

CLUSTER COMPUTING:

A NOVEL PEER-TO-PEER CLUSTER FOR GENERIC

APPLICATION SHARING

GUO CHEN

NATIONAL UNIVERSITY OF SINGAPORE

2013

CLUSTER COMPUTING:

A NOVEL PEER-TO-PEER CLUSTER FOR GENERIC

APPLICATION SHARING

GUO CHEN

(B.ENG. (HONS.), NUS)

A THESIS SUBMITTED FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

DEPARTMENT OF ELECTRICAL AND COMPUTER

ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2013

1

DECLARATION

 I hereby declare that the thesis is my original work and it has been

written by me in its entirety. I have duly acknowledged all the

sources of information which have been used in the thesis.

 This thesis has also not been submitted for any degree in any

university previously.

Guo Chen

01 Aug 2013

2

ACKNOWLEDGEMENTS

 I owe my deepest gratitude to my supervisor, Associate Professor Tay Teng

Tiow for his unceasing support and inspiration in guiding me through all these

years to make this thesis possible. I am truly grateful for his constant

encouragement and teachings during this journey. In addition to the valuable

technical knowledge, I have also learned from him the importance of being

persistent, thoughtful and conscientious. I sincerely wish him happiness every

day.

 Special thanks go to Associate Professor Bharadwaj Veeravalli and Dr. Ha

Yajun from ECE department of National University of Singapore. I am thankful

for their helpful comments and invaluable feedbacks during my research work.

 I would like to express thanks to my current employer, Computational

Engineering department in Advanced Technology Centre of Rolls-Royce

Singapore, my manager and colleagues for their support during the time that I

spent working on this thesis.

 I thank my lab partner Dr. Zhu Cen Zhe who contributed his time and ideas

whenever I talked to him about the difficulties encountered. I also would like to

acknowledge a group of FYP students who have contributed their time in related

work about this research: Mr. Tan Kah Onn, Mr. Mohammed Kassim and Mr.

Chan Chew Wye.

 I would like to thank department of Electrical and Computer Engineering,

National University of Singapore for offering me the scholarship of my study and

providing me with this great opportunity to work on this exciting project.

 On a personal note, I would like to thank my families for their unlimited love

and support. I wish to offer my heartfelt gratitude to my husband Zhao Fucai who

has constantly supported and encouraged me at difficult times to work on

completing my thesis. I would like to dedicate this thesis to my loving son Zhao

Xinhong, who has accompanied me throughout the writing process and helped me

to stay light-hearted.

 Lastly, I am very grateful to those who have given me their support in any

respect during the completion of the thesis.

Guo Chen

01 Aug 2013

3

TABLE OF CONTENTS

DECLARATION .. 1

ACKNOWLEDGEMENTS.. 2

TABLE OF CONTENTS ... 3

SUMMARY ... 7

LIST OF TABLES .. 9

LIST OF FIGURES .. 10

CHAPTER 1 INTRODUCTION ... 13

 Cluster Computing .. 13 1.1
 Definition ... 13 1.1.1

 Applications of Cluster Computing .. 14 1.1.2

 Advantages and Disadvantages of Cluster Computing .. 16 1.1.3

 Application Sharing ... 20 1.2
 Definition ... 20 1.2.1

 Application Specific v.s. Generic Application Sharing ... 21 1.2.2

 Scenarios: Remote Log-in v.s. Real-time Collaboration.. 22 1.2.3

 Benefits and Challenges .. 23 1.2.4

 P2P Network System ... 24 1.3
 Structured P2P System .. 24 1.3.1

 Unstructured P2P System .. 25 1.3.2

 Research Problem and Scope of Work .. 26 1.4
 Problem Statement ... 26 1.4.1

 Sub-problems .. 27 1.4.2

 Contributions .. 29 1.5

 Thesis Outline ... 31 1.6

CHAPTER 2 RELATED WORK .. 33

 Cluster Computing Solutions ... 33 2.1
 Heterogeneous support .. 33 2.1.1

 Parallel programming support .. 33 2.1.2

4

 Check-pointing .. 34 2.1.3

 Process migration .. 34 2.1.4

 Load balancing ... 35 2.1.5

 Graphical user interface .. 35 2.1.6

 Application Sharing Solutions ... 36 2.2

 Communication Protocols for Application Sharing .. 42 2.3
 Remote Frame Buffer (RFB) for Virtual Network Computing (VNC) 42 2.3.1

 Microsoft Remote Desktop Protocol (RDP) ... 43 2.3.2

 ITU-T T.128. Multipoint Application Sharing ... 44 2.3.3

CHAPTER 3 A NOVEL BROKER-MEDIATED SOLUTION TO GENERIC
APPLICATION SHARING IN A CLUSTER OF CLOSED OPERATING SYSTEMS
 46

 Introduction .. 46 3.1

 System Overview .. 48 3.2
 System Architectures .. 49 3.2.1

 Use Case Diagram .. 53 3.2.2

 Design and Methodology .. 54 3.3
 Establishing Multiple Remote Application Sessions .. 55 3.3.1

 Implementation of a Demonstrating System ... 68 3.4
 Detailed Programming Model ... 68 3.4.1

 App Share Client .. 70 3.4.2

 App Share Server ... 72 3.4.3

 Results and Discussion .. 76 3.5
 User Interface .. 76 3.5.1

 Multi-session Load Analysis... 78 3.5.2

 License Issue on Application Sharing .. 83 3.5.3

 Some Limitations of Our Implementations ... 84 3.5.4

 Summary... 85 3.6

CHAPTER 4 BUILDING A RELIABLE FILE SYSTEM FOR FAULT-
TOLERANT SERVICES ... 86

 Introduction .. 86 4.1

5

 Portable File System (PFS) on Filesystem in User Space (FUSE) 87 4.2

 Implementation of PFS .. 88 4.3
 Set-up of FUSE and Host Computers ... 88 4.3.1

 Logging of File Operations ... 90 4.3.2

 Client-Server Communication ... 90 4.3.3

 Explanation of Callback Functions ... 92 4.3.4

 Testing and Evaluation .. 95 4.4
 Latency Test .. 96 4.4.1

 Integrity Test for File System ... 96 4.4.2

 Summary... 98 4.5

CHAPTER 5 IMPRECISE COMPUTATION SCHEDULING ALGORITHMS
FOR REAL-TIME CLUSTER COMPUTING ... 99

 Introduction .. 99 5.1

 System Model ... 102 5.2

 Scheduling Method and Modelling ... 105 5.3
 Scheduling Algorithms ... 105 5.3.1

 Optimal Load Distribution ... 107 5.3.2

 ICSCluster Simulator ... 108 5.4

 Results and Analysis .. 112 5.5

 Summary... 117 5.6

CHAPTER 6 CONCLUSIONS AND FUTURE WORK 118

 Conclusions ... 118 6.1

 Future Work .. 119 6.2
 Security Management ... 119 6.2.1

 Reliability Management .. 120 6.2.2

 Resource Management ... 120 6.2.3

BIBLIOGRAPHY ... 122

GLOSSARY .. 129

APPENDICES ... 131

A. RDP Connection Sequence and PDU .. 131
a. RDP Connection Sequence ... 131

b. Protocol Data Unit (PDU) ... 133

6

c. Protocol Packet Analysis for Initializing the Connection .. 134

B. Cluster Management .. 135

C. Incoming and Outgoing Packet Management.. 137

D. Demonstrations .. 141
a. Rdesktop as the Client program ... 141

b. Compile Rdesktop for Windows ... 142

c. SeamlessRDP and accessing remote applications .. 144

E. Customization of a Remote Application Session Using RDP File 150

F. Integrity Test for PFS File System .. 152

G. Latency Test for PFS File System ... 154

H. ICSCluster (Imprecise Computation Scheduling Cluster) Simulation 156

I. Research Process .. 177

PUBLICATIONS .. 178

7

SUMMARY

With advances in hardware and networking technologies and mass manufacturing,

the cost of high end hardware has fallen dramatically in recent years. However,

software cost still remains high and is the dominant fraction of the overall

computing budget. Application sharing is a promising solution to reduce the

overall IT cost. Currently software licenses are still based on the number of copies

installed. An organization can thus reduce the IT cost if the users are able to

remotely access the software that is installed on certain computer servers instead

of running the software on every local computer. In this research, a generic

application sharing architecture was proposed for users’ application sharing in a

cluster of closed operating systems such as Microsoft Windows. The broker-

mediated solution allows multiple users to access a single user software license on

a time multiplex basis through a single logged in user. An application sharing tool

called ShAppliT has been introduced and implemented in Microsoft Windows

operating system. Their performance has been evaluated on CPU usage and

memory consumption when a computer is hosting multiple concurrent shared

application sessions.

In addition, a failure-save solution was implemented for fault-tolerant application

services in clusters which enabled user to login to the file server from anywhere,

synchronize document to last saved state on server and provide certain degree of

portability. The proposed idea of building a reliable file system was implemented

successfully. Testing and evaluation of the system were also performed and

results showed that the implemented had reached reasonable level of reliability.

Finally, imprecise computation scheduling was modelled and simulated to

enhance QoS for real-time systems and improve the energy efficiency for large

8

scale computing in clusters. Measurements of simulation on a large number of

task sets showed that imprecise computation improved the system reliability when

scheduling intensive workloads with less schedule timing faults, CPU cycles and

energy-efficiency improvement.

9

LIST OF TABLES

Table 1 Comparison of related work... 37

Table 2 Comparison of application sharing solutions ... 40

Table 3 Client ID and Window ID .. 75

Table 4 Details on Windows Task Manager Performance analysis [62] 78

Table 5 Multi-session load analysis on host computer with ShAppliT V1.0 79

Table 6 Multi-session load analysis on host computer with ShAppliT V2.0 80

Table 7 Call-back functions implemented in PSF .. 92

Table 8 Notations and definitions of the System .. 104

Table 9 Structure array and fields’ definition ... 109

Table 10 Scheduling algorithms for mandatory and optional tasks 111

10

LIST OF FIGURES

Figure 1 Architecture of Hadoop Ecosystem .. 16

Figure 2 Why Cluster Computing ... 17

Figure 3 Hadoop Core ... 18

Figure 4 Taxonomy study on application sharing ... 20

Figure 5 Application Sharing Models ... 22

Figure 6 Definition of research problem ... 26

Figure 7 Main Contributions ... 29

Figure 8 Windows XP server architecture [14] .. 40

Figure 9 Multipoint application sharing protocol T. 128 and its family [54] 45

Figure 10 System overview .. 48

Figure 11 Application sharing cluster overview ... 49

Figure 12 Access shared application resources in a cluster .. 50

Figure 13 Illustration of system architecture .. 51

Figure 14 Layered architecture of a cluster system .. 52

Figure 15 Application sharing use cases diagram ... 53

Figure 16 Broker mediated application sharing system architecture 55

Figure 17 System architecture model of ShAppliT .. 56

Figure 18 State diagram of App Share Client during connection sequence 57

Figure 19 State diagram of App Share Server during connection sequence 59

Figure 20 RDP connection sequence diagram [55] .. 62

Figure 21 RDP architecture .. 63

Figure 22 Virtual channel in RDP .. 64

Figure 23 Data stream controller .. 66

Figure 24 Illustration of focused window and allocated client ... 67

Figure 25 Programming model of ShAppliT system .. 69

Figure 26 Programming flow chart of App Share Server ... 73

11

Figure 27 Control messages in seamless virtual channel .. 75

Figure 28 Screen shot of the demonstrated App Share ... 77

Figure 29 Screen shot of the demonstrated App Share: setting share/un-share applications

 .. 77

Figure 30 Memory performance of ShAppliT V1.0 when hosting multiple remote

sessions ... 81

Figure 31 Memory performance of ShAppliT V2.0 when hosting multiple remote

sessions ... 82

Figure 32 Comparison between ShAppliT V1.0 and ShAppliT V2.0 on commit charge

when hosting multiple remote sessions ... 83

Figure 33 Overview of reliable file system architecture ... 88

Figure 34 Flow for ID checking on server site ... 92

Figure 35 Flow-chart for write operation at client .. 94

Figure 36 Flow-chart for write operation at server ... 95

Figure 37 Graph for read latency test results .. 97

Figure 38 Graph for write latency test results ... 97

Figure 39 Cluster computing system overview ... 103

Figure 40 Cluster computing system model ... 104

Figure 41 Timing diagram of the system .. 106

Figure 42 Timing diagram: optimal load divisible for a cluster of processing nodes [84]

 .. 107

Figure 43 Timing diagram: optimal load divisible for equivalent cluster network [84] . 108

Figure 44 Block diagram of the simulator .. 109

Figure 45 Flow chart of simulation imprecise computation scheduling 111

Figure 46 Schedulable rates vs. work load for precise scheduling 113

Figure 47 Schedulable rates vs. workload for imprecise computation 114

Figure 48 Comparison between precise and imprecise computation on schedulable rates

for EDF scheduling algorithms ... 114

Figure 49 Comparison between precise and imprecise computation on schedulable rates

for RMS scheduling algorithms .. 115

Figure 50 Comparison between precise and imprecise computation on schedulable rates

for LEF scheduling algorithms ... 115

12

Figure 51 Comparison between precise and imprecise computation on schedulable rates

for MEF scheduling algorithms .. 116

Figure 52 Taxonomy for security management .. 120

Figure 53 Taxonomy for reliability management ... 120

Figure 54 Taxonomy for resource management ... 121

Figure 55 Connection sequence of RDP [55] ... 131

Figure 56 MCS connect initial PDU [55] ... 132

Figure 57 MCS connect response PDU [55] ... 133

Figure 58 Multicast group .. 136

Figure 59 Flow chart of joining a multicast group .. 137

Figure 60 Flow chart of processing datagram .. 138

Figure 61 C++ codes of message structures used to store the receiving packet from the

cluster .. 140

Figure 62 Run Linux sessions inside Windows .. 141

Figure 63 Compile rdesktop for Windows .. 143

Figure 64 Screen shot of notepad on local machine ... 144

Figure 65 Screen shot of notepad on remote desktop connection 145

Figure 66 Screenshot of seamless application .. 146

Figure 67 Command of seamless remote applications .. 146

Figure 68 Screenshot of opening more remote applications ... 147

Figure 69 Editing an RDP file .. 148

Figure 70 Remote accessing explorer.exe ... 149

Figure 71 Local (client) command window .. 150

Figure 72 A RDP file being edited by notepad ... 151

Figure 73 Windows remote desktop connection ... 152

Figure 74 Integrity test script .. 153

Figure 75 Main function to detect any discrepancies between the files in the client and

server ... 154

Figure 76 Latency test script ... 155

Figure 77 Flowchart of research process .. 177

Chapter 1

13

CHAPTER 1 INTRODUCTION

 Cluster Computing 1.1

 Definition 1.1.1

A cluster is a type of parallel or distributed processing system, which consists of a

collection of interconnected stand-alone computers cooperatively working

together as a single, integrated computing resource [1]. Cluster creates a single

system image of resources from personal computers on a local area network, and

offers high system availability and reliability through the redundancy of resources

(e.g. hardware, operating systems and applications). There are many names for

Cluster computing system including Clusters of Workstations (COW), Networks

of Workstations (NOW), Workstation Clusters (WCs), Clusters of PCs (CoPs).

The simplest hardware set up will be a few computers connected via the local area

network which constitute a cluster workstation. Besides that, a middleware on the

workstation cluster control the system behaviour of a distributed or parallel

system and the software/application they support to run.

Cluster computing is based on low-end workstations and network technologies,

which may not seem very useful at first. However, such systems have been the

test-beds for a new computing era of high-performance and high-availability

cluster computing. Technological advances in recent years made clustering

systems burgeon. Because of the increasing performance of general purpose

computer and emerging high speed communication, clustering becomes a

promising research area in computer science and technology. It has become a

popular topic of research among the academic and industrial communities

including system designers, network developers, algorithm developers, as well

faculty and graduate researchers [2]. Moreover, this class of system is becoming

Chapter 1

14

more and more commonplace. Based on the survey, most academic institutions

and industries have already start to use or are thinking of using clusters to run

their most computation demanding applications instead of using high performance

machines. Clusters become more and more attractive to companies who can even

afford traditional supercomputers [3].

The terms “cluster computing” “cloud computing” and “grid computing” have

been used almost interchangeably to describe networked computers that run

distributed applications and share resources. All technologies improve application

performance by executing parallel computations on different machines

simultaneously, and enable the usage of distributed shared resources. They have

been used to describe such a diverse set of distributed computing solutions that

their meanings have become ambiguous. However, they represent different

approaches in solving computation problems. Cluster computing aggregates the

resources locally and shares the load, which form the base of all distributed

computing paradigm. Cluster can contribute resources to Grid and Cloud. Grid

computing is the extended version of cluster, in which resources are provisioned

through internet. Cloud computing is “A large-scale distributed computing

paradigm that is driven by economies of scale, in which a pool of abstracted,

virtualized, dynamically-scalable, managed computing power, storage, platforms,

and services are delivered on” [4]. Therefore, on top of all, cloud provides almost

the same functionalities as the above two systems. But it provides them in the

form of services and bills which are the same as consuming utility.

 Applications of Cluster Computing 1.1.2

Clusters have been employed as a platform for a number of applications:

For scientific applications, clusters have been used in grand challenge or

supercomputing applications, such as earthquakes or hurricanes prediction,

weather forecasting, life sciences, computational fluid dynamics, nuclear

Chapter 1

15

simulations, image processing, machine learning, data mining, astrophysics,

complex crystallographic, micro-tomographic structural problems, protein

dynamics, bio-catalysis, relativistic quantum chemistry of actinides, virtual

materials design and processing, crash simulations, and global climate modelling.

The use of clusters as computing platform is not just limited to scientific and

engineering applications. [2] [5]

For the commercial applications, cluster can be best used in Internet and E-

commerce as super-server, by putting together web server, ftp server, e-mail

server, database server, etc. Other commercial applications include image

rendering, network simulation, etc. Therefore, clusters can provide an excellent

platform for solving a range of parallel and distributed applications in both

scientific and commercial areas. [2] [5]

Clusters can also be used in big data applications to provide the storage and data

management services for the data sets being analysed and computing resources

required by the data processing tasks. A Hadoop cluster is a special type of

computational cluster designed specifically for storing and analysing huge

amounts of unstructured data in distributed machines. The Hadoop Data

Processing Ecosystem is shown in Figure 1 Architecture of Hadoop Ecosystem

below.

Chapter 1

16

Figure 1 Architecture of Hadoop Ecosystem

 Advantages and Disadvantages of Cluster Computing 1.1.3

Chapter 1

17

Figure 2 Why Cluster Computing?

The reason of using clusters as a platform for high-performance (HP) and high-

availability (HA) computing is mainly because of their cost-effectiveness and

high scalability. Here is a summary of main advantages of cluster computing:

Lower cost: cluster owners/users can reduce the cost and complexity of

purchasing, configuring and operating HPC clusters. The lower cost is achievable

by using the shared computer resources in a cluster using different pricing

strategies, e.g. on demand (pay-as-you-go), reserved or spot instances strategy.

Scalability: when the problem is complicated or the workload is large, a single

system cannot process it due to time constraint. Clusters can provide an easier

way to increase the computational resources. Based on the size and time

requirements of workloads, users can add or remove compute resources to cater

Chapter 1

18

their requirements. E.g. Apache Hadoop is an open source software project that

enables the distributed processing of large data sets across clusters of commodity

servers. Apache Hadoop for big data processing is designed to scale up from a

single server to thousands of machines, with a very high degree of fault tolerance

by using the Hadoop Distributed File System.

Figure 3 Hadoop Core

Vendor independence: It is good for cluster to be vendor independent, although it

is in general advisable to use similar component across various servers in a

cluster. A Linux cluster based on most commodity hardware allows for greater

vendor independence than those using proprietary operating systems e.g.

Windows. Recently, software releases have greatly improved on proprietary

operating systems [6].

Chapter 1

19

Reliability, Availability and Serviceability: because the redundancy of resources

in the cluster, high reliability and availability can be provided. When one system

is down, the user can switch his work to another machine with available

resources. If it is a single machine being deployed when there is a major

hardware or software component failure, the whole computational system will be

brought down. In case of a cluster, a single component failure only affects a small

proportion of the overall computational resources. Also, a system in the cluster

can be powered off without bringing the rest of the cluster down. Also, additional

computational resources can be added to a cluster while it is running the user

workload. Hence a cluster maintains continuity of user operations in both of these

cases. In similar situations a SMP (Symmetric multiprocessing) system will

require a complete shutdown and restart. [7]Therefore, in terms of serviceability

cluster provides better service than a single system in general.

Faster technology innovation: Clusters benefit from thousands of researchers

around the world, who typically work on cluster of smaller systems rather than

expensive high end systems [8].

There are a number of disadvantages that clusters have as compared to SMP’s.

Some of these challenges are described in the following paragraphs:

One of the challenges in the use of a computer cluster is the cost of

administration. If the cluster has N nodes when N is large, the administration cost

can be linearly increasing and becomes a serious concern [9]. The possible

solution is a unified monitoring/reporting framework with data visualization

support to simplify cluster administration [10].

Node failure management in clusters leads directly to the need to handle partial

failures as compared to SMPs (i.e., the ability to survive and adapt to failures of

subsets of the system). Traditional workstations and SMPs never face this issue,

since the machine is either up or down. [10] When a node in a cluster fails,

strategies such as "fencing" may be employed to keep the rest of the system

Chapter 1

20

operational. [11] Fencing is the process of isolating a node or protecting shared

resources when a node fails to function normally. There are two fencing methods:

one disables a node itself and the other disallows access to resources provided by

the node without powering off the node [9].

Task scheduling becomes a challenge when a large multi-tenant cluster needs to

access very large amounts of data simultaneously. Also if the cluster is a

heterogeneous cluster and a complex application environment the performance of

each job depends on the characteristics of the underlying cluster. In this case, that

is great challenge to map tasks onto CPU cores and GPU devices [11].

 Application Sharing 1.2

Figure 4 Taxonomy study on application sharing

 Definition 1.2.1

Application and desktop sharing (ADS) is the technologies and products that

allow remote access and collaboration on a person's application or computer

Chapter 1

21

desktop through a graphical emulator. Application sharing is different than

desktop sharing in which there is only one shared application rather than sharing

the entire desktop. For application sharing, there is only one copy of the shared

application image running on the server. The key challenge is that some other

application’s interface window can sit on top of the shared application’s window

and also the shared application can open new child windows like Tools or Font. A

true application sharing system should blank other applications if they are on top

of the shared one and should transfer all the child windows of the shared

application to the correct owner who are using this application.

 Application Specific v.s. Generic Application Sharing 1.2.2

There are two kinds of applications sharing models: one is application specific

and the other one is generic application sharing [12]. The application-specific

model requires this sharing feature added to the applications specifically by the

developers. For example, NetBeans an integrated development environment

(IDE), Microsoft Office and many other applications have this sharing feature

added. In order to have a sharing session all participants must have a copy of the

shared application installed and running in their computer. In the generic

application sharing model, the application is not specific meaning it can be any

application such as PowerPoint, calculator, word processor, browser, or picture

editor. Also, the participants do not have to install and run the application on their

systems. Due to its generic nature the only disadvantage of generic application

sharing may be the inefficiency as compared to the application-specific model in

certain scenarios. ShAppliT (an application sharing tool in a cluster) has been

developed based on the generic model; therefore, users can share any application

without requiring the participants to have the application.

