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Summary

Rice is one of the major food crops in the world, especially in Asia. Although the overall
yield of rice has been increasing since the Green Revolution in 1960s, the growing pop-
ulation and adverse climatic changes pose huge challenges for its sustained production
in the future. Moreover, several biotic and abiotic stresses such as drought, flooding
and salinity affect the rice production significantly. Therefore, in order to improve the
crop yield and enhance the stress resistance, it is imperative to analyse the possible

biochemical adaptations of rice to several abiotic stresses.

Despite several decades of research, still, a clear understanding on how the cellular
phenotype of rice varies across various stress conditions remains elusive. Such situations
exist even with the availability of multiple high throughput data such as metabolomics,
proteomics and transcriptomics mainly due to the lack of systematic approaches. To this
end, the current work aims to initiate a systems approach to characterise the rice cellular
physiology under various stresses by combining the mathematical network models and

highthroughput data through an integrative in silico framework.

This thesis contains three major parts. The first part describes and reviews the
methods for developing and analysing constraints-based metabolic models, and the soft-
ware tools available to implement such methods. Next, to initiate the systems analysis
of rice, a central regulatory/metabolic model representing the rice coleoptile and leaf
was developed based on the available genomics and biochemical data. Notably, this
central model accounts for 52 direct and indirect regulatory interactions using 12 regula-
tory proteins for the discrimination between the photosynthetic and non-photosynthetic
cells. Subsequently, the metabolic model was also utilised for elucidating the metabolic
characteristics of rice cells under flooding stress. The relevant transcriptome data was

utilised to further unravel the possible transcriptionally regulated reactions and the po-

vii



viii Summary

tential transcription factors controlling their expression under anoxic stress. The same
metabolic model was also used to characterise the cellular behaviour of rice leaves under
drought stress. Additionally, the essential genes of rice photorespiratory pathway during
drought stress were also identified as this pathway wastes significant amount of carbon
under such conditions.

Although the central metabolic/regulatory model was able to characterise the over-
all cellular behaviours under various stress conditions, still the finer details of metabolic
and transcriptional adaptations were not unravelled as it does not cover the secondary
metabolism. Therefore, the central model was expanded into a high-quality, fully-
compartmentalised, genome-scale model by taking into account all the known metabolic
genes in rice. The resulting model, named as 1052164, includes 2164 genes, 2284 reac-
tions and 2001 metabolites localised across seven intracellular compartments: cytosol,
plastid, mitochondrion, peroxisome, vacuole, thylakoid and endoplasmic reticulum. It
should be noted that the light-driven photophosphorylation reactions in this 1052164
were modelled in a wavelength specific manner, thereby enabling us to simulate the
exact metabolic behaviour of rice at various coloured lights in the visible spectrum.
Subsequently, this metabolic model was utilised in combination with transcriptome and
metabolome data for analysing the cellular behaviour under five different light treat-
ments: blue, red, green, white and dark, highlighting several light sensitive signalling
cascades and the responsive metabolic pathways in rice. The knowledge obtained from
such large-scale combined study has several potential applications including crop im-
provement and synthetic gene circuit design. Overall, this work provides a systematic
computational framework by combining the constraints-based metabolic modelling and
“-omics” data for the analysis of rice physiology under various abiotic stresses. In gen-
eral, with the ever increasing “-omics” data, the developed framework could be applied

to any cellular organism for analysing its metabolic behaviour in a systematic manner.
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Chapter 1

Introduction

1.1 Rice

1.1.1 A major food source of the world

Rice is one of the major staple foods of the world, especially in Asia: each person
consumes more than 100 kg of rice per year, on an average (Nelson, 2011). It is one
of the three major cereal grains along with maize and wheat. As of 2012, with an
annual production of 719 million tons, rice is the second most-produced cereal grain,
next to maize (872 million tons)ﬂ Nevertheless, since maize is also used for non-edible
purposes, rice could be the cereal that supplies the world’s most nutritional and calorific
requirements. Furthermore, unlike maize or wheat, rice is primarily consumed as whole

cereal without further treatments.

Rice has been domesticated thousands of years ago, and is considered as one of the
important events in human civilization. The recent genetic analysis of rice have sug-
gested that it has been domesticated long ago than expected, approximately 820013500
years ago in the Pearl River valley region of China, and from which it could have spread
to Southeast Asia and to South Asia (Molina et al, [2011; Huang et al, [2012). Based on
archeological evidences, it was introduced to Southern FKurope during the early Middle
Ages and to the United States in the 17*" century (Taylor, 1990). Today, rice is grown

all over the world except Antarctica.

'FAOSTAT (http://faostat.fac.org/site/567 /DesktopDefault.aspx). Retrieved: March 14, 2014.
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1.1.2 Botanical aspects and varieties

The two common rice varieties that are cultivated, Asian rice (Oryza sativa) and African
rice (Oryza glaberrima), belong to the Oryza genus under the grass (Poaceae) family
within the Plantae kingdom. Apart from these two major varieties, approximately 20
more species of rice are known to exist, possibly due to its long history of cultivation
and selection under diverse environments (Christou, 1994)). Both O. sativa and O.
glaberrima are diploid (2n=24) whereas other varieties could be even tetraploid. Among
the two major groups, O. sativa is the most cultivated, almost all over the world. On
the other hand, O. glaberrima is grown only in parts of Africa, which is also currently
being gradually changed to O. sativa due to better yields. O. sativa is again subdivided
into two major subspecies: indica and japonica. Indica varieties are generally tall with
considerable drought tolerance and resistance to insects and pests than other subclasses
(Christou, 1994). It is primarily grown in Indian subcontinent, Southern China and in
Americas. Japonica varieties are mostly grown on Southern Europe and Japan since it
requires temperate climates. These varieties are more responsive to fertilisers but less
resistant to insects and pests (Christou) 1994). Further, since the amylose content is

lesser in these varieties, they tend to be stickier and glossier upon cooking.

1.1.3 Rice production: Current status and future challenges

Rice is normally grown as an annual plant in lowlands, either irrigated or rain-fed, as it
requires sufficient amount of water. The overall yield of rice has been increasing since
the 1900’s. From an annual production of 2639 kg/ha in the year 1930, it has almost
doubled in 1980 (Christou, (1994). A major reason for such dramatic increase in rice
yield is mainly because of the Green Revolution in 1960s: the annual rice yield increased
by 40% during 1960s and 30% in 1970s (Juliano, 1985). Since then, there has been a
progressive increase in the yield and production of rice (Fig. 1.1). However, despite such
increasing production trends, the problem of food security has now become alarming
with the world population propelling beyond 7 billionﬂ Such growing population is also
expected to impact the available arable land, and thus posing serious concerns towards

world food production.

*World Population Clock (http://www.worldometers.info/world-population/). Retrieved: March 14,
2014.
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Figure 1.1: World rice yield and production from 1962 to 2012. Data retrieved from
FAOSTAT (http://faostat.fao.org/site/567 /DesktopDefault.aspx) on March 14, 2014.

1.1.4 Factors affecting rice productivity

Besides growing food demand and shrinking arable lands, rice production also faces ser-
ious challenges by several other environmental stressors, often simultaneously. Broadly,
such stressors can be classified into two major classes: abiotic and biotic.

Abiotic stressors include drought, flooding, salinity, cold and light. Among these,
drought stress is considered as the main abiotic stressor, which can reduce the crop
yields drastically even under ideal cultivation conditions (Hadiarto and Tran, 2011]).
During water scarcity, the stomata in plant leaves close due to the passive loss of turgor
in guard cells. As a result, the CO2 uptake decreases dramatically and the excess light
energy which cannot fix any carbon is dissipated in the form of reactive oxygen species
(ROS), such as superoxides and peroxides (de Carvalho, 2008). Such toxic compounds
can damage the DNA and proteins, and thus, possibly leading to several lethal effects
on cellular metabolism. Similar to drought stress, flooding stress is also considered as
one of the critical abiotic stressor of food crop productivity as nearly one third of the
crop loss is directly attributed to excess water (Blom and Voesenekl [1996). During
flooding, typically, plants are water-logged and surrounded by water, restricting the
O, diffusion and thus severely inhibit the aerobic respiration. However, unlike many
other food crops, rice is unique in its ability to survive oxygen stress through several

adaptive mechanisms including fermentative energy generation (Alpi and Beevers, |1983;
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|Guglielminetti et al, [1995; |Perata and Alpi, |1993)). Therefore, rice has been often con-

sidered as a model plant for studying flooding stress. However, rice is a salt-sensitive
crop as salinity impacts the plant growth significantly at the seedling stage
. Under salt stress, the osmotic stress gradually develops and slows down the
transpiration and leaf expansion. Concurrent to these changes, the abnormality in root
Na™ transporters cause the leaves to prematurely senesce and die. Collectively, salinity
reduces the photosynthesis greatly, and thus reducing the plant growth. Light also af-
fects plant growth significantly: both light intensity (fluence) and quality (wavelength)
impacts plant development in several ways. Similar to drought stress, high light inten-

sities also severely inhibit photosynthesis, and hence crop productivity (Osakabe and
Osakabe, 2012)). Another important consideration is that light quality affects various

morphological processes in plants (Neff et al, [2000]).

Light stress | L, Biotic stress

Light intensity and quality
affect photosynthesis and
other morphological
processes

Various pathogens infect
rice as host

— Flooding stress

Water-logging causes

Drought stress <« oxygen deficit

Water deficit decreases
photosynthesis and produces
excess toxic ROS

|, Salt stress

ca LB @na Salinity increases o§motlc stress
g and decreases nutrient uptake

Figure 1.2: Factors affecting rice productivity. Both abiotic and biotic stress limits rice
productivity tremendously.

Similar to abiotic stressors, plant development is also affected by insects and diseases,
i.e. biotic stressors, particularly during grain development and germination. Nearly 25%

of the production losses in rice have been accounted by diseases and insects (Van Nguyen

land Ferrero, 2006). Among several pathogens, rice growth is severely affected by the

bacteria Xanthomonas oryzae, pv. oryzae, which causes a bacterial leaf blight disease

and the fungus Magnaporthe grisea, which induces a blast disease (Van Nguyen and|

Ferrerol, 2006)).
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1.1.5 Rice research: past, present and future

Technically, rice research has been initiated thousands of years ago when it was first
domesticated. Most of the early research was involved with rice cultivation techniques
and breeding. These include: (i) selection of rice varieties with suitable characteristics
as progenitors and their preservation for subsequent generations, (ii) selection of suit-
able lands, (iii) water management and (iv) determination of optimal cultivation and
harvestation times (Christou, 1994)). In terms of scientific research, it could have pos-
sibly started during the European Renaissance, i.e. 14%- 17" century. It was during
this period that plant anatomy was identified with the invention of microscopes and the
general concepts of plant physiology such as uptake of CO2 and release of Og, water and

nutrient absorption through roots and plant sexuality was unravelled (Browne, [2007)).

In terms of molecular biology research, although the exact date of origin could not
be pinpointed, most of them could have started in the 19" century following the land-
mark discoveries such as the structure of plant cell and principles of light utilization in
photosynthesis. The legacy of these discoveries was utilised in early 20" century for
various molecular analyses to study about the plant cells as a separate entity. Further,
the advent of plant suspension cell cultures also fuelled such progress. Several biochem-
ical analyses were conducted to identify the individual compounds involved in cellular
growth. The details of photosynthesis, metabolism and transport were elucidated more

Ot century the molecular basis of plant cellular growth and

precisely and by the mid-2
reproduction was firmly established (Lack and Evans| 2005). Later, with the arrival of
recombinant DNA techniques, plant scientists have utilised them in combination with

molecular biology methods for gaining detailed insights into genes and gene products in

several plant processes.

In the modern genomic era, the genome sequence and large-scale datasets of plants
have now become available. Arabidopsis is the first plant genome to be sequenced
completely in 2000 (The Arabidopsis Initiative, [2000). Among cereal crops, interest-
ingly, rice was the first plant to get its genome sequenced through [International Rice
Genome Sequencing Project| (2005). Concurrently, the developments in high-throughput
technologies have helped generating large amounts of cellular component data at the

genome-scale from plant samples grown under a wide variety of conditions. Please note
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that a detailed coverage of these developments will be provided later in Section 1.3. How-
ever, despite the availability of such large compendium of cellular data, still the complete
characterization of rice cellular responses is impossible as most of such data are largely
underutilised. In this regard, the field of systems biology offers immense promise to
integrate every piece of biological information available into a whole knowledge-base for
the improved understanding of the organism at the molecular level, and thus could be
considered as the next revolution in plant research.

The following section discuss the basics of systems biology, its practice methods and

tools and how it can be utilised for analysing rice cellular behaviour.

1.2 Systems Biology

1.2.1 A new paradigm in biological research

Biological systems are enormously complex, still, organised and coordinated at various
levels, performing a wide range of activities. The past century has made tremendous
progress towards the understanding of such complex systems, however in parts: majority
of the research in 20" century were focused on the chemistry of biological molecules,
their structure, and the elemental analysis of machineries which synthesise and utilise
them. The major breakthrough in such progressive path was made with the identifi-
cation of DNA, the centrepiece of all living systems, and its central role in controlling
the functioning of biological systems at various levels. Since then, the development
of nucleotide sequencing and other high-throughput technologies have now made us to
assimilate huge amounts of component data at different levels of the cellular hierar-
chy, and thereby, allowing us to possibly identify all the components of cellular system.
Nevertheless, despite the acquisition of enormous amounts of data, the question of how
cellular systems interact among these components is far from being answered with the
traditional reductionist approach. Typically, a large number of these parts interact at
various levels and varying scales of time and space in cells. Such enormous complexity
of cellular organisms have motivated researchers to look them in a different manner by
abstracting the biological processes as mathematical models using the vast experimental
data. This approach has been later formally known as “systems biology” . Therefore, the

field of systems biology is merely biology, however studies the living systems in terms of
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mathematical representations.

Systems biology first formally came into existence in the late 1990’s. However, since
then its widespread has been tremendous. What made systems biology to spread in
such a rapid manner? One can say, more than scientists’ curiosity, systems biology has
been mainly driven because of its potential applications. A few examples of systems
biology applications include the development of individualised and predictive medicine
for health care, improvement of yield in microbial cell factories for biotechnological

industries, unravelling of cell-to-cell communication and cellular evolution.

1.2.2 Establishing the parts: generating components data

Systems biology, essentially aims to integrate various parts of the biological system
for understanding the cellular functioning. In order to do so, the establishment of
individual parts, i.e. components data, which details the molecular content of the cell is
preliminary. The recent advances in highthroughput experimental technologies have now
made it possible to generate large amounts such component data at each level of cellular
hierarchy, i.e. from DNA to metabolites, at the entire genome-scale. Such large-scale
biological datasets are associated with a generic term called “-omics”. A brief description

of each of these “-omics” technologies are provided in the following sub-sections.

1.2.2.1 Genomics

¢

Genomics is the “-omics” field which involves the sequencing of DNAs at the entire
genome-scale and the study of information contained therein. The complete sequence of
a genome was first published for Haemophilus influenzae in 1995, and since then more
than 300 genome sequences have been completed until 2006 (Liolios et al, |2006). In
terms of plants, the genome sequences are currently available for more than 20 species
including the major crops such as rice, maize and barley (Bolger et al, 2014). The
whole genome sequences has multiple uses: (i) the sequence data, as it is, can be used
to identify gene-regulatory networks, and (ii) genome sequences of multiple species to
understand speciation via comparative genomics techniques. Genome annotation is an-
other significant research area where genome sequences play a crucial role. It involves

the identification of coding parts of the sequence and thereby predicting its biologi-

cal function by complementing the sequence information with known proteins or RNAs
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that are present in the cell. Finally, another overwhelming use of crop genomes is the
quantitative trait locus mapping of desirable traits and to identify candidate genes of

interest.

1.2.2.2 Transcriptomics

Transcriptomics is associated with large-scale RNA transcript profiling, providing infor-
mation on either its presence/absence or abundance levels. Among all “-omics” data,
transcriptomics is the most abundant. It generally gives a snapshot of the functionally
active part in entire genome which has been transcribed at any given instance. There-
fore, it is very much useful in comparative studies such as the comparison of plants grown
under normal and stressed conditions to identify which part of sub-cellular machinery
is markedly different between them, and thereby paving ways for improvement.
Currently, two major technologies, microarrays (Hardiman, 2004)) and serial analysis
of gene expression (SAGE) (Harbers and Carninci, 2005), are available for transcript
profiling. Microarray is a chip which contains a collection a small quantity (picomoles)
of various microscopic DNA sequences with flourescent tags as spots attached to a solid
surface. Depending on the transcription of each gene, the corresponding DNA sequence
gets hybridised which can be later scanned for the intensity. Depending on the expres-
sion levels, the intensity strength of each gene varies. SAGE, on the other hand, is a
technique where the RNA levels are measured through a sequential analysis of short

c¢DNA sequence tags corresponding to each transcript.

1.2.2.3 Proteomics

Proteomics is a field aimed at identifying and or quantifying the levels of individual
proteins available in the cell. Similar to transciptome, the proteome data also provide
us information about the active part of genome at any given instance based on the
presence/absence calls of individual proteins. When compared to transcriptome tech-
nology, proteomics requires significant efforts and resources for the improved detection
of proteins as protein detection is severely hampered by the differences in overall protein
levels.

Some of the commonly used method in proteomics are gel electrophoresis and mass

spectrometry (MS) (Patterson and Aebersold, 2003]). Gel electrophoresis separates or
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identifies the proteins based on size and charge. Smaller proteins move faster than
the larger ones through the gel pores. MS, on the other hand, separates or identifies
proteins based on their mass and charge. In MS, first the protein is ionised and then

the mass-to-charge ratios is measured from which the protein can be detected.

1.2.2.4 Metabolomics

Metabolomics seeks to identify or quantify the levels of all intracellular metabolites of
the cell at a given instance. Similar to transcriptomics and proteomics, the relative levels
of metabolome to an environmental stimuli or genetic perturbation can be quantified
using metabolomics. However, unlike transcriptomics, the detection and quantification
of metabolites is often challenging because of their diverse range.

Metabolomics uses two major techniques to quantify and detect various metabolites:
MS and nuclear magnetic resonance (NMR) spectroscopy (Dunn et all 2005). In NMR
spectroscopy, the intramolecular magnetic field is perturbed according to the resonance

frequency, and thus giving an account of the corresponding molecule’s electronic state.

1.2.3 Connecting the dots: integrating various “-omics” data

Once the parts of a system are established, it is then important to integrate these com-
ponents into biologically meaningful correlations. In this regard, the ability to represent
biological parts and their interactions in the form of a mathematical model, and to
investigate them via appropriate in silico analysis techniques is considered as a key
achievement of systems biology (Kitano, 2002a.b). In general, mathematical modelling
in systems biology involves two steps: 1) system identification and 2) development and
in silico analysis of mathematical model.

System identification involves the identification of the list of biological components,
i.e. gene, protein or metabolite, and their interactions for representing the biological
process of interest. As mentioned earlier, biological systems and processes operate and
interact at various levels. Therefore, the system of interest could be on any of these levels
or even across levels. For example, models can be made at the core level using various
genes as the biological components and their interactions. Similarly, a protein-protein
interaction could also be made at another level. On the other hand, models such as bio-

chemical reaction networks can be developed by integrating the interactions within and
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across various genes and gene products, i.e. transcripts, proteins and metabolites. Fur-
thermore, systems biology models can be made by completely abstracting the biological
activities of a organism, tissue or organs.

Following the system identification, the next step is to mathematically represent
them. Again, as mentioned earlier, since biological activities take place at various levels
and varying scales of time and space, the type of model can be plural: it can be either
1) microscopic or macroscopic, 2) deterministic or stochastic, 3) discrete or continuous,
and 4) steady-state, temporal, spatial or spatio-temporal. The choice of modelling and
simulation is mainly based on the data available and the type of system being studied.
For example, a Boolean model can be used to describe the biological events such as
metabolic regulation in a discrete manner using just the information of interactions
between involved components. On the other hand, when the mechanistic details and
kinetic parameters are available for a system, differential equation-based dynamic models
can be used. Here, it should be noted that this thesis will entirely deal with a particular
deterministic, steady-state modelling approach called constraints-based modelling. More
details of this approach will be presented in the next chapter.

Once a mathematical model is developed, the in silico predictions must be compared
with actual experimental outcomes. This step allows us to close the gap in abstracting
the actual process more reliably via mathematical models; model predictions will fail
only if there is a incomplete or missing feature exist in the model. Once reliable and
accurate models are established, they can be further utilised to suggest novel hypotheses
for new experimental horizons, leading to an iterative knowledge discovery process (Fig.

1.3).

1.3 Rice systems biology

1.3.1 Overview of rice “-omics” data wealth

As mentioned earlier, the availability of components data is the key requirement in
systems biology. In this regard, the recent advances in genome sequencing and high-
throughput experimental techniques have resulted in accumulation of large rice specific
data at various levels of cellular hierarchy, providing unprecedented opportunities for

systems biologists to initiate a systems analysis of rice cellular metabolism. The follow-
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Figure 1.3: The iterative model building procedure in systems biology. Initially, an in
stlico model is reconstructed based on available data. The in silico predictions are then
tested and the model is refined continuously. Once reliable model is established, it is

then used for de novo experiment design (Kitanol [2002b)).

ing section summarises the current wealth of rice highthroughput data.

Genome: Following its draft sequence in 2002 (Goff et all, 2002; [Yu et al, 2002), the

rice genome is being annotated continuously by two groups, Rice Annotation Project

(RAP) (Tanaka et al, 2008) and MSU Rice Genome Annotation Project (MSU-RGAP)

(Ouyang et all, 2007), improving our understanding about the gene products. At present,

the functions of at least 30,000 genes are annotated?}

Transcriptome: A tremendous progress has been made in the field of rice microarray
data analysis. Currently, over 7000 gene expression datasets are publicly available in
the Gene Expression Omnibus (GEO)ﬂ

Proteome: Similar to transcriptome data, huge amounts of proteome data are now
available for rice. The Rice Proteome Database (RPD) maintained by National Institute
of Agrobiological Sciences, Japan, currently has more than 13129 proteins obtained from
various tissues and organellesﬂ

Metabolome: Although the field of metabolome has not generated vast amounts of
data in rice as it is in other “-omics” technologies, still considerable amount of work has

been done, revealing characteristic traits of cellular metabolism under various circum-

SRAP-DB (http://rapdb.dna.affrc.go.jp/rice_docs/docs_genome_statistics.html) and MSU-RGAP-
DB (http://rice.plantbiology.msu.edu/). Retrieved: March 15, 2014.

“GEO (http://www.ncbi.nlm.nih.gov/geo/). Retrieved: March 15, 2014.

"RPD (http://gene64.dna.affrc.go.jp/RPD/) Retrieved: March 15, 2014
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stances (Oikawa et al, 2008)).

1.3.2 Systems biology approaches towards understanding rice abiotic

stress respomnses

In the previous section, an overview of all available rice highthroughput data has been
provided. The current section will specifically focus on the past researches which has
been devoted to analyse the rice abiotic stress responses through systems biology ap-
proaches, especially “-omics” data generation.

With the rapid advancements in highthroughput experimental techniques, the “-
omics” has been increasingly applied to rice for unravelling the stress response modu-
lators. Table 1.1 summarises the list of “-omics” based studies on rice which focused
on understanding the abiotic stresses such as flooding, drought and salinity. In general,
the number of available transcriptome studies are much higher than the proteome and
metabolome analysis as the development of whole genome microarrays has now become
easier with the availability of rice whole genome sequence. Typically, these analyses
compare the gene expression profiles of the stressed plants, i.e. flooding, drought or
salinity, with the control and identifies the key stress-responsive genes based on differ-
ential expression patterns (Table 1.1). Similar approaches have also been adopted for
proteomic and metabolomic analyses where the protein abundance and metabolite levels
are used as markers for rice stress response. Interestingly, some studies have also com-
pared the “-omics” responses between stresses, i.e. drought and salinity, or even between
rice and other plants which may be tolerant to such abiotic stresses (Table 1.1).

In terms of flooding stress, the transcriptomic analyses of [Lasanthi-Kudahettige et al
(2007) and |[Narsai et al| (2009) identified several genes of carbohydrate metabolism,
lipid metabolism and ethylene response factors to be modulated under anoxia in rice
as it is in Arabidopsis. Additionally, these studies also pinpointed that fermentation
metabolism plays a critical role in rice anoxic adaptation as some of those genes were
found to be upregulated dramatically. The comparative proteome and metabolome
analysis of Shingaki-Wells et al (2011)) compared the molecular mechanisms of rice, an
anoxia tolerant plant, with wheat, an intolerant one. Their findings highlighted that the
functioning of amino acid synthetic pathways is the primary difference between rice and

wheat during anoxic adaptation where the former was able to successfully synthesise
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amino acids even under complete anoxia whereas the latter does not.

13

They further

showed that when certain amino acids are exogenously fed, even wheat coleoptiles can

grow under anoxia.

Table 1.1: Application of “-omics” techniques to unravel rice stress response

Type of “-omics” Research summary References
abiotic stress  type
Flooding Transcriptome Microarray analysis of rice seed |Lasanthi—Kudahettige |
(Anoxic germinated in air and anoxia
germination)
Transcriptome and metabolome analysis |Narsai et al| (]2009[)
of rice seed germinated in anoxia and
anoxia at 9 different time points
Transcript profiling of alcohol |Takahashi et al| (]2011D
dehydrogenase 1 (ADH1)-deficient
mutant. ADH1 is one of the key enzyme
involved in survival of rice under anoxia
Proteome Comparative proteome and metabolome IShingaki-Wells et all
analysis of rice and wheat during anoxic 1)
germination
Metabolome  Metabolome analysis of rice coleoptile Fan et al m
under air and anoxia
Transcriptome and metabolome analysis |Narsai et al| (]2009[)
of rice seed germinated in anoxia and
anoxia at 9 different time points
Comparative proteome and metabolome IShingaki—Wells et all
analysis of rice and wheat during anoxic 1}
germination
Drought Transcriptome A comparative transcriptome analysis of |Rabbani et al| (12003[)
rice under cold, drought and high-salinity
stresses
Microarray analysis of upland, Wang et al W‘)
drought-tolerant, and lowland,
drought-intolerant, rice varieties
EST-based analysis of drought stress |Gorantla et al| (]2007[)
related genes in rice
Microarray analysis of drought and salt Zhou et al (IM[)
stress induced genes in rice shoot, flag leaf
and panicle
Transcriptome analysis of Degenkolbe et al
drought-tolerant and drought-sensitive 1}
rice varieties
Proteome Proteomic analysis of three week old rice |Salekdeh et al| (12002[)

seedlings grown under normal and

drought stress conditions

Proteomic analysis of rice 2 to 6 days old
rice between under normal and drought

stress conditions

Alj
(2006)

nd Kom




14

1 Introduction

Type of

abiotic stress

“_omics”

type

Research summary

References

Salinity

Transcriptome

Transcriptome analysis of rice plants
experiencing salt stress between 15 min to

1 week from induction

Kawasaki et al| (2001)

A comparative transcriptome analysis of
rice under cold, drought and high-salinity

stresses

Rabbani et al (2003)

Identification of salt stress related genes

through comparative microarray analysis

Dai Yin et al| (2005)

Comparison of transcriptional responses
between a recombinant, salt tolerant and

a wild type salt intolerant

Walia et al| (2005)

Comparative transcriptome analysis of

rice and barley during salt stress

Ueda et al| (2006)

Microarray analysis of drought and salt
stress induced genes in rice shoot, flag leaf

and panicle

Zhou et al| (2007)

Proteome

Proteomic analysis of rice seedlings grown

under normal and salt stress conditions

Kim et al| (2005)

Proteomic analysis of three week old rice
seedlings grown under normal and salt

stress conditions

Yan et al| (2005])

Comparative analysis of rice proteome
between control and salt stressed rice

panicles

Dooki et al (2006))

Proteomic analysis of short- and
long-term salt-stress-responsive proteins

in the rice leaf lamina

Parker et al (2006

Metabolome

Metabolome analysis of rice leaf and root

under control and salt stressed conditions

Zuther et al| (2007)

Regarding drought and salinity stress, the transcriptome analyses of [Zhou et al

(2007) identified several specific genes from the carbohydrate metabolism. In addition,

they also reported the possible role of several transcription factors including AP2/EREBP-

, bZIP, NAC and MYB in drought response. More specific to drought stress, Wang et al

(2007) identified several genes involved in the detoxification or protection against oxida-

tive stress to be upregulated in the drought resistant variety. With regards to salt stress,
the proteomic analysis of [Yan et all (2005) confirmed the [Zhou et all (2007)) tranascrip-
tomic analysis results that the carbohydrate metabolism is indeed significantly altered
under stressed conditions. Additionally, they also specifically identified three metabolic
proteins, namely, UDP-glucose pyrophosphorylase, cytochrome C oxidase and glutamine

synthetase, to be salt-stress specific.
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In general, the availability of such large amounts of “-omics” data, especially under
abiotic stresses, has provided us enormous opportunities to unravel the stress responsive
mechanisms in rice. However, the intrinsic complexity of plant systems and the large
volume of data pose huge challenges in integrating and analysing them systematically. To
this end, as mentioned earlier, mathematical modelling offers the potential to integrate
genome-wide data into mathematical models, enabling large-scale systems analysis. In
fact, such approaches have been successfully applied to several microbes and animals,
and to Arabidopsis for a certain extent (Coruzzi and Gutierrezl, |2009). Therefore, it
is highly required to initiate the systems analysis of rice by integrating the abundant

highthroughput “-omics” data sets in combination with in silico modelling.

1.4 Scope of the thesis

1.4.1 Objectives

As mentioned earlier, several abiotic and biotic factors significantly influence the pro-
ductivity of rice. Over the last few decades, numerous researches have been conducted
to understand the cellular behavior of rice including highthroughput experimental ap-
proaches. However, despite such efforts, still the adaptive mechanisms of rice under
different stress conditions remain poorly characterised. Therefore, in order to better un-
derstand the cellular behavior of rice under such stressful conditions, this thesis aims to
propose an integrative analysis framework involving in silico modelling and highthrough-
put experimental data. It should be noted that large part of the dissertation focuses
on the rice metabolism due to the legacy of biochemical information about metabolites
and enzymes, and in some cases the transcription regulation. The knowledge obtained
from such integrative analysis will enable us to understand the cellular mechanisms more
precisely, and to propose design strategies for crop improvement.

The major objectives of the current study are:

e To review the metabolic network reconstruction and analysis methods, and the

software applications available to perform them
e To develop reliable mathematical model(s) representing rice cellular metabolism

e To develop an in silico model-driven analysis framework for analyzing rice metabolism
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under various stressful conditions

e To integrate multiple “-omics” data and mathematical model(s) of rice to improve

the current understanding on its cellular behaviour

1.4.2 Organization

This thesis is organised into eight chapters. As seen already, Chapter 1 introduced rice,
its current production status, future challenges and the factors affecting its productivity.
It also discussed the advent of systems biology, its elite nature, potential applications and
the need for systems-level approaches to study rice metabolism during various stresses.
The rest of this thesis is organised as follows (Fig. 1.4):

Chapter 2 provides the overview of constraints-based modelling (CBM) framework.
Further, it also documents all the individual CBM methods and the software tools
available for implementing such analysis, and benchmarks each tool based on certain
predefined measures. It should be noted that the contents of this chapter, in part, has
been published in the journal, Briefings in Bioinformatics (Lakshmanan et all, 2014al).

Chapter 3 describes the reconstruction of the central metabolic/regulatory model
of rice cells. Detailed procedure of model reconstruction and simulation methods for
analysing two different tissue types, germinating seeds and photorespiring leaves, are
provided. The model predictions are then validated with experimental data to test its
predictive ability. It should be noted that the contents of this chapter, in part, has been
published in the journal, Plant Physiology (Lakshmanan et all, 2013c).

Chapter 4 elaborates the in silico analysis of germinating rice seed cells during flood-
ing stress and highlights the metabolic adaptations between normal and stress condi-
tions. The simulated metabolic flux states were then compared with gene expression
levels of corresponding enzymes between normal and stressed conditions to identify the
putative transcriptionally regulated reactions. Further, the key transcription factors
(TFs) involved in the transcriptional control are also summarised. It should be noted
that the first and second parts of this chapter has been published in the journal, Plant
Physiology (Lakshmanan et all 2013c), and AoB Plants (Lakshmanan et al, 2014b)),
respectively.

Chapter 5 discusses the computational model-driven analysis of photorespiring leaf
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cells under normal and drought stress. The essential enzymes/genes of the central
metabolism under both normal and stressed conditions are also presented. It should
be noted that the first and second parts of the chapter has been published in the jour-
nals, Plant Physiology (Lakshmanan et al, 2013c)), and Rice (Lakshmanan et all,[2013b)),

respectively.
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Chapter 4 Chapter 7 Chapter 5
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stress “-omics” data under various light stress

e Characterizing the metabolic treatments o Characterizing the differences in rice

differences in rice germination o Integrative “-omics” analysis metabolism between normal and

between air and anoxia framework development drought stress conditions
e Unraveling the transcriptional o Elucidation of light-specific metabolic o Identifying the essential genes of

mechanisms of anoxic adaptations and regulatory signatures in rice rice photorespiration

\ 4
Chapter 8
Contributions and future

recommendations
e Summary of key findings
e Future recommendations

Figure 1.4: Flow chart showing the organization of thesis and the major research issues
addressed in each of the following chapters.

Chapter 6 details the expansion of central metabolic model into a genome-scale
model based on the genome annotation and other biochemical information. It should

be noted that this chapter also provides the method to model the metabolic utilization
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of light. Moreover, the model’s predictive ability is tested using various qualitative and
quantitative tests. It should be noted that the contents of this chapter is being prepared
as manuscript for publication.

Chapter 7 presents the combined in silico analysis framework involving genome-scale
metabolic model and multiple “-omics” data for the characterization of various metabolic
and regulatory adaptations in rice based on light quality. This chapter combines various
statistical data analysis methods and in silico modelling techniques in an integrative
manner at various levels of cellular hierarchy: global-network-level, pathway-level and
individual reactions and metabolite-level. In addition, it also presents the major light-
specific TFs which orchestrate the light signalling in rice. It should be noted that the
contents of this chapter is being prepared as manuscript for publication.

Chapter 8 summarises the key findings and highlights the major contributions of the
current thesis. Possible extensions and future recommendations for an improved rice

systems biological research are also discussed.



Chapter 2

Constraints-based modelling - An

overviewl

2.1 Introduction

As seen in the previous chapter, the key step in systems biology is to represent the
biological process of interest in the mathematical form. Several approaches have been
proposed in the past for modelling cellular processes. In terms of metabolic modelling,
kinetic modelling (Steuer et al, 2006), cybernetic modelling (Kompala et all, |1984),
metabolic control analysis (Reder} |1988)) and constraints-based modelling (CBM) (Price
et al, 2004al), are the four major approaches suggested. Among these, almost all the
earlier metabolic networks were analysed using kinetic modelling framework. Typically,
such models represent a part of the metabolism using a set of equations where each
equation capture the dynamic changes in the concentration of metabolites involved. The
rate of formation or depletion of a metabolite by an enzyme is usually represented using
Michaelis-Menten kinetics or Hill equation. Although these models provide deep insights
about the process, it is practically impossible to model large-scale networks using this
method as the kinetic variables are often difficult to measure, and are not available for
many of the biochemical reactions. In this regard, the constraints-based modelling has a
clear advantage over the kinetic models as they require only the information on metabolic
reaction stoichiometry, flux capacity and significantly lesser experimental data (Raman

and Chandra), 2009). Several genome-scale metabolic networks have been successfully

'Excerpts of this chapter, in part, is a reprint of previous publication, Lakshmanan et al. (2014) Soft-
ware applications for flux balance analysis, Briefings in Bioinformatics, 15(1):108-22, PMID: 23131418.
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reconstructed for a myriad of microbes, and to a handful of animals and plants using such
an approach (Kim et al, 2012b)). Therefore, this thesis will also use constraints-based
modelling techniques as it provides sufficient insights into rice cellular metabolism, at
the same time, it also circumvents the issue of kinetic parameters scarcity. Accordingly,
in this chapter, first, the theory of constraints-based modelling is presented. This is
followed by a detailed discussion of the various constraints-based modelling methods

and the software tools available for implementing such analysis.

2.2 Constraints-based modelling

2.2.1 System definition

The prerequisite of CBM is to reconstruct the metabolic network consisting of metabolic
reactions with their stoichiometry clearly defined. Typically, metabolic network recon-
struction starts with the collection of information available from the numerous genomic
(e.g. NCBI, GeneDB, TIGR, etc.) and biochemical databases (e.g. BRENDA, EN-
ZYME, KEGG, etc.), resulting into a draft network. The collected information is then
manually curated by checking individual reactions for elemental and charge balancing,
cofactor specificity and reaction directionality. Manual curation is followed by gap-filling,
in which, the missing links are connected through addition of new reactions based on
literature evidences. Additionally, transport reactions are also added to the network,
facilitating the input and output from the system. The detailed procedure for recon-
structing a genome-scale metabolic network can be found elsewhere (Thiele and Palsson,

2010)).

2.2.2 Model development

Once the network is reconstructed, it is then converted into a mathematical model. It can
be achieved by applying the first principle of mass conservation of internal metabolites
within the network (Kauffman et al, [2003). In any metabolic network, the metabolites
are continuously transformed into others through a series of enzyme catalysed reactions
(Fig. 2.1). Therefore, the general equation for mass conservation of internal metabolites

is given by:



2.2 Constraints-based modelling 21

dC;
= > Sijv; (2.1)
i

where C; denotes the concentration of metabolite ¢, v; represents the flux or specific rate
of metabolic reaction j, and ¢ is time. S is a stoichiometric matrix of dimension ¢ x j

whose rows correspond to metabolites and columns correspond to reactions.
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Figure 2.1: “S” matrix development. A. Definition of system boundary. B. Mass balance
equations of all metabolites and the formation of “S” matrix.

During analysis, CBM assumes steady state; because the rates of intracellular reac-
tions are much faster (in the order of milliseconds to tens of seconds) than the changes
in cellular phenotype such as cell growth (in the order of hours to days) (Kauffman et al|

2003). Therefore, the steady state assumption modifies equation (2.1) as follows:

ZSijvj =0 (2.2)
J

When eq. (2.2) is visualised graphically where each flux representing individual axes,
it resembles a hyperplane in the solution space (Fig. 2.2A). In a mathematical point of
view, it is impossible to find the exact solution of such a system as it has both allowable
and non-allowable solutions in its space. Therefore, in order to solve such system,
additional constraints are needed to shrink the solution space into a smaller one. Flux
limits are the most commonly applied additional constraints in CBM. Generally, the
maximal values are applied for internal reactions and the exact values are constrained

for input and output of the system.

U]mm <wj < v (2.3)

where v and v7***

g ;14" are upper and lower limits of flux v;, respectively.
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Similarly, thermodynamic constraints, representing the reaction directionality, i.e.
reversible or irreversible, can also be applied. Once the constraints are applied, a convex
feasible solution space of steady state fluxes is obtained (Fig. 2.2A). Compared to previ-
ous step, it now becomes relatively easier to obtain steady state flux distributions from
such convex space. Two main approaches are available for exploring and obtaining the
possible solution from the convex space: biased and unbiased. Biased methods identifies
the best solution based on a particular bias whereas unbiased methods enumerate all
possible steady state solutions of the convex space. The following sections will detail

the different methods available under each of such approach.

2.2.3 Unbiased solution methods - Global characterization of solution

space

Unbiased methods surveys the entire convex solution space and identifies all possible

solutions. The following subsections will briefly discuss about each of the method.

2.2.3.1 Extreme pathway and elementary flux modes

Extreme pathway (ExPa) analysis and elementary flux mode (EFM) analysis are the two
methods which globally characterise the solution space by identifying certain reaction
sets, i.e. ExPa or EFM, which represent specific metabolic functions (Fig. 2.2B). Col-
lectively, the combinations of all such sets describe the entire space. More specifically,
EFM are “the minimal set of irreversible reactions which could operate in a particular
direction” whereas ExPa are “the minimal set of irreversible reactions that lies at the
corners of the convex solution space”. Both approaches have been utilised to explore the
core metabolic network of E. coli. However, although these analysis characterises the
entire solution space, it is often difficult to implement these for large-scale networks as
it is computationally intensive and thus, it will not be utilised in this dissertation. The
detailed procedure of computing ExPa and EFM of a metabolic network can be found

elsewhere (Schuster and Hilgetag, 1994)(Schilling et al, 2000).

2.2.3.2 Sampling solution spaces

Similar to ExPa and EFM, random uniform sampling can identify all possible solutions

of the convex space. However, due to its stochastic nature, random sampling is not
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computationally intensive and can be successfully applied even to large-scale networks.
Briefly, in random sampling, first, the flux intersects in the convex space are transformed
into parallelepipeds. Subsequently, the parallelepipeds are uniformly sampled using
Markov chain Monte Carlo (MCMC) sampling methods and a set of possible candidate
solutions within the convex solution space is obtained and the probability distributions of
the flux through each reaction is computed (Fig. 2.2) (Price et all [2004b))(Wiback et al,
2004)). It should be noted that as this method provides a set of solution with probability
distributions, it is statistically more meaningful than other methods as it sufficiently
accounts for the uncertainty. With sufficient constraints and adequate sampling, this
is an effective method to characterise the metabolic states of an organism between any

two conditions such as wild-type and mutant or glucose-grown and xylose-grown.

A Constraining the solution space
ZSz'jVj =0 puin <y, <
J J J J
—— s —— U
B Unbiased methods C Biased methods
l l Optimal \
solution %
ExPa Sampling FBA

Figure 2.2: A. Constraining of solution space using sequential application of constraints.
B. Biased solution methods. These methods characterises the entire solution space. C.
Biased methods. These methods find the optimal solution of the network.

2.2.4 Biased solution methods - Finding the optimal solution

As seen above, EFM or ExPa can enumerate all possible solutions of the metabolic
network. However, cells most often attain only one particular state and not all states
suggested by such analysis. Therefore, in order to find the best possible solution which

can be attained by the cells, optimization techniques are used.
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2.2.4.1 Constraints-based flux analysis

Among several optimization-based methods, the most basic technique is the constraints-
based flux analysis, also known as flux balance analysis (FBA). It uses linear program-
ming (LP) to find the optimal solution of the network by either maximizing or minimiz-
ing a particular cellular objective while satisfying the constraints imposed by equations
2.2 and 2.3 (Fig. 2.2C) (Orth et al, 2010). Mathematically, the problem specific for

maximizing a particular objective can be represented as follows:

(P1)  max Z =) cv;
J
s.t. ZSUU]‘ =0
J

min . mazx
'Uj < vy < ’U]

where Z corresponds to the cellular objective and is represented as a linear function of
certain metabolic reactions where the relative weights are determined by the coefficient
cj.

In constraints-based flux analysis, several objective functions such as biomass max-
imization or cell growth, maximization of any particular product or intracellular ATP
and minimization of any particular substrate uptake have been used in the past (Schuetz
et al, 2007)). Among them, the “cellular biomass maximization” is the most widely used
objective function for analysing metabolic models, following its initial success in predict-
ing E. coli’s growth accurately (Feist and Palsson, 2010). Typically, most of the previous
studies maximises the biomass while constraining the uptake of particular substrate(s).

Several extensions to constraints-based flux analysis framework has been suggested
for a variety of purposes including exploration of metabolic networks, incorporation of
regulatory mechanisms, mutant phenotype analysis and for strain design. The following

subsections detail some of them.

2.2.4.2 Exploration of metabolic network using optimization

Flux variability analysis: As constraints-based flux analysis is an optimization-based
approach, it is often possible to obtain multiple equivalent optimal solutions. Therefore,
in order to identify all the active fluxes and their possible ranges during a particular

state, flux variability analysis (FVA) has been proposed (Mahadevan and Schilling,
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2003). Mathematically, it can be represented as:

(P2)  max/min v,
s.t. ZSUU]‘ =0
J
v;-m" <wj <t

Zijj = Zobj for j = 1,2...,77,
J

where Z,; is the value of objective calculated from FBA and n is the number of fluxes.
The upper range of fluxes is identified by maximizing the objective whereas the lower
range is obtained by minimizing the same.

Flux sum analysis: The resultant fluxes from constraints-based flux analysis will just
indicate the rates of consumption/generation of the metabolites for each of the respective
metabolic reactions but not the overall turnover rates. Therefore, the concept of “flux-
sum” was proposed to quantify the metabolite turnover rates (Kim et al, |2007)) (Chung
and Lee, 2009). Since the overall consumption and generation rates are equal under the

steady-state assumption, the flux-sum, ®; of metabolite i can be formulated as:
(PB) (Pi =0.5 Z |Sijvj|
J

Here, it should be noted that each |S;jv;| term in this summation series gives us
the absolute rate of consumption/generation of metabolite ¢ due to reaction j and thus
by halving the sum of these terms, the overall turnover rate for metabolite i can be
obtained.

