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SUMMARY 

 

The use of advanced and newly developed biostatistical methods usually lag behind 

their initial discovery by a period ranging from a few years to decades. Most clinical 

research use well-established “classical” statistics to make statistical inference, for example, 

presence of association. However, when analyzing research data with complex study 

designs or data structure, simply relying on “classical” statistical methods such as t-tests or 

standard procedures from generalized linear model may be inappropriate as the data do not 

satisfy the underlying model’s assumptions. This thesis will introduce and focus on the use 

of modern Bayesian methods to address research questions encountered in different areas 

of clinical and epidemiological research with a focus on eye diseases. The thesis will 

analyze data with questions that may be difficult to address using “classical” statistics. The 

application of Bayesian analysis using modern Bayesian computation techniques may pose 

a challenge for clinical researchers and hence a documented “step-by-step” R codes to help 

clinical researchers to perform their own Bayesian analysis for similar research conditions 

are proposed. 
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Introduction, Bayesian Framework and Literature reviews 
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1.1 INTRODUCTION 

Uncertainty plays a very important role in clinical medicine and research as the 

translation of scientific discoveries and clinical diagnoses are usually not straightforward. 

Statistical modeling enables various sources of uncertainty (e.g. sampling or measurement 

errors) to be accounted for in biomedical research, to improve scientific inference and 

predictions, aiding clinicians make better diagnostic, prognostic and therapeutic decisions.  

In research fields such as ophthalmic epidemiology, analyzing research data relying 

only on “classical” or conventional statistical methods presents severe bottleneck for 

today’s science. A recent article by Nuzzo (2014) in Nature, titled “P-values, the ‘gold 

standard’ of statistical validity, are not as reliable as many scientists assume” have likened 

P-values to “mosquitoes, the emperor’s new clothes or a tool of sterile intellectual rake” 

and ‘fishing’ practices have the effect of “turning discoveries from exploratory studies, 

what look like sound confirmations but vanish on replication”.1 Statistical thinking in the 

Bayesian way was suggested as a possible solution, which offers a flexible alternative 

approach to data analyses.  

1.1.1 Bayesian Perspectives on Some Common Problems of the “classical” Statistics 

Concerns in Meta-analysis (refer Bayesian application in Chapter 5) 

Meta-analysis methods used to synthesize evidence from related research studies to 

provide an overall pooled effect, were frequently formulated in the “classical” approach 

using random effects model. The random effects model assumes that each individual 

observed study result is estimating its own unknown underlying effect that originates from 

a common population mean, and hence allows for both within and between study 

variability. Inference based on asymptotic properties from “classical” approach usually 

requires large sample sizes. Bayesian models mirrored the “classical” formulation, but 

provides a number of specific advantages performed in the Bayesian framework.2  
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We illustrate using an example of a previous systematic review and meta-analysis to 

summarize the prevalence of age-related macular degeneration in Asian populations and 

investigate ethnic differences with reported prevalence in white populations. This work 

was conducted by Kawasaki et al. (2010)3 and they had used the random effects model. 

Their analyses could have benefited from the flexibility in Bayesian’s approach. Firstly, 

the data manipulation and exclusion of studies could be avoided in the analysis step to fully 

utilize all data in eligible studies. Four of the nine eligible papers reviewed containing 

potential information for the meta-analysis were excluded because of the different age 

range or unavailable age-specific prevalence data. Analysis was further restricted to 

include data only for age range from 40 to 79, due to small numbers for data for age ≥ 80. 

Furthermore, data was manipulated in the form of re-classifying some reported prevalence 

(up to ≥ 5 years in age ranges for each age category), e.g. prevalence for ages 43-54 years 

to be counted in the “40-49 years” age category. Bayesian approach allows layers of 

specifications for all model parameters to overcome the above issues, particularly useful 

for units of analysis with small sample sizes by borrowing strength from other units, and 

has the ability to include other pertinent information that would otherwise be excluded. 