Chapter 1

22

Figure 5 Application Sharing Models

 Scenarios: Remote Log-in v.s. Real-time Collaboration 1.2.3

Among all the scenarios of application and desktop sharing, two scenarios are the

most common ones that are “remote log-in” and “real-time collaboration”:

Remote log-in allows users to access to their own desktop even when they are not

sitting in front of their computers. Some of the systems that support remote log-in

are the Unix-based X Window System, Microsoft’s NetMeeting [13] and some

products provided by VNC. Windows has this built-in solution by using the

Remote Desktop Protocol (RDP) after Windows 2000 and prior to this version the

systems have Microsoft’s NetMeeting. The open source products of VNC provide

cross-platform solution for remote log-in.

Real-time collaboration is a bigger area of application and desktop sharing which

allows sharing an application with remote users by multicasting the screen view to

all the participants. Real-time collaboration is becoming more and more attractive

in the area of rich multimedia communications. During the application or desktop

sharing, all the users can see the same screen view and use the same application in

a collaborative way where some of them can be in control mode and some of

them can be in the view mode. Moreover, web conferencing is another application

of desktop sharing by leveraging with multimedia communication technology

Chapter 1

23

such as audio and video. Web conferencing creates a virtual space in which

people can meet, socialize and work together.

 Benefits and Challenges 1.2.4

The greatest benefit of application sharing is that a remote user can run software

that is not installed on his computer, even software that is not compatible with his

operating system or that requires much more processing power than his computer

can usually handle. This is because the remote user is not actually running the

software on his computer, he is just viewing and controlling the desktop (and

therefore the software) of the host computer. Through the use of application

sharing software, it becomes possible for individual and organization to save huge

sums of money they would have spent on rarely used, but essential software.

Current computer technology trend is that hardware and connection cost decrease

whereas the cost of the software is remaining high and becomes a larger fraction

of the overall computing budget [14]. The diverging cost for software and

hardware and the low usage of network and computer resources are the

motivations of software/application sharing in a cluster.

From the research on related application sharing technology and products, a list of

challenges are concluded. They are reliability, operating system independence,

true application sharing, scalability and performance [12]. In an application

sharing cluster, all the peers are independent and they may turn off their computer

from time to time. Therefore, application and desktop sharing systems must be

designed with reliability in mind. And the system should support heterogeneous

operating systems because the participants in a sharing system could use different

operating systems, e.g. Windows, Linux or Mac. Therefore, the application and

desktop sharing system should be operating system independent. Scalability is

another challenge when multiple users participate in application sharing or e-

learning session. Research shows that systems with multicasting scales much

better than unicast systems. Moreover, application sharing system should support

Chapter 1

24

true application sharing where only the screen belongs to the user will be

transmitted and viewed by the user. Some products provide more efficient

transmission by only transmit the changed part to the user. They have better

performance and utilization of resources. [12]

 P2P Network System 1.3

Peer-to-peer (P2P) eliminates the one monopoly server and multiple clients’

model and offers scalability and robustness due to its distributed nature. P2P

computing aggregates computer resources from PCs connected by internet,

including idle computing cycles, storage space, files and software applications. It

is a new approach to establish a high performance computing system [15]. P2P

systems can be classified into two different classes: structured P2P systems and

unstructured P2P systems.

 Structured P2P System 1.3.1

Why application sharing?

 By giving access to a larger body of users through one platform

 Lower cost of ownership of software and hardware

 Better return on investment for individual, family and organization

 Enable the user to run an application that is not installed in local machine

 Able to run applications in remote computer if it is not compatible with the local

machine or requires more processing power

 Achieve easy and transparent scalability and maintenance

 Enable the user access multiple applications (in different host machines) or

customized tasks/ workflows through a common platform

Chapter 1

25

In structured P2P systems, there are fixed connections among peers who maintain

information about the resources (e.g., shared resources) that their neighbour peers

have. Therefore, the data queries can be directed to the neighbour peers who own

the desired data efficiently. Structured P2P systems enable efficient discovery of

data. The most common indexing that is used to structure P2P systems is the

Distributed Hash Tables (DHTs) indexing which stores a lookup service with

(key, value) pairs. On one hand, any participating peers can efficiently retrieve the

value associated with a given unique key. On the other hand, structured P2P

network system leads to higher overhead.

 Unstructured P2P System 1.3.2

In centralized peer-to-peer systems, a central directory server is used for indexing

and bootstrapping the entire network system. A peer in the network sends the

directory server of its IP address and the names of the contents that it makes

available for sharing. Thus, the directory server knows which objects each peer in

the network have, and then, creates a centralized and dynamic database which

maps content name into a list of IPs. The main drawback of the design is that the

directory server is a single point of failure. Moreover, when user request and data

flow increase the directory server becomes bottleneck of the network.

In pure peer-to-peer systems, TCP connections are maintained between any pair

of peers. The peers in this network are aware only of their neighbour peers.

Queries are sending by broadcasting or flooding. If a peer sends a query about a

specific content interested in to its neighbours in the overlay network. Every

neighbour will then forward the query to all of their neighbour peers. The

drawback of the system can be the traffic in the network will reach its limit due to

the broadcasting and flooding of information. And a peer may not be able to find

the peer with the information if the information is rare.

Chapter 1

26

Hybrid peer-to-peer system allows the existence of super node. This creates a

hierarchical overlay network that addresses the scalability issues on pure P2P

networks. The super-peer facilitates maintain a database that maps content to

peer. However, hybrid P2P network system is more complicated as compared to

centralized P2P system and pure P2P system. [16]

 Research Problem and Scope of Work 1.4

 Problem Statement 1.4.1

My aim in this research is to design and develop a novel P2P application sharing

cluster architecture for generic application sharing in a cluster. There are two

main concepts in this problem statement, namely generic application sharing and

cluster computing as shown in the picture below.

Figure 6 Definition of research problem

To achieve generic application sharing, we provide a technique/framework for

user to access and share generic applications/software with scalability, QoS and

reliability in a P2P cluster. It allows applications to be remotely accessed by

multiple users without interfering with other users or the user sitting at the

Chapter 1

27

computer where the applications are installed, with special consideration to single

user system (e.g. Windows). To achieve application sharing in heterogeneous

cluster, we provide a methodology to support multiple users’ access to computer

system (not server) without modification of the proprietary OS.

 Sub-problems 1.4.2

 Generic application sharing: extend single user application to multiple-1.4.2.1

user usage

In general, software tends to be priced on the basis of the number of copies

installed. So, if this software is essential, but only rarely used, the organization

can decide to purchase a single copy of it, install it on a given computer and

anyone who wants to make use of that particular application accesses it. In

addition, the low usage of networks, personal computers and other computer

resources are noticed as technology improves. Surveys show that the utilization of

CPU cycles of desktop workstations is generally less than 10% [7]. So, general

purpose computers are able to provide services and resources for others without

adverse effect for themselves. Moreover, if application software serves their

standalone machine, then users have limited reusability and limited ability to

exploit the software capability within local area network. Therefore, this research

is to establish a solution to extend single user software license to multiple user

usage with seamless scalability and exploitation of the software with large group

of users for better return of investment for companies or lower cost of ownership

for individuals.

 Work on proprietary operating system 1.4.2.2

A cluster environment may consist of heterogeneous operating systems including

closed/proprietary operating systems and open source operating systems. A closed

operating system is one where source code is not made available. Users may

license the object code, but is not at liberty to modify or change. Examples of

proprietary operating systems are Windows and Mac OS X. Open source

operating systems allow the user to tweak and change. Examples of open source

Chapter 1

28

operating systems are Linux for personal computers and Android for mobile

devices. In the cluster environment, proprietary operating systems are in the

consideration in design. By using this technique, only add-ons are provided to the

systems but no modification of the source code is needed at the operating system

level. For example, the client version of Windows is designed to be used by one

person at a time and the terminal service also limits the number of users logged in

to one at a time [17]. Two people cannot log on and access the computer system

at the same time even if it includes just a physical, local-console login and a

remote login. How to perform application sharing by allowing multiple users’

access to proprietary operating systems is an important issue to be addressed in

our research.

 Fault tolerance of application services 1.4.2.3

Real time applications are required to perform their functions under strict timing

constraints. A task missing its deadline may cause other tasks to miss their

deadlines resulting in a system failure. For real time applications such as image

processing, the user may accept timely fuzzy and approximate results. Therefore,

the imprecise computation workload model has to adjust the trade-off between

computation time and result quality. Imprecise computation scheduling provides

the solution to enhance QoS for real-time systems and improve the energy

efficiency as well.

Besides, as a cluster is scaled up to large number of nodes and disks it becomes

more risky that some components are working incorrectly at certain times. This

leads the need to handle component failures gracefully and keep operating in the

presence of failures. Due to the high possibilities of system and media failures, as

well as the presence of user and application faults, hence this calls for a need to

protect important file system data so that data loss can be minimized. A successful

application sharing system should provide reliable services. A reliable file system

need to be designed and implemented which enables user to login to the file

server from anywhere, synchronizes document to last saved state on server and

Chapter 1

29

provides certain degree of portability. Through this research, appropriate

techniques need to be established for building a reliable file system to accomplish

fault-tolerant application services.

 Contributions 1.5

Figure 7 Main Contributions

This research has made the contribution to the field of application sharing in

cluster computing by proposing a novel application sharing architecture for a

cluster of closed operating system, building a reliable file system for fault-tolerant

application services in clusters, simulation of imprecise scheduling to enhance

Chapter 1

30

QoS for real-time computing system in enabling cost-effective and scalable high

performance computing.

Firstly, in this research a novel application sharing architecture was proposed for

generic application sharing in a standard local area network. This research is

based on an original idea of a broker-mediated solution to extend single user

application to multiple user usage. This framework has many benefits: resolving

the problem of multiple users’ access to proprietary operating systems, providing

a common framework of application management, seamless updating of

applications, allowing more users to exploit the applications in the cluster which

leads to better return of investment. The objectives of our work were achieved

through the implementation of a peer-to-peer application sharing tool called

ShAppliT. ShAppliT is a middleware residing on top of the operating system. It

implements a multiple-user and resource management protocol and provides a

single client access to the underlying computer system. And it behaves like an

agent to receive and manage tasks from multiple clients and provide a single

client view for the server. Also, it allows applications to be remotely accessed by

multiple clients without interfering with the person sitting at the computer where

the application is installed. In addition, this architecture is based on Remote

Desktop Protocol (RDP) to provide a scalable and seamless remote access

experience. The user could feel as if he is working on the local computer despite

working from a remote session.

Secondly, a failure-save solution has been designed and implemented for fault-

tolerant application services in clusters which enabled user to login to the file

server from anywhere, synchronize document to last saved state on server and

provide certain degree of portability. The proposed idea of building a reliable file

system was implemented successfully in this work. Upon the completion of the

development of the file system, testing and evaluation of the system were also

performed and results showed that the implemented has reached a reasonable

level of reliability. In addition, through this implementation, appropriate

Chapter 1

31

techniques have been established for the actual implementation of a reliable file

system to accomplish fault-tolerant application sharing services in clusters.

Finally, imprecise computation scheduling was modelled and simulated to

enhance QoS for real-time systems and improve the energy efficiency for large

scale computing in clusters. Also four imprecise scheduling algorithms have been

implemented and simulated namely earliest deadline first (EDF), rate monotonic

scheduling (RMS), least execution time first (LEF) and most execution time first

(MEF) under varying system workload from 0 to 100% loading. Measurements of

simulation on a large number of task sets showed that imprecise computation

improved the system reliability when scheduling intensive workloads with less

schedule timing faults, CPU cycles and energy-efficiency improvement.

 Thesis Outline 1.6

This thesis is structured as follows.

Chapter 2 surveys the literature on state of the art cluster computing technologies,

application sharing solutions and communication protocols enabling application

sharing.

Chapter 3 proposes a novel application sharing architecture for generic

application sharing in a cluster of closed operating system.

Chapter 4 explains the design and implementation of a reliable file system for

fault-tolerant application services. The latency test and integrity test of the file

system were carried out.

Chapter 5 describes model and simulation of imprecise computation scheduling

for large scale computation in cluster computing to enhance QoS for real-time

systems and improve the energy efficiency.

Chapter 1

32

Chapter 6 concludes the achievements of this research work and provides

recommendations for future work.

Chapter 2

33

CHAPTER 2 RELATED WORK

 Cluster Computing Solutions 2.1

Among the cluster computing solutions, some of their key features are listed out

based on their technical reports or documentation. The combination of the

features leads to the functionality and capability of the cluster system to meet a

specific application’s need. Next, each of the features will be discussed

individually

 Heterogeneous support 2.1.1

Heterogeneous cluster is a cluster consists of different computing system

architectures with different operating systems. For example, local area or campus-

type networks consist of PCs using different operating systems, e.g. Windows,

Linux, BSD or Mac. Beowulf Clusters [18] is a homogeneous cluster because it is

a Linux-based cluster. Nowadays more cluster applications are built to support for

a cluster consisting of heterogeneous operating systems. A success case is to

combine coLinux with an openMosix enabled kernel to build a hybrid cluster

[19]. coLinux is a new open source vitalization solution that lets you run a Linux

kernel on top of a Windows kernel. openMosix is a cluster middleware which

provides load levelling and transparent process migration. [19]

 Parallel programming support 2.1.2

Parallel Virtual Machine (PVM) and Message Passing Interface (MPI) are used

by developers to exploit parallelism across computer systems with same or

different architectures. Users are finding cluster systems with parallel support in

these environments useful than those who do not have. Therefore, many vendors

Chapter 2

34

and researchers are working on providing these capabilities and developing high

performance parallel codes. The Beowulf project [18] initially begun at NASA's

Goddard space flight centre, opened the door for low-cost, high performance

cluster computing. In addition, standards and tools have been developed for

distributed memory parallel computer systems and make it easier for

programmers to build scalable and portable parallel computer applications. [20] A

cluster of Beowulf uses parallel processing libraries including MPI and PVM in

general. They allow the developers to divide a workload among a cluster of

network connected computers and collect the processing results.

 Check-pointing 2.1.3

Check-pointing is the technique to save the necessary application state for

restarting it in case of failure. Checkpoint/restart is a mechanism for fault

tolerance. Check-pointing has three possible implementation approaches: an

application itself with built-in checkpoint/restart implementation, the user to link

the application with a specific set of libraries that provide the check-pointing

capability and run on a system which provides checkpoint/restart capability within

the operating system. Condor's [21] implements process migration using

checkpoint/restart for the Condor load balancing system. DMTCP (Distributed

Multi-Threaded Check-Pointing) [22] is a transparent user-level check-pointing

package for distributed applications. Check-pointing and restart is demonstrated

for a wide range of over 20 well known applications including TightVNC [23],

OpenMPI [24], MPICH2 [25] and python [26], etc.

 Process migration 2.1.4

Process migration is closely related to checkpoint/restart. Process migration is to

move process from one machine to another machine when there is a termination

of the task execution on the original machine. In computer cluster, it is very

common that application processes need to migrate to another machine due to

Chapter 2

35

load balancing or failure during processes. Process migration and

checkpoint/restart must both arrange to save all the process states including heap,

registers, and stack of a process. The process states and the data must be stored

and transmitted to the new machine environment for restarting. If the cluster

environment is heterogeneous meaning the system environment is different from

each other, then process migration is very complicated in this case. A middleware

called M-JavaMPI [27] was developed to run on top of standard JVM to support

transparent Java process migration and communication redirection to achieve load

balancing.

 Load balancing 2.1.5

Load balancing is the process of balancing the work load among the machines in

the cluster to prevent some machine overloaded when some machines are idle.

The load information of each machine is retrieved by a central server in charge of

load distribution. Based on the load information of the cluster, the server is able to

allocate and spread the load accordingly in the most computational efficient way.

The changes of available processing and network resources in the cluster raise the

strong need to make applications robust against the dynamics of cluster

environments. There are two main techniques that are most suitable to cope with

the dynamic nature of the cluster or grid: dynamic load balancing (DLB) and job

replication (JR). In a reach article, they analysed and compared the effectiveness

of these two approaches by means of trace-driven simulations. [28]

 Graphical user interface 2.1.6

Many cluster systems supports a command line interface for user to access their

environment. Command line interface is the basic feature to monitor, request and

maintaining jobs on the cluster. While a graphical user interface (GUI) can

significantly improve the productivity of cluster user especially who do not have

professional skills in this area. By using GUI, more people are able exploit the

Chapter 2

36

system. As a result, better return to investment can gain by making more users to

access the system. For example, HP Insight Cluster Management Utility [29]

graphical interface enables an easy view of the entire cluster, provides remote

management and analysis, and allow quick software provided to all the nodes of

the system [30].

 Application Sharing Solutions 2.2

Application and desktop sharing enables remote administration, group

collaboration, remote trouble shooting, e-learning, software tutoring and so on

[14]. In the market, many remote control and desktop sharing solutions are

available. The application sharing products use similar technology to implement.

However the system design concepts are different. The differences are discussed

on concept and philosophy of related solutions as compared with our proposed

solution ShAppliT (see Table 1).

Chapter 2

37

Table 1 Comparison of related work

Software

Name

True

Application

Sharing

Support

Closed OS

Peer-to-

peer

Architectur

e

Support

Generic

Application

No

Modificatio

n of OS

TeleTeachin

gTool [31]

- + - - +

MAST [32] - + - - +

Apple

Remote

Desktop

[33]

- + - + +

GoToMyPC

[34]

- + - - -

ThinLinc

[35]

+ - - + -

RealVNC

[36]

- + - - +

BASS [14] + + - + -

XenApp

[37]

+ + - + +

ShAppliT* + + + + +

Microsoft has Windows Meeting Space for Windows Vista and Netmeeting for

Windows XP. Netmeeting was released in 1999 for Windows 98; Windows Vista

introduces an application sharing feature as part of Windows Meeting Space, but

all the attendees must use Windows Vista. VNC [38] is a cross-platform open

Chapter 2

38

source desktop sharing system but it supports only screen sharing. VNC supports

multiple users but it lacks a floor control protocol. VNC uses a client-pull based

transmission mechanism which performs poorly compared with server-push based

transmissions under high round-trip time (RTT). SharedAppVnc [39] supports

true application sharing, but the delay is on the order of seconds. It uses a loss

codec and does not support multicast.

TeleTeachingTool [31] and MAST [32] use multicast in order to build a scalable

sharing system. TeleTeachingTool is developed just for online teaching so it does

not allow participants to use the shared desktop. Also, it does not support real

application sharing. MAST (Multicast Application Sharing Tool) allows

geographically distributed participants to share arbitrary legacy applications.

MAST supports scalable group to group collaboration by using Multicast. It is

being used within the eMinerals project to augment the Access Grid functionality.

MAST allows remote users to participate via their keyboard and mouse but its

screen capture model is based on polling the screen which is very primitive and

not comparable to current state of art the capturing methods like mirror drivers.

Although both TeleTeachingTool and MAST use multicasting for scalability, they

do not address the unreliable nature of UDP transmissions. UDP does not

guarantee delivery of packets. Even if the packets are delivered, they may be out

of order. In order to compensate for packet loss, the TeleTeachingTool and

MAST periodically transmit the whole screen which increases the bandwidth and

CPU usage. In addition, they do not support real application sharing. When one

user manipulates the application via keyboard and mouse events, other users

receive the screen updates simultaneously.

X Window System [40] (also known as X11) is a computer software system and

network protocol originally developed by MIT in 1984. X provides a basis

for graphical user interfaces (GUIs) and rich input device capability

for networked computers. It creates a hardware abstraction layer where software

is written to use a generalized set of commands, allowing for device

Chapter 2

39

independence and reuse of programs on any computer that implements x. Several

x protocol multiplexors have been developed such as DMX, XMX, SharedX and

CCFX [41]. Xrdp [42] is an open source remote desktop protocol (RDP) server

with an x window desktop display to the user. It provides Linux terminal server,

connections from rdesktop and Microsoft's terminal server or remote desktop

clients. Xrdp uses Xvnc or X11rdp to manage the X session. Xrdp project is

released under the GNU Public License (GPL).

BASS [14] is an application and desktop sharing platform which allows two or

more people to collaborate on a single document, drawing or project in real-time.

BASS supports all application due to its generic model. However, BASS is

developed on Windows XP server and the server is modified by adding a mirror

driver (see Figure 8). In addition, BASS is based on client-server system

architecture which is different with our peer-to-peer cluster computing application

sharing system where a peer can be client and server at the same time. And also

there are no modifications of the OS at all. The solution proposed is to add a

broker middleware on top of the Windows OS of personal computers, instead of

Windows server.

Chapter 2

40

Figure 8 Windows XP server architecture [14]

In the Table 2, a comparison is made among the state of the art application

sharing solutions focusing on the communication protocol used, the creator and

licence group they belongs to, such as proprietary license or GPL.

Table 2 Comparison of application sharing solutions

Software name Protocol

used

Creator Release date License

Apple Remote

Desktop [33]

RFB(VNC) Apple 2002 Proprietary

Cendio ThinLinc [35] RFB(VNC) Cendio AB 2003 Proprietary

Chapter 2

41

Chrome Remote

Desktop [43]

Chromoting Google 2011 BSD

Citrix XenApp [37] RDP, ICA Citrix

Systems

 Proprietary

RealVNC Enterprise

[36]

RFB(VNC) RealVNC 2002 Proprietary

Remote Desktop

Services/Terminal

Services [44]

RDP Microsoft 1998 Proprietary

Ericom Blaze [45] RDP Ericom

Software

2009 Proprietary

GoToMyPC [34] Proprietary Citrix

Online

2000 Proprietary

N-central [46] RDP, VNC,

Proprietary

N-able

Technologie

s

2011 Proprietary

RapidSupport [47] RFB(VNC) Tech

Dimension

2012 Proprietary

Team Viewer [48] Proprietary Team

Viewer

GmbH

2005 Proprietary

UltraVNC [36] RFB(VNC) 2005 GPL

Xrdp [49] RDP GPL

Chapter 2

42

 Communication Protocols for Application Sharing 2.3

The application sharing protocol enables multipoint computer application sharing

by allowing a view onto a computer application executing at one site to be

advertised within a session to other site(s). There are many communication

protocols defined by different vendors or organizations, such as RFB [50]

(Remote Frame Buffer) for VNC, RDP for Windows Terminal Service, and ITU-

T T.128 [51] for NetMeeting and SunForum [52]. In general, most

communication protocols used in application sharing are similar in terms of the

functionality they offer. However, these protocols can be differentiated by the

way the implementation of system layer where all the redirection of graphical

output and user input take place. This is also the key component that determines

the speed and quality of a remote desktop protocol. Some protocols compress the

graphical images for transmission while other uses kernel level driver for

transmission. There were two ways to implement application sharing systems.

The difference is the transmission of screen contents or drawing commands [53].

In the following section, RFB protocol, RDP protocol and ITU-T T.128 will be

discussed and compared to identify the key differences that separate them.

 Remote Frame Buffer (RFB) for Virtual Network Computing 2.3.1
(VNC)

RFB is a simple protocol for remote access to graphical user interface that

function at the frame buffer level [50]. Therefore, it is highly versatile and

applicable to applications and systems across different platforms and operating

systems. As for the display side of the protocol, a low level primitive graphics

concept has been applied. The data containing the graphical display information at

the pixel level such as coordinate and image block of a particular group of pixels

are compressed and transmitted regularly from the server to the client. In another

words, the update of a display screen consists of a series of frame buffer updates

that refresh the display screen block by block. The way this concept works is

Chapter 2

43

similar to how video frames refresh. Virtual Network Computing (VNC) was

originally developed by at the Olivetti Research Laboratory in Cambridge, United

Kingdom [38]. It is a graphical sharing system that uses RFB protocols. Many

VNC source code available nowadays are open sources under the GNU General

Public License. The most popular implementations of VNC available in the

market are RealVNC and UltraVNC [36].