Flux coupling analysis: The concept of FVA was further extended as flux coupling
analysis (FCA) to analyse the correlation between any two fluxes and the blocked re-
actions, i.e. reaction which cannot carry any flux, in the metabolic network (Burgard
et al, [2004).

Phenotypic phase plane analysis: Since FBA is an optimization-based approach,
it is possible to analyse the shadow prices, i.e. sensitivities, of the objective with re-
spect to a particular variable. Such an approach was termed as phenotypic phase plane
(PhPP) analysis and was demonstrated using E. coli metabolic network, analysing the
sensitivities of growth under varying carbon and/or oxygen uptake rates as phase planes

(Edwards et all, 2002).
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2.2.4.3 Incorporation of regulatory mechanisms

Regulatory flux balance analysis (rFBA): It is a variant of constraints-based flux
analysis where the metabolic regulation of reactions are used as additional constraints
based on Boolean logics (Covert et al, 2001)). In rFBA, before simulating a particular
state, the regulatory rules are applied to determine the presence or absence of individual
reaction in the network.

Probabilistic regulation of metabolism: Since rFBA is formulated in a binary
manner, i.e. ON or OFF, an alternative method known as probabilistic regulation of
metabolism (PROM) has been suggested which can apply intermediate responses using
the conditional probabilities of regulatory - metabolic network model (Chandrasekaran
and Price, 2010). In this method, first, a probabilistic model of the transcription-
regulatory network is built based on the transcriptomic data and regulatory interactions,
and then merges it with the metabolic network to yield a regulatory - metabolic network

model.

2.2.4.4 Mutant phenotype analysis

Gene deletion analysis: Interestingly, constraints-based flux analysis can be utilised
to identify essential genes and/or reactions by just constraining the flux values of rele-
vant reactions to zero in an iterative manner (Varma and Palsson, |1993)(Forster et al,
2003)). Such method has been applied to the genome-scale metabolic networks of several
organisms to identify essential genes and/or reactions. At times, such method has been
used to screen mutants that can overproduce the product of interest.

Minimization of metabolic adjustment: Although constraints-based flux analysis
can predict the essentiality of a particular gene/reaction, it may not accurately predict
the optimal metabolic state of the corresponding mutant. Therefore, in order to address
this limitation, minimization of metabolic adjustment (MOMA) was proposed. It utilises
the quadratic programming (QP) to identify the closest point in solution space to that
of wild type while considering the deletion constraint simultaneously (Segre et all, 2002]).
Regulatory on-off minimization: Similar to MOMA, regulatory on-off minimization
(ROOM) identifies the metabolic state closest to that of wild type. However, it uses a

mixed-integer linear programming (MILP) framework which minimises the number of
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significant flux changes with respect to the wild type upon gene deletion (Shlomi et all

2005).

2.2.4.5 Integration of “-omics” data as constraints

Gene inactivity moderated by metabolism and expression (GIMME): In this
method, the gene expression data is used to determine the reaction activity during sim-
ulation. The reaction activity is determined based on a particular predefined threshold
expression value, above which the reaction is considered as present or else absent (Becker
and Palsson, 2008).

Integrative metabolic analysis tool (iMAT): This method combines the transcrip-
tomic and proteomic data with metabolic models using a MILP framework where the
reaction presence is determined based on basal expression levels comparative to that of

a global reference (Shlomi et al, 2008)).

2.2.4.6 Strain design algorithms

OptKnock: OptKnock is a bi-level MILP optimization problem based on FBA where
the inner optimization problem maximises the biomass production, i.e. same as FBA,
and outer problem maximises the desired product (Burgard et al, [2003). Using such
an approach, it reports the best gene knockout candidates which satisfies both the
objectives.

OptGene: Although OptKnock is successful in identifying suitable strain designs, it
is often computationally intensive to solve due to the bi-level framework. Therefore, to
address this limitation, an evolutionary based algorithm is proposed (Patil et al, [2005),
where initially a set of population with certain genes are scored for fitness based on
either FBA or MOMA. Next, based on the fitness score, they are allowed to mate and
produce new offspring with mutations introduced in them. This cycle is continued until
the identification of certain mutant which overproduces the desired product.

Genetic design through local search: Similar to OptGene, this is also a heuristic
based search approach which employs a local search with multiple search paths, and
thus obtains efficient solutions with less computational time (Lun et all, 2009).
OptStrain: Although gene deletion is the common method used to improve microbial

product synthesis, OptStrain suggests intelligent gene additions from other organisms
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(Pharkya et all, |2004)). This method is based on the assumption that addition of new
reactions expands solution space, and thus product synthesis ability.

Cofactor modification analysis: Unlike previous methods, which identifies gene
knockout or addition candidates, this method identifies best reaction targets whose
cofactor specificity engineering would improve microbial product synthesis. Cofactor
modification analysis (CMA) is also a bi-level optimization algorithm in which the outer
level maximises the product synthesis and inner level maximises biomass while simulta-
neously considering the cofactor engineering (Lakshmanan et al, 2013a). The efficacy of
this method has been demonstrated in E. coli for producing a wide range of native and

non-native products.

2.3 Software applications for constraints-based modelling

As mentioned earlier, CBM has been one of the most widely employed computational
techniques for systems-level analysis of living organisms due to its simplicity and ex-
tensibility (Raman and Chandra, 2009). However, although the theoretical formulation
for CBM is simple and well established, still, it may not be easy for researchers to
implement it without the familiarity in computational coding and basic programming
skills since a large number of metabolites and reactions should be properly handled to
quantify the metabolic fluxes. Particularly, recent genome-scale models for a variety of
species involve more than 1,000 reactions and metabolites (Kim et al, [2012b)). So, it is
often cumbersome and error-prone to manually define stoichiometrically balanced model
equation and constraints, and manipulate them for subsequent optimization using LP
solver. Clearly, this has motivated systems biologists, bioinformaticians and bioengi-
neers to develop specialised CBM software packages. Initially, such applications were
designed to perform only FBA on the given network models. They simply re-formulate
the network specifications in certain formats (e.g. text files and spreadsheets) into their
LP equivalents for subsequent execution of the solvers. However, with the increasing
advancements in software technologies and algorithm development, newer tools have im-
proved /added some of the features, e.g., enhanced graphical user-interfaces to view and
manipulate network models, implemented algorithms for more advanced analyses such

as strain design methods, and recently, adopted platform-independent web-technologies.
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Remarkably, since 2000, there has been a steady increase in the number of CBM
software, and currently there are already more than 20 applications available (Fig. 2.3).
The following subsections will provide a comprehensive review on their strengths and
weaknesses to guide the potential users in selecting the suitable tool for their project
requirements as well as to developers for improving the CBM tools. Toward this end,
all currently available CBM tools under academic free license will be surveyed, and
compared using various features such as operating platforms, ease of use, model cre-
ation facilities, additionally supported flux analysis techniques, visualization of network
models and model exchange capabilities. Based on the comparison, some of the no-

table limitations in current software are discussed and future perspectives on CBM tool

development is also provided.
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Figure 2.3: Timeline and development of FBA software. Timeline showing the launch
of FBA software tools and the milestones of key features implemented in them. Soft-
ware tools are classified into any one of the three categories: stand-alone, web-based
and toolbox-based. Milestones are grouped into three classes: advancements in web-
technologies, supports for genome-scale model reconstruction and algorithm implemen-
tation. The vertical bars at the background denote the number of available software at
the end of each year.

2.3.1 Evaluation of software applications

The surveyed applications herein can be grouped into any one of three classes, i.e. (i)

stand-alone, (ii) toolbox-based library, and (iii) web-based, on the basis of their plat-
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form and software dependencies (Table 2.1). Stand-alone applications are independently
installed onto the users’ computers and executed locally. Toolbox-based applications,
on the other hand, are not self-contained software, but add-on libraries installed in the
general-purpose computation or network visualization tools such as MATLABE|7 Math-
ematicaﬂ or VANTED (Junker et al, [2006), leveraging upon their existing capabilities,
e.g. matrix computations, data manipulation and/or visualization. The third class is
web-based applications which are accessible online regardless of the users’ platform, only
requiring a web-browser with moderately fast internet connection to build models and
conduct FBA simulations. Considering the differences among the classes, the CBM
software applications was evaluated using a set of test models including a genome-scale
metabolic model of E. coli (Reed et al, 2003) (Appendix A), in terms of five distinct
characteristics: platform and software requirements, user friendliness nature, model re-
construction and analysis, visualization and model exchange formats (Fig. 2.4). The
resultant comparisons of their unique and common features are summarised in Tables

2.2 to 2.4.

2.3.1.1 Usability

Usability can be defined as a measure of how easy it is to use the FBA software for
building and analysing metabolic models. Availability of intuitive user interface (UI),
comprehensive user documentation and other user friendly attributes can enhance this
characteristic of the software considerably.

User interface: Invariably, users need some forms of interface to interact with the soft-
ware application. In this aspect, the models can be defined through (i) script/console,
(ii) forms or tables, and/or (iii) drag-and-drop operations on a graphical canvas. Script-
based applications e.g. BioOpt, SBRT, COBRA toolbox, FASIMU, MetaFlux and
GSMN, require users to specify models in flat files that list down all the molecules,
reactions and/or their stoichiometric matrices. Ensuring model correctness could be
often a tedious task in this approach since it is easy to commit typographical mistakes,
especially for large network models. On the other hand, form-based software applica-

tions, including MetaFluxNet, OptFlux, SurreyFBA with JyMet GUI, CellNetanalyzer,

MATLAB: (http://www.mathworks.com/products/matlab/)
3Mathematica: (http://www.wolfram.com/mathematica,)
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Table 2.2: Dependency and usability features of FBA applications

Software Required software environment Type of Ul User docu-
applications Platforms supported Additional software requirements Optimization solver used provided mentation
OptFlux Windows and Linux Java JRE 1.6.x GLPK Wizard /Script fating
SBRT Windows, Linux and Mac OS X  >Java JRE 1.5.x GLPK Script P
MetaFluxNet Windows >.NET framework 1.1, Java JRE 1.4.2 Qsopt, LP_.SOLVE Wizard E
BioOpt Windows NA GLPK Script G
SurreyFBA Windows, Linux and Mac OS X  Java JRE 1.6.x (4) GLPK Wizard?/Script P
FASIMUD Linux and Mac OS X Optimization solver GLPK, CPLEX, LINDO, LP_SOLVE Script F
GEMSiRV Windows, Linux and Mac OS X  >Java JRE 1.7.x GLPK Wizard E
CellNet Analyzer/ Windows, Linux and Mac OS X  >MATLAB 7.1, Optimization solver, GLPK, OptimizationToolbox® Wizard /Script G
Ecx>dm5§mw_u SBMLToolbox 3.0.0
COBRAToolboxP Windows and Mac OS X >MATLAB 6.5, Optimization solver, GLPK, HO§h>w\OHuEwNQ, LINDO,  Script F
>1ibSBML 4.0, >SBML Toolbox 3.0.0 Gurobid
SNAToolbox Linux >Mathematica 5 - Script P
FBA-SimVis Windows >VANTEDI1.8, Java JRE 1.6.x GLPK Pictorial E
MetaFlux Linux and Mac OS X PathwayTools SCIP Wizard /Script F
CycSim - Web Browser: >Firefox 2.0€ Wizard F
WEDbcoli - Web Browser: >IE 6.0° or >Firefox 2.0¢ ILOG_CPLEX Wizard,/ Script E
GSMN-TB - ‘Web Browser GLPK Script P
Acorn - Web Browser: >Firefox 2.0¢ ILOG_CPLEX Wizard G
Model SEED - Web Browser, Java JRE 1.6.x GLPK Wizard G
FAME - Web Browser: Google Chrome®, Firefox® GLPK/ILOG_CPLEX Wizard B
MicrobesFlux - ‘Web Browser IPOPT Wizard G

2Form-based interface is available through a separate program called ‘JyMet’, a GUI designed to access all routines of SurreyFBA; va@Ew@m separate LP solver installation and configuration;
€Optimization toolbox of MATLAB can be used for some functionality instead of GLPK; however developers recommend use of GLPK; dCOBRA toolbox recommends TOMLAB CPLEX

and Gurobi as fast and accurate solvers; ® Recommended Web Browsers for accessing the application; User documentation rating: E-Excellent, G-Good, F-Fair and P-Poor.
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Figure 2.4: Core features of FBA software. The five core features of any FBA software
include the following: (i) OS, installation and other requirements, (ii) usability, (iii)
functionality, (iv) model exchange and (v) network visualization.

WEDbcoli and CycSim, alleviate this issue by providing more error detection features as
the user can input the various elements of the model using interactive screens which
contain specified forms or tables. The last type of interface, i.e. the diagrammatic Ul
is more sophisticated, allowing users to create network models by visually dragging and
dropping nodes (metabolites or compounds) and edges (reactions or interactions) onto
a canvas. This is, indeed, an intuitive approach for model creation: users can quickly
glance at the network topology and infer the correctness of the model. However, one
severe problem with the interface is the proper layout of large-size network diagrams as
it becomes very random and cluttered. In addition, the visualization of metabolic net-
works with hundreds to thousands of nodes remains a big challenge. Currently, among
all surveyed applications, FBA-SimVis is the distinct tool to provide the drag-and-drop
UI. Apart from model specification, Ul is also critical in FBA simulations and the sub-
sequent analysis of results. In this regard, script-based applications execute FBA upon
a command line call and generates some specific file formats (e.g. text files and spread-
sheets) containing the quantified metabolic flux values while form-based applications
provide specific buttons/tabs within the software environment for FBA execution and
employ grids to display the results. Detailed evaluation on the user-friendliness nature

of Uls is provided in Appendix B.
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User documentation and miscellaneous features: User manuals and documen-
tations are available in the form of online help or separate documents detailing the
implementation and execution methods of the FBA software. The availability of tutori-
als and case studies with relevant screenshots can also help the user acclimatise to the
software much faster. The quality of user documentations provided in all applications
was evaluated according to three core criteria: completeness, understandability and
availability of case studies/tutorials (Table 2.2). The user manuals in most of the appli-
cations contain comprehensive information about 5 major components: (i) installation
and software requirements, (ii) steps to create or edit models, (iii) FBA simulation proce-
dures, (iv) network visualization methods and (v) export/import of model and analysis
results. Interestingly, along with the typical user manuals, Acorn, FBA-SimVis, Mi-
crobesFlux and WEbcoli also include the multi-media as a part of their documentation
by providing video demos for tutorials. Obviously, the presence of such materials could
reduce the user’s learning curve through more interactive communication than normal
text documents. However, despite these intuitive contents, none of the tools provides
additional information such as troubleshooting steps for commonly encountered errors
or exceptions. Furthermore, the help documents in SBRT, SurreyFBA and CycSim are
relatively poor with little/no screenshots and illustrations; the documentation of SNA
Toolbox contains many technical terms related to Mathematica without proper explana-
tion. Therefore, it is believed that most tools require substantial improvement in the user
documentation. More detailed evaluation result can be found in Appendix B. In addition
to UI and help documents, availability of certain miscellaneous features can also enhance
the usability of software applications. For example, the tooltips/succinct descriptions
on the buttons/tabs inside a software environment are currently available in Acorn,
GEMSiRV, MetaFluxNet and OptFlux. Similarly, Acorn, GEMSIRV, MetaFluxNet,
OptFlux and SurreyFBA support the option to store, navigate, sort and/or filter the

model information and analysis results.

2.3.1.2 Functionality

Functionality of a CBM software application can be defined as its capability to support
various functional in silico analyses for cellular phenotype prediction and strain design

under perturbed environmental and/or genetic conditions. The advanced features for
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model reconstruction and evaluation was also considered as one of the relevant attributes
in this facet.

Analytical algorithms for phenotype prediction and strain design: As seen
in previous section, several CBM-based analytical algorithms have been developed to
incorporate additional constraints, analyse the network flexibility, predict the cellular
phenotype under perturbed conditions, and to postulate strain design strategies (Kim
et al, 2012b; Lewis et al, 2012)). The capabilities of the applications supporting such
algorithms was evaluated by performing various in silico analyses using E. coli genome-
scale model (Reed et al,|2003)) as summarised in table 2.3. Details on evaluation methods
and results can be found in Appendix C. Currently, only COBRA toolbox, FASIMU and
OptFlux offer various functional analysis for predicting the phenotype of genetically per-
turbed strains using MOMA and ROOM. COBRA toolbox and OptFlux also provide
some strain design algorithms, such as OptKnock and OptGene. Interestingly, COBRA
toolbox and FASIMU can incorporate the available “-omics” datasets such as gene ex-
pression data for analysing environment- and tissue-specific metabolisms using GIMME
and iMAT algorithms, respectively.

Supports for genome-scale model reconstruction and evaluation: As mentioned
earlier, metabolic reconstruction is a prerequisite for CBM. It is initiated by collecting
metabolic reactions of any specific organism from various biochemical databases such as
KEGGE], MetaCch], and BRENDAE] based on their genome annotation (Thiele and Pals-
sonl, [2010). It is followed by assembling of the reactions, resulting in the draft network
model which can be further improved by manual curation via dead-end identification,
reaction balance checking and gap filling. Currently, some of the applications have such
facilities in automating the data collection from different databases (Table 2.3). FBA-
SimVis, FAME and MicrobesFlux can import organism-specific pathway information
from KEGG while MetaFlux and Model SEED can obtain relevant reaction data from
MetaCyc and RAST server (Aziz et al, 2008]), respectively. As an alternative, genome-
scale models can even be drafted from the existing models, based on sequence homology
between the genes of target and query organisms. Currently, GEMSiRV supports this ap-

proach to reconstruct metabolic models, connecting to the model repository from BiGG

‘KEGG: (http://www.genome.jp/kegg/)
®MetaCyec: (http://www.metacyc.org/)
SBRENDA: (http://www.brenda-enzymes.info/)
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Table 2.3: Functionalities supported by FBA applications

Model reconstruction support FBA and other phenotype prediction analyses Strain design algorithms

Knockout analysis ’omics’ data inclusion EFM

FBA FCA FVA
Pathway import  Gap-filling FBA MOMA ROOM GIMME iMAT OptKnock  OptGene GDLS

v v v v v v v

v

OptFlux

SBRT

MetaFluxNet v
BioOpt

SurreyFBA

FASIMU v
GEMSiRV vede v
CellNet Analyzer

COBRA toolbox v
SNA toolbox v v
FBA-SimVis veh v v v

MetaFlux vd v
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CycSim
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FAME vd
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2Can perform in automated format, i.e. run simulations by knocking out each reaction/gene at a single instance in continuous format. bBoth gene essentiality and reaction essentiality is
available separately. “Connects with KEGG. dConnects with MetaCyc. ©Contains even a reference DB of certain existing genome-scale models to support AUTOGRAPH method. foan
compare the predictions with available experimental datasets in PGDBs. &Based on the gene-reaction association; therefore, requires a mention of gene-reaction association. h\¥hen tested
for the import of reactions from KEGG, failed due to the new licensing policy of KEGG, i.e. no free data download through FTP. wb:;oamiom:% curates for network gaps and other

inconsistencies. JConnects with RAST.
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(Schellenberger et all, 2010). Apart from the support to automate the reconstruction of
draft genome-scale models, software applications may also assist users in evaluating the
networks connectivity and their gaps (Table 2.3). Currently, MetaFluxNet, MetaFlux,
COBRA toolbox, GEMSIRV and FASIMU helps the user identify the dead-end/blocked
metabolites in the model. Similarly, COBRA toolbox and FASIMU also allows the user
to check the ability of any particular metabolite for its synthesis or degradation. In-
terestingly, MetaFlux, Model SEED and COBRA toolbox implement the MILP-based
analytical algorithms - GapFind and/or GapFill (Kumar et al, 2007)) for gap filling

process.

2.3.1.3 Network visualization

Metabolic networks can be intuitively viewed as graphs where the metabolites and their
interactions are represented by nodes and edges linking them, respectively. Most of
applications provide basic static images to visualise the networks. However, laying out
large-scale networks, e.g., genome-scale models, and magnifying any particular pathway
are often cumbersome in such static maps because of their intractable nature. Therefore,
dynamic network visualization features, supported by FBA-SimVis, remedy this issue by
offering sophisticated graphical interfaces where users can re-align the nodes and edges,
adjust their sizes, and interestingly allow users to visualise sub-networks of certain path-
ways from a large model for a biologically intuitive network analysis. In addition to the
basic network visualization feature, some of the tools also offer advanced facilities such
as incorporation of resultant flux values onto the network map either by simply overlay-
ing the values itself or by providing additional visual cues via variations in the thickness
of edges based on flux values (Table 2.4). Interestingly, some tools accommodate this
function by exploiting specific plug-ins under network visualization environments such as
Cytoscape (Shannon et al, 2003) and BiNA (Kiintzer et al,2006). For example, FASIMU
can export compatible model formats to Cytoscape and BiNA, which can further link the
resulting fluxes using its corresponding plug-ins FluxViz (Holzhutter, 2010) and faBiNA
(Kiintzer et al, 2006), respectively. Similarly, Model SEED generates models which can
be visualised under Cytoscape environment, followed by flux mapping using its plug-in,
CytoSEED (DeJongh et al, 2012). Remarkably, among all applications, FBA-SimVis is

a unique tool in flux visualization as it enables the user to even perform flux perturba-
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tion analysis through the network diagram. Thus, the network map of the perturbed
state can be instantaneously visualised while manipulating the flux of a certain reaction.
It should be highlighted that except a few features such as automatic re-alignment of
networks based on layout algorithms and filtering option based on sub-networks avail-
able in FBA-SimVis, none of the tools can handle large-scale models. In this regard,
availability of options to visualise interactive multiple sub-networks of a large-size model
with appropriate links among them will improve the intuitive understanding of overall
functional interactions along with their organization. Detailed information on network

visualization evaluation procedure and results could be found in Appendix D.

2.3.1.4 Model exchange

The model exchange via standardised formats across different FBA applications allows
us to fully utilise all the unique features supported in each application. Systems bi-
ology markup language (SBML) (Hucka et al, 2003)(Hucka et al, 2004) is one of the
most widely accepted standards for model representation. Other formats include the
metabolic flux analysis markup language (MFAML) (Yun et al, 2005) and cell markup
language (CellML) (Lloyd et al, 2004). The model exchange feature in various formats
is summarised in table 2.4 and figure 2.5.

SBML compatibility: Most of the stand-alone and toolbox-based applications support
the import and/or export of SBML files although BioOpt, FASIMU and SBRT require
additional step by the translator to convert them into compatible formats (Fig. 2.5).
However, none of the web-based applications, except FAME, have SBML import function
as they can conduct in silico analysis only on the existing pre-defined models. The
SBML compatibility was tested for all the applications using test models (Appendix A)
by validating generated SBML files through the online SBML Validatorﬂ and the ability
of all software applications to recognise the SBML exported by other software, i.e. the
readiness of the application to perform FBA upon import of SBML. Here, it should be
noted that some of the compatibility issues should be properly addressed for ensuring
model consistency. The results revealed that SBML generated by COBRA toolbox and
OptFlux are readily inter-transferable between them. However, certain FBA specific

information such as reaction bounds and objective function are missing in the SBML

"SBML validator: (http://sbml.org/validator/)
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Figure 2.5: Model exchange capabilities of FBA applications. Brown-, green- and tan-
coloured nodes represent the stand-alone, web-based and toolbox-based applications.
Nodes with aquatic blue colour represent the software which cannot implement FBA
but can help converting model format from one to another. The nodes inside rectan-
gular represents the toolbox-based (red-coloured rectangles) or plug-in based (purple-
coloured rectangles) software where the boxes denote base software and nodes inside
them represent the additional libraries.

created by all other applications. Detailed discussion on the SBML issues can be found

in Appendix E.

Compatibility in other formats: For the exchange of FBA models among different
applications, other than SBML, a similar XML-based standard, MFAML, was specifi-
cally designed with relevant XML tags for reaction bounds and objective functions
. Unfortunately, it is not widely adopted and currently, MetaFluxNet is
the only tool that supports this format. The ability of software applications to cre-
ate programming scripts/computer codes that represent the models in other general
computational or optimization software was also analysed (Table 4). In this aspect,
MetaFluxNet is the most versatile software as it can generate various scripts which are
compatible with MATLAB, GAMS LP SOLVH’} IBM ILOG CPLEX[| and LINDO["|

for the given FBA problem. Availability of such options certainly provides more flex-

8GAMS: (http://www.gams.com/)

°LP SOLVE: (http://Ipsolve.sourceforge.net/)

TBM TLOG CPLEX: (http://www.ibm.com/software/integration /optimization/cplex-optimizer/)
ULINDO: (http://www.lindo.com)
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ibility in implementing complex algorithms which are currently not supported by any
of the software applications surveyed. Similarly, OptFlux and FASIMU can generate

MetaTool format (Pfeiffer et al, [1999), thus enabling EFM analysis.

2.3.2 Improvement suggestions and future perspectives
2.3.2.1 Genome-scale model reconstruction

As one of important features, the current applications can provide functional envi-
ronment to accelerate the reconstruction of genome-scale metabolic models which is
otherwise too laborious, requiring substantial time and manual efforts (Thiele and
Palsson, 2010). Thus, it is highly required to implement specific functions for (semi-
Jautomatically gathering information from various online enzyme databases and sub-
sequently refining them with the help of network evaluation algorithms such as Gap-
Fill/GapFind, GrowMatch (Kumar and Maranas| [2009)), and GeneForce (Barua et al|
2010)). In this regard, as highlighted before, most recent applications, FAME, GEMSiRV,
MetaFlux, MicrobesFlux and Model SEED, have already incorporated certain features in
facilitating the reconstruction process by importing reaction data from KEGG, MetaCyc
or RAST and improving the network connectivity using GapFill/GapFind. Nonethless,
in order to improve the quality of such draft models, additional model curation steps such
as elemental and charge balance check in reactions, verification of reaction directional-
ity from more specific enzymatic databases, e.g., BRENDA and UniProt, assignment
of reactions to appropriate cellular compartments based on the protein subcellular lo-
calization prediction software, e.g., PSORT (Nakai and Kanehisal, |1991)) and MultiLoc
(Hoglund et al, [2006), and inclusion of transport reactions from TCDB database (Saier
et al,[2006), are required. Moreover, software applications can also consider linking them
with biological model storage database such as BiGG, Model SEED (Henry et all [2010),
BioMet toolbox (Cvijovic et all 2010), and BioModels (Le Novere et al, |2006) since
this support will not only allow users to directly perform simulations on existing models
but can also help them reconstruct new genome-scale models using the AUTOGRAPH
method (Notebaart et al, [2006). It should be noticed that the data from multiple-
sources may often conflict with each other or even miss several information from one

another. These issues can be appropriately resolved by implementing methods for data
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integration and standardization. In such an attempt, a new knowledgebase, MetRxn,

has been recently developed, integrating the data from 4 biochemical databases and 44

genome-scale metabolic models available from literature (Kumar et all [2012)). Therefore,

utilization of this knowledgebase for integrating the data collected from different data

sources would be an interesting option for model reconstruction.

2.3.2.2 FBA-based functional algorithms

Another critical functionality feature along with model reconstruction is to support vari-
ous analytical algorithms for phenotype prediction and strain design. Although COBRA
toolbox, FASIMU and OptFlux have already incorporated basic algorithms for mutant
phenotype analysis such as MOMA and ROOM, a multitude of other FBA-based in sil-
ico techniques can be considered to enhance the functionality and broaden the analytical
capability. For example, incorporation of regulatory constraints into the FBA frame-
work via Boolean logic representation, e.g. tTFBA, or by integrating the transcriptomic
and/or proteomic datasets using various algorithms such as GIMME, E-Flux (Colijn!

2009), INIT (Agren et al,[2012)), MBA (Jerby et al,[2010) and MADE (Jensen and
2011)), offers a wide variety of applications. They include environment-specific

phenotype prediction (Becker and Palsson, |2008; |Covert et all |2008; |Jensen and Papin,

2011)), development of tissue-specific sub-network models in higher organisms (Agren,

let al, 2012; Jerby et al, 2010; Mintz-Oron et al, 2012), identification of drug-targets

(Colijn et al, 2009)(Folger et al, 2011) and the analysis of host-pathogen interactions

(Bordbar et al, 2010). In terms of strain design, OptKnock, OptGene, GDLS, OptReg
(Pharkya and Maranas, 2006), OptORF (Kim et al, 2011), RobustKnock (Tepper and
2010) and OptForce (Ranganathan et all, [2010) could help to devise novel strain

engineering strategies by identifying the gene/reaction targets to be manipulated for

the improved productivity. It should be highlighted that such advanced algorithms are

mostly formulated as MILP problem (Park et al, [2009), whereby the combinatorial ex-

plosion as a result of the huge metabolic network models may lead to inefficient solving

of the optimization problem based on default solver settings (Atamtiirk and Savels-|

2005). In this regard, it is desirable to have flexible options in selecting the solver

algorithms and specifying the corresponding parameters.
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2.3.2.3 Flexible and extensible software design

As stated earlier, it is highly necessary to standardise model exchange format across
different applications in order to utilise various interesting features which are unique
in each tool. However, the widely accepted SBML standard currently may not capture
some of the key information for FBA, thus initiating community discussion and proposal
to include additional attributes for better representing FBA modelﬁ Alternatively,
such interesting functions can be additionally implemented to a flexible and extensible
software environment via plug-ins/add-ons as it is successfully adopted by Cytoscape,
VANTED and CellDesigner (Funahashi et all 2003)). Interestingly, Microsoft Exce]El7
the commonly used spreadsheet package for storing metabolic models, has all the neces-
sary components to create and analyse FBA models including well-designed form-based
interface, plotting and drawing facilities, in-built optimization solvers and scripting lan-
guage for automating tasks (i.e. MACROS). It should be noticed that Excel-based FBA
application may face technical challenges in handling large-size models due to the limita-
tion in its in-built optimization solver. However, this issue can be appropriately resolved
by using relevant software technologies such as OpenSolveIiEL an open-source optimiza-
tion solver for Excel that runs on advanced COIN-OR, CBC optimization emgime{ﬂ7 and
SolverStudiﬂ, a software framework that can integrate Excel with other open sources

as well as commercial solvers, e.g., GLPK["|, COIN CLP []] CPLEX, and GUROBI™]

2.3.2.4 'Web-based applications: Future outlook

Figure 2.3 clearly indicates the increasing popularity of web-based FBA applications.

Such an augmented interest towards web applications is mainly attributable to their mul-
tiple advantages over the stand-alone or toolbox-based applications: it provides not only
distributed computing for implementing complex analytical frameworks but a medium
for collaborative research where the combined efforts of scientific community could be

facilitated. Importantly, rich user interfaces and enhanced interoperability can be man-

2proposal: (http://sbml.org/Community/Wiki/SBML_Level_3_Proposals/Flux_Constraints_Proposal)
13 Microsoft Excel: (http://office.microsoft.com/en-us/excel/)

4OpenSolver (http://opensolver.org)

5 COIN-OR: (https://projects.coin-or.org/Cbc)

63olverStudio: (http://solverstudio.org)

"GLPK: (http://www.gnu.org/software/glpk/)

8COIN CLP: (http://www.coin-or.org/Clp/)

YYGQUROBI: (http://www.gurobi.com/)
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Figure 2.6: Typical architecture of web application. A typical three-tier architecture of
web applications that incorporates the Model-View-Controller pattern for application
design.

ifested by resorting to recent web-technologies, e.g., Ajax, service-oriented architecture
and Semantic Web, adopting three-tier Model-View-Controller architecture as depicted
in figure 2.6. Additionally, the use of Javascript libraries such as Cytoscape web and
ExtJS can also improve interactivity, mimicking a desktop application within a web
browser. For example, Discovery Studio provides a thin-client local front-end for users
to interact with their models while performing expensive operations at the backend
server. However, despite the recent technology improvements, web applications still suf-
fer a major disadvantage in the form of the necessity of being online always. Therefore,
future web applications should possibly allow us to perform at least few functions such as
model construction offline. Implementation of this facility is very much plausible with
the help of offline application cache (appcache) or cache manifest from the emerging
HTML5 framework and Indexed database; the information can be temporarily cached
in the client browser through their cookies while updating the transaction information
from client-to-server and vice versa upon availability of the network connection. Finally,
web-based FBA tools could even consider developing specialised applications (Apps) for

smartphones so that the users could conduct FBA via portable devices.



Chapter 3

Reconstruction of rice central

metabolic/regulatory model

3.1 Introduction

Rice is truly a global food crop, and is considered as a major staple food in many Asian
countries: each person consumes more than 100 kg of rice per year, on average (Nelson)
2011)). Since the Green Revolution in 1960, there has been a progressive increase in the
yield of rice. However, the growing population and adverse climatic changes pose huge
challenges to sustaining the growing demand for rice. Moreover, several abiotic stresses
also influence the annual yield significantly (Van Nguyen and Ferrerol 2006).

Over the last few decades, several efforts have been made to understand the cellular
metabolism of rice by conventional experimental approaches. However, its metabolic
adaptations under different stress conditions remain poorly characterised. Thus, with
recent advancements in the modern genomic era, a systematic approach is required to
improve our understanding of the metabolic changes of rice. In the postgenomic era, it
can be achieved by utilizing the abundant highthroughput “omics” data sets in combi-
nation with in silico metabolic modelling. To this end, the development of a predictive
in silico model based on the available biochemical, genomic, and regulatory informa-
tion, and its subsequent examination by the well-established computational framework
of constraints-based flux analysis, is highly desired.

Interestingly, flux-based metabolic modelling of plant systems has recently gained

!Excerpts of this chapter, in part, is a reprint of previous publication, Lakshmanan et al. (2013)
Elucidating rice cell metabolism under flooding and drought stresses using flux-based modelling and
analysis, Plant Physiology, 162:2140-2150, PMID: 23753178.
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more attention following its tremendous success in elucidating the metabolic capabil-
ities of myriad microbial and mammalian species and rationally engineering them to
achieve desirable phenotypes. In this regard, metabolic network models for several
plants, such as Arabidopsis (Poolman et all |2009; de Oliveira Dal’Molin et al, [2010a;
Saha et al, [2011; Chung et al, 2013; Mintz-Oron et al, 2012)), barley (Grafahrend-Belau
et al, 2009b), rapeseed (Hay and Schwender, 2011; Pilalis et al, [2011), maize (Saha
et al, 2011), and a general C4 plant model (de Oliveira Dal’Molin et al, 2010b|) have
already been developed, and some of them are even in genome scale. Nevertheless, the
metabolic model of rice is not available to date. Therefore, in this chapter, a combined
metabolic/regulatory network model representing the central metabolism of rice cells is
reconstructed. Subsequently, its in silico predictions are validated using rice suspension

culture cells.

3.2 DMaterials and methods

3.2.1 Cell line and media conditions

Rice suspension cells were obtained from calli induced by rice seed (Oryza sativa L.)
on amino acid callus induction (AACI) medium containing 2,4-dichlorophenoxyacetic
acid (2 mg/L), sucrose (30 g/L) and Gelrite (2 g/L) for 2 months. The calli were then
sieved for the establishment of suspension cells using a stainless screen mesh with a pore
size of 1 mm. The suspension cells were cultured in 500-mL Erlenmeyer flasks. An
Erlenmeyer flask containing 126 mL of AA medium consisted of 30 g/L of sucrose, 2
mg/L of 2,4-dichlorophenoxyacetic acid, 0.02 mg/L of kinetin. After sterilization, 14 mL
of a 10-fold concentrated amino acid mixture was sterilised using 0.22-um syringe filters
with 0.1 mg/L of gibberellic acid. Subculture was performed every 9 days. Both aerobic
and anaerobic cell cultures were performed at 120 rpm and 28 °C in a gyratory shaking
incubator. For the cultivation under anaerobic conditions, a disposable bag chamber
was designed. To apply anaerobic conditions, nitrogen gas was supplied through an
air-filter (Sartorius AG, Germany) and dissolved oxygen levels were monitored using a
DO electrode (Mettler-Toledo Process Analytical Inc., USA). In both conditions, 1 g
of fresh cells was inoculated in 100-mL Erlenmeyer flasks with 30 mL of AA medium

containing either 87.6 mmol sucrose or 175.3 mmol glucose as carbon source. Here, it
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should be noted that these experiments was conducted by Dr. Jun-Young Kwon and his
research team at the Cell Culture Engineering Laboratory, Inha University, Republic of

Korea.

3.2.2 Analytical techniques

After sampling every 4 days, the suspension cells in cultured broth were filtered using
Whatman No. 1 filter paper. The rice cells were washed three times using distilled water
to remove remaining sugar on the cell surface, and the cells were then measured to deter-
mine fresh cell weight on a pre-weighed dish. To confirm dry cell weight (DCW), fresh
cells were dried at 60 °C for 2 days and then weighed. Extracellular sucrose, glucose and
fructose concentrations were measured using an HPLC (Young Lin Instrument, Republic
of Korea) with Zorbax Carbohydrate Analysis column (Agilent Technologies, USA). The
mobile phase was an acetonitrile/water mixture (75/25) and the column temperature
was maintained at 40 °C. Samples were filtered with 0.45-um syringe filters (Millipore,
USA). The sugars were detected with a refractive index (RI) detector (Waters, USA).
Sugar concentration was estimated from a standard curve with known concentrations of

glucose, fructose and sucrose, respectively.

3.2.3 Metabolic network reconstruction

The central metabolic network of rice cells (Oryza sativa) was reconstructed based on
the information collected from various biological and genomic databases such as KEGG
(Kanehisa and Goto, [2000), RiceCyc and MetaCyc (Caspi et al, [2008). Initially, the
biochemical reactions of the primary metabolism, which are necessary to generate the
biomass precursors, were identified and included into the preliminary draft model. These
reactions were then corrected for any stoichometrical imbalances, mapped with appropri-
ate genes to devise proper gene-reaction relationships, and assigned to respective cellular
compartments based on extensive literature studies. Additionally, some spontaneous as
well as non-gene-associated reactions including that of metabolite transport were also
incorporated into the model based on the physiological relevance from literature and
databases. Once the draft model was assembled with all necessary reactions, it was then
checked for any connectivity issue, i.e., dead-ends or blocked metabolites, by maximizing

the production of individual metabolite precursors upon feeding it with various carbon
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sources such as sucrose, glucose and fructose. The identified missing links were then
filled either by introducing sink reactions to allow for material exchange between the
cell and its surrounding environment or by adding reactions from other similar plants
to close in the knowledge gaps.

Following the reconstruction of metabolic network, an extensive literature search
was performed for collecting information on the regulatory mechanisms of all the re-
actions in primary metabolic pathways. Finally, this information was represented as a
set of regulatory rules using the Boolean formalism which can guide whether relevant
reactions are either active (ON) or not (OFF) (Covert et all, |2001). Specifically, the ac-
tivity /inactivity of a particular reaction in the presence of certain regulatory protein(s)
can be described using various logical operators such as IF, AND, OR and NOT. For
example, if a reaction, rxnl, is activated by either regulatory protein A or B, then the
corresponding rule can be formulated as “IF (A OR B)”. Similarly, if a reaction, rxn2, is
inactivated in the presence of both proteins C and D, the regulatory rule can be written

as “IF NOT (C AND D)”.

3.2.4 Constraints-based regulatory flux analysis

In this study, constraints-based flux analysis was utilised to simulate the rice metabolism
under varying environmental conditions by manipulating the constraints. The biomass
equation was maximised to obtain the optimal solution of the metabolic network as
detailed in chapter 2 (Section 2.2.4.1, Problem P1).

In order to simulate the cellular metabolism of the seed-derived rice cells growing
on either sucrose or glucose, the regulatory constraints were first applied to the network
under steady-state conditions by evaluating whether metabolic enzymes were active or
not for the given conditions using the Boolean rules, and by constraining the fluxes of
repressed enzymes to zero. If an enzyme is available, then its flux value was allowed
to be determined by FBA. In the case of exchange reactions, just the carbon source
uptake rates were constrained at the experimentally measured values. Additionally, for
the aerobic simulations, the oxygen exchange reaction was constrained at 3.312 mmol g™
DCW day™! based on literature (Wen and Zhong, [1995)). For simulating the photorespir-
ing metabolism of rice leaf cells, a similar procedure was followed by first constraining

the fluxes of dark reactions to zero using Boolean regulatory rules as mentioned above.



3.3 Results and discussion 49

Subsequently, the leaf cell growth was simulated by maximizing the leaf biomass while
constraining the photon uptake at 100 mmol g' DCW day™!. In addition, the ratio of
flux through ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) was set with
a value between one and ten for simulating the photorespiratory behaviour at different
carboxylation to oxygenation ratios (Vc/Vo) (Weber, 2007). In this study, all simu-
lations were implemented by General Algebraic modelling System (GAMS) Integrated
Development Environment (IDE) version 23.9. In order to compute the regulatory rules

for each condition, the Microsoft EXCEL spread sheet package was used.

3.3 Results and discussion

3.3.1 Reconstruction of the rice central metabolic model

The central metabolic network of rice cells was reconstructed through a three-step pro-
cess: (1) compilation of genes, reactions and related information on rice metabolism
from enzyme databases and literature, (2) verification of elemental balances in reac-
tions and assignment of compartments, and (3) dead-end identification and network
gap-filling (see Materials and methods). Steps 1 and 2 in the reconstruction process
gave rise to a draft network model consisting of 298 reactions with several missing links
mainly in amino acid biosynthetic pathways. Such gaps could be filled by adding new
reactions derived from other plants. For example, a metabolic gap existed in the his-
tidine biosynthetic pathway of the draft model since the gene coding for the enzyme,
histidinol-phosphatase (E.C. 3.1.3.15), was not found in the rice genome. Thus, it was
manually included based on published references supporting its existence in Arabidopsis
and plausibly in rice (Petersen et al,2010). Similarly, 9 more reactions were added in the
amino acid biosynthetic pathways and 7 reactions in the folates metabolism to improve
the network connectivity (see Appendix F). Furthermore, several inter-compartmental
transport reactions (48 between plastid and cytosol, and 27 between mitochondrion and
plastid) were also added along with their transport systems such as free diffusion or
proton symport.

The resulting metabolic network of rice accounts for 248 enzymes, catalysing 326
reactions in the rice central metabolism, primarily from the pathways: glycolysis and

gluconeogenesis, tricarboxylic acid (TCA) cycle, pentose phosphate pathway (PPP),
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Calvin cycle, photorespiratory pathway, glyoxylate cycle, oxidative phosphorylation,
starch and sucrose metabolism, fermentation, cell wall metabolism, amino acid synthesis

and fatty acid synthesis.

It should be noted that 52 direct and indirect regulatory interactions using 12 regula-
tory proteins for the discrimination between the photosynthetic and non-photosynthetic
cells under normal and stressed conditions were also incorporated into the model using
Boolean logic formalism, on the basis of established procedures (Covert et all, [2001))(see
Materials and methods). As a result, the activation of 40 light-specific metabolic reac-
tions in the model can be controlled by a relevant logic statement. Table 3.1 summarises
the general features of the reconstructed rice network; Appendix F provides complete de-
tails on the model, which is also available as Systems Biology Markup Language (SBML)

file (level 2, version 1, http://sbml.org) in Appendix G.

