG.  

,G V E  
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Figure 3-4 Algorithm of DAG construction 

A reachable matrix Re is used to check cycles if a new edge is added into the 

DAG. In graph theory, reachability is the ability to get from one node i in 

a directed graph to another node j. In the reachable matrix Re, if i is able to reach 

j via direct or indirect edges, the corresponding entry ijre  equals to 1. If there is a 

cycle between two nodes, they can reach themselves through the cycle, and thus 

the associated diagonal elements of Re equal to 1. The reachable matrix is also 

utilized in the proposed matrix-based simulation algorithm in the next section.  

 

1 Input: ,G V E   , L ,a   

2 Output: ' ', 'G V E   , eE  and eV   

3 selectedv a   

4 nextV V   

5 'V    

6 while nextV && ( )selectedChild v    

7          add node selectedv to aV  and delete node selectedv from nextV  

8          for all i nextv V    

9                if ( , ) 0 ( )select il v v l L    

10                  sort the value of ( , )select il v v from large to small 

11                  for each ( , )select il v v   

                           if adding ( , )edge iedge v v  does not cause  a cycle, then  

13                       ' ( )iE edges v , ' iV v , select iV v  , next next iV V v   

14                      else   

15                       ( )e iE edge v , e iV v , ( , ) 0select il v v   . 

16              else  next next iV V v   

http://en.wikipedia.org/wiki/Graph_theory
http://en.wikipedia.org/wiki/Vertex_(graph_theory)
http://en.wikipedia.org/wiki/Directed_graph
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3.2.2.2  Calculation of Combined Likelihood 

The proposed matrix-based simulation algorithm utilizes a simple Monte Carlo 

simulation to compute the combined probabilities and risks of change propagation 

from the instigating node to other nodes. First of all, in each run random variables 

are generated using Bernoulli distribution of probability in the DSM 

corresponding to the constructed DAG. A corresponding binary matrix Q is 

created. Next, a reachable matrix Re is generated for Q. If the reachable matrix 

element kare  ( 1,...,k M , M is the number of nodes) in the column corresponding 

to the instigating node a, equals to 1, a counter ,k aCount  corresponding to the 

node k is incremented by 1. After N runs, the combined likelihood of k is then 

calculated as follows:   

,

,

k a

k a

Count
l

N
  (3.1) 

 

3.2.2.3  Calculation of Combined Risk 

The combined risk can be calculated in different ways according to different 

assumptions. The equation used to calculation combined risk proposed by 

(Clarkson, Simons et al. 2001) is given below. rk,a  is the combined risk of change 

propagating to node k from a, where: 

, , , , , ,1 (1 )     and       . .k a k u k u u a k u k ur l i                            (3.2) 

where b,u is the risk of change propagating from the penultimate node u in the 

path from a to k,u,a is the combined likelihood of change reaching u from a 

without going through k, ,k ul  is the direct likelihood of change propagating from 

u to k and ,k ui  is the direct impact of such a propagation. The values of l and i  

come from the direct likelihood and impact matrices. Values of ,u a  are 
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calculated using the proposed algorithm in 3.2.2.2. In Equation (3.2) the 

combined risk rk,a  weights the direct impact values of element k caused directly 

or indirectly by a with the combined probabilities of the change propagating from 

a to k.  

However, in Equation (3.2), the impact of change in k directly caused by its 

single or multiple parent(s) together is calculated by multiplying the individual 

direct impacts of all of its parents (i.e., ,k ui ). Since ,k ui is a normalized value 

(i.e., , (0,1]k ui  ), , ,k u k ui i . This means the multiple impacts are not greater 

than each individual impact. In this research, the multiple impacts are assumed to 

be the summation of all individual impacts ,k ui .  To compute the combined risk, 

the integer counter ,k aCount  in equation (3.1)  is replaced with an impact counter

,k aImpact . In each run, ,k aImpact  is increased by . If the combined impact 

of a change in one node directly caused by multiple nodes can be estimated, the 

increment of the impact counter in each run is replaced. However, this requires 

more information.  

 

3.2.2.4  Application of the Proposed Simulation Algorithm  

The proposed simulation algorithm is applied to calculate the combined 

probabilities and risks of a five-element DAG. The direct likelihood and impact 

matrices are shown in Figure 3-5. 

 

 

 

,k ui
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 1 2 3 4 5 

1  0 0 0 0 

2 0.7  0.2 0.2 0 

3 0.3 0  0.5 0 

4 0.8 0 0  0 

5 0 0.5 0.7 0  
 

 1 2 3 4 5 

1  0 0 0 0 

2 0.8  0.7 0.5 0 

3 0.9 0  0.4 0 

4 0.4 0 0  0 

5 0 0.3 0.6 0  
 

a. Direct Likelihood  b. Direct Impact 
 

Figure 3-5 Direct likelihood and impact matrices for a five-element change propagation 

network 

After 100,000 trials, the simulation results are shown in Figure 3-6. The 

calculated combined probabilities and risks of change propagating from 1 to k (k 

= 2,3,4,5) shown in the first column of the two matrices are the same as the ones 

calculated by equations in CPM proposed by (Clarkson, Simons et al. 2001)
2
. 

Results show that although node 5 is not directly affect by node 1, the combined 

probability of change propagating from 1 to 5 is 0.63.   

  

a. Combined Likelihood  b. Combined Impact 
 

Figure 3-6 Combined likelihood and risk matrices 

The Trail Counting algorithm and Matrix-Calculation based algorithm only 

compute the combined likelihood between a specific affected element k and the 

instigating element a. However, the proposed Monte Carlo simulation algorithm 

                                                 
2
 The results obtained from  numerical equations of CPM are shown in Appendix   
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can provide the probabilities of a change in k caused by the change in the 

intermediate nodes which in turn are caused by a change in a. For instance, in one 

random trial, if a change in the instigating node a propagates to k through an 

intermediate node u, a counter ,k uCount  is increased by 1. These values are useful 

in predicting change propagation in multiple domains. The change propagation 

prediction in multiple domains analyzes the combined effects of change 

propagating from environmental uncertainties to system components or 

subsystems. Multiple external change scenarios will occur with an estimated 

probabilities and impacts. These changes will further propagate among system 

elements. The proposed simulation algorithm provide a tool to predict the 

combined effect of a particular system element affected by environmental 

uncertainties and also the combined effect of change in other elements caused by 

this particular elements under multiple change scenarios. In addition, the proposed 

algorithm for DAG construction is able to identify edges which will cause cyclic 

effects in the change propagation. The effect of identified edges and their 

associated nodes will be further considered in the following section.  

 

3.3  Proposed Screening Process 

This section presents a novel screening process to identify promising areas in the 

physical domain to plan and build in flexibility in the early conceptual design 

phase. It utilizes the matrix-based simulation approach proposed in Section 3.2 to 

estimate the combined probabilities and risks of change propagation among 

subsystems. A system level DSM – ESM, is employed to model the main domains 

of the system structure and map the environmental uncertainties to subsystems. It 

is then used to predict the change propagation behaviors of the system. By 

calculating two impact indicators (i.e. environmental impact-receiving and 

internal impact-supplying) of each subsystem, the candidate subsystems for 

flexibility and robustness are exploited. The flexible candidates can be changed to 
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adapt to future uncertainties with less efforts, while the robust candidates should 

be insensitive to future uncertainties and serve as flexibility enablers to enable 

future modification or replacement in flexible candidates with acceptable 

expenditure. To explore the responsive behaviors of system components in 

response to environmental changes in a complex engineering system where cycle 

paths of changes may exist, the matrix-based simulation approach proposed in 

Section 3.2 is applied to proactively deal with loop effects and predicts the 

combined likelihoods and risks of propagating changes. 

A six-step screening process is proposed to explicitly identify key subsystems for 

flexibility and robustness: 

Step 1: Define system and its purpose and primary objective(s)   

Step 2: Identify the main sources of uncertainties, which are external uncertain 

factors on future system environment or state affecting the system to deliver 

benefit to stakeholders, and estimate the possible impacts (upside opportunities 

and downside risks) and probabilities of each change scenario with respect to each 

uncertainty. 

Step 3: Determine an initial design and performance measure for value 

assessment. 

Step 4: Develop system representation by an ESM and assess the dependency 

strength of change interactions among ESM elements.  

Step 5: Predict risks and opportunities of change propagation using the proposed 

matrix-based simulation approach.  

Step 6: Identify critical subsystems for flexibility and robustness by 

differentiating types of subsystems based on two indicators (i.e. environmental 

impact-received and internal impact-supply) 
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Step 6: Quantify excepted opportunity and risk of change for each system 

component using the likelihoods and impacts information from step 3, 4 and 6.  