 Microsoft Remote Desktop Protocol (RDP) 2.3.2

RDP provides remote display and input capabilities over network connections for

Windows-based applications running on a server. RDP is designed to support

different types of network topologies and multiple LAN protocols. RDP is an

extension of the ITU-T.128 application sharing protocol developed by Microsoft

[54]. Basic connectivity and graphics remoting is designed to facilitate user

interaction with a remote computer system by transferring graphics display

information from the remote computer to the user and transporting input

commands from the user to the remote computer, where the input commands are

replayed on the remote computer. RDP also provides an extensible transport

mechanism which allows specialized communication to take place between

components on the user computer and components running on the remote

computer including RSA Security, bandwidth reduction features, roaming

disconnect, clipboard mapping, print redirection, virtual channels, remote control

and network load balancing. This proprietary protocol provides a mean to access

the graphical interface of a remote host computer. Similar to other remote desktop

applications, the processing of a running application is being done in the host

computer, only the graphical presentation of the desktop is being transmitted to

the client. However, as compared to VNC, RDP provides a faster remote access

speed [44]. This is due to the fact that RDP hooks deeper into Windows API to

optimize the information required by the client to construct the display screen. For

example, while VNC is transmitting blocks of bitmap for the client to construct a

Chapter 2

44

display screen of a text document, RDP transmits the texts in the document itself

for the client to render a display screen.

 ITU-T T.128. Multipoint Application Sharing 2.3.3

T.128 is accepted by the ITU, Telecommunication Standardization Sector (ITU-

T) [51]. T.128 specifies the program sharing protocol, defining how participants

in a T.120 conference can share local programs. Figure 9 presents an overview of

the scope of T.128 and its relationship to the other elements of the T.120

framework within a single node.

Specifically, T.128 enables multiple conference participants to view and

collaborate on shared programs, and it is the foundation for RDP. The T.128

protocol supports multipoint computer application sharing by allowing a view

onto a computer application executing at one site to be advertised within a session

to other sites. Each site can, under specified conditions, take control of the shared

computer application by sending remote keyboard and pointing device

information. This style of application sharing does not require and does not make

provision for synchronizing multiple instances of the same computer application

running at multiple sites. Instead, it enables remote viewing and control of a

single application instance to provide the illusion that the application is running

locally. A multichannel-capable protocol allows for separate virtual channels for

carrying presentation data, serial device communication, licensing information,

highly encrypted data (keyboard and mouse activity), and so on [55].

Chapter 2

45

Figure 9 Multipoint application sharing protocol T. 128 and its family [54]

46

CHAPTER 3 A NOVEL BROKER-MEDIATED

SOLUTION TO GENERIC APPLICATION

SHARING IN A CLUSTER OF CLOSED

OPERATING SYSTEMS

 Introduction 3.1

With advances in hardware and networking technologies and mass manufacturing,

the cost of high end hardware has fallen dramatically in recent years. However,

software cost still remains high and is the dominant fraction of the overall

computing budget. Application sharing is a promising solution to reduce the

overall IT cost. Currently software licenses are still based on the number of copies

installed. An organization can thus reduce the IT cost if the users are able to

remotely access the software that is installed on certain computer servers instead

of running the software on every local computer

Application sharing is a promising solution to effectively reduce the overall cost

of computing. The greatest benefit of application sharing is that software can be

remotely used by the users from their local computers which may have

incompatible operating system and lower processing power required by the

software. This is because the users are not actually running the software on their

local computer, but remotely accessing and controlling the desktop (and therefore

the software) of the host computer. With the use of the application sharing

software, it is possible for individuals and organization to save huge amount of

money that they would have spent on purchasing more copies of software to cater

for all of the local computers.

Chapter 3

47

With increasing performance of general purpose computer and high speed

communication, cluster computing is becoming a promising research area. A

cluster environment may consist of heterogeneous operating systems including

closed/proprietary operating systems and open source operating systems. A closed

operating system is one where source code is not made available. Users may

license the object code, but is not at liberty to modify or change. Examples of

proprietary operating systems are Windows and Mac OS X. Open source

operating systems allow the user to tweak and change. Examples of open source

operating systems are Linux for personal computers and Android for mobile

devices. In the cluster environment, proprietary operating systems are in

consideration in the design. Add-ons are designed to these systems but no

modification of the source code at the operating system level. For example, the

client version of Windows is designed to be used by one person at a time and the

terminal service also limits the number of users logged in to one at a time [56].

Two people cannot log on and access the computer system at the same time even

if it includes just a physical, local-console login and a remote login. How to

perform application sharing on such a proprietary operating system is an

important issue to be addressed in our research.

A novel application sharing architecture is proposed in this thesis for generic

application sharing in a standard local area network. A broker-mediated solution

is designed to extend single user software license to multiple user usage and

resolve the problem of multiple users’ access to proprietary operating systems.

The objectives of our work are achieved through the implementation of a peer-to-

peer application sharing tool called ShAppliT. ShAppliT is a middleware residing

on top of the operating system. It implements a multiple-user and resource

management protocol and provides a single client access to the underlying

computer system. ShAppliT have been implemented based on Microsoft

Windows operating system.

Chapter 3

48

 System Overview 3.2

Figure 10 System overview

A cluster creates a single system image of resources from personal computers on

a local area network, and offers high system availability and reliability through

the redundancy of resources (e.g. software/applications, CPU cycles and hard

disk). In our current application sharing cluster computing system, the technique

is provided (ShAppliT in Figure 10 System overview) to coordinate multiple

users’ assessments for closed system using a broker-mediated mechanism. This

application sharing system aims for sharing of application/software resources with

general applicability and scalability. A novel application sharing architecture is

introduced for generic application sharing in a cluster of closed operating system.

More details will be presented in the rest of sections in Chapter 3.

The peers in the cluster are unreliable. A successful application sharing system

should provide reliable services (see Figure 10 System overview). One chief

Chapter 3

49

technology to accomplish fault-tolerant application services is data replication at

client or server or third peer. A failure-save solution for fault-tolerant application

services in clusters enables user to login to the file server from anywhere,

synchronize document to last saved state on server and provide certain degree of

portability. A reliable file system for fault-tolerant application services will be

presented in Chapter 4.

In addition, cluster computing has attracted attention for large scale computing

using idle CPU cycles of personal computers connected in local area network. In

this thesis, a broker with imprecise computation scheduling is proposed for large

scale computing in clusters (see Figure 10 System overview). Model and

simulation of imprecise computation techniques are carried out for scheduling

flexibility by trading off result quality to meet computation deadlines. This

technique is to enhance QoS for real-time systems and improve the energy

efficiency for large scale computing in clusters. It will be described in details in

Chapter 5.

 System Architectures 3.2.1

Figure 11 Application sharing cluster overview

Chapter 3

50

As shown in Figure 11, each node with ShAppliT in the cluster is called a peer.

All the peers are equal among each other, meaning it can act as an application

provider (server) or/and as an application consumer (client). All the computers are

connected via a high speed local area network. Computers with ShAppliT

installed form a cluster network within the LAN to facilitate handshaking,

message exchanging and remote desktop connections that are exclusive for

ShAppliT users.

Figure 12 Access shared application resources in a cluster

In Figure 12, each user sees the Cluster as a single system image of the resources

sharable in the cluster, in this case the software/application resources. The user

may choose any application to launch via a thin client portal e.g. the browser or

software plugins. The application will be executed in the remote computer and the

program display will be shown at the client’s desktop. A peer in the cluster can

act as client to search and use applications shared by other peers in the network

through remote access. And a peer who acts as a host/server can opt and provide

application for sharing.

Chapter 3

51

Figure 13 Illustration of system architecture

There is a layer on top of all operating systems for multiple user and resource

management. It works as an agent/broker to receive request from multiple users

and manage the session for each user and only have one access to the operating

system, refer to Figure 13. The operating system, together with the underlying

applications and resources fulfil the agent/broker’s requests. Our application

sharing tool (ShAppliT) acts as the bridge between the clients and the server.

Only one master session logs in to the application server and accesses the host

Windows OS via terminal service. All the tasks are received by the broker from

multiple clients, both remote and local computer users. Therefore, the server sees

only one remote desktop session and does work for the agent/broker only. The

agent/broker takes over the responsibility of negotiation with remote clients,

forwards the input events to the server OS and redirects the display data back to

the respective clients. In a way it shares a single-user application among multiple

clients via a single log in to that application.

Chapter 3

52

Figure 14 Layered architecture of a cluster system

As shown in Figure 14, there is a layer on top of all operating systems for

multiple user management and resource management. It works as an agent/broker

sitting in between clients and server to receive request from multiple users and

manage the session for each user and provide only one access to the server

operating system. The operating system is the actual worker to do all the tasks.

Chapter 3

53

 Use Case Diagram 3.2.2

Figure 15 Application sharing use cases diagram

Figure 15 is a use case diagram that elaborates the interaction between a user and

App Share system. A user is able to perform five actions using App Share,

searching for an application across the network, starting an application using App

Share Client, ending an application, setting an application for sharing with peers

in the network and removing an application for sharing with peers from the

network.

The basic course of events when a user opens App Share is as following;

assuming that the user is Alice and the peer in the network is Bob. They both have

App Share running:

1. User Alice starts App Share

2. User Alice can choose whether to share/un-share a particular application.

Chapter 3

54

3. Alice searches for an application

4. Alice’s App Share will broadcast the request to all hosts in the cluster

network through IP multicast

5. Bob’s App Share receives request from Alice. If all conditions are met, he

will fulfil the request by broadcasting the required information into the

network.

6. If Alice’s App Share receives Bob’s reply, App Share will start remote

application initialization with Bob's server; subsequently enter the

maintenance state of remote application connection.

7. Bob's App Share server redirects the data stream from Alice to his

Microsoft Terminal Service and streams the display data back to Alice's

App Share client for display.

8. User Alice can close an application to terminate a particular remote

application session.

 Design and Methodology 3.3

Unlike Linux which is a multi-user system designed to handle multiple concurrent

users, Windows client systems are designed to be used by one person at a time

[17] [57]. Windows XP is typically used by standalone users whereas Window

Server 2003 is normally deployed as a server operating system built to support

multiple clients concurrently. However, Windows Server 2003 contains complex

functionality and is mainly operated by programmers or administrators and it is

many times costlier than XP, which make Windows Server 2003 not desirable for

peer to peer usage. Since Windows XP is a single user operating system, it is an

obstacle to the realization of peer-to-peer application sharing.

ShAppliT is divided into three parts:

Chapter 3

55

 Establishment of multiple remote application sharing sessions

 Initialization and management of a cluster

 Incoming and outgoing packet management

 Establishing Multiple Remote Application Sessions 3.3.1

Figure 16 Broker mediated application sharing system architecture

A broker-mediated solution is proposed and provided to extend single user

software license for multiple-user usage and solve the problem of working on

closed or proprietary Operating Systems.

Instead of managing multiple connections using Windows terminal service server,

ShAppliT which sits in between the client and Windows TS server as a broker. It

handles tasks from multiple clients and passes them to the TS server. Therefore,

TS server sees only one Remote Desktop Protocol (RDP) session and does work

for the ShAppliT only. And ShAppliT takes over the responsibility of negotiation

with remote clients, forwards the input events to TS server and redirects the

display data back to the respective clients.

Chapter 3

56

Figure 17 System architecture model of ShAppliT

Figure 17 shows the design system architecture model of ShAppliT. The left

block is the App Share client that consists of the Cluster joining component,

Query sending component, Remote session initialization component and Session

maintenance management. The right block is the App Share server that consists of

the Application pool management, Request listening component, RDP connection

initialization component, Session management and Data stream controller.

The details of each component are described as follows. Sharing Permission

Setting component allows the user to configure which applications to be offered

for sharing via the Application Pool Management. Query Sending is capable of

creating a query for application. Request Listening has an open port listening to

Chapter 3

57

the requests broadcasted in the cluster. Request listening periodically processes

the requests in the list by verifying whether all the relevant conditions are met.

When all conditions are met, the App Share Client will launch a remote session.

In the initialization phase, App Share client establishes a remote connection

session with session manager in App Share Server. User session is an abstract

venue on an App Share Server that is assigned to a user. Once the user session

moves to an established state, user interacts with the server and applications from

within this venue.

In the communication phase, keyboard and mouse input events are sent from the

App Share Client to the remote endpoint on the App Share Server while graphic

update data are received from an established graphics channel and is sent to the

display adapter of the App Share Client. In App Share Server, Data stream

controller is in charge of multiplexing and de-multiplexing the clients' and server's

traffic. It maintains the smooth execution of multiple remote user sessions of App

Share system.

 App Share Client State Model 3.3.1.1

Figure 18 State diagram of App Share Client during connection sequence

Chapter 3

58

The App Share Client state model for a basic connection scenario is illustrated in

Figure 18. In this scenario, an App Share Client connects to an App Share Server

in an intranet environment. The high-level state diagram that follows shows the

connection states as the App Share Client transitions from an initial state to the

state of an established connection.

After the App Share Client has joined the cluster, the connection process

continues as follows:

1. The App Share Client acquires the destination IP address of the App Share

Server by search an application in the cluster.

2. The App Share Client initiates the sequence to establish a Remote Desktop

Protocol (RDP) connection as described in [MS-RDPBCGR] with App Share

Server port 5000, starting with an X.224 exchange. [55]If the connection attempt

fails due to authentication issues, the flow reverts to the state “Query for

application” as shown in the following figure.

3. If the X.224 exchange is successful, the App Share Client supplies capability

and license information to the App Share Server.

4. Once the license is validated, the user session moves to an established state.

User session is an abstract venue on an App Share Server that is assigned to a

user. The user interacts with the server and applications from within this venue.

5. While in this state, keyboard and mouse input is sent from the App Share Client

to the remote endpoint on the App Share Server while graphics data is received

from an established graphics channel and is sent to the display adapter of the App

Share Client.

6. In addition, in the established state more applications can be spawned at the

same sever by using slave mode of App Share Client. In slave mode, a command

Chapter 3

59

of application will be sent to the master socket of App Share Client and then

passed to App Share Server to spawn a new application.

 App Share Server State Model 3.3.1.2

Figure 19 State diagram of App Share Server during connection sequence

The App Share Server state model for a basic connection scenario is illustrated in

Figure 19. In this scenario, an App Share Server establishes one connection to TS

Server on Windows OS, receives connections from remote clients and maintains

the remote sessions. The high-level state diagram that follows shows the

connection states as the App Share Server transitions from an initial state to the

state of an established connection.

After the App Share Server has finished its internal initialization, the connection

process continues as follows:

1. A registry crawler searches through the system registry to track all the

applications installed in the host computer and generate a list.

Chapter 3

60

2. Sharing permission setting component allows the user to configure which

application to be offered for sharing and after the setting a sharable application

pool is formed.

3. The App Share Server establishes one RDP connection to TS Server on

Windows OS.

4. An App Share Server starts listening for an incoming connection request after

initialization of RDP connection to TS Server on Windows OS.

5. After one RDP connection established, when an App Share Client attempts to

establish a connection with App Share Server, the App Share Server starts

processing the request by going through a sequence of steps.

6. If the user’s application request matches, session manager negotiates the

connection with App Client. It requests the user’s credentials and if the user is a

valid user, the App Share Server will attempt to authorize and validate the user.

7. After establishing the connection, an App Share user session is established for

the App Share Client and allows App Share Client to display the remote

application.

8. A stream controller multiplexes the display data from server to one selected

client and forwards the input events from the selected client to server. The

control signal on choosing the client is done by a scheduler.

 Remote User Session Initialization and Management 3.3.1.3

Before an App Share Server starts listening for an incoming connection request, it

initiates a RDP connection to TS Server on Windows OS. When an App Share

Server attempts to establish an RDP connection with TS Server, the App Share

Server behaves like the RDP Client.

After initialization of the RDP connection to TS Server on Windows OS, App

Share Server starts listening for an incoming connection request. When an App

Chapter 3

61

Share Client attempts to establish a connection to App Share Server, the App

Share Server behaves like a TS Server and the App Share Client behaves as an

RDP Client.

The sequence of steps of processing the connection request in both cases above

are the same as when an RDP Client attempts to establish a connection with a TS

Server [55]:

1. The TS Server passes configuration and policy data to the RDP Client.

2. The TS Server requests information about the capability of the RDP Client.

3. The TS Server queries for data from the RDP Client that will be overridden by

the configuration and policy data of the TS Server.

4. The TS Server will then start a licensing sequence, requesting a license from

the RDP Client and attempting to validate the license. If a new or updated license

is required, the TS Server will use licensing services to obtain a new or updated

license and then will send the license back to the RDP Client. If the TS Server is

configured in a per-user licensing mode, the TS Server will establish a connection

without validating the license provided by the RDP Client.

5. The TS Server requests the user’s credentials and if the user is a domain user,

the TS Server will attempt to authorize and validate the user using directory

services. If the user is not allowed to log on to the TS Server, the connection

request will be terminated with an appropriate error message.

6. If the user is allowed to log on, the TS Server will query for the handles to the

I/O objects and will construct a terminal object. The TS Server binds the terminal

object to the session object, fully establishing the connection and allowing the

RDP Client to display the remote desktop or remote application.

Figure 20 RDP connection sequence diagram illustrates one example of the

messages that are exchanged between an RDP Client and a RDP Server.

Chapter 3

62

Figure 20 RDP connection sequence diagram [55]

 Virtual Channel in Remote Desktop Protocol and SeamlessApp 3.3.1.4

The RDP protocol allows communication via up to 64,000 channels. The screen is

transmitted as bitmap graphics from the server to the client or terminal. The client

transmits the keyboard and mouse inputs and interactions to the server. Therefore,

the communication is extremely asymmetric as most of the data are transmitted

from the server to the client.

RDP was originally designed to support different network topologies. In its

current state, it can be executed only via TCP/IP networks and is internally

divided into several layers. The reason for this, at the lowest level, is that the

T.120 protocol family, on which RDP is based, was optimized in accordance with

Chapter 3

63

some rather complex specifications of the ISO model. These were mostly grade-

of-service mechanisms. Because these cannot be mapped to the TCP/IP protocol,

an X.224- compatible adaptation layer handled mapping the specified service

primitive of the ISO layer to the service primitive of the TCP/IP protocol.RDP is

used to tunnel graphical data, input data, and device data (and other

communication) between an RDP Client and a TS Server. RDP also defines an

extensible virtual channel mechanism. Each virtual channel acts as an

independent data stream. The RDP Client and TS Server examine the data

received on each virtual channel and route the data stream to the appropriate

endpoint for further processing. The necessary static virtual channels are opened

at the start of the session during handshaking, and remain open until the session is

closed. Figure 21 is the legacy RDP Architecture [58]:

Figure 21 RDP architecture

The activity involved in sending and receiving data through the RDP stack is

essentially the same as the seven-layer OSI model standards for common LAN

networking today. Data from an application or service to be transmitted is passed

Chapter 3

64

down through the protocol stacks, sectioned, directed to a channel (through

MCS), encrypted, wrapped, framed, packaged onto the network protocol, and

finally addressed and sent over the wire to the client. The returned data works the

same way only in reverse, with the packet being stripped of its address, then

unwrapped, decrypted, and so on until the data is presented to the application for

use.

During RDP connection sequence, the RDP Client proceeds to join the user

channel, I/O channel, and all virtual channels by using multiple MCS Channel

Join Request PDUs and the TS Server confirms each channel with an MCS

Channel Join Confirm PDU. All subsequent data sent from the RDP Client to the

TS Server is wrapped in an MCS Send Data Request PDU, while data sent from

the TS Server to the RDP Client is wrapped in an MCS Send Data Indication

PDU. This is in addition to the data being wrapped by an X.224 Data PDU. [58]

The MCS PDU field encapsulates either an MCS Send Data Request PDU (if the

PDU is being sent from client to server) or an MCS Send Data Indication PDU (if

the PDU is being sent from server to client). In both of these cases, the embedded

channel Id field must contain the server-assigned virtual channel ID. This ID must

be used to route the data in the virtualChannelData field to the appropriate virtual

channel endpoint after decryption of the PDU and any necessary decompression

of the payload has been conducted. An illustration of virtual channel in RDP is

shown in Figure 22 below:

Figure 22 Virtual channel in RDP

Chapter 3

65

MCS I/O channel is to send and receive display update data and client’s input

events. A simplified version of PDU format is shown in the above figure. Each

PDU has a channel initiator, channel ID and channel data. For example, if a PDU

is sent from Client to Server via global channel it must consists of initiator = 1007

(0x03ef) and channel Id = 1003 (0x03eb); if a PDU is sent from Server to Client

via global channel it must consists of initiator = 1002 (0x03ea) and channel Id =

1003 (0x03eb).

Static virtual channel provides application specific functions and features. It

allows lossless communication between client and server components over the

main RDP data connection and it is opaque to RDP [58]. Seamless window

channel is a static virtual channel [59].

Virtual channels thus help add functions that are not yet specified in the RDP

protocol. They represent a platform that future developments can be based on

without having to modify the communication methods between a terminal server

and its clients.

 Data Stream Control for Multiple User Sessions 3.3.1.5

After a new user session is created, a new client is added to data stream controller

for starting additional application. There are three major programming modules

inside data stream controller, namely the scheduler, MUX and DEMUX. And

there are two important control signals: Allocated Client ID and Focused Win ID.

Each client has at most one focused window. Data stream controller keeps track

of the focused window ID for each client. According to the allocated client

information determined by the scheduler, data stream controller sends over the

focus window information to Server then followed by the client's input events.

Chapter 3

66

Figure 23 Data stream controller

Figure 23 shows the architecture of the data stream controller in App Share

Server. Data stream controller is in charge of multiplexing and de-multiplexing

the clients' and server's traffic. It maintains the smooth execution of multiple

remote user sessions of ShAppliT system.

Allocated client is the control signal for the steam multiplexer and de-multiplexer.

At a time only one client is enabled to transmit it input events and to receive the

graphic updates from server. The allocated client is determined by a scheduler.

Clients' input events in the global channel including mainly the keyboard and

mouse inputs are buffered in an event queue of each client respectively. Currently

our implementation of the scheduler uses a round-robin scheduling algorithm

which assigns time slices to each client in equal portions and in circular order and

handles all clients' events without priority.

Figure 24 illustrates the relationship of focused window and allocated client at

both client and server sides. Each client may have one or more applications

running from the same sever, but at a time there is only one window focused by

the client. A focused window is the window the client is operating on currently.

So, at the client side each client will have at most one window focused shown

with filled colour box. At the sever side, only one window is focused each time

shown with filled colour box. Therefore, it is important to keep track of the

Chapter 3

67

focused window ID for each client. Allocated client is decided by the scheduler

according to the scheduling algorithm as mentioned earlier. When it comes to a

client's turn to send over its events the server will be notified about the current

focused window by our ShAppliT Server. Then the TS server will perform

operations on the focused window of the allocated client according to the input

events received and send the server output graphic update data over to the

allocated client.

Figure 24 Illustration of focused window and allocated client

Focused window information is extracted from the network packet flow of the

seamless virtual channel in RDP as mentioned in the previous section. The

seamless channel ID is determined by the negotiation between client and server

during the RDP connection sequence. Focused window information is carried in

the seamless virtualChannelData field with the format "focus, win ID, flags". The

seamless channel data is directed by the TS server to the SeamlessApp Server

endpoint for further process [59].

Chapter 3

68

 Implementation of a Demonstrating System 3.4

The application, ShAppliT realizes the proposed peer-to-peer application sharing

on closed systems in a cluster. It is implemented on Windows XP X86 32-bit

operating system in a local area network (LAN) environment. A clustering system

using multicast and multiplexing approach have been implemented.

 Detailed Programming Model 3.4.1

Figure 25 shows the detailed programming model of ShAppliT.