Table 3.1: Properties of the reconstructed rice central metabolic network

Features Cytosol Plastid Mitochondria Total
Metabolic reactions 139 153 34 326
Transport and exchange reactions 16* 48P 27> 91
Gene-enzyme-reaction associations 130 145 30 305
Reactions with regulatory rules 15 19 6 40
Metabolites 156 162 53 371

dexchange reactions; binter—compartmental transport reactions

3.3.2 Biomass composition

Cellular biomass composition is also an important prerequisite for subsequent in silico
flux analysis since the primary cellular objective is to maximise the cell growth. Thus,
two separate biomass equations were developed for describing the cellular growth of two
tissue types. The biomass equation for the germinating cells of rice seeds was derived
from the macromolecular composition of rice coleoptiles (Edwards et al,2012) while the
other biomass equation representing the photo-respiring cells of rice leaves was developed
using the rice straw composition (Juliano, |1985)). The details of biomass compositions

can be found in Appendix F.
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3.3.3 Model validation
3.3.3.1 Seed-derived cells

The reconstructed rice metabolic model was first utilised to simulate the phenotypic
behaviour of seed-derived cells in response to varying levels of oxygen. To do so, the
coleoptile biomass equation was maximised, while simultaneously constraining the up-
take rate of sucrose at 1 mmol g! DCW day™! and varying oxygen uptake rates grad-
ually from 0 to 4 mmol g DCW day™! (see Materials and methods). It should be
noted that the Boolean gene regulatory rules were utilised to consider active reactions
in seed-derived cells (see Appendix H for details). The model simulations show a linear
decrease in biomass growth and increase in ethanol fermentation with decreasing levels
of oxygen supply, suggesting the predominance of ethanol fermentation in the absence
of cellular respiration (Fig. 3.1). It should be highlighted that these observations are
in good agreement with the previous reports (Mohanty et al, [1993; |Gibbs et all, |2000;
Edwards et al, 2012). The model also predicted a sharp decline in the cell growth with-
out any production of ethanol beyond a certain value of oxygen influx (3.35 mmol g
DCW day™!), demarking the stoichiometric optimal value of oxygen uptake to maximise
cell growth for the imposed restriction in sucrose uptake (Fig. 3.1). Any excess oxygen
above this value resulted in futile energy cycle involving several redundant pathways to

utilise the excess ATP produced, and thus, decreasing the cellular growth.
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Figure 3.1: The effect of oxygen uptake rate on cellular growth, ATP synthesis from
respiration and ethanolic fermentation in germinating rice seed cells

In order to further validate the model quantitatively, batch cultures of rice cells
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growing on various carbon sources including sucrose and glucose in the presence and
absence of oxygen were conducted. The residual concentrations of supplemented sugars
in the medium as well as the dry cell weight (DCW) were monitored (Fig. 3.2). In
case of sucrose, a lag phase of 2 days was observed under both aerobic and anaerobic
conditions (Fig. 3.2A and 3.2B). Subsequently, the supplemented sucrose was sharply
consumed as well as hydrolysed into glucose and fructose in the culture medium under

aerobic conditions (Fig. 3.2A).
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Figure 3.2: Profiles of cell biomass and residual concentration of the carbon nutrient
components in the batch cultures of aerobic-sucrose (A), anaerobic-sucrose (B), aerobic-
glucose (C) and anaerobic-glucose (D). Highlighted regions correspond to exponential
growth phases of the cultures.

This external accumulation of hexose sugars was also accompanied by a sharp de-
crease in medium pH, dropping from 6.3 to 4.0 at day 4, and was maintained for the
remaining 10 days (Fig. 3.2A). Collectively, these results demonstrate the acidification
of culture medium, thus promoting the cell growth by increased cell wall-associated in-
vertase activity (Amino and Tazawa, 1988} [Shimon-Kerner et all 2000). On the other
hand, cells supplemented with sucrose under anoxia showed a delayed increase in pH

of the medium (Fig. 3.2B), possibly suggesting that the external invertase activity is
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dependent upon the presence of oxygen (Kwon et al,2012). To explain this phenomenon
clearly, further studies are required where the correlations among the cell growth, in-
vertase activity and energy consumption must be investigated thoroughly. In case of
glucose, rice cells grew without a lag phase under both aerobic and anaerobic conditions
albeit a short exponential growth in the former (Fig. 3.2C and 3.2D). The supplemented
glucose was steadily consumed in anoxia whereas the concentration did not decline in
aerobic conditions from day 4 to day 10 (Fig. 3.2C). Despite these differences in cell
growth behaviour, both sucrose and glucose supplemented cells grew faster under aerobic
conditions than those in anaerobic conditions (3.20- and 1.33-fold higher, respectively),
confirming the earlier simulation results. Nevertheless, in order to examine the quantita-
tive agreement between experimental and simulated growth rates, the coleoptile biomass
equation was again maximised while constraining the uptake rate of carbon source, i.e.
sucrose or glucose, at experimentally measured values in both aerobic and anaerobic
conditions. Here, it should be noted that the carbon source uptake rates from the expo-
nential phase of the cell cultures were used for simulations since it is believed that cells
typically evolve towards maximal growth in this phase (Schuster et al, 2008). Notably,
the simulation results show good agreement between the in silico simulated growth rates

and experimental observations within the acceptable error range for all four cases (Fig.

3.3).
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Figure 3.3: Experimental and simulated growth rates during exponential phase on dif-
ferent batch cultures.
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3.3.3.2 Leaf cells

Photorespiration in rice leaf cells was simulated by maximizing the straw biomass equa-
tion, while constraining the photon uptake rate at 100 mmol g'! DCW day™! and fixing
the carboxylation-to-oxygenation flux ratio (Vc/Vo) of ribulose-1,5-bisphosphate car-
boxylase/oxygenase (RuBisCO) with a value between one and ten. Here, it should be
noted that the simulations with V¢ /V ratios greater than or equal to three represent
the photorespiration under normal conditions while any lesser value corresponds to the

drought conditions (Jordan and Ogren), [1984]).
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Figure 3.4: The effect of carboxylation-to-oxygenation ratio of RuBisCO on leaf cellular
growth and COs uptake while absorbing equal amounts of photon.

Again, the Boolean gene regulatory rules were also utilised to consider active re-
actions in the leaf cells (see Appendix H for details). Model simulations indicated a
significant reduction in the CO9 uptake rates and leaf growth rates as Vo /Vo decreases,
and eventually reached zero at the compensation point (Vc/Vo =0.5) (Fig. 3.4). At
severe photorespiration conditions, the carbon fixation rate reduces significantly (de-
creases by 40% at Vc/Vo =2 when compared to Vo /Vo =10) while absorbing same
amounts of photon since most of the energy is wasted in recycling the 2-PG. Over-
all, these results are highly consistent with the theoretical calculations by Heldt and
Piechullal (2011]), who suggested that “more than one third of the captured photons will

be wasted because of photorespiration”.
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3.3.4 Comparison of current model with existing plant models and

future directions for further improvement

In the current work, the central metabolic/regulatory network of rice cells was developed.
Compared to the existing plant models, the current model is unique in incorporating
the regulatory information into FBA framework for investigating the effect of external
signals on plant metabolic behaviours. This can be well exemplified while simulat-
ing the growth of germinating seed cells on starch as carbon source under aerobic and
anaerobic conditions. Generally, when plant seeds germinate, they require the reserve
carbohydrates such as starch to be metabolised for fuelling the synthetic pathways of
biomass precursors. In this regard, rice is a unique plant due to its ability to metabolise
starch via alpha-amylase even under anaerobic conditions. It should be highlighted that
this model clearly differentiated the induction of alpha-amylase by different regulatory
routes, via gibberellic acid (GA) response elements and the calcineurin B-like protein-
interacting protein kinases under aerobic and anaerobic conditions, respectively (See
Appendix H). Furthermore, the incorporation of regulatory information also allowed us
to simulate photosynthetic metabolism by eliminating non-active enzymes under light
conditions; the leaf simulations successfully eliminated the PFP and chose FBP for
the synthesis of fructose-6-phosphate during photorespiration/photosynthesis as PFP
is controlled by allosteric regulator, fructose-2,6-bisphosphate, which is produced only
under dark conditions. In addition, the newly reconstructed model is also distinct from
other plant models in terms of representing the inter-compartment metabolite trans-
porters: it clearly presents the transport details of almost all the metabolites such as
free diffusion, proton symport/antiport and redox shuttles based on extensive litera-
ture searches. Thus, translocation of various metabolites across compartments can be

properly described along with the relevant redox balance and energy requirements.

Unlike microbes or animals, the secondary metabolism of plants plays significant role
in orchestrating the cellular phenotype in response to the abiotic stresses (Ramakrishna
and Ravishankar, 2011). For example, ascorbic acid, glutathione and a-tocopherol have
been recognised for their role as antioxidants against the reactive oxygen species (ROS)
which are produced during increased photorespiration (Jogaiah et al, 2013). Thus, it is

highly required to expand the scope of the current model into the genome-scale model
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of rice metabolism in order to better understand its metabolic characteristics. However,
the reconstruction of such large-scale plant metabolic network could be challenging,
which is mainly attributable to the physiological differences in their tissues, subcel-
lular localization of reactions and the annotation of genomic content whose functions
remain unidentified (Seaver et al, 2012; |Sweetlove and Ratcliffe, 2011). These issues
can be appropriately resolved by resorting to transcriptomic and/or proteomic datasets
as surrogate for transcriptional regulation in developing tissue-specific models (Mintz-
Oron et al, [2012), subcellular localization prediction software for compartmentalizing
metabolic reactions (Mintz-Oron et al, 2012) and comparative genomics for annotating
undiscovered genomic content (Seaver et al, [2012). Therefore, the comprehensive model
developed in such a pipeline can be exploited to further enhance our understanding of
the complex metabolic behaviour of rice and potentially help in rationally designing the

modified crops in the future.

3.4 Summary

In this study, the first ever metabolic network of rice cells was reconstructed to elucidate
the cellular phenotype of two different rice tissues via intracellular metabolic flux profiles
during abiotic stresses. Using the model, the current chapter showed how the regulatory
information in plants can be accounted for simulating tissue-specific and/or condition
specific metabolic behaviour of rice cells. The phenotypic behaviour and metabolic states
simulated by the model are highly consistent with the suspension culture experiments
as well as previous reports. Therefore, it is now appropriate to utilise the reconstructed

model for simulating the metabolic states upon various abiotic stresses.
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InCombined 2n silico modelling
and microarray data analysis

during flooding stress’

4.1 Introduction

Annual rice production is significantly affected due to several abiotic stresses. Among
them, flooding stress tremendously limits rice productivity (Xu et all [2006), particularly
in the rain-fed lowlands of Southeast Asia. In general, when plants are water-logged by
flooding, they experience a lower oxygen availability (hypoxia) or total absence of oxy-
gen (anoxia), thus severely impairing the energy generation through reduced/eliminated
mitochondrial respiration. Nevertheless, rice is unique in its ability to survive up to
two weeks in complete submergence conditions by prolonged flood (Jackson and Ram,
2003; Bailey-Serres and Voesenek, |2008]). Rice seeds can germinate and grow up to
coleoptile even in anoxia through its distinctive metabolic adaptations. Under such con-
ditions, predominant amounts of energy required for survival are produced by fermenta-
tive pathways, especially ethanolic fermentation (Atwell et al, |1982; |Alpi and Beevers,
1983; \Guglielminetti et al, 1995} |Gibbs et all, 2000; [Magneschi and Perata, [2009)).
Several researches were focussed on understanding the biochemical adaptations of

rice under anoxia in the past decade, including two large-scale microarray data analyses

'Excerpts of this chapter, in part, is a reprint of previous publication, Lakshmanan et al. (2013)
Elucidating rice cell metabolism under flooding and drought stresses using flux-based modelling and
nnalysis, Plant Physiology, 162:2140-2150, PMID: 23753178, and Lakshmanan et al (2014) Metabolic
and transcriptional regulatory mechanisms underlying the anoxic adaptation of rice coleoptile, AoB
Plants, 6:plu026. PMID: 24894389.
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(Lasanthi-Kudahettige et al,|2007; Narsai et al, 2009). However, despite such efforts, the
current knowledge on how oxygen deficiency is sensed and the regulatory cascades which
fine-tunes the transcriptional and metabolism is still very limited. To date, the induction
of ethylene-responsive SUBI locus under hypoxic conditions (Xu et al, |2006) and the
induction of GA-response-free RAmy3D under anoxic conditions (Loreti et all [2003) are
the only two notable traits unravelled at the molecular level. Even with the availability
of abundant high-throughput data, such limitations still exist mainly due to the lack
of systematic frameworks to analyse and derive valid hypothesis from them. In this re-
gard, as mentioned earlier, constraints-based in silico metabolic modelling and analysis
is a useful approach as it not only predicts the physiological behaviour and metabolic
states of an organism upon various environmental/genetic changes but also serves as
a scaffold to contextualise the multiple “-omics” data, thereby enabling us to decipher
biologically meaningful correlations (Lewis et al, |2012). Several frameworks are now
available to integrate the metabolic models and high-throughput data such as gene ex-
pression (Becker and Palsson, 2008;|Colijn et all, 2009; Bordel et all, 2010), metabolomics
(Mo et al, 2009; [Selvarasu et al, 2012) and proteomics (Shlomi et al, |2008) within the
context of systems biology. Therefore, in order to understand the metabolic and tran-
scriptional changes in rice during flooding stress, it is now imperative to utilise such an
systems approach by combining the in silico modelling and “-omics” data. Accordingly,
in this study, the metabolic adaptations of rice were first identified using the rice cen-
tral metabolic/regulatory model reconstructed in previous chapter. Subsequently, the
differences in flux levels are compared with gene expression data between air and anoxia
to identify the possible reactions which are transcriptionally regulated. Furthermore, in
order to gain a deeper insight into the key regulatory mechanisms during anoxic adapta-
tion, the possible transcription factors (TFs) of transcriptionally regulated enzymes are
also identified by analysing the distribution of putative cis-elements in their promoter

regions.
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4.2 Materials and methods

4.2.1 Microarray data

The raw transcriptome data generated by |[Lasanthi-Kudahettige et al| (2007) was first
downloaded from the Gene Expression Omnibus (accession no. GSE6908) and nor-
malised using the quantile method (Bolstad et al, 2003). Differentially expressed genes
were then identified by performing a linear model (Wettenhall and Smyth, [2004). The
resulting p-values were also corrected for multiple testing using Benjamini-Hochberg

correction.

4.2.2 Constraints-based regulatory flux analysis

In this study, constraints-based flux analysis was utilised to simulate the rice metabolism
under varying environmental conditions by manipulating the constraints. The biomass
equation was maximised to obtain the optimal solution of the metabolic network as
detailed in chapter 2 (Section 2.2.4.1, Problem P1). The cellular metabolism of the
seed-derived rice cells growing on either sucrose or glucose was simulated as mentioned

in previous chapter (see Section 3.2.4).

4.2.3 Flux variability analysis

Since FBA is an optimization based technique, it is often possible to have multiple solu-
tions attaining the same objective value. Therefore, in order to confirm the phenotypic
and metabolic state predicted by FBA, flux variability analysis (FVA) was performed

as described in chapter 2 (Section 2.2.4.2, Problem P2).

4.2.4 Flux sampling

The artificial centering hit-and-run (ACHR) Monte Carlo sampling was utilised to uni-
formly sample the metabolic flux solution space under aerobic and anaerobic conditions
with appropriate flux constraints. In both conditions, the sucrose uptake rate, oxygen
uptake rate and cell growth rates were constrained with experimentally measured values
reported in previous chapter. To make fair comparison between both the conditions, the

oxygen uptake and growth rates were normalised with respect to sucrose uptake rate.
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The solution space was sampled with 100,000 randomly distributed points for 10,000 it-
erations in each simulation. In this study, COBRA toolbox (Schellenberger et al, [2011)
was utilised to implement the random flux sampling. The differences in flux samples
between aerobic and anaerobic conditions was quantified using a Z-score approach as
described previously (Mo et all, [2009). In such approach, first, two random flux vectors,
v; , one from each sample, i.e. aerobic and anaerobic, was chosen and the difference is

calculated as follows:

Vjdif f = Vj,aerobic — Vj,anaerobic (41)

This approach was repeated for 10,000 times to create a new flux differences sample,
vjdiff » with 10,000 points. Next, from this flux difference sample, the sample mean, fi;

and standard deviation, o; was computed to calculate the Z-score as follows:

o g
4= (¢;/+/10000) (4.2)

Finally, the absolute Z-scores were translated to p-values using normal cumulative
distribution function and the reactions with p-values less than 0.05 were deemed as

statistically different between the aerobic and anaerobic conditions.

4.2.5 Identification of transcriptionally regulated enzymes

Using the p-values of transcriptome data and flux sampling, the reactions that are
transcriptionally regulated were identified (Bordel et al, 2010). Briefly, if the flux and
gene expression (for both up and downregulated genes) is significantly changed in same
direction, then the corresponding enzyme is classified as “transcriptionally regulated”.
On the other hand, if the values significantly change in opposite direction, then the
enzyme is classified as “metabolically regulated”. In case of reactions with multiple
isozymes, the gene expression was considered to be up- or down-regulated based on the
expression values of majority of transcripts. For example, if a gene has more number of

transcripts up-regulated than down-regulated, then it is considered as up-regulated.
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4.2.6 Motif detection and identification of putative transcription fac-

tors

The promoter sequences [-1000, +200 nt] relative to the experimentally verified TSS for
transcriptionally up and downregulated genes of the rice central metabolism were ex-
tracted from the in-house rice promoter sequence database. Known and novel promoter
motifs were detected using the Dragon Motif Builder program with EM2 option (Huang
et al, [2005). Thirty motifs were detected each time having a length of 8-10 nucleotides
per detection at a threshold value of 0.875. Motifs occurrence in over 50% of the se-
quences at a threshold e value of <102 were considered as statistically overrepresented.
Motif classes were identified by their matches in different plant Transcription Factor
Binding databases such as TRANSFAC (Matys et al, 2003), PLACE database (Higo
et all 11999), AGRIS (Yilmaz et al, [2011)) and Osiris (Morris et al, [2008)).

4.3 Results and discussion

4.3.1 In silico flux analysis of seed-derived rice cells under normal and

flooded conditions

In order to understand the metabolic differences in rice cells under air and anoxia,
constraints-based flux analysis was performed by maximizing the coleoptile biomass
equation while constraining the uptake rate of carbon source, i.e. sucrose or glucose,
at experimentally measured values in both aerobic and anaerobic conditions. Further,
to understand how oxygen influences the cellular growth, the internal flux distributions
under aerobic and anaerobic conditions were examined. Significant difference among
several metabolic pathways including glycolysis, tricarboxylic acid (TCA) cycle, fer-
mentation and glutaminolysis was observed (Fig. 4.1A and 4.1B). In order to re-assure
the confidence of the simulated metabolic states, FVA (Mahadevan and Schilling, [2003])
was conducted for both conditions, thereby identifying commonly activated reactions,
indicating the plausibility of such internal metabolic utilization (see Appendix I for com-
plete results). The characteristic differences in flux distribution across various metabolic

pathways between aerobic and anaerobic conditions are presented below.
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Figure 4.1: In silico flux-maps of seed-derived suspension culture rice cells grown on sucrose under aer-

obic (A) and anaerobic (B) conditions. The colour intensity of the lines in the central carbon metabolic

network corresponds to the normalised flux values with respect to the sucrose uptake rates in each condi-
tion. Metabolite abbreviations are as follows: a-KG, o-ketoglutarate; 1,3-PGA, 1,3-diphosphoglycerate;
2-PGA, 2-phosphoglycerate; 3-PGA, 3-phosphoglycerate; AA, amino acids; Acald, acetaldehyde; Ac-
CoA, acetyl-coenzyme A; ADP-G, ADP-glucose; Ala, Alanine; Asn, Asparagine; Asp, Aspartate;
DHAP, dihydroxyacetone phosphate; E-4-P, erthrose-4-phosphate; F-6-P, fructose-6-phosphate; F-1,6-
bP, fructose-1,6-bisphosphate; G-1-P, glucose-1-phosphate; G3P, glyceraldehyde-3-phosphate; G-6-P,
glucose-6-phosphate; GABA, y-aminobutyrate; Gln, glutamine; Glu — glutamate; OAA, oxaloacetate;
PEP, phosphoenolpyruvate; PRPP- phosphoribosyl pyrophosphate; Q, ubiquinone; QH2, ubiquinol; R-5-
P, ribose-5-phosphate; Ru-5-P, ribulose-5-phosphate; SSA, succinic semialdehyde; UDP-G, UDP-glucose,
X-5-P, D-xylulose-5-phosphate. Enzyme abbreviations are as follows: ACO, aconitase; ADH, alcohol

dehydrogenase; ALAAT, alanine aminotransferase; ALD, aldolase; APS, glucose-1-phosphate adeny-

lyltransferase; ASP1, aspartate aminotransferase; ASPG, asparaginase; COX, cytochrome C oxidase;

CSY, citrate synthase; FK, fructokinase; FUM, fumarase; GABA-TP, y-aminobutyrate aminotrans-
ferase; GAD, glutamate decarboxylase; GAPDH, glyceraldehyde phosphate dehydrogenase; IDP, isoci-
trate dehydrogenase (NADP-dependent); MDH, malate dehydrogenase; NAD9, NADH dehydrogenase;
PDC, pyruvate decarboxylase; PDH, pyruvate dehydrogenase; PEPE, phosphoenolpyruvate enolase;
PFK, 6-phosphofructokinase; PFP, PPi-dependent phosphofructokinase; PGI, phosphoglucoisomerase;
PGK, phosphoglycerate kinase; PGLYCM, phosphoglucomutase; PGM, phosphoglucomutase; PPC,
phosphoenolpyruvate carboxylase; PPDK, pyruvate orthophosphate dikinase; PRS, ribose-phosphate

diphosphokinase; PYK, pyruvate kinase; RPE, ribose-5-phosphate epimerase; TKT, transketolase; TPI,

triose phosphate isomerase; SDH, succinate dehydrogenase; SSADH, succinic semialdehyde dehydroge-
nase; SSI, starch synthase; SUCLG, succinyl-coA ligase; SUS, sucrose synthase; UGPP, UDP-Glucose
pyrophosphorylase.
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4.3.1.1 Sucrose metabolism

In both aerobic and anaerobic conditions, sucrose synthase (SUS) was utilised for de-
grading sucrose into fructose and UDP-Glucose (UDP-Glc) (Fig. 4.1A and 4.1B),
which is consistent with the previous experimental suggestions (Mohanty et al, [1993;
Guglielminetti et al, [1995). The in silico analysis also confirmed the recycling of UTP
to SUS which occurs through the nucleoside diphosphate kinase (NDPK) and the UDP-
Glucose pyrophosphorylase (UGPP). Although the supply of UTP to SUS from UGPP
was proposed by (Guglielminetti et al, |1995), they did not clearly reveal the source
of PPi, rather just hypothesised its origin from PPi dependent phosphofructokinase
(PFP). In this regard, the simulation results suggested that the PPi could be produced
towards the gluconeogenesis direction via reactions catalysed by either PFP or pyruvate
orthophosphate dikinase (PPDK), forming a substrate cycle in glycolysis. Such com-
bined utilization of SUS, NDPK, UGPP and PFP/PPDK for the break-down of sucrose
is energetically efficient than invertase since they consume one mole of ATP lesser for

each mole of sucrose degraded (Guglielminetti et al, [1995; Magneschi and Perata), 2009)).

4.3.1.2 Glycolysis

Compared to aerobic conditions, anaerobic glycolytic fluxes in cytosol showed a sig-
nificant increase (by more than 42%), where the majority (97.5%) was fermented to
ethanol (Fig. 4.1B). Notably, such an increase in carbon flux through glycolysis and
a sharp decline in coleoptile growth have already been reported (Mohanty et all, [1993;
Magneschi and Perata, [2009)), highlighting the importance of ethanolic fermentation in
combination with glycolysis for energy production under anaerobiosis. On the other
hand, aerobic glycolysis showed that significant amounts of pyruvate was utilised in the
oxidative conversion to acetyl-coA, thus enabling its entry into the TCA cycle for energy
production (Fig. 4.1A). Furthermore, the simulations also indicated a certain amount of
pyruvate (22%) being fermented into ethanol in aerobic conditions, in agreement with
earlier reports (Edwards et al, 2012)). In general, ethanol fermentation under aerobic
conditions occurs mainly due to high glycolytic fluxes and/or limited oxygen availabil-
ity where the excess pyruvate that cannot be oxidised, is fermented to regenerate the

NADT lost in glycolysis. It should be noted that glycolytic fluxes are regulated by the
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hexokinase (HXK) activity in plants, which is determined by the supernatant hexose
concentrations (Lalonde et al, [1999). Therefore, it is possible that the excessive hexose
concentrations resulting from the sucrose breakdown via SUS/invertase may have led
to higher activity of hexokinase enzyme, thereby resulting in an overflow metabolism
via the glycolytic pathway. In plants, the plastidic glycolysis is more crucial than the
cytosolic one as most of the amino acids and fatty acids are synthesised in plastids.
In this regard, flux analysis results indicated anaerobic glycolysis with highly reduced
fluxes (by 46%); most of the carbon source is channelled via cytosolic glycolysis to feed

fermentative pathways for energy generation as mentioned earlier.

4.3.1.3 TCA cycle

Under anoxic conditions, simulation results revealed a truncated TCA cycle operation
between fumarate and oxaloacetate (OAA), mainly due to the limited regeneration of
redox cofactors since the mitochondrial respiration is impaired (Fig. 4.1A). These ob-
servations are in good agreement with earlier reports on plants, suggesting a partial
TCA cycle activity under hypoxia and anoxia (Sweetlove et al, |2010). On the other
hand, a fully operational TCA cycle was characterised under aerobic conditions where
the carbon flux enters the cycle at three different points: (i) acetyl-CoA from pyruvate,
(ii) malate from OAA and (iii) alpha-ketoglutarate («-KG) from Glutaminolysis (Fig.
4.1B). It should be noted that a part of this a-KG was also withdrawn from the cycle
and utilised in amino acid biosynthesis to keep the cycle balanced as any additional
a-KG above the acetyl-CoA influx would cause an imbalance. Interestingly, the flux
analysis also suggested the possibility of gamma-aminobutyric acid (GABA) shunt to be
operational for the conversion of a-KG to succinate instead of a-KG dehydrogenase and
succinate-CoA ligase (Fig. 4.1B). However, further analysis revealed that the operation
of GABA shunt is just an alternate solution as confirmed by FVA (see Appendix I).
Thus, the final determination of actual or plausible flux distributions in this case must

await experimental verification through isotope-based internal flux measurements.

4.3.1.4 Glutaminolysis & amino acids biosynthesis

During the model simulations, the rice cells were freely allowed to consume glutamine

and asparagine as nitrogen sources for the amino acid biosynthesis (Bewley and Black]
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1994). Under both aerobic and anaerobic conditions, the consumed glutamine and as-
paragine was completely converted into glutamate and aspartate, and subsequently,
into o-KG and OAA for amino acid synthesis. Furthermore, the amounts of asparagine
consumed in aerobic conditions were reasonably higher since enhanced pyruvate pool
facilitated the amino acid biosynthesis. The simulation results also highlighted the func-
tional ability of rice to synthesise all amino acids via biosynthetic pathways even under
anoxia rather than the protein degradation as often speculated. Interestingly, the flux
analysis also suggested the possibility of GABA, a non-protein amino acid, to be synthe-
sised under both aerobic and anaerobic conditions. As mentioned previously, although
the synthesis of GABA and its subsequent utilization in GABA shunt did not influ-
ence the cellular growth under aerobic conditions, it enhanced the growth rate slightly
under anaerobic conditions owing to the crucial role in glycine biosynthesis. Under
anoxia, GABA is first synthesised from glutamate by glutamate decarboxylase (GAD),
and then converted into succinate via 4-aminobutyrate aminotransferase (GABA-TP)
and succinic semialdehyde dehydrogenase (SSADH). During these conversions, NADH is
liberated in the SSADH step and recycled via a series of enzymes including the serine hy-
droxymethyltransferase (SHM1), producing net amounts of glycine. These observations
are in very good agreement with earlier experiments by Shingaki-Wells et al (2011)) who
reported the anaerobic accumulation of GABA along with an increase in the expression

of SHM1.

4.3.2 Random sampling of seed-derived rice cells under air and anoxia

Although FBA can simulate the metabolic differences between air and anoxia, a sta-
tistical measure cannot be achieved for the observed differences. Therefore, in order
to reassure the observed differences with statistical confidence, random sampling was
performed. The plausible metabolic states of rice coleoptile under air and anoxia were
sampled using ACHR Monte Carlo sampling to estimate the range of possible steady-
state flux values through each of the reaction in the rice model (see Materials and
methods). The resulting probability distributions of individual reaction fluxes revealed
significant differences in central metabolic pathways such as glycolysis, TCA cycle, pen-
tose phosphate pathway and oxidative phosphorylation between aerobic and anaerobic

conditions (Appendix J).
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Under anoxia, the TCA cycle, pentose phosphate pathway and oxidative phosphory-
lation reactions have only a small range of fluxes where some of them even have zero flux
due to the imposed capacity constraints, i.e. the absence of oxygen exchange. As a re-
sult, the fluxes across various amino acid and lipid synthetic pathways were also severely
restricted under anoxic conditions. On the other hand, random sampling allowed us
to observe the possibility of high fluxes through cytosolic glycolysis and fermentation,
mainly to produce all the ATP required for cell growth as other energy producing path-
ways such as oxidative phosphorylation and TCA cycle are grossly impaired under such
conditions. Overall, random sampling also highlighted the same metabolic differences

which are simulated by FBA but with a statistical measure to each of the reaction.

4.3.3 Transcriptionally regulated reactions during anaerobic adapta-

tion

The differences in flux samples were compared against gene expression data between
air and anoxia, thereby identifying the reactions that are being likely transcriptionally
regulated (see Materials and methods). Overall, among the 63 reactions in rice central
metabolism, 37 and 5 exhibit transcriptional and metabolic regulation, respectively. The
remaining 38 reactions could not be classified in any of these categories as they had in-
significant change either in flux or gene expression. The complete list of transcriptionally
and metabolically regulated reactions are provided in Appendix K.

Most of the reactions in TCA cycle, oxidative phosphorylation and pentose phos-
phate pathway show down-regulation in both flux and gene expression under anaerobic
conditions while several reactions of the sucrose metabolism including SUS, FK, and
NDPK are significantly upregulated at the transcriptional level. Only invertase in su-
crose metabolism showed down-regulation in both flux and gene expression, confirming
that rice preferably utilise SUS for metabolizing sucrose under anaerobic conditions to
conserve the ATP usage. All the reactions in fermentation pathway including PDC,
ADH and ALDH are up-regulated. In rice, both alcohol and aldehyde dehydrogenases
have multiple isozymes and few of them such as ADH1, ADH2 and ALDH2a showed a
drastic increase in gene expression (Lasanthi-Kudahettige et all,[2007). Interestingly, the
up-regulation of ALDH in both flux and transcript level is in very good agreement with

earlier experimental reports on both tolerant and intolerant lines of rice under hypoxic
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conditions during submergence (Nakazono et al, 2000; Ismail et al, 2012), indicating
that ALDH is likely to play a key role in detoxifying the excess acetaldehyde from PDC
that cannot be metabolised via ADH. In this regard, (Lasanthi-Kudahettige et all,[2007])
have earlier hypothesised that the acetate resulting from ALDH can enter TCA cycle to
further fuel amino acid biosynthetic pathways. However, the flux analysis revealed that
the acetate from ALDH primarily fuels the lipid biosynthesis in plastid, as the fatty acid
synthesis needs sufficient carbon flux to synthesise the required saturated fatty acids

under anoxia.
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Figure 4.2: Central metabolic reactions of rice showing transcriptional and metabolic
regulation under anoxia. Green, red and blue colours indicate the transcriptionally up-,
down- and metabolically regulated enzymes, respectively. Reactions with black arrows
represent the enzymes whose regulation mechanism is not investigated or identified in
this study. Metabolite abbreviations are same as Fig. 4.1.
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Unlike other central metabolic pathways, the glycolytic reactions did not show an
overall up or downregulation in gene transcription and fluxes. Out of total 25 reactions,
only 11 showed transcriptional regulation. Among the remaining 14, five were oppositely
correlated between flux and gene expression, indicating that these enzymes are most
likely to be metabolically regulated. Plastidic PK, UGPP, PFP, and cytosolic and
plastidic PPDK are the five enzymes with metabolic regulation. Such observations
are in good agreement with earlier hypothesis by |Plaxton (1996)), who suggested that
PK, PPDK, PFK and PFP are possibly involved in the fine control of plant glycolysis
and are most likely to be regulated based on the variation in substrate(s) and cofactor

concentrations, pH and other metabolite effectors.

4.3.4 TFs associated with transcriptionally regulated genes

To identify the potential TFs involved in the transcriptional control of the transcription-
ally regulated reactions, promoter analysis of the corresponding genes was performed.
In total, promoter sequences for 26 transcriptionally up-regulated genes and 27 down-
regulated genes were used for cis-element detection (see Appendix K). This analysis
identified several highly enriched putative cis-elements associated with different poten-
tial TFs for both up and downregulated transcriptionally controlled genes (Tables 4.1
and 4.2). A high enrichment of putative cis-elements such as AT-hook/PE-1-like, GT
element-like, pyrimidine-box-like, GARE-like and MYb-box-like associated with MYB
TFs was observed among both up and downregulated genes. However, the high enrich-
ment of these cis-elements in the upregulated genes signifies that MYB TF's especially
play an important role in the transcriptional control of upregulated genes under anoxia.
Similarly, putative cis-elements such as AS-1/ocs-like and ABRE-like associated with
bZIP TFs were also found in both up- and down-regulated genes but with a high per-
centage of occurrences only in upregulated genes. Besides, a number of other putative
cis-elements such as ERE-like/GCC-boxlike and zinc finger binding element-like associ-
ated with ERF and ZnF TFs were also more overrepresented in the upregulated genes
albeit being present in both up- and down-regulated genes. Furthermore, a moderate en-
richment of other ERE like-elements such as JA response element-like elements was also
noticed among the upregulated genes (Table 4.1). Collectively, these results indicate that

all these TFs, i.e. MYB, bZIP, ERF and ZnF, may work together in the transcriptional
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Table 4.1: Potential cis-elements identified in the promoters of transcriptionally con-
trolled up-regulated genes of rice seeds germinated under anoxia

Cis-elements Motifs Associated TFs % (TIC), e-value
AT-hook/PE1-like TTTTTTCA MYB (PF1) 73 (12.78), 2e-004
AATTTTTTT MYB (PF1) 5 (16.05), 3e-005
ATAAAAAAAA MYB (PF1) 8 (16.67), 0e+00
AAGAAAAAG  MYB (PF1) (13 91), 1e-004
AAAAATAC MYB (PF1) 4 (13.32), le-004
TTTTTTCTTT MYB (PF1) (16 74), 3e-005
GT-element-like TGGTTTGT MYB (GT-1/GT-3b) 1 (12.15), 1e-004
TTTTTTCA MYB (GT-1/GT-3b) (12 78), 2e-004
GGCTTGTG MYB (GT-1/GT-3b) 9 (11.62), 2e-000
AGGAAAAAG  MYB (GT-1/GT-3b) 8 (13.91), 1e-004
AAATCATA MYB (GT-1) 2 (12.80), 8e-005
AAATCAAAT  MYB (GT-1) 2 (13.69), 1e-004
TTTTTTCTTT MYB (GT-1) 0 (16.74), 3e-005
Pyrimidine-box -like TTTTTTCA MYB (R1, R2R3) 3 (12.78), 2¢-004
CTTTTGCT MYB (R1, R2R3) 5 (12.33), 9e-005
GARE-like AAAACAAA MYB (R1, R2R3) 8 (12.66), 2¢-004
MYB-box-like TGGTTTAT MYB (R2R3) (12.15), 1e-004
TGGTTTGT MYB (R2R3) (12.15), 1e-004
AACTTGTT MYB (R2R3) 4 (13.18), 3e-005
As-1/ocs-like TTTTTTCA bZIP (Gr. D, I, S) 3 (12.78), 2e-004
AAATCATA bZIP (Gr. D, I, S) 2 (12.80), 8e-005
ATGAAAAAG bZIP (Gr. D, I, S) 8 (13.91), 1e-004
ABRE-like AAATCAAAT bZIP (Gr. A) 2 (12.80), 8e-005
CTTTGCCA bZIP (Gr. A) 8 (13.43), 1e-004
GAGCGCCA bZIP (Gr. A) 4 (12.18), 3e-004
RSG binding element like AACTTGTT bZIP 4 (13.18), 3e-005
CAMTAS3 binding site-like GAAGAAAA bZIP 3 (14.30), 2e-004
RISbZ1 binding site-like AAAACAAA bZIP (RISbZ1) 8 (12.66), 2e-004
CAMTAS3 binding site-like GAGAAAGAA  bZIP 8 (14.52), 1e-004
AAGAAGAG bZIP 0 (13.41), 2e-004
Zinc finger binding element-like AAGAAGAG ZnF 2 (13.69), 1e-004
AAATCATA ZnF 2 (12.80), 8e-005
AAATCAAAT ZnF 0 (13.41), 2e-004
ERE-like (JA response element-like) ~AAATCATA ERF (Gr. VI, VIII, IX) 2 (12.80), 8e-005
AAATCAAAT ERF (Gr. VI, VIII, IX) 50 (13.41), 2e-004
GCC-box-like CTCCGCCGC ERF (I, IV, VII, X) 0 (15.38), 2e-005
AuxRe-like CTTTTGCT ARF 5 (12.33), 9e-005
CTTTGCCA ARF 8 (13.43), 1e-004
AAAAG/-element-like CTTTTGCT DOF (Dofl1/4/11/22) 5 (12.33), 9e-005
AAGAAAAAG  DOF (Dofl/4/11/22) 8 (13.43), 1e-004
MY C-box-ike TGCTACTC bHLH (JAMYC?2) 5 (11.96), 1e-004
ARRI10 binding element AAATCATA ARR-B (ARRI10) 2 (13.69), 1e-004
TATA-box-like TATAAATT TBP 6 (12.32), 3e-005
DBP element-like AAAAATAC DBP 4 (13.32), 1e-004
DBP1 element-like AATATATTA DBP1 0 (15.09), 8e-005
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control of the upregulated genes in rice central metabolism. Interestingly, the enrich-

ment of MBF1C binding element and CRT/DRE-like elements associated with MBF1C

and CBF/DREB TFs were noticed only in downregulated genes.

This highlights the

possibility that this TF could be involved in transcriptional control of downregulated

genes under anoxia (Table 4.2).

Table 4.2: Potential cis-elements identified in the promoters of transcriptionally con-

trolled down-regulated genes of rice seeds germinated under anoxia

Cis-elements Motifs Associated TFs % (TIC), e-value
AT-hook/PE1-like ATATTTTTAT MYB (PF1) 9 (16.39), 6e-005
TTTAAAAAA  MYB (PF1) 9 (16.42), 2¢-005
GT-element-like ATTGGCTA MYB (GT-1) 6 (12.42), 2e-004
MY B-box-like AAAATCCA  MYB (R2R3, MCB1/2) 70 (13.11), 2e-004
As-1/0cs-like TCGTCGCG bZIP (Gr. D, I, S) 63 (13.21), 0e-+000
ACGTGTCA  bZIP (Gr. D, L, S) 9 (11.79), 3e-004
AGACGTTG  bZIP (Gr. D, I, S) 6 (11.91), 3¢-005
ABRE-like ATTGGCTA  bZIP (Gr. A) 9 (11.79), 3e-004
TCGCCGGC bZIP (Gr. A) 9 (13.20), 5e-005
ER stress RE-like AACTTGTT bZIP (Gr. D) 6 (12.42), 2e-004
RISbZ1 binding site-like AAAACAAA bZIP (RISbZ1) 8 (12.66), 2e-004
AuxRe-like ACTACTAT ARF1 7 (12.28), 9e-005
TCGTCGCG  ARF1 63 (13.21), 0e+000
ACGTGACA  ARF1 59 (11.79), 3e-004
AATCCTTT  ARF1 56 (13.21), 9e-005
GAGA element-like CTCCTCTC GAGA-binding factor 63 (14.39), Te-004
BBR/BPC2
TCCTCTAT GAGA-binding factor 52 (13.62), 4e-004
BBR/BPC2
GGGAGAGGG GAGA-binding factor 52 (15.63), 3e-005
BBR/BPC2
DBP1 element-like TTTATTTT DBP1 5 (13.63), 2e-004
ACATTAAA DBP1 8 (12.88), 2e-004
AAATAATA  DBPIL 2 (13.44), 9e-005
GCC-box-like GGCGGCGGC  ERF (I, IV, VIL, X) 0 (15.92), 1e-004
CCGCCGCC  ERF (L, IV, VIL X) 6 (13.95), 3e-004
ARRI10 binding element like AAAATCCA ARR-B (ARR10) 0 (13.11), 2e-004
AATCCTTT ARR-B (ARR10, ARR5, 6 (13.21), 9e-005
ARR1)
CRT/DRE-like TCGTCGCG CBF1/DREB 63 (13.21), 0e+000
AAAGG element-like AATCCTTT DOF 56 (13.21), 9e-005
ATTTAAAGA  DOF (Dofl/4/11/22) 2 (14.11), 9e-005
Zinc finger binding element-like GAGGAGGAG ZnF 6 (16.04), 6e-005
MBFI1C binding element like GAGGAGGAG MBF1C 6 (16.04), 6e-005
TATA-box-like TTTTATATA TBP 3 (15.28), 2e-004
DBP element-like ATATTTTTAT DBP 9 (16.39), 6e-005
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4.3.4.1 MYB family TF's

Among all the putative cis-elements identified, the elements associated with MYB family
TFs were found to be highly enriched in transcriptionally upregulated genes. Coinci-
dent with these observations a number of MYB family genes are also up-regulated under
anoxia (Table 4.3). MYB proteins represent important plant TFs and are found to be
involved in various developmental and physiological processes including transcriptional
activation, kinase activity, protein binding and transcription repressor activation under
abiotic and biotic stresses (Dubos et all 2010)). In rice, a recent analysis highlighted that
98.70 % of total MYB proteins are fully involved in transcriptional activation (Katiyar
et all, 2012)). Furthermore, the role of MYB TFs that bind specifically to MYB box/GT
element during hypoxic and anoxic responses has already been reported through pro-
moter analysis, both computationally and experimentally (Dolferus et all 2003; Mohanty’
et al, 2005, 2012)). Specifically, the AtMYB2 in Arabidopsis has been shown to be a
key regulator of the ADH1 promoter under low oxygen conditions (Hoeren et all |[1998]).
When this AtMYB2 was driven by a constitutive promoter, it was able to transacti-
vate ADH1 expression not only in Arabidopsis but also in Nicotiana plumbaginifolia
and Pisum sativum. Collectively, these results fully support the hypothesis that MYB
TF's play an important role in the upregulation of sucrose metabolism and fermentation

enzymes at the transcriptional level.

4.3.4.2 bZIP, ERF and ZnF TFs

As mentioned above, the promoter analysis also highlighted significant overrepresen-
tation of several other motifs associated with bZIP, ERF and ZnF TFs in the tran-
scriptionally upregulated genes. In this regard, an increase in transcript levels of bZIP
TF (AtbZIP50) in anoxia-exposed root cultures of Arabidopsis (Klok et al. 2002), the
up-regulation of an ABRE-binding bZIP TF (OsABF1) in rice shoot and root under
anoxic treatment (Hossain et al, 2010) and the upregulation of a number of bZIP TF's
in rice anoxic coleoptile (Table 4.3) support the view that bZIP could orchestrate the
transcription of upregulated genes upon anoxic stress. The major role of ERF TF has
been identified as a positive regulator of SublA expression in a flood-tolerant rice vari-

ety during hypoxic conditions caused by submergence (Xu et al, 2006). However, the
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Table 4.3: List of anoxia stressed up-regulated transcription factors with potential sig-
nificance to the pattern of cis-element enrichment among the up-regulated genes

Family Locus ID (Annotation) Fold change
MYB/MYB-related  0s02g0706400 (Myb-related, similar to 9
Radialis)
0s06g0728700 (Homeodomain-like 7
protein)
0s08g0151000 (Myb-like, SHAQKYF 7
class)
0s01g0524500 (Myb-like, SHAQKYF 6
class)
0s01g0863300 (Similar to MCB2 protein) 4
0s08g0549000 (Similar to MybHv5) 3
0s05g0459000 (c-Myb protein) 2
0s04g0480300 (Myb-like protein) 2
bZIP 0s09g0306400 (bZIP-1 domain protein) 16
0s03g0336200 (RF2b transcription 6
factor)
0s06g0662200 (bZIP-1 domain protein) 4
0s01g0867300 (G-box binding factor) 3
0s05g0489700 (Similar to BZO2H3) 2
0s05g0129300 (bZIP protein) 2
0s05g0569300 (G-box binding factor) 2
ERF 0s03g0341000 (Similar to RAP2.2) 29
0s01g0131600 (Similar to PTI6, 3
pathogenesis-related)
0s06g0604000 (Similar to ERF1 and 3
ERF3)
ZnF 0s05g0525900 (Similar to Zing finger 21
transcription factor PEI1)
0s09g0560900 (Zinc finger, C2H2-like 2
domain containing protein)
0s02g0672100 (Zinc finger, C2H2-type 2
domain containing protein)
0s09g0560900 (Zinc finger, C2H2-like 2
domain containing protein)
ARF 0s04g0671900 (Similar to auxin response 2
factor)
0Os06g0677800 (Similar to auxin response 2
factor)
DOF 0s05g0112200 (Dof domain, zinc finger 2
family protein, expressed)
bHLH 0s11t0523700 (Basic helix- loop-helix 3
protein 116) (bHLH116)
0s02t0433600 (Helix-loop-helix 2
DNA-binding domain containing protein)
Psedo-ARR-B Os11t0157600 (Similar to Timing of CAB 3

expression)
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anoxia-tolerant rice variety ‘Nipponbare’ that germinates and elongates under anoxia
does not have this gene. Surprisingly, the presence of highly enriched putative GCC-
box-like/ERE-like cis-elements in the promoters of all anoxia up-regulated genes in this
variety of rice highlights the possibility that these TFs might also control the tran-
scription of relevant genes as it is in Arabidopsis under hypoxic conditions (Hinz et all
2010; [Licausi et al, 2010, |2011)). Unlike the ERF TFs, the role of ZnF TF in response
to submergence/anoxia is not yet known. However, matching with the identification
of ZnF binding site-like elements in transcriptionally upregulated genes, the increase
in expression of ZnF TF genes (Table 4.3) in response to hypoxia/anoxia in both rice
and Arabidopsis indicates the potential regulatory role in transcriptional control under

oxygen stress (Loreti et al, 2005; [Pandey and Kim)| [2012).