 

3.3.1 Step 1: Define System, Identify Its Purpose 

and Objective(s) 

Any design process begins by framing the design problems – constructing a 

simplified model of reality to reduce the complexities of the problem. A general 

start point of model construction is to elicit the design purpose and objective(s) in 

target. An Engineering system is designed for a purpose. System designers should 

know the immediate purposes of the system by asking “What does the system 

accomplish?” They should also know the opportunities, current issues and 

challenges of the system. Answers can be drawn from academic research, 

practical experiences, historical and potential development of the system, and 

related systems with similar functionalities or structures. The preliminary design 

objective(s) should be clarified to capture the concerns of the stakeholders (e.g. 

system holders, system designers, managers, operators and customers, etc.). Each 

objective can be decomposed into functional requirements.  

 

3.3.2 Step 2: Identify Main Sources of 

Uncertainties and Predict Possible Change 

Scenarios 

Obviously, flexibility is valuable only when there are environmental Uncertainties 

(system drivers). In the early conceptual stage, main sources of uncertainty in the 

operational environment are (1) dynamic marketplace (regarding customers’ 
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requirements, demands, operating cost, etc.); (2) evolving technologies whose life 

time often shorter than system life cycle; (3) changing integration environment 

where a system has complex interactions with other necessary system. 

Uncertainties are usually characterized by various change scenarios and 

associated probabilities. In this step main uncertainties are defined by: 

1. Brainstorming the critical change scenarios which describe the possible 

future states.  

2. Estimating the impact (opportunity) and probability of each change 

scenario.  

Future states of a system uncertainty can be different mission requirements, 

demands, applications and available operational modes in the future.  For 

example,  

The environmental impact of each change scenario on the system is defined as the 

product of its opportunity and the corresponding likelihood. The term 

“opportunity” refers to the effects of uncertainties (both positive and negative) 

which drive the need for embedding flexibility in the system design. The 

likelihood is the possibility of the change occurring. This terminology is borrowed 

from risk management which is used for the identification, assessment and 

prioritization of risks. Hence, similar to risk graph in risk management, a square 

matrix is utilized to represent the opportunity and likelihood of critical change 

scenarios as in Figure 3-7. The change scenarios in the top right-hand corner of 

the matrix are very likely to occur and have high impact on the system’s ability to 

deliver value to its stakeholders. The change scenarios in low left-hand corner are 

lowly probable and have lowest impact.  
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Figure 3-7 The assessment matrix for change scenarios 

 

3.3.2.1  Likelihood of Change Scenarios 

Classical methods are utilized for scoring change scenarios based on a 

consolidation of previous experience and expert judgment. In the assessment 

matrix, qualitative scales are used to score probabilities of change scenarios with 

5 levels:  

1. Definite: 80% to 100% chances of occurrence. The change scenario is 

almost certain to show-up during the system management and operation 

stage. The score assigned to this level is 1. 

2. Likely: 60% to 80% chances of occurrence. This level is scored by 0.8. 

3. Occasional: 40% to 60% chances of occurrence. This level is scored by 

0.6. 
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4. Seldom: 20% to 40% chances of occurrence. The change scenario has a 

low probability of occurrence but still cannot be ruled out completely. 

This level is scored by 0.4. 

5. Unlikely: less than 20% chances of occurrence.  This level is scored by 

0.2.  

 

3.3.2.2  Opportunities of a Change Scenario 

The opportunities (or impacts) of a change scenario can also be ranked and 

classified into 5 levels based on how much impact it will have on the system’s 

ability to provide long lasting value to its stakeholders over its lifecycle: 

1. Insignificant: A scenario will have a near negligible amount of impact on 

the life cycle value (LCV) of the system. This level is scored by 0.2. 

2. Marginal: A scenario will have relative small impact on the LCV of the 

system. This level is scored by 0.4. 

3. Moderate: A scenario will not have a great but yet sizable impact on the 

system’s LCV. This level is scored by 0.6. 

4. Promising: A scenario will cause a high change on the system’s LCV. 

This level is scored by 0.8. 

5. Critical: A scenario will have a very high impact on the system’s LCV. 

This level is scored by 1. 

However, the system’s LCV is difficult to quantify, let along in the conceptual 

stage. Hence, the opportunity of a scenario is more appropriately adjudicated by 

qualitative assessments on the critical factors of LCV, like key performance 

requirements, profits/ utility and strategic importance (Pierce 2010).  
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3.3.2.3  Assessment Matrix of Change Scenarios 

Once the appropriate likelihood and opportunities of change scenarios are 

distilled, the qualitative expected values of each change scenario are classified 

into four categories (i.e. extreme, high, medium, and low) which indicate the 

potential need for flexibility in the system design. Each category is visualized by 

different colours in the matrix (illustrated in Figure 3-7. 

 

3.3.3 Step 3: Determine an Initial Design and Value 

Assessment 

The baseline design, also referred to as “inflexible design”, is assumed to exist 

and satisfy originally intended purposes of the system without considering future 

uncertainties. They can be determined by building upon previous knowledge of 

similar systems or by optimizing system performance under deterministic 

environmental conditions and constraints.  The existence of the baseline design 

allows evaluating real options as an additional ability of the systems to be able to 

adapt to possible change scenarios.  

3.3.4 Step 4: Develop System Representation and 

Assess Change Dependency 

In this section, a system-level DSM, engineering system matrix (ESM) is 

constructed to represent the system elements and describe the links among these 

elements based on the previous knowledge of similar systems. An ESM is an 

enhancement DSM representation of engineering system. It extends the system 

boundary to contain both internal elements in technical aspect and external 
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elements in social and environmental aspects. The ESM methodology provides a 

framework to map environmental Uncertainties to functional requirements, depict 

the changes spreads from environmental domain to physical domain, and quantify 

the probabilities and impacts (e.g. cost, time) of the direct design change 

influence. 

 

3.3.4.1  Basic DSMs in an ESM 

(Bartolomei 2007) provide a comprehensive ESM representation of an 

engineering system. The ESM includes a number of DSMs in different domains. 

Based on design purposes, requirements and available information during each 

stage of the design process, an ESM can be constructed with different levels of 

abstraction. For instance, to reduce the complexity of the analysis, the screening 

process can be first applied on higher levels of abstraction in system architecture, 

like subsystem-level, and identifies subsystems as candidates for flexibility design 

opportunities. Then those selected subsystems can be further decomposed into 

component-level. Similar screening process can be applied on the component 

level and identifies components as flexibility opportunities.  

This research mainly focuses on three domains: environmental domain 

represented by system drivers DSM, functional domain represented by functional 

requirements DSM and physical domain represented by subsystem DSM. 

Uncertainties in environmental domain can propagate to physical components 

through changes in functional requirements (illustrated in Figure 3-8). 

Interrelationships between different domains can be captured by corresponding 

DMMs. These DSMs and DMMs are then organized in a single matrix 

representation – ESM. The existence of links between system elements in 

multiple domains can be denoted by “1” or “X” in the entries of the ESM. 
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The system drivers (SDs) are the economic, technical, social and political 

uncertain variables that affect lifecycle value of a system and beyond the 

stakeholders’ control. For instance, the value of an UAV manufacture plant may 

be affected by demand, changing customer requirements, new technologies and 

government regulations. The main SDs are identified in step 2. If change 

scenarios with respect to future states are properly specified so that each change 

scenario only describes a possible future state of one SD, all SDs can be 

independent with each other.  

The purpose, objective(s) and FRs in the functional domain are specified in step 1. 

Engineering systems are systems of purpose and usually have clear objective(s). 

An objective or mission is defined by a set of FRs. A function is what a system 

must do or accomplish to achieve one of its system objectives (Suh 2001). The 

value of a system to its stakeholders is realized by accomplishing these functional 

requirements. For example, an Unmanned Aerial Vehicles (UAV) is designed to 

satisfy the customer needs for finding and following specified targets. This 

mission requirement, search and reconnaissance, can be decomposed into FRs of 

the range and time on target.  

Environmental 

Uncertainties 

Environmental 

Domain 

Functional 

Requirements 

Functional 

Domain 

Physical 

Components 

Physical 

Domain 

Figure 3-8 Three main system domains 
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The physical elements (e.g. components subsystems) and the interactions among 

these elements are identified to represent system architecture. Relationships 

between components can be classified  into spatial, energy, information and 

material type based on (Pimmler and Eppinger 1994). 

To identify the promising regions for flexibility, one must know how the 

environmental Uncertainties drive the internal changes within the system. In this 

research, three types of dependency matrices should be identified: environmental 

–functional domain mapping matrix and functional-physical components domain 

mapping matrix, and physical element-element interacting matrix (e.g. 

subsystems DSM and components DSM). The first matrix depicts change 

interactions from the external (environmental) uncertainties to internal elements 

within the system boundary. The latter two matrices depict change interactions 

inside the system boundary. By domain-mapping, the change relationships 

between environmental uncertainties and physical elements are obtained.   