Chapter 3

69

Figure 25 Programming model of ShAppliT system

Master mode is the default mode of ShAppliT Client. When run in master mode,

ShAppliT Client creates and listens on a master socket. After creation of a remote

user session with a ShAppliT Server and maintenance of that connection,

ShAppliT Client listens on the master socket and checks master socket each time

when TCP layer receives packets.

When run in slave mode, ShAppliT Client notifies the master Client instance of a

new command to be run by sending command (e.g. "mspaint") to the master

socket and then exits. The master instance detects a command from a client and

sends a client-to-server message (e.g. "spawn, mspaint") to the ShAppliT Server.

The message will be directed to SeamlessApp server component at the Windows

server, which runs the new command on the server machine. Finally, a remote

application is launched at the Windows server and the application Graphic User

Interface (GUI) will be received by ShAppliT Client. Moreover, the slave mode

can be used multiple times to send more application commands. So, it provides

connection sharing by allowing a single ShAppliT connection to launch multiple

applications.

There are two components in the ShAppliT Server, namely the Session Manager

and Data Stream Controller. The session manager component first establishes an

Two main modules at Server side:

Session manager:

Set up and maintain the connections between clients and server

Keep mappings between Client and application window IDs (hwnd)

Stream controller:

Multiplex data streams (graphic update, etc) from server to clients

Update the mapping between client and application window IDs

Choose one client to stream to, where its window is focused currently

Chapter 3

70

RDP connection with Microsoft Terminal Service Server. Then, it listens on TCP

port 5000 and accepts connections from remote clients. It creates new user

sessions for remote clients after successful connection negotiation. The

connection sequence follows the RDP connection sequence mentioned in MS-

RDPBCGR [55]. After a new user session is created, a new client is added to the

data stream controller for starting additional application. Data stream controller is

in charge of multiplexing and de-multiplexing the clients' and server's traffic. It

maintains the smooth execution of multiple remote user sessions of ShAppliT

system.

There are three major programming modules inside data stream controller,

namely the scheduler, MUX and DEMUX. There are two important control

signals: Allocated Client: Client ID and Focused Window: Win ID. Each client

has at most one focused window. Data stream controller keeps track of the

focused window for each client. According to the allocated client information

determined by the scheduler, data stream controller sends over the focus window

information to TS Server then followed by the client's input events. Our current

scheduler uses a round-robin scheduling algorithm. Clients' input events are

queued in a buffer of each client respectively. The scheduler assigns time slices to

each client in equal portions and in circular order. The next client will be

allocated after the timer expired. Allocated client is the control signal for the

steam multiplexer and de-multiplexer. At a time only one client is enabled to

transmit its input events and to receive the graphic updates from server. The

allocated client is determined by a scheduler. Clients' input events in the global

channel including the keyboard and mouse inputs are buffered in an event queue

of each client respectively.

 App Share Client 3.4.2

Figure 25 shows the programming Model of App Share System. App Share Client

software is an application that establishes and maintains the connection between a

Chapter 3

71

client and a server computer running App Share. Our App Share Client is

implemented on top of rdesktop [60] which is a free, open source client for

Microsoft's proprietary RDP protocol. Rdesktop is able to work with a number of

Microsoft Windows versions such as NT 4 Terminal Server, 2000, XP, 2003,

2003 R2, Vista, 2008, 7, and 2008 R2. Rdesktop was initially written by Matthew

Chapman. It is released under the GNU General Public License and is available

on Unix-like systems such as BSD and Linux [61].

 Master mode and slave mode of App Share Client 3.4.2.1

 Master mode: Specify the path for the control socket that the rdesktop

process listens on. By default, this is $HOME/.rdesktop/seamless.socket

 Slave mode: Instead of starting a new rdesktop process, connect to an

existing process' control socket and tell it to run a command on the server.

As shown on the left hand side of Figure 25 Programming model of ShAppliT

system, master mode is the default mode of App Share Client; when run in master

mode, App Share Client creates and listens on a master socket. After creation of a

remote user session with App Share Server and maintenance of that connection,

App Share Client keeps listening on the master socket and checks master socket

each time when TCP layer receives packets.

When run in slave mode, App Share Client notifies the master App Share Client

instance of a new command to be run by sending command (e.g. "mspaint") to the

master socket and then exits. The master instance detects there is a command

from client and sends a client-to-server message (e.g. "spawn, mspaint") to the

App Share Server. Then the message will be directed to SeamlessApp server

component at Windows server, which runs the new command on server machine.

Finally, a remote application is launched at Windows server and the application

GUI will be received by App Share Client. Moreover, the slave mode can be used

multiple times to send more application commands. So, it provides connection

Chapter 3

72

sharing by allowing a single App Share connection to launch multiple

applications.

 App Share Server 3.4.3

There are two components in the App Share Server, including Session Manager

and Data Stream Controller.

The session manager component firstly establishes an RDP connection with

Microsoft Terminal Service Server. Then, it listens on TCP port 5000 and accepts

connections from remote clients. It creates new user sessions for remote clients

after successful connection negotiation. The connection sequence follows the

RDP connection sequence mentioned previously.

After a new user session is created, a new client is added to data stream controller

for starting additional application. There are three major programming modules

inside data stream controller, namely the scheduler, MUX and DEMUX. And

there are two important control signals: Allocated Client: Client ID and Focused

Window: Win ID. The relationship between allocated client and focused window

at both the client and server sides is introduced previously. Each client has at most

one focused window. Data stream controller keeps track of the focused window

for each client. According to the allocated client information determined by the

scheduler, data stream controller sends over the focus window information to TS

Server then followed by the client's input events. Our current scheduler uses a

round-robin scheduling algorithm. Clients' input events are queued in a buffer of

each client respectively. The scheduler assigns time slices to each client in equal

portions and in circular order. The next client will be allocated after the timer

expired. So, it handles all clients' events without priority. Figure 26 Programming

flow chart of App Share Serverillustrates the programming flow chart of App

Share Server.

Chapter 3

73

Figure 26 Programming flow chart of App Share Server

Sending focused window information is supported from client to server by

seamless RDP feature of rdesktop at the client side and a seamless RDP server at

the server side. They communicate end to end via the lossless seamless virtual

channel. Details will be presented in the next section.

 SeamlessApp 3.4.3.1

The default way of deploying ShAppliT application has been set to seamless

mode. It enables App Share Client to run individual applications rather than a full

desktop. Also, the application itself looks as if it’s been started from the local

machine when it comes to the look and feel. In seamless mode, an end sees no

difference between the remote application in App Share session and his/her local

Chapter 3

74

application. The technology behind the seamless application basically cloaks or

clips out the part of the window that shows the application in a normal Windows

shell. There are three key features of SeamlessApp which facilitates the

implementation:

1. Add a client-to-server message for starting an application: When run in

slave mode, App Share Client notifies the master App Share Client

instance of a new command to be run by sending command (e.g. "Ms

Paint") to the master socket and then exits. The master instance detects

there is a command from client and sends a client-to-server message (e.g.

"spawn, Ms Paint") to launch a new application at the server.

2. Enhanced support for WM_DELETE_WINDOW: Instead of terminating

the whole App Share connection when one client side window is closed, a

client-to-server message is send to close the corresponding window on the

server side.

3. Support for sending focus information from client to server: Focused

window information is carried in the seamless virtualChannelData field

with the format "focus, win ID, flags".

Figure 27 Control messages in seamless virtual channel shows the interaction

between client and server about the above features in the SeamlessApp mode.

Chapter 3

75

Figure 27 Control messages in seamless virtual channel

Table 3 Client ID and Window ID

Table 3 shows the relationship among Client ID, application name, Process ID,

Win ID, Parent Win ID. The Client ID in our implementation is assigned by the

client socket number. Each client may have multiple applications running at the

server. Each application is associated with a process ID and a main window ID.

The main window without parent will have parent win ID 0. When a user operates

Chapter 3

76

on certain applications, there are child windows created under the parent win ID.

Therefore, each client has multiple windows to manage and each time at most one

window is focused by the client. SeamlessApp supports for sending focus

information from client to server. App Share Server will decode the focused

window information carried in the seamless virtual channel "focus, win ID" and

monitors each client. If it comes to a client's turn by the scheduler, its "focus, Win

ID" will be send to SeamlessApp Server via seamless virtual channel by App

Share Server. And subsequently, the input events of the client will be forwarded

to TS Server by App Share Server.

 Results and Discussion 3.5

Our test bed is set up in a LAN consisting of ten computers with ShAppliT

application and identical system environment configurations. All PCs are

Pentium4 3.0GHz machines with 512MB physical memory running Windows XP

professional SP3. The performance evaluation is mainly focused on describing the

impact of increasing the number of remote application sessions on the memory

consumption of a host computer running ShAppliT. The load analysis shows that

additional remote connection results in a linear increase of the commit charges on

host computer.

 User Interface 3.5.1

The user interface of App Share and the screen shot of configuration of share/un-

share an application are shown in Figure 28 Screen shot of the demonstrated App

Share and Figure 29 Screen shot of the demonstrated App Share: setting share/un-

share applications Figure 29 Screen shot of the demonstrated App Share: setting

share/un-share applicationsbelow.

Chapter 3

77

Figure 28 Screen shot of the demonstrated App Share

Figure 29 Screen shot of the demonstrated App Share: setting share/un-share

applications

Chapter 3

78

 Multi-session Load Analysis 3.5.2

In the experiment, tests are carried out on a single host machine running multiple

remote application sessions of WordPad.exe. This analysis helps us evaluate the

memory performance of the computer and determine the maximum concurrent

session to be accepted on the machine. This testing is conducted using a host

computer with ShAppliT installed and deployed. The performance data is

obtained using the performance analysis tool implemented in Windows Task

Manager. Table 4 below gives an overview on detailed performance analysis of

Windows Task Manager.

Table 4 Details on Windows Task Manager Performance analysis [62]

Parameter Details

Commit

Charge

Amount of virtual memory reserved by the operating system for

the process. Memory allocated to programs and the operating

system. Because of memory copied to the paging file, called virtual

memory, the value listed under Peak may exceed the maximum

physical memory. The value for Total is the same as that depicted

in the Page File Usage History graph.

Physical

Memory

The total physical memory, also called RAM, installed on your

computer. Available represents the amount of free memory that is

available for use. The System Cache shows the current physical

memory used to map pages of open files.

Kernel

Memory

Memory used by the operating system kernel and device

drivers. The paged is memory that can be copied to the paging file,

thereby freeing the physical memory. The physical memory can

then be used by the operating system. Non-paged is memory that

remains resident in physical memory and will not be copied out to

the paging file.

Chapter 3

79

In Windows Server 2008 R2, user can configure the number of simultaneous

remote connections that are allowed for a connection. A client windows machine

is converted to a windows server by implementation of ShAppliT V1.0. Our main

goal is to compare out broker mediated solution (ShAppliT V2.0) with emulated

Windows server (ShAppliT V1.0). ShAppliT V1.0 makes modifications on

terminal service (TS) DLL file and the registry of Windows XP as described in

references [63] and [64]. In this case, Windows terminal service server manages

the connections sessions directly such that no broker is needed for exchange of

information between server and client. A control session is used as a reference

whereby the data is captured when no remote session is taking place. The data is

being recorded every time an additional remote session is launched from a client

computer and the result is shown in Table 5 Multi-session load analysis on host

computer with ShAppliT V1.0 and Table 6 Multi-session load analysis on host

computer with ShAppliT V2.0.

Table 5 Multi-session load analysis on host computer with ShAppliT V1.0

No. of

remote

sessio

ns

Total

physical

memory(K

B)

Available

physical

memory(K

B)

Total kernel

memory(K

B)

Paged

kernel

memory(K

B)

Total commit

charge(KB)

0 514116 318056 37864 27276 248176

1 514116 278588 42312 31420 268272

2 514116 269660 44660 33600 285812

3 514116 260704 47076 35876 300284

4 514116 252144 49412 38056 314888

5 514116 261168 51440 40036 318972

Chapter 3

80

6 514116 252172 53752 42188 343584

7 514116 236348 55448 43768 358156

8 514116 227700 57600 45776 372684

9 514116 220752 59864 47896 388188

Table 6 Multi-session load analysis on host computer with ShAppliT V2.0

No. of

remote

sessions

Total

physical

memory(K

B)

Available

physical

memory(K

B)

Total kernel

memory(K

B)

Paged

kernel

memory(K

B)

Total

commit

charge(K

B)

0 514116 318056 37864 27276 248176

1 514116 308092 38112 27524 249012

2 514116 306060 38244 27656 251132

3 514116 305416 38388 27800 251932

4 514116 303880 38532 27944 254080

5 514116 302248 38712 28124 255744

6 514116 300976 38868 28280 257356

7 514116 308312 39020 28432 258932

8 514116 308716 39172 28584 260468

9 514116 307864 39324 28736 261856

Chapter 3

81

The load analysis of ShAppliT V1.0 (Figure 30 Memory performance of

ShAppliT V1.0 when hosting multiple remote sessions) shows that additional

remote connection results is a linear increase of the commit charge on the host

computer. And the physical memory at the host computer decreases with

increasing number of multiple remote sessions. As such, it is necessary to set a

limit on the maximum number of concurrent sessions so that the host computer

would not be burdened by excessive remote connections and experience laggings

in the local session. This result also highlights that although this system provides

certain degree of scalability but further performance optimization on memory

consumption still need to be done.

Figure 30 Memory performance of ShAppliT V1.0 when hosting multiple remote

sessions

The load analysis of ShAppliT V2.0 (Figure 31 Memory performance of

ShAppliT V2.0 when hosting multiple remote sessions) shows that additional

remote connection results in a linear increase of the commit charge on host

computer. The increment of commit charge is very small with increasing number

of concurrent remote sessions. In addition, the available physical memory of the

host computer is affected very little by the multiple remote sessions.

0

100000

200000

300000

400000

500000

0 5 10

M
e

m
o

ry
 (

K
B

)

No. of remote sessions on host computer

Memory performance of ShAppliT V1.0

Available physical
memory

Total kernel
memory

Paged kernel
memory

Total commit
charge

Chapter 3

82

Figure 31 Memory performance of ShAppliT V2.0 when hosting multiple remote

sessions

Memory management is more effective in ShAppliT V2.0 compared to ShAppliT

V1.0 observed from Figure 32 Comparison between ShAppliT V1.0 and

ShAppliT V2.0 on commit charge when hosting multiple remote sessions below.

This is because in ShAppliT V2.0 there is only one RDP connection established

and maintained by ShAppliT Server. Each additional application launched at host

computer is invoked by SeamlessApp server in the same way as using cmd.exe at

host computer. As a result, starting a new application session, the operating

system only allocates the necessary memory resource to the application process

running within the same user. While, in ShAppliT V1.0 multiple remote

connections are made to Windows TS server directly and multiple RDP sessions

are established. Each time any new request of application from client, the host

computer launches an additional RDP session for the application. Therefore, the

operating system reserves the memory for multiple RDP sessions in ShAppliT

V1.0, which consumes much more memory than within one RDP connection

session.

0

100000

200000

300000

400000

0 5 10

M
e

m
o

ry
 (

K
B

)

No. of remote sessions on host computer

Memory performance of ShAppliT V2.0

Available physical
memory

Total kernel
memory

Paged kernel
memory

Total commit
charge

Chapter 3

83

Figure 32 Comparison between ShAppliT V1.0 and ShAppliT V2.0 on commit

charge when hosting multiple remote sessions

 License Issue on Application Sharing 3.5.3

Most of the software installed in personal computers have a single user software

license and cannot be transferred from one user to another. For example Microsoft

office edition 2007 says the single primary user of a licensed device may access

and use the software installed on the licensed device. Single user may use remote

access technologies, such as the Remote Desktop features in Microsoft Windows

or NetMeeting, to access and use the licensed copy of the Software, provided that

only the primary user of the device hosting the remote desktop session accesses

and uses the Software with a remote access device [65].

The single user licensing problem of application sharing is solved in our current

approach ShAppliT V2.0 by establishing one RDP connection for multiple clients.

The ShAppliT Server sits in between the ShAppliT client and TS server as a

broker. It logs in to the host operating system via RDP, handles tasks from

multiple clients, including the local user sitting in front of the computer and

passes them to the TS server. Therefore, TS server sees only one RDP session and

it feels that it works for the broker only. And the broker is in charge of connecting

Chapter 3

84

to TS Server, creating remote user sessions and multiplexing/de-multiplexing the

data streams. So, when a client want to launch a remote application from the

server, the application will be open at the server under the same user account

which is the one established by the broker. Therefore, with our application sharing

tool ShAppliT, as long as there is one user license for the software, it can be

shared among multiple clients without violating any licensing terms.

Furthermore, the client version of Microsoft Windows operating system (e.g.

Windows XP Professional, Windows 7) terminal service limits the number of

users logged in to one at a time. Two people cannot be logged on at the same time

even if it includes just a physical, local-console login and a remote login. It has to

be one or the other and only one user at a time. In ShAppliT V2.0 system, there is

only one master user login by ShAppliT Server (broker). So, the problem of the

closed system limitation on single user logged-in session is not an issue for broker

mediated application sharing system.

 Some Limitations of Our Implementations 3.5.4

In our current implementation of application sharing cluster, Windows OS is

chosen as the implementation platform. Currently, the architecture has been

evaluated on Windows OS. However, in a cluster environment the operating

systems are heterogeneous in general. More implementation and performance

testing should be done on other OS as well for example Mac, Linux OS, to

demonstrate the framework and the methodology are widely applicable.

More experiments can be done on other applications to collect more data and

evaluate the performance. Currently only the basic applications are tested, e.g.

MS Paint, MS word, notepad, calculator, etc.

Chapter 3

85

 Summary 3.6

A novel P2P application sharing system ShAppliT has been developed in a cluster

which supports generic application sharing and concurrent multiple sharing

sessions. The proposed architecture is a clever blend of cluster computing and

peer-to-peer concepts. ShAppliT enables client remote access application

resources that are not installed on the local computer. Also, a peer can host

multiple remotely access sessions without any interference for his own

experience. A broker-mediated solution has been provided to extend a single user

licensed software resource for multiple user usage without modifying the

operating system. Experiments also show that our application sharing system has

good usability, scalability and a friendly user interface. Our broker-mediated

system architecture has wide applicability on other closed systems.

Chapter 4

86

CHAPTER 4 BUILDING A RELIABLE FILE

SYSTEM FOR FAULT-TOLERANT

SERVICES

 Introduction 4.1

As a cluster is scaled up to large number of nodes and disks, it becomes more

risky that some components are working incorrectly from time to time. There is a

need to handle component failures gracefully and keep operating in the presence

of failures. [66] In computing, a file system can be regarded as a method to store

and organize files and data so that there will be ease in finding and accessing

these files. In other words, it can be viewed as a collection of files with directory

structures, and a file system will provide an abstraction of accessing the files or

directories. Due to the high possibilities of system and media failures, as well as

the presence of user and application faults, hence this calls for a need to protect

important file system data so that data loss can be minimized. A successful

application sharing system should provide reliable services. In the current cluster

file system literature, there are two main streams of research on addressing

different applications or workflows, one is directed acyclic graph (DAG)

structured workflow and the other one is Map-reduced workflow. For DAG

structured workflows, they are mainly for scientific workflows and often re-use

large datasets in multiple workflows. The scientific tasks consume whole files and

replicate the whole files rather than striping files as in Hadoop. There are some

examples of cluster file systems for DAG-structured workflows in the literature,

namely Makeflow, Chirp and Confuga.

As compared with the DAG workflow, the Map-Reduce application or workflow

has the following features, they are mainly leveraging with Hadoop distributed

file system for Map Reduce workflows. In terms of accessing the files, they are

Chapter 4

87

block oriented and no whole-file access. The Map-Reduce workflow is inefficient

for single task whole-file access.

Therefore, based on the literature research, one chief technology to accomplish

fault-tolerant application services in a cluster is file/data replication at client or

server or third peer. Through literature review, several previous efforts have been

done to protect file system data. A key idea would be to retain important older

versions of the file systems followed by storage reclamation. Another concept that

was implemented was to allow users to make and maintain multiple copies of data

and avoid deletes whenever possible. In view of the rising efforts in this key area

pertaining to operating systems, this led to the strong motivation behind this work,

whereby the main aim is to create a reliable and secure file system. A failure-save

solution has been designed and implemented which enables user to login to the

file server from anywhere, synchronizes document to last saved state on server

and provides certain degree of portability. Through this implementation, it is

hoped to establish appropriate techniques that can be used for the actual

implementation of a reliable file system to accomplish fault-tolerant application

services.

 Portable File System (PFS) on Filesystem in User Space 4.2

(FUSE)

In this thesis, a file system called “PFS” was built on top of FUSE [67]. As such,

this section serves to provide some background information and basic description

of FUSE. FUSE or File system in User Space is a loadable kernel module for

Unix-like operating systems, and it is a platform that allows users to create their

own file systems without editing kernel codes. This is achievable by the running

of the file system codes in user space (which also explains the name), while the

FUSE module bridges to the actual kernel interfaces.

The overview of the reliable file system architecture is as shown in Figure 33:

Chapter 4

88

Figure 33 Overview of reliable file system architecture

FUSE was originally part of “A Virtual File System” (AVFS) [68], but it is now a

separate project on SourceForge.net. It is free software as it is released under the

terms of the GNU General Public License and the GNU Lesser General Public

License. Also, FUSE is available for Linux [69] as well, and is officially merged

into the mainstream Linux kernel tree in kernel version 2.6.14. Due to these

mentioned characteristics, FUSE is decided for usage in this work. A FUSE file

system is a program that listens on a socket for file operations to perform, and

performs them. The FUSE library (libfuse) provides the communication with the

socket, and passes the requests on to the user’s code. This is accomplished using a

“call-back” mechanism. The call-backs are as set of functions that need to be

written for the implementation of file operations.

 Implementation of PFS 4.3

 Set-up of FUSE and Host Computers 4.3.1

Chapter 4

89

First of all, FUSE was set up for the work by ensuring that most of the required

file operations are functioning well before implementing additional source codes

for the research purposes. As a reference, the "Big Brother File System (BBFS)"

[70], was used as the skeleton that the work built upon. This file system is mainly

a logging file system, and was utilized for debugging purposes in this work.

A basic file system called “PFS” was then built based on FUSE with reference to

the BBFS; the reason for the name is that "Big Brother is watching." The file

system simply passes every operation down to an underlying directory, but logs

the operation. This file system will support the following minimum specification:

1) It can accommodate about 5000 documents, and each file has a

maximum size of 50MB. A maximum of 50 characters will be supported

for each file name.

2) The file system will support most of the major operations, including

open, close, read, write, create, rename, delete, mkdir, rmdir on top of

other basic calls like getattr and mknod.

The BBFS was being studied and but almost all the system call-backs were not

suitable for our implementation, and many were not functioning in an appropriate

manner as well. As such, new source codes have to be developed in order to

derive a fully working PFS, which is the core of our implementation.

In this work, there will be two host computers, namely the server and the client.

The client will be the site whereby the originating activities are done, which

means that there will be user involvement at the client. Hence all the file

operations will be originated at the client site. This means that the client is the

primary file system.

As for the server, it will be the location whereby the file operations will be

mirrored to. In this way, such a form of implementation will be able to represent a

real-life application in which the client acts like a user workstation, and the server

Chapter 4

90

is the host purely for mirroring purposes. Hence, the server will be the mirrored

file system. Both the server and client will be set up and running and it is assumed

that they are both in good working conditions. The assumption here is the original

file operations is always performed at the client due to user involvement, and this

will be followed by the same set of similar file operations being performed on the

server. Hence, the state of the server will always be “behind” that of the client,

and this would call for the need to perform the appropriate mirroring on the server

as the implementation.