4.3.5 Motif detection in negative sets

To ensure that the cis-element analysis did not identify an excessive number of false
positives, motifs from the promoters of a similar number of genes that are not anoxia-
specific were also analysed using the same protocol (see Materials and Methods). For
this purpose, two negative datasets was used: (i) randomly selected genes from the
non-differentially expressed gene list under anoxia (Lasanthi-Kudahettige et al, [2007))
(negative set 1) and (ii) upregulated genes associated with drought response in rice
(Zhang et all, [2012)) (negative set 2). The list of genes from the negative sets and the
results of this analysis are provided in Appendix L. Using the negative control Set 1,
although a few common motifs such as MYB, bZIP and DOF was identified, their total
enrichment was much lower compared with the motifs detected in transcriptionally up
or downregulated genes of anoxia (Tables 4.1, 4.2 and Appendix M). Similarly, the motif
analysis of negative Set 2 also revealed a significantly different cis-element enrichment
pattern where most of the identified TFs such as MYB, bZIP, ERF, NAC and MYC have
been experimentally confirmed to play a regulatory role in drought stress response (Shi-
nozaki and Yamaguchi-Shinozakil [2007; [Zhang et all [2012). Collectively, these results
clearly demonstrate that the cis-element analysis identifies reasonably precise motifs

that are specific to anoxic stress.



74 4 Combined in silico modelling and microarray data analysis during flooding stress

4.3.6 Comparison of proposed method and existing promoter analysis

techniques

As mentioned earlier, the promoter sequences of 26 transcriptionally up-regulated and
27 down-regulated genes was utilised for the cis-element detection in this study. When
compared with the normal promoter analysis method that considers the whole set of
differentially expressed genes, the current study takes into account relatively few genes.
Therefore, in order to argue that this small set of genes is sufficient to generate biolog-
ically meaningful results, the TF's identified in this study was compared with previous
work which considered the whole list of upregulated (842) and downregulated (1794)
genes during anoxic adaptation (Mohanty et al, |2012). Interestingly, the comparison
result revealed that the TFs associated with up and downregulated genes are the same
between two studies where the motif enrichment scores of certain TFs such as MYB,
bZIP, ZnF and ERF are much higher in the current study, highlighting that their role
could be more specific to anoxic adaptation. To further confirm these findings, the
individual promoter sequences of four of the key transcriptionally regulated enzymes,
i.e. SUS, PDC, ADH and ALDH, was also analysed and identified the same TFs as
fully responsible for their transcription (Fig. 4.3). Therefore, based on these motif
analysis results and experimental evidence from the literature, a positive role of MYB
together with bZIP, ERF and ZnF in the transcriptional control of sucrose metabolism
and fermentation during germination and coleoptile elongation of rice under anoxia can

be hypothesised.

The methods used in the current study successfully identified several transcription-
ally regulated reactions and their related TF's, where some of which are experimentally
confirmed. However, the overall results of this approach await experimental validation
since the current prediction relies on several assumptions concerning model complete-
ness, constraints used during simulation and the statistical cutoff values chosen for com-
parative analysis. In the current work, the central model was utilised to simulate the
differences in metabolic fluxes between air and anoxia. It should be noted that although
this model predicts the overall cellular phenotype quite accurately (Lakshmanan et al.
2013), it may not capture the global changes in cellular metabolism. This reservation

is needed since the model does not take account of the secondary metabolic pathways.
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Figure 4.3: Presence of common putative cis-elements in the key transcriptionally reg-
ulated genes. The presence of potential putative cis-elements and their cognate known
TFs are shown in different strands of the promoter region (21000, +200 nt relative to
TSS) of the key genes. Each putative cis-element/motif is represented by its consensus
logo. TATA boxes are located between 25 and 30 nt upstream from the TSS.

Moreover, only a few external fluxes, i.e. sucrose uptake, Os uptake and growth yield,
was utilised as the sole constraints to identify the internal flux distributions during flux
sampling simulations. In such cases, the internal fluxes of some reactions are determined
with statistically low confidence scores due to the possibility of multiple flux solutions.
Such limitations can be overcome by the use of Ci3 flux measurements as constraints
to the internal reactions. Therefore, the list of transcriptionally regulated reactions and

the TFs identified in this study need further confirmation by direct experiments.

4.4 Summary

The flux analysis of seed-derived rice cells revealed the importance of ethanolic fermen-
tation together with glycolysis for ATP production under anaerobic growth conditions.
The simulations also confirmed the crucial role of SUS ahead of invertase for break-
ing down sucrose in an energetically efficient manner while growing under both aerobic
and anaerobic conditions. Moreover, the rice model even suggested the possible role
of GABA in glycine synthesis via SHM1 under anaerobic conditions. The subsequent
comparative analysis of changes in flux levels and gene expression between aerobic con-

ditions identified 37 reactions from these pathways to be regulated at the transcriptional
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level. The motif enrichment analysis of transcriptionally regulated enzymes highlighted
a potential involvement of transcription factors such as MYB, bZIP, ERF and ZnF in
controlling the transcription of sucrose metabolism and fermentation genes under anaer-
obic conditions. In future, the integrative in silico modelling and gene expression data
analysis framework as described in this work can become a useful tool to analyse the

adaptive mechanisms of plants under various stress conditions.



Chapter 5

In silico flux analysis of rice

metabolism during drought stress]

5.1 Introduction

Drought stress is one of the major environmental factors affecting the growth and de-
velopment of rice due to high levels of photorespiration. Thus, in order to investigate
how this abiotic stress affects the rice physiology via metabolic adaptations, it is es-
sential to characterise the cellular behaviour during the photorespiration. The process
is initiated by the oxygenase side reaction of the bifunctional ribulose-1,5-bisphosphate
carboxylase/oxygenase (RuBisCO), producing equimolar amounts of 3-phosphoglycerate
(3-PGA) and unwanted 2-phosphoglycolate (2-PG) for each molecule of O, fixed (Jordan
and Ogrenl, [1984). It is followed by the salvage of 2-PG into 3-PGA via photorespiratory
pathways, requiring significant amount of cellular energy, i.e. ATP, in C3 plants such as
rice. In general, the ratio of carboxylase/oxygenase reactions (Vc/Vo) is three under
normal conditions, however, can drop even below one and may reach the compensation
point (Vo/Vp=0.5) at which the net CO2 uptake rate becomes zero under drought
conditions (Heldt and Piechullal 2011)). Therefore, the control of photorespiration has
always been a main focus for improving rice productivity.

To date, a number of mutational studies have been performed in many Cs plants,

mainly in Arabidopsis and barley, to understand the photorespiratory pathway, but

'Excerpts of this chapter, in part, is a reprint of previous publications, Lakshmanan et al. (2013)
Elucidating rice cell metabolism under flooding and drought stresses using flux-based modelling and
analysis. Plant Physiology, 162:2140-2150. PMID: 23753178, and Lakshmanan et al (2013). Identifying
essential genes/reactions of the rice photorespiration by in silico model-based analysis. Rice, 6:20.
PMID: 24280628.
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identified only a handful of essential enzymes including serine-glyoxylate aminotrans-
ferase (SGAT), glycine decarboxylase (GDC), ferredoxin-dependent glutamate synthase
(Fd-GOGAT) and glutamine synthase (GS) (Foyer et all [2009) due to the limitations
in mutant isolation process and the possible involvement of alternate pathways and ge-
netic redundancy of the relevant enzymes (Reumann, 2004; Timm et al, 2008). Thus,
it is highly required to exploit more systematic approaches for improving the current
understanding of the rice photorespiration. In this regard, in silico metabolic modelling
and analysis allow us to predict the cellular behaviour and metabolic states globally
upon various environmental/genetic changes (Lewis et al, 2012). For example, in silico
knock-out mutant studies and comparative analysis have provided the conditionally es-
sential gene sets and corresponding functional modules under various growth conditions
in E. coli and S. cerevisiae (Segre et all, 2005; |Joyce et all, 2006).

In this work, the rice photorespiration under ambient and drought conditions will be
elucidated by first comparing the corresponding metabolic flux distributions, and then

by identifying essential genes of rice during photorespiration.

5.2 Methods

5.2.1 Constraints-based regulatory flux analysis

In this study, constraints-based flux analysis was utilised to simulate the rice metabolism
under varying environmental conditions by manipulating the constraints. The biomass
equation was maximised to obtain the optimal solution of the metabolic network as
detailed in chapter 2 (Section 2.2.4.1, Problem P1). The cellular metabolism of the
photorespiring rice leaf cells was simulated as mentioned in previous chapter (see Section

3.2.4).

5.2.2 Flux variability analysis

Since FBA is an optimization based technique, it is often possible to have multiple solu-
tions attaining the same objective value. Therefore, in order to confirm the phenotypic
and metabolic state predicted by FBA, flux variability analysis (FVA) was performed
as described in chapter 2 (Section 2.2.4.2, Problem P2).



5.3 Results and discussion 79

5.2.3 Gene deletion analysis

Again, constraints-based flux analysis to identify the essential genes/reactions in the rice
metabolism under varying environmental conditions by manipulating the constraints.
The biomass equation was maximised to obtain the optimal solution of the metabolic
network as detailed in chapter 2 (Section 2.2.4.1, Problem P1). In order to simulate the
reaction deletions under photorespiration, the regulatory constraints was first applied
to the network under steady-state conditions by evaluating whether metabolic enzymes
were active or not for the given conditions using the Boolean rules, and by constraining
the fluxes of repressed enzymes to zero as mentioned in chapter 3. Subsequently, the
leaf cell growth was simulated by maximizing the leaf biomass while constraining flux
through the corresponding reaction to be zero under a defined the photon uptake at
100 mmol g' DCW day™!. In addition, the ratio of flux through RuBisCO was set with
a value of either three or one representing the normal and stressed conditions (Weber,
2007)). In this study, all simulations were implemented by General Algebraic Modeling

System (GAMS) Integrated Development Environment (IDE) version 23.9.

5.3 Results and discussion

5.3.1 In silico flux analysis of photorespiring rice leaf cells under nor-

mal and stressed conditions

The reconstructed metabolic model was used to understand metabolic behaviours of
photorespiring rice leaf cells under normal and drought-stressed conditions. Photores-
piration in rice leaf cells was simulated by maximizing the straw biomass equation,
while constraining the photon uptake rate at 100 mmol g! DCW day™! and fixing the
carboxylation-to-oxygenation flux ratio (Vo /Vo) of RuBisCO with a value between one
and ten. Here, it should be noted that the simulations with V¢ /V ratios greater than
or equal to three represent the photorespiration under normal conditions while any lesser
value corresponds to the drought conditions (Jordan and Ogren) |1984). Model simu-
lations indicated a significant reduction in the COs uptake rates and leaf growth rates
as Vo /Vo decreases, and eventually reached zero at the compensation point (Vo/Vo

=0.5) (Fig. 5.1A). At severe photorespiration conditions, the carbon fixation rate re-
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duces significantly (decreases by 40% at V¢ /Vo =2 when compared to V¢ /Vo =10)
while absorbing same amounts of photon since most of the energy is wasted in recy-
cling the 2-PG. The resultant flux distributions in Figure 5.1B illustrate the classical
photorespiratory metabolism linked to glycolysis, TCA cycle, Calvin cycle, photorespira-
tory cycle, and glutaminolysis reactions. To support this simulated metabolic behaviour,
flux variability analysis was conducted in photorespiring rice leaf cells (see Methods for
details), confirming the possible metabolic state (see Appendix I for complete results).
Figure 5.1C depicts the flux changes through several important metabolic pathways

under normal (V¢/Vo = 3) and drought-stressed conditions (V¢ /Vo = 1).

5.3.1.1 Calvin cycle

Despite the large differences in COy uptake between normal and drought-stressed pho-
torespiration, the Calvin cycle did not exhibit any appreciable differences in terms of
fluxes (Fig. 5.1C). In either case, it was driven by the supply of 3-PGA and COs from
cytosol to plastid through triose phosphate/phosphate translocator, and subsequently
withdrawn in the form of dihydroxyacetone phosphate (DHAP) through a similar phos-
phate translocator, back to cytosol (Fig. 5.1B). The remaining DHAP in cytosol was
utilised in two routes: (1) carbon storage via sucrose synthesis, and (2) energy produc-
tion and biomass synthesis via cytosolic glycolysis and TCA cycle, in agreement with
earlier reports (Weber, 2007)). The bifurcation of DHAP between carbon storage and
energy production was regulated by fructose 1,6-bisphosphate, which is recognised as a
check point for the conversion of DHAP into sucrose or starch under dark conditions by

a marked increase in its concentrations (Stitt, 1987).

5.3.1.2 Photorespiratory pathway

The flux analysis also successfully simulated the utilization of photorespiratory cycle
from RuBisCO oxygenase to glycerate kinase, recycling the 2-PG back to 3-PGA (Fig.
5.1B). A sharp increase in fluxes along these pathways was observed with increasing
levels of drought-stress (Fig. 5.1C). Such enormous increase in the fluxes within pho-
torespiratory pathways release large amounts of ammonia in the mitochondria during
the glycine oxidation via glycine decarboxylase (GDC) and SHM1. Even though this

excess ammonia can be recovered within mitochondria via glutamate dehydrogenase, the
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glutamine synthetase - glutamine oxoglutarate aminotransferase (GS-GOGAT) cycle in
plastids is utilised with the help of malate transporters to maintain the redox balance
of plastids (Atkin and Macherel, 2009); the excessive amounts of NADPH generated
from photosynthetic light reactions in plastids under drought conditions also need to be

recycled.

5.3.1.3 TCA cycle and oxidative phosphorylation

Unlike seed-derived rice cells, the model simulation observed a truncated TCA cycle
operation between malate and OAA via malate dehydrogenase (MDH) during photores-
piration (Fig. 5.1B), mainly to recycle the redox cofactors (Hanning and Heldt, |1993).
Under such conditions, the redox cofactors generated from photosynthesis light reactions
cannot be utilised in plastid due to the reduction in Calvin cycle fluxes. Thus, the cofac-
tors are exported out of cytosol in the form of DHAP and glutamate, so that they can
be further transmitted to mitochondrion via malate transporters for eventual utilization
in oxidative phosphorylation. As photorespiration increased, the flux through MDH
decreased accordingly since the glycine oxidation predominantly supplies the required
redox cofactors to mitochondrial respiration (Fig. 5.1C). On the other hand, interest-
ingly, the flux through oxidative phosphorylation did not change much with increasing
levels of photorespiration, and indicated a sharp increase in the ratio of respiration-
to-photosynthesis (R/P). This R/P ratio is a common denominator for analysing the
magnitude of negative impact caused by photorespiration (Atkin and Macherel, |2009);
it is important for plants to ensure a balance between respiration and photosynthesis so
that the carbon balance can be maintained. Furthermore, this result complements the
experimental observations by Flexas et al., 2005, highlighting that respiration cannot be
impaired during drought stress albeit the differences in magnitude of fluxes. The sim-
ulation results also indicated that the ATP generated from respiration, i.e., oxidative
phosphorylation, was exported to the plastids through ATP/ADP translocator to feed
the photorespiratory pathways, GS-GOGAT cycle and the Calvin cycle. Such behaviour
is essential to maintain the cellular haemostasis as the amounts of ATP generated from
reduced photosynthesis under drought conditions are not sufficient (Keck and Boyer,
1974). In addition, the ATP transported from mitochondrion to plastid increases con-

siderably in drought-stressed cells. Collectively, these observations on TCA cycle and
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Figure 5.1: The effect of carboxylation-to-oxygenation ratio of RuBisCO on leaf cellular growth and COx
uptake while absorbing equal amounts of photon (A). Flux-map of the central metabolism in photorespiring
leaves under normal conditions (Vc/Vo=3). The variation in fluxes through key enzymes upon varying levels
of Vo /Vo (C). The colour intensity of the lines in the central carbon metabolic network figure B corresponds
to the flux values obtained from simulations. Figure C is drawn by normalizing the flux values with respect to
Vo /Vo=3. Metabolite abbreviations are as follows: o-KG, a-ketoglutarate; 1,3-PGA, 1,3-diphosphoglycerate; 2-
PG, 2-phosphoglycololate; 2-PGA, 2-phosphoglycerate; 3-PGA, 3-phosphoglycerate; Ac-CoA, acetyl-coenzyme A;
ADP-G, ADP-glucose; DHAP, dihydroxyacetone phosphate; E-4-P, D-erythrose-4-phosphate; F-1,6-bP, fructose-
1,6-bisphosphate; F-6-P, fructose-6-phosphate; G-1-P, glucose-1-phosphate; G3P, glyceraldehyde-3-phosphate;
G-6-P, glucose-6-phosphate; GABA, y-aminobutyrate; Gln, glutamine; Glu — glutamate; HP, hydroxypyruvate;
OAA, oxaloacetate; PEP, phosphophenolpyruvate; PRPP- phosphoribosyl pyrophosphate; Q, ubiquinone; QH2,
ubiquinol; S-6-P, sucrose-6-phosphate; R-5-P, ribose-5-phosphate; Ru-1,5-bP, ribulose-1,5-bisphosphate; Ru-5-
P, ribulose-5-phosphate; S-1,7-bP, sedoheptulose-1,7-bisphosphate; S-7-P, sedoheptulose-7-phosphate; Xu-5-P,
xylulose-5-phosphate; UDP-G, UDP-glucose.

alanine aminotransferase; ALD, aldolase; APS, glucose-1-phosphate adenylyltransferase; ASP1, aspartate amino-

Enzyme abbreviations are as follows: ACO, aconitase; ALAAT,

transferase; COX, cytochrome C oxidase; CSY, citrate synthase; FBP, fructose-bisphosphatase; FK, fructoki-
nase; FUM, fumarase; GABA-TK, y-aminobutyrate aminotransferase; GAD, glutamate decarboxylase; GAPDH,
glyceraldehyde phosphate dehydrogenase; GDC, glycine decarboxylase; GGAT, glycine aminotransferase; GLYK,
glycerate kinase; GLN1, glutamate-ammonia ligase; GOX, glycolate oxidase; GS, Glutamate synthase (ferredoxin-
dependent); HPR, hydroxypyruvate reductase; MDH, malate dehydrogenase; NAD9, NADH dehydrogenase;
PEPE, phosphoenolpyruvate enolase; PFK, phosphofructokinase; PGI, glucose-6-phosphate isomerase; PGK,
phosphoglycerate kinase; PGLYCM, phosphoglucomutase; PGM, phosphoglucomutase; PGP, phosphoglycolate
phosphatase; PPC, phosphoenolpyruvate carboxylase; PPDK, pyruvate orthophosphate dikinase; PPS, pyruvate-
water dikinase; PRK, phosphoribulokinase; PSLR, photosynthetic light reaction; PYK, pyruvate kinase; RBCS-C,
ribulose-1,5-bisphosphate carboxylase; RBCS-0O, ribulose-1,5-bisphosphate oxygenase; RPE, ribose-5-phosphate
epimerase; SBP, sedoheptulose-bisphosphatase; SBPGL, sedoheptulose 1,7-bisphosphate D-glyceraldehyde-3-
phosphate-lyase; SDH, succinate dehydrogenase; SGAT, serine-glyoxylate aminotransferase; SHM, serine hydrox-
ymethyltransferase; SPS, sucrose phosphate synthase; SPP, sucrose phosphatase; SSADH, succinic semialdehyde
dehydrogenase; SSI, starch synthase; SUS, sucrose synthase; TKT, transketolase; TPI, triose phosphate isomerase;
UGPP, UDP-Glucose pyrophosphorylase.
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oxidative phosphorylation suggest that they are essential for producing energy rather

than providing carbon skeletons for biomass synthesis under drought-stressed conditions.

5.3.2 Identification of essential genes in rice photorespiration

Both normal (V¢/Vp=3) and stressed (Vc/Vo=1) conditions during the rice photores-
piration were simulated to evaluate the gene essentiality for cell growth by resorting to
constraints-based flux analysis (see Methods). The results revealed about 60% of the
reactions in the model are non-essential under both conditions while 25% were com-
pletely essential and distributed across various pathways of rice central metabolism as
illustrated in figure 5.2. Most of the essential genes were identified in photosynthetic
pathways such as photorespiratory cycle (10 genes) and Calvin cycle (7 genes), indicat-
ing the rigidity of COs fixing mechanism in plants. Generally, these observations are in
good agreement with the existing experimental evidences available on other plants such
as Arabidopsis, pea, barley and maize (Table 5.1). The first enzyme of the photorespira-
tory pathway, phosphoglycolate phosphatase (PGLP) metabolise the toxic 2-PG which
accumulates as a result of ribulose-1,5-bisphosphate (RuBP) oxygenase activity. If this
2-PG is not scavenged, it will inhibit the key glycolytic enzyme, triose phosphate iso-
merase (TPI), and thus eliminates photosynthesis even under ambient air (Somerville
and Ogren| [1979). Likewise, other photorespiratory enzymes such as glycolate oxidase
(GOX) and SGAT are also essential under both normal and stressed conditions for
degrading the toxic metabolites, glycolate and glyoxylate, respectively (Wingler et all
2000; |Zelitch et al, 2009). Interestingly, serine hydroxymethyltransferase (mitochon-
drial) (SHM1: EC. 2.1.2.1), on the other hand, was found to be essential only under dry
and hot condition, which is highly consistent with the experiments by |Voll et all (2006),
who reported the conditional viability of the SHM1 mutant of Arabidopsis thaliana. In
order to further verify the results in rice, such predicted genes on Calvin cycle, pho-
torespiratory pathway and GS-GOGAT cycle were compared with the essential genes
of Arabidopsis and maize (Wang et al, 2012). Again, most of essential enzymes are
common across all three plants, except PGLP with supporting experiments for current

prediction (Somerville and Ogren, |1979).
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Figure 5.2: Distribution of the essential genes across rice central metabolism in pho-
torespiring rice leaf cells. All the reactions corresponding to a certain E. C. number
were deleted and the growth was maximised in both normal (Vc/Vp=3) and stressed
(Ve /Vo=1) conditions. The genes were classified as essential — no growth (green); sub
essential- reduced growth rate (blue) and non-essential (green) based on the extent at
which its deletion influences the growth upon deletion of the gene.
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Table 5.1: Comparison of essential genes/reactions in rice, Arabidopsis and maize during

photorespiration
EC Rice Arabidopsis Maize  Experimental
Enzyme Pathway .
number (C3) (C3) (C4) studies
(This Wang et al| (2012
study)
RuBisCO  4.1.1.39  Calvin cycle v v v Sicher and Bunce!
(T997)
PRK 2.7.1.19 Calvin cycle v v v Moll and Levine
(1970)
RPE 5.3.1.6 Calvin cycle v v v
RPI 5.1.3.1 Calvin cycle v v v
TKT 2.2.1.1 Calvin cycle v v v
SBPase 3.1.3.37  Calvin cycle v NA NA  [Liu et alf (2012)
PLGP 3.1.3.18 Photorespiratory v X X Somerville and
cycle Ogren! |i
SHM 2.1.2.1 Photorespiratory V& NA NA Voll et al 1}
cycle
GLYK 2.7.1.31 Photorespiratory v NA NA
cycle (2005))
GDC Photorespiratory v NA NA Wingler et al
cycle (1997)
Catalase 1.11.1.6 Photorespiratory v NA NA
cycle
GAL 6.3.1.2 Photorespiratory v NA NA
cycle
SGAT 2.6.1.45 Photorespiratory v NA NA Wingler et al
cycle (1999)
GOX 1.1.3.15 Photorespiratory v v v elitch et a
cycle (2009)
GS 4.2.1.2 GS-GOGAT v NA NA Blackwell et _a
cycle (]WD
Fd-GOGAT 3.1.324  GS-GOCGAT v NA NA  ISomerville and |
cvel
GLBE 2.4.1.18 Starch v v v
biosynthesis
PPC 4.1.1.31 X X NA

v'— essential gene; X — non-essential gene; NA — essentiality not reported/investigated; * - essential

only under drought conditions

In addition to essential metabolic genes, the dispensability of inter-compartmental

metabolite transporters was also analysed since the mechanism of photorespiration is

quite intricate, involving three major organelles, chloroplast, mitochondria and peroxi-

somes. In this regard, a number of essential inter-compartmental transporters including

mitochondrial and plastidic malate/fumarate/succinate redox shuttles was identified in

both conditions. Malate transporters play an essential role in transmitting the excess
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redox cofactors from plastid to mitochondria for their eventual utilization in oxidative
phosphorylation while plastidic glycolate/glycerate transporter (PLGG) was reported
as the core photorespiratory transporter (Pick et al, 2013). Additionally, a few unique
mitochondrial transporters such as serine translocator, alpha-ketoglutarate/malate and
glutamate/malate redox shuttles were identified to be essential only under stressed con-
ditions, emphasizing their crucial roles in transporting the high fluxes of photorespira-
tory intermediates such as glycolate, glycerate, glutamate, oxoglutarate, glycine, and
serine (Reumann and Weber, [2006) (see Appendix N for the entire list of essential trans-
porters). From current analysis, it is evident that most of the photorespiratory enzymes
including PGLP, GOX and SGAT are required for degrading the toxic metabolites and
synthesizing signalling metabolites such as HoO9 and glutathione (Wingler et all, [1997)).
Therefore, in order to control photorespiration, attenuating photorespiratory fluxes by
improving COgy concentration around RuBisCO is better than eliminating the entire

pathway.

5.3.3 SL screening of non-essential gene pairs in rice photorespiration

Besides identifying essential genes/reactions, the synthetic lethal (SL) gene pairs of rice
central metabolism were also screened under normal and stressed conditions to better
characterise the functional interaction between the non-essential genes (see Methods).
Note that SLs are pair of non-essential genes whose simultaneous removal can lead to
zero growth (Suthers et al, 2009). Such lethality arises due to several reasons including
interchangeable gene products with respect to an essential function (isozymes/isoforms),
their existence in the same essential pathway or sharing of complementary essential
function(s) (Suthers et all,[2009)). Here, it should be noted that the inter-compartmental
transporters were excluded during SL screening since the deletion of most of the trans-
porters coupled with metabolic genes resulted in no growth. A total of 226 and 229 SLs
were identified in the normal and stressed conditions, respectively. Interestingly, of the
total 226 SLs the ferredoxin-NADP™ reductase (FNR) in GS-GOGAT cycle, and the
mitochondrial ATP synthase (ATPS) in oxidative phosphorylation were paired with 83
and 82 other genes of rice central metabolism, respectively. FNR is involved in reassim-
ilating the ammonia released during photorespiration via Fd-GOGAT and maintaining

the redox balance of plastids (Foyer et al, 2009) whereas ATPS is utilised to generate
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necessary energy for the cell growth via mitochondrial respiration. Several SLs also
contained the isoforms of same enzymes across different compartments. Such exam-
ples include the cytosolic and plastidic isoforms of enolase, phosphoglycerate kinase,
glyceraldehyde-3-phosphate dehydrogenase and triosephosphate isomerase, and the cy-
tosolic and mitochondrial isoforms of malate dehydrogenase (see Appendix N for the

entire list of SLs).

5.3.4 Summary

In this chapter, the cellular metabolism of rice during drought stress was analysed. The
flux analysis elucidated the crucial role of plastid-cytosol and mitochondrion-cytosol
malate transporters in recycling the ammonia liberated during photorespiration and in
exporting the excess redox cofactors, respectively. The model simulations also unrav-
elled the essential role of mitochondrial respiration during drought stress. The gene
deletion analysis identified a number of essential genes for the cell growth across vari-
ous functional pathways such as photorespiratory cycle, Calvin cycle, GS-GOGAT cycle
and sucrose metabolism as well as certain inter-compartmental transporters, which are
mostly in good agreement with previous experiments. SL screening was also performed
to identify the pair of non-essential genes whose simultaneous deletion become lethal, re-
vealing the existence of more than 220 pairs of SLs on rice central metabolism. Overall,
the gene deletion and synthetic lethal analyses highlighted the rigid nature of rice photo-
synthetic pathways and characterised functional interactions between central metabolic
genes respectively. However, it also should be noted that gene essentiality results are
condition-specific and sensitive to the model completeness. Therefore, the list of essen-
tial genes presented in the current study should be further confirmed with enhanced

model predictability and subsequent experimental validations.



Chapter 6

(Genome-scale reconstruction and

analysis of rice metabolism]|

6.1 Introduction

The previous chapters utilised the rice central metabolic/regulatory model to simulate
rice metabolism under flooding and drought stresses. Although this model characterised
the rice cellular behaviour under both the stresses, still, it is insufficient to analyse the
global effects in rice. As mentioned earlier, the secondary metabolism of plants is cru-
cial to sense various environmental signals and regulate various growth morphological
process. For example, gibberallins, auxins, abscisic acid and brassinosteroids are known
as growth regulators. Terpenoids such as carotenoids are associated with the photo-
synthetic machinery. Phenolic compounds such as flavonoids and anthocyanins play an
important role in reproductive processes. Therefore, in order to understand the rice
metabolism in a more detailed manner, it is imperative to expand the current model
into the genome-scale model. Accordingly, the current chapter will first detail the pro-
cedure of reconstructing the genome-scale model. Then, it discusses the characteristics
of resulting model and compares the in silico model predictions with literature data and

rice suspension culture experiments.

!Excerpts of this chapter, in part, is a reprint of manuscript in preparation, Lakshmanan et al.
(2014) Unravelling the light-specific metabolic and regulatory signatures of rice through combined in
stlico modeling and “-omics” analysis.
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6.2 Methods

6.2.1 Metabolic network reconstruction

The genome-scale metabolic network of rice (Oryza sativa L. ssp. japonica (cv. Nippon-
bare)) was reconstructed by expanding the previously published central model using the
genome annotation (Goff et al, 2002)) and the information collected from various biolog-
ical and genomic databases on the basis of the established procedure. First, an initial
draft consensus model was constructed by compiling the annotated metabolic genes and
their corresponding biochemical reactions from RiceCyc (Dharmawardhana et all [2013)
and KEGG (Kanehisa and Gotol,2000). Subsequently, each reaction in the draft network
was corrected for reaction directionalities based on information from BRENDA (Schom-
burg et al, 2002) and MetaCyc (Caspi et al, |2008), elemental and charge balanced, and
mapped with appropriate genes to devise proper gene-protein-reaction (GPR) relation-
ships. Charge balancing was done for each reaction based on their chemical formula
and charge using the corresponding pKa value for a pH of 7.2. Next, each pathway in
the draft network was manually curated using available literature sources for establish-
ing the presence of particular enzymes and associated reactions in rice. Accordingly,
the reactions which did not have sufficient literature evidence were removed from the
metabolic network. Additionally, few rice-specific reactions such as oryzanol and oryza-
laexin biosynthesis from published articles as the draft network did not contain these
pathways. Literature sources were again used to localise the individual reactions in draft
network to appropriate subcellular compartments. If the subcellular localizations of cer-
tain reactions are not available in published articles, then, the Plant-mPLoc (Chou and
Shenl, 2010) localization prediction software was used to predict putative cellular com-
partment. Once each reaction in the draft network was assigned to a certain subcellular
compartment, the intracellular metabolite transport reactions were then added based
on the evidences found in literature and TransportDB database (Ren et all, 2004). The
connectivity of the draft network was then checked using the GapFind algorithm to find
the gaps (Kumar et al, [2007). The identified missing links were filled either by adding
reactions from other plants to close the knowledge gaps or by addition of sink reactions
to allow the material exchange between the cell and its surrounding environment. Here,

it should be noted that, new reactions were added during gap-filling only if sufficient
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literature evidence was available to substantiate the presence of the enzymes or else
left the gap unclosed. Further, in order to confirm the presence of added reactions in
rice metabolic network, a BLASTp search in NCBI database was also performed for
the enzymes added during gap-filling using their amino acid sequences collected from
various other organisms against the non-redundant protein sequences of Oryza sativa
L. ssp. japonica (cv. Nipponbare) genome. Finally, apart from the manual quality
control steps for network connectivity, modelling-based gap-filling was also performed

using constraints-based flux analysis, adding few reactions essential for in silico growth.

6.2.2 modelling of light utilizing metabolic reactions

The light utilizing metabolic reactions are modelled in a wavelength specific manner
using a method described earlier (Chang et al, 2011) with slight modifications. In this
method, first the photosynthetically active light spectrum, i.e. 400-700 nm, was divided
into 15 parts each denoting a cumulative region. For example, the first part denoted by
410 nm covers the region 400-420 nm, the second part denoted by 430 nm covers 420-
440nm and so on. Such breakdown of active spectrum allows us to accurately model the
effective range of photon wavelengths capable of driving the associated reaction in rice
network. Next, the prism reactions denoting the photon content equivalent of input light
source was next reconstructed based on the method suggested by previous publication.
It involves digitization of light intensity data for each light source and the integration
of are under the curve in above mention 15 parts of the photosynthetically active light
spectrum. Such reactions denote the distribution of available photons in any of the 15

parts of light spectra. Mathematically, it can be represented as follows:

PhotonVis — C429photon410 + C139photon430 + C;5photond50 + Ci8photon4d70
+C5%¥photond90 + C22photon510 + C239photon530 + C$9photon550
+C28photon570 + CEphoton590 + CEIphoton610 + CE3Iphoton630

+C350photon650 + C3)photon670 + C79photon690

where C is the coefficient of photon available in that particular range is calculated by
integration of total area under the curve as described previously (Chang et all 2011]).

Once the prism reactions are modelled, the “photon absorbance reactions” were then
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drafted to provide the actual metabolic reaction with usable photons. This was done by
analysing the absorbance spectrum of the metabolic reactions which involve photons, i.e.
photosystem I and II, and calculated the amount of incident photons are absorbed. For

example, the photon absorbance reaction at 410 nm for PSI can be written as follows:

photon410 — xphotonPSI 4 (1 — x)photonDrain

where x is the ratio of incident photon absorbed by PSI at 410 nm. In such a way, the
PSI and PSII were modelled. It should be noted that the protochlorophyllide oxidore-
ductase reaction was modelled in a slightly different manner as no absorbance spectra
was available for the same. To model the protochlorophyllide oxidoreductase reaction,
the action spectra, which denote the maximum activity of the corresponding enzyme
throughout the visible spectra, was utilised. Accordingly, the reaction was written for
all 15 regions between 400 and 700 nm with photon specific to that region and the activ-
ity at each level was multiplied with the whole reaction, reflecting the possible differences

in reaction conversion across wavelengths.

6.2.3 Biomass composition

The two biomass equations, one representing the germinating cells of rice seeds and
the other representing the photo-respiring cells of rice leaves, used in constraints-based
flux analysis simulations is adopted from the central model with slight modifications by
accounting for nucleotides and fatty acids composition. Lipid and fatty acid composi-
tions were obtained from previous publications (Brown and Beevers |1987)). The overall
DNA and RNA composition was also obtained from literature. The individual weights
of nucleotides in the DNA and RNA were calculated based on the reported G+C content
of 69.4% (Goff et al, |2002)). Detailed information on biomass composition calculations

could be found in Appendix O.

6.2.4 Constraints-based flux analysis

In this study, constraints-based flux analysis was utilised to simulate the rice metabolism
under varying environmental conditions by manipulating the constraints. The biomass

equation was maximised to obtain the optimal solution of the metabolic network as
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detailed in chapter 2 (Section 2.2.4.1, Problem P1). In this study, the constraints-based
flux analysis problems were solved using COBRA toolbox (Schellenberger et all, 2011)).

In order to simulate the seed-derived rice cells growth on either sucrose or glucose,
the regulatory constraints and proteome data were applied to the network using the
Boolean rules as described previously. The carbon source uptake rate was constrained
at the experimentally measured values. Additionally, for the aerobic simulations, the
oxygen exchange reaction was constrained at 3.312 mmol g DCW day™? based on
literature (Wen and Zhong, 1995). To simulate the photorespiring rice leaf cells growth,
a similar procedure was followed by first constraining the fluxes of dark reactions to
zero using Boolean regulatory rules. Subsequently, the leaf cell growth was simulated by
maximizing the leaf biomass while constraining the photon uptake at 100 mmol g'! DCW
day™!. Further, to simulate the photorespiratory behavior at different carboxylation to
oxygenation ratios (V¢/Vo), the ratio of flux through RuBisCO was varied between

between one and ten as described previously in chapter 3 (See Section 3.2.4).

6.3 Results and discussion

6.3.1 Reconstruction of rice genome-scale model

The genome-scale metabolic network of rice cells was reconstructed by expanding the
previously reconstructed central model. It involved three key steps: (a) compilation of
metabolic genes and related reactions from RiceCyc, PlantCyc, KEGG, TransportDB,
in-house metabolome data and literature, (b) manual curation of metabolic reactions by
verifying elemental balances, reaction directionalities, developing gene-protein-reaction
(GPR) mappings and assigning proper subcellular compartments, and (c) dead-end iden-
tification and manual network gap-filling based on literature sources (see Materials and
methods for details). The final reconstructed genome-scale metabolic network of rice,
1052164, accounts for 2164 unique genes, 2284 reactions and 2001 metabolites localised
across seven intracellular compartments: cytosol, plastid, mitochondrion, peroxisome,
endoplasmic reticulum, vacuole and thylakoid (Fig. 6.1). The detailed list of com-
pletely curated 1052164 metabolic network containing the various genes, reactions, and
metabolites can be obtained from Appendix P.

During the reconstruction process, significant efforts were required in the gap-filling
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process. A large number of gaps were identified in the draft reconstruction and were
subsequently filled in the final model. In order to fill the gaps in a systematic manner,
the identified gaps were classified into either knowledge or scope gaps. Knowledge gaps
arise because of the limited knowledge of any particular pathway in the metabolic net-
work whereas the scope gaps exist mainly due to the scope of reconstruction procedure,
although its synthetic and consumption routes are known (Orth et al, 2011)). In order to
resolve these network gaps, several new reactions were added based on the information
obtained from literature or inferred by the genome annotation of other organisms. Like-
wise, 145 new reactions were added, improving the network connectivity significantly.
Additionally, sequence-based homology searches was performed to find genetic evidence
for the newly added enzymes and identified putative locus for 15 of them. It should be
noted that despite these efforts, the final reconstructed rice genome-scale model still has
10% of its metabolites as blocked under all conditions due to gaps, and thus highlights

the further need of experiments to resolve these gaps.

6.3.2 Network characteristics of :0S2164

10852164 is a comprehensive representation of rice metabolism as it accounts for 2164
genes, 2284 reactions and 2001 metabolites classified into 59 major metabolic subsystems
(Fig. 6.2A). Notably, it accounts for all the possible electron transport reactions in mi-
tochondrion, plastid and thylakoid with curated stoichiometry obtained from literature
and pathway database. The plastidic electron transport chain contains eight separate
reactions: five represent the light-driven photophosphorylation reactions, including pho-
tosystem II (PS II), photosystem I (PS I), Z-scheme based electron transfer between
the two photosystems, cyclic electron transfer around PS I, and Mehler’s reaction for
dissipating excess Oq; two represent the non-light specific oxidative phosphorylation re-
actions, which are NADH dehydrognease and plastidic terminal oxidase; and the last
one represent the ATP synthase. Figure 6.2B provides the schematic illustration of
both light-driven and non-light driven electron transport chain in thylakoid and plastid.
Moreover, the light driven photophosphorylation reactions are modelled in a wavelength
specific manner such that the model can predict the relative photosynthetic efficiency
at all possible wavelengths in the visible spectra. Photosynthesis at various wavelengths

in the visible spectrum is modeled using the approach proposed by (Chang et al| (2011)
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in Chlamydomonas reinhardtii model, (iRC1080), with appropriate modifications to the
photon absorbing metabolic reactions. In iRC1080, the photon absorbing metabolic
reactions such as photosystem I (PSI), photosystem II (PSII) and protochlorophyllide
oxidoreductase consider only the photons in the red and blue range based on the peak ab-
sorption pattern, and thus cannot simulate cellular growth appropriately in lights which
does not fall in blue or red regions such as green and yellow. Further, it also assumes
that all the photons present in these two peak regions are absorbed completely by cor-
responding metabolic reactions. However, the absorption spectra of both photosystems
show light absorption do occur at all wavelengths in visible spectrum with maximum but
not 100% absorption in blue and red regions. Therefore, in order to reflect this scenario
exactly, in 1052164, a new set of reactions called “photon absorbance reactions” were
added between the prism reaction and actual photon utilizing metabolic reaction which
filters the available photon from incident photons based on the absorbtivity data (see

Materials and Methods for details).

Apart from the accurate modelling of electron transport reactions, another signif-
icant achievement of 1052164 is the detailed coverage of fatty acid metabolism, lipid
metabolism and intracellular transport of metabolites. In plants, de novo fatty acid syn-
thesis is known to occur in both plastid and mitochondrion. However, most of the current
plant models have assumed it to be completely synthesised in plastid due to the lack of
information on mitochondrial pathways. In this regard, the fatty acid biosynthesis and
degradation reactions has been modelled in appropriate subcellular compartments based
on literature references in §0S2164. Similarly, the lipid biosynthetic pathways were mod-
elled in plastid, mitochondrion and endoplasmic reticulum, based on existing literature
sources (Li-Beisson et al, 2013)). For modelling transport reactions, we once again lever-
aged on literature sources to replicate their exact translocation mechanisms in {0S2164.
Accordingly, several intracellular transport reactions including the amino acid and nu-
cleotides transport (Linka and Weber, 2009)), malate shuttles between plastid/cytosol
and mitochondrion/cytosol (Taniguchi and Miyake| 2012)), ATP/ADP translocators be-
tween plastid/cytosol and mitochondrion/cytosol (Taniguchi and Miyake, 2012), triose
phosphate transporters between plastid and cytosol (Taniguchi and Miyake, 2012; [Linka
and Weber, [2009)), dicarboxylate transport between cytosol/mitochondrion (Picault

et al, 2004), and fatty acid transport between plastid-cytosol-peroxisome are modelled
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Figure 6.2: Network characteristics of i0S2164. (A) Reaction distribution across var-
ious pathways. (B) Schematic illustration of plastidic/thylakoidal membrane electron
transport chain. Abbreviations are as follows: C/bf6 - cytochrome b6f complex, Fd
- ferredoxin, NDH - NAD(P)H dehydrogenase, pc - plastocyanin, pq - plastoquinone,
PTOX — plastid terminal oxidase, PS I - photosystem I and PS II - photosystem II.
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based on known transport mechanisms (Li-Beisson et all 2013).
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6.3.3 Comparison of 10S2164 with previously published large-scale

rice model

i0S2164 Poolman et al
model

Properties i0S2164 Poolman et al
model

No. of ORFs included 2164 NA
Reactions 2283 1735
Metabolic reactions 1900 1667
Cytoplasmic 884 1620
Plastidic 545 28
Mitochondrial 242 15
Peroxisomal 84 0
Endoplasmic reticular 118 0
Vacuolar 18 0
Thylakoid Lumenal 9 0
Unique metabolic reactions 1594 1528
Transport reactions 349 68
Cytoplasm to Extracellular 41 45
Cytoplasm to plastid 111 14
Cytoplasm to mitochondrion 93 9
Cytoplasm to ER 47 0
Cytoplasm to peroxisome 43 0
Cytoplasm to vacuole 14 0
Spectral decomposition reactions 34 NA
Gene-reaction associations 1707 NA
Metabolic reactions 1629 NA
Transport reactions 78 NA
Metabolites 2001 1535
Unigue metabolites 1310 1452

Figure 6.3: Comparison of 1052164 with previous rice genome-scale model. The num-

bers in Venn diagram represent the number of unique metabolic reactions.