 

3.3.4.2  Environmental – Functional Domain Mapping Matrix 

The environmental-functional domain mapping matrix translates the mission 

needs for each scenario into a verbal, non-form specific description of system 

functions (Pierce 2010). Each FR should be properly defined so that it is 

independent of each other, that is, a change in one FR will not instigate a change 

in another FR. The interdependency among FRs, which can be achieved by 

providing very specific change scenarios in step 2, simplifies further analysis of 

change behaviour.  
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3.3.4.3  Functional – Physical Domain Mapping Matrix and 

Component-Component Matrix 

In the system boundary, the functional-physical domain mapping matrix captures 

the change relationships from FRs into physical elements. The physical elements 

DSM captures the interdependencies among components and/or subsystems. To 

identify the change dependencies insider the system boundary, two-step change 

dependency identification is conducted:  

1. Identify direct change relationships from FRs to subsystems by asking the 

question: “If a change in a FR occurs, which subsystems will be affected?” 

The subsystem directly affected by the FR is called as a change initiator.  

2. Identify direct change relationships among subsystems by asking the 

question: “If a subsystem is changed due to other external or internal 

change, what other subsystem will be affected by this change?” 

Therefore, the change relationships between SDs and subsystems can be obtain by 

mapping change relationships from SDs to FRs, and then from FRs to subsystems. 

Figure 3-9 displays an extended DSM which is a combination of SDs DSM, 

subsystems DSM and the corresponding DMMs. This extended DSM can be 

viewed as an ESM with only two domains. It is the matrix representation of a 

change propagation network. If there is a precedence relationship between a row 

and column elements, a “1” is inserted in the corresponding matrix entry. Figure 

3-10 is the corresponding directed graph (DG) representation.  
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Figure 3-9 An extended DSM composed of SDs DSM, subsystem DSM and the 

corresponding DMMs 

 

 

 

3.3.4.4  Assess Dependency Strength in ESM 

Most systems are designed with buffers which can absorb some degree of change 

to provide certain tolerance margins (Eckert, Clarkson et al. 2004). When the 

tolerance margins are exceeded due to the increased strength of incoming change, 

Figure 3-10 A graph representations of change propagation network 
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the buffers will generate more change than they can absorb and propagates the 

change. Therefore, the predicted change propagation behaviors will be contingent 

on primitive assessment on the strengths of incoming changes. The step is to 

estimate the dependency strengths of the change relationships in the ESM 

constructed in step 4. 

In CPA the expected scale of a change instigated by others is often assessed by 

the product of likelihood and impact. Change likelihood is defined as the average 

probability that a change in the design of a physical element will be triggered by a 

design change in another by directly propagating through their common interface 

(Clarkson, Simons et al. 2001). Likewise, impact is defined as the average 

proportion of the redesign work caused by change propagations. Interviews with 

designers are conducted to qualitatively assess the impact and probability of each 

design change triggered by another change.  

Impact of Change 

In this research, the impact of a change in one system element caused by others is 

defined as the cost associated with the technical modification or replacement of 

the element in response to an incoming change (Suh 2005). It is the cost of 

engineering redesign, addition fabrication and assembly tooling/equipment 

investment required for design change to enable the system to adapt to external 

change. The switch cost of each system element is then normalized to a number 

between 0% and 100% with 0% representing the lowest switch cost and 100% 

representing the highest switch cost.  

Probability of Change 

The probability of a change caused by an incoming change is conditional on the 

scale of the incoming change. The sensitivity DSM methodology proposed by 

Kalligeros (2006) utilizes interviews to elicit domain experts’ knowledge about 

the sensitivity of each design parameter in response to change in each functional 
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requirement. Similarly the probability of a change in a subsystem instigated by a 

change in a FR can specified by asking “If a certain amount of change iy occurs in 

a FR  ( ;  is the number of the FRs), what is the probability that a 

certain amount of change  will occur in a subsystem  (  ;  is the 

number of subsystems)?”  The probability of a change in a subsystem instigated 

by a change in other subsystem can be estimated in the similar way. If more 

information is available, for instance the FRs DSM and subsystems DSM can be 

further decomposed into low level of abstraction, the change probability can 

better estimated by investigating the relationships between these lower level 

elements.  

 

3.3.5 Step 5: Predict Change Propagation Impacts 

Using the Proposed Matrix-Based Simulation 

Approach 

3.3.5.1 Cyclic Change Effect 

One limitation when directly applied CPM to explore the real options in system 

design is that cyclic paths are excluded before the computation predictive 

matrices, thus the impacts of elements which may cause cyclic effects are 

underestimated for change behaviors analysis. Current algorithms of change 

prediction method for computing combined predictive matrix are based on the 

assumption that cyclic change paths and self-dependences are not considered in 

the analysis (Hamraz, Caldwell et al. 2012). This assumption is required to avoid 

infinite changes propagating cycle effects. A loop or a cyclic path is a path which 

passes through at least one element twice or more. For example, in Figure 3-11, 

suppose a change in element 1 occurs. It then trigger changes in the subsequent 

elements and propagates back to 1 from element 2. The element which propagates 

i 1,...,i n n

kx k 1,...,k m m
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change back to the initial change element is defined as a cycle-causing element 

and the edge from the cycle-causing element to the initial change element is 

defined as a cycle-causing edge in this thesis.  When the loops are small the 

designers are able to include the effects of such loops by estimating a higher 

impact value for cycle-causing elements. However, when there are many elements 

in a system, it is possible that a change from an initial element may propagate 

through a number of intermediate elements and return to that initial element. 

Since the estimations of change impacts are performed before the change 

prediction, it is very likely that the system designers are unable to foresee such 

loops, thus the impacts of some elements are underestimated. To overcome this 

limitation, the cycle-causing edges and the associated elements are first identified 

and the impacts of these elements are re-estimated for further change behaviors 

analysis. 

 

Figure 3-11 An example cyclic path 

 

3.3.5.2  Prediction of Change Propagation form Environmental 

Uncertainties to System Elements  

The matrix-based simulation approach proposed in Section 3.2 is utilized to 

predict the effects of change propagation from environmental uncertainties to 

physical elements. First of all, the edges which cause cycle in the change 
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propagation network and the associated elements are identified and stored. Then 

the proposed matrix-based simulation algorithm is performed to calculate the 

combined probability and risk of each subsystem caused by multiple 

environmental uncertainties. The environmental impact of each subsystem 

received can also be calculated by the proposed simulation algorithm. The 

environmental impact of a subsystem affected by environmental uncertainties is 

defined as the combined opportunities of all identified change scenarios that 

directly or indirectly influence the subsystem. The opportunities of identified 

change scenarios are estimated in Step 2, Section 3.3.2. 

The change propagation network represented by the DG in Figure 3-10 is used as 

an example for the analysis. Edges and are identified as cycle-

causing edges, and removed from the DG. Let L be the likelihood matrix of the 

corresponding DAG. In addition, the probabilities of change scenarios in SD1 and 

SD2 are 0.4 and 0.6 respectively. A new column representing an event generator 

(EG) is added into original matrix L where the elements in the second and third 

row represent the probabilities of the two change scenarios. Figure 3-12 and 

Figure 3-13 displays the extended likelihood and probability matrices L' and I', 

respectively. 

 

Figure 3-12 Direct likelihood matrix L' 

6 2S S 5 2S S
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Figure 3-13 Direct impact matrix I' 

 

 

Figure 3-14 Combined risk matrix 

The calculated combined risks with 100,000 trials are shown as in Figure 3-14. 

Each entry number in the first column of the matrix in Figure 3-14 is the 

combined risk of a change occurring in the subsystem ( is the corresponding 

row head of the likelihood matrix) affected by all environmental uncertainties. 

Each entry number in the second and third column of the matrix in Figure 3-14 is 

the combined risk of a change in  triggered by a change in SD1 and SD2 

respectively. Each value in the following column is the combined risk of a change 

in caused by a change in other subsystem, which in turn is caused by all 

environmental uncertainties.  

iS iS

iS

iS
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From the combined risk matrix, the internal impact-supply (II-S) of a subsystem 

can be computed. The II-S of a subsystem is a measure of how influences 

other if is required to be changed in response of environmental uncertainties. 

The calculation of  is defined as follow:   

                                  (3.3) 

where is the combined risk of changes in caused by all identified 

environmental uncertainties.  is the combined risk of changes in 

caused by changes in , which in turn caused by environmental uncertainties.  