 Logging of File Operations 4.3.2

In order to keep track of the file operations in the client, there will be a log file to

record down the activities at the client. The log file has three fields and the

description of the fields is as follows:

 ID – This field is in a number format, and is used to track the sequence of

the file operations at the client site.

 CmdID – This field is also in a number format, and is used to represent the

command types for the particular file operation that is being performed.

 Parameters – This field is related to the command type for the particular

file operation, and it differs from command to command. However in

general, this field will contain all the parameters/arguments involved in

the command. For example, if a read operation is executed, then the

parameters logged down will be offset, size and path name. As for a write

operation, it will be the write buffer that is being logged.

 Client-Server Communication 4.3.3

As seen from Figure 33 depicting the system architecture in the above sub-

section, network connection between client and server was established, and there

is client-server interaction to allow network real-time mirroring to take place. The

concept of the client-server communication protocol is quite similar to that of a

Chapter 4

91

TCP/IP protocol. The client will send signals in the form of ID via the network

whenever there are any file operations performed. As for the server, it will always

be in the “listening” mode, so as to detect any signals sent by the client.

In detail, whenever a file operation is being performed on the client, the command

type and the parameters involved in the file operation will be logged down in its

log file. This means that there will be a new entry, and new entries are all added

with increasing ID number. The client which is the primary file system will then

tell the server (mirrored file system) of the ID number of the entry that it is going

to send over. The server will then check whether that ID number sent by the client

is equal to the very last ID + 1 in its own log file. If this is true, the client will

proceed to send over the appropriate command type (in the form of CmdID) to the

server. Otherwise, error recovery will be performed whereby the server will

request the client to resend all the commands numbering from the previous ID at

the server to the current ID at the client side. Under situations when the client or

server is down, the error recovery mentioned above will take place. In this way,

there will be assurance that there will be consistency in the data stored in both

client and server. Hence the mirroring on the server will be up to date and similar

to what was being performed on the client. These set of actions are clearly

illustrated in Figure 34.

Chapter 4

92

Figure 34 Flow for ID checking on server site

 Explanation of Callback Functions 4.3.4

Table 7 describes all the call-back functions that were implemented for this

project.

Table 7 Call-back functions implemented in PSF

Function Name Function

server_start

client_start

To set up the basic connection on the server side

and the client side respectively.

server_check

client_check

error_recovery

server_check and client_check determine the if

the id numbers of the server and client match.

error_recovery will synchronise the client and

server if the id numbers did not match.

sendcmdid

sendrmdir

sendmkdir

sendreaddir

sendopendir

sendopen

sendread

sendaccess

sendcmdid is called by the client to send the id

number and command number to the server and

perform appropriate checks.

The other functions perform the necessary

communications with the server for that

individual command.

Chapter 4

93

sendgetattr

sendrename

sendunlink

sendmknod

sendcreate

sendwrite

sendlink

pfs_getattr

pfs_readlink

pfs_mknod

pfs_mkdir

pfs_unlink

pfs_rmdir

pfs_rename

pfs_link

pfs_open

pfs_read

pfs_write

pfs_release

pfs_opendir

pfs_readdir

pfs_readdir

pfs_access

pfs_create

Individual call-back functions of the file system.

pfs_fullpath

pfs_logpath

Provide the path to the appropriate files or the log

files.

logread

logwrite

Functions use to read and write to the log files

required by pfs_write

servermain The server main loop which wait and listen to

request by the client

main Main function to initialize the variables and parse

the command line

The following flow-charts in Figure 35 and Figure 36 demonstrates the detailed

explanation of a selected call-back function namely the write operation from both

the server and client perspective.

Chapter 4

94

Figure 35 Flow-chart for write operation at client

Chapter 4

95

Figure 36 Flow-chart for write operation at server

 Testing and Evaluation 4.4

In order to test the functionality of the implemented file system, two main

approaches were thought of and used in this project. The first approach is to test

the read and write latencies of the PFS and this was compared against the default

file system in Linux. For the second test, the purpose is to ensure integrity in the

PFS. This was done by performing numerous file creations at the client computer,

Chapter 4

96

and checks were done on the server (which is the mirrored site) to observe

whether all the same files were seen at the server after the file creations were

performed on the client. In other words, this test aims to uncover any

discrepancies between the files of both client and server.

 Latency Test 4.4.1

A test script (In Appendix G) was written to measure the latencies experienced

during a read operation under the above two mentioned conditions, and the

latencies was benchmarked against the default file system in Linux. For this

latency test, files of various sizes ranging from 1KB to 50MB were being read by

the client computer, and this was followed with the writing of these files as well.

The graphs in Figure 37 and Figure 38 display the results for both the read and

write latency tests.

 Integrity Test for File System 4.4.2

This integrity test was intentionally done on the PFS under vigorous operating

condition so as to unveil the reliability of the PFS in a certain way. The test script

(Detailed scripts are shown in the Appendix F) was run and this involved 10,000

file creations with varying sizes on the PFS.

Upon completion of the file creations and the mirroring, the Linux command:

 diff –r –N </Path on Client> <Path on Server>

was issued to detect any discrepancies between the files in the client and server.

However, no discrepancies were found, and all 10,000 files written on the client

were mirrored on the server. This demonstrates that PFS is indeed reliable as it

ensures file operations performed on the client are being mirrored accurately onto

the server.

.

Chapter 4

97

Figure 37 Graph for read latency test results

Figure 38 Graph for write latency test results

Read Latency Test

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

1 10
100

100
0

100
00

200
00

300
00

400
00

500
00

File Size (kB)

Ti
m

e
(m

s)

Default FS

PFS

Write Latency Test

0

500000

1000000

1500000

2000000

2500000

3000000

1 10 10
0

10
00

10
00

0

20
00

0

30
00

0

40
00

0

50
00

0

File Size (kB)

T
im

e
 (

m
s
)

Default FS

PFS

Chapter 4

98

 Summary 4.5

As a cluster is scaled up to large numbers of nodes and disks it becomes

increasingly unlikely that all components are working correctly at all times. This

implies the need to handle component failures gracefully and continue operating

in the presence of failures. The proposed idea of implementing a reliable file

system was implemented successfully in this work. Upon the completion of the

development of the file system, testing and evaluation of the system were also

performed and results showed that the implemented has reached a reasonable

level of reliability.

99

CHAPTER 5 IMPRECISE COMPUTATION

SCHEDULING ALGORITHMS FOR REAL-

TIME CLUSTER COMPUTING

 Introduction 5.1

Cluster computing has attracted attention for large scale computing using idle

CPU cycles of personal computers connected in local area network. In this thesis,

a broker with imprecise computation scheduling is proposed for large scale

computing in clusters. Imprecise computation techniques provide scheduling

flexibility by trading off result quality to meet computation deadlines. It provides

a technique to enhance QoS for real-time systems and improve the energy

efficiency for large scale computing in clusters with lower carbon emission.

Measurements of simulation on a large number of task sets show that imprecise

computation improves the system reliability when scheduling intensive

workloads. With less schedule faults, CPU cycles are saved and energy-efficiency

is improved for large scale computing in clusters.

Many parallel applications have been developed to be running on cluster

computing platforms. However, scheduling large scale data intensive work load in

cluster computing is a challenging task. Scheduling strategies deployed in clusters

have great impacts on overall system performance as it involves coordinating

multiple computational nodes for resource sharing and scheduling in an efficient

manner [71]. The jobs executed in cluster computing comprise many tasks. These

tasks are allocated to PCs and processed in parallel. SETI@home [72] and

distributed.net [73] are two well-known projects in this area.

Chapter 5

100

Real time applications are required to perform their functions under strict timing

constraints. A task missing its deadline may cause other tasks to miss their

deadlines resulting in a system failure [74]. System failures and fault tolerant

solution e.g. job replication in general result in wastage of CPU cycles. Imprecise

computation technique is proposed as a natural means for enhancing fault

tolerance and graceful degradation of real-time systems. Imprecise computation

techniques provide scheduling flexibility by trading off result quality to meet

computation deadlines [75]. For real time applications such as image processing,

the user may accept timely fuzzy and approximate results. Therefore, the

imprecise computation workload model has to adjust the trade-off between

computation time and result quality. It is assumed that every task can be logically

divided into two tasks: a mandatory task and an optional task. They are treated as

tasks rather than subtasks. The ready times and deadlines of the tasks are the same

as the job therefore any delay in a single task will affect the completion time of

the whole job [76]. The broker has to monitor the task execution at each host,

make sure all the tasks finish at the required deadline and perform appropriate

actions according any change in execution [76]. The system will schedule and

execute all the mandatory loads before their deadlines and then the optional loads

to refine the result. In order to complete a job, all mandatory tasks that are

executed on various hosts should be completed [76].

Gartner Report 2007 shows that IT industry contributes 2% of world's total CO2

emissions. And U.S. EPA Report 2007 shows that 1.5% of total U.S. power

consumption used by data centres which has more than doubled since 2000 and

costs $4.5 billion [77]. In the last decade, the issue of energy conservation for

parallel application running on large-scale clusters has attracted little attention.

Recently energy saving techniques has made it possible to develop energy

efficient cluster computing platforms [77]. For example, dynamic voltage scaling

scheme (DVS) and dynamic link shutdown (DLS), proposed by Kim et al. [78],

cluster-based Energy-Saving Routing Algorithm (CERA) developed by Juan et al.

Chapter 5

101

[79] and optimized buffer design to reduce energy consumption in cluster

interconnects by Kim et al. [80].

In this research, a broker with imprecise computation scheduling is proposed for

large scale computation in cluster computing. The imprecise computation

application model (consisting a mandatory part and optional part) can be applied

in many scenarios or use cases such as,

• Resource allocation in cluster to achieve load balancing and flexible use of

cluster resource, which is to avoid overload certain notes which are

heavily loaded. If the source site is overloaded, that can be adopted that

only mandatory part will executed

• Fine-grained QoS specification: this model allows the administrator or

user to specify the QoS by deciding the mandatory task ratio of the overall

task, e.g. 90% or 80%. A user can describe a cluster application’s QoS in

more detail using the proposed application model. The minimum required

quality is specified by the mandatory part

• Multimedia services in the cluster: application (e.g. multimedia

application, image processing task) may require real time response. By

using the imprecise computation model, the scheduling or timing fault

could be reduced.

• A user can describe a cluster application’s QoS in more detail using the

proposed application model. The minimum required quality is specified by

the mandatory part. The mandatory part is corresponded to the minimum

quality. The optional part is to enhance the multimedia quality.

A technique to enhance QoS for real-time systems is provided to improve the

energy efficiency for large scale computing in clusters with lower carbon

emission. Green broker has two objectives in task scheduling of cluster

computing: minimize job completion time and improve system energy efficiency

Chapter 5

102

such that the carbon emission is reduced. Also four imprecise scheduling

algorithms are designed and simulated, namely earliest deadline first (EDF), rate

monotonic scheduling (RMS), least execution time first (LEF) and most execution

time first (MEF) under varying system workload from 0 to 100% loading.

Measurements of simulation on a large number of task sets show that imprecise

computation improves the system reliability when scheduling intensive

workloads. With less schedule timing faults, CPU cycles are saved and energy-

efficiency is improved for computation of intensive work loads in clusters. It

proves that our green broker is energy efficient by saving the CPU cycles wasted

in the timing faults and gives user acceptable results approximately by using

imprecise computation scheduling algorithms. The performance among four

algorithms also shows that the EDF scheduling algorithm is the best scheduling

algorithm in the real time system environment with intensive workloads. EDF

scheduling algorithm is able to schedule 100% of the tasks when system is fully

loaded. Using imprecise computation, when system is 100% loaded, RMS

scheduling algorithm is able to schedule 62.3% more tasks; LEF scheduling

algorithm is able to schedule 77.6% more tasks; MEF scheduling algorithm is

able to schedule 10.3% more tasks.

 System Model 5.2

A generic cluster computing system architecture is proposed. A green broker

works as a middle layer on top of operating systems for multiple user

management and resource management in Figure 39 Cluster computing system

overview. And it behaves like an agent to receive and manage tasks from multiple

clients and provide a single view for them. Also, it allows resources to be

remotely accessed by multiple clients without interfering with the person sitting at

the computer where the application is installed [81] [82] [83].Green broker is

responsible to process the computationally intensive loads and schedule its load

Chapter 5

103

on all the sinks including itself. Sinks are the computing nodes for processing

workloads or data [71].

The cluster computing system interconnection topology is modelled as a single-

level tree network shown in Figure 40 Cluster computing system model. The

cluster system consists of a broker which is the master node denoted by P0 and m

sinks (processing nodes) denoted by P1... Pm. Each node is a processor with

front-end [84] that means every node is capable in job admission, assignment and

processing. It is assumed there are m+1 processor (p0, p1, p2... pm) and m links.

The root processor receives the arrival load and partition and distribute of the load

to all the processors.

Figure 39 Cluster computing system overview

A divisible load is one that can be arbitrarily partitioned among the processors in

a system. ω is a processor’s computation speed parameter respect to a standard

Chapter 5

104

processor. z is a parameter for the communication link speed in a distributed

computing system. All the nodes have the different computational speeds and are

fully connected by communication links with different speeds [84]. Notations and

definitions of the cluster computing system model are shown in Table 8 Notations

and definitions of the System.

Our system assumes that every task can be logically divided into two tasks: a

mandatory task and an optional task. The system will schedule and execute all the

mandatory loads before their deadlines and then the optional loads to refine the

result. Each task T can be decomposed into two subtasks: the mandatory subtask

M and the optional subtask O. M and O are treated as tasks rather than subtasks.

The processing times of M and O are m and o, respectively and m + o =τ (Tau).

The ready times and deadlines of M and O are the same as those of T.

Figure 40 Cluster computing system model

Table 8 Notations and definitions of the System

T Task

M Mandatory task

O Optional task

Chapter 5

105

τ Processing time of T m + o =τ (Tau)

m Processing time of M

o Processing time of O

P Processor

ω Processor’s computation speed parameter

z Communication link speed parameter

α Load fraction assigned to processor, ∑

 Time taken to process a unit load by the standard processor

 Time taken to communicate a unit load on a standard link

 Scheduling Method and Modelling 5.3

 Scheduling Algorithms 5.3.1

In our system four scheduling algorithms are designed. They are all priority

driven and pre-emptive. Earliest Deadline First (EDF) scheduling is the dynamic

priority driven scheduling algorithm used in real time systems. The system

checks the deadline of the tasks at any task arrival time and the task with the

earliest deadline will be chosen. Rate Monotonic Scheduling (RMS) algorithm is

a static scheduling algorithm. The priority is assigned according to the periods of

the tasks. Most Execution Time First (MEF) and Least Execution Time First

(LEF) will assign the priorities according to the amount of execution time taken

by the mandatory tasks. MEF will schedule and execute the task with longest

execution time of mandatory part first. While LEF will schedule and execute the

Chapter 5

106

task with the shortest execution time of mandatory part first. The system will

schedule and execute all the mandatory tasks first before their deadlines and then

the optional tasks as shown in Figure 41 Timing diagram of the system. T1, T2

and T3 are three periodic tasks. P0, P1, P2 and P3 are four parallel processing

nodes in the cluster. M denotes the mandatory part of a task and O denotes the

optional part of a task. And time intervals are defined by all the deadlines of the

tasks which are the same as next tasks’ arrival time. In Figure 41, in a time

interval mandatory tasks are scheduled based on their priorities. Priority

assignment varies for different scheduling algorithms. In the example, mandatory

tasks (T1.M, T2.M and T3.M) are executed in order followed by the optional

tasks (T1.O, T2.O and T3.O). Optional tasks can be left uncompleted when the

deadline comes or a new task arrives. Since our tasks are periodic only the

scheduling in the least common multiple of all the periods in the task set will be

considered.

Figure 41 Timing diagram of the system

Chapter 5

107

 Optimal Load Distribution 5.3.2

In order to achieve optimal processing time in a cluster computing network or

linear network, the processing load must be scheduled such that all the processors

stop computing their loads at the same time, which is named the principle of

optimality [84]. Timing diagram for optimal load divisible for a cluster of

processing nodes and its equivalent network are shown in Figure 42 and Figure

43.

Figure 42 Timing diagram: optimal load divisible for a cluster of processing

nodes [84]

Chapter 5

108

Figure 43 Timing diagram: optimal load divisible for equivalent cluster network

[84]

The optimal load distribution can be solved by recursive equations provided in the

scheduling divisible load book by B. Veeravalli et al. [84].

Equivalent W:

 () (

 ∑ ∏

) (1)

Recursive function:

 (2)

 (3)

Normalization equation:

 (4)

 ICSCluster Simulator 5.4

ICSCluster is designed as the simulation platform of the system. The simulator is

programmed using GNU Octave which is a high-level language, primarily

Chapter 5

109

intended for numerical computations [85]. The block diagram of the simulator is

shown as in Figure 44.

Figure 44 Block diagram of the simulator

In Table 9 Structure array and fields’ definition, task set t (tasks) can be user

specified or generated from our task generator. t (tasks), p (processors) and

scheduling algorithm str are passed to scheduling module ICS_sched(str, t, p).

ICS_sched is doing the actual schedule work and returns solution (sol). Solution

contains all the information of the system at a time interval t1 to t2 including the

communication information and the computation information of each task on each

processor.

Table 9 Structure array and fields’ definition

Structure Array Fields

t(tasks) tid, m, tau, pi, p(priority)

p(processors) pid, w, z

sol(solution)=simics_sched(str, t, p) t1, t2, type, pid, tid, amount

Chapter 5

110

In Table 9 Structure array and fields’ definition, task is specified by the task

identification number tid, mandatory portion execution time m, task execution

time tau, task period pi and the task priority p used in error calculation. Processor

is defined by processor identification number pid, processor’s computation speed

parameter ω and communication link speed parameter z. The scheduler will

return the solution in the format with time interval (t1, t2), communication or

computation carried out type, which processor pid is processing which task tid

and the amount of processing time given to the task.

The system schedules and executes the mandatory tasks first based on the

scheduling algorithms introduced in previous section. For mandatory tasks, it will

use EDF, RMS, LEF and MEF. The optional tasks are scheduled based on their

weights or priorities. Our schedule system is to achieve the maximum task

schedulable rate and to improve the energy efficiency. Figure 45 Flow chart of

simulation imprecise computation scheduling demonstrates the flow of simulation

imprecise computation scheduling. When the simulation starts, the system first

determine which scheduling algorithm is chosen to be simulated from EDF, RMS,

LEF and MEF. Table 10 summarizes all the scheduling algorithms used in the

simulator.

Chapter 5

111

Figure 45 Flow chart of simulation imprecise computation scheduling

Table 10 Scheduling algorithms for mandatory and optional tasks

String(str) Mandatory Optional

Algo 1 EDF Highest Priority First

Algo 2 RMS Highest Priority First

Algo 3 LEF Highest Priority First

Algo 4 MEF Highest Priority First

Then equivalent W is calculated based on optimal load distribution equations (1),

(2), (3) and (4). After that, time domain is constructed according to all the tasks’

periods in the task sets and their least common multiple. The scheduling will start

if all the previous jobs are successful. Mandatory tasks are scheduled before

Chapter 5

112

optional tasks. If all the mandatory tasks are finished before their deadlines, the

optional tasks will execute based on their priorities. If the tasks are successfully

scheduled, a solution returns to the scheduler with all the information of the

system within a time domain including the communication information and the

computation information of each task on each processor.

 Results and Analysis 5.5

In our evaluation, the program randomly generates 100 task sets each time for a

certain workload and increase workload from 0.01 to 1.20 with increment step of

0.01 to test the schedulable rate for each algorithm. If the workload cannot be

schedule within the constrain or deadline, that means it will create a timing fault

and lead to energy wastage. Work load is defined as the sum of computation time

required over period for a task set, ∑τ/π, against the equivalent computation

capacity of the multiprocessor system. Work load describes the intensity of

system loads. Schedulable rate is defined as the percentage of task sets which pass

the scheduling test.

Firstly, a comparison is done on the behaviour of scheduling intensive workloads

among four different scheduling algorithms. The schedulable rate vs. work load

is plotted in Figure 46.

Chapter 5

113

Figure 46 Schedulable rates vs. work load for precise scheduling

Next, the performance evaluation between different scheduling algorithms of

imprecise computation is shown in Figure 47. It can be observed that when work

load increases, schedulable rate behaves differently among the four scheduling

algorithms. It is obvious that the differences among the four scheduling

algorithms lie in their capabilities of scheduling intense workloads. Results show

that EDF has the best performance among these algorithms. Its schedulable rate

doesn’t drop until work load reaches 1, and maintains the highest schedulable rate

in four algorithms. RMS, which is considered as the best static priority-driven

algorithm, shows satisfactory results as well. MEF as a comparison algorithm

performs the worst among four algorithms.

Chapter 5

114

Figure 47 Schedulable rates vs. workload for imprecise computation

Next, for the four algorithms introduced above the performances of imprecise

computation against precise computation are shown in Figure 48-Figure 51. The

effect and benefit of imprecise computation are investigated.

Figure 48 Comparison between precise and imprecise computation on

schedulable rates for EDF scheduling algorithms

Chapter 5

115

Figure 49 Comparison between precise and imprecise computation on

schedulable rates for RMS scheduling algorithms

Figure 50 Comparison between precise and imprecise computation on

schedulable rates for LEF scheduling algorithms

Chapter 5

116

Figure 51 Comparison between precise and imprecise computation on

schedulable rates for MEF scheduling algorithms

In these evaluations, it is assumed that a task can be logically decomposed into a

mandatory part which takes 90% of execution time τ and an optional part which

takes 10% of τ. Clearly, for imprecise computation a system with certain

workload can reach a higher schedulable rate in contrast to precise computation.

This is because imprecise computation can left some optional work unfinished

and return an acceptable solution. So, imprecise computation is possible to 1.11

times higher schedulable workloads as before. Therefore with the green broker,

our cluster computing system provides higher QoS and lowers the timing faults

which lead to lower energy consumption. In the figures, the minor spikes of

precise computation beyond the work load of 1 and imprecise computation

beyond 1.11 are considered as experimental errors. As an observation of the four

algorithms stated above, they only differs in the scheduling strategy on mandatory

parts as the same priority driven algorithm is used for optional tasks. The

performance among four algorithms also shows that the EDF scheduling

algorithm is the best scheduling algorithm in the real time system environment

with intensive workloads. EDF scheduling algorithm is able to schedule 100% of

Chapter 5

117

the tasks when system is fully loaded. Using imprecise computation, when system

is 100% loaded, RMS scheduling algorithm is able to schedule 62.3% more tasks;

LEF scheduling algorithm is able to schedule 77.6% more tasks; MEF scheduling

algorithm is able to schedule 10.3% more tasks.

 Summary 5.6

A green broker has been proposed in the thesis with imprecise computation

scheduling for large scale computation in cluster computing. A technique to

enhance QoS for real-time systems has been provided to improve the energy

efficiency for large scale computing in clusters with lower carbon emission.

Green broker has achieved objectives: minimize job completion time, improve

system energy efficiency and reduce the carbon emission. Also four scheduling

algorithms with imprecise computation task model under varying system

workload from 0 to 100% loading are designed and simulated. Measurements of

simulation on a large number of task sets show that imprecise computation

improves the system reliability when scheduling intensive workloads. With less

schedule timing faults, CPU cycles are saved and energy-efficiency is improved

for computation of intensive work loads in clusters. It proves that our green

broker is energy efficient by saving the CPU cycles wasted in the timing faults

and gives user acceptable results approximately by using imprecise computation

scheduling algorithms. The performance comparisons among four algorithms

show that EDF scheduling algorithm is the best algorithm in the real time system

environment when dealing with intensive workloads.