Figure 6.3 presents the comparison of 1052164 and the previously published large-scale

rice model (Poolman et al, 2013). From the comparison, it was found that i0S2164

to be a superior model in several aspects. First, 1052164 is a fully compartmentalised

model as all the metabolic reactions are appropriately assigned to any of the six subcellu-

lar compartments: cytosol, plastid, mitochondrion, peroxisome, endoplasmic reticulum,

vacuole and thylakoid. It should be noted that a large number of reactions were present

in more than one subcellular compartments (approx. 8% of total reactions) in i0S2164,
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highlighting the importance of subcellular localization in plant GSMN. Reactions of gly-
colysis, pentose phosphate pathway, fatty acid metabolism and amino acid metabolism
are the few examples of such multi-compartment reactions. Secondly, §0S2164 includes
photosynthetic electron transport reactions including the photophosphorylation in a
wavelength-specific manner as mentioned earlier. Thirdly, 1052164 is more accurate in
terms of metabolic pathway coverage and network connectivity than the earlier model.
This can be well exemplified by the comparison of §0S2164 with the previously pub-
lished model. Interestingly, the comparison revealed a large number of reactions unique
to each of the model despite the fact, both models represent rice metabolism. A closer
examination of these unique reactions shows that the previous model has lot of generic
metabolic reactions from RiceCyc such as menthol synthesis, reticuline biosynthesis and
methanogenesis which does not exist in rice. On the other hand, most of the unique re-
actions in 1052164 were largely literature-based rice-specific reactions such as oryzanol
synthesis, flavonoid synthesis and oryzalexin synthesis, highlighting the differences in

quality between both the models.

6.3.4 Model validation

Following the reconstruction of ¢§0S2164, several tests were performed to validate its
predictive ability. First, the model was tested by simulating known metabolic functions
including the biosynthesis and degradation of amino acids and secondary metabolites
such as terpenoids and alkaloids. Second, the model predictions were validated using
the batch cultures of rice cells (data presented in Chapter 3, section 3.3.3.1) growing
on various sucrose and glucose under aerobic and anaerobic conditions (Fig. 6.4A).
Third, the cell growth in photorespiring leaves were simulated at various carboxylation-
to-oxygenation flux ratio (Vc/Vo) of RuBisCO, representing the intensity of photores-
piration. The simulation results indicated a significant reduction in the COsy uptake
rates and leaf growth rates at high photoprespiration, i.e. at low V¢ /Vo ratios, and
eventually reached zero at the compensation point (V¢/Vo =0.5) (Fig. 6.4B), agreeing
well with the earlier theoretical calculations (Heldt and Piechulla, 2011). Finally, the
ability of model to simulate the relative photosynthetic efficiency at all possible wave-
lengths in the visible spectra was also tested. The simulation results highlighted that the

model indeed can predict such characteristics within acceptable error range, i.e. <25%
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(Fig. 6.4C).
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Figure 6.4: Validation of 1052158 predictions. (A) Comparison between in silico and
experimental growth of germinating seed cells. (B) COg uptake and leaf growth rate
at varying levels of photorespiration. (C) Comparison of simulated and experimental
action spectrum (Bowsher et al, [2008]).

6.4 Summary

In this study, a completely curated, high-quality, compartmentalised genome-scale metabolic
model of rice cells, 1052164, was reconstructed. The reconstructed model accounts for
2164 unique genes, 2284 reactions and 2001 unique metabolites localised across seven
intracellular compartments: cytosol, plastid, mitochondrion, peroxisome, endoplasmic
reticulum, vacuole and thylakoid. Notably, the light-driven photophosphorylation reac-
tions in 1052164 are modelled in a wavelength specific manner such that it can simulate
the relative efficiency of photosynthesis based on light quality. The phenotypic behaviour
and metabolic states simulated by the model are highly consistent with the suspension

culture experiments as well as previous reports.



Chapter 7

Combined analysis of
light-specific changes in rice
metabolism and transcription
using 10S2164 and “-omics” datal|

7.1 Introduction

Light is the primary energy source as well as a key signalling element for plant growth
and development. Although both light quantity (fluence) and quality (wavelength) are
important for plant life, the latter is a crucial environmental indicator for plants to mod-
ulate their growth and morphological processes such as seed germination, stem elonga-
tion, phototropism, chloroplast development, shade avoidance, circadian rhythms and
flowering induction (Neff et al, 2000). Since the discovery of red light stimulated seed
germination in lettuce (Borthwick et al, [1952), several studies have been focussed on
investigating the influence of individual light quality on plant growth and development.
Earlier studies in this regard utilised the classical genetic and molecular approaches
such as the use of light-signalling deficient mutants, measurement of enzyme activities
and enzyme/metabolite levels of certain pathway(s). However, since the transitions of
light quality perception and the orchestration of signalling cascades are likely to affect
several metabolic effectors at almost all levels of cellular hierarchy, these studies are not

sufficient to understand the overall changes. Therefore, to address this limitation, plant

!Excerpts of this chapter, in part, is a reprint of manuscript in preparation, Lakshmanan et al.
(2014) Unravelling the light-specific metabolic and regulatory signatures of rice through combined in
stlico modeling and “-omics” analysis.
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biologists in the modern genomic era have adopted the multiple “-omics” technologies

such as transcriptomics (Wang et al, 2001}, [Tepperman et all 2001)), proteomics

2006), and metabolomics (Jénkénpad et all 2012)(Jung et al, 2013) for analysing

the light controlled cellular processes in plants at a global level. Of several “-omics”

techniques, genome-wide transcript profiling has been most widely applied in plants,

mainly in Arabidopsis (Wang et al, [2001}; Tepperman et al, 2001; |Ma et al, |2001)) and

rice (Jiao et al, 2005), and have highlighted several noticeable traits including massive

reprogramming of gene expression between photomorphogenesis and skotomorphogene-
sis, i.e. plant growth in the presence and absence of light, coordinated regulation of gene
expression among several cellular pathways on different lights and significant differences

among light-regulated gene expression across various organelles.

Concurrent to the development of highthroughput experimental techniques, the ad-
vances in genomic technologies have also enabled the development of large-scale compu-

tational models and related simulation methods for analysing the cellular behaviour at

the systems level (Price et all [2003; [Lee et al, [2005b)). In this regard, constraints-based

in silico metabolic modelling and analysis is one of the well established techniques to
elucidate the physiological behaviour and metabolic states of an organism upon various
environmental /genetic changes as they systematically capture the genotype-phenotype
relationships from the genome annotation, biochemical and cell physiological data
. As a result, several constraints-based models are developed at the genome-

scale for a wide range of microbes and mammals (Kim et all, [2012b]), and for few plants

such as Arabidopsis (Poolman et al, |2009; de Oliveira Dal’Molin et al, |2010a; Mintz-|

|Oron et al, [2012), maize (Saha et al, [2011) and rice (Poolman et al, 2013). Moreover,

4

most importantly, these models are also utilised in contextualizing multiple “-omics”

data through several integrative analysis, and thus providing novel biological insights at

the systems-level (Shlomi et all [2008; [Selvarasu et al, [2012; Becker and Palsson, 2008).

Among them, noticeably, the combined in silico analysis of human metabolic model

and highthroughput data have been successfully exploited for characterizing the key

metabolic and regulatory features of several diseases (Zelezniak et al, 2010; [Hu et al|

2013; [Mardinoglu et all, 2013, |2014). Similarly, it is now possible to combine the in silico

metabolic models of plants with omics data for better understanding the effect of light

quality on plant growth and development.
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Figure 7.1: Schematic illustration of combined framework involving in silico modelling
and “-omics” data analysis. Rice plants were grown in 5 different light treatments and
the metabolome and transcriptome was profiled. Concurrently, the rice genome-scale
metabolic model was reconstructed based on genome annotation, biochemical data and
literature sources. Subsequently, the model and transcriptome data was utilised in the
integrative analysis. The key light-specific regulatory and metabolic signatures identified
from this study are further expected to be used in several potential applications.
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The overall approach of the current study is illustrated in Figure 7.1. The gene
expression of rice plants grown under different LED light illumination and in dark were
first profiled. Subsequently, the reconstructed metabolic model was integrated with gene
expression data to characterise the behavioural differences in rice plants grown under
different light colours and in dark at several levels of cellular hierarchy: global network-
level, individual pathway-level and at the level of individual reactions and metabolites.
Further, by analysing the key putative cis-acting regulatory elements (CRESs) of certain
differentially expressed genes, the potential transcription factors (TFs) that are sensitive
to specific light qualities were also identified. Collectively, the knowledge obtained from
such large-scale integrative analysis has numerous potential basic and applied uses: (a)
development of appropriate crop productive environment in greenhouses, (b) engineering
of relevant light signal transduction pathways to improve agronomic traits of food crops,
(c) design of synthetic gene circuits using light-sensitive transcription factors and (d)
postulation of metabolic engineering strategies for improving the synthesis of secondary

metabolites such terpenoids and phenolics.

7.2 Methods

7.2.1 Plant materials and growth conditions

Oryza sativa japonica rice cultivar ‘Ilmi’ were used in this study. Seed sterilization
and stratification treatment was performed as previously described. The sterilised seeds
were then inoculated on Murashige and Skoog (MS) medium solidified with 0.2% agar.
Rice seedlings was cultivated for 7 days in an LED Chamber System (SJ I&C Co. Ltd.,
Korea) under a single LED light for 16-h photoperiod per day and at a temperature of
2542 OC. The rice plants were grown in LED chambers with 3 W LED devices (Osram,
Munich, Germany) under five different conditions: blue (B, 450 nm), green (G, 530 nm),
red (R, 660 nm), and white (W, mixture of blue, green, and red lights), and dark (D,
no light treatment). The photosynthetic photon flux (PPF) at the top of plants was 94
npmol m™2 s~ in all light such that the photon fluence rate was distributed differently in
the four conditions, the B condition with 100% blue light, R condition with 100% red
light, G condition with 100% green light, W condition with equal amounts of each red,

green, and blue light.
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7.2.2 RNA isolation and labelling of probes

Total RNA was extracted from the aerial parts of rice plants using the Qiagen RNeasy
Plant Mini Prep kit. For the synthesis of double strand cDNAs, RevertAidTM H Minus
First Strand cDNA Synthesis Kit (Fermentas, Lithuania) was used. Briefly, 1 ml of oligo
dT primer(100 pM) and 10 pl (10 pg) of total RNA were combined and denatured at
70 °C for 5 minutes and renatured by cooling the mixture in ice. First strand DNA was
synthesised by adding 4 nul of 5X First Strand Buffer, 1l RiboLockTM Ribonuclease
Inhibitor, 2pl of 10mM dNTP mix and 1 pl of RevertAidTM H Minus M-MuLV Reverse
Tranase enzyme and by incubating at 42 °C for 1 hour. The reaction was stopped
by heating at 70 °C for 10min. To synthesise the second strand, 66.7ul of nuclease
free water, 5pl of 10X reaction buffer for DNA Polymerase I (Fermentas, Lithuania),
5ul of 10X T4 DNA ligase buffer (Takara, Japan), 3ul of 10U/ul DNA Polymersase
I (Fermentas, Lithuania), 0.2ml of 5U/ul Ribonuclease H (Fermentas, Lithuania) and
0.1ml of 350U /ul T4 DNA ligase (Takara, Japan) were added to the first strand reaction
mixture and the reaction was proceeded at 15 °C for two hours. The double stranded
c¢DNA mixture was purified using MinElute Reaction Cleanup Kit (QIAGEN, U.S.A.).
For the synthesis of Cy3-labeled target DNA fragments, 1 mg of double strand cDNA was
mixed with 30ml (10D) of Cy3-9mer primers (Sigma-Aldrich, U.S.A.) and denatured
by heating at 98 °C for 10 min. The reaction was further proceeded by adding 10pl
of 50X dANTP mix (10mM each), 8ul of deionised water, 2nl of Klenow fragment (50
U/ml, Takara, Japan) and incubating at 37 °C for 2 hours. DNA was precipitated by
centrifugation at 12,000 x g force after adding 11.5ul of 5M NaCl and adding 110pul of
isopropanol. Precipitated samples were rehydrated with 13pl of water. To assess the
reproducibility of the microarray analysis, the experiments were repeated three times

with independently prepared RNA.

7.2.3 Microarray hybridisation, washing and scanning

Ten milligrams of DNA was used for microarray hybridization. The collected samples
was mixed with 19.5 ul of 2X hybridization buffer (Nimblegen, U.S.A.) and finalised to 39
nl with deionised water. Hybridization was performed with MAUI chamber (Biomicro,

U.S.A.) at 42 9C for 16-18 hours. After the hybridization, the microarray was washed
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thrice and dried in a centrifuge for 1 minute at 500g. Hybridized microarray slides were
scanned using GenePix scanner 4000B (Axon, U.S.A.) preset with a 5 um resolution
and for Cy3 signal. Scanned signals were then digitized and analysed by Nimblescan
(Nimblegen, U.S.A.). The grid was aligned to the image with a chip design file, NDF file.
The alignment was checked by ensuring that the grid’s corners are overlaid on the images
corners. This was further checked by uniformity scores in the program. The analysis
was performed in a two-part process. First pair reports (.pair) files were generated in
which sequence, probe, and signal intensity information for Cy3 channel were collected.
Data-based background subtraction using a local background estimator was performed
to improve fold change estimates on arrays with high background signal. The data
were normalized and processed with cubic spline normalization using quantiles to adjust
signal variations between chips (Workman et al, 2002)). A probe-level summarization
by Robust Multi-Chip Analysis (RMA) using a median polish algorithm implemented
in NimbleScan was used to produce call files in order to improve the sensitivity and
reproducibility of microarray results (Irizarry et all [2003)). Here, it should be noted that
these microarray experiments were conducted by Dr. Sun-Hwa Ha and her research team
at the National Academy of Agricultural Science, Rural Development Administration,

Republic of Korea.

7.2.4 Measurement of carotenoid contents

Carotenoids were extracted and measured using HPLC, as described previously (Kim
et al, 2012al). Briefly, the carotenoids were extracted from rice samples (0.12 g) by
adding 3 mL ethanol containing 0.1% ascorbic acid (w/v), vortex mixing for 20 s and
placing in a water bath at 85 °C for 5 min. The carotenoid extract was saponified with
potassium hydroxide (120 pL, 80% w/v) in a water bath at 85 °C for 10 min. After
saponification, the samples were immediately placed on ice, and cold deionized water (1.5
mL) was added. To separate the layers, carotenoids were extracted twice with hexane
(1.5 mL) by centrifugation at 1,200 x g. Aliquots of the extracts were dried under
a stream of nitrogen and redissolved in 50:50 (v/v) dichloromethane/methanol before
HPLC analysis. The carotenoids were then separated in a C30 YMC column (250 x
4.6 mm, 3 pm; YMC Co., Kyoto, Japan) by an Agilent 1100 HPLC instrument (Massy,

France) equipped with a photodiode array detector. Chromatograms were generated
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at 450 nm. Solvent A consisted of methanol/water (92:8 v/v) with 10 mM ammonium
acetate; solvent B consisted of 100% methyl tert-butyl ether. Gradient elution was
performed at 1 mL/min under the following conditions: 0 min, 90% A/10% B; 20 min,
83% A/17% B; 29 min, 75% A/25% Bj; 35 min, 30% A/70% B; 40 min, 30% A/70% B;
42 min, 25% A/75% B; 45 min, 90% A/10% B; and 55 min, 90% A/10% B. Carotenoid
standards were purchased from CaroteNature (Lupsingen, Switzerland). Calibration
curves were drawn for quantification by plotting four concentrations of the carotenoid

standards.

7.2.5 Measurement of total phenolic contents

The phenols in rice leaf were extracted by the ultrasound-assisted method (Kim et al,
2004). The powdered samples (0.1 g) were extracted twice with 80% methanol (2 mL)
by water-based sonication for 20 min which were filled with nitrogen gas to provide an
oxygen-free environment. Supernatants were collected by centrifuging at 13,000 x g for
20 min at 4°C and diluted to a final volume of 4 mL with distilled water (DW). The
crude extracts were filtered using 0.45 mm poly tetrafluoroethylene (PTFE). The total
phenolic contents of rice leaf extracts were determined by spectrophotometric method
using Folin-Ciocalteu’s phenol reagent (Singleton and Rossi, 1965) with some minor
modifications. Diluted extracts (0.2 mL) were mixed with 2.6 mL DW and a reagent
blank using 2.8 mL DW was prepared. Folin-Ciocalteu reagent (0.2 mL) was added to
the mixtures. After 6 min, 2 mL of 7% NayCOj3 solution was added and the mixtures
were allowed to stand for 1 h at 23°C. The absorbance was read against the prepared
blank at 750 nm. Total phenolic concentrations expressed as micrograms of gallic acid

equivalents (GAE) / mg of rice leaf.

7.2.6 Analysis of differentially expressed genes

Differentially expressed genes between any two conditions, i.e. B-W, R-W, D-W and
G-W, was identified using limma package in R computing environment, which is based
on a modified t-statistic (Wettenhall and Smyth, 2004). Subsequently, the p-values
were adjusted for multiple hypotheses testing using Benjamini and Hochberg’s method
(Benjamini and Hochberg), [1995) and the False Discovery Rate (FDR) was controlled at
5%.
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7.2.7 Analysis of differentially expressed metabolic pathways

In order to analyse the differential expression of individual metabolic pathways in
1052164, first the genes from microarray data was mapped with the rice model. A
total of 1915 genes from :0S2164 were mapped with gene expression data spanning
across various pathways. Subsequently, the differential expression of metabolic path-
ways was estimated using the method previously described (Hu et all 2013). Briefly,
the expression change of each gene in a particular light treatment relative to the W was

first estimated as follows:

AE, = log, z}, — logy y,” (7.1)

where 2! is the expression of gene a in 4 light treatment other than W, i.e. R, G,
B or D, 4!V and is the expression of corresponding gene in W. Next, the Wilcoxon
signed-rank test of AE! for all genes within a metabolic pathway in i light treatment
was calculated to determine the significance of up or downregulation of the particular

pathway in comparison with W.

7.2.8 Identification of reporter metabolites

The reporter metabolites in D, W, R and B light treatments were identified based on
previous publication (Patil and Nielsen, 2005). Briefly, each metabolite in the i0S2164
was scored based on the p-values of neighbouring differentially expressed enzyme. For
this purpose, first each enzyme in 1052164 was assigned with a p-value based on the
corresponding genes differential expression. In case of isozymes or enzyme complexes,
the lowest p-value of the isozyme or enzyme subunit was utilised. Then, the p-values are
converted into Z-scores for each enzyme i using inverse normal cumulative distribution

(CDF) as follows:

Zi=0""(1—pi) (7.2)

Once each enzyme is Z-scored, then, the Z-score for each metabolite (Zetapolite) I
1052164 was calculated using the aggregated Z-scores of k neighbouring enzymes as

follows:
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1
Zmetabolite = ﬁ Z Z’L (73)

The metabolite Z-scores are corrected for background distribution by subtracting mean

() and dividing by standard deviation (o) from the original Z-score, Zetabolite-

Zcorrected _ (Zmetabolite - Mk) (74)

metabolite ok

Finally, the corrected Z-scores are transformed into p-values using normal CDF and

metabolites with p-value less than 0.05 are classified as reporter metabolites.

7.2.9 Motif detection and identification of putative transcription fac-

tors

The promoter sequences [-1000, 4200 nt] relative to the transcription start site for the up
and downregulated genes which are neighbouring to reporter metabolites were extracted
from the in-house rice promoter sequence database. Known and novel promoter motifs
were detected using the Dragon Motif Builder program (Huang et al, 2005). At each
time, thirty motifs were detected with a length of 8-10 nucleotides at a threshold value of
0.875. Motifs occurrence in over 50% of the sequences and a threshold e value of <1073
were considered as statistically overrepresented. Different motif classes were identified
using several plant Transcription Factor Binding databases such as TRANSFAC (Matys
et al, 2003), PLACE database (Higo et al, 1999), AGRIS (Yilmaz et al, 2011)) and
Osiris (Morris et al, 2008]). The total enrichment score was calculated by adding up the

percentage occurrences of all motifs belonging to the same TF family.

7.2.10 Random sampling

Artificial centering hit-and-run (ACHR) Monte Carlo sampling (Price et al, 2004b])
was utilised to uniformly sample the metabolic flux solution space in different light
treatments with appropriate flux constraints. In all treatments, a PPF of 200 mmol g!
DCW hr! was constrained in each of the simulation and the solution space was sampled
with 100,000 randomly distributed points for 10,000 iterations. It should be noted that
the internal reaction were constrained in each simulation based on the corresponding

transcriptome data via E-Flux approach (Colijn et al, [2009). In this study, COBRA
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toolbox (Schellenberger et al,|2011)) was utilised to implement the random flux sampling.
Once the metabolic network is sampled in each light treatment, the differences in flux
samples between any pair of conditions was quantified using a Z-score approach as
described previously (Mo et al, [2009). First, two random flux vectors, v;, one from each

sample was chosen and the difference is calculated as follows:

Vjdiff = Vjblue — Vjred (7.5)

This approach was repeated for 10,000 times to flux difference sample, v; 4; ¢, with 10,000
points. Subsequently, the sample mean, ;; and standard deviation, o; was computed to

calculate the Z-score as follows:

L Hj
I (oy/v/1000) (70

The absolute Z-scores were then translated to p-values using normal cumulative distribu-

tion function and the reactions with p-values less than 0.05 were classified as statistically

different between the two conditions analysed.

7.3 Results

7.3.1 Transcript profiling and secondary metabolites content analysis

of rice plants grown under various LED light sources

To compare the effects of different light quality on plant growth and development, rice
plants were grown in LED chambers under five different conditions: blue (B, 450 nm),
green (G, 530 nm), red (R, 660 nm), and white (W, mixture of blue, green, and red
lights), and dark (D, no light treatment) (Fig. 7.1). In each light treatment, the photo-
synthetic photon flux (PPF) at the top of plants was maintained at 94 pmol m™2 s7!. The
photon fluence rate was distributed differently in the four conditions such that the B
condition with 100% blue light, R condition with 100% red light, G condition with 100%
green light and W condition with equal amounts of each red, green, and blue light (see
Materials and Methods). Interestingly, the plants grown under different lights showed
diverse phenotypes: shorter plant with wider leaf blades were observed in B, pale yellow

plant with long coleoptile length in D and plants with comparatively identical structure
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W and G (Fig. 7.2A). Furthermore, in order to understand the possible intracellular
metabolic differences which cause the phenotypic diversity, we also quantified the intra-
cellular content of secondary metabolites such as terpenoids and phenolic compounds.
The results from these analyses results suggested that the terpenoid content was highest
in B and lowest in D, and thus, possibly linking it to the shorter plant phenotype in B
and pale yellow colour in D. The terpenoid contents in different light followed the order
B>W>G>R>D (Fig. 7.2B) and the abundance of phenolic compounds was observed
in B>W>R>G>D order (Fig. 7.2B).

In order to identify the differences in gene expression patterns across different condi-
tions, the samples from the aerial parts of rice plants were collected and the transcripts
were profiled. The gene expression profiling was conducted with the Rice 3’Tiling Mi-
croarray (Roche NimbleGen, Inc.) designed from the 27,448 genes deposited at IRGSP,
RAP1 database (http://rapdb.lab.nig.ac.jp). Among the 27,448 transcripts, 20,507
genes are based on the full cDNA/EST supports in RAP1 database and the remain-
ing 6,941 genes just have the partial cDNA/EST sequences. The scanned microarray
hybridization signals were digitised and analysed by Nimblescan (Nimblegen, U.S.A.).
Finally, the data was manually inspected and normalised to minimise the experimental
variations and eliminate noisy data before being further processed (see Materials and

Methods).

7.3.2 Global analysis of metabolic gene expression

To understand the differences in global metabolic gene expression pattern across differ-
ent light treatments, the transcriptome data was first integrated with i0S2164. A total
of 1915 genes, corresponding to 1659 reactions, in 1052164 could be mapped with gene
expression data spanning across various pathways. The differences in global expression
profiles of all the 1915 metabolic genes was then analysed by two different metrics: a)
plotting the logs expression values of any two conditions pair-wise and b) principal com-
ponent analysis (PCA). Overall, the relative differences between any two conditions were
consistently identified by both the methods (Fig. 7.3). The global analysis indicated
that the expression pattern of D is markedly different from all other light treatments.
Among the light treatments, B and R showed the most divergent expression pattern

(R?=0.9406). On the other hand, G and W showed the minimal changes in expression
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(R2=0.9919) between them. A closer examination of logy expression plots (Fig. 7.3A)
has further highlighted the specific patterns of up or downregulation between any two
conditions. For example, in R-W comparison, most of the genes are overexpressed in W,
whereas in B-R, genes are mostly underexpressed in R. Notably, the PCA of metabolome
from similar experimental setup also revealed comparable groupings as identified by the
PCA of metabolic gene expression data (Jung et al, 2013), indicating that the global

transcript profile and metabolite profile are potentially correlated to each other.
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Figure 7.3: Global analysis of metabolic gene expression. (A) Pairwise comparison of
logy gene expression values between various light treatments. (B) Principal component
analysis of expression values in each condition.

As mentioned earlier, since {0S2164 is a compartmentalised metabolic model, a
compartment-wise analysis of metabolic gene expression using PCA was performed and
observed unique trends of gene expression in few compartments (see Appendix Q). The
expression pattern of cytosolic genes in R was clearly different from other light treat-
ments. Similarly, the plastidic genes showed a distinct expression pattern in B when

compared to other light treatments. Moreover, the endoplasmic reticulum showed the
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most divergent gene expression pattern among all light treatments, suggesting that some
genes in this compartment are indeed differentially expressed across all light treatments
(see Appendix Q).

The overall gene expression pattern of rice transcripts including genes that are not
metabolic was then analysed using PCA. These analyses once again highlighted that the
expression pattern of G, B, R and W is very different from D (see Appendix Q). Among
different light treatments, again, B and R had the most divergent expression pattern as
it is in metabolic genes. However, the difference between W and G expression pattern
is appreciable while considering all genes, revealing that most of the transcriptional

changes between W and G may occur in non-metabolic genes.

7.3.3 Expression changes of individual metabolic pathways

Subsequent to the global analysis of metabolic genes, the expression changes of individual
metabolic pathways in rice was analysed using ¢052164. The up and downregulation of
each metabolic pathway in G, B, R and D treatments were examined relative to that of
W. Here, it should be noted that white was used as reference since it contains most of
the colours in visible spectra, i.e. R, G and B, and is the closest to plants natural energy
source, i.e. sunlight. The significance of expression changes in metabolic pathways was
calculated using Wilcoxon signed rank test, adjusted for multiple hypothesis testing
(see Materials and Methods). The results are presented in figure 7.4A where the colour
intensity denotes the statistical significance of differential expression.

The individual pathway analysis unravelled that several plastidic pathways such as
photosynthesis, terpenoids biosynthesis, starch and sucrose metabolism, Calvin cycle,
gibberellins metabolism and abscisicate biosynthesis are upregulated in B (Fig. 7.4A).
It should be noted that the upregulation of terpenoids biosynthesis and phenylalanine,
tyrosine and tryptophan metabolism are consistent with our secondary metabolites anal-
ysis which indicated a higher terpenoids and phenolic compounds synthesis in B. Simi-
larly, the overexpression of gibberellins metabolism in B is also in good agreement with
earlier report (Zhao et all, [2007), confirming that gibberellins homeostasis plays a key
role in the inhibition of hypocotyl elongation as the plants grown in B were shorter
than other conditions. In R treatment, several pathways including photosynthesis and

Calvin cycle showed significant downregulation when compared to W. Again these ob-
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servations are consistent with earlier experiments which showed that these pathways are
upregulated in R supplemented with B rather than R only (Brown et all (1995 Goins
et al, 11997). Unlike R or B, which showed a clear up or downregulation of metabolic
pathways, a mixed pattern was observed in D (Fig. 7.4A). Notably, photosynthesis is
significantly downregulated whereas the amino acid metabolism, fatty acid degradation,
starch and sucrose metabolism and oxidative phosphorylation were up-regulated in D,
indicating that in the absence of photosynthesis, plant may degrade the available storage
carbon to survive such stressful conditions as identified by previous studies (Kunz et al,
2009). Further, the flavonoid biosynthesis was significantly downregulated in D (Fig.
7.4A), agreeing well with earlier studies which reported the marked decrease in flavonoid
accumulation under dark in Arabidopsis (Pandey et all [2014]).

Since the analysis of gene expression using 1052164 reveals only the changes in
metabolic pathways, the enrichment of differentially expressed genes for biological pro-
cess Gene Ontology (BP:GO) terms were analysed using DAVID (Alvord et all, 2007) to
get a general overview of changes in gene expression among different light treatments
(see Materials and Methods for details). The results indicated a significant enrichment of
carbohydrate catabolic processes (GO:0016311, GO:0044036, GO:0006022, GO:0006026,
G0:0006030, GO:0006032) among the upregulated genes in D and isoprenoid biosyn-
thetic process (GO:0008299) in B (Appendix R), which are highly consistent with ear-
lier metabolic pathway analysis. Interestingly, the cellular process such as transcription
(GO:0006350) and regulation of transcription (GO:0006355) were enriched in the down-
regulated genes of B, possibly suggesting that most of the phenotypic changes in B could

be attributed to the differences in transcription.

7.3.4 Expression changes of individual biochemical reactions and re-

porter metabolites

The expression changes in individual biochemical reactions were identified using the
available GPR relationships in ¢§0S2164. The differential expression of each reaction un-
der various light treatments was analysed in a pairwise manner using modified t-statistic,
adjusted for multiple hypothesis testing (see Materials and Methods for details). When
W is used as reference, most of the reactions in B is upregulated whereas D and R had

a large number of reactions downregulated (Fig. 7.4B). Interestingly, this analysis also
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highlighted that few reactions in R are significantly upregulated albeit the corresponding
pathway showing an overall downregulation. Such examples include the 1,3-beta-glucan
synthase and sucrose-phosphate synthase reactions from starch and sucrose metabolism
which showed a significant upregulation despite the overall pathway is downregulated.
It should be noted that although the cellulose and sucrose synthesis in R is upregu-
lated but the corresponding catabolic pathways are more significantly downregulated,
the pathway shows an overall downregulation. Collectively, these observations show the
importance of analysing the gene expression data not only at the pathway level but also
at individual reaction level.

With the differentially expressed reaction data, the metabolic hotspots in rice net-
work was identified using the reporter metabolites algorithm (Patil and Nielsenl, [2005)
(see Materials and Methods for details). This analysis identifies the metabolites around
which the most significant transcriptional changes occur from a topological point of view.
The top 20 statistically significant reporter metabolites in R, B and D are provided in
figure 7.4C (see Appendix S for reporter metabolite enrichment scores of all relevant
metabolites). Notably, the reporter metabolite enrichment scores for G-W comparison
was very large (p-value>0.2) as none of the metabolic genes were significantly differen-
tially expressed under such conditions. Overall, the top-ranked reporter metabolites were
mainly identified in terpenoids biosynthesis, gibberellin metabolism, IAA biosynthesis,
amino acid metabolism and sucrose and starch metabolism. In B vs W comparison, this
analysis also revealed that the most significant gene expression changes occur around
phytohormones such as gibberallins, abscisate and ethylene as these metabolites are sig-
nificantly enriched (Fig. 7.4C). Similarly, reporter metabolites of R vs W are mainly
associated with terpenoids metabolism, IAA biosynthesis and gibberellins metabolism
where most of the genes are grossly downregulated. Here, it should be noted that these
observations are highly consistent with earlier reports which indicated an overall decrease
in the level of auxins under R treatment (Jones et al, [1991). Appendix T provides the
network visualization of top-ranked reporter metabolites and their neighbouring genes
expression.

Next, the overlap of top ranked reporter metabolites (p-value<0.05) among differ-
ent light treatments was analysed to identify the common indicators of transcriptional

regulation. From this comparison, 32 metabolites were identified as mutual markers in
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all three conditions (see Appendix U). Notably, most of these metabolites are from the
TA A biosynthesis, jasmonate biosynthesis and gibberallins biosynthesis, indicating the
key role of phytohormones in transcriptional orchestration across different light treat-
ments. Further, a large number of metabolites were also found to be common between
D-W and R-W, and just two metabolites to be shared between B-W and R-W. Interest-
ingly, the plastidic and cytosolic glucans were the two metabolites in common between
B-W and R-W, highlighting that the common transcriptional changes occur in starch
and sucrose metabolism. The unique reporter metabolites of B-W was mainly from gib-
berellin biosynthesis and ethylene metabolism, which is consistent with earlier reports
(Zhao et al, [2007; Vandenbussche et al, 2007) and the observed phenotype, i.e. shorter
plants. Similarly, the identification of a large number of reporter metabolites in D-W

comparison confirms the global rearrangement in cellular metabolism.

7.3.5 Motif analysis of differentially expressed metabolic reactions

The promoter regions of up and downregulated neighbouring genes of top ranked reporter
metabolites (p-value<0.05) of B, R and D in comparison with W was then analysed for
known transcription factor binding motifs (see Materials and Methods). Because, it
has been hypothesised that these enzymes could be regulated by common transcription
factors (Zelezniak et all,2010). The promoter analysis revealed a number of unique motifs
that are specific to upregulated genes of B, R and D, in addition to the certain common
putative CREs among all of them (Table 7.1). Specifically, this analysis identified 62
and 65 unique TFs in the upregulated genes of R vs W and B vs W, where some of them
were specific to both. In order to further asses the validity of our promoter analysis, we
compared our results with literature evidences. These comparisons revealed that 9 and
25 TF's identified in our study are either directly or indirectly linked with the red and
blue lights, respectively (see Dataset S2 for comparison results). On the other hand, we
also found contradicting evidences on the light specificity of two of the TFs, highlighting
the need of further experiments to confirm the exact role of such TFs.

In both B vs W and R vs W comparisons, several putative CREs of common plant TF
families such as MYB, bZIP, bHLH and ZnF were enriched in the upregulated genes.
More specifically, the R2R3 MYB TFs such as MYB1, MYB2, MYB5, MYB15 and

MYB30 were found only in upregulated genes of R vs W (Table 7.1). Among these,
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Table 7.1: List of TFs with total enrichment scores of target motifs among the upregu-
lated and downregulated genes

Total enrichment score*

TF's Upregulated Downregulated
B R D B R D

MYB 925 1629 604 1233 1053 876

MYBI1 71 121 67

MYB2, MYB5, MYB15, MYB30 86

MYBS80 91

bZIP 1037 401 269 175 403 397

Asl/ocs/TGA 337 57 196 117 197 222

ABRE 700 344 73 58 206 175

SBZ1/G/HBF-1 75

GBF1, GBF2 75

CPRF5,CPRF6, CPRF7 75

HY5 131

DPBF-1/DPBF-2 75

ABI3 152 86 53 108

ERF 231 557 203 191 249 172

bHLH 225 229 126 292 116 50

PIF1, PIF3, PIF4, PIF7 75

WRKY 56 62

ZnF 200 228 67 154

ZCT1 , ZCT2 , ZCT3 56

MBF1 63 214 74 56

ARF 69 228 191 92 162

DOF 169 228 217 168

FUS3, LEC2 (ABA) 75 172 53 108 - -

DBP 369 186 141 166 122 205

ARR-B 56 71 121 68 125

WOX 86 53

BES1 75

CA1l 81 75

EIL 86

HD-ZIP 83

BPC 67

HD (WUSCHEL) 75

ASIL1, S1F 50

CAN 75

Cysteine Protease 71

GCBP-1, SP1, HSF 100

*Total target motif enrichment score = sum of the % occurrences of all motifs belonging to the same

TF family in the upregulated (UR) and downregulated (DR) groups of genes.
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although MYBI1 has shown to be having a light-specific response by earlier studies, this
study has characterised that these TF's are possibly specific to R light. Promoter analysis
also identified several bZIP TFs such as HY5, CPRF5, CPRF6, CPRF7, GBF1 and
GBF2, and few bHLH TF's such as PIF1, PIF3, PIF4 and PIF7, only in the upregulated
genes of B vs W, suggesting that these TF's are specific to B. It should be noted that
these observations are highly consistent with earlier studies which had shown that these
TFs are indeed B-responsive (Jiao et al, [2007). Motif analysis further unravelled the
high enrichment of jasmonate (JA) response element-like motifs associated with JA
responsive ERF TFs in D vs W, and thus highlighting that these TFs could be specific to
dark-mediated transcriptional response (Table 7.1). In addition, several putative CREs
associated with potential TFs were identified to be highly enriched in upregulated genes
of Bvs Wor R vs W alone (Table 7.1).

7.3.6 Integrative analysis of rice metabolism through metabolome,

transcriptome and constraints-based modelling

In order to better understand the physiological and biochemical differences among vari-
ous light treatments, the changes in metabolite levels and the adjacent flux levels between
B and R treatment were compared through an integrative analysis of metabolomics, tran-
scriptomics and constraints-based modelling as these two conditions showed the marked
differences in terms of transcript and metabolite levels. For this purpose, the differences
in metabolites levels between the two conditions was analysed using the previously pub-
lished metabolome data (Jung et al, [2013). Of the total 43 metabolites measured, 30
are accounted in 1052164. Among which, the levels of 18 metabolites were significantly
different between B and R (p-value<0.05). It could be observed from figure 7.5A that
all the amino acids and fatty acids are higher in B whereas the sugars such as glucose,
sucrose and fructose are higher in R.

Next, to unravel the possible metabolic flux distribution which could result in such
diverse metabolite levels, the solution space of 1052164 was sampled while simultane-
ously constraining the allowable fluxes through internal reactions based on transcriptome
data and fixing the R and B specific spectral decomposition reactions at 196 mmol g
DCW-! (Colijn et al, 2009). The plausible metabolic states of rice leaves under B and

R treatments were sampled using artificial centering hit and run Monte Carlo sampling
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Figure 7.5: Regulatory and metabolic signatures of rice central pathways in blue when
compared to red. (A) Comparison of metabolite levels in red and blue. Metabolites with
a significant change (p<0.05) are highlighted above the dotted line. (B) The rice central
metabolic map showing the fold change in metabolic fluxes obtained through random
sampling and the fold change in metabolite levels. The fold changes in both metabolite
levels and fluxes are calculated using red as reference.
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(Price et all,|2004b)), and the fold change between the two conditions was then estimated
using the range of possible steady-state flux values which were identified via random
sampling (see Materials and Methods). This analysis revealed that although the fluxes
through the Calvin cycle and photosynthetic pathways do not change between B and R,
the fluxes through glycolysis, TCA cycle, amino acid metabolism and fatty acid biosyn-
thesis are significantly upregulated in B as indicated by the corresponding metabolite
levels (Fig. 7.5B). On the other hand, the starch and other cell wall synthetic pathways
was downregulated in B, agreeing well with the metabolome data which showed the
carbohydrate levels to be slightly lower in B than R. Collectively, these observations
highlight that although both B and R light are comparatively efficient for photosynthe-
sis, B drains the fixed carbohydrates much faster than R into the amino acids and fatty
acids synthesis first, and then to secondary metabolites, and thus yielding plants with

wider leaf blades which photosynthesise even more efficiently.

7.4 Discussion

Till date, several studies have focussed on light signal perception and their subsequent
control mechanisms in plants including large-scale transcript profiling experiments in
Arabidopsis (Ma et al, 2001) and rice (Jiao et all [2005). While these studies pro-
vided us various clues about the vast extent of light regulation on gene expression and
global rearrangement of cellular metabolism, a more in-depth analysis of what path-
ways/enzymes/metabolites/TFs control which part of the intracellular mechanism in
relation to plant growth and devolepment processes were largely missing. Such situ-
ations still exist even with the availability of abundant highthroughput data mainly
because of the lack of systematic frameworks to analyse them. As such, the major
contributions of the current work are not only the transcript profiling of rice plants
grown under different light treatments but also the development of an integrative anal-
ysis framework combining the highthoughput data and genome-scale reconstruction at
several levels of cellular hierarchy to derive new hypothesis and correlate them with
observed plant phenotypes. To achieve this goal, a completely curated, high-quality,
compartmentalised genome-scale metabolic model of rice cells was also reconstructed

describing its metabolic organization.
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As mentioned earlier, light affects plant growth and development in several ways.
Accordingly, the gene expression patterns of different light treatments showed dissimilar
effects across conditions. The gene expression pattern of rice under dark was markedly
different from all other light treatments, an observation consistent from previous stud-
ies (Jiao et al, [2005), confirming light induces significant changes in gene expression.
The transcriptome analysis of B vs W further indicated an up and downregulation of
gibberellin metabolism and ethylene metabolism, respectively, providing insights about
the rice cellular metabolism responsible for the observed plant phenotype, i.e. shorter
with wider leaf blades. It is known that the accumulation of inactive gibberellin affects
hypocotyl elongation negatively whereas ethylene regulates it positively (Vandenbuss-
che et al, [2007; Zhao et al, 2007). Therefore, it is evident that the increased gibberellin
metabolism and decreased ethylene biosynthesis are accountable for the reduced stem
length under B. Moreover, the gene expression analysis also indicated that B favour
terpenoids and phenolic compounds synthesis than other light qualities as most of the
genes in these pathways were significantly upregulated under B. The secondary metabo-
lite content analysis of rice leaves have further confirmed that B indeed have the highest
carotenoid and phenolic compounds. Plants grown under D were pale yellow, indicat-
ing that they are devoid of chlorophylls in their leaves. Coincide with these observa-
tions, the gene expression analysis indicated the downregulation of several secondary
metabolite pathways including chlorophyll metabolism. On the other hand, amino acid
metabolism, fatty acid degradation, starch and sucrose metabolism and oxidative phos-
phorylation were up-regulated in D, suggesting that in the absence of photosynthesis,
plant may degrade the available storage carbon to survive such stressful conditions as
shown by previous studies (Kunz et al, |2009)). Finally, the G treatment did not show
any appreciable differences in both phenotype and gene expression when compared to
W. Interestingly, these observations are quite different from earlier perceptions about G
light which is mainly considered as a negative effector of plant growth that antogonises
the effects of R and B light (Folta and Maruhnichl 2007). However, few other studies
have showed that G light may also has positive effects on plant growth, particularly in
hypocotyl elongation and stem growth (Folta, 2004]). These diverse observations could
be possibly due to the differences in cultivation conditions such as wavelength and pho-

ton fluence rates or may be even specific to certain plants. Therefore, further studies



7.4 Discussion 123

focussing on minute morphological differences are required to substantiate the role of
green light in rice growth and development.

In the current study, the promoter regions of differentially expressed genes which are
neighbouring to top-ranked reporter metabolites (p<0.05) was also analysed. Overall,
this analysis revealed several light quality specific TFs. Notably, this analysis confirmed
the blue light responsiveness of the bZIP proteins, especially HY5. Several reports
have earlier identified that HY5 responds positively to both B and R light through a
specific interaction with the G-box motif having the pattern CACGTG and mediates the
light control of gene expressions (Chattopadhyay et al, [1998). Besides HY5, numerous
other group G type bZIP TFs were also identified as B specific, where some of them
such as GBF1, GBF2, CPRF5, CPRF6 and CPRF7 have been shown to be involved
in ultraviolet and blue light signal transduction in parsley and Arabidopsis by binding
specific to the G-box of the light-responsive promoters (Schindler et al, [1992; |Kircher
et al, 1998). The promoter analysis indicated a high enrichment of ABRE-like motifs
associated with bZIP TFs in response to B. ABRE-binding bZIP TFs are shown to
positively modulate the light harvesting complex B (LHCB) expression by repressing
the WRKY40 transcription, which other ways will repress LHCB (Liu et all, |2013).
Accordingly, the gene expression analysis also suggested an upregulation of abscisate
biosynthesis in B and thus, it could possibly play a similar role in rice leaves. The motif
enrichment patterns asscoiated with TF bHLH family suggests that this family of TF's
could be specific to both B and R light treatment which is consistent with earlier reports
(Jiao et al, 2007; (Casal et al, 2005)). Finally, it should be noted that the promoter
analysis also indicated several ZnF and WRKY TFs to be B responsive (Table 7.1).
Among which, the WRKY TFs are known to play a critical role in secondary metabolites
accumulation (Li et al,|2013; |Suttipanta et al,[2011). In this regard, as mentioned earlier
the blue light showed a significantly higher secondary metabolite contents than other
colours. Collectively, these observations suggest that WRKY and ZnF TFs could play
a critical role in blue light mediated secondary metabolite synthesis.

In this study, the transcriptome data was integrated with genome-scale constraints-
based model of rice, providing mechanistic insights into the behavioural differences under
various light treatments. When compared to the previous work involving the genome-

wide transcript profiling of rice plants (Jiao et al, [2005), the current work represent
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a significant expansion both in terms of analysis technique and knowledge discovered.
The earlier work utilised classical statistical methods for analysing gene expression data
and had largely reported the transcriptional differences between light and dark albeit
profiling the transcripts at various light qualities. In this regard, the current work re-
ports not only the functional differences between light and dark but also across various
light qualities, thus deepening current knowledge on how different light qualities, either
independently or cooperatively, orchestrate plant morphogenesis. The insights gained
from such analysis could possibly help engineer plants to improve their agronomic traits
by modulating their light perception pathways. Moreover, the promoter analysis of re-
porter metabolites neighbouring differentially expressed genes have revealed several new
potential blue-, red- and common light-specifc TFs in addition to the well established
ones. The identification of such new light-specific TFs provides us unprecedented op-
purtunities in the emerging field of optogenetics; several light-sensitive synthetic circuits
utilizing light-specific TFs have been successfully constructed and applied in microbial
and mammalian systems including biomedical processes (Bacchus et al, [2013). The
use of light-specific TF's in synthetic circuits, particularly in mammalian systems, are
preferred for a myriad of reasons: precise, spatiotemporally controllable and no poten-
tial pharmacologic side effects. In this regard, some of the light-specific TF families
identified in this study such as DOF, bZIP, bHLH and MYB are known to exist even in
mammalian species. Therefore, it will be interesting to first test whether these homologs
in mammalian systems respond in a similar fashion such that they can be later exploited
in constructing relevant synthetic gene circuits. Taken together, this study represents a
step towards the understanding of light quality perception and relevant transcriptional
and metabolic changes in plants within the context of systems biology. In future, the
integrative framework presented in this study can be leveraged to improve plant traits

towards better productivity.