The environmental impact-received (EI-R) of a subsystem is a measure of how 

each subsystem is affected by all identified environmental uncertainties. It is 

defined as the combined opportunities of all identified change scenarios that 

directly or indirectly influence the subsystem. The EI-R of a subsystem   

affected by a change scenario   is defined as the product of the combined 

probability of the subsystem  affected by the change scenario  and the 

opportunity of this change scenario  .  

                             (3.4) 

where  is calculated combined likelihood of a change in  triggered by 

a change scenario iCS and io  is estimated in step 2. Therefore kEI R(S )  is the 

combined opportunity (CO) of all identified change scenarios that directly or 

indirectly influence the subsystem: 

1(S ) ( ; ,..., )k k nEI R CO S CS CS                   (3.5) 

kS kS

kS

II S( )kS

1

( ) ( ) ( , )
m

k k k l

l

II S S r S r S S


  

( )kr S kS

( , )k lr S S lS

kS

kS

iCS

kS iCS

io

i i(S ;C ) ( , )k i kEI R S o l CS S  

( , )i kl CS S kS
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where n  is the number of change scenarios. The combined opportunity 

1( ; ,..., )k nCO S CS CS  weights the opportunity of each change scenario  iCS  with 

the combined probability of the subsystem kS  affected by the change scenario iCS

. The calculation combined opportunity of kS is similar to the calculation of 

combined impact: in each trial of the simulation, an opportunity counter kOpp  is 

increased by ,k io , if a change in kS occurs due to the environmental 

uncertainties. Table 3-1shows the values of EI R and II S for each subsystem.  

Table 3-1 The calculated EI-R and II-S 

Subsystem 
EI R  II S  

1 0.27 0.77 

2 0.26 0.57 

3 0.25 0.77 

4 0.25 0.25 

5 0.03 0.01 

6 0.13 0.12 

7 0.15 0.11 
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3.3.6 Step 6: Identify Critical Subsystems for 

Flexibility and Robustness 

There are two ways to cope with uncertainties in a system with various 

interconnected subsystems: (1) make a subsystem insensitive by increasing its 

change margins to change scenarios (robustness); and (2) make a subsystem 

modular thus is able to be changed without influencing many other subsystems 

(flexibility).  

This research identifies critical areas for flexibility and robustness based on the 

two proposed indicators. A high EI R indicates that a subsystem is highly 

influenced by environmental uncertainties, thus is more likely to be changed. A 

high II S indicates that a high degree of risk due to the change in the particular 

subsystem. Figure 3-15 portrays the two indicators EI R  and II S of each 

subsystem as orthogonal dimensions. Subsystems can be classified into four 

classes
3
.  

 

Figure 3-15 EI-R and II-S of subsystems 

 

                                                 
3
 The classification of subsystems is assumed to be dependent on system designers’ utility 

function. How to classify subsystem according to their attributes and the determination of utility 

functions fall into the scope of statistic classification, machine learning, and pattern recognition 

Michie, D., D. J. Spiegelhalter, et al. (1994). "Machine learning, neural and statistical 

classification.", Bishop, C. M. and N. M. Nasrabadi (2006). Pattern recognition and machine 

learning, springer New York.. 

C2 C1 

C3 C4 

II-S 

EI-R 
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The following recommendations are presented to identify critical subsystems for 

flexibility: 

1. The prime candidates for flexibility are subsystems with relatively high 

EI-R and II-S. They are likely changed in response to high degree of 

environmental uncertainties. They will also cause relative high impact on 

the system. A high II-S of a subsystem is caused by a high impact/switch 

cost of the subsystem itself caused by environmental uncertainties, and/or 

a high degree of propagation of change in the subsystem to others. 

Modularizing these subsystems by adding interfaces specific by design 

rule between the carriers with other subsystems provides a real option to 

be substitute/switch latter  (Baldwin and Clark 2000). For instance, the 

payload of an Unmanned Aerial Vehicles (UAV) is changed frequently for 

different mission requirements. It is integrated with other subsystems, like 

fuselage, in a fixed UAV. Hence a change in the payload thus will 

propagate change to those subsystems. A flexible UAV is designed with a 

modular payload bay which is connected with the fuselage via the payload 

pod. This allows the payload bay contents for various sensor packages.  

2. The subsystems with high EI-R and low II-S should also be examined for 

flexibility. They are likely to be changed in response to high degree of 

environmental uncertainties. Yet, they have relatively low impact on the 

system, thus can be easily changed in response to future changes. 

3. The prime candidates for robustness are subsystems with low EI-R yet 

high II-S. If the II-S of a subsystem is high while its EI-R is relatively low 

or medium, the change in the subsystem has relatively high propagation 

strength. The later changes occur in these subsystems, the higher 

impact/costs are required for these changes. System designers should 

consider making these subsystems to be insensitive (robust) to change by 

increasing their change margins. For instance, the fuselage of a UAV can 

be viewed as multipliers. They are difficult to be changed once built. If 

other subsystems of the UAV are changed to accommodate new mission 

app:ds:fuselage
app:ds:fuselage
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requirements (e.g. the shape of the wings covered win an extensible 

material over a flexible composite structure can be changed to provide 

different lift requirements), the fuselage has to be change as well. 

However, rebuild the fuselage once the UAV is field will cause a very 

high cost. Therefore, the fuselage has to be overdesigned by creating 

housing for the flight components, data-collecting instruments and 

surveillance equipment, etc (Abdulrahim and Cocquyt 2000).  

4. The subsystems which will cause cyclic effect can be flexible or 

insensitive depending on the number of their associated cycle-causing 

edges. The more cycle-causing edges from an affected subsystem to the 

initial subsystems, the higher interconnections between the affected 

subsystem with other subsystems. Considering that edges 6 2S S and 

5 2S S are removed before the change prediction, the impact of 

subsystem 5 and 6 must be re-estimated and redesigned. To eliminate the 

cyclic effects, one way is to add interfaces specific by design rule between 

5 and 2, 6 and 2. The subsystem 5 and 2 or 6 and 2 become independent 

with each other. Each independent subsystem creates a real option to be 

substitute in response to future change. However, if subsystem 5 or 6 also 

interconnects with other subsystems via cycle-causing edges, adding the 

proper interface become difficult. Another way is to increase the change 

margins of 5 and 6, which is made these subsystems more insensitive to 

change. However, this will cause a high initial capital investment.  

3.4  Summary 

This chapter firstly develops a matrix-based simulation approach for change 

propagation prediction. Subsequently, a six-step screening process utilizing the 

developed matrix-based simulation approach multiple uncertainties is presented. 

This screening process provides recommendations for identifying critical 

subsystems for flexibility and robustness, based on change propagation analysis.  

app:ds:fuselage
app:ds:fuselage
app:ds:fuselage
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In particular, two indicators (i.e., EI-R and II-S), are proposed to facilitate the 

measurement of the combined effects of direct and indirect change propagation. 
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4  Real Options Valuation in 

Complex Engineering Systems  

4.1  Introduction 

Valuation is an important step in the early stage of system design. ROA is not 

only a valuation tool assessing the returns of the investments under uncertainty for 

stakeholders, but also a decision-support tool providing design and operation 

decisions for management to adapt to future change over the life-time of the 

system. The previous chapter developed a process to identify flexible 

opportunities embedded in complex system when facing multiple sources of 

uncertainty. This chapter presents how to guide the decision makers to design 

appropriate flexibility into the system through ROA results. Based on a recent 

developed technique for real options valuation (Datar, Mathews et al. 2007), an 

integrated approach which combines risk-adjusted cash flows simulation and 

decision tree technique is proposed in this chapter. 

Real options in complex systems are relatively difficult to evaluate compared to 

financial options. The main reason is that complex systems are often designed and 

operated under multiple uncertainties (e.g., technical uncertainties and market 

uncertainties). Another main reason is that the time to exercise of various real 

options in complex systems is different and uncertain. Therefore, to valuate real 

options in complex systems requires the valuation method has the capability to 

model the effects of multiple uncertainty and encode various decision rules in 

different timing. 

 



91 

4.2  Risk-adjusted Cash flows Simulation 

The risk characters of the investment are assumed to be divided into two parts: 

market-relate risk which can be replicated or hedged in the capital markets and 

project-specific risk which cannot. In addition, stakeholders owning the firm or 

the engineering system are assumed to be well-diversified and thus to be risk-

neutral towards project-specific risk.  

In financial literature, the growth rate of cash flows ix  for an investment at a 

small time interval t  can be assumed to follow a normal distribution: 

2( ) ~ ( t, t)i i ix t N       (4.1) 

The stochastic differential equation (SDE) equivalent is  

i i idx dt dz

dz dt

 



 


  (4.2) 

where dz  is a general Wiener process, and   is a normal (0, 1) distribution. 