Secondly, a separate meta-regression was performed to test for difference in prevalence of 

disease between Asians and whites, restricted to include only (white populations) studies 

with ≥ 1000 study subjects. It would be more desirable to model for ethnic-specific (Asian 

and whites) prevalence of disease, accounting for all sources of uncertainty within a single 

comprehensive Bayesian model. Ethnicity effect can then be examined by computing the 

Bayes factors. Thirdly, intuitive interpretations on probability statements (from Bayesian 

analyses) can be made directly on the pooled prevalence, e.g. there is 95% probability that 

prevalence of age-related macular degeneration in Asian populations is from 4.6% to 8.9%. 

Lastly, our simulation study results in Study 3 (Appendix 2, Supplementary Figure 5.2) 
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showed that estimated prevalence from Bayesian model is more accurate than random 

effects model, especially for small sample sizes < 100.  

Multiple Comparisons Issue 

Researchers often have a set of hypotheses that they wish to test simultaneously, such 

as the evaluation of relationships between several potential risk factors and disease 

outcomes. Such practice will lead to an increase (with each additional test) in the likelihood 

of the researcher wrongly conclude that there is at least one statistically significant effect 

across a set of tests, even if there is no real effect at all. For example, if we performed 20 

null tests each at a 5% significance level, there will be a 64% chance that at least one them 

will be statistically significant resulting in a false positive finding.  

“Classical” procedures such as the popular Bonferroni correction4 accounts for  

multiple comparisons by adjusting the p-values to maintain the overall significance level 

at 5%, which is very conservative and may lead to a high rate of false negatives (reduces 

power to detect an important effect). Other “classical” corrections include controlling for 

family-wise error rate or false discovery rate. 5 

However, the multiple comparison issue can be accounted for in the Bayesian model. 

Multilevel models naturally incorporate all relevant research questions as parameters in 

one coherent model, and hence addresses multiple comparisons problem faced with 

“classical” statistics.6-7 Once we work within a Bayesian multilevel modeling framework 

and model these relationships appropriately, we are able to get more reliable and effective 

estimates, especially in settings with low group-level variation which is where multiple 

comparisons are a particular concern. 

No Gold Standards Problem (refer to Bayesian application in Chapter 4) 

“Classical” approach assess newly developed diagnostic tests or classifiers using 

calculated measures such as sensitivity, specificity, positive and negative predictive values 

and overall accuracy, require a reference or gold standard test to establish the disease 
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outcome of a patient.8 Conditional on disease state, the tests are assumed to be independent. 

The assumption may not be reasonable when the biological basis of the tests is the same 

and ignoring it may lead to biased sensitivity and specificity estimates. Furthermore, in the 

absence of a reference test, the true disease status is unknown. Statistical modeling in 

Bayesian framework can better handle these issues by allowing for conditional dependence 

of tests and the incorporation of informative priors based on expert opinion.9-10  

Bayesian perspective offers flexibility to craft useful solutions tailored for specific 

research conditions. Above are some specific advantages described to overcome 

difficulties faced by using common statistical techniques. 

1.1.2 Advantages of Bayesian Approach in Epidemiological Research  

We often have some or partial information of what we wonder about, re-think or adjust 

our beliefs as we acquire new information but we all hope to predict something based on 

our past experiences. Such logic reasoning is reflected in Bayes’ rule, a simple and intuitive 

theorem on updating our initial belief about an event of interest with new objective 

information. Bayesian methodology is a promising field of statistics, increasingly adopted 

across the disciplines of science and leading medical journals.11-14 Its applications are 

particularly useful in clinical and epidemiological research.15  

Firstly, research data structure can be complex, such as repeated measurements or 

multiple observations nested within subjects, or subjects may be clustered according to 

treatment sites with random effects model. Similarly, the hierarchical Bayesian (HB) 

approach is naturally suited to the modeling of various layers of conditional data, i.e. first 

level describes multiple measurements per subject, second level describes subjects within 

sites etc. Furthermore, even well-designed research data may be subjected to multiple 