7.5 Summary

In this work, the transcripts of rice leaves were profiled at genome-scale under four
different light treatments: blue (B), green (G), red (R), white (W), dark (D). Subse-

quently, the transcriptome data was utilised for characterizing the behavioural differ-
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ences through a combined framework involving the in silico metabolic modelling. A
significant rearrangement in global gene expression pattern across different light treat-
ments was identified. Several metabolic pathways responded in specific manner based
on the light quality: photosynthesis and secondary metabolite synthesis was upregu-
lated in B, reserve carbohydrates degradation was pronounced in D. Additionally, the
cis-acting elements analysis of certain differentially expressed genes revealed several pu-
tative TFs which are sensitive to specific light qualities. Moving forward, the framework
proposed in the current study could serve as a promising approach for unravelling the
light-specific control of relevant transcriptional and metabolic changes in plants and
the knowledge discovered could possibly be applied towards engineering crop plants for

better productivity.



Chapter 8

Contributions and future

recommendations

8.1 Summary of contributions

Rice is a major food crop, supplementing the nutritional requirements for billions of
people around the world. However, its sustained production faces huge challenges on
account of various abiotic and biotic stresses. Thus, it is important to understand the
intrinsic stress response mechanisms of rice so as to improve its stress tolerance and
enhance the yield. With such motivation, the current work has initiated a systems
approach to analyse the molecular mechanisms of rice under various stressed conditions.

The following section presents some of the key contributions from this work.
Combined regulatory and metabolic modelling of rice cells

In this work, the reconstruction of rice central metabolic model of rice showed how
regulatory information can be combined with this model to simulate tissue specific char-
acteristics of rice cell. It should be noted that the central model developed in this study
was also the first to represent rice metabolism. The model simulations were compared
with suspension cell culture experiments where the in silico simulated growth rates are

in good agreement with experimental observations.
In silico analysis of rice metabolism under flooding and drought stresses

The developed central model was later utilised to analyse the rice cell metabolism under

126
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drought and flooding stresses, respectively. The flux analysis of seed-derived rice cells
revealed the importance of ethanolic fermentation together with glycolysis for ATP pro-
duction under anaerobic conditions, i.e. flooding stress. The simulations also confirmed
the crucial role of SUS ahead of invertase for breaking down sucrose in an energetically
efficient manner while growing under both aerobic and anaerobic conditions. Moreover,
the central model even suggested the possible role of GABA in glycine synthesis via
serine-hydroxy methyltransferase under anaerobic conditions. Similarly, flux analysis of
photorespiring leaves highlighted the important role of malate transporters in balancing
the redox cofactors across compartments and the active engagement of respiration in
generating the required ATP for biosynthetic processes during the reduction in pho-
tosynthesis. Further, the gene deletion and synthetic lethal analyses highlighted the
rigid nature of rice photosynthetic pathways and characterised functional interactions
between central metabolic genes, respectively. A number of essential genes for the cell
growth across various functional pathways such as photorespiratory cycle, Calvin cycle,
GS-GOGAT cycle and sucrose metabolism as well as certain inter-compartmental trans-

porters were identified, which are mostly in good agreement with previous experiments.
Reconstruction rice genome-scale metabolic network

A genome-scale metabolic network of rice, 052164, was also reconstructed by expanding
the central model. 1052164 is a completely curated, high-quality, compartmentalised
genome-scale metabolic model of rice cells and is most comprehensive in terms of possible
metabolic pathway inclusion, appropriate subcellular localization of reactions, detailed
accounting of electron transport metabolism in both plastid and mitochondrion, and
network connectivity. Further, the light specific reactions in 1052164 are modelled in
a wavelength specific manner such that it can accurately simulate the photosynthetic

behaviour for a particular light quality.
Characterization of light-specific metabolic and transcriptional changes

Using the reconstructed genome-scale model and transcriptome data of rice plants grown
under various light treatments, the light-specific metabolic and transcriptional changes
in rice were analysed. The integrative analysis indicated a significant rearrangement
in global gene expression pattern across different light treatments. Several metabolic

pathways responded in specific manner based on the light quality: photosynthesis and
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secondary metabolite synthesis was upregulated in B, reserve carbohydrates degradation
was pronounced in D. Additionally, the cis-acting elements analysis of certain differen-
tially expressed genes revealed several light-specific transcription factors (TFs) such as

MYB, bZIP, bHLH and Znf.
Development of an integrative in silico analysis framework

As a part of current work, a systematic in silico framework has been developed to analyse
the cellular mechanisms of rice under various stress conditions. The proposed framework
integrates the transcriptome data and metabolic modelling in a systematic way to derive
new hypotheses, which cannot be attained by either of them alone. Chapters 4 and 7
have demonstrated the applicability of proposed algorithm by analysing the metabolic
adaptations in rice during flooding stress and different light treatments, respectively.
It should be noted that, although the current work has demonstrated the proposed
framework in rice, it can be applied to any other cellular systems including microbial

and mammalian organisms.

8.2 Future recommendations

Development of root specific rice model to investigate salt stress

Similar to drought and flooding stresses, salt stress also severely affects rice productivity.
Therefore, the expansion of current work to investigate the effects of salt stress on rice
roots will be appropriate. In order to do so, the approach proposed in current work can
be utilised to develop a root specific model (Lakshmanan et al, 2013c). Further, such
a model will also provide novel insights about the nitrate and sulphate assimilation in
plants; both nitrogen and sulphur are essential compounds for amino acids synthesis
and is primarily assimilated through the roots in the form of mineral salts. Therefore,
it is highly required develop a root specific model as it, together with the leaf and seed

specific models, will provide us global insights into rice metabolism.
Model-driven alternative pathway design

As mentioned earlier, photorespiration in plants represent a major energy drain, and is
essential to eliminate or minimise it to improve crop yield. In this regard, the metabolic

simulations indicated that the photorespiratory pathway is quite rigid and any gene
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knockout in this pathway will affect the plant in a lethal manner (Lakshmanan et all
2013b). Therefore, to minimise photorepiration, two options are available: 1) increasing
COg concentration around RuBisCO or 2) designing alternative bypass pathways to
reduce the flux through photorespiratory pathway (Peterhansel et al, 2013). Among
these, the plants with alternative pathways have been tried in Arabidopsis and have
shown good results (Kebeish et al, |2007; Maier et al, [2012). Similarly, to design a
transgenic rice plant with alternative pathway, the presented rice model can be utilised
to asses the performance of all possible metabolic routes which are available for the
salvage of 2-PG into 3-PGA. Therefore, the rice model can be utilised appropriately for

suggesting viable design strategies to guide crop improvement in an efficient way.
In silico analysis of biotic stresses

The current work presented the in silico framework for analysing rice metabolism under
abiotic stresses. However, as mentioned earlier, rice productivity is also affected severely
by biotic stresses. Among several pathogens, the bacterium Xanthomonas oryzae, pv.
oryzae (Xo0), is considered to be most lethal as it can cause yield losses as high as
50% at fully infected fields (Ezuka et al, 2000). Therefore, it is important to study the
molecular basis of its interactions with rice to develop new varieties with enhanced resis-
tance. In this regard, as the genome annotation of Xoo is currently available (Lee et all
2005a), the development of genome-scale metabolic model would be rational beginning
to initiate the systems analysis of rice-Xoo interactions. Once the model has been de-
veloped, it can be combined with the rice genome-scale model based on the approaches
proposed for studying host - microbe metabolic interactions between human and other
infectious microbes such as Mycobacterium tuberculosis (Bordbar et al, 2010), Plasmod-
ium falciparum (Huthmacher et al, 2010) and Bacteroides thetaiotaomicron (Heinken

et all, 2013)).
Multi-tissue type whole plant modelling

In the current work, the cellular metabolism in different tissues were mostly analysed
in an individual manner. However, most of the plant metabolic functions occur across
different tissues and organs in a co-ordinated manner. Therefore, it is necessary to model
the plant systems on a whole-plant scale. Recently, |Grafahrend-Belau et al (2013])

have suggested a multiscale metabolic modelling (MMM) approach to integrate the
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individual organ-specific models of barley into a whole-plant dynamic model. Using
similar approach, the integration of multiple tissue type rice static models will also

provide novel insights into its stress response mechanisms at a global-level.
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Appendix O:
Seed-derived cells biomass composition

Overall Composition (Colmer et al. (2001) J Exp Bot 52, 1507-1517 &
http://archive.gramene.org/newsletters/rice genetics/rgn6/v6p163.html)

Components Wt %
Proteins 14.4
Carbohydrates - monosaccharides 19.08
DNA 0.12
RNA 12
Lipids 9.9
Carbohydrates - polysaccharides 55.3

Carbohydrates Composition (Cho et al (2008) J Crop Sci Biotech, 11: 181-186)

Components MW Wt % g/gDCW mmol/gDCW Moles Mol frac MW
Contribution
Glucose 180.16 2.50000 0.00477 0.0265 0.000026 0.0458 8.2450
Sucrose 342.3  96.00000 0.18299 0.5346 0.000535 0.9249 316.6088
Fructose 180.16 1.60000 0.00305 0.0169 0.000017 0.0293 5.2768

Polysaccharides Composition (Cho et al (2008) J Crop Sci Biotech, 11: 181-186)

Components MW Wt % g/g DCW mmol/gDCW Moles Mol frac MW
Contribution
Cellulose 162.14  21.70000 0.120 0.740107315 0.000740107 0.2196 35.6104
Hemicellulose  171.6015992  21.70000 0.120 0.69930001 0.0006993 0.2075 35.6104
Starch 162.14  56.60000 0.313 1930418157 0.001930418 0.5729 92.8826

Hemicellulose Composition (Saha et al (2011) PLoS ONE 6: e21784)

Components MwW Wt % g/gbCW  mmol/gDCW Moles Mol frac MW
Contribution
Arabinose 150.13  6.75876 0.0081 0.0540 0.0001 0.0773 11.5981
Xylose 150.13  30.78441 0.0369 0.2461 0.0002 0.3519 52.8265
Galactose 180.156  1.48002 0.0018 0.0099 0.0000 0.0141 2.5397
Glucose 180.16  25.94968 0.0311 0.1728 0.0002 0.2472 44.5301
Uronic acid 194.14  35.02713 0.0420 0.2165 0.0002 0.3096 60.1071

DNA (Goff et al (2002) Science 296: 92-100)

Nucleotide DNA MW DNA DNA (g/g9) g/gbCW  mmol/ gDCW
(mol/mol) (g/mol) (g/mol)
dATP 0.28 487.15100 136.4023 0.2827 0.0003 0.0007

dCTP 0.22  461.10900 101.4440 0.2103 0.0003 0.0005
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dTTP 0.28  478.13600 133.8781 0.2775 0.0003 0.0007
dGTP 0.22  503.15000 110.6930 0.2295 0.0003 0.0005

RNA (Individual nucleotide distribution assumed same as G+C of DNA)

RNA RNA MW (g/mol) RNA RNA (g/g) g/gDCW mmol/ gDCW
(mol/mol) (g/mol)

ATP 0.28 503.15000  140.8820 0.3031 0.0036 0.0072

CTP 0.22 479.12400 105.4073 0.2268 0.0027 0.0057

UTP 0.28 480.10800  134.4302 0.2892 0.0035 0.0072

GTP 0.22 519.14900 114.2128 0.2457 0.0029 0.0057

Lipids (Cho et al (2008) J Crop Sci Biotech, 11: 181-186)

Lipid content (wt MW mmol/g

%) DCW
TAG 64.70 851.5714286 0.075217413
Free FA 20.40 273.1904762  0.073926442
Phospholipids 1260  301.62066 0.041356584

Fatty acid (Brown and Beevers (1987) Plant Physiol. 84: 555-559)

Fatty acid  Content Mole MW
(mol) fraction

16:00 11.7000 0.2532 255
16:10 1.9000 0.0411 253
18:10 15.7000 0.3398 282
18:20 15.8000 0.3420 280
18:30 1.1000 0.0238 278
Total 46.2000 273.1905

Phospholipids (Brown and Beevers (1987) Plant Physiol. 84: 555-559)

Phospholipid Moles Mole fraction MW No. of mmol/g DCW
PC 10.8000 0.5902  312.2300 F2A 0.024407164

PE 5.6000 0.3060  269.1500 2 0.012655567

Pl 1.3000 0.0710  388.2200 2 0.002937899

PA 0.6000 0.0328  226.0800 2 0.001355954
Total 18.3000 301.62066 0.041356584

Amino acids (Juliano (1985) Rice: Chemistry and Technology, 2™ ed)

Amino acids MW Wt % Mol/g mmol/gDCW Mol Frac MW
Protein Contribution
Alanine 89.05 5.65 0.00063 0.0914 0.0821 7.3065
Arginine 174.11 8.6 0.00049 0.0711 0.0639 11.1214
Aspartic acid 133.04 9.1 0.00068 0.0985 0.0885 11.7680

Cystine 240.02 2.1 0.00009 0.0126 0.0113 2.7157




Glutamic acid
Glycine
Histidine
Isoleucine
Leucine
Lysine
Methionine
Phenylalanine
Proline
Serine
Threonine
Tryptophan
Tyrosine

Valine

147.05

75.03
155.07
131.09
131.09
146.11
149.05
165.08
115.06
105.04
119.06
204.09
181.07
117.08

17.95
49
2.25
41
8.2
4.15
2.6
4.7
5.1
51
3.95
1.7
4.85
6.1

0.00122
0.00065
0.00015
0.00031
0.00063
0.00028
0.00017
0.00028
0.00044
0.00049
0.00033
0.00008
0.00027
0.00052

0.1758
0.0940
0.0209
0.0450
0.0901
0.0409
0.0251
0.0410
0.0638
0.0699
0.0478
0.0120
0.0386
0.0750

0.1579
0.0845
0.0188
0.0404
0.0809
0.0367
0.0226
0.0368
0.0573
0.0628
0.0429
0.0108
0.0346
0.0674

23.2126
6.3366
2.9097
5.3020

10.6041
5.3667
3.3623
6.0780
6.5952
6.5952
5.1081
2.1984
6.2719
7.8884
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Abbreviation

Name

Reaction Equation

GPR (MSU)

Subsystem

EC Number

Coleoptile_Biomass

Coleoptile Biomass reaction

0.0914 ala-L[c] + 0.0639 arg-L[c] + 0.0985 asp-L[c] + 0.0126 cys-
L[c] + 0.1758 glu-L[c] + 0.094 gly[c] + 0.021 his-L[c] + 0.045 ile-
L[c] + 0.0901 leu-L[c] + 0.0409 lys-L[c] + 0.0251 met-L[c] +
0.0410 phe-L[c] + 0.0638 pro-L[c] + 0.0699 ser-L[c] + 0.0478 thr-
L[c] + 0.0120 trp-L[c] + 0.0386 tyr-L[c] + 0.075 val-L[c] + 0.0265
glc-A[c] + 0.5346 sucr[c] + 0.0169 fru-B[c] + 1.93 starch[s] + 0.74
cellulose[c] + 0.054 udparabl[c] + 0.246 udpxyl[c] + 0.0099
udpgal[c] + 0.1728 udpg]c] + 0.2165 udpglcur[c] + 0.0007 datp[c]
+0.0005 dctp[c] + 0.0007 dttp[c] + 0.0005 dgtp[c] + 0.0072
utp[c] + 0.0057 ctp[c] + 0.0057 gtp[c] + 0.0012 fa_os[r] + 0.0752
triglyc_os[r] + 0.001356 pa_os[r] + 0.0244 pc_os[r] + 0.01265
pe_os[r] + 0.00293 ptdlino_os[r] + 33.2572 atp[c] -> 33.2572
adp[c] + 33.2572 pi[c] + 0.6992 udp[c] + 0.6992 h[c]

biomass

Straw_Biomass

Straw Biomass reaction

0.0321 ala-L[c] + 0.0123 arg-L[c] + 0.0417 asp-L[c] + 0.0033 cys-
L[c] + 0.0385 glu-L[c] + 0.0282 gly[c] + 0.057 his-L[c] + 0.0140
ile-L[c] + 0.0234 leu-L[c] + 0.0153 lys-L[c] + 0.0076 met-L[c] +
0.0133 phe-L[c] + 0.0225 pro-L[c] + 0.0219 ser-L[c] + 0.0192 thr-
L[c] + 0.0016 trp-L[c] + 0.0077 tyr-L[c] + 0.0225 val-L[c] +
0.0546 glc-A[c] + 0.1049 sucr[c] + 0.0643 fru-B[c] + 0.3249
starch[s] + 0.74 cellulose[c] + 0.054 udparab[c] + 0.246 udpxyl[c]
+0.0099 udpgal[c] + 0.1728 udpg[c] + 0.2165 udpglcur[c] +
0.0007 datp[c] + 0.0072 utp[c] + 0.0057 ctp[c] + 0.0057 gtp[c] +
0.0005 dctp[c] + 0.0005 dgtp[c] + 0.0007 dttp[c] + 0.0012 fa_os[r]
+0.0752 triglyc_os[r] + 0.001356 pa_os[r] + 0.0244 pc_os[r] +
0.01265 pe_os[r] + 0.00293 ptdlino_os[r] + 33.87297 atp[c] ->
33.87297 adp[c] + 33.87297 pi[c] + 0.6992 udp[c] + 0.6992 h[c]

biomass

ACCOAC_0Sc

Acyl-CoA composition

0.2532 pmtcoalc] + 0.0411 hdcoa[c] + 0.3398 odecoa[c] + 0.3420
ocdycacoal[c] + 0.0238 InIncoa[c] <=> acylcoa_os[c]

Unassigned

ACCOAC_Osr

Acyl-CoA composition

0.2532 pmtcoal[r] + 0.0411 hdcoa[r] + 0.3398 odecoa[r] + 0.3420
ocdycacoa[r] + 0.0238 InIncoa[r] <=> acylcoa_os[r]

Unassigned

ACPC_0Ss

ACP composition

0.2532 palmACP(s] + 0.0411 hdeACPI[s] + 0.3398 octeACP[s] +
0.3420 ocdcyaACP[s] + 0.0238 InInlACP[s] <=> ACP_os[s]

Unassigned

ACPC_OSm

ACP composition

0.2532 palmACP[m] + 0.0411 hdeACP[m] + 0.3398 octeACP[m]
+0.3420 ocdcyaACP[m] + 0.0238 InInlACP[m] <=> ACP_os[m]

Unassigned

FAC_Osc

Fatty acid composition

fa_os[c] <=> 0.2532 hdca[c] + 0.0411 hdcea[c] + 0.3398
ocdcea[c] + 0.3420 ocdcya[c] + 0.0238 Ininl[c]

Unassigned

FAC_Osr

Fatty acid composition

fa_os[r] <=>0.2532 hdca[r] + 0.0411 hdceal[r] + 0.3398 ocdcea[r]
+ 0.3420 ocdcya[r] + 0.0238 InIni[r]

Unassigned

EX_co2(e)

CO2 exchange

co2[e] <=>

Exchange Reactions

EX_h20(e)

H20 exchange

h2o[e] <=>

Exchange Reactions

EX_h(e)

H+ exchange

hle] <=>

Exchange Reactions

EX_no3(e)

nitrate exchange

no3[e] <=>

Exchange Reactions

EX_02(e)

02 exchange

02[e] <=>

Exchange Reactions

EX_pi(e)

Phosphate exchange

pife] <=>

Exchange Reactions

EX_sucr(e)

Sucrose exchange

sucrfe] <=>

Exchange Reactions

EX_fru-B(e)

Fructose exchange

fru-B[e] <=>

Exchange Reactions

EX_glc-A(e)

Glucose exchange

glc-Ale] <=>

Exchange Reactions

EX_so04(e)

Sulfate exchange

s04[e] <=>

Exchange Reactions

EX_hco3(e)

Bicarbonate exchange

hco3[e] <=>

Exchange Reactions
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EX_s03(e) Sulfite exchange hso3[e] <=> Exchange Reactions
EX_h2s(e) Hydrogen sulfide exchange h2s[e] <=> Exchange Reactions
EX_nh4(e) Ammonia exchange nh4[e] <=> Exchange Reactions
EX_asn-L(e) L-Asparagine exchange asn-L[e] <=> Exchange Reactions
EX_gin-L(e) L-Glutamine exchange gin-L[e] <=> Exchange Reactions
EX_etoh(e) Ethanol exchange etoh[e] <=> Exchange Reactions
EX_ac(e) Acetate exchange acle] <=> Exchange Reactions
EX_lac-L(e) L-Lactate exchange lac-L[e] <=> Exchange Reactions
EX_tsul(e) Thiosulfate exchange tsul[e] <=> Exchange Reactions
EX_fe2(e) Fe2+ exchange fe2[e] <=> Exchange Reactions
EX_fe3(e) Fe3+ exchange fe3[e] <=> Exchange Reactions
EX_mg2(e) Magnesium exchange mg2[e] <=> Exchange Reactions
EX_ala-L(e) L-Alanine exchange ala-L[e] <=> Exchange Reactions
EX_arg-L(e) L-Arginine exchange arg-L[e] <=> Exchange Reactions
EX_asp-L(e) L-Aspartate exchange asp-L[e] <=> Exchange Reactions
EX_cys-L(e) L-Cysteine exchange cys-L[e] <=> Exchange Reactions
EX_glu-L(e) L-Glutamate exchange glu-L[e] <=> Exchange Reactions
EX_gly(e) Glycine exchange gly[e] <=> Exchange Reactions
EX_his-L(e) L-Histidine exchange his-L[e] <=> Exchange Reactions
EX_ile-L(e) L-lIsoleucine exchange ile-L[e] <=> Exchange Reactions
EX_leu-L(e) L-Leucine exchange leu-L[e] <=> Exchange Reactions
EX_lys-L(e) L-Lysine exchange lys-L[e] <=> Exchange Reactions
EX_met-L(e) L-Methionine exchange met-L[e] <=> Exchange Reactions
EX_phe-L(e) L-Phenylalanine exchange phe-L[e] <=> Exchange Reactions
EX_pro-L(e) L-Proline exchange pro-L[e] <=> Exchange Reactions
EX_ser-L(e) L-Serine exchange ser-L[e] <=> Exchange Reactions
EX_thr-L(e) L-Threonine exchange thr-L[e] <=> Exchange Reactions
EX_trp-L(e) L-Tryptophan exchange trp-L[e] <=> Exchange Reactions
EX_tyr-L(e) L-Tyrosine exchange tyr-L[e] <=> Exchange Reactions
EX_val-L(e) L-Valine exchange val-L[e] <=> Exchange Reactions
EX_coa[c] demand removing excess coa coa[c] -> Demand

EX_photonVis(e)

photon emission

photon690[u] <=>

Exchange Reactions

DM_photon410(u)

demand removing photon298 from system

photonDrain[u] ->

Demand

PRISM_blue LED

spectral decomposition of white LED

photonVis[e] -> 0.009290386222 photon430[u] + 0.370517176
photon450[u] + 0.520401408 photon470[u] + 0.094361569
photon490[u] + 0.00457897551 photon510[u]

Spectral decomposition

PRISM_red_LED

spectral decomposition of red LED (674nm)

photonVis[e] -> 0.002879576 photon610[u] + 0.003855380193
photon630[u] + 0.483357529 photon650[u] + 0.456570768
photon670[u] + 0.010829504 photon690[u]

Spectral decomposition

PRISM_white_LED

spectral decomposition of red LED (674nm)

photonVis[e] -> 0.002723395 photon430[u] + 0.135928126
photon450[u] + 0.189971935 photon470[u] + 0.050389911
photon490[u] + 0.147583919 photon510[u] + 0.132047235
photon530[u] + 0.03140161 photon550[u] + 0.004592156577
photon570[u] + 0.00058518 photon590[u] + 0.0008778146299
photon610[u] + 0.01410125 photon630[u] + 0.140107154
photon650[u] + 0.146392098 photon670[u] + 0.003258373729
photon690[u]

Spectral decomposition

PRISM_green_LED

spectral decomposition of red LED (674nm)

photonVis[e] -> 0.072259765 photon490[u] + 0.432884077
photon510[u] + 0.376758388 photon530[u] + 0.102672594
photon550[u] + 0.0013448784 photon570[u]

Spectral decomposition

photon410[u] -> 0.700028 photonPSI[u] + 0.299972

RPSI_410(u) Photosystem | 410 specific reaction photonDrain[u] Spectral decomposition
photon430[u] -> 0.796708442 photonPSI[u] + 0.203291558
RPSI_430(u) Photosystem | 430 specific reaction photonDrain[u] Spectral decomposition

RPSI_450(u)

Photosystem | 450 specific reaction

photon450[u] -> 0.617580018 photonPSI[u] + 0.382419982

Spectral decomposition




photonDrain[u]
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RPSI_470(u)

Photosystem | 470 specific reaction

photon470[u] -> 0.524710291 photonPSI[u] + 0.475289709
photonDrain[u]

Spectral decomposition

RPSI_490(u)

Photosystem 1 490 specific reaction

photon490[u] -> 0.399317934 photonPSI[u] + 0.600682066
photonDrain[u]

Spectral decomposition

RPSI_510(u)

Photosystem 1 510 specific reaction

photon510[u] -> 0.18437505 photonPSI[u] + 0.81562495
photonDrain[u]

Spectral decomposition

RPSI_530(u)

Photosystem 1 530 specific reaction

photon530[u] -> 0.092758148 photonPSI[u] + 0.907241852
photonDrain[u]

Spectral decomposition

RPSI_550(u)

Photosystem | 550 specific reaction

photon550[u] -> 0.098111892 photonPSI[u] + 0.901888108
photonDrain[u]

Spectral decomposition

RPSI_570(u)

Photosystem | 570 specific reaction

photon570[u] -> 0.152178 photonPSI[u] + 0.847822
photonDrain[u]

Spectral decomposition

RPSI_590(u)

Photosystem 1 590 specific reaction

photon590[u] -> 0.191296711 photonPSI[u] + 0.808703289
photonDrain[u]

Spectral decomposition

RPSI_610(u)

Photosystem | 610 specific reaction

photon610[u] -> 0.258195936 photonPSI[u] + 0.741804064
photonDrain[u]

Spectral decomposition

RPSI_630(u)

Photosystem | 630 specific reaction

photon630[u] -> 0.322072036 photonPSI[u] + 0.677927964
photonDrain[u]

Spectral decomposition

RPSI_650(u)

Photosystem 1 630 specific reaction

photon650[u] -> 0.552832539 photonPSI[u] + 0.447167461
photonDrain[u]

Spectral decomposition

RPSI_670(u)

Photosystem | 670 specific reaction

photon670[u] -> 0.490895969 photonPSI[u] + 0.509104031
photonDrain[u]

Spectral decomposition

RPSI_690(u)

Photosystem | 690 specific reaction

photon690[u] -> 0.068254056 photonPSI[u] + 0.931745944
photonDrain[u]

Spectral decomposition

RPSII_410(u)

Photosystem 11 410 specific reaction

photon410[u] -> 0.768811 photonPSII[u] + 0.231189
photonDrain[u]

Spectral decomposition

RPSI1_430(u)

Photosystem 11 430 specific reaction

photon430[u] -> 0.852685475 photonPSII[u] + 0.14731525
photonDrain[u]

Spectral decomposition

RPSII_450(u)

Photosystem 11 450 specific reaction

photon450[u] -> 0.791244063 photonPSI1{u] + 0.208755937
photonDrain[u]

Spectral decomposition

RPSII_470(u)

Photosystem 11 470 specific reaction

photon470[u] -> 0.685799028 photonPSI1{u] + 0.314200972
photonDrain[u]

Spectral decomposition

RPSII_490(u)

Photosystem 11 490 specific reaction

photon490[u] -> 0.612537409 photonPSI1[u] + 0.387462591
photonDrain[u]

Spectral decomposition

RPSII_510(u)

Photosystem 11 510 specific reaction

photon510[u] -> 0.348632042 photonPSI1[u] + 0.651367958
photonDrain[u]

Spectral decomposition

RPSII_530(u)

Photosystem 11 530 specific reaction

photon530[u] -> 0.167573364 photonPSI1[u] + 0.832426636
photonDrain[u]

Spectral decomposition

RPSII_550(u)

Photosystem 11 550 specific reaction

photon550[u] -> 0.141326491 photonPSl1[u] + 0.858673509
photonDrain[u]

Spectral decomposition

RPSI1_570(u)

Photosystem 11 570 specific reaction

photon570[u] -> 0.157294434 photonPSI1{u] + 0.842705566
photonDrain[u]

Spectral decomposition

RPSII_590(u)

Photosystem 11 590 specific reaction

photon590[u] -> 0.216296356 photonPSII[u] + 0.783703644
photonDrain[u]

Spectral decomposition

RPSII_610(u)

Photosystem 11 610 specific reaction

photon610[u] -> 0.25191974 photonPSII[u] + 0.748080254
photonDrain[u]

Spectral decomposition

RPSII_630(u)

Photosystem 11 630 specific reaction

photon630[u] -> 0.298803678 photonPSII[u] + 0.701196322
photonDrain[u]

Spectral decomposition

RPSII_650(u)

Photosystem 11 630 specific reaction

photon650[u] -> 0.390343412 photonPSI1[u] + 0.609656588
photonDrain[u]

Spectral decomposition

RPSII_670(u)

Photosystem 11 670 specific reaction

photon670[u] -> 0.65691013 photonPSI1[u] + 0.34308987
photonDrain[u]

Spectral decomposition

RPSII_690(u)

Photosystem 11 690 specific reaction

photon690[u] -> 0.367269367 photonPSII[u] + 0.632730633
photonDrain[u]

Spectral decomposition

CO2tex

CO2 transport (extracellular to cytosol)

co2[e] <=> co2[c]

Transport (Extracellular)
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H20tex H20 transport (extracellular to cytosol) h2o[e] <=> h20][c] Transport (Extracellular)
proton transport via diffusion (extracellular to

Htex cytosol) h[e] <=> h[c] Transport (Extracellular)

NO3tex nitrate transport (extracellular to cytosol) no3[e] <=> no3[c] Transport (Extracellular)
02 transport in via diffusion (extracellular to

0O2tex cytosol) 02[e] <=> 02[c] Transport (Extracellular)
PI transport in via diffusion (extracellular to

Pitex cytosol) pi[e] <=> pi[c] Transport (Extracellular)
sucrose transport transport via diffusion

SUCRtex (extracellular to cytosol) sucr[e] <=> sucrlc] Transport (Extracellular)
D-fructose transport via diffusion (extracellular

FRUtex to cytosol) fru-B[e] <=> fru-B[c] Transport (Extracellular)
glucose transport via diffusion (extracellular to

GLCtex cytosol) glc-Ale] <=> glc-Alc] Transport (Extracellular)
sulfate transport via diffusion (extracellular to

SO4tex cytosol) so4[e] <=> so4[c] Transport (Extracellular)
sulfite transport via diffusion (extracellular to

SO3tex cytosol) hso3[e] <=> hso3[c] Transport (Extracellular)
bicarbonate transport via diffusion (extracellular

HCO3tex to cytosol) hco3[e] <=> hco3[c] Transport (Extracellular)
hydrogen sulfide transport via diffusion

H2Stex (extracellular to cytosol) h2s[e] <=>h2s[c] Transport (Extracellular)
ammonia transport via diffusion (extracellular to

NH4tex cytosol) nh4[e] <=> nh4[c] Transport (Extracellular)
L-asparagine transport via diffusion

ASNtex (extracellular to cytosol) asn-L[e] <=>asn-L[c] Transport (Extracellular)
L-glutamine transport via diffusion (extracellular

GLNtex to cytosol) gIn-L[e] <=> gIn-L[c] Transport (Extracellular)
ethanol transport via diffusion (extracellular to

ETOHtex cytosol) etoh[c] -> etoh[e] Transport (Extracellular)
Acetate transport via diffusion (extracellular to

ACtex cytosol) ac[c] -> ac[e] Transport (Extracellular)
L-lactate transport via diffusion (extracellular to

LACtex cytosol) lac-L[c] -> lac-L[e] Transport (Extracellular)
Thiosulfate transport via diffusion (extracellular

TSULtex to cytosol) tsul[e] <=> tsul[c] Transport (Extracellular)
Fe2+ transport via diffusion (extracellular to

FE2tex cytosol) fe2[e] <=> fe2[c] Transport (Extracellular)
Fe3+ transport via diffusion (extracellular to

FE3tex cytosol) fe3[e] <=> fe3[c] Transport (Extracellular)
Mgz2 transport via diffusion (extracellular to

MG2tex cytosol) mg2[e] <=> mg2[c] Transport (Extracellular)
L-alanine transport via diffusion (extracellular to

ALAtex cytosol) ala-L[e] <=> ala-L[c] Transport (Extracellular)
L-arginine transport via diffusion (extracellular

ARGtex to cytosol) arg-L[e] <=>arg-L[c] Transport (Extracellular)
L-aspartate transport via diffusion (extracellular

ASPtex to cytosol) asp-L[e] <=> asp-L[c] Transport (Extracellular)
L-cysteine transport via diffusion (extracellular

CYStex to cytosol) cys-L[e] <=> cys-L[c] Transport (Extracellular)
L-glutamate transport via diffusion (extracellular

GLUtex to cytosol) glu-L[e] <=>glu-L][c] Transport (Extracellular)
Glycine transport via diffusion (extracellular to

GLYtex cytosol) gly[e] <=> gly[c] Transport (Extracellular)
L-histidine transport via diffusion (extracellular

HIStex to cytosol) his-L[e] <=> his-L[c] Transport (Extracellular)




L-isoleucine transport via diffusion
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ILEtex (extracellular to cytosol) ile-L[e] <=>ile-L[c] Transport (Extracellular)
L-leucine transport via diffusion (extracellular to
LEUtex cytosol) leu-L[e] <=> leu-L][c] Transport (Extracellular)
L-lysine transport via diffusion (extracellular to
LY Stex cytosol) lys-L[e] <=> lys-L][c] Transport (Extracellular)
L-methionine transport via diffusion
METtex (extracellular to cytosol) met-L[e] <=> met-L[c] Transport (Extracellular)
L-phenylalanine transport via diffusion
PHEtex (extracellular to cytosol) phe-L[e] <=> phe-L][c] Transport (Extracellular)
L-proline transport via diffusion (extracellular to
PROtex cytosol) pro-L[e] <=> pro-L[c] Transport (Extracellular)
L-serine transport via diffusion (extracellular to
SERtex cytosol) ser-L[e] <=> ser-L[c] Transport (Extracellular)
L-threonine transport via diffusion (extracellular
THRtex to cytosol) thr-L[e] <=> thr-L[c] Transport (Extracellular)
L-tryptophan transport via diffusion
TRPtex (extracellular to cytosol) trp-L[e] <=> trp-L[c] Transport (Extracellular)
L-tyrosine transport via diffusion (extracellular
TYRtex to cytosol) tyr-L[e] <=> tyr-L[c] Transport (Extracellular)
L-valine transport via diffusion (extracellular to
VALtex cytosol) val-L[e] <=> val-L[c] Transport (Extracellular)
(LOC_0s01964670 or LOC_0s02g47600
or LOC_0s04g59040 or LOC_0s05g02310
or LOC_0s05936260 or Starch and sucrose
PPASc Soluble inorganic pyrophosphatase, cytosol h2o[c] + ppi[c] -> h[c] + 2 pi[c] LOC_0s10g26600) metabolism (Sucrose) 3.6.1.1
Starch and sucrose
PPASs Soluble inorganic pyrophosphatase, plastidic h20[s] + ppi[s] -> h[s] + 2 pi[s] LOC_0s02g52940 metabolism (Sucrose) 3.6.1.1
(LOC_0s01g64670 or LOC_0s02g47600
or LOC_0s04g59040 or LOC_0s05g02310
Soluble inorganic pyrophosphatase, or LOC_0s05936260 or Starch and sucrose
PPASmM mitochondrial h2o[m] + ppi[m] -> h[m] + 2 pi[m] LOC_0s10g26600) metabolism (Sucrose) 3.6.1.1
(LOC_0s01g64670 or LOC_0s02g47600
or LOC_0s04959040 or LOC_0s05¢g02310
or LOC_0s05936260 or Starch and sucrose
PPASX Soluble inorganic pyrophosphatase, peroxisomal h20[x] + ppi[x] -> h[x] + 2 pi[X] LOC_0s10g26600) metabolism (Sucrose) 3.6.1.1
(LOC_0s01g64670 or LOC_0s02g47600
or LOC_0s04959040 or LOC_0s05¢g02310
or LOC_0s05936260 or Starch and sucrose
PPASvV Soluble inorganic pyrophosphatase, vacuolar h20o[v] + ppi[v] -> h[v] + 2 pi[v] LOC_0s10g26600) metabolism (Sucrose) 3.6.1.1
(LOC_0s01g23580 or LOC_0s02g55890
Membrane -bound H+-inorganic or LOC_0s05¢06480 or LOC_0s06g08080
PPAlcxc pyrophosphatase, peroxisomal h2o[c] + ppi[c] -> h[x] + 2 pi[c] or LOC_0s06g43660) Oxidative phosphorylation 3.6.1.1
(LOC_0s02g33490 or LOC_0s01923580
or LOC_0s02g55890 or LOC_0s05g06480
Membrane -bound H+-inorganic or LOC_0s06908080 or
PPAlcve pyrophosphatase, vacuolar h2o[c] + ppi[c] -> h[v] + 2 pi[c] LOC_0s06g43660) Oxidative phosphorylation 3.6.1.1
Valine, leucine and isoleucine
APLs Acetolactate synthase, plastidic pyr[s] + 2ahethmppls] -> alac-S[s] + thmpp[s] (LOC_0s02g30630 or LOC_0s02g39570) metabolism 2216
Valine, leucine and isoleucine
APLm Acetolactate synthase, mitochondrial pyr[m] + 2ahethmpp[m] -> alac-S[m] + thmpp[m] metabolism 2.2.1.6
CATv Catalase, vacuolar 2 h202[v] -> 2 h20o[v] + 02[v] (LOC_0s08g43560 or LOC_0s04g14680) Glyoxylate Cycle 1.11.16
CATs Catalase, plastidic 2 h202[s] -> 2 h20[s] + 02[s] (LOC_0s08g43560 or LOC_0s04g14680) Glyoxylate Cycle 1.11.16
(LOC_0s08g43560 or LOC_0Os04914680
or LOC_0s02g02400 or
CATX Catalase, peroxisomal 2 h202[x] -> 2 h20[x] + 02[X] LOC_0s06g51150) Glyoxylate Cycle 1.11.1.6




CATm

Catalase, mitochondrial

2 h202[m] -> 2 h2o[m] + 02[m]

(LOC_0s08g43560 or LOC_Os04g14680)

Glyoxylate Cycle
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1.11.16

GLUSfm

Glutamate synthase (ferredoxin), mitochondrial

gin-L[m] + akg[m] + 2 fdxrd[m] -> 2 glu-L[m] + 2 fdxox[m] + 2
h[m]

LOC_0s07g46460

Nitrogen metabolism; GS-
GOGAT Cycle

1471

GLUSfs

Glutamate synthase (ferredoxin), plastidic

gln-L[s] + akg[s] + 2 fdxrd[s] -> 2 glu-L[s] + 2 fdxox[s] + 2 h[s]

LOC_0s07g46460

Nitrogen metabolism; GS-
GOGAT Cycle

1471

RBPCs

Ribulose-bisphosphate carboxylase

3 co2[s] + 02[s] + 3 h20[s] + 4 rb15bp[s] -> 7 3pg[s] + 2pglycls]

(LOC_0s01958020 and LOC_0s05¢35330
and LOC_0s11932770 and
LOC_0s129g10580 and LOC_0s10g21280)
and (LOC_0s129g19394 and
LOC_0s02g05830 and LOC_0s12g17600
and LOC_0s12g19381 and
LOC_0s12g19470)

Calvin cycle

4.1.1.39

CYOO06m

Cytochrome ¢ oxidase (complex 1V)

4 focytc[m] + 8 h[m] + 02[m] -> 4 ficytc[m] + 4 h[c] + 2 h2o[m]

(LOC_Osm1g00550 and
LOC_0Osm1g00330 and LOC_Osm1g00110
and LOC_0s01g42650 and
LOC_0s08g38720 and LOC_0s03g50940)

Oxidative phosphorylation

1.9.3.1

NO3Rm

Nitrate reductase (Ubiquinol-8), mitochondrial

2 h[c] + no3[c] + g8h2[m] -> h2o[m] + g8[m] + 2 h[c] + no2[c]

LOC_Os10g17780

Oxidative phosphorylation

1.7.99.4

AOXm

Alternative oxidase

4 h[m] + 02[m] + q8h2[m] ->2 h20[m] + g8[m] + 2 h[c]

(LOC_0s04g51150 or LOC_0Os04951160
or LOC_0s04946770 or
LOC_0s03g63010)

Oxidative phosphorylation

1.10.3.11

ATPPHC

ATP phosphohydrolase, cytosolic

atp[c] + h2o[c] -> adp[c] + pi[c] + h[c]

(LOC_Os01g49000 or LOC_Os06g03940)

Purine metabolism

3.6.1.3

ATPPHmM

ATP phosphohydrolase, mitochondrial

atp[m] + h2o[m] -> adp[m] + pi[m] + h[m]

(LOC_0s01g49000 or LOC_Os06g03940)

Purine metabolism

3.6.1.3

ATPPHs

ATP phosphohydrolase, plastidic

atp[s] + h2o[s] -> adp[s] + pi[s] + h[s]

(LOC_0Os01g49000 or LOC_Os06g03940)

Purine metabolism

3.6.1.3

ATPSs

ATP synthase (complex V), plastidic

adpl[s] + 4 h[u] + pi[s] -> atp[s] + 3 h[s] + h2o[u]

((LOC_Osp1g00280 and
LOC_Osp1g00300 and LOC_0Osp1g00290)
and (LOC_Osp1g00310 and
LOC_Osp1g00410 and LOC_0Osp1g00400
and LOC_0s10g17280) and
(LOC_0s02951470 or LOC_0s02g51470)
and LOC_0s07932880)

Photosynthesis;
Photophosphorylation

3.6.3.14

ATPSm

ATP synthase (complex V), mitochondrial

adp[m] + 3 h[c] + pi[m] -> atp[m] + 2 h[m] + h20[m]

((LOC_0s05g47980 and
LOC_0s07g31300 and LOC_0s08g15170
and LOC_0s08937320 and
LOC_0s10g17280) and
(LOC_Osm1g00580 and
LOC_0Osm1g00370 and
LOC_0Osm1g00430))

Oxidative phosphorylation

3.6.3.14

ATPSv

ATP synthase (complex V-type), vacuolar

adp[v] + 3 h[c] + pi[v] -> atp[v] + 2 h[v] + h20[Vv]

(LOC_0s01g73130 and LOC_0s01g41610
and LOC_0s01g12260 and
LOC_0s01g46980 and LOC_0s01g61780
and LOC_0s01g40470 and
LOC_0s01g42430 and LOC_0s01g51380
and LOC_0s02g07870 and
LOC_0s02g34510 and LOC_0s02g57850
and LOC_0s03g14690 and
LOC_0s04g05080 and LOC_0s04951270
and LOC_0s04g55040 and
LOC_0s04g56540 and LOC_0s05g01560
and LOC_0s05g40230 and
LOC_0s05¢51530 and LOC_0Os06937180
and LOC_0s06945120 and
LOC_0s11g06890)

Oxidative phosphorylation

3.6.3.14

GLUSs

Glutamate synthase (NADH)

gin-L[s] + akg[s] + nadh[s] + h[s] -> 2 glu-L[s] + nad][s]

LOC_0s01g48960

Nitrogen metabolism; GS-
GOGAT Cycle

1.4.1.14

GLUSYs

Glutamate synthase (NADPH)

gIn-L[s] + akg[s] + nadphl[s] + h[s] -> 2 glu-L[s] + nadp[s]

LOC_0s01g48960

Nitrogen metabolism; GS-
GOGAT Cycle

1.4.1.13

GTHRc

Glutathione reductase (NADPH), cytosolic

gthox[c] + nadph[c] + h[c] -> 2 gthrd[c] + nadp[c]