118

CHAPTER 6 CONCLUSIONS AND FUTURE

WORK

 Conclusions 6.1

In this research, a generic application sharing architecture was proposed for users’

application sharing in a cluster of closed operating systems such as Microsoft

Windows. The broker-mediated solution allows multiple users to access a single

user software license on a time multiplex basis through a single logged in user.

An application sharing tool called ShAppliT has been introduced and

implemented in Microsoft Windows operating system. Their performance has

been evaluated on CPU usage and memory consumption when a computer is

hosting multiple concurrent shared application sessions

Moreover, imprecise computation scheduling was modelled and simulated to

enhance QoS for real-time systems and improve the energy efficiency for large

scale computing in clusters. Measurements of simulation on a large number of

task sets showed that imprecise computation improved the system reliability when

scheduling intensive workloads with less schedule timing faults, CPU cycles and

energy-efficiency improvement.

Finally, a failure-save solution was implemented for fault-tolerant application

services in clusters which enabled user to login to the file server from anywhere,

synchronize document to last saved state on server and provide certain degree of

portability. The proposed idea of building a reliable file system was implemented

successfully. Testing and evaluation of the system were also performed and

results showed that the implemented had reached reasonable level of reliability.

Chapter 6

119

 Future Work 6.2

Future research works are able to be carried out on security management,

reliability and resource management for P2P application sharing in a cluster

environment. User identification, data encryption algorithms and incentive

mechanisms are ways to prevent free-riding and promote cooperation across

distrustful peers [89]. In addition, a successful application sharing system should

also provide reliable services. Peers can build up coordinated checkpoints [90] for

fault recovery and establish redundant links across the peers in case of network

failures. In addition, resource management plays a critical rule in P2P application

sharing [91]. The research problem for resource discovery is matchmaking [92]

that locates resources subject to certain constraints.

Next each of the possible future work will be discussed in detail.

 Security Management 6.2.1

In this part categorize security protection technologies can be applied to various

levels in a P2P App Share system. Security management in user level mostly

relies on user identity verification. User identification provides a screening

process for certified peer management. At task level security management

concerns the aspect of task data privacy protection, commonly achieved through

data encryption algorithms. In addition, systems must provide effective incentive

mechanisms to prevent free-riding and promote cooperation across distrustful

peers. Finally, network disconnection can be used if remote attacks from certain

source are identified.

Chapter 6

120

Figure 52 Taxonomy for security management

 Reliability Management 6.2.2

In addition to secure management, a successful application sharing system should

also provide reliable services. One chief technology to accomplish fault-tolerant

application services is data replication at client or server or third peer. Moreover,

peers can build up coordinated checkpoints for fault recovery and establish

redundant links across the peers in case of network failures. So, process at the

failed peer can be migrated to a peer with redundant resource for fault tolerance.

Figure 53 Taxonomy for reliability management

 Resource Management 6.2.3

Resource management plays a critical rule in P2P application sharing. For

computing resources four core functions are generalized: resource discovery,

Chapter 6

121

resource monitoring, resource identification and resource utilization. The research

problem for resource discovery is matchmaking that locates resources subject to

certain constraints. Resource utilization concerns how the management functions

affect resource providers. Load balancing can be applied for better resource

utilization.

Figure 54 Taxonomy for resource management

122

BIBLIOGRAPHY

[1] R. Buyya, "A Proposal for Creating a Computing Research Repository (CoRR,

http://www.arXiv.org/) on Cluster Computing," Monash University, Melbourne,

Australia, 2000.

[2] B. Mark, B. Rajkumar, H. Ken, J. Heath and J. and Hai, "Cluster Computing R&D

in Australia," 2000. [Online]. Available:

http://www.cloudbus.org/papers/ClusterComputingAU.pdf. [Accessed 1 Jun

2013].

[3] B. Mark, B. Rajkumar and H. Dan, "Cluster Computing: A High-Performance

Contender," [Online]. Available: http://arxiv.org/ftp/cs/papers/0009/0009020.pdf.

[Accessed 1 Jun 2013].

[4] F. Ian, Z. Yong, R. Ioan and L. Shiyong, "Cloud Computing and Grid Computing

360-Degree Compared," in Grid Computing Environments Workshop GCE '08,

2008.

[5] B. Rajkumar, J. Hai and C. Toni, "Cluster computing," Elsevier Science: Future

Generation Computer Systems, vol. 18, 2002.

[6] Digipede Technologies, "Grid and Cluster Computing: Options for Improving

Windows Application Performance," 2003. [Online]. Available:

http://www.digipede.net/downloads/Digipede_CCS_Whitepaper.pdf. [Accessed 1

Jun 2013].

[7] K. Hwang, "Network-Based Cluster Computing," 2000. [Online]. Available:

http://www-classes.usc.edu/engr/ee-s/657h/clusterbasic.pdf. [Accessed 1 Jun

2013].

[8] K. Chander, "Linux Compute Clusters," 2003. [Online]. Available:

http://linuxclusters.com. [Accessed 1 Jun 2013].

[9] P. David A. and H. John L., "Computer Organization and Design," ISBN 0-12-

374750-3, 2011, pp. 641-642.

[10] F. Armando, G. Steven D., C. Yatin, B. Eric A. and G. Paul, "Cluster-Based

Scalable Network Services," in Proceedings of the Sixteenth ACM Symposium on

Operating Systems Principles, Saint-Malo, France, 1997.

[11] K. Shirahata, "Hybrid Map Task Scheduling for GPU-Based Heterogeneous

Clusters in: Cloud Computing Technology and Science," in CloudCom, 2010.

123

[12] B. Omer and S. Henning, "Application and Desktop Sharing," in CoNEXT’07,

New York, NY, U.S.A, 2007.

[13] "Windows NetMeeting," [Online]. Available:

www.microsoft.com/windows/netmeeting. [Accessed 1 Jun 2013].

[14] B. Omer and S. Henning, "BASS Application Sharing System," in 10th IEEE

International Symposium on Multimedia, 2008.

[15] T. Kasame, K. Pakit and M. Veera, "Jamjuree Cluster: A Peer-to-Peer Cluster

Computing System," Lecture Notes in Computer Science , Vols. Network-Based

Information Systems, pp. pp 375-384, 2007.

[16] H. Park, R. Izhak-Ratzin and M. van der Schaar, "Peer-to-Peer Networks -

Protocols, Cooperation and Competition," Streaming Media Architectures,

Techniques, and Applications: Recent Advances, 2010.

[17] "Technical Overview of Windows Server 2003 Terminal Services, Microsoft

Corporation," [Online]. Available:

http://www.microsoft.com/windowsserver2003/techinfo/overview/termserv.mspx.

[Accessed 1 Jun 2013].

[18] [Online]. Available: http://www.beowulf.org/. [Accessed 1 Jun 2013].

[19] S. Mulyadi and S. Andreas, "Build a heterogeneous cluster with coLinux and

openMosix," IBM Developer Works, 2005.

[20] H. Forrest M. and H. William W., "High Performance Computing: An

Introduction to Parallel Programming With Beowulf," [Online]. Available:

http://www.climatemodeling.org/~forrest/osdj-2000-11/. [Accessed 1 6 2013].

[21] [Online]. Available: http://research.cs.wisc.edu/htcondor/. [Accessed 1 Jun 2013].

[22] "DMTCP: Distributed MultiThreaded CheckPointing," [Online]. Available:

http://dmtcp.sourceforge.net/. [Accessed 1 Jun 2013].

[23] "TightVNC," [Online]. Available: http://www.tightvnc.com/. [Accessed 1 Jun

2013].

[24] "Open MPI: Open Source High Performance Computing," [Online]. Available:

http://www.open-mpi.org/. [Accessed 1 Jun 2013].

[25] "MPICH," [Online]. Available: http://www.mpich.org/. [Accessed 1 Jun 2013].

[26] "python," [Online]. Available: http://www.python.org/. [Accessed 1 Jun 2013].

[27] R. Ma, C.-L. Wang and F. C. M. Lau, "M-JavaMPI: A Java-MPI Binding with

Process Migration Support," in 2nd IEEE International Symposium on Cluster

Computing and the Grid, 2002.

[28] M. Dobber, R. van der Mei and G. Koole, "Dynamic Load Balancing and Job

Replication in a Global-Scale Grid Environment: A Comparison," 2009.

124

[29] "HP Insight Cluster Management Utility," [Online]. Available:

http://h20311.www2.hp.com/HPC/cache/412128-0-0-0-

121.html?jumpid=ex_r1459_w1/en/large/tsg/go_cmu. [Accessed 1 Jun 2013].

[30] H. Victor, "Cluster Computing: A Survey and Tutorial," [Online]. Available:

http://www.sdsc.edu/~victor/Projects/NQE/SysAdmin/SysAdmin_Batch.html.

[Accessed 1 Jun 2013].

[31] P. Ziewer and H. Seidl, "Transparent TeleTeaching," in ASCILITE, Auckland,

New Zealand, 2002.

[32] G. Lewis, S. M. Hasan, V. N. Alexandrov and M. T. Dove, "Facilitating

collaboration andapplication sharing with MAST and the access grid development

infrastructures," in E-SCIENCE, 2006.

[33] "Apple Remote Desktop 3," [Online]. Available:

http://www.apple.com/sg/remotedesktop/. [Accessed 1 Jun 2013].

[34] "GoToMyPC," [Online]. Available:

http://www.gotomypc.com/remote_access/remote_access. [Accessed 1 Jun 2013].

[35] "Cendio ThinLinc," [Online]. Available:

http://www.cendio.com/products/thinlinc/. [Accessed 1 Jun 2013].

[36] "The VNC family of Remote Control Applications," [Online]. Available:

http://ipinfo.info/html/vnc_remote_control.php. [Accessed 1 Jun 2013].

[37] "Citrix System," [Online]. Available: www.citrix.com. [Accessed 1 Jun 2013].

[38] "VNC," [Online]. Available: www.realvnc.com. [Accessed 1 Jun 2013].

[39] G. Wallace and K. Li, "Virtually shared displays and user input devices," in

USENIX Annual Technical Conference, 2007.

[40] "The X Windows System," [Online]. Available:

http://www.opengroup.org/tech/desktop/x/. [Accessed 1 Jun 2013].

[41] J. E. Baldeschwieler, T. Gutekunst and B. Plattner, "A survey of x protocol

multiplexors," SIGCOMM Comput. Commun. Rev., vol. 23, no. 2, pp. 16-24, 1993.

[42] "FreeRDP/xrdp," [Online]. Available: https://github.com/FreeRDP/xrdp.

[Accessed 1 Jun 2013].

[43] "Chrome Remote Desktop," [Online]. Available:

https://chrome.google.com/webstore/detail/chrome-remote-

desktop/gbchcmhmhahfdphkhkmpfmihenigjmpp?hl=en. [Accessed 1 Jun 2013].

[44] MSDN, "Remote Desktop Protocol," [Online]. Available:

http://msdn.microsoft.com/en-us/library/cc240446(v=PROT.10).aspx. [Accessed 1

Jun 2013].

[45] "Ericom Blaze RDP," [Online]. Available:

125

http://www.ericom.com/ericom_blaze.asp. [Accessed 1 Jun 2013].

[46] "N.Able," [Online]. Available: http://www.n-able.com/products/n-central/.

[Accessed 1 Jun 2013].

[47] "RapidSupport - Remote Support Solution," [Online]. Available:

http://www.rapidsupport.net/pages/index.php. [Accessed 1 Jun 2013].

[48] "Team Viewer," [Online]. Available: http://www.teamviewer.com/en/index.aspx.

[Accessed 1 Jun 2013].

[49] "xrdp," [Online]. Available: http://www.xrdp.org/. [Accessed 1 Jun 2013].

[50] T. Richardson, "The RFB Protocol," RealVNC Ltd, 2009.

[51] "ITU-T T.128," [Online]. Available: http://www.itu.int/rec/recommendation.asp.

[Accessed 1 Jun 2013].

[52] "SunForum," [Online]. Available:

www.sun.com/desktop/products/software/sunforum. [Accessed 1 Jun 2013].

[53] L. Hui-Chieh, C. Yen-Ping, S. Ruey-Kai and L. Win-Tsung, "A Generic

Application Sharing Architecture Based on Message-Oriented Middleware

Platform," in Proceedings of the 10th International Conference on Computer

Supported Cooperative Work in Design, 2006.

[54] MSDN, "The T.120 Standard," [Online]. Available: http://msdn.microsoft.com/en-

us/library/ms709084(VS.85).aspx. [Accessed 1 Jun 2013].

[55] MSDN, "MS-RDPBCGR," [Online]. Available: http://msdn.microsoft.com/en-

us/library/cc240445(v=prot.10).aspx. [Accessed 1 Jun 2013].

[56] "Windows Terminal Service," [Online]. Available:

www.microsoft.com/windowsserver2003/technologies/terminalservices/default.ms

px. [Accessed 1 Jun 2013].

[57] "Chapter 1: Functional Comparison of UNIX and Windows.," [Online]. Available:

http://technet.microsoft.com/en-us/library/bb496993.aspx.

[58] C. Hameed, "Windows 7 / Windows Server 2008 R2: Remote Desktop Services

Architecture," 13 October 2009. [Online]. Available:

http://blogs.technet.com/b/askperf/archive/2009/10/13/windows-7-windows-

server-2008-r2-remote-desktop-services-architecture.aspx. [Accessed 10 July

2011].

[59] "SeamlessRDP," [Online]. Available: http://www.cendio.com/seamlessrdp/.

[Accessed 1 Jun 2013].

[60] "rdesktop: A Remote Desktop Protocol Client for accessing Windows Remote

Desktop Services," [Online]. Available: http://www.rdesktop.org/. [Accessed 1

Jun 2013].

126

[61] "rdesktop," [Online]. Available: http://www.fontis.com.au/rdesktop. [Accessed 1

Jun 2013].

[62] "Task Manager overview," [Online]. Available:

http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-

us/taskman_whats_there_w.mspx?mfr=true. [Accessed 1 Jun 2013].

[63] "Enabling Multiple Remote Desktop Sessions in Windows XP,," [Online].

Available: fawzi.wordpress.com/2008/02/09/enabling-multiple-remote-desktop-

sessions-in-windows-xp/. [Accessed 1 Jun 2013].

[64] "How to Enable Multiple Remote Desktop Sessions on XP or Vista," [Online].

Available: remotedesktoprdp.com/Multiple-Remote-Desktop-Sessions.aspx.

[Accessed 1 Jun 2013].

[65] "License Terms," [Online]. Available:

www.microsoft.com/About/Legal/EN/US/IntellectualProperty/UseTerms/Default.

aspx. [Accessed 1 Jun 2013].

[66] S. Frank and H. Roger, "GPFS: A Shared-Disk File System for Large Computing

Clusters," in Proceedings of the Conference on File and Storage Technologies

(FAST’02), Monterey, CA, 2002.

[67] "Filesystem in Userspace," [Online]. Available: http://fuse.sourceforge.net/.

[Accessed 1 Jun 2013].

[68] "AVFS: A Virtual Filesystem," [Online]. Available:

http://sourceforge.net/projects/avf/. [Accessed 1 Jun 2013].

[69] D. Jeff, "User-Mode Linux," [Online]. Available:

www.kernel.org/doc/ols/2001/uml.pdf. [Accessed 1 Jun 2013].

[70] "Writing a FUSE Filesystem: a Tutorial," [Online]. Available:

http://www.cs.nmsu.edu/~pfeiffer/fuse-tutorial. [Accessed 1 Jun 2013].

[71] V. Sivakumar, V. Bharadwaj and R. Thomas G., " Resource-Aware Distributed

Scheduling trategies for Large-Scale Computational Cluster/Grid Systems," IEEE

Trans. Parallel Distrib. Syst, no. DOI=10.1109/TPDS.2007.1073

http://dx.doi.org/10.1109/TPDS.2007.1073, pp. 1450-1461, 2007.

[72] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky and D. Werthimer,

"SETI@home: An Experiment in Public-Resource Computing," Communications

of the ACM, vol. 45, no. 11, pp. 56-61, 2002.

[73] "distributed.net, “Node Zero,”," [Online]. Available: http://www.distributed.net/..

[Accessed 1 Jun 2013].

[74] A. Hamdy, "Scheduling real-time indivisible loads with special resource allocation

requirements on cluster computing," Journal of Systemics, Cybernetics and

Informatics, vol. 8, no. 5, pp. 34-39, 2010.

[75] J. Liu, K.-J. Lin, W.-K. Shih, A.-s. Yu, J.-Y. Chung and W. Zhao, "Algorithms for

127

scheduling imprecise computations," Computer, vol. 24, no. 5, pp. 58-68, 1991.

[76] H. Tada, M. Imase and M. Murata, "On the robustness of the soft state for task

scheduling in large-scale distributed computing environment," in International

Multiconference on Computer Science and Information Technology IMCSIT

2008. , doi: 10.1109/IMCSIT.2008.4747285, 2008.

[77] K. Saurabh and B. Rajkumar, "Green Cloud Computing and Environmental

Sustainability," Harnessing Green It: Principles and Practices (eds S. Murugesan

and G. R. Gangadharan), no. UK. doi: 10.1002/9781118305393.ch16, 2012.

[78] E. Kim, G. Link, K. Yum, V. N., K. M., I. M.J. and D. C.R., "A holistic approach

to designing energy-efficient cluster interconnects," IEEE Transactions on

Computers, vol. 54, no. 6, pp. 660-671, 2005.

[79] S. Bansal, P. Kumar and K. Singh, "An improved duplication strategy for

scheduling precedence constrained graphs in multiprocessor systems," IEEE

Transactions on Parallel and Distributed Systems, vol. 14, no. 6, pp. 533-544,

2003.

[80] C. Juan-Carlos, K. Dongkyun and M. Pietro, "Cera: Cluster-based energy saving

algorithm to coordinate routing in short-range wireless networks," in ICOIN, 2003.

[81] G. Chen, Z. Cenzhe and T. Teng Tiow, "ShAppliT: A Novel Broker-mediated

Solution to Generic Application Sharing in a Cluster of Closed Operating

Systems," International Journal of Soft Computing and Software Engineering

[JSCSE], vol. 2, no. 6, pp. 16-32, 2012.

[82] G. Chen, Z. Cenzhe and T. Teng Tiow, "Sharing of Generic Single-user

Application without Interference in a Cluster," in International Conference on

Software and Computer Applications, IPCSIT, Singapore, 2012.

[83] Z. Cenzhe, G. Chen, W. Jin and T. Teng Tiow, "Towards Scalability Issue in

Ontology-based Context-aware Systems," in International Conference on Software

and Computer Applications, IPCSIT, Singapore, 2012.

[84] V. Bharadwaj, G. Debasish, M. Venkataraman and R. Thomas G., Scheduling

Divisible Loads in Parallel and Distributed Systems, Los Almitos, California:

IEEE Computer Society Press, 1996.

[85] "Octave," [Online]. Available: http://www.gnu.org/software/octave/index.html.

[Accessed 1 Jun 2013].

[86] K. W. Kurose, Computer Networking: A Top-down Approach, Pearson.

[87] "cplusplus.com," [Online]. Available: http://www.cplusplus.com/reference/stl/set/.

[Accessed 1 Jun 2013].

[88] "“Remote Desktop Protocol Settings in Windows Server 2003 and Windows XP”,

Microsoft Support.," [Online]. Available: http://support.microsoft.com/kb/885187.

[Accessed 1 Jun 2013].

128

[89] L. Ni, A. Harwood and P. Stuckey, "Realizing the e-science desktop peer using a

peer-to-peer distributed virtual machine middleware," in MCG ’06: Proceedings of

the 4th International Workshop on.

[90] J.-S. Kim, B. Nam, M. Marsh, P. Keleher and B. Bhattacharjee, "Creating a robust

desktop grid using peer-to-peer services," in IPDPS’07: Proceedings of IEEE

International Parallel and Distributed Processing Symposium, 2007.

[91] Z. Han, X. Liu and X. Li, "A taxonomy of peer-to-peer desktop grid paradigms,"

Cluster Computing, pp. 129-144, 2010.

[92] S. Choi, M. Baik, J. Gil, C. Park, S. Jung and C. Hwang, "Group based dynamic

computational replication mechanism in peer-to-peer grid computing," in CCGRID

06' the Sixth IEEE International Symposium on Cluster Computing and the Grid,

2006.

129

GLOSSARY

Remote Desktop Protocol (RDP): The protocol used to implement remote connections

(Terminal Services) on Windows operating systems.

Protocol data unit (PDU): Information that is delivered as a unit among peer entities of

a network and that may contain control information, address information, or data.

Remote application: An application running on a remote server.

Remote Desktop Protocol (RDP) Client: The client which initiated the remote desktop

connection.

Remote Desktop Protocol (RDP) Server: The server to which the client initiated the

remote desktop connection.

Virtual channel: A communication channel available in a Terminal Services (TS) server

session between applications running at the server and applications running on the TS

client.

Static virtual channel: The Remote Desktop Protocol: Dynamic Channel Virtual

Channel Extension is designed to operate over static virtual channels, as specified in

[MS-RDPBCGR], using the acronym DRDYNVC. The Remote Desktop Protocol (RDP)

layer manages the creation, setup, and data transmission over the virtual channel.

Multipoint Communication Service (MCS): A data transmission protocol and set of

services defined by the ITU T.120 standard, specifically [T122] and [T125].

User session: An abstract venue on a server that is assigned to a user. The user interacts

with the server and applications from within this venue.

Remoting: A server sending graphical data or application data from a server-based

application to a remote client.

Hosting: The assignment, management, and operation of a user-dedicated session on a

server for a user accessing the server, for example, when a user runs an application on a

server, the application is running within a user session that the server is hosting.

130

Terminal server: A computer on which Terminal Services is running.

Terminal Services: A service on a server computer that allows delivery of applications,

or the desktop itself, to various computing devices. When a user runs an application on a

terminal server, the application execution takes place on the server computer and only

keyboard, mouse, and display information is transmitted over the network. Each user sees

only his or her individual session, which is managed transparently by the server operating

system and is independent of any other client session.

Network Level Authentication (NLA): Refers to the usage of CredSSP [MS-CSSP]

within the context of an RDP connection to authenticate the identity of a user at the

network layer before the initiation of the RDP handshake. The usage of NLA ensures that

server resources are only committed to authenticated users.

Server Authentication: The act of proving the identity of a server to a client while

providing key material that binds the identity to subsequent communications.

Firewall: A firewall is a software component typically implemented on an Internet

gateway device that is a part of a private network. The firewall is configured to either

block or allow external access to resources within the private network.

Client Data Block: A collection of related client settings that are encapsulated within the

user data of a Generic Conference Control (GCC) Conference Create Request. Only four

Client Data Blocks exist: Core Data, Security Data, Network Data, and Cluster Data. The

set of Client Data Blocks is designed to remain static.

Server Data Block: A collection of related server settings that are encapsulated within

the user data of a Generic Conference Control (GCC) Conference Create Response.

Three Server Data Blocks exist: Core Data, Security Data, and Network Data.

131

APPENDICES

A. RDP Connection Sequence and PDU

a. RDP Connection Sequence

Figure 55 Connection sequence of RDP [55]

132

Figure 56 MCS connect initial PDU [55]

133

Figure 57 MCS connect response PDU [55]

b. Protocol Data Unit (PDU)

Protocol Data Unit, PDU is information delivered through network layers.

Connection Initiation: After the client initiates the connection by sending the

server a Class 0 X.224 Connection Request PDU and the server responds with a

Class 0 X.224 Connection Confirm PDU. From this point, all subsequent data

sent between client and server is wrapped in an X.224 Data Protocol Data Unit

(PDU). [52]

Client X.224 Connection Request PDU Example

00000000 03 00 00 2c 27 e0 00 00 00 00 00 43 6f 6f 6b 69 ...,'......Cooki

00000010 65 3a 20 6d 73 74 73 68 61 73 68 3d 65 6c 74 6f e mstshash=a

00000020 6e 73 0d 0a 01 00 08 00 00 00 00 00 ns..........