sources of uncertainty. Bayesian methods allow for the modeling of complex data 

structures and the attachment of uncertainty to parameters to account for all the 

uncertainties at play. Such reflection of uncertainty is important in honest assessment of 
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post-data knowledge, especially in facing new treatments that affect clinician’s inferential 

advice to patients in their course of actions. Lastly, in epidemiology, we often have partial 

knowledge of many exposure-outcome relationships from past experiences, previous 

literature and various limitations of measurements from data collection, implies that not all 

relevant parameters can be estimated consistently from the data. Past information are useful 

for cumulative scientific knowledge and for leveraging inference. Bayesian approach 

allows for accumulated results (as priors) to be integrated into analysis of subsequent 

research data, to update our previous beliefs and refine conclusions. 

This thesis will focus on the application of modern Bayesian methodology in context 

to several areas of clinical and epidemiological problems faced in ophthalmology (where 

the above described advantages prevail). 

1.2 BAYESIAN FRAMEWORK 

1.2.1 Defining the Bayesian Approach 

The Bayesian approach quantifies a measure of belief that lies in the gray areas 

between absolute truth and total uncertainty, derived from new evidence and 

approximations from other sources of information. Bayesian statistics considers unknown 

parameters as random variables and computes probability distributions (i.e. posteriors) – 

by updating prior knowledge with new data, expressed formally by integrating the 

likelihood function (study data) and the prior distribution (previous information), to which 

probabilistic statements about parameters of interest can be made from the posterior 

distribution. For example, 95% credible intervals are the 2.5th to 97.5th percentile of the 

posterior distribution of interest. 

1.2.2 Bayesian versus “classical” Statistics 

It is important to recognise that both Bayesian and “classical” statistics have their 

respective strengths and limitations. The thesis focused on the application of Bayesian 

modeling in complex research scenarios to one’s advantage, when it is difficult to resolve 
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using the “classical” approach or common statistical techniques. “Classical” and Bayesian 

statistics are analysis tools and can be thought of as complementary statistical approaches.  

“Classical” approach considers inference problem in a repeated sampling framework, 

where experiments are repeatable and research data represents one of the many possible 

random samples from the population. Model parameters are treated as fixed quantities 

(unknown parameters but not random variables) and inference are based on hypothetical 

replications of the experiments. For example, P-value describes how likely it would be to 

find an observation as large as or larger than our observed (from current experiment data), 

if we were to repeat the experiment many times, assuming the null hypothesis was in fact 

true. Its interpretation is often confused to correspond to the probability of false positives. 

On the other hand, Bayesian offers an intuitive statistical philosophy that allows us to make 

probability statements of the underlying reality. Its statistics framework allows for proper 

adjustments to work around limitations faced in “classical” methods, such as when our data 

violates common model assumptions that may be due to imperfections in data collection 

procedure or the complexity of study design, and in keeping other sources of variation 

under control. Table 1.1 summarizes the advantages and disadvantages of the two 

approaches. 

However, the application of Bayesian analysis using modern Bayesian computation 

techniques16 (such as Markov chain Monte Carlo methods) may pose a challenge for non-

quantitative researchers. The Bayesian implementation procedures, to implement a MCMC 

algorithm to simulate draws from the posterior distribution of the unobserved quantities 

given what is observed may seem daunting for beginners. WinBUGS and JAGs are special 

software available (free and good start) to perform automated computations for complex 

Bayesian modeling.17-18 While well-known “classical” statistics have long-established 

guidelines for specialized techniques to correspond with data types, straightforward 

implementations and remains acceptable in practice, there is increasing trend of 
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computational intensive needs to handle large and increasing complexity of datasets. On-

going developments of new and modern statistics improves efficiency and reliability of 

data analysis and its applications should be embraced to advance science – using statistical 

techniques that is closer to being right given the structure of the problem, together with 

good scientific judgement. 