(LOC 0s02g56850 or None)

Sulfate metabolism

1817




(Glutathione)
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Sulfate metabolism

GTHRs Glutathione reductase (NADPH), plastidic gthox[s] + nadphls] + h[s] -> 2 gthrd[s] + nadp][s] LOC_0s03g06740 or LOC_0s10g28000 (Glutathione) 1.8.1.7
Sulfate metabolism
GTHRm Glutathione reductase (NADPH), mitochondrial gthox[m] + nadph[m] + h[m] -> 2 gthrd[m] + nadp[m] LOC_0s03g06740 (Glutathione) 1.8.1.7
ADKl1c Adenylate Kinase, cytosolic atp[c] + amp[c] -> 2 adp[c] (None or LOC_0s12913380) Purine metabolism 2743
ADK1m Adenylate kinase, mitochondrial atp[m] + amp[m] -> 2 adp[m] (None or LOC_0s12g13380) Purine metabolism 2743
(LOC_0s03g03820 or LOC_0s079g22950
or LOC_0s08g01770 or
ADK1s Adenylate kinase, plastidic atp[s] + amp[s] -> 2 adp[s] LOC_0s08g19140) Purine metabolism 2743
(LOC_0s03g03820 or LOC_0s079g22950
or LOC_0s08g01770 or
ATPAPC Apyrase atp[c] + 2 h2o[c] -> amp][c] + ppi[c] + 6 h[c] LOC_0s08g19140) Purine metabolism 2743
ADPAC ADP-Apyrase adplc] + h2o[c] -> amplc] + pi[c] + h[c] (LOC_0s07g48430 or LOC_0s03g21120) Purine metabolism 3.6.1.5
Primary Cell Wall
Metabolism (Galactose
GAL1PUTc galactose-1-phosphate uridylyltransferase gallp[c] + utp[c] + h[c] -> udpgal[c] + ppi[c] metabolism) 2.7.7.10
Pantothenate and CoA
DPCOAKCc Dephospho-CoA kinase atp[c] + dpcoa[c] -> adp[c] + coa[c] + h[c] LOC_0s01g25880 metabolism 2.7.1.24
URIKGc uridine kinase (GTP), cytosolic uri[c] + gtp[c] -> ump[c] + gdp[c] + h[c] (LOC_0s02917320 or LOC_0Os11g16370) Pyrimidine metabolism 2.7.1.48
URIKGs uridine kinase (GTP), plastidic uri[s] + gtp[s] -> ump[s] + gdp[s] + h[s] (LOC_0s02g47020 or LOC_0s04g50880) Pyrimidine metabolism 2.7.1.48
DHDHc Dihydropyrimidine dehydrogenase (NADP+) 56dura[c] + nadp[c] + h[c] <=> ura[c] + nadph[c] LOC_0s02g50350 Pyrimidine metabolism 1.3.1.2
Pantothenate and CoA
BUPNCc beta-ureidopropionase cala[c] + h2o[c] + h[c] -> ala-BJ[c] + co2[c] + nh4[c] LOC_0s07g30170 metabolism 35.16
Pantothenate and CoA
DHPDc Dihydropyrimidinase 56dura[c] + h2o[c] <=> cala[c] + h[c] LOC_0s01g59340 metabolism 35.2.2
TMDSc Thymidylate synthase dumplc] + mlthf[c] <=> dhf[c] + dtmp[c] (LOC_0s12g26060 or LOC_0s11g29390) Pyrimidine metabolism 2.1.1.45
CYTDc Cytidine deaminase cytd[c] + h2o[c] + h[c] -> uri[c] + nh4[c] (LOC_0s01g51540 or LOC_0s06g40910) Pyrimidine metabolism 3545
GTPCYTDPTc GTP:cytidine 5-phosphotransferase, cytosolic cytd[c] + gtp[c] <=> gdp[c] + cmp[c] (LOC_0s02g17320 or LOC_0s11g16370) Pyrimidine metabolism 2.7.1.48
GTPCYTDPTs GTP:cytidine 5-phosphotransferase, plastidic cytd[s] + gtp[s] <=> gdpl[s] + cmp[s] (LOC_0s02g47020 or LOC_0s04g50880) Pyrimidine metabolism 2.7.1.48
DCTPDAC deoxycytidine triphosphate deaminase dctp[c] + h2o[c] -> nh4[c] + dutp[c] Pyrimidine metabolism 3.5.4.13
CTPRc ribonucleoside-triphosphate reductase (CTP) ctp[c] + fadh2[c] -> fad[c] + h2o[c] + dctp[c] Pyrimidine metabolism 1.17.4.2
UTPRc ribonucleoside-triphosphate reductase (UTP) utp[c] + fadh2[c] -> fad[c] + h2o][c] + dutp[c] Pyrimidine metabolism 1.17.4.2
ATPRc ribonucleoside-triphosphate reductase (ATP) atp[c] + fadh2[c] -> fad[c] + h2o[c] + datp[c] Pyrimidine metabolism 1.17.4.2
GTPRc ribonucleoside-triphosphate reductase (GTP) gtp[c] + fadh2[c] -> fad[c] + h20o[c] + dgtp[c] Pyrimidine metabolism 1.17.4.2
DCAHc Deoxycytidine aminohydrolase deyt[c] + h2o[c] + h[c] -> duri[c] + nh4[c] (LOC_0s01g51540 or LOC_0s06g40910) Pyrimidine metabolism 3.5.45
UPRTs Uracil phosphoribosyltransferase, plastidic umpls] + ppi[s] <=> ura[s] + prpp[s] LOC_0s05g38170 Pyrimidine metabolism 2.4.2.9
UPRTC Uracil phosphoribosyltransferase, cytosolic umplc] + ppi[c] <=> ura[c] + prpp[c] (LOC_0s11g16370 or LOC_0s02g17320) Pyrimidine metabolism 2.4.2.9
UPHc Uridine phosphorylase, cytosolic pi[c] + uri[c] <=>rlp[c] + ura[c] LOC_0s08g44370 Pyrimidine metabolism 2.4.2.3
UPHs Uridine phosphorylase, plastidic pi[s] + uri[s] <=>r1p[s] + ura[s] Pyrimidine metabolism 2423
DURIKc ATP:deoxyuridine 5-phosphotransferase atp[c] + duri[c] -> adp[c] + dump[c] + h[c] LOC_0s03g02200 Pyrimidine metabolism 27121
TMDKc Thymidine kinase atp[c] + thymd[c] -> adp[c] + dtmp[c] + h[c] LOC_0s03g02200 Pyrimidine metabolism 27121
ATCYc ATP:cytidine 5-phosphotransferase, cytosolic atp[c] + cytd[c] -> adp[c] + cmp]c] + h[c] (LOC_0s02917320 or LOC_0s11g16370) Pyrimidine metabolism 2.7.1.48
ATCYs ATP:cytidine 5-phosphotransferase, plastidic atp[s] + cytd[s] -> adp[s] + cmp[s] + h[s] (LOC_0s02g47020 or LOC_0s04g50880) Pyrimidine metabolism 2.7.1.48
AUPTCc Uridine kinase, cytosolic atp[c] + uri[c] -> adp[c] + ump[c] + h[c] (LOC_0s02g17320 or LOC_0s11g16370) Pyrimidine metabolism 2.7.1.48
AUPTs Uridine kinase, plastidic atp[s] + uri[s] -> adp[s] + ump[s] + h[s] (LOC_0s02g47020 or LOC_0s04g50880) Pyrimidine metabolism 2.7.1.48
TPHc Thymidylate 5-phosphohydrolase, cytosolic dtmp]c] + h2o[c] -> thymd[c] + pi[c] LOC_0s01g51280 Pyrimidine metabolism 3.1.35
TPHs Thymidylate 5-phosphohydrolase, plastidic dtmpls] + h20o[s] -> thymd][s] + pi[s] LOC_0s03g44660 Pyrimidine metabolism 3.1.35
2-Deoxyuridine 5-monophosphate
DUMPc phosphohydrolase dumplc] + h2o[c] -> duri[c] + pi[c] LOC_0s01g51280 Pyrimidine metabolism 3.1.35
2-Deoxycytidine 5-monophosphate
DCMPc phosphohydrolase dcmplc] + h2o[c] -> deyt[c] + pi[c] LOC_0s01g51280 Pyrimidine metabolism 3.1.35
CMPc Cytidine-5-monophosphate phosphohydrolase cmplc] + h2o[c] -> cytd[c] + pi[c] LOC_0s01g51280 Pyrimidine metabolism 3.1.35
CMPs Cytidine-5-monophosphate phosphohydrolase cmp[s] + h20o[s] -> cytd[s] + pi[s] LOC_0s03g44660 Pyrimidine metabolism 3.1.35
UMPc Uridine 5-monophosphate phosphohydrolase, ump[c] + h2o[c] -> uri[c] + pi[c] LOC 0s01g51280 Pyrimidine metabolism 3.1.35
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Uridine 5-monophosphate phosphohydrolase,

UMPs plastidic umpls] + h2o[s] -> uri[s] + pi[s] LOC_0s03g44660 Pyrimidine metabolism 3.1.35
(LOC_0s05g49770 or LOC_0s12g36950
atp[c] + utp[c] + gIn-L[c] + h2o[c] -> adp[c] + pi[c] + ctp[c] + glu- | or LOC_0Os01g43020 or
CTPSc CTP synthetase L[c] + 2 h[c] LOC_0s01g46570) Pyrimidine metabolism 6.3.4.2
DUTNHc dUTP pyrophosphatase dutp[c] + h2o[c] -> dumplc] + ppi[c] + h[c] LOC_0s03g46640 Pyrimidine metabolism 3.6.1.23
((LOC_0s02g56100 or LOC_0Os06g03720)
2-Deoxycytidine diphosphate:oxidized- and (LOC_0s06g14620 or
DCDTc thioredoxin 2-oxidoreductase trdrd[c] + cdp[c] -> dcdp[c] + trdox[c] + h20o[c] LOC_0s06g07210)) Pyrimidine metabolism 1.17.4.1
((LOC_0s02g56100 or LOC_0s06g03720)
2-Deoxyuridine 5-diphosphate:oxidized- and (LOC_0s06g14620 or
DUDTc thioredoxin 2-oxidoreductase trdrd[c] + udp[c] -> dudp[c] + trdox[c] + h20[c] LOC_0s06g07210)) Pyrimidine metabolism 1.17.4.1
(LOC_0s07g46410 or LOC_0s06922140
TDSRs Thioredoxin reductase (NADPH), plastidic trdox[s] + nadph[s] + h[s] <=> trdrd[s] + nadp[s] or LOC_0s02g48290) Pyrimidine metabolism 1.8.1.9
TDSRc Thioredoxin reductase (NADPH), cytosolic trdox[c] + nadph[c] + h[c] <=> trdrd[c] + nadp[c] (LOC_0s06922140 or LOC_0s02g48290) Pyrimidine metabolism 1.8.1.9
TDSRm Thioredoxin reductase (NADPH), mitochondrial trdox[m] + nadph[m] + h[m] <=> trdrd[m] + nadp[m] (LOC_0s06g22140 or LOC_0s02g48290) Pyrimidine metabolism 1.8.1.9
(LOC_0s10g41410 or LOC_0s02g35700
or LOC_0s12g36194 or
ATDTDc ATP:dTDP phosphotransferase atp[c] + dtdp[c] -> adp[c] + dttp[c] LOC_0s05g51700) Pyrimidine metabolism 2.74.6
DTMPKc dTMP kinase atp[c] + dtmplc] -> adp[c] + dtdp[c] (LOC_0s01g70950 or LOC_0s07g44630) Pyrimidine metabolism 2749
(LOC_0s10g41410 or LOC_0s02g35700
or LOC_0s12936194 or
ATDUDc ATP:dUDP phosphotransferase atp[c] + dudp[c] -> adp]c] + dutp[c] LOC_0s05g51700) Pyrimidine metabolism 2746
DUMPKCc dUMP Kinase atp[c] + dumpl[c] <=> adp[c] + dudp[c] (LOC_0s04933300 or LOC_0s06g02000) Pyrimidine metabolism 2.7.4.22
(LOC_0s10g41410 or LOC_0s02g35700
or LOC_0s12936194 or
ATDCDc ATP:dCDP phosphotransferase atp[c] + dcdplc] -> adp[c] + dctp[c] LOC_0s05g51700) Pyrimidine metabolism 2746
DCMPKCc dCMP kinase atp[c] + dcmp[c] <=> adp]c] + dcdp[c] LOC_0s07g43170 Pyrimidine metabolism 2.7.4.14
(LOC_0s10g41410 or LOC_0s02g35700
or LOC_0s12g36194 or
ATCDc ATP:CDP phosphotransferase, cytosolic atp[c] + cdpl[c] -> adp[c] + ctp[c] LOC_0s05g51700) Pyrimidine metabolism 2746
(LOC_0s07g30970 or LOC_0s12g36194
ATCDs ATP:CDP phosphotransferase, plastidic atp[s] + cdp[s] -> adp[s] + ctp[s] or LOC_0s05¢51700) Pyrimidine metabolism 2746
CMPKc CMP Kinase, cytosolic atp[c] + cmp[c] <=> adp]c] + cdp[c] LOC_0s07g43170 Pyrimidine metabolism 27414
CMPKs CMP kinase, plastidic atp[s] + cmp[s] <=> adp][s] + cdp[s] LOC_0s02g53790 Pyrimidine metabolism 2.7.4.14
(LOC_0s10g41410 or LOC_0s02g35700
or LOC_0s129g36194 or
ATUDc ATP:UDP phosphotransferase, cystosolic atp[c] + udp[c] -> adp[c] + utp[c] LOC_0s05g51700) Pyrimidine metabolism 2746
(LOC_0s07g30970 or LOC_0s129g36194
ATUDs ATP:UDP phosphotransferase, plastidic atp[s] + udp[s] -> adp[s] + utp[s] or LOC_0s05¢51700) Pyrimidine metabolism 2746
ATUDvV ATP:UDP phosphotransferase, vacuolar atp[v] + udp[v] -> adp[v] + utp[Vv] LOC_0s07g30970 Pyrimidine metabolism 2746
UMPKc ATP:UMP phosphotransferase atp[c] + ump]c] -> adpl[c] + udp[c] (LOC_0s04933300 or LOC_0s06g02000) Pyrimidine metabolism 2.7.4.22
(LOC_0s01918860 or LOC_0s07g29440
or LOC_0s06911180 or LOC_0s01g22010
or LOC_0s05904510 or Phytohormones biosynthesis
MATC Methionine adenosyltransferase atp[c] + met-L[c] + h2o[c] -> pi[c] + ppi[c] + amet[c] LOC_0s01g10940) (Ethylene) 2516
AMPDc AMP deaminase amp[c] + h2o[c] + h[c] -> imp[c] + nh4[c] (LOC_0s07g49270 or LOC_0s05g28180) Purine metabolism 3.5.4.6
(LOC_0s01951280 or LOC_0s03g44660
AMPPc Adenosine 5-monophosphate phosphohydrolase amp[c] + h2o[c] -> adn]c] + pi[c] or LOC_0s07910460) Purine metabolism 3.1.35
ADNKCc Adenosine kinase atp[c] + adn[c] -> adp[c] + amp[c] + h[c] (LOC_0s02g41590 or LOC_0s04g43750) Purine metabolism 2.7.1.20
(LOC_0s02g40010 or LOC_0s04g42520
or LOC_0s12g39860 or LOC_0s07g30150
APPRTC Adenine phosphoribosyltransferase, cytosolic ade[c] + prpp[c] <=> ampl[c] + ppi[c] or LOC_0s12g40130) Purine metabolism 2427
(LOC_0s12939860 or LOC_0s05938170
APPRTs Adenine phosphoribosyltransferase, plastidic ade[s] + prpp[s] <=> ampl[s] + ppi[s] or LOC_0s12g40130) Purine metabolism 2427
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ADSHc Adenosylhomocysteinase ahcys[c] + h2o[c] <=> adn[c] + hcys-L[c] LOC_0s11g26850 metabolism 3311
PEPSs PEP synthetase h20o[s] + pyr[s] + atp[s] -> pi[s] + pep[s] + amp[s] LOC_0s06g30310 Glycolysis/Gluconeogensis 2.7.9.2
(LOC_0s01916960 or LOC_0s039g20880
PYKc Pyruvate kinase, cytosolic adp[c] + h[c] + pep[c] -> atp[c] + pyr[c] or LOC_0s11g10980) Glycolysis/Gluconeogensis 2.7.1.40
(LOC_0s01916960 or LOC_0s01g47080
or LOC_0s03g20880 or LOC_0s03g46910
or LOC_0s07908340 or LOC_0s10g42100
or LOC_0Os11g05110 or
PYKs Pyruvate kinase, plastidic adpl[s] + h[s] + pep[s] -> atp[s] + pyr[s] LOC_0s11g10980 or LOC_0s12g05110) Glycolysis/Gluconeogensis 2.7.1.40
PPDKs Pyruvate phosphate dikinase, plastidic atp[s] + pyr[s] + pi[s] -> ppi[s] + pep[s] + amp[s] LOC_0s03g31750 Glycolysis/Gluconeogensis 2.7.9.1
PPDKc Pyruvate phosphate dikinase, cytosolic atp[c] + pyr[c] + pi[c] -> ppi[c] + pep[c] + amp]c] LOC_0s05g33570 Glycolysis/Gluconeogensis 2.79.1
Malate dehydrogenase (oxaloacetate
MDH2c decarboxylating) (NADP+), cytosolic mal-L[c] + nadp[c] -> co2[c] + nadph[c] + pyr[c] LOC_0s05g09440 Glycolysis/Gluconeogensis 1.1.1.40
(LOC_0s01g52500 or LOC_0s01g54030
Malate dehydrogenase (oxaloacetate or LOC_0s01g09320 or
MDH?2s decarboxylating) (NADP+), plastidic mal-L[s] + nadp[s] -> co2[s] + nadph[s] + pyr[s] LOC_0s05g09440) Glycolysis/Gluconeogensis 1.1.1.40
PDCm pyruvate decarboxylase, mitochondrial 2ahethmpp[m] -> acald[m] + thmpp[m] Fermentation 4111
(LOC_0s01g06660 or LOC_0s05939310
or LOC_0s03918220 or LOC_0s05g39320
PDCs pyruvate decarboxylase, plastidic 2ahethmppls] -> acald[s] + thmpp]s] or LOC_0s07g49250) Fermentation 4111
ACSc acetate--CoA ligase, cytosolic coa[c] + ac[c] + atp[c] -> accoa[c] + ppi[c] + amp[c] (LOC_0s02932490 or LOC_0s04g33190) Fermentation 6.2.1.1
ACSX acetate--CoA ligase, peroxisomal coa[x] + ac[x] + atp[x] -> accoa[x] + ppi[x] + amp[x] Fermentation 6.2.1.1
ACSs acetate--CoA ligase, plastidic coa[s] + ac[s] + atp[s] -> accoa[s] + ppi[s] + amp][s] LOC_0s02g32490 Fermentation 6.2.1.1
Arginine and proline
GLU5Kc Glutamate 5-kinase, cytosolic atp[c] + glu-L[c] -> adp[c] + glu5p[c] metabolism 27.211
Arginine and proline
GLU5Ks Glutamate 5-kinase, plastidic atp[s] + glu-L[s] -> adp[s] + glu5p[s] (LOC_0s01g55890 or LOC_0s01g73450) metabolism 2.7.2.11
glu-L[m] + nadp[m] + h2o[m] <=> akg[m] + nh4[m] + nadph[m] Alanine, aspartate and
GDHym Glutamate dehydrogenase (NADP+) +h[m] LOC_0s01g37760 glutamate metabolism 1414
glu-L[m] + nad[m] + h2o[m] <=> akg[m] + nh4[m] + nadh[m] + (LOC_0s02g43470 or LOC_0s03g58040 Alanine, aspartate and
GDHm Glutamate dehydrogenase (NAD+) h[m] or LOC_0s04g45970) glutamate metabolism 1412
(LOC_0s06g36850 or LOC_0s06936820
or LOC_0s01g74650 or LOC_0s06g05700
or LOC_0s03950510 or LOC_0s06g42560
or LOC_0s01g59920 or LOC_0Os069g36880
or LOC_0s12g42980 or LOC_0s04g08350
or LOC_0s06g05690 or LOC_0s02g12900
1-pyrroline-5-carboxylate dehydrogenase or LOC_0s06936840 or LOC_0s04g32010 | Arginine and proline
PYR5CDm (NAD), mitochondrial glussa[m] + h2o[m] + nad[m] -> glu-L[m] + 2 h[m] + nadh[m] or LOC_0s03g53650) metabolism 1.2.1.88
(LOC_0s06936850 or LOC_0s069g36820
or LOC_0s01g74650 or LOC_0s06g05700
or LOC_0s03950510 or LOC_0s06g42560
or LOC_0s01g59920 or LOC_0s06g36880
or LOC_0s12g42980 or LOC_0s04g08350
or LOC_0s06g05690 or LOC_0s02912900
1-pyrroline-5-carboxylate dehydrogenase or LOC_0s06936840 or LOC_0s049g32010 | Arginine and proline
PYR5CDs (NAD), plastidic glubsa[s] + h2o[s] + nad[s] -> glu-L[s] + 2 h[s] + nadh[s] or LOC_0s03g53650) metabolism 1.2.1.88
(LOC_0s06g36850 or LOC_0s06936820
or LOC_0s01g74650 or LOC_0Os06g05700
or LOC_0s03g50510 or LOC_0Os06g42560
or LOC_0s01g59920 or LOC_0Os06936880
or LOC_0s12g42980 or LOC_0s04g08350
or LOC_0s06g05690 or LOC_0s02912900
1-pyrroline-5-carboxylate dehydrogenase or LOC_0s06936840 or LOC_0s04g32010 | Arginine and proline
PYR5CDym (NADP), mitochondrial gluSsa[m] + h2o[m] + nadp[m] -> glu-L[m] + 2 h[m] + nadph[m] or LOC_0s03g53650) metabolism 1.2.1.88




1-pyrroline-5-carboxylate dehydrogenase

(LOC_0s06936850 or LOC_0s06936820

or LOC_0s01g74650 or LOC_0Os06g05700
or LOC_0s03950510 or LOC_0s069g42560
or LOC_0s01g59920 or LOC_0Os06g36880
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PYR5CDys (NADP), plastidic glu5sa[s] + h2o[s] + nadp[s] -> glu-L[s] + 2 h[s] + nadph[s] or LOC_0s03g53650) metabolism 1.2.1.88
(LOC_0s02g50240 or LOC_0s03g12290 Alanine, aspartate and
GALc Glutamate--ammonia ligase, cytosolic atp[c] + glu-L[c] + nh4[c] -> adp[c] + pi[c] + gIn-L[c] + h[c] or LOC_0s03g50490) glutamate metabolism 6.3.1.2
Alanine, aspartate and
GALm Glutamate--ammonia ligase, mitochondrial atp[m] + glu-L[m] + nh4[m] -> adp[m] + pi[m] + gIn-L[m] + h[m] LOC_0s04g56400 glutamate metabolism 6.3.1.2
GALs Glutamate--ammonia ligase, plastidic atp[s] + glu-L[s] + nh4[s] -> adp[s] + pi[s] + gIn-L[s] + h[s] LOC_0s04g56400 Photorespiration 6.3.1.2
Alanine--glyoxylate aminotransferase, (LOC_0s03g07570 or LOC_0s03g21960 Glycine, serine and threonine
AGATmM mitochondrial gIx[m] + ala-L[m] <=> gly[m] + pyr[m] or LOC_0s05¢39770) metabolism 2.6.1.44
Alanine--glyoxylate aminotransferase, Glycine, serine and threonine
AGATX peroxisomal gIx[x] + ala-L[x] <=> gly[x] + pyr[X] LLOC_Os08g39300 metabolism 2.6.1.44
Glycine, serine and threonine
AGATs Alanine--glyoxylate aminotransferase, plastidic glIx[s] + ala-L[s] <=> gly[s] + pyr[s] LOC_0s07g01760 metabolism 2.6.1.44
Alanine, aspartate and
ALAATC Alanine aminotransferase, cytosolic akg[c] + ala-L[c] <=> glu-L[c] + pyr][c] glutamate metabolism 2.6.1.2
(LOC_0s09926380 or LOC_0s10g25130 Alanine, aspartate and
ALAATmM Alanine aminotransferase, mitochondrial akg[m] + ala-L[m] <=> glu-L[m] + pyr[m] or LOC_0s10925140) glutamate metabolism 2.6.1.2
(LOC_0s07901760 or LOC_0s09926380
or LOC_0s10925130 or Alanine, aspartate and
ALAATs Alanine aminotransferase, plastidic akgls] + ala-L[s] <=> glu-L[s] + pyr[s] LOC_0s10g25140) glutamate metabolism 2.6.1.2
Arginine and proline
AAATC Amino-acid N-acetyltransferase accoa[c] + glu-L[c] -> coa[c] + acglu[c] + h[c] (LOC_0s03931690 or LOC_0s07g39690) metabolism 2311
Alanine, aspartate and
ARGDs Glutamate decarboxylase, plastidic glu-L[s] + h[s] -> 4abut[s] + co2[s] LOC_0s04g37500 glutamate metabolism 4.1.1.15
Alanine, aspartate and
ARGDc Glutamate decarboxylase, cytosolic glu-L[c] + h[c] -> 4abut[c] + co2[c] LOC_0s03g13300 glutamate metabolism 4.1.1.15
(LOC_0s03g51080 or LOC_0s04g37460
or LOC_0s04937500 or Alanine, aspartate and
ARGDm Glutamate decarboxylase, mitochondrial glu-L[m] + h[m] -> 4abut[m] + co2[m] LOC_0s08g36320) glutamate metabolism 4.1.1.15
L-aspartate 1-carboxy-lyase (beta-alanine- Alanine, aspartate and
ASPCLc forming) asp-L[c] <=> ala-BJc] + co2[c] glutamate metabolism 4.1.1.16
(LOC_0s01g46610 or LOC_0s04g42920 Sulfate metabolism
ICDHc Isocitrate dehydrogenase (NADP+), cytosolic icit[c] + nadp[c] <=> akg][c] + co2[c] + nadph[c] or LOC_0s05¢49760) (Glutathione) 1.1.1.42
Isocitrate dehydrogenase (NADP+),
ICDHm mitochondrial icitfm] + nadp[m] <=> akg[m] + co2[m] + nadph[m] (LOC_0s02938200 or LOC_0s04g40310) TCA Cycle 1.1.1.42
(LOC_0s04g46960 or LOC_0s02g44500 Sulfate metabolism
GTHPs glutathione peroxidase, plastidic h202[s] + 2 gthrd[s] -> gthox[s] + 2 h20[s] or LOC_0s06908670) (Glutathione) 1.11.1.9
Sulfate metabolism
GTHPc glutathione peroxidase, cytosolic h202[c] + 2 gthrd[c] -> gthox[c] + 2 h20[c] LOC_0s03g24380 (Glutathione) 1.11.1.9
Sulfate metabolism
GTHPm glutathione peroxidase, mitochondrial h202[m] + 2 gthrd[m] -> gthox[m] + 2 h2o[m] LOC_0s11g18170 (Glutathione) 1.11.19
Primary Cell Wall
(LOC_0s03g55070 or LOC_0s12g25700 Metabolism (Galactose
UPGCDc UDP-glucose 6-dehydrogenase udpg[c] + h2o[c] + 2 nad[c] -> udpglcur[c] + 2 nadh[c] + 3 h[c] or LOC_0s12925690) metabolism) 1.1.1.22
(LOC_0s03g61710 or LOC_0s02g04840
or LOC_0s11g11060 or LOC_0Os04g51880 | Primary Cell Wall
or LOC_0s06948940 or LOC_0s10g18220 | Metabolism (Galactose
GALKc Galactokinase atp[c] + gal[c] <=> adp][c] + gallp[c] + h[c] or LOC_0s03g02410) metabolism) 2.7.16
UDP-glucose--hexose-1-phosphate Primary Cell Wall
UGLTc uridylyltransferase gallp[c] + udpg[c] <=> glp[c] + udpgal[c] LOC 0s07g07550 Metabolism (Galactose 2.7.7.12




metabolism)

176

Starch and sucrose

THAC alpha,alpha-trehalase tre[c] + h20[c] -> 2 glc-B[c] LOC_0s10g37660 metabolism (Sucrose) 3.2.1.28
(LOC_0s02g44230 or LOC_0s07930160
or LOC_0s04g46760 or LOC_0s12g32130
or LOC_0s03912360 or LOC_0s09g23350
or LOC_0s05903810 or LOC_0s10g40550 | Starch and sucrose
THPc Trehalose-phosphatase tre6p[c] + h2o[c] -> tre[c] + pi[c] or LOC_0s12g09060) metabolism (Sucrose) 3.1.3.12
alpha,alpha-trehalose-phosphate synthase (UDP- Starch and sucrose
TPSc forming) udpg[c] + g6p-A[c] -> udp[c] + tre6p[c] + h[c] LOC_0s05g44210 metabolism (Sucrose) 2.4.1.15
(LOC_0s03g03610 or LOC_0s01g34880
or LOC_0s01g34890 or LOC_0s01g34930
or LOC_0s01g48200 or LOC_0s01g55040
or LOC_0s02914900 or LOC_0s02958560
or LOC_0s03902756 or LOC_0s069g02260
or LOC_0s06908380 or Starch and sucrose
GLCNSc 1,3-beta-glucan synthase 2 udpglc] + h2o[c] -> b-glucan[c] + 2 udp][c] LOC_0s06g51270) metabolism (Cellulose) 2.4.1.34
(LOC_0s01g58730 or LOC_0s01g71350
or LOC_0s01971380 or LOC_0s01g71400
or LOC_0s01g71400 or LOC_0s01g71474
or LOC_0s01971650 or LOC_0Os01g71670
or LOC_0s01g71680 or LOC_0s01g71810
or LOC_0s01g71820 or LOC_0s01g71830
or LOC_0s01971860 or LOC_0s03g40330 | Starch and sucrose
GLCNGBc Glucan endo-1,3-beta-D-glucosidase b-glucan[c] + h2o[c] <=> 2 glc-B[c] or LOC_0s03g56130) metabolism (Cellulose) 3.2.1.39
(LOC_0s01g58730 or LOC_0s01g71350
or LOC_0s01g71380 or LOC_0s01g71400
or LOC_0s01971400 or LOC_Os01g71474
or LOC_0s01g71650 or LOC_0s01g71670
or LOC_0s01971680 or LOC_0s01g71810
or LOC_0s01g71820 or LOC_0s01g71830
or LOC_0s01971860 or LOC_0s03g40330 | Starch and sucrose
GLCNGBvV Glucan endo-1,3-beta-D-glucosidase b-glucan[v] + h2o[v] <=> 2 glc-B[v] or LOC_0s03g56130) metabolism (Cellulose) 3.2.1.39
(LOC_0s01g58730 or LOC_0s01g71350
or LOC_0s01g71380 or LOC_0s01g71400
or LOC_0s01g71400 or LOC_0s01g71474
or LOC_0s01971650 or LOC_0s01g71670
or LOC_0s01g71680 or LOC_0s01g71810
or LOC_0s01971820 or LOC_0s01g71830
or LOC_0s01g71860 or LOC_0s03g40330 | Starch and sucrose
GLCNGACc Glucan 1,3-beta-glucosidase b-glucan[c] + h2o[c] <=> 2 glc-A[c] or LOC_0s03g56130) metabolism (Cellulose) 3.2.1.58
(LOC_0s01g58730 or LOC_0s01g71350
or LOC_0s01g71380 or LOC_0s01g71400
or LOC_0s01g71400 or LOC_0Os01g71474
or LOC_0s01g71650 or LOC_0s01g71670
or LOC_0s01g71680 or LOC_0Os01g71810
or LOC_0s01g71820 or LOC_0s01g71830
or LOC_0s01971860 or LOC_0s03g40330 | Starch and sucrose
GLCNGAvV Glucan 1,3-beta-glucosidase b-glucan[v] + h2o[v] <=> 2 glc-A[v] or LOC_0s03g56130) metabolism (Cellulose) 3.2.1.58
Starch and sucrose
GALUic UTP--glucose-1-phosphate uridylyltransferase utp[c] + glp[c] + h[c] -> ppi[c] + udpg]c] (LOC_0s02g02560 or LOC_0s09g38030) metabolism (Sucrose) 2.7.79
Starch and sucrose
GALUiv UTP--glucose-1-phosphate uridylyltransferase utp[v] + glp[v] + h[v] -> ppi[v] + udpg[V] metabolism (Sucrose) 2.7.79
Primary Cell Wall
Metabolism (Galactose
MTGHc manninotriose galactohydrolase mnt[c] + h2o[c] -> gal[c] + melib[c] LOC_0s07g48160 metabolism) 3.2.1.22
MGHACc melibiose galactohydrolase (glc-A) melib[c] + h2o[c] -> gal[c] + glc-Ac] LOC 0s07g48160 Primary Cell Wall 3.2.1.22




Metabolism (Galactose
metabolism)
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Primary Cell Wall
Metabolism (Galactose