Then the return of the cash flows iS  is followed by the GBM:  

i
i i i

i

dS
x dt dz

S
      (4.3) 

The discrete form of this process is 

2

( ) ( )exp[( ) ]
2

i
i i i iS t t S t t t


                      (4.4) 

The rate of return of a market index (e.g. stock, stock index, market portfolio) in 

any small time interval  can also be assumed to have a normal distribution:  

2( t) ~ ( t, t)m mm N        (4.5) 

t
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and a correlation coefficient mx    with the growth rate of cash flows ix  . 

According to equilibrium model of asset prices (Cox, Ingersoll Jr et al. 1985; 

Dixit, Pindyck et al. 1994), the risk-neutral drift or growth rates of cash flow i   is 

given by 

*

i i i      (4.6) 

where i  is the market risk premium of the underlying asset which depends on the 

correlation of the risk factors of the investment with other risks in economy.  

 In the capital asset pricing model (CAPM) (Sharpe 1964; Lintner 1965) the 

market risk premium of a specific investment i  is: 

( )i i m fr r     (4.7) 

where fr  is the risk-free rate, mr  is the expected return on the market portfolio, i  

is the market beta of the specific investment which measures the covariance of the 

investment with the market portfolio. It is given by 

i
i im

m


 


   (4.8) 

where im  is the correlation of the specific investment and the market, i  and m  

are the standard deviation of the investment and market.  

In CAPM the market price of risk uncorrelated to the market is assumed to be 

zero. Hence, utilizing this equilibrium approach, the net present value of cash 

flows for the investment is expressed by the following equation: 
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               (4.9) 

Therefore, the present value of a European call option payoff for the thk  

simulated path can be expressed as: 

[ ( )]

0 k k( ) max{ ( ) }
i

f im m f
fm

r r r T
r T

O T S T e Xe





  


                       (4.10) 

where k( )S T is the value of the cash flow path at time T  , X  is the exercise 

price at that time. In Equation(4.10) [ ( )]
i

f im m f
m

r r r





   is the calculated risk-

adjusted rate for cash flows.  

Thus the present value of the investment with option is given by: 

[ ( )]

0 k( ) { ( ) }
i

f im m f
fm

r r r T
r T

O T E S T e Xe





  

                (4.11) 

The expression for the value of flexibility/option is: 

0 0max[O ( ) ( ),0]optionV T V T    (4.12) 

where 0 ( )V T  is the NPV of the investment without flexibility. 

4.2.1 Valuation Process 

This approach is generalized into three steps. First, a deterministic model with 

most likely design input variables (e.g. expected demand, price, cost, etc.) is 

constructed to estimate the cash flows in each time period using Excel®. If there 

thk
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are a variety of uncertain variables, a sensitivity analysis can be performed to 

select the important uncertain design variables. Next, uncertainty is incorporated 

into the Monte Carlo simulation model as several key random variables and the 

NPV of the whole design and the cash flow in each time period are estimated by 

discounting cash flows in the computed risk-adjusted discount rate. The last step 

is to incorporate identified real options into cash flow model by adding decision 

node in each exercising time period and comparing the present value of exercising 

an option or options with 0 at that time. Finally, the payoff distribution as well as 

the present value of real options can be obtained by summing up all the cash 

flows of the design with real options.    

4.2.1.1  Step 1: Create a Deterministic Cash Flow Model of the 

Initial Design without Flexibility and Identify Main 

Sources of Uncertainty 

First of all, a model using excel spread sheet is created to estimate the cash flow 

stream for the initial design without flexibility under the deterministic projections 

of uncertainty (e.g. price, demand, cost, etc.) over the lifetime of the design. If 

there are more than one uncertain variable, a sensitivity analysis is conducted to 

determine how these variables affect the cash flows of the initial design. Three 

scenarios of random variables for the cash flow stream are estimated: the most 

likely or expected, the optimistic, and the pessimistic. By performing the 

sensitivity analysis, the significant random variables for the simulation in the next 

step are determined.  
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4.2.1.2  Step 2: Incorporate Uncertain Variable(s) into the Model 

and Discount Cash Flows by Calculated Risk-Adjusted 

Rate 

In this step, key uncertain variables (e.g. demand, price) are entered as simulation 

variables in the cash flow pro forma spreadsheet. To be consistent with classical 

option pricing model, the evolution of market related variables for cash flow 

calculation are assumed to follow a GBM process. The correlation coefficient of 

the market related variables and the market index are also estimated.  

Key input parameters of random variables for the cash flow model can be 

determined by using as much market information as possible. First, the mean and 

variance of the market index return can be estimated from historical data of 

financial market. Next, the normal distribution of the market returns is 

approximated by a discrete distribution using the moment-matching methods 

(Miller and Rice 1983; Smith 1993) or the equal-area approach (McNamee and 

Celona 1987). Third, conditioning on each state and probability, the possible 

growth rate of each random variable on that state is estimated by the project 

manager. Finally, the mean and variance of random variables as well as their 

correlation with the market returns are estimated.  

Once the input variables are determined, a Monte Carlo simulation is conducted 

to combine multiple sources of uncertainty into a single representative 

uncertainty: cash flow without option in each time period. Excel add-ins (e.g. 

RiskSim and @Risk) or more professional software (e.g. Crystal ball©) can be 

used to run the simulation easily. Then the present value (PV) of cash flow 

without option in each time period is discounted at the calculated risk-adjusted 

rate for that period. The PV of the project without option at each time period is 

the sum of the PV of all future cash flow till that time. Thus, the present value of 

the design without option at time 0 is obtained. 
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4.2.1.3  Incorporate Real Options and Evaluate the Value of these 

Options 

The third step is to incorporate the identified flexibility by integrating simulation 

model with decision tree technique. Classical Monte Carlo simulation techniques 

for option pricing use continuous-time simulation to simulate the lognormal 

process of the underlying price movement, and valuate the option price at the 

exercise time. In the proposed cash flow simulation model, discrete-time 

observation of a GBM can be generated since a GBM is a Markov process. Thus 

decision nodes can be easily inserted in the exercising time to incorporate flexible 

design and management decisions into the model. The flexible decisions can be 

easily expressed by a logic function.  

For instance, when there are no options, the formula for the present value ( , )oO t j  

at time t , in path j  is given as: 

0 0 0( , ) ( , ) O ( , )O t j C t j t t j    

where the present value  at time t  in path j  equals to the present value of 

cash flow received at that time plus the present value 0( , j)O t t  in the next time 

period. When there is an option to abandon at time t  , the rollback PV of the 

abandon option in path j  is given by: 

0 0 0( , ) max[ ( , ) O ( , ),0]O t j C t j t t j   . 

Thus the value of the abandon option is given by calculating the average of all 

simulated paths: 

0 0 0( ) {max[ ( ) O ( ),0]}O t E C t t t    

( , )oO t j
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4.2.2 Numerical Case Study 

A numerical case is presented in this section to illustrate how the cash flow 

simulation model can be applied to the valuation of different real options. This 

case study evaluates an oil production project with multiple options in different 

time periods (Brandão, Dyer et al. 2005) 

4.2.2.1  Problem Description 

The problem which is utilized by Brandão, Dyer et al. to illustrate their binomial 

decision trees for real options valuation is an oil production investment problem. 

As stated in their paper, “the example project has estimated reserves of 90 million 

barrels and the initial production level of 9 million barrels declines by 15% per 

year over its 10-year operating life. The variable operating cost starts at $10 per 

barrel in Year 0 and grows at 2% per year. Oil price starts at $25 per barrel and 

grows at 3% per year. There is also a $5 million per year fixed cost that is not 

shown in the table. The appropriate risk-adjusted discount rate is assumed to be 

10% per year, and the risk-free rate is 5% per year.” The expected future cash 

flows are listed in Table 4-1.  

Table 4-1 Base case expected cash flows for the project in $ million (Brandão, Dyer et al. 

2005) 

 

The time step t  is one year. The initial expected net present value (ENPV) of 

the underlying project calculated by a deterministic discounted cash flow (DCF) 



98 

model is $404.0 million. The volatility   determined by using this DCF model 

and a Monte Carlo simulation is 46.6% per year. A binomial tree is used to 

approximate the GBM process of the underlying value.  

In Year 5, there are three alternatives in the project: (1) option to divest for a price 

of $100 million; (2) option to buy out the partner’s 25% share for $40 million; 

and (3) option to continue as before. Decision nodes are added in the tree to 

evaluate the ENPV of the project with these real options, which is $444.9 million.  