1.2.3 Prior Information 

Objectivity and precision are expected of science but Bayesian analysis framework 

incorporates prior knowledge deemed as subjective beliefs, naturally became the main 

target of criticism from scientists uncomfortable with the approach. Prior knowledge varies 

from different people may lead to different answers and hence the concern on objectivity. 

The current practice to evaluate the properties or effect of prior distributions on our analysis 

model is to conduct sensitivity analyses, i.e. to perform cross-validation on multiple trial / 

mock data, or to test on a range possible / reasonable informative (and non-informative) 

priors to validate our model results. Varying posterior distributions should be observed 

with the application of multiple trial data (i.e. changing likelihood functions) to suggest 

that posterior distribution was driven by the likelihood (i.e. data) incorporated with prior 

information rather than prior distribution over-influencing the results. Similarly, 

consistency in inferences based on a range of reasonable priors will boost confidence in 

results. Serious disagreement between prior beliefs and the calculated posterior signals the 

need to re-evaluate your model, where the real challenge comes in constructing realistic 

models and in assessing their fit. Relevant sections of textbooks “Bayesian approach 

Bayesian Data Analysis” by Gelman et al. (2004) and “Statistical Decision Theory and 

Bayesian Analysis” by Berger (1985) provided in-depth discussion to handle criticisms of 

Bayesian methods. 

1.3 GENERALIZATION FROM LITERATURE REVIEWS 

Statistics Used in Ophthalmic Journals 
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“Statistical Techniques in Ophthalmic Journals” published in 1992 at JAMA 

Ophthalmology (formerly Archives of Ophthalmology) was the only article found to have 

reviewed and examined the frequency of statistical methods previously used in ophthalmic 

literature.19 In total, 947 articles were reviewed from the ARCHIVES for years 1970, 1980, 

and 1990; American Journal of Ophthalmology (AJO) for 1990; and Ophthalmology for 

1990. It was found that readers familiar with “classical” statistical techniques would have 

“statistical accessibility” to 88.9% of 1990 articles. Measures of central tendency (65.0%) 

was the most common technique, followed by dispersion (50.3%), t-test (20.3%), and 

contingency tables (16.6%). Nonparametric tests (8.3%) and survival analysis (5.4%) were 

considered advanced statistics then. 

Recently, an article revealed on the current “Use of Statistical Analyses in the 

Ophthalmic Literature” (2014), based on 780 peer-reviewed articles for the type of 

statistical methods used in AJO, Ophthalmology and Archives of Ophthalmology, from 

January 2012 through December 2012.20 A variety of statistical methods were currently 

used in analysis in ophthalmic research, moving beyond merely descriptive statistics 

observed two decades ago. More applications of specific techniques such as reliability tests, 

generalized estimating equations and Rasch analysis were used. However, only 0.5% of 

the 780 reviewed articles employed the Bayesian approach for analysis shows the 

unfamiliarity of Bayesian methods to eye-researchers. Table 1.2 shows the distribution and 

ranks of current statistical methods used. 

Biostatistics Research 

Generalized linear models (GLMs), survival analysis, categorical data analysis, spatial 

statistics, and Bayesian methods (in diagnostic, epidemiological and clinical trials contexts) 

as well as meta-analysis (as a tool for evidence-based medicine) were popular areas of 

statistics used in medical research during mid-1990s, observed by Armitage in his book 

“Statistical Methods in Medical Research”.  
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In 1994, Altman and Goodman21 suggested that the following new statistical methods 

will play a key role in biomedical research over coming years: (i) bootstrap (and other 

computer-intensive methods); (ii) Gibbs sampler (and other Bayesian methods); (iii) 

generalized additive models; (iv) classification and regression trees (CART); (v) models 

for longitudinal data (general estimating equations); (vi) models for hierarchical data; and 

(vii) neural networks.  

In 1997, Houwelingen22 likewise suggested that the future would be marked by new 

biomedical applications (in epidemiology, historical data on oncological patients and their 

families; in ecology, spatial data); by new philosophies (causal models instead of 

randomized clinical trials; prediction versus prognostic modeling); new models (graphical 

chain models, random effects models); new computational facilities (with an impact on the 

other aspects); new techniques (graphic techniques, exact methods, pseudo-likelihood); 

and new forms of collaboration (databases for meta-analysis, Internet software, Internet 

publications). 