03 -> TPKT Header: version = 3

134

00 -> TPKT Header: Reserved = 0

00 -> TPKT Header: Packet length - high part

2c -> TPKT Header: Packet length - low part (total = 44 bytes)

27 -> X.224: Length indicator (39 bytes)

e0 -> X.224: Type (high nibble) = 0xe = CR TPDU; credit (low nibble) = 0

00 00 -> X.224: Destination reference = 0

00 00 -> X.224: Source reference = 0

00 -> X.224: Class and options = 0

43 6f 6f 6b 69 65 3a 20 6d 73 74 73 68 61 73 68

3d 65 6c 74 6f 6e 73 -> "Cookie: mstshash=a"

0d0a -> Cookie terminator sequence

01 -> RDP_NEG_REQ::type (TYPE_RDP_NEG_REQ)

00 -> RDP_NEG_REQ::flags (0)

08 00 -> RDP_NEG_REQ::length (8 bytes)

00 00 00 00 -> RDP_NEG_REQ: Requested protocols (PROTOCOL_RDP)

Server X.224 Connection Confirm PDU Example

00000000 03 00 00 13 0e d0 00 00 12 34 00 02 00 08 00 014......

00000010 00 00 00 ...

03 -> TPKT Header: TPKT version = 3

00 -> TPKT Header: Reserved = 0

00 -> TPKT Header: Packet length - high part

13 -> TPKT Header: Packet length - low part (total = 19 bytes)

0e -> X.224: Length indicator (14 bytes)

d0 -> X.224: Type (high nibble) = 0xd = CC TPDU; credit (low nibble) = 0

00 00 -> X.224: Destination reference = 0

12 34 -> X.224: Source reference = 0x1234 (bogus value)

00 -> X.224: Class and options = 0

02 -> RDP_NEG_RSP::type (TYPE_RDP_NEG_RSP)

00 -> RDP_NEG_RSP::flags (0)

08 00 -> RDP_NEG_RSP::length (8 bytes)

00 00 00 00 -> RDP_NEG_RSP: Selected protocols (PROTOCOL_RDP)

c. Protocol Packet Analysis for Initializing the Connection

135

B. Cluster Management

In our first attempt to create a peer-to-peer application sharing cluster, Microsoft

Peer Name Resolution Protocol (PNRP) is implemented as our base protocol [86].

However, the result is not satisfactory because of an excessive delay in the

connection. Therefore, a new system using multicast approach is implemented.

Multicast packet is addressed using a single identifier for a group of receivers.

This address indirection allows a copy of the packet that is addressed to the group

to be delivered to all the multicast receivers associated with that group.

136

Class network as used by multicast is succeeded by classless inter-domain

routing. However, multicasting address is still considered as Class D address.

Classless inter-domain routing used significant bits to represent host and network.

For an example, 192.168.0.0/16 means that there are 2^ (32-16) host in the

network and they start from 192.168.0.0 to 192.168.255.255. The figure shows a

class D identifier, 234.5.6.7, which is used to associate a group of receivers. This

group is referred as a multicast group. The flow chart describes the

implementation of multicast clustering using Win32 APIs.

Figure 58 Multicast group

137

Figure 59 Flow chart of joining a multicast group

C. Incoming and Outgoing Packet Management

The message passed within the cluster determines the sender, the message type

and the application requested. In the example below, suppose Alice request

WinWord from the multicast group. Bob replies to Alice’s request. Charlie

discards Alice’s request because request has been fulfilled by Bob. The definition

of four message header types:

1. Type 0: request an application by Alice, example: 0//winword.exe

2. Type 1: reply a particular request, example:

1//Alice_IP//winword.exe//C:\\Program Files\\Microsoft

Office\\winword.exe//guest2

3. Type 2: handshake between all hosts to notify each other their

existence in the cluster

4. Type 3: graceful disconnection if a host is to leave the cluster

When ShAppliT receive datagram from the network, these packets are stored in

the list. There are 3 kind of list:

138

1. A list of all requests by the host

2. A list of all incoming replies to the request of the host

3. A list of all incoming requests from other clients

The information in the lists must be unique. This uniqueness can be enforced by

using STL (Standard Template Library) set [87]. Sets are associate containers that

store unique elements or keys. The uniqueness of the structure is enforced by the

operator of the structure. A thread is used to process incoming datagram stored in

the set.

Figure 60 Flow chart of processing datagram

QueryPacket structure: there is no duplicate application name. Example: Alice

cannot request winword.exe twice until the previous request is timed out or is

satisfied by other peer in the cluster.

RecReplyPac structure: this structure is used to store replies of all the requests

made. The uniqueness of the structure is enforced by “a peer does not satisfy any

139

request twice”. Example: Alice will not store the reply packet on winword.exe

from Bob twice.

KeyValueRec structure: this structure is used to process incoming request

packets. It stores a temporary list for later processing. This structure’s uniqueness

is enforced by “the same IP should not associate to the same application”.

Example: Bob receives Alice request on winword.exe and powerpnt.exe, Bob

should not receive Alice’s request on winword.exe twice. Figure 61 C++ codes of

message structures used to store the receiving packet from the cluster shows C++

codes for message structures used to store the receiving packets from the cluster

140

Figure 61 C++ codes of message structures used to store the receiving packet

from the cluster

typedef struct _RecReplyPac{

wstring strAppName;

wstring strIpv4;

wstring strFullPathName;

wstring strUsername;

bool operator<(const _RecReplyPac& A) const

{

return (strIpv4.compare(A.strIpv4) < 0 &&

strAppName.compare(A.strAppName) < 0);

}

}RecReplyPac;

typedef struct _QueryPacket{

SYSTEMTIME systemTime;

wstring strAppName;

bool operator<(const _QueryPacket& A) const

{

return (strAppName.compare(A.strAppName) < 0);

}

}QueryPacket;

typedef struct _KeyValueRec{

wstring strIpv4;

wstring strAppName;

bool operator<(const _KeyValueRec& A) const

{

return (strIpv4.compare(A.strIpv4) <0) ^

(strAppName.compare(A.strAppName) < 0);

}

}KeyValueRec;

141

D. Demonstrations

a. Rdesktop as the Client program

Run from Xwin server (Xwin allows you to run linux sessions inside windows)

./rdesktop –s “notepad” hostIP

Figure 62 Run Linux sessions inside Windows

142

b. Compile Rdesktop for Windows

tar -xf /rdesktop-1.6.0.tar.gz

cd rdesktop-1.6.0/

./configure --with-x --with-sound=oss; make; strip rdesktop.exe

mkdir /Rdesktop-1.6.0-Win32

ldd rdesktop.exe | perl -ane 'print "cp \"$F[2]\" \"/Rdesktop-1.6.0-Win32/\"\n" if

!/cygdrive/i;' | sh

cp rdesktop.exe /Rdesktop-1.6.0-Win32

cp -r keymaps /Rdesktop-1.6.0-Win32

zip -9rq /Rdesktop-1.6.0-Win32.zip /Rdesktop-1.6.0-Win32/*

If you should see the following error message:

ERROR: Failed to open display:

Set the needed variable with this command:

set DISPLAY=127.0.0.1:0

143

Figure 63 Compile rdesktop for Windows

144

c. SeamlessRDP and accessing remote applications

One of the features of ShAppliT is to use an application in seamless mode called

SeamlessApp [59]. That means the application itself looks as if it’s been started

from the local machine when it comes to the look and feel. Running seamless

applications is the least confusing way for an end user to experience an

application over an App Share session, as he/she sees no difference between the

remote application and his/her local application. The default way of deploying a

ShAppliT application has been set to seamless [59]. The technology behind the

seamless application basically cloaks or clips out the part of the window that

shows the application in a normal Windows shell.

For example, when opening the notepad on your local Windows XP machine, it

will look like this in Error! Reference source not found.:

Figure 64 Screen shot of notepad on local machine

However, if a user remote accesses the application using remote desktop

connection normally user can see the window frame like the min/max/close

button section, the title bar, etc. The parts which are not supposed to be visible are

made invisible using the clipping technology. ShAppliT uses this technology for

145

all applications to give them a seamless look as in Figure 64 Screen shot of

notepad on local machine.

Figure 65 Screen shot of notepad on remote desktop connection

With the release of rdesktop 1.5.0, a feature known as seamless RDP was

contributed by Cendio [35] allowing rdesktop to run individual applications rather

than a full desktop. Fontis [61] has been working on a number of patches to the

seamless RDP feature, adding support for rdesktop session connection-sharing,

icon support, improved handling of always-on-top windows and more.

146

Figure 66 Screenshot of seamless application

Figure 67 Command of seamless remote applications

147

Figure 68 Screenshot of opening more remote applications

148

Figure 69 Editing an RDP file

Run rdesktop.exe -A -s "c:\seamlessrdpshell.exe explorer" 172.19.72.228

Use a V_channel for seamlessRDP; if “-A” seamlessRDP enabled,

seamless_create_socket(master_socket); If “-l” slave mode, send command line

“mspaint” to the master process (send spawn command to server-side

seamlessRDP) then exit.

149

Figure 70 Remote accessing explorer.exe

150

Figure 71 Local (client) command window

E. Customization of a Remote Application Session Using RDP

File

RDP version 5.0 and above deployed in the Windows XP operating system offer a

lot more capabilities than a normal remote desktop session. For instance, the

remote desktop client allows the user to define the display settings for the remote

desktop sessions. This allows a better control over the user experience versus the

performance of a remote session.

Besides that, the remote desktop connection also allows the initiation of a

program when a session starts. The remote desktop experience could also be

optimized by enabling/disabling of advance features. In order to increase the

versatility of remote desktop connection with the properties mentioned above, a

151

file type with the extension “.rdp” is being created in Windows XP. The RDP files

contained parameters that control all the properties mentioned above and they can

be modified using a text editor as shown in Figure 72 A RDP file being edited by

notepad.

Figure 72 A RDP file being edited by notepad

Alternatively, the RDP file works similarly as a shortcut button whereby a double

click on an RDP file will launch the remote desktop connection and subsequently

the remote desktop session. As a result, the customization of a remote desktop

session is made easy as all the configuration can be saved in an RDP file which

the RDP client could read from. [88]

152

Figure 73 Windows remote desktop connection

F. Integrity Test for PFS File System

This integrity test was intentionally done on the PFS under vigorous operating

condition so as to unveil the reliability of the PFS in a certain way. The test script

(Figure 74 Integrity test script) was run and this involved 10,000 file creations

with varying sizes on the PFS.

153

Figure 74 Integrity test script

Upon completion of the file creations and the mirroring, the Linux command:

 diff –r –N </Path on Client> <Path on Server>

was issued to detect any discrepancies between the files in the client and server.

Main function is shown in Figure 75 Main function to detect any discrepancies

between the files in the client and server. However, no discrepancies were found,

and all 10,000 files written on the client were mirrored on the server. This

demonstrates that PFS is indeed reliable as it ensures file operations performed on

the client are being mirrored accurately onto the server.

Test script 2

// This is to create 10K files with variance size for the integrity test.

#!/bin/bash

RANGE=50240000 #maximum size of files to create

for i in {1..100}

do

 number=$RANDOM*10000 #RANDOM NUMBER

GENEERATOR not big enough

 number+=$RANDOM

 let "number %= $RANGE"

CMD="dd if=/dev/urandom of=./test/testfile$number bs=$number

count=1"

$CMD

done

154

Figure 75 Main function to detect any discrepancies between the files in the client

and server

G. Latency Test for PFS File System

A test script (Figure 76 Latency test script) was written to measure the latencies

experienced during a read operation under the above two mentioned conditions,

and the latencies was benchmarked against the default file system in Linux. For

this latency test, files of various sizes ranging from 1KB to 50MB were being

//Main function

#include <fstream>

#include <stdio.h>

#include <stdlib.h>

#include <iostream>

#include <ctime>

#include <sys/stat.h>

using namespace std;

int main (int argc, char * argv[]) { //argv[1]=# of kb to write. argv[2]=# of times to

run simulation. argv[3]=file path + name

char Data[1025];

clock_t t1, t2;

t1 = clock();

for(int y=0;y<atoi(argv[2]);y++){

 for(int x=0;x<1024;x++)Data[x]='A'; //Each write is 1kb

 Data[1024]='\0'; //Null Byte the string

 ofstream myfile;

 myfile.open (argv[3]);

 for(int x=0;x<atoi(argv[1]);x++) myfile<< Data;

 myfile.close();

}//End for

t2 = clock();

float diff = ((float)t2 - (float)t1) / (float)atoi(argv[2]);//10000.0F;

cout <<endl<< "Time Taken for " <<argv[1] << "kb=" << diff << "

ms"<<endl<<endl;

 return 0;

}//End Main

155

read by the client computer, and this was followed with the writing of these files

as well. The graphs in Figure 37 and Figure 38 display the results for both the

read and write latency tests.

Figure 76 Latency test script

Test script 1

// This is the test script for the latency test.

#include <stdio.h>

#include <stdlib.h>

#include <iostream>

#include <ctime>

#include <sys/stat.h>

using namespace std;

//Run it as such: ./a.out <# of simulation> <file1> <file2>

 int main(int argc, char * argv[]){ //argv[1]=# of times to run simulation.

argv[2] onwards = files to work on

struct stat filestatus;

clock_t t1, t2;

for(int y=2;y<argc;y++){

 stat(argv[y], &filestatus);

 t1 = clock();

 for(int x=0;x<atoi(argv[1]);x++){

 FILE *file = fopen (argv[y], "r");

 char line [102400];//[Default][50000x],1024,

 while (fgets(line, sizeof(line), file) != NULL){

 //fputs (line, stdout);

 }

 fclose (file);

 }

 t2 = clock();

float diff = ((float)t2 - (float)t1) / (float)atoi(argv[1]);//10000.0F;

cout<<endl << "Timetaken for " << filestatus.st_size <<" bytes

="<<diff<<"ms"<<endl<<endl;

}

return 0;

}

156

H. ICSCluster (Imprecise Computation Scheduling Cluster)

Simulation

a) HOW TO run this simulation:

If octave is properly installed, simply run the shell file 'run' under terminal.

Otherwise, 'run.m' is prepared for MATLAB use. However, this code is not tested

under MATLAB, so there is no guarantee it can run in MATLAB.

b) File Description:

gentask.m Randomly generate task set given a

work load.

simics_sched.m

(mentioned as ICS_sched in Chapter 5)

Carry out the imprecise computation

scheduling job given task set and

processors for SLTN (single level tree

network) and returns solution (sol).

simics.m Workbench for simulation.

toptest.m Evaluate the performance of each

algorithm

%===================== gentask.m========================

function t=gentask(totalu)

ntask=3;

maxpi=20;

maxp=10;

u=rand(ntask-1,1)*2*totalu/ntask;

while sum(u)>=totalu

 u=rand(ntask-1,1)*2*totalu/ntask;

end

157

u=[u;totalu-sum(u)];

pi=ceil(rand(ntask,1)*maxpi);

m=pi.*u;

o=zeros(ntask,1);

for i=1:ntask

 o(i)=rand(1)*(pi(i)-m(i));

end

tau=m+o;

p=rand(ntask,1)*maxp;

id=(1:ntask)';

t=struct('id',num2cell(id),'m',num2cell(m),'tau',num2cell(t

au),'pi',num2cell(pi),'p',num2cell(p));

%==============run.m=====================

% example: t=gentask(1.5);

t=struct('id', {1, 2, 3}, 'm', {13, 4, 2.5}, 'tau', {15,

10, 5}, 'pi', {18, 10, 6}, 'p', {2, 10, 8});

p=struct('id', {0, 1}, 'w', {1, .5}, 'z', {1, 1});

fprintf(1, 'Algorithm 1(EDF):\n');

simics('algo1',t,p);

fprintf(1, 'Algorithm 2(RMS):\n');

simics('algo2',t,p);

fprintf(1, 'Algorithm 3(LEF):\n');

simics('algo3',t,p);

fprintf(1, 'Algorithm 4(MEF):\n');

simics('algo4',t,p);

%=============run======================

#!/bin/sh

octave --eval "run;"

% ============simics.m===================

function totalE=simics(str,t,p)

%periodic tasks with integer processing time, which can be

divided into mandatory and optional parts.

threshhold=1e-8;

% make this a threshhold thing

%body

sol=simics_sched(str, t, p);

158

if size(sol,2)==0

 disp('no schedule result.');

 totalE=Inf;

 return

end

totalT=lcm(t.pi);

t2tid=[];

tinterval=[]; % The last size(sol,2) entries are schedule

times, preceded by moments when new tasks come in

if size(t,2)==1, tlen=size(t,1);, else, tlen=size(t,2);,

end

for i=1:tlen

 temp=0;

 while temp < totalT

 tinterval=[tinterval, temp];

 t2tid=[t2tid, i];

 temp=temp+t(i).pi;

 end

end

tinterval=[tinterval, sol.t1];

[tsorted, index] = sort(tinterval);

tsorted=[tsorted, totalT];

%config processor queue and todo list for every processor

pq(size(p,2))=struct('id', [], 't', []);

todo(size(p,2))=struct('id', [], 't', []);

%time loop

curtime=0;

totalerror=0;

for i=1:size(tsorted,2) % i is the seq # of time intervals

 if curtime < tsorted(i)

 % time flies

 for j=1:size(p,2) % j is the seq # of processors

 if size(todo(j).id, 2)>0 % if processor j has

anything to do

 for k=1:size(pq(j).id, 2) % then do it

 if pq(j).id(k)==todo(j).id

 pq(j).t(k)=pq(j).t(k)-(tsorted(i)-

curtime)/p(j).w;

 todo(j).t=todo(j).t-(tsorted(i)-

curtime)/p(j).w;

 if pq(j).t(k)<threshhold, pq(j).id(k)=[];,

pq(j).t(k)=[];, end;

 if todo(j).t<threshhold, todo(j).id=[];,

todo(j).t=[];, end;

 break;

159

 end

 end

 end

 end

 curtime=tsorted(i);

 if curtime==totalT

 left=0;

 for tid=1:tlen

 for j=1:size(p,2) % j is the seq # of processors

 for k=1:size(pq(j).id, 2)

 if pq(j).id(k)==tid, left=left+pq(j).t(k);,

break; end;

 end

 end

 fprintf(1, 'At %d, task %d commited with %f not

finished.\n', curtime, tid, left);

 totalerror=totalerror+left*t(tid).p;

 end

 fprintf(1, 'total error is %f.\n', totalerror);

 break;

 end

 end

 if index(i) <= size(tinterval, 2) - size(sol, 2) % new

task comes

 tid = t2tid(index(i)); % tid is the seq # of the task

whose time has come.

 % commit computation result for task tid in processor

queue and todo list

 left=0;

 for j=1:size(p,2) % j is the seq # of processors

 if size(todo(j).id, 2)~=0 && todo(j).id(1)==tid,

todo(j).id=[];, todo(j).t=[];, end;

 for k=1:size(pq(j).id, 2)

 if pq(j).id(k)==tid, left=left+pq(j).t(k);,

pq(j).id(k)=[];, pq(j).t(k)=[];, break; end;

 end

 end

 if curtime~=0

 fprintf('At %d, task %d commited with %f not

finished.\n', curtime, tid, left);

 totalerror=totalerror+left*t(tid).p;

 end

 % add the new task to the processor queue for the root

processor

 pq(1).id=[pq(1).id, tid];

 pq(1).t=[pq(1).t, t(tid).tau];

 else

 % schedule time

 solid=index(i)+size(sol,2)-size(tinterval,2);

160

 pid=sol(solid).pid+1;

 tid=sol(solid).tid;

 if sol(solid).type==0 % communication

 k=find(pq(1).id==tid);

 if size(k, 2)==0 || pq(1).t(k(1)) <

sol(solid).amount-threshhold

 disp('algorithm error!!!');

 return;

 elseif size(todo(1),2) ~= 0 && todo(1).id == tid &&

pq(1).t(k(1)) < todo(1).t + sol(solid).amount - threshhold

 disp('algorithm error!!!');

 return;

 end

 pq(1).t(k(1))=pq(1).t(k(1))-sol(solid).amount;

 k=find(pq(pid).id==tid);

 if size(k,1)==0 || size(k, 2)==0

 pq(pid).id=[pq(pid).id, tid];

 pq(pid).t=[pq(pid).t, sol(solid).amount];

 else

 pq(pid).t(k(1))=pq(pid).t(k(1))+sol(solid).amount;

 end

 else % execution

 k=find(pq(pid).id==tid);

 if size(k, 2)==0 || pq(pid).t(k(1)) <

sol(solid).amount-threshhold

 disp('algorithm error!!!!a');

 return;

 elseif size(todo(pid).id, 2) ~= 0

 disp('algorithm error!!!!b');

 return;

 end

 todo(pid).id=tid;

 todo(pid).t=sol(solid).amount;

 end

 end

end

totalE=totalerror;

%=============== toptest.m========================

%randomly generate 100 task sets each time increase

workload from 0.01 to 1.20 with increment step of 0.01 to

test the schedulable rate for each algorithm.