MGHBc melibiose galactohydrolase (glc-B) melib[c] + h2o[c] -> gal[c] + glc-B]c] LOC_0s07g48160 metabolism) 3.21.22
Primary Cell Wall
Metabolism (Galactose
SFHc stachyose fructohydrolase stc[c] + h2o[c] -> mnt[c] + fru-B[c] LOC_0s01g73580 metabolism) 3.2.1.26
Primary Cell Wall
Metabolism (Galactose
RGHc Raffinose galactohydrolase raffin[c] + h2o[c] -> gal[c] + sucr[c] LOC_0s07g48160 metabolism) 3.21.22
Primary Cell Wall
Metabolism (Galactose
SYGHc stachyose galactohydrolase stc[c] + h2o[c] -> raffin[c] + gal[c] LOC_0s07g48160 metabolism) 3.21.22
Primary Cell Wall
Metabolism (Galactose
GRGTc galactinol---raffinose galactosyltransferase 1Dgali[c] + raffin[c] -> inost[c] + stc[c] LOC_0s01g07530 metabolism) 2.4.1.67
Primary Cell Wall
Metabolism (Galactose
RAFFINSc raffinose synthase 1Dgali[c] + sucr[c] -> inost[c] + raffin[c] LOC_0s01g07530 metabolism) 2.4.1.82
Primary Cell Wall
Metabolism (Galactose
I1AGTc inositol 3-alpha-galactosyltransferase udpgal[c] + inost[c] -> udp[c] + 1Dgali[c] + h[c] LOC_0s07g48830 metabolism) 2.4.1.123
(LOC_0s05¢51670 or LOC_0s08g28730 Primary Cell Wall
or LOC_0s09915420 or Metabolism (Galactose
UDPG4Ec UDP-glucose 4-epimerase udpg[c] <=> udpgal[c] LOC_0s09g35800) metabolism) 5.1.3.2
(LOC_0s10g41410 or LOC_0s02g35700
or LOC_0s12g36194 or
ATGDc ATP:GDP phosphotransferase, cytosolic atp[c] + gdp[c] -> adp[c] + gtp[c] LOC_0s05g51700) Purine metabolism 2746
(LOC_0s07g30970 or LOC_0s12g36194
ATGDs ATP:GDP phosphotransferase, plastidic atp[s] + gdp[s] -> adp[s] + gtp[s] or LOC_0s05¢51700) Purine metabolism 2746
GTPDPKs GTP diphosphokinase atp[s] + gtp[s] -> amp[s] + gdptp[s] (LOC_0s08g35620 or LOC_0s09g27050) Purine metabolism 2.7.6.5
Guanosine-3,5-bis(diphosphate) 3-
GBDPs pyrophosphohydrolase ppgpp[s] + h2o[s] -> gdp[s] + ppi[s] LOC_0s02g47120 Purine metabolism 3.1.7.2
Guanosine-5-triphosphate,3-diphosphate
GDTPs pyrophosphatase gdptp[s] + h20[s] -> ppappl[s] + pi[s] + h[s] LOC_0s04g58900 Purine metabolism 3.6.1.40
UMPKs ATP:UMP phosphotransferase atp[s] + ump[s] -> adp[s] + udp[s] (LOC_0s04933300 or LOC_0s06g02000) Pyrimidine metabolism 2.7.4.22
(LOC_0s10g41410 or LOC_0s02g35700
or LOC_0s129g36194 or
ATDADc ATP:dADP phosphotransferase atp[c] + dadpl[c] -> adp[c] + datp[c] LOC_0s05g51700) Purine metabolism 2746
(LOC_0s10g41410 or LOC_0s02g35700
or LOC_0s129g36194 or
ATDGDc ATP:dGDP phosphotransferase atp[c] + dgdp[c] -> adp]c] + dgtp[c] LOC_0s05g51700) Purine metabolism 2746
(LOC_0s03g15050 or LOC_0s10g13700
PPCKc Phosphoenolpyruvate carboxykinase (ATP) oaa[c] + atp[c] -> co2[c] + pepl[c] + adp[c] or LOC_0s04950208) Glycolysis/Gluconeogensis 4.1.1.49
MDHys malate dehydrogenase (NADP+), plastidic mal-L[s] + nadp[s] <=> oaa[s] + nadph[s] + h[s] LOC_0s08g44810 Fermentation 1.1.1.82
(LOC_0s05g49880 or LOC_0s03956280
or LOC_0s01g61380 or LOC_0s01g46070
or LOC_0s07g43700 or LOC_0s04g46560
or LOC_0s08g33720 or
MDHs Malate dehydrogenase, plastidic mal-L[s] + nad[s] <=> oaa[s] + nadh[s] + h[s] LOC_0s12g43630) Glycolysis/Gluconeogensis 1.1.1.37
MDHc Malate dehydrogenase, cytosolic mal-L[c] + nad[c] <=> oaa[c] + nadh[c] + h[c] LOC_0s10g33800 Glyoxylate Cycle 1.1.1.37
MDHx Malate dehydrogenase, peroxisomal mal-L[x] + nad[x] <=> oaa[x] + nadh[x] + h[x] (LOC_0s03956280 or LOC_0s12g43630) Glyoxylate Cycle 1.1.1.37
(LOC_0s05g49880 or LOC_0s01g61380
or LOC_0s01g46070 or LOC_0s07g43700
MDHm Malate dehydrogenase, mitochondrial mal-L[m] + nad[m] <=> oaa[m] + nadh[m] + h[m] or LOC_0s08g33720) TCA Cycle 1.1.1.37
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MDHv Malate dehydrogenase, vacuolar mal-L[v] + nad[v] <=> oaa[v] + nadh[v] + h[v] (LOC_0s03956280 or LOC_0s12g43630) TCA Cycle 1.1.1.37
(LOC_0s01g02050 or LOC_0s08g43710
or LOC_0s01955350 or LOC_0s01g11054
or LOC_Os09g14670 or LOC_0s08g27840
or LOC_0s02g14770 or
PPCc Phosphoenolpyruvate carboxylase co2[c] + h2o[c] + pep[c] <=> h[c] + oaa[c] + pi[c] LOC_0s01g73970) Glycolysis/Gluconeogensis 4.1.1.31
ATPCSc ATP-citrate (pro-S-)-lyase cit[c] + coa[c] + atp[c] -> oaa[c] + accoa[c] + pi[c] + adp[c] (LOC_0s01g19450 or LOC_0s12g37870) TCA Cycle 2.3.3.8
CSx Citrate synthase, peroxisomal oaa[x] + accoa[x] + h2o[x] <=> cit[x] + coa[x] + h[X] LOC_0s02g13840 Glyoxylate Cycle 2.33.1
CSm Citrate synthase, mitochondrial oaa[m] + accoa[m] + h2o[m] <=> cit[m] + coa[m] + h[m] (LOC_0s02g10070 or LOC_0s11g33240) TCA Cycle 2331
Nicotinate and Nicotinamide
ASPO1s L-aspartate oxidase asp-L[s] + 02[s] -> h[s] + h202][s] + iasp[s] LOC_0s02g04170 metabolism 1.4.3.16
Nicotinate-nucleotide pyrophosphorylase Nicotinate and Nicotinamide
NNDPRs (carboxylating) 2 h[s] + prpp[s] + quin[s] -> co2[s] + nicrnt[s] + ppi[s] LOC_0s09g38060 metabolism 2.4.2.19
Nicotinate and Nicotinamide
NNATc Nicotinate-nucleotide adenylyltransferase atp[c] + h[c] + nicrnt[c] <=> dnad[c] + ppi[c] LOC_0s02g56980 metabolism 2.7.7.18
Nicotinate and Nicotinamide
NADS(nh4)c NAD(+) synthetase atp[c] + dnad[c] + nh4[c] -> amplc] + h[c] + nad[c] + ppi[c] LOC_0s07g07260 metabolism 6.3.1.5
atp[c] + dnad[c] + gIn-L[c] + h2o[c] -> amplc] + ppi[c] + nad[c] + Nicotinate and Nicotinamide
NADS(gIn-L)c NAD(+) synthetase (glutamine-hydrolysing) glu-L[c] + h[c] LOC_0s07g07260 metabolism 6.3.5.1
Nicotinate and Nicotinamide
QULNSs quinolinate synthase dhap[s] + iasp[s] -> 2 h20[s] + pi[s] + quin[s] LOC_0s12919304 metabolism 2.5.1.72
atp[c] + h2o[c] + nac[c] + prpp[c] -> adp[c] + nicrnt[c] + pi[c] + Nicotinate and Nicotinamide
NAMNPPc Nicotinate phosphoribosyltransferase ppi[c] (LOC_0s03g62110 or LOC_0s04g35060) metabolism 6.3.4.21
Nicotinate and Nicotinamide
NNAMc nicotinamidase h2o[c] + ncam[c] -> nac[c] + nh4[c] + h[c] LOC_0s02g39400 metabolism 3.5.1.19
Nicotinate and Nicotinamide
NMNDAc Nicotinamide-nucleotide amidase h2o[c] + nmn[c] -> nh4[c] + nicrnt[c] + h[c] metabolism 3.5.1.42
Nicotinate and Nicotinamide
NMNNc NMN nucleosidase h2o[c] + nmn[c] <=> h[c] + ncam[c] + r5p[c] metabolism 3.22.14
Nicotinate and Nicotinamide
NMNATc Nicotinamide-nucleotide adenylyltransferase atp[c] + h[c] + nmn][c] -> nad[c] + ppi[c] (LOC_0s02g56980 or LOC_0s09g17870) metabolism 2771
Nicotinate and Nicotinamide
N2PHs NADP phosphatase, plastidic pi[s] + nad[s] -> nadp[s] + h20[s] metabolism 3.1.3.-
Nicotinate and Nicotinamide
N2PHc NADP phosphatase, cytosolic pi[c] + nad[c] -> nadp[c] + h2o[c] (LOC_0s01g56880 or LOC_0s12g44010) metabolism 3.1.3.-
Nicotinate and Nicotinamide
NADKc NAD(+) kinase, cytosolic atp[c] + nad[c] -> adp[c] + h[c] + nadp[c] LOC_0s09g17680 metabolism 2.7.1.23
(LOC_0s11g08670 or LOC_0s05g32210 Nicotinate and Nicotinamide
NADKSs NAD(+) kinase, plastidic atp[s] + nad[s] -> adp[s] + h[s] + nadpl[s] or LOC_0s01g72690) metabolism 2.7.1.23
Nicotinate and Nicotinamide
NADKm NAD(+) kinase, mitochondrial atp[m] + nad[m] -> adp[m] + h[m] + nadp[m] metabolism 2.7.1.23
Nicotinate and Nicotinamide
NADHKCc NADH kinase, cytosolic atp[c] + nadh[c] -> adp[c] + h[c] + nadph[c] LOC_0s09g17680 metabolism 2.7.1.86
(LOC_0s11g08670 or LOC_0s05g32210 Nicotinate and Nicotinamide
NADHKSs NADH kinase, plastidic atp[s] + nadh[s] -> adp[s] + h[s] + nadph][s] or LOC_0s01g72690) metabolism 2.7.1.86
Nicotinate and Nicotinamide
NADHKm NADH kinase, mitochondrial atp[m] + nadh[m] -> adp[m] + h[m] + nadph[m] metabolism 2.7.1.86
ASPTAC Aspartate aminotransferase, cytosolic akglc] + asp-L[c] <=> glu-L[c] + oaa[c] LOC_0s01g55540 Nitrogen metabolism 2.6.1.1
ASPTAmM Aspartate aminotransferase, mitochondrial akg[m] + asp-L[m] <=> glu-L[m] + oaa[m] (LOC_0s02914110 or LOC_0s06g35540) Nitrogen metabolism 26.1.1
ASPTAs Aspartate aminotransferase, plastidic akgls] + asp-L[s] <=> glu-L[s] + oaa[s] (LOC_0s01g65090 or LOC_0s02g55420) Nitrogen metabolism 2.6.1.1
GLYTAX Glycine aminotransferase gIx[x] + glu-L[x] -> gly[x] + akg[X] LOC_0s07g01760 Photorespiration 26.14
SUCL(GDP)m Succinate--CoA ligase (GDP-forming) succ[m] + coa[m] + gtp[m] <=> succoa[m] + gdp[m] + pi[m] LOC_0s02g40830 TCA Cycle 6.2.1.4
SUCL(ADP)m Succinate--CoA ligase (ADP-forming) succ[m] + coa[m] + atp[m] <=> succoa[m] + adp[m] + pi[m] LOC_0s02g40830 TCA Cycle 6.2.1.5
CTPCHc GTP cyclohydrolase | gtp[c] + h2o[c] -> ahdt[c] + for[c] + 2 h[c] LOC_0s04g56710 Folates metabolism 3.5.4.16
LYSDCs Lysine decarboxylase lys-L[s] + h[s] <=> co2[s] + cadaverine[s] LOC_0s05g46360 Lysine metabolism 4.1.1.18
AASADc alpha-aminoadipate reductase L2aadp[c] + h[c] + nadh[c] <=> L2aadp6sa[c] + nad[c] + h20o[c] LOC_0s09g26880 Lysine metabolism 1.2.1.31
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SACCDyc forming) h[c] LOC_0s02g54254 Lysine metabolism 15.1.8
Saccharopine dehydrogenase (NAD+, L- L2aadp6sa[c] + glu-L[c] + h[c] + nadh[c] <=> h2o[c] + nad[c] +
SACCDc glutamate forming) saccrp-L[c] LOC_0s02g54254 Lysine metabolism 15.1.9
AATAC 2-aminoadipate aminotransferase 2oxoadplc] + glu-L[c] <=> L2aadp[c] + akg[c] Lysine metabolism 2.6.1.39
((LOC_0s09g33500 and
LOC_0s08g42410) and
Pyruvate dehydrogenase (lipoamide) (reaction (LOC_0s06913720 and
PDHamlm 1), mitochondrial pyr[m] + thmpp[m] + h[m] -> 2ahethmpp[m] + co2[m] LOC_0s02g50620)) Glycolysis/Gluconeogensis 1.24.1
((LOC_0s09g33500 and
LOC_0s08g42410) and
Pyruvate dehydrogenase (lipoamide) (reaction (LOC_0s06913720 and
PDHam2m 2), mitochondrial 2ahethmpp[m] + Ipam[m] -> adhlam[m] + thmpp[m] LOC_0s02g50620)) Glycolysis/Gluconeogensis 1.24.1
(LOC_0s06g30460 or LOC_0s069g01630
Dihydrolipoamide S-acetyltransferase, or LOC_0s02901500 or
PDHe2m mitochondrial adhlam[m] + coa[m] <=> accoa[m] + dhlam[m] LOC_0s07g22720) Glycolysis/Gluconeogensis 2.3.1.12
PDHe3m dihydrolipoyl dehydrogenase, mitochondrial dhlam[m] + nad[m] <=> h[m] + Ipam[m] + nadh[m] (LOC_0s01g22520 or LOC_0s05g06750) Glycolysis/Gluconeogensis 1814
(LOC_0s04902900 and
Pyruvate dehydrogenase (lipoamide) (reaction (LOC_0s03g44300 and
PDHam1s 1), plastidic pyr[s] + thmpp[s] + h[s] -> 2ahethmpp[s] + co2[s] LOC_0s12g42230)) Glycolysis/Gluconeogensis 1.24.1
(LOC_0s04902900 and
Pyruvate dehydrogenase (lipoamide) (reaction (LOC_0s03g44300 and
PDHam2s 2), plastidic 2ahethmpp[s] + Ipam[s] -> adhlam[s] + thmpp[s] LOC_0s12g42230)) Glycolysis/Gluconeogensis 1241
PDHe2s Dihydrolipoamide S-acetyltransferase, plastidic adhlam(s] + coa[s] <=> accoa[s] + dhlam[s] LOC_0s12g08170 Glycolysis/Gluconeogensis 2.3.1.12
PDHe3s dihydrolipoyl dehydrogenase, plastidic dhlam[s] + nad[s] <=> h[s] + Ipam[s] + nadh[s] (LOC_0s01g23610 or LOC_0s05g06460) Glycolysis/Gluconeogensis 1814
2-oxoglutarate dehydrogenase (lipoamide)
AKGDHamlm (reaction 1), mitochondrial akg[m] + thmpp[m] + h[m] -> 3chpthmpp[m] + co2[m] (LOC_0s07g49520 or LOC_0s04g32020) Glycolysis/Gluconeogensis 1.24.2
2-oxoglutarate dehydrogenase (lipoamide)
AKGDHam2m (reaction 2), mitochondrial 3chpthmpp[m] + h[m] + Ipam[m] -> co2[m] + sdhlam[m] (LOC_0s07g49520 or LOC_0s04g32020) TCA Cycle 1.24.2
AKGDHe2m 2-oxoglutarate dehydrogenase E2 component coa[m] + sdhlam[m] + h[m] <=> dhlam[m] + succoa[m] LOC_0s04g32330 TCA Cycle 2.3.1.61
OXADH1m 2-oxoadipate dehydrogenase E1 component 20xo0adp[m] + h[m] + Ipam[m] -> co2[m] + gdhlam[m] LOC_0s07g49520 Lysine metabolism 1.24.2
OXADH2m 2-oxoadipate dehydrogenase E2 component coa[m] + gdhlam[m] + h[m] <=> dhlam[m] + gcoa[m] LOC_0s04g32330 Lysine metabolism 2.3.1.61
DAPDCs Diaminopimelate decarboxylase 26dap-M[s] + h[s] -> lys-L[s] + co2[s] LOC_0s02g24354 Lysine metabolism 4.1.1.20
MALSs Malate synthase, plastidic accoa[s] + gIx[s] + h2o[s] -> coa[s] + h[s] + mal-L[s] LOC_0s04g40990 Photorespiration 2.3.39
MALSX Malate synthase, peroxisomal accoa[x] + gIx[x] + h20[x] -> coa[x] + h[x] + mal-L[x] Glyoxylate Cycle 2.3.39
(LOC_0s03g57220 or LOC_0s04953210
or LOC_0s04953214 or
GOXx glycolate oxidase glyclt[x] + 02[x] -> gIx[x] + h202[X] LOC_0s07g05820) Photorespiration 1.1.3.15
ICLX Isacitrate lyase icit[x] -> gIx[x] + succ[x] LOC_0s07g34520 Glyoxylate Cycle 4131
aminoacetone:oxygen Glycine, serine and threonine
AMOXx oxidoreductase(deaminating) aact[x] + h2o[x] + 02[x] -> mthgxI[x] + nh4[x] + h202[x] LOC_0s04g40040 metabolism 14321
Glycine, serine and threonine
AOBUTDx (No enzyme) 2aobut[x] + 2 h[x] -> aact[x] + co2[x] metabolism spontaneous
(LOC_0s01g54940 or LOC_0s04g30420
or LOC_0s08g01760 or LOC_0s08g29170
or LOC_0s05924880 or Glycine, serine and threonine
THR3DHXx L-threonine 3-dehydrogenase thr-L[x] + nad[x] -> 2aobut[x] + nadh[x] + 2 h[x] LOC_0s09g28570) metabolism 1.1.1.103
Glycine, serine and threonine
GLYATX Glycine C-acetyltransferase accoa[x] + gly[x] <=> coa[x] + 2aobut[x] + h[x] metabolism 2.3.1.29
(LOC_0s07g20544 or LOC_0s09g12290
or LOC_0s01g70300 or LOC_0s03g63330 | Glycine, serine and threonine
ASPKs Aspartate kinase atp[s] + asp-L[s] -> adp[s] + 4pasp[s] or LOC_0s08g25390) metabolism 27.2.4
ASPALs Aspartate--ammonia ligase asp-L[s] + atp[s] + nh4[s] -> amp[s] + asn-L[s] + h[s] + ppi[s] LOC_0s03g18130 Nitrogen metabolism 6.3.1.1
ASPALc Aspartate--ammonia ligase asp-L[c] + atp[c] + nh4[c] -> amp][c] + asn-L[c] + h[c] + ppi[c] LOC_0s06g15420 Nitrogen metabolism 6.3.1.1
ASNNc Asparaginase asn-L[c] + h2o[c] -> asp-L[c] + nh4[c] (LOC_0s04g58600 or LOC_0s04g46370) Nitrogen metabolism 35.1.1
FDHm Formate dehydrogenase, mitochondrial for[m] + nad[m] -> co2[m] + nadh[m] (LOC_0s06929180 or LOC_0s06g29220) Folates metabolism 1.2.1.2
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FDHNc Formate dehydrogenase-N for[c] + g8[m] + 2 h[m] -> g8h2[m] + h[c] + co2[c] (LOC_0s06929180 or LOC_0s06g29220) Folates metabolism 1.2.1.2
SULOx sulfite oxidase, peroxisomal hso3[x] + 02[x] + h20[x] -> s04[x] + h202[x] + h[X] (LOC_0s08g41830 or LOC_0s12g25630) Sulfate metabolism 1.8.3.1
SULOm sulfite oxidase, mitochondrial hso3[m] + 02[m] + h2o[m] -> so4[m] + h202[m] + h[m] (LOC_0s08g41830 or LOC_0s12g25630) Sulfate metabolism 1.8.3.1
SUATc Sulfate adenylyltransferase, cytosolic atp[c] + so4[c] + h[c] -> ppi[c] + aps[c] (LOC_0s04902050 or LOC_0s03g53230) Sulfate metabolism 217.74
SUATs Sulfate adenylyltransferase, plastidic atp[s] + so4[s] + h[s] -> ppi[s] + aps[s] (LOC_0s04g02050 or LOC_0s03g53230) Sulfate metabolism 21774
Arginine and proline
ARGNc Arginase h2o[c] + arg-L[c] -> orn[c] + urea[c] LOC_0s04g01590 metabolism 3531
Arginine and proline
PTORc putrescine oxidase ptrc[c] + 02[c] + h2o[c] <=> 4abutn[c] + nh4[c] + h202[c] (LOC_0s06g23114 or LOC_0s06g23140) metabolism 1.4.3.10
Alanine, aspartate and
PAOC primary-amine oxidase 13dampp[c] + 02[c] + h20[c] -> bamppald[c] + nh4[c] + h202[c] LOC_0s04g40040 glutamate metabolism 1.43.21
(LOC_0s11g08300 or LOC_0s09g26880
or LOC_0s04945720 or LOC_0s02g43280 | Alanine, aspartate and
AMPORCc 3-aminopropanal:NAD+ oxidoreductase bamppald[c] + nad[c] + h2o[c] -> ala-B[c] + nadh[c] + 2 h[c] or LOC_0s02g43194) glutamate metabolism 1.2.1.3
Arginine and proline
SPMDDHc Spermidine dehydrogenase spmd[c] + 02[c] + h2o[c] -> 13dampp]c] + 4abutn[c] + h202[c] LOC_0s02g43220 metabolism 1.5.99.6
(LOC_0s11g08300 or LOC_0s09g26880
or LOC_0s04945720 or LOC_0s02g43280 | Arginine and proline
ABORCc 4-aminobutanal:NAD+ 1-oxidoreductase 4abutn[c] + nad[c] + h2o[c] -> 4abut[c] + nadh[c] + 2 h[c] or LOC_0s02g43194) metabolism 1.2.1.3
(LOC_0s08933620 or LOC_0s06g04070 Arginine and proline
ARG2MO arginine 2-monooxygenase 02[c] + arg-L[c] -> gabut[c] + co2[c] + h20[c] or LOC_0s04g01690) metabolism 1.13.12.1
(LOC_0s04g10434 or LOC_0Os06g16030
or LOC_0s11g06900 or LOC_0s12g07150
or LOC_0s04g02754 or LOC_0s04g02780
or LOC_0s04910410 or LOC_0s04g10460
or LOC_0s04g10530 or LOC_0s04g55050
or LOC_0s10g06710 or Arginine and proline
GABUTAHC 4-Guanidinobutanamide amidohydrolase gabut[c] + h2o[c] -> gabutn + nh4[c] LOC_0s11g33090) metabolism 3514
Arginine and proline
GABUTNAHC 4-Guanidinobutanoate amidinohydrolase gabutn[c] + h2o[c] -> 4abut[c] + urea[c] metabolism 3.5.3.7
Arginine and proline
CMPAC N-carbamoylputrescine amidase cbmp[c] + h2o[c] + h[c] -> ptrc[c] + co2[c] + nh4[c] LOC_0s02g33080 metabolism 3.5.1.53
Arginine and proline
AGDIc Agmatine deiminase agm[c] + h2o[c] -> cbmp[c] + nh4[c] LOC_0s04g39210 metabolism 3.5.3.12
Arginine and proline
AGMTc Agmatinase agm[c] + h2o[c] -> ptrc[c] + urea[c] LOC_0s04g01590 metabolism 35311
(LOC_0s08933620 or LOC_0s06g04070 Avrginine and proline
ARDCc Arginine decarboxylase arg-L[c] + h[c] -> agm[c] + co2[c] or LOC_0s04901690) metabolism 4.1.1.19
Avrginine and proline
NOSc Nitric-oxide synthase arg-L[c] + 02[c] + nadph[c] -> no[c] + citr-L[c] + nadp[c] LOC_0s03g17170 metabolism 1.14.13.39
Avrginine and proline
ARGDIc Arginine deiminase arg-L[c] + h2o[c] -> citr-L[c] + nh4][c] LOC_0s11g44860 metabolism 3.5.3.6
carbamoyl-phosphate synthetase (glutamine- 2 atp[c] + gIn-L[c] + hco3[c] + h2o[c] -> 2 adp][c] + pi[c] + glu- Avrginine and proline
HCGALc hydrolysing) L[c] + cbp[c] + 2 h[c] (LOC_0s01g68320 or LOC_0s02g47850) metabolism 6.3.5.5
asparagine synthetase (glutamine-hydrolysing),
ASNS1c cytosolic gin-L[c] + h2o[c] -> glu-L[c] + nh4[c] LOC_0s03g18130 Nitrogen metabolism 6.3.5.4
asparagine synthetase (glutamine-hydrolysing), asp-L[s] + atp[s] + gIn-L[s] + h20[s] -> amp][s] + asn-L[s] + glu-
ASNS1s plstidic L[s] + h[s] + ppi[s] LOC_0s06g15420 Nitrogen metabolism 6.3.5.4
Glycine, serine and threonine
PSPs Phosphoserine phosphatase pser-L[s] + h2o[s] -> ser-L][s] + pi[s] (LOC_0s12931820 or LOC_0s11g41160) metabolism 3.1.33
Cysteine and methionine
CYSTGLs Cystathionine gamma-lyase cyst-L[s] + h2o[s] -> 2obut[s] + cys-L[s] + nh4[s] LOC_0s01g74650 metabolism 44.1.1
(LOC_0s03g50510 or LOC_0s12g42980
or LOC_0s03911660 or Cysteine and methionine
CYSTBSs Cystathionine beta-synthase heys-L[s] + ser-L[s] -> cyst-L[s] + h20[s] LOC_0s03g53650) metabolism 4.2.1.22
SATc Serine O-acetyltransferase, cytosolic ser-L[c] + accoa[c] -> acser[c] + coac] (LOC 0s05g45710 or LOC 0s03g04140 Cysteine and methionine 2.3.1.30
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metabolism

181

Cysteine and methionine

SATs Serine O-acetyltransferase, plastidic ser-L[s] + accoa[s] -> acser[s] + coa[s] (LOC_0s03g08660 or LOC_0s03g10050) metabolism 2.3.1.30
Cysteine and methionine
SATm Serine O-acetyltransferase, mitochondrial ser-L[m] + accoa[m] -> acser[m] + coa[m] LOC_0s03g10050 metabolism 2.3.1.30
SGATs Serine--glyoxylate aminotransferase, plastidic ser-L[s] + glx[s] <=> hpyr[s] + gly[s] Photorespiration 2.6.1.45
Serine--glyoxylate aminotransferase,
SGATX peroxisomal ser-L[x] + gIx[x] <=> hpyr[x] + gly[X] LOC_0s08g39300 Photorespiration 2.6.1.45
Cysteine and methionine
METSMTc Methionine S-methyltransferase met-L[c] + amet[c] -> ahcys[c] + mmet[c] LOC_0s05g01470 metabolism 21112
(LOC_0s12g41390 or LOC_0s01g56610
Homocysteine S-methyltransferase or LOC_0s03912110 or Cysteine and methionine
HCYSMTc (acetylhomocysteine forming) amet[c] + hcys-L[c] -> ahcys[c] + h[c] + met-L[c] LOC_0s10g28630) metabolism 2.1.1.10
S-adenosyl-L-methionine:L-histidine N- Cysteine and methionine
AMETAHYCSTc methyltransferase amet[c] <=> ahcys|c] LOC_0s10g01550 metabolism 2.1.1.37
(LOC_0s12g41390 or LOC_0s01g56610
Homocysteine S-methyltransferase (methionine or LOC_0s03912110 or Cysteine and methionine
HCYSMT2c forming) mmet[c] + hcys-L[c] -> 2 met-L[c] LOC_0s10g28630) metabolism 2.1.1.10
5-methyltetrahydropteroyltriglutamate— Cysteine and methionine
MSx homocysteine S-methyltransferase, peroxisomal 5mthglu[x] + heys-L[x] -> met-L[x] + thglu[x] (LOC_0s12g42876 or LOC_0s12g42884) metabolism 2.1.1.14
5-methyltetrahydropteroyltriglutamate— Cysteine and methionine
MSv homocysteine S-methyltransferase, vacuolor 5mthglu[v] + heys-L[v] -> met-L[v] + thglu[v] (LOC_0s12g42876 or LOC_0s12g42884) metabolism 2.1.1.14
5-methyltetrahydropteroyltriglutamate— Cysteine and methionine
MSc homocysteine S-methyltransferase, cytosolic 5mthglufc] + heys-L[c] -> met-L[c] + thglu[c] (LOC_0s129g42876 or LOC_0s12g42884) metabolism 2.1.1.14
Cysteine and methionine
ACDOc acireductone dioxygenase [iron(l1)-requiring] 12dmpolc] + 02[c] -> 2kmb][c] + for[c] + h[c] (LOC_0s03g06620 or LOC_0s10g28350) metabolism 1.13.11.54
Cysteine and methionine
METLc Methionine gamma-lyase met-L[c] + h2o[c] <=> nh4[c] + 2obut[c] + ch4s[c] (LOC_0s10g37340 or LOC_0s03g06620) metabolism 44111
O-Acetyl-L-homoserine acetate-lyase (adding Cysteine and methionine
ACHYSLc methanethiol) ch4s[c] + achms[c] <=> met-L[c] + ac[c] metabolism 2.5.1.49
(LOC_0s02g19970 or LOC_0Os06g23684
or LOC_0s11935040 or Cysteine and methionine
MOTAc methionine--phenylpyruvate transaminase 2kmb[c] + glu-L[c] -> met-L[c] + akg[c] LOC_0s11g42510) metabolism 2.6.15
Cysteine and methionine
M5TRKc 5-methylthioribose kinase atp[c] + 5mtr[c] -> adp[c] + 5mdrlp[c] + h[c] LOC_0s04g57400 metabolism 2.7.1.100
Cysteine and methionine
MTANC Methylthioadenosine nucleosidase 5mta[c] + h2o[c] -> ade[c] + 5mtr[c] LOC_0s06g02220 metabolism 3.2.2.16
Cysteine and methionine
SPRMSc Spermine synthase 5mta[c] + sprm[c] + h[c] <=> ametam[c] + spmd[c] LOC_0s02g14190 metabolism 2.5.1.22
Arginine and proline
ORDCc Ornithine decarboxylase orn[c] + h[c] -> ptrc[c] + co2[c] LOC_0s04g04980 metabolism 4.1.1.17
(LOC_0s02915550 or LOC_0s06g33710 Cysteine and methionine
SPMSc Spermidine synthase ametam[c] + ptrc[c] -> 5mta[c] + spmd][c] + h[c] or LOC_0s07g22600) metabolism 2.5.1.16
(LOC_0s05g04990 or LOC_0s05g13480 Cysteine and methionine
AMCLc Adenosylmethionine decarboxylase amet[c] + h[c] -> ametam[c] + co2|[c] or LOC_0s09g24600) metabolism 4.1.1.50
(LOC_0s01g09700 or LOC_0s04g48850 Phytohormones biosynthesis
ACPCSc 1-aminocyclopropane-1-carboxylate synthase amet[c] -> lacpc[c] + 5mtafc] + h[c] or LOC_0s03g51740) (Ethylene) 4.4.1.14
(LOC_0s09g27750 or LOC_0s01939860
or LOC_0s02g53180 or LOC_0s06937590
asch-L[c] + lacpc[c] + 02[c] + h[c] -> 2 h2o[c] + dhdascbh[c] + or LOC_0s09g27820 or LOC_0s05g05680 | Phytohormones biosynthesis
AMCPCOc aminocyclopropanecarboxylate oxidase co2[c] + cyan[c] + ethylene[c] or LOC_0s11g08380) (Ethylene) 1.14.174
Cysteine and methionine
M5TRPIc 5-methylthioribose-1-phosphate isomerase 5mdrlp[c] -> 5mdrulplc] LOC_0s11g11050 metabolism 5.3.1.23
Cysteine and methionine
M5TRPHc methylthioribulose 1-phosphate dehydratase 5mdrulp[c] <=> dkmpp[c] + h20[c] LOC_0s11g29370 metabolism 4.2.1.109
ACRSPc acireductone synthase, phosphate forming dkmpplc] + h2o][c] -> 12dmpo[c] + pi[c] + h[c] (LOC 0s01g01120 or LOC 0s11g29370) Cysteine and methionine 3.1.3.77
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(LOC_0s03g15950 or LOC_0s03914450
or LOC_0s06904510 or

ENOc enolase, cytosolic 2pg[c] <=> h2o[c] + pep[c] LOC_0s10g08550) Glycolysis/Gluconeogensis 4.2.1.11
ENOs enolase, plastidic 2pg[s] <=> h2o[s] + pep[s] LOC_0s09g20820 Glycolysis/Gluconeogensis 42111
Ornithine--oxo-acid aminotransferase, Arginine and proline
ORNTAmM mitochondrial orn[m] + akg[m] <=> glu5sa[m] + glu-L[m] LOC_0s03g44150 metabolism 2.6.1.13
Arginine and proline
ORNTAC Ornithine--oxo-acid aminotransferase, cytosolic orn[c] + akg[c] <=> glu5sa[c] + glu-L[c] metabolism 2.6.1.13
trp-L[c] + 2 nadph[c] + 2 02[c] + 2 h[c] -> ind3acetaldoxime[c] + Phytohormones biosynthesis
TRPMOc tryptophan N-monooxygenase co2[c] + 2 nadp[c] + 3 h20[c] LOC_0s04g08824 (IAA) 1.14.13.125
Phytohormones biosynthesis
1AOc Indole-3-acetaldehyde oxidase id3acald[c] + 02[c] + h20o[c] -> ind3ac[c] + h202[c] + h[c] (LOC_0s03g57690 or LOC_0s10g04860) (IAA) 1.2.3.7
Tryptamine:oxygen Phytohormones biosynthesis
TOORCc oxidoreductase(deaminating) tryptamine[c] + h2o[c] + 02[c] -> nh4[c] + h202[c] + id3acald[c] (LOC_0s06923140 or LOC_0s06g23114) (1AA) 1.4.3.6
Phytohormones biosynthesis
TRPTAC Tryptophan aminotransferase akg[c] + trp-L[c] <=> glu-L[c] + indpyr][c] (LOC_0s05g07720 or LOC_0s01g07500) (IAA) 2.6.1.27
(LOC_0s10926110 or LOC_0s08g04560 Phytohormones biosynthesis
ALAADc Aromatic-L-amino-acid decarboxylase h[c] + trp-L[c] -> co2[c] + tryptamine[c] or LOC_0s08g04540) (IAA) 4.1.1.28
(LOC_0s01g06660 or LOC_0s079g49250
or LOC_0s05939320 or LOC_0s05g39310 | Phytohormones biosynthesis
INDPYRDc Indolepyruvate decarboxylase h[c] + indpyr[c] <=> co2[c] + id3acald[c] or LOC_0s03918220) (1AA) 4.1.1.74
(LOC_0s01g12740 or LOC_0s01g12750
or LOC_0s01g12770 or Phytohormones biosynthesis
IAOHLc 3-Indoleacetaldoxime hydro-lyase ind3acetaldoxime[c] -> h2o[c] + ind3acnl[c] LOC_0s01g12760) (1AA) 4.99.1.6
Phytohormones biosynthesis
TRYPTORc Tryptamine 5-hydroxylase tryptamine[c] + 02[c] + nadph[c] -> srntn[c] + h2o[c] + nadp[c] (LOC_0s07919210 or LOC_0s07g19130) (1AA) 1.14.13.-
Phytohormones biosynthesis
NTRLASEc nitrilase 2 h2o]c] + ind3acnl[c] -> ind3ac[c] + nh4[c] (LOC_0s02g42350 or LOC_0s02g42330) (1AA) 3.55.1
Phytohormones biosynthesis
TRP2MOc Tryptophan 2-monooxygenase trp-L[c] + 02[c] -> h2o[c] + iad[c] + co2[c] (IAA) 1.13.12.3
(LOC_0s04902754 or LOC_0s04g02780
or LOC_0s11g06900 or LOC_0s10g06710
or LOC_0s04955050 or LOC_0s04g10530
or LOC_0s04g10460 or Phytohormones biosynthesis
AMID3c indole acetamide hydrolase h2o[c] + iad[c] -> ind3ac[c] + nh4[c] LOC_0s04g10410) (1AA) 35.14
Phytohormones biosynthesis
IAAGTc indole-3-acetate beta-glucosyltransferase ind3ac[c] + udpg][c] -> ind3acg[c] + udp[c] LOC_0s03g48740 (1AA) 241121
Phytohormones biosynthesis
IAAINOSTC |AA-myo-inositol synthase ind3acg[c] + inost[c] -> iaainost[c] + glc-BJc] (IAA) 2.3.1.72
indol-3-ylacetyl-myo-inositol galactoside Phytohormones biosynthesis
1AAIGSc synthase iaainost[c] + udpgal[c] -> iaainostgal[c] + udp[c] (1AA) 2.4.1.156
indol-3-ylacetyl-myo-inositol arabinoside Phytohormones biosynthesis
IAAIASC synthase iaainost[c] + udparab|[c] -> iaainostarab[c] + udp[c] (1AA) 2.4.2.34
(LOC_0s07g47490 or LOC_0s01955940
or LOC_0s07g40290 or Phytohormones biosynthesis
IAAALASC indole-3-acetic acid amido synthetase (ala-L) ind3ac[c] + ala-L[c] + atp[c] -> iaa-ala[c] + amp[c] + ppi[c] + h[c] LOC_0s05g42150 or LOC_0s01g57610) (1AA) 6.3.-.-
(LOC_0Os07g47490 or LOC_0s01g55940
or LOC_0s07g40290 or Phytohormones biosynthesis
IAALEUSc indole-3-acetic acid amido synthetase (leu-L) ind3ac[c] + leu-L[c] + atp[c] -> iaa-leu[c] + ampl[c] + ppi[c] + h[c] LOC_0s05g42150 or LOC_0s01g57610) (1AA) 6.3.-.-
(LOC_0Os07g47490 or LOC_0s01g55940
ind3ac[c] + asp-L[c] + atp[c] -> iaa-asp[c] + amp[c] + ppi[c] + or LOC_0s07g40290 or Phytohormones biosynthesis
IAAASPSc indole-3-acetic acid amido synthetase (asp-L) h[c] LOC_0s05g42150 or LOC_0s01g57610) (1AA) 6.3.-.-
(LOC_0s07g47490 or LOC_0s01955940
or LOC_0s07g40290 or Phytohormones biosynthesis
IAAGLUSc indole-3-acetic acid amido synthetase (glu-L) ind3ac[c] + glu-L[c] + atp[c] -> iaa-glu[c] + amp[c] + ppi[c] + h[c] | LOC_0s05g42150 or LOC_0s01g57610) (I1AA) 6.3.-.-
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IAAGLNSc indole-3-acetic acid amido synthetase (gin-L) ind3ac[c] + gIn-L[c] + atp[c] -> iaa-gIn[c] + amp[c] + ppi[c] + h[c] | LOC_0s05g42150 or LOC_0s01g57610) (IAA) 6.3.-.-
(LOC_0s03g62070 or LOC_0s06g47620
or LOC_0s01g51060 or LOC_0s07g14600
or LOC_0s07g14590 or
LOC_0s03g62060 or LOC_0s04g44110 or | Phytohormones biosynthesis
IAAALAHC |AA-amino acid conjugate hydrolase (iaa-ala) iaa-ala[c] + h2o[c] -> ind3ac][c] + ala-L[c] LOC_0s01g37960) (IAA) 3.5.1.-
(LOC_0s03g62070 or LOC_0s06g47620
or LOC_0s01951060 or LOC_0s07g14600
or LOC_0s07g14590 or
LOC_0s03g62060 or LOC_0s04g44110 or | Phytohormones biosynthesis
IAALEUHc 1AA-amino acid conjugate hydrolase (iaa-leu) iaa-leu[c] + h2o[c] -> ind3ac[c] + leu-L[c] LOC_0s01g37960) (IAA) 3.5.1.-
Phytohormones biosynthesis
IAAAMY Hc indole-3-acetyl-myo-inositol hydrolase iaainost[c] + h2o[c] -> inost[c] + ind3ac[c] (LOC_0s06g44270 or LOC_0s06g44260) (1AA)
(LOC_0s03g58260 or LOC_0s07g08430)
and (LOC_0s08g04180 or Phenylalanine, tyrosine and
SERHs Tryptophan synthase (indoleglycerol phosphate) ser-L[s] + 3ig3p[s] -> trp-L[s] + g3p[s] + h20[s] LOC_0s06g42560) tryptophan metabolism 4.2.1.20
(LOC_0s03958260 or LOC_0s07g08430)
and (LOC_0s08g04180 or Phenylalanine, tyrosine and
TRPS2s Tryptophan synthase (indole) ser-L[s] + indole[s] -> trp-L[s] + h20[s] LOC_0s06g42560) tryptophan metabolism 4.2.1.20
Phenylalanine, tyrosine and
PPDHc Prephenate dehydratase, cytosolic pphn[c] + h[c] -> phpyr[c] + h2o[c] + co2[c] tryptophan metabolism 4.2.1.51
(LOC_0s07932774 or LOC_0Os04933390
or LOC_0s09g39260 or LOC_0s09g39230
or LOC_0s08933260 or Phenylalanine, tyrosine and
PPDHs Prephenate dehydratase, plastidic pphn[s] + h[s] -> phpyr[s] + h20[s] + co2[s] LOC_0s10g37980) tryptophan metabolism 4.2.1.51
LDH_Lc L-lactate dehydrogenase nadh[c] + pyr[c] + h[c] -> nad][c] + lac-L[c] (LOC_0s02901510 or LOC_0s06g01590) Fermentation 1.1.1.27
Alanine, aspartate and
MALCOADCc Malonyl-CoA decarboxylase co2[c] + accoa[c] -> malcoa[c] + h[c] LOC_0s09g23070 glutamate metabolism 4.1.1.9
malonate-semialdehyde dehydrogenase Alanine, aspartate and
MALSADHmM (acetylating) nad[m] + msa[m] + coa[m] -> accoa[m] + nadh[m] + co2[m] LOC_0s07g09060 glutamate metabolism 1.2.1.18
malonate-semialdehyde dehydrogenase Alanine, aspartate and
MALSADHym (acetylating) nadp[m] + msa[m] + coa[m] -> accoa[m] + nadph[m] + co2[m] LOC_0s07g09060 glutamate metabolism 1.2.1.18
(LOC_0s04g40320 or LOC_0s02g38200
ICHDxm Isocitrate dehydrogenase (NAD+) icitfm] + nad[m] -> akg[m] + co2[m] + nadh[m] or LOC_0s01g16900) TCA Cycle 1.1.1.41
(LOC_0s11g08300 or LOC_0s09g26880
or LOC_0s04945720 or LOC_0s02g43280
ACALDHc acetaldehyde dehydrogenase, cytosolic acald[c] + nad[c] + h2o[c] -> nadh[c] + ac[c] + 2 h[c] or LOC_0s02g43194) Fermentation 1.2.13
ACALDHs acetaldehyde dehydrogenase, plastidic acald[s] + nad[s] + h20[s] -> nadh[s] + ac[s] + 2 h[s] (LOC_0s06915990 or LOC_0s11g08300) Fermentation 1.2.1.3
ACALDHm acetaldehyde dehydrogenase, mitochondrial acald[m] + nad[m] + h2o[m] -> nadh[m] + ac[m] + 2 h[m] LOC_0s02g49720 or LOC_0s06915990 Fermentation 1.2.1.3
(LOC_0s11g08300 or LOC_0s09g26880
or LOC_0s04945720 or LOC_0s02g43280
GLYCRORC Glycerol:NAD+ oxidoreductase glyc[c] + nad[c] <=> glyald[c] + nadh[c] + h[c] or LOC_0s02g43194) Fermentation 1.2.13
GLYCORCc Glycerol:NADP+ oxidoreductase glyald[c] + nadph[c] + h[c] -> glyc[c] + nadpl[c] LOC_0s05g38230 Fermentation 1.1.1.2
Succinate-semialdehyde dehydrogenase, Alanine, aspartate and
SSNOm mitochondrial sucsal[m] + nad[m] + h2o[m] -> succ[m] + nadh[m] + 2 h[m] LOC_0s02g07760 glutamate metabolism 1.2.1.24
Phenylalanine, tyrosine and
TYRDCc Tyrosine decarboxylase tyr-L[c] + h[c] -> co2[c] + tyramine[c] LOC_0s07g25590 tryptophan metabolism 4.1.1.25
3,4-hydroxyphenylpyruvate dioxygenase, Phenylalanine, tyrosine and
34HPPORCc cytosolic 34hpp[c] + 02[c] -> hgentis[c] + co2[c] LOC_0s02g07160 tryptophan metabolism 1.13.11.27
3,4-hydroxyphenylpyruvate dioxygenase, (LOC_0s02917920 or LOC_0s05g14194 Phenylalanine, tyrosine and
34HPPORs plastidic 34hpp[s] + 02[s] -> hgentis[s] + co2[s] or LOC_0s08g09250) tryptophan metabolism 1.13.11.27
Phenylalanine, tyrosine and
HGDOc Homogentisate 1,2-dioxygenase hgentis[c] + 02[c] -> 4mlacac[c] + h[c] LOC_0s06g01360 tryptophan metabolism 1.13.115
PPORs Prephenate dehydrogenase (NADP+) pphn[s] + nadp[s] <=> 34hpp[s] + nadph[s] + co2[s] (LOC 0s069g35050 or LOC 0s06g49520) Phenylalanine, tyrosine and 1.3.1.13
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Phenylalanine, tyrosine and

TYRTAC Tyrosine aminotransferase, cytosolic akglc] + tyr-L[c] -> 34hpp[c] + glu-L[c] LOC_0s02g20360 tryptophan metabolism 2.6.1.5
(None or LOC_0s02g19970 or Phenylalanine, tyrosine and
TYRTAs Tyrosine aminotransferase, plastidic akgls] + tyr-L[s] -> 34hppl[s] + glu-L[s] LOC_0s069g23684 or LOC_0s11g35040) tryptophan metabolism 2.6.1.5
Phenylalanine, tyrosine and
FAAc Fumarylacetoacetase 4fumacac[c] + h2o[c] -> acac[c] + fum[c] + h[c] LOC_0s02g10310 tryptophan metabolism 3.7.1.2
Phenylalanine, tyrosine and
MAAIc Maleylacetoacetate isomerase 4mlacaclc] -> 4fumacac|c] LOC_0s02g35590 tryptophan metabolism 5212
(LOC_0s03g17730 or LOC_0s04933390
or LOC_0s07g49390 or Phenylalanine, tyrosine and
ARGDHTs arogenate dehydratase arogenate[s] + h[s] -> co2[s] + h20[s] + phe-L[s] LOC_0s09g39230) tryptophan metabolism 4.2.1.91
Phenylalanine, tyrosine and
ARGOATIs L-arogenate:oxaloacetate aminotransferase pphn[s] + asp-L[s] <=> oaa[s] + arogenate[s] LOC_0s01g65090 tryptophan metabolism 2.6.1.78
Phenylalanine, tyrosine and
ARGOAT2s L-arogenate:2-oxoglutarate aminotransferase pphn[s] + glu-L[s] <=> akg[s] + arogenate[s] LOC_0s01g65090 tryptophan metabolism 2.6.1.78
Phenylalanine, tyrosine and
ARGDHs arogenate dehydrogenase arogenate[s] + nadpl[s] -> tyr-L[s] + nadph[s] + co2[s] LOC_0s06g49520 tryptophan metabolism 1.3.1.78
(LOC_0s02g42520 or LOC_0s02g57040
or LOC_0s03g08999 or LOC_0s03g09020
or LOC_0s07g42924 or LOC_0s10907229
or LOC_0s11910480 or LOC_Os11g10510 | Glycine, serine and threonine
ALCDx2c alcohol dehydrogenase (NAD) chol[c] + nad[c] -> betald[c] + nadh[c] + h[c] or LOC_0s11g10520) metabolism 1111
(LOC_0s08g32870 or LOC_0s04g39020 Glycine, serine and threonine
BETALDDHc Betaine-aldehyde dehydrogenase betald[c] + nad[c] + h2o[c] -> glybet[c] + nadh[c] + 2 h[c] or LOC_0s09926880) metabolism 1.2.1.8
Glycine, serine and threonine
BETHCYSs Betaine--homocysteine S-methyltransferase glybet[s] + hcys-L[s] -> met-L[s] + dmetgly[s] metabolism 2.1.15
Glycine, serine and threonine
DMTGDHSs dimethylglycine dehydrogenase dmetgly[s] + fad[s] + h2o[s] -> fadh2[s] + fald[s] + sarc[s] metabolism 1584
Glycine, serine and threonine
SARCOs Sarcosine oxidase sarc[s] + 02[s] + h2o[s] -> h202[s] + fald[s] + gly[s] LOC_0s12g35890 metabolism 153.1
(LOC_0s06g45670 or LOC_0s02g07410
or LOC_0s06g40940 or LOC_0s01g51410
GLYDHDm Glycine dehydrogenase (decarboxylating) gly[m] + Ipro[m] <=> alpro[m] + co2[m] or LOC_0s10g37180) Photorespiration 1.4.4.2
(LOC_0s01g22520 or LOC_0s01g23610
DHLDHm dihydrolipoylprotein:NAD+ oxidoreductase dhlpro[m] + nad[m] <=> Ipro[m] + nadh[m] + h[m] or LOC_0s05g06750) Photorespiration 1814
MTAMnNh4m Aminomethyltransferase alpro[m] + thffm] + h[m] <=> dhlpro[m] + mlthf[m] + nh4[m] (LOC_0s06g04380 or LOC_0s04g53230) Photorespiration 2.1.2.10
Glycine, serine and threonine
THRAC L-threonine aldolase thr-L[c] -> acald[c] + gly[c] LOC_0s04g43650 metabolism 4.1.25
(LOC_0s02g42520 or LOC_0s02g57040
or LOC_0s03g08999 or LOC_0s03g09020
or LOC_0s07g42924 or LOC_0s10g07229
or LOC_0s11910480 or LOC_0Os11g10510
ALCDxlc alcohol dehydrogenase acald[c] + nadh[c] + h[c] <=> etoh[c] + nad][c] or LOC_0s11g10520) Fermentation 1111
(LOC_0s11g38810 or LOC_0s09g22090 Primary Cell Wall
MANG6PIc Mannose-6-phosphate isomerase man6p[c] <=> f6p-B|c] or LOC_0s01g03710) Metabolism (Fructose) 53.1.8
(LOC_0s069g28194 or LOC_0s04g58580 Primary Cell Wall
PMANMc Phosphomannomutase manlp[c] <=> man6p[c] or LOC_0s07926610) Metabolism (Fructose) 54.2.8
(LOC_0s06g45980 or LOC_0s05931110 Primary Cell Wall
MANKINc Hexokinase (D-mannose) man[c] + atp[c] -> man6p[c] + adp[c] or LOC_0s01g71320) Metabolism (Fructose) 2717
Monodehydroascorbate reductase (NADH),
MDHARCc cytosolic 2 mhdascb[c] + nadh[c] + h[c] -> 2 asch-L[c] + nad[c] LOC_0s08g44340 Ascorbate Metabolism 1.6.5.4
Monodehydroascorbate reductase (NADH), Ascorbate Metabolism;
MDHARs plastidic 2 mhdascb[s] + nadh[s] + h[s] -> 2 ascb-L[s] + nad[s] Water-water cycle 1.6.5.4
Monodehydroascorbate reductase (NADH),
MDHARmM mitochondrial 2 mhdascb[m] + nadh[m] + h[m] -> 2 asch-L[m] + nad[m] LOC_0s09g39380 Ascorbate Metabolism 1.6.5.4
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MDHARYyc cytosolic 2 mhdascb[c] + nadph[c] + h[c] -> 2 ascb-L[c] + nadp[c] (LOC_0s02g47790 or LOC_0s08g44340) Ascorbate Metabolism 1.6.5.-
Monodehydroascorbate reductase (NADPH), Ascorbate Metabolism;
MDHARYys plastidic 2 mhdascb[s] + nadph[s] + h[s] -> 2 ascb-L[s] + nadp[s] LOC_0s09g39380 Water-water cycle 1.6.5.-
Monodehydroascorbate reductase (NADPH),
MDHARym mitochondrial 2 mhdascb[m] + nadph[m] + h[m] -> 2 asch-L[m] + nadp[m] Ascorbate Metabolism 1.6.5.-
ASCOXc L-ascorbate oxidase 02[c] + 4 asch-L][c] + 4 h[c] -> 2 h2o[c] + 4 mhdascb[c] LOC_0s06g37150 Ascorbate Metabolism 1.10.3.3
ASCPOl1c L-ascorbate peroxidase (reaction 1), cytosolic 2 asch-L[c] + h202[c] + 2 h[c] -> 2 mhdascb[c] + 2 h20[c] (LOC_0s03g17690 or LOC_0s07g49400) Ascorbate Metabolism 1.11.1.11
Ascorbate Metabolism;
ASCPO1s L-ascorbate peroxidase (reaction 1), plastidic 2 asch-L[s] + h202[s] + 2 h[s] -> 2 mhdascb[s] + 2 h20][s] (LOC_0s12g07830 or LOC_0s12g07820) Water-water cycle 1.11.1.11
ASCPO2c L-ascorbate peroxidase (reaction 2), cytosolic 2 mhdascb[c] + 2 h[c] -> asch-L][c] + dhdascb[c] Ascorbate Metabolism spontaneous
Ascorbate Metabolism;
ASCPO2s L-ascorbate peroxidase (reaction 2), plastidic 2 mhdascb[s] + 2 h[s] -> dhdascb[s] + asch-L[s] Water-water cycle spontaneous
(LOC_0s01g05810 or LOC_0s01g05820 Sulfate metabolism
GGTv gamma-glutamyltransferase h2o[v] + gthrd[v] <=> glu-L[v] + cgly[V] or LOC_0s04938450) (Glutathione) 2322
Sulfate metabolism
CYSGLYV cysteinylglycinase cgly[v] + h2o[v] -> cys-L[v] + gly[v] LOC_0s08g44860 (Glutathione) 3.4.11.2
Sulfate metabolism
GLUCYSs Glutamate--cysteine ligase, plastidic atp[s] + cys-L[s] + glu-L[s] -> adp[s] + glucys[s] + h[s] + pi[s] LOC_0s05g03820 (Glutathione) 6.3.2.2
atp[m] + cys-L[m] + glu-L[m] -> adp[m] + glucys[m] + h[m] + Sulfate metabolism
GLUCYSm Glutamate--cysteine ligase, mitochondrial pi[m] LOC_0s07g27790 (Glutathione) 6.3.2.2
(LOC_0s12g16200 or LOC_0s129g34380 Sulfate metabolism
GTHSs glutathione synthetase, plastidic atp[s] + glucys[s] + gly[s] -> adp[s] + gthrd[s] + h[s] + pi[s] or LOC_0s11g42350) (Glutathione) 6.3.2.3
Sulfate metabolism
GTHSm glutathione synthetase, mitochondrial atp[m] + glucys[m] + gly[m] -> adp[m] + gthrd[m] + h[m] + pi[m] (Glutathione) 6.3.2.3
Glutathione dehydrogenase (ascorbate),
GTHDHc cytosolic dhdascb[c] + 2 gthrd[c] 