To incorporate private uncertainty into the model, the authors suppose that from 

Year 6 to Year 10 which is the end of the project’s life, there will be a risk that the 

drilling machines may reach an underlying aquifer and they will begin producing 

water, and operations should be shut down. This private risk is uncorrelated with 

any market return. Two additional options are considered: option to continue or to 

shut down the operations. This uncertainty reduces the ENPV of the project to 

$428.0 million.  

However, Smith points out that the volatility of project’s initial ENPV is 

overestimated in BDH approach since the calculated volatility is the cumulative 

outcome of all future uncertainties over project’s operating lifetime, not the actual 

volatility during 1 unit of the time step ( 1t   ) (Smith 2005). By searching he 

also suggests a volatility of 25.5% per year would fit the original cash flow model 

much better, although still not perfect. 

 

4.2.2.2  Solutions Using the Proposed Risk-adjusted MC-DT 

Approach  

For this example, instead of using an exogenously specified risk-adjusted 

discounted rate for the cash flow model, key random variables (i.e. operating cost 

and oil price) are assumed to correlate with a market-traded asset. The long-term 

market returns of the market index are assumed to be normally distributed with a 
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mean of 10% and a volatility of 20%. The correlation among this market return, 

operating cost and oil price can be determined by moment-matching methods 

(Miller and Rice 1983; Smith 1993) or the equal-area approach (McNamee and 

Celona 1987). For the illustration purpose, it is first assumed that the operating 

cost and oil price are both perfectly positively correlated with the market return, 

thus 1  . In this case, the market is complete.  

Figure 4-1 displays the risk-adjusted cash flow model for the evaluation of real 

options. Rather than approximated by a simple univariate, the stochastic process 

of cash flow and project value can be directed generated by simulating multiple 

random variables such as oil prices and variable operating cost. From the 

following cash flow model, we can obtain an estimated volatility 20% for net cash 

flow per year, which is the same as the assumed volatility of market returns. The 

calculated correlation between the net cash flow and the market return in each 

year is 1. This is identical to the theatrical value, since the random variables are 

all perfectly positively correlated with the market return. Therefore, the calculated 

risk-adjusted discounted rate is 10%, thus equalling to the one assumed in BDH 

approach. The ENPV of the project without real options is $401 million, slightly 

different from the one calculated in BDH approach since the discounted factor in 

the proposed model is computed in geometric instead of arithmetic form. 
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Figure 4-1 A risk-adjusted cash flow simulation model for the oil production Example 

(Brandão, Dyer et al. 2005) 

 In Year 5, three alternative decisions can be expressed by: 





0 0 0

0 0

0

( , ) max ( , ) O ( , ),

4
                        ( , ) $40 O ( , ),

3

                        ( , ) $100

O t j C t j t t j

C t j t t j

C t j

   

   



                (4.13) 

where the three terms correspond to the payoff of three decisions: option to 

continue, option to pay $40 million to buy out the partner’s 25% share thus 

gaining 4/3 of the expected future value, option to sell your share for $100 

million. The Excel logic functions are used to return the distributions of 

maximum in all simulated paths. The ENPV of the project with flexibility is 

increased to $440.9 million.  
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Figure 4-2 Cumulative distributions of NPV for project with and without flexibility 

Figure 4-2 displays the cumulative probability distributions (CPD) of NPV for the 

project with and without flexibility. It shows that by incorporating flexibility into 

the project, the CPD of project’s NPV shifts to the right, which means that the 

potential downside risks are limited and possible upside opportunities are 

explored by making optimal flexible decisions.  

If the correlations between market returns and oil price as well as operating cost 

are 0.8mp   and 0.6mc   respectively
4
, the computed risk-adjusted discount 

rate is decreased to 7%, the ENPV of the project without flexibility is $447 

million and the ENPV of the project with flexibility is $516.1 million. The 

ENPVs are increased since the correlation between market return and the cash 

                                                 
4
 In fact, since oil is traded in the market, if the oil stock is chosen as the market asset, it is always 

perfectly positively correlated with the oil price, but for demonstration purpose, I assume that they 

are partially correlated, it is reality when the market is incomplete which the underlying asset is 

not traded in the market and is partially correlated with a traded asset.    

NPV of project with flexibility 

NPV of project 

without flexibility 
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flow is decreased, and the private risks which are uncorrelated with market return 

are discounted in risk-free rate.  

 

4.3  Summary 

The proposed approach augments and extends DM method (Datar, Mathews et al. 

2007) by integrating the cash flow simulation model with decision tree technique. 

The advantages of the proposed risk-adjusted cash flows simulation based 

approach are listed as follow.  

First of all, it is practically implementable. Decision tree can be integrated in each 

discrete time period. Therefore valuing various options (e.g. multiple options, 

compound options and American option) can be valued by encoding relevant 

rules at each decision node.  

Second, it is consistent with financial theory. Financial theory the motion of the 

uncertainty is path dependent. In DM method, cash flows in different time periods 

are assumed to follow triangular distribution and are not naturally correlated. The 

DM method requires a subjective estimation of correlation matrix based on 

historical data. However, in practices, especially for projects with new 

technologies, such information is hard to obtain. While the proposed approach use 

a discrete time approximation of GBM to simulate cash flows in different time 

period. The Markov process of the discrete time GBM captures the path 

dependence of cash flows between two periods. Moreover, the approach properly 

accounts for both systematic and project-specific risks by risk adjusting the cash 

flow based on CAPM model, and thus it is able to provide a correct valuation 

from a diversified invertors’ viewpoint. 

Third, it uses market information as much as possible. Rather than exogenously 

estimating a risk-adjusted rate in DM method, market information such as a 
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probability distribution of a market traded asset correlated with the cash flows and 

the possible return estimation of the cash flow conditional on different market 

returns of the traded asset are used to calculate the risk-adjusted discount rate.  

In addition, comparing with lattices and tree widely used in practical ROV 

methods, the cash flow simulation based model can incorporate multiple source of 

uncertainty without suffer from “curse of dimensionality”, and provides not only 

the mean value but also probability distribution of the option payoffs, which 

provides more insight on the risk and gain of the design value with flexibility.   
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5 Case Study: Embedding 

Flexibility in Unmanned Aerial 

Vehicle System Design 

5.1  Introduction 

In previous chapters, a framework which integrates two novel approaches has 

been proposed to design and manage flexible engineering systems under complex 

interactions of environmental uncertainties and system architectures. The purpose 

of this chapter is to demonstrate the application of the two proposed 

methodologies in a design study for a hypothetical commercial Unmanned Aerial 

Vehicles (UAV) manufacturing project development.  

This chapter starts with a description of UAV systems and the opportunities and 

challenges for UAV system designers and manufacturers, followed by the 

demonstration the proposed two-stage real options framework. The first stage of 

the framework applies the proposed screening process and matrix-based 

simulation approach to determine the most potential areas for embedding 

flexibility. The second stage of the framework uses the proposed cash flow 

simulation-based approach to value and select real options identified in UAV and 

provide the optimal staged deployment strategies over the lifetime of the UAV 

manufacturing project. 
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5.2  Background 

UAVs are remotely piloted or self-piloted aircraft that can carry various payloads 

(e.g. cameras, sensors, communications equipment,etc). They can play the same 

roles as manned aircrafts, but they are often more cost-effectively and more 

preferred for the “dull, dirty or dangerous” missions.  

 

 

Generally, a UAV system consists of three main parts: the air vehicle, the ground 

control station and the operator (as shown in Figure 5-1). Only the air vehicle and 

the ground control station are analyzed in this case study, for simplifying the 

discussions. The air vehicle includes all subsystems within the physical airframe, 

 

Ground Control Station 

Downlink 

Uplink 

Air Vehicle 

GPS Navigation 

Figure 5-1 UAV system 
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including the airframe itself and all interior avionics.  A ground control station 

(GCS) is a land- or sea-based control center that provides the facilities for human 

control of UAV. It contains two subsystems: ground station to carry equipments 

(e.g. a laptop computer and the GCS hardware), and the operator control unit 

which is a software system providing a graphical user interface. To simplify the 

discussions, this research only considers flexibility in hardware subsystems to 

maintain or enhance system lifecycle value under uncertainty. However the 

methodology can be extended to include flexibility in software system (e.g 

modularizes software for easy upgrading).  

UAVs are capable of performing a wide range of missions. Currently, the 

majority of these functions are primarily set to fulfill military and special 

operation applications, mainly for the purposes of intelligence, surveillance and 

reconnaissance (ISR). “UAVs are 99 percent ISR today, they need to be 

multipurpose – ISR and target acquisition, aerial network layer, attack 

capabilities, sustainment and cargo”, said Glenn Rizzi, deputy director at the 

Army Unmanned Aerial Systems Center of Excellence, USA. With the increasing 

used in the civilian applications (e.g. such as earth observation for scientific 

research, coastal patrol for homeland security, forest fire damage assessment) and 

evolving customer requirements, UAVs are required to fulfill a greater scope of 

functional requirements.  