%choose a scheduling algorithm

161

%algo1=EDF, algo2=RMS, algo3=LEF(least execution time

first), algo4=MEF(most execution time first)

str='algo1';

ntask=100;%number of task sets

startu=0.01;%start utility of the system

stepu=0.01;%increment step

endu=1.2;%end utility of the system

%processors

p=struct('id', {0}, 'w', {1}, 'z', {1});

%Precise computation

fprintf(1, 'Algo 1 precise computation');

i=0;

for totalu=[startu:stepu:endu]

 count1=0;% record the successful scheduled task number

 count2=0;% record scheduled task number

 fprintf(1, 'total utility of the system is %f.\n',

totalu);

% task sets

 for loops=0:1:ntask

 t= gentask(totalu);

 fprintf(1, 'task set %d.\n', count2);

 count2=count2+1;

 totalE=simics(str, t, p);

 if isinf(totalE)

 else

 count1=count1+1;

 end

 end

 fprintf(1, 'total pass rate is %f.\n', count1/count2);

 probability(1,i+1)=count1/count2;

 i=i+1;

end

%Imprecise computation: task is divided into to tasks,

mandatory takes up certain percentage

percent=0.9;

fprintf(1, 'Algo 1 imprecise computation');

j=0;

for totalu=[startu:stepu:endu]

 count1=0;% record the successful scheduled task number

 count2=0;% record scheduled task number

 fprintf(1, 'total utility of the system is %f.\n',

totalu);

% task sets

 for loops=0:1:ntask

 t= gentask(totalu*percent);

 fprintf(1, 'task set %d.\n', count2);

 count2=count2+1;

162

 totalE=simics(str, t, p);

 if isinf(totalE)

 else

 count1=count1+1;

 end

 end

 fprintf(1, 'total pass rate is %f.\n', count1/count2);

 probability(2,j+1)=count1/count2;

 j=j+1;

end

totalu=[startu:stepu:endu];

plot(totalu, probability);

str='algo2';

%Precise computation

fprintf(1, 'Algo 2 precise computation');

i=0;

for totalu=[startu:stepu:endu]

 count1=0;% record the successful scheduled task number

 count2=0;% record scheduled task number

 fprintf(1, 'total utility of the system is %f.\n',

totalu);

% task sets

 for loops=0:1:ntask

 t= gentask(totalu);

 fprintf(1, 'task set %d.\n', count2);

 count2=count2+1;

 totalE=simics(str, t, p);

 if isinf(totalE)

 else

 count1=count1+1;

 end

 end

 fprintf(1, 'total pass rate is %f.\n', count1/count2);

 probability2(1,i+1)=count1/count2;

 i=i+1;

end

%Imprecise computation: task is divided into to tasks,

mandatory takes up certain percentage

percent=0.9;

fprintf(1, 'Algo 2 imprecise computation');

j=0;

for totalu=[startu:stepu:endu]

 count1=0;% record the successful scheduled task number

 count2=0;% record scheduled task number

163

 fprintf(1, 'total utility of the system is %f.\n',

totalu);

% task sets

 for loops=0:1:ntask

 t= gentask(totalu*percent);

 fprintf(1, 'task set %d.\n', count2);

 count2=count2+1;

 totalE=simics(str, t, p);

 if isinf(totalE)

 else

 count1=count1+1;

 end

 end

 fprintf(1, 'total pass rate is %f.\n', count1/count2);

 probability2(2,j+1)=count1/count2;

 j=j+1;

end

totalu=[startu:stepu:endu];

figure;

plot(totalu, probability2);

str='algo3';

%Precise computation

fprintf(1, 'Algo 3 precise computation');

i=0;

for totalu=[startu:stepu:endu]

 count1=0;% record the successful scheduled task number

 count2=0;% record scheduled task number

 fprintf(1, 'total utility of the system is %f.\n',

totalu);

% task sets

 for loops=0:1:ntask

 t= gentask(totalu);

 fprintf(1, 'task set %d.\n', count2);

 count2=count2+1;

 totalE=simics(str, t, p);

 if isinf(totalE)

 else

 count1=count1+1;

 end

 end

 fprintf(1, 'total pass rate is %f.\n', count1/count2);

 probability3(1,i+1)=count1/count2;

 i=i+1;

end

164

%Imprecise computation: task is divided into to tasks,

mandatory takes up certain percentage

percent=0.9;

fprintf(1, 'Algo 3 imprecise computation');

j=0;

for totalu=[startu:stepu:endu]

 count1=0;% record the successful scheduled task number

 count2=0;% record scheduled task number

 fprintf(1, 'total utility of the system is %f.\n',

totalu);

% task sets

 for loops=0:1:ntask

 t= gentask(totalu*percent);

 fprintf(1, 'task set %d.\n', count2);

 count2=count2+1;

 totalE=simics(str, t, p);

 if isinf(totalE)

 else

 count1=count1+1;

 end

 end

 fprintf(1, 'total pass rate is %f.\n', count1/count2);

 probability3(2,j+1)=count1/count2;

 j=j+1;

end

totalu=[startu:stepu:endu];

figure;

plot(totalu, probability3);

str='algo4';

%Precise computation

fprintf(1, 'Algo 4 precise computation');

i=0;

for totalu=[startu:stepu:endu]

 count1=0;% record the successful scheduled task number

 count2=0;% record scheduled task number

 fprintf(1, 'total utility of the system is %f.\n',

totalu);

% task sets

 for loops=0:1:ntask

 t= gentask(totalu);

 fprintf(1, 'task set %d.\n', count2);

 count2=count2+1;

 totalE=simics(str, t, p);

 if isinf(totalE)

 else

 count1=count1+1;

 end

165

 end

 fprintf(1, 'total pass rate is %f.\n', count1/count2);

 probability4(1,i+1)=count1/count2;

 i=i+1;

end

%Imprecise computation: task is divided into to tasks,

mandatory takes up certain percentage

percent=0.9;

fprintf(1, 'Algo 4 imprecise computation');

j=0;

for totalu=[startu:stepu:endu]

 count1=0;% record the successful scheduled task number

 count2=0;% record scheduled task number

 fprintf(1, 'total utility of the system is %f.\n',

totalu);

% task sets

 for loops=0:1:ntask

 t= gentask(totalu*percent);

 fprintf(1, 'task set %d.\n', count2);

 count2=count2+1;

 totalE=simics(str, t, p);

 if isinf(totalE)

 else

 count1=count1+1;

 end

 end

 fprintf(1, 'total pass rate is %f.\n', count1/count2);

 probability4(2,j+1)=count1/count2;

 j=j+1;

end

totalu=[startu:stepu:endu];

figure;

plot(totalu, probability4);

probability5=[probability(1,:);probability2(1,:);probabilit

y3(1,:);probability4(1,:)];

probability6=[probability(2,:);probability2(2,:);probabilit

y3(2,:);probability4(2,:)];

figure;

plot(totalu, probability5);

figure;

plot(totalu, probability6);

%=================simics_sched.m (ICS_sched)===============

166

function sol=simics_sched(str, t, p)

%sol=struct('t1',{0, 1, 2, 3, 4, 5},'t2',{1, 2, 3, 4, 5,

6}, 'type', {1, 1, 1, 1, 1, 1}, 'pid', {0, 0, 0, 0, 0, 0},

'tid', {1, 2, 1, 2, 1, 2}, 'amount', {1, 1, 1, 1, 1, 1});

threshhold=1e-8;

%EDF algorithm

if strcmp(str,'algo1')

 %calculate equivalent W

 denominator=1;

 if size(p,2)==1

 W=p(1).w;

 else

 f=([p(2:end).w]+[p(2:end).z])./[p(1:end-1).w];

 for i=1:size(p,2)-1

 denominator=denominator+prod(f(i:end));

 end

 W=(prod(f))/(denominator)*p(1).w;

 end

 % construct time domain

 totalT=lcm(t.pi);

 t2tid=[];

 tinterval=[];

 if size(t,2)==1, tlen=size(t,1);, else, tlen=size(t,2);,

end

 for i=1:tlen

 temp=0;

 while temp < totalT

 tinterval=[tinterval, temp];

 t2tid=[t2tid, i];

 temp=temp+t(i).pi;

 end

 end

 [tsorted, index] = sort(tinterval);

 tsorted=[tsorted, totalT];

 % start

 Q(tlen)=struct('m', [], 'o', [], 'd', []);

 pointer=1;

 curtime=0;

 i=1;

 while i<=size(tsorted,2)

 if i==size(tsorted,2) && curtime==tsorted(i)

 % terminates

 return;

 elseif curtime==tsorted(i)

 % queue task up

 tid=t2tid(index(i));

167

 if size(Q(tid).m,2)==1 && Q(tid).m>threshhold

 disp("can't schedule");

 sol=struct('t1', {}, 't2', {}, 'type', {}, 'pid', {},

'tid', {}, 'amount', {});

 return;

 end

 Q(tid)=struct('m', t(tid).m, 'o', t(tid).tau-

t(tid).m, 'd', curtime+t(tid).pi);

 i=i+1;

 elseif curtime < tsorted(i)

 % do scheduling

 nexttask=0;

 earliest=inf;

 for j=1:tlen

 if size(Q(j).m,2)==1 && Q(j).m>threshhold &&

Q(j).d<earliest

 nexttask=j;

 earliest=Q(j).d;

 end

 end

 if earliest~=inf

 % execute task nexttask's mandatory part

 t1=curtime;

 exectime=min(tsorted(i)-curtime, W*Q(nexttask).m);

 curtime=curtime+exectime;

 Q(nexttask).m=Q(nexttask).m-exectime/W;

 if Q(nexttask).m<threshhold &&

Q(nexttask).o<threshhold, Q(nexttask).m=[];,

Q(nexttask).o=[];, Q(nexttask).d=[];, end;

 t2=curtime; tid=nexttask; amount=exectime/W;

 else

 % execute any task's optional part or idle

 t1=0;

 for j=1:tlen

 if size(Q(j).o,2)==1 && Q(j).o>threshhold &&

t(j).p>t1, nexttask=j;, end;

 end

 if nexttask==0

 exectime=0;

 else

 t1=curtime;

 exectime=min(tsorted(i)-curtime, W*Q(nexttask).o);

 curtime=curtime+exectime;

 Q(nexttask).o=Q(nexttask).o-exectime/W;

 if Q(nexttask).o<threshhold, Q(nexttask).m=[];,

Q(nexttask).o=[];, Q(nexttask).d=[];, end;

 t2=curtime; tid=nexttask; amount=exectime/W;

 end

 end

168

 % schedule

 if exectime~=0

 alpha=zeros(1,size(p,2));

 for j=1:size(p,2)-1

 alpha(j)=prod(f(j:end))/denominator;

 end

 alpha(size(p,2))=1/denominator;

 sol(pointer)=struct('t1', t1, 't2', t2, 'type', 1,

'pid', 0, 'tid', tid, 'amount', alpha(1)*amount);

 pointer=pointer+1;

 for j=2:size(p,2)

 sol(pointer)=struct('t1', t1, 't2',

t1+alpha(j)*p(j).z*amount, 'type', 0, 'pid', j-1, 'tid',

tid, 'amount', alpha(j)*amount);

 pointer=pointer+1;

 sol(pointer)=struct('t1', t1+alpha(j)*p(j).z*amount,

't2', t2, 'type', 1, 'pid', j-1, 'tid', tid, 'amount',

alpha(j)*amount);

 pointer=pointer+1;

 end

 else

 curtime=tsorted(i);

 end

 else

 disp('error');

 break;

 end

 end % while i<=size(tsorted,2)

%RMS algotithm

elseif strcmp(str,'algo2')

 %calculate equivalent W

 denominator=1;

 if size(p,2)==1

 W=p(1).w;

 else

 f=([p(2:end).w]+[p(2:end).z])./[p(1:end-1).w];

 for i=1:size(p,2)-1

 denominator=denominator+prod(f(i:end));

 end

 W=(prod(f))/(denominator)*p(1).w;

 end

 % construct time domain

 totalT=lcm(t.pi);

% Compute the least common multiple for all the periods of

tasks.

169

 t2tid=[];

 tinterval=[];

 if size(t,2)==1, tlen=size(t,1);, else, tlen=size(t,2);,

end

 for i=1:tlen

 temp=0;

 while temp < totalT

 tinterval=[tinterval, temp];

 t2tid=[t2tid, i];

 temp=temp+t(i).pi;

 end

 end

 [tsorted, index] = sort(tinterval);

 tsorted=[tsorted, totalT];

 %"tsorted" is the deadlines of all the tasks

 % start

 Q(tlen)=struct('m', [], 'o', [], 'd', []);

 pointer=1;

 curtime=0;

 i=1;

 while i<=size(tsorted,2)

 if i==size(tsorted,2) && curtime==tsorted(i)

 % terminates

 return;

 elseif curtime==tsorted(i)

 % queue task up

 tid=t2tid(index(i));

 if size(Q(tid).m,2)==1 && Q(tid).m>threshhold

 disp("can't schedule");

 sol=struct('t1', {}, 't2', {}, 'type', {}, 'pid', {},

'tid', {}, 'amount', {});

 return;

 end

 %Q(tid)=struct('m', t(tid).m, 'o', t(tid).tau-

t(tid).m, 'd', curtime+t(tid).pi);

 Q(tid)=struct('m', t(tid).m, 'o', t(tid).tau-

t(tid).m, 'd', t(tid).pi);

 i=i+1;

 elseif curtime < tsorted(i)

 % do scheduling

 nexttask=0;

 shortestperiod=inf;

 for j=1:tlen

 if size(Q(j).m,2)==1 && Q(j).m>threshhold &&

Q(j).d<shortestperiod

 nexttask=j;

170

 shortestperiod=Q(j).d;

 end

 end

 if shortestperiod~=inf

 % execute task nexttask's mandatory part

 t1=curtime;

 exectime=min(tsorted(i)-curtime, W*Q(nexttask).m);

 curtime=curtime+exectime;

 Q(nexttask).m=Q(nexttask).m-exectime/W;

 if Q(nexttask).m<threshhold &&

Q(nexttask).o<threshhold, Q(nexttask).m=[];,

Q(nexttask).o=[];, Q(nexttask).d=[];, end;

 t2=curtime; tid=nexttask; amount=exectime/W;

 else

 % execute any task's optional part or idle

 t1=0;

 for j=1:tlen

 if size(Q(j).o,2)==1 && Q(j).o>threshhold &&

t(j).p>t1, nexttask=j;, end;

 end

 if nexttask==0

 exectime=0;

 else

 t1=curtime;

 exectime=min(tsorted(i)-curtime, W*Q(nexttask).o);

 curtime=curtime+exectime;

 Q(nexttask).o=Q(nexttask).o-exectime/W;

 if Q(nexttask).o<threshhold, Q(nexttask).m=[];,

Q(nexttask).o=[];, Q(nexttask).d=[];, end;

 t2=curtime; tid=nexttask; amount=exectime/W;

 end

 end

 % schedule

 if exectime~=0

 alpha=zeros(1,size(p,2));

 for j=1:size(p,2)-1

 alpha(j)=prod(f(j:end))/denominator;

 end

 alpha(size(p,2))=1/denominator;

 sol(pointer)=struct('t1', t1, 't2', t2, 'type', 1,

'pid', 0, 'tid', tid, 'amount', alpha(1)*amount);

 pointer=pointer+1;

 for j=2:size(p,2)

 sol(pointer)=struct('t1', t1, 't2',

t1+alpha(j)*p(j).z*amount, 'type', 0, 'pid', j-1, 'tid',

tid, 'amount', alpha(j)*amount);

 pointer=pointer+1;

171

 sol(pointer)=struct('t1', t1+alpha(j)*p(j).z*amount,

't2', t2, 'type', 1, 'pid', j-1, 'tid', tid, 'amount',

alpha(j)*amount);

 pointer=pointer+1;

 end

 else

 curtime=tsorted(i);

 end

 else

 disp('error');

 break;

 end

 end

%LEF: least execution time first algorithm

elseif strcmp(str,'algo3')

 %calculate equivalent W

 denominator=1;

 if size(p,2)==1

 W=p(1).w;

 else

 f=([p(2:end).w]+[p(2:end).z])./[p(1:end-1).w];

 for i=1:size(p,2)-1

 denominator=denominator+prod(f(i:end));

 end

 W=(prod(f))/(denominator)*p(1).w;

 end

 % construct time domain

 totalT=lcm(t.pi);

% Compute the least common multiple for all the periods of

tasks.

 t2tid=[];

 tinterval=[];

 if size(t,2)==1, tlen=size(t,1);, else, tlen=size(t,2);,

end

 for i=1:tlen

 temp=0;

 while temp < totalT

 tinterval=[tinterval, temp];

 t2tid=[t2tid, i];

 temp=temp+t(i).pi;

 end

 end

 [tsorted, index] = sort(tinterval);

 tsorted=[tsorted, totalT];

 %"tsorted" is the deadlines of all the tasks

172

 % start

 Q(tlen)=struct('m', [], 'o', [], 'd', []);

 pointer=1;

 curtime=0;

 i=1;

 while i<=size(tsorted,2)

 if i==size(tsorted,2) && curtime==tsorted(i)

 % terminates

 return;

 elseif curtime==tsorted(i)

 % queue task up

 tid=t2tid(index(i));

 if size(Q(tid).m,2)==1 && Q(tid).m>threshhold

 disp("can't schedule");

 sol=struct('t1', {}, 't2', {}, 'type', {}, 'pid', {},

'tid', {}, 'amount', {});

 return;

 end

 %Q(tid)=struct('m', t(tid).m, 'o', t(tid).tau-

t(tid).m, 'd', curtime+t(tid).pi);

 Q(tid)=struct('m', t(tid).m, 'o', t(tid).tau-

t(tid).m, 'd', t(tid).m);

 i=i+1;

 elseif curtime < tsorted(i)

 % do scheduling

 nexttask=0;

 leastexect=inf;

 for j=1:tlen

 if size(Q(j).m,2)==1 && Q(j).m>threshhold &&

Q(j).d<leastexect

 nexttask=j;

 leastexect=Q(j).d;

 end

 end

 if leastexect~=inf

 % execute task nexttask's mandatory part

 t1=curtime;

 exectime=min(tsorted(i)-curtime, W*Q(nexttask).m);

 curtime=curtime+exectime;

 Q(nexttask).m=Q(nexttask).m-exectime/W;

 if Q(nexttask).m<threshhold &&

Q(nexttask).o<threshhold, Q(nexttask).m=[];,

Q(nexttask).o=[];, Q(nexttask).d=[];, end;

 t2=curtime; tid=nexttask; amount=exectime/W;

 else

 % execute any task's optional part or idle

 t1=0;

 for j=1:tlen

173

 if size(Q(j).o,2)==1 && Q(j).o>threshhold &&

t(j).p>t1, nexttask=j;, end;

 end

 if nexttask==0

 exectime=0;

 else

 t1=curtime;

 exectime=min(tsorted(i)-curtime, W*Q(nexttask).o);

 curtime=curtime+exectime;

 Q(nexttask).o=Q(nexttask).o-exectime/W;

 if Q(nexttask).o<threshhold, Q(nexttask).m=[];,

Q(nexttask).o=[];, Q(nexttask).d=[];, end;

 t2=curtime; tid=nexttask; amount=exectime/W;

 end

 end

 % schedule

 if exectime~=0

 alpha=zeros(1,size(p,2));

 for j=1:size(p,2)-1

 alpha(j)=prod(f(j:end))/denominator;

 end

 alpha(size(p,2))=1/denominator;

 sol(pointer)=struct('t1', t1, 't2', t2, 'type', 1,

'pid', 0, 'tid', tid, 'amount', alpha(1)*amount);

 pointer=pointer+1;

 for j=2:size(p,2)

 sol(pointer)=struct('t1', t1, 't2',

t1+alpha(j)*p(j).z*amount, 'type', 0, 'pid', j-1, 'tid',

tid, 'amount', alpha(j)*amount);

 pointer=pointer+1;

 sol(pointer)=struct('t1', t1+alpha(j)*p(j).z*amount,

't2', t2, 'type', 1, 'pid', j-1, 'tid', tid, 'amount',

alpha(j)*amount);

 pointer=pointer+1;

 end

 else

 curtime=tsorted(i);

 end

 else

 disp('error');

 break;

 end

 end

%MEF: most execution time first algorithm

elseif strcmp(str,'algo4')

 %calculate equivalent W

 denominator=1;

174

 if size(p,2)==1

 W=p(1).w;

 else

 f=([p(2:end).w]+[p(2:end).z])./[p(1:end-1).w];

 for i=1:size(p,2)-1

 denominator=denominator+prod(f(i:end));

 end

 W=(prod(f))/(denominator)*p(1).w;

 end

 % construct time domain

 totalT=lcm(t.pi);

% Compute the least common multiple for all the periods of

tasks.

 t2tid=[];

 tinterval=[];

 if size(t,2)==1, tlen=size(t,1);, else, tlen=size(t,2);,

end

 for i=1:tlen

 temp=0;

 while temp < totalT

 tinterval=[tinterval, temp];

 t2tid=[t2tid, i];

 temp=temp+t(i).pi;

 end

 end

 [tsorted, index] = sort(tinterval);

 tsorted=[tsorted, totalT];

 %"tsorted" is the deadlines of all the tasks

 % start

 Q(tlen)=struct('m', [], 'o', [], 'd', []);

 pointer=1;

 curtime=0;

 i=1;

 while i<=size(tsorted,2)

 if i==size(tsorted,2) && curtime==tsorted(i)

 % terminates

 return;

 elseif curtime==tsorted(i)

 % queue task up

 tid=t2tid(index(i));

 if size(Q(tid).m,2)==1 && Q(tid).m>threshhold

 disp("can't schedule");

 sol=struct('t1', {}, 't2', {}, 'type', {}, 'pid', {},

'tid', {}, 'amount', {});

 return;

 end

175

 %Q(tid)=struct('m', t(tid).m, 'o', t(tid).tau-

t(tid).m, 'd', curtime+t(tid).pi);

 Q(tid)=struct('m', t(tid).m, 'o', t(tid).tau-

t(tid).m, 'd', t(tid).m);

 i=i+1;

 elseif curtime < tsorted(i)

 % do scheduling

 nexttask=0;

 largestexect=0;

 for j=1:tlen

 if size(Q(j).m,2)==1 && Q(j).m>threshhold &&

Q(j).d>largestexect

 nexttask=j;

 largestexect=Q(j).d;

 end

 end

 if largestexect~=0

 % execute task nexttask's mandatory part

 t1=curtime;

 exectime=min(tsorted(i)-curtime, W*Q(nexttask).m);

 curtime=curtime+exectime;

 Q(nexttask).m=Q(nexttask).m-exectime/W;

 if Q(nexttask).m<threshhold &&

Q(nexttask).o<threshhold, Q(nexttask).m=[];,

Q(nexttask).o=[];, Q(nexttask).d=[];, end;

 t2=curtime; tid=nexttask; amount=exectime/W;

 else

 % execute any task's optional part or idle

 t1=0;

 for j=1:tlen

 if size(Q(j).o,2)==1 && Q(j).o>threshhold &&

t(j).p>t1, nexttask=j;, end;

 end

 if nexttask==0

 exectime=0;

 else

 t1=curtime;

 exectime=min(tsorted(i)-curtime, W*Q(nexttask).o);

 curtime=curtime+exectime;

 Q(nexttask).o=Q(nexttask).o-exectime/W;

 if Q(nexttask).o<threshhold, Q(nexttask).m=[];,

Q(nexttask).o=[];, Q(nexttask).d=[];, end;

 t2=curtime; tid=nexttask; amount=exectime/W;

 end

 end

 % schedule

 if exectime~=0

 alpha=zeros(1,size(p,2));

 for j=1:size(p,2)-1

176

 alpha(j)=prod(f(j:end))/denominator;

 end

 alpha(size(p,2))=1/denominator;

 sol(pointer)=struct('t1', t1, 't2', t2, 'type', 1,

'pid', 0, 'tid', tid, 'amount', alpha(1)*amount);

 pointer=pointer+1;

 for j=2:size(p,2)

 sol(pointer)=struct('t1', t1, 't2',

t1+alpha(j)*p(j).z*amount, 'type', 0, 'pid', j-1, 'tid',

tid, 'amount', alpha(j)*amount);

 pointer=pointer+1;

 sol(pointer)=struct('t1', t1+alpha(j)*p(j).z*amount,

't2', t2, 'type', 1, 'pid', j-1, 'tid', tid, 'amount',

alpha(j)*amount);

 pointer=pointer+1;

 end

 else

 curtime=tsorted(i);

 end

 else

 disp('error');

 break;

 end

 end

end

177

I. Research Process

Figure 77 Flowchart of research process

178

PUBLICATIONS

1. Chen Guo, Cenzhe Zhu, Teng Tiow Tay “ShAppliT: A Novel Broker-mediated

Solution to Generic Application Sharing in a Cluster of Closed Operating

Systems”, International Journal of Soft Computing and Software Engineering

[JSCSE], Vol. 2, No. 6, pp. 16-32, June 2012. Doi: 10.7321/jscse.v2.n6.2

2. Chen Guo, Cenzhe Zhu, Teng Tiow Tay, “Design and Simulation of a Green

Broker with Imprecise Computation Scheduling for Energy-efficient Large Scale

Computing in Clusters”, Journal of Emerging Trends in Computing and

Information Sciences, Vol. 4, No. 12, December 2013

3. Chen Guo, Cenzhe Zhu and Teng Tiow Tay “Sharing of Generic Single-user

Application without Interference in a Cluster”, 2012 International Conference on

Software and Computer Applications, IPCSIT vol. 41, Page(s):101-105 (2012)

IACSIT Press, Singapore

4. Chen Guo, Teng Tiow Tay “Implementing a Peer-to-peer Application Sharing

Tool on Windows Clustering System”, International work shop on Cloud

Computing- Architecture, Algorithms and Applications (Cloudcomp 2011), India

5. Chen Guo, Teng Tiow Tay “On Scalability Migratability and Cost-effectiveness

of Next-Generation WDM Passive Optical Network Architectures”, IEEE Sixth

International Conference on Signal Processing and Communication Systems,

ICSPCS 2012, Gold Coast, Australia