Although the growing demand for UAVs in civilian applications provides an 

opportunity to commercial UAVs manufacturers, it is also a challenge since the 

long-term demand of UAVs is greatly affected by various technical, economical 

and political uncertainties. For instance, the fast evolution of aerospace 

technologies can not only provide new functions in UAVs but may also lower the 

manufacturing cost of new UAVs. Therefore some customer needs will shift 

towards new UAVs. If the existing UAV platform will not be able to adopt the 

new technologies with relative ease, it may become obsolescence, thus causing a 

large amount of lost in capital investment.  
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Historically, due to the high requirements in military applications, various UAVs 

platforms have been customized to satisfy a specific or a small range of military 

purposes via optimization technique. This requires significant capital investments 

for independent R&D efforts and individual manufacturing lines, thus resulting 

high-cost UAV applications. However, when UAVs are applied for civilian uses, 

customers require less expensive UAV. Suppose currently, UAVs with basic 

functions are sufficient to fulfill the daily missions of the customers. However, 

suppose that there will be a growing demand for UAV which is able to perform 

more missions with higher functional requirements. The customized platforms are 

expensive and difficult to adapt to changes in missions once built and deployed. 

On the contrary, flexible platforms are able to accommodate emerging technology 

innovation and rapidly changing customer needs with relatively low cost. For 

instance, a flexible UAV is designed with interchangeable wings and 

corresponding interfaces on the fuselage. This will allow the UAV to achieve 

different speed requirements, thus providing a constant high performance with 

fewer penalties (i.e. cost, time) during its lifetime.  

To maximize profits under uncertainty, UAV system designers and manufacturers 

should consider the potential to embed flexibility/real options in UAVs 

manufacturing. The flexibility is incorporated via flexible product platform 

strategy. Flexible product platform strategy is a widely used as staged deployment 

strategy in many high-technological industries (e.g. automobile and aircraft 

manufacturing). It begins with a platform design to meet current requirements of 

the stakeholder with relatively low capability, but also provides the opportunities 

to modify or replace the flexible subsystems for higher capability with relatively 

low cost. However, it is difficult to identify, value, and manage appropriate real 

options “in” a UAV system due to multiple uncertainties which affect the UAV 

performance and demand, the complexities of system architecture, and the risks 

associated with the additional investment cost of flexibility. This case study aims 

to develop a flexible UAV platform which can maintain or improve system 
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lifetime value by adapting to multiple future uncertainties. The following sections 

provide a description on how to embed flexibility in UAV manufacturing project 

utilizing real options.     

 

5.3  Identify Real Options “in” System 

This section screens the critical subsystems where system designers should place 

more efforts to incorporate flexibility and robustness.       

5.3.1 Step 1: Identify System Purpose and Critical 

Mission(s) 

The purpose of the UAV manufacturing project is to design and produce civilian 

UAVs for multiple mission applications. The mission profiles of UAVs are 

determined by identifying current and possible future customer needs. The 

mission requirements are then decomposed into a set of functional requirements 

(FRs). Important FRs for mission performance characteristics are specified in 

payload, range, endurance, typical operating and maximum altitude, cruise and 

maximum speed, etc. Different missions require different combinations of 

performance specifications. For example, a city patrol mission requires long 

endurance (> 24 hours), and does not have a high cruise or dash speed. 

Agricultural missions such as crop-spraying, seeding, and remote sensing, require 

a UAV to carry heavy payload, and do not require a long range. A typical 

agricultural UAV – Yamaha’s RMAX can carry a 28 kg payload and has 2 km 

operational range.  

Suppose the original UAV is designed for personal “over the hill” reconnaissance 

mission. However, in the near future, the customers may require a UAV incapable 

of (1) searching for survivors from shipwrecks, aircraft accidents etc; (2) 
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detecting wild fire on a large area of forest; (3) street loitering, inspection and 

patrol.   

 

5.3.2 Step 2: Identify Main Sources of Uncertainty 

and Change Scenarios 

Like many other complex engineering systems, the design and development of a 

UAV system are constantly facing three major sources of uncertainty: dynamic 

market place, evolving technologies and changing operation environment. For 

each source of uncertainty, a change scenario is assumed below: 

1. A change in payload due to the innovation in sensor technology. Suppose 

a new sensor technology will be able to provide both day and night 

imaging. The new sensor can be applied in the search and rescue mission 

to enhance the searching performance.  

2. A change in range due to the changing environment when performing the 

mission of wild fire suppression. The area of forest may be large than 

current expectation, thus requiring a UAV to fly a longer range to detect 

the fire spot.  

3. A change in endurance due to customer demand. Suppose there will be a 

growing need for UAV patrolling to assist the daily mission of police.  

Each change scenario is weighted by the product of the probability sp that the 

change will occur in the future and its opportunity sO which quantifies the impact 

of the change scenario on system’s LCV.  

Table 5-1 lists the sp and sO for each change scenarios consider in this case study.   
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Table 5-1 The probabilities and opportunities of change scenarios 

Change Scenario (CS)   

Payload ( 1CS ) 0.6 0.8 

Range ( 2CS ) 0.4 0.6 

Endurance ( 3CS ) 0.8 0.8 

 

5.3.3 Step 3: Determine an Initial Design and Value 

Assessment 

The baseline design was designed to satisfy the originally intended purpose of the 

system without considering future uncertainties. It is capable to perform the 

mission of “over the hill” reconnaissance in this case study. The value of the 

baseline is measured in monetary form in order to be consistent with the real 

options valuation methods proposed in Chapter 0.  Flexibility of the system is 

then measured by comparing to value of the original design.  

 

5.3.4 Step 4: Develop System Representation and 

Access Change Dependency 

The UAV system is represented by an ESM which comprises three DSMs and the 

corresponding DMMs. The DSMs are system drivers DSM, functional 

requirements DSM and subsystems DSM. The changes in system drivers 

sp sO
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(described by change scenarios) propagate to subsystems via changes in 

functional requirements. Each change scenario is supposed to map to a change in 

a unique functional requirement. To simplify the representation, only the change 

relationships of system drivers (SDs) to subsystem and subsystem to subsystem 

are presented in an extend DSM.  

Table 5-2 lists the main subsystems of a fixed wing UAV (Musial 2008; Hamraz, 

Caldwell et al. 2012)). Recall in Section 3.3.4, the subsystem directly affected by 

external changes is called as a change initiator. The identified change initiators for 

each change scenario are presented in Table 5-3 (Raymer 2006; Wilds 2008). The 

magnitude of a change in one subsystem caused by a change in other subsystems 

or system drivers (external changes) is quantified by the product of probability 

and the corresponding change impact. The direct likelihood and impact matrices 

including critical links are shown in Figure 5-2 and Figure 5-3 respectively.   

Table 5-2 Subsystems of a fixed wing UAV 

1. Wing 2. Empennage 3. Propeller 4. Fuselage 5. 

Transmission 

6. Sensor 

7. Camera 8. Micro 

Controller 

9. Data 

Transmitter 

10. Video 

Transmitter 

11. Antenna 12. 

Autopilot 

13. 

Battery 

14. Motor 15. Battery 

Charger 

16.Parachute 17. Auxiliary 

Electrics 

18. Ground 

Station 

 

Table 5-3 Identified change initiators for each change scenario 

Change Scenario Change Initiator(s) 
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Payload ( ) 6. Camera 

7. Sensor 

Range ( ) 9. Data Transmitter 

11. Antenna 

Endurance ( ) 1. Wing 

3.  Propeller 

13. Battery 

14. Motor 

 

 

Figure 5-2 Likelihood DSM composed of system drivers to subsystem DMM and subsystem 

DSM (in %) 

 

1CS

2CS

3CS
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Figure 5-3 Impact DSM (in %) 

 

5.3.5 Step 5: Predict Change Propagation Impacts 

Using Proposed Matrix-Based Simulation 

Approach 

5.3.5.1  Identify and Remove Cycle-Causing Edges  

Before calculating the change prediction, the edges which cause cycles in the 

change propagation network and the associated elements are identified and 

removed using the proposed algorithm. Without drawing the DG which includes 

18 nodes and the complex edges between nodes, the proposed algorithm is able to 

identify and remove the cycle-causing edges as late as possible. For instance, 
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Figure 5-4 displays the cyclic paths among subsystem 3, 5, 12. The edges 5 3 , 

12 3 and12 5 are removed and recorded by the proposed algorithm.  

 

Figure 5-4 Cyclic paths among subsystem 3,5,12 

 

5.3.5.2 Change Propagation Analysis 

The proposed matrix-based simulation algorithm is applied to analysis the change 

propagation probabilities and risks on subsystems due to multiple environmental 

uncertainties. Two indicators are calculated to measure the change propagation 

impacts. The environmental impact-received (EI-R) of a subsystem is a measure 

of how each subsystem is affected by all identified environmental uncertainties. 

The Internal Impact-Supply (II-S) of a subsystem is a measure of how the 

subsystem influences others if it is required to be changed in response of 

environmental uncertainties. Table 5-4 displays the calculated indicators of all the 

subsystems. 
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Table 5-4 EI-R and II-S of subsystems 

 

5.3.6 Identify Critical Subsystems for Flexibility 

and Robustness 

Figure 5-5 portrays the two indicators EI R  and II S of each subsystem as 

orthogonal dimensions.  

 

 

Figure 5-5 Classification of subsystems in UAV 

 

The following subsystems are identified for flexibility: 

1C  

2C  

3C  



116 

1. Subsystems with high EI-R and high II-S are the primary candidates for 

flexibility. The subsystem 6 (sensor) and 7 (camera) are considered as 

promising areas for embedding flexibility. They are likely changed in 

response to high degree of environmental uncertainties. Actually they are 

directly influenced by future change scenario in technology sensor for day 

and night image. This change scenario has a relatively high probability 

and opportunity.  They also cause relative high impact on the system. The 

impact/switch cost of the sensor and camera are relatively high (60% of 

estimated direct impact caused by CS1). To reduce the switch cost, sensor 

and camera subsystems should be modulated thus providing real options to 

for easily modifying or replacing in the future.  

2. Subsystems 8 and 13 with high EI-R is also recommended as flexible 

candidates. Subsystem 8 (Avionics) is not directly influenced by change 

scenarios. However, due to the indirect effect, its EI-R is relatively high, 

thus it is very likely to be changed in response to external changes. It also 

has a medium II-S, mainly caused by its high switch cost.  Subsystem 13 

(battery) is very likely to be changed due to future change in endurance 

and by other subsystems. To enable possible change with relatively low 

cost, avionics and battery subsystems should be modulated.  

The following subsystems are identified for robustness 

1. Although Subsystem 4 (Fuselage) has a high EI-R, a change in fuselage 

will cause a high cyclic effect due to the many cyclic-causing edges from 
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fuselage to other subsystems. Thus it should be made insensitive to change 

(robustness) by increasing its change margin.   

2. Subsystem 14 (motor) has relatively low EI-R but high II-R. A change in 

14 is likely to cause high switch cost more changes in other subsystems. 

Therefore it should be insensitive to change.  

5.4 Evaluate Real Options “in” System 

5.4.1Design Alternatives 

In Section 5.3.6 four subsystems identified for embedding flexibility: camera, 

sensor, avionics, and battery. Several assumptions simplifying the calculation are 

considered to emphasize the valuation process. 

The UAV manufacturers consider three design alternatives: 

1. Fixed platform 1 which produces basic UAV1 to meets current customer’s 

requirement.  

2. Fixed platform 2 which produces enhance UAV2 with flexible battery 

bay. 

3. A flexible platform 3 which is able to produce basic UAV1 and enhances 

endurance UAV2 with flexible battery bay.  

The manufacturer only chooses to one type of platform: 1, 2 or3. Each platform 

has a capacity limit at 2000 UAV per year. A flexible platform is able to produce 

the more valuate product first if the demand exceed the capacity. A 10-year period 

is considered: the manufacturer launch the project at year 0. They are able to 
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produce UAV1 which meet the basic requirement at year 1, UAV2 which meet 

the enhance endurance at year 2 due to the technical difficulty. Table 5-5 list the 

cost for each product platform. Table 5-6 provides the market information of the 

demand. It is assumed that the demands for UAV 1 and UAV2 are correlated with 

a market index with a mean 10% and volatility 15%.  

Table 5-5 Different types of UAV cost 

Platform 

Type 

Fixed 1 Fixed 2 Flexible 

Launch 

Cost 

$10,000 $15,000 $20,000 

Fixed Cost $1.5M $1.75M $1.95M 

Marginal 

Cost 

$2000 per UAV $2200 per UAV $2500 per UAV  

Price $7000 basic $10000 enhance 

endurance 

$7000 basic 

$10000 enhance 

endurance 

 

Table 5-6 Demand Information 

 UAV 1 UAV 2 

Forecast Demand 600 at year 1 500 at year 2 

Growth Rate 10% 13% 

Volatility 15% 15% 
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5.4.2Result  

Table 5-7 Simulation result 

 

By using the proposed risk-adjust MC-DT approach, the ENPV of each platform 

is shown in Table 5-7. It shows that the flexible product platform has the highest 

ENPV. The cumulated distribution NPV for each platform is displayed in Figure 

5-6. 

 

Figure 5-6 CDF of NPV for each platform 

Fixed 2 
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6 Conclusions and Future Work 

6.1  Summary 

This thesis introduces a framework and methodology to improve the live-cycle 

value of engineering systems which require intensive capital investment, are 

difficult to change once fielded due to complex interconnections among 

subsystems, and operate under multiple sources of uncertainty for a long time 

period (e.g. 10 years, 20 years and even longer). Flexibility is embedded in 

engineering systems to provide options to expand, contract, switch, improve, or 

modify the identified flexible elements, thus taking advantage of upside 

opportunities and avoiding downside risks.  

A two-step framework with two distinct but complementary approaches is 

developed to design and manage real options “in” complex engineering system. 

Chapter 3 presents a systematic six-step screening process to screen a system for 

locating the promising system elements for real options in the stage of real option 

identification. Firstly, a matrix-based simulation approach is proposed and 

utilized to analyze the change propagation behaviors and impacts of subsystems 

due to multiple sources of uncertainty. Secondly, two indicators, which measure 

the change propagation impact of a subsystem received and supply to others, are 

proposed. Based on the two proposed indicators and the identified cycle-causing 

subsystems, comprehensive recommendations are proposed to identify flexible 

subsystems and insensitive (robust) subsystems.  

Chapter 4 presents a practically implementable and theoretically consistent 

valuation approach to assess the value of the embedded options with the objective 

of selecting the best combination of real options and determining the optimal 

timing to exercise the real options.  The proposed risk adjusted MC-DT approach 
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integrates Monte Carlo simulation and decision tree techniques. Numerical 

simulations have been conducted to demonstrates the effectiveness of the 

proposed approach. 

Chapter 5 presents a case study of UAV manufacturing project. Both the six-step 

screening process proposed in Chapter 3 and the risk adjust MC-DT approach 

proposed in Chapter 4 are applied. The simulation results have indicated the 

effectiveness of them.  

 

6.2 Contribution 

This thesis proposed a systematic framework for designing flexibility in 

engineering systems under multiple uncertainties. The specific contributions are: 

1. A novel change propagation prediction method based on 

simulation is proposed. The advantage of the proposed method is 

that it avoids “brutal-force” searching, and thus it is less 

computational intensive compared to those in the literature. This 

renders it easily implementable for engineering practices. Another 

main advantage is that it allows analysis of change propagation 

effects under multiple changes while the existing methods only 

allow single change.  

2. A comprehensive six-step screening process is proposed. The main 

merit of the proposed screening process is that both the direct and 

indirect impacts of change propagation under multiple 

uncertainties in the operational environments are considered. 

Moreover, cyclic effects of change propagation are identified and 

recommendations for how to eliminate them are proposed. Two 

indicators, “EI-R” and “II-S”, are proposed to facilitate the 
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measurement of the combined effects of direct and indirect change 

propagation.  

3. A practically implementable and theoretical consistent real option 

valuation approach is proposed. The key advantage of this 

proposed valuation approach is that it is able to incorporate 

multiple sources of uncertainty. Another key advantage is that it is 

able to evaluate various types of real options and provide statistic 

results for further risk analysis. Moreover, it only requires minimal 

subjective estimation of input parameters. Furthermore, the 

proposed approach is consistent with financial theories since it 

considers both systematic and project-specific risks by risk 

adjusting the cash flow based on CAPM model.  

   

6.3 Future Work 

There are several interesting directions for future work in the areas of real options. 

Ones of the most important future directions is in the field of real option 

management (as shown in Figure 6-1). In the management stage, system states 

should be constantly monitored.  The monitor step not only provides information 

for system designers to determine whether and when to exercise the options, but 

also provides feedback for previous stages, thus allowing re-identification and re-

evaluation of real options “in” system. New real options may be discovered with 

more information available.  
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Figure 6-1 Future extension of current research work 

Another research direction is to implement the proposed framework on practical 

systems. Although the UAV case study indicates that the proposed methodology 

works in a satisfying manner, it is better to have it implemented and validated by 

real complex engineering systems. 

.   
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