A recent review on current research in biostatistics was conducted in 2009 by 

Abdelmonem A. Afifi and Fei Yu and was published in AJO.23 Table 1.3 below shows the 

list of leading biostatistical journals and issued reviewed and Table 1.4, the frequency of 

statistical methods used. Briefly, the category with the highest frequency covers 

nonparametric and semi-parametric approaches to inference techniques, GLM, regression 

models, and variable selection. Following category is regression analysis, including 

survival analysis and parametric approaches to GLM. Next is the high-dimensional data 

category, which includes handling time series data, spatial temporal data, data mining, 

discrimination and classification models and neural networks. The next category includes 

general Bayesian analysis methodology as well as Bayesian approaches to genetics/ 

ecology, stochastic processes, model selection, nonparametric analysis, and experimental 

design. Post hoc analysis includes missing data analysis and parametric model and variable 
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selection, as well as multiple comparisons. Study design encompasses experimental design 

research, design of clinical trials, and survey sampling. The general inference category 

includes “classical” statistical inference methods, such as hypothesis testing and 

confidence intervals. Genetic analysis contains statistical methodology and applications to 

genetic data, such as gene sequence, population genomic data, and gene expression 

microarry data. Causal inference encompasses methods that aim to uncover whether 

observed phenomena reflect statistical association or a true causal relationship, such as the 

propensity score methods discussed in this series. Lastly, “other” category consists 

methods that does not fit into the above categories, such as quality control, meta-analysis, 

and graphical theory, stochastic processes. 

Conclusions 

The tremendous breadth of modern and new methods appearing in biostatistics 

research is at a greater speed than its application into biomedical research.16 The advantages 

and flexibility of Bayesian approach to customize statistical models for specific data 

structure is particularly useful in clinical and epidemiology research. Bayesian methods are 

among the popular and promising fields of current biostatistics research.7, 24-30 However, 

Bayesian methods are yet to be widely utilized to solve ophthalmic research problems. This 

may be due to the inclination to stay with known methods and the ease of “classical” 

methods application while they remain acceptable in practice, or the lack of communication 

between statisticians and clinician scientists resulting in an unappealing alternative due to 

limited statistical knowledge. Also, the application of Bayesian analysis using modern 

Bayesian computation techniques (such as MCMC methods) may pose a challenge for non-

quantitative researchers. Hence, the need for the role of an effective interdisciplinary 

biostatistician, to facilitate communication of modern statistical techniques (being able to 

explain difficult concepts to non-quantitative researchers or clinician scientists) and its 

applications into health research projects.  
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The purpose of this thesis is to develop Bayesian models to address some common 

but complex research problems (where the above described advantages prevail) 

encountered in different areas of clinical and epidemiology research in ophthalmology, and 

to advocate the use of Bayesian methods when handling complex research scenarios with 

documented “step-by-step” R codes to help researchers to perform their own Bayesian 

analysis for similar research settings. 
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1.5 Chapter 1 Tables 

 
Table 1.1 Comparison of Bayesian versus “classical” Approach 

Bayes  “Classical” 

Advantages  Disadvantages 

Able to formally incorporate prior information  Unable to include external information 

Inferences are conditional on observed data  
Inferences are based on repeated sampling framework, on data conditional on fixed 
but unknown parameters 

Intuitive interpretation 
e.g. 95% probability that the true value is in the credible interval 

 

Awkward interpretation 
e.g. in hypothetical repetition of the same experiment, 95% of confidence 
intervals contain the true value. 
e.g. p-value is the long-term probability of obtaining data at least as unusual as 
what was actually observed. 

Reasons for stopping experiment does not affect inference  
Stopping conditions statistical test results/decisions 

e.g. two experiments with identical likelihoods could result in different p-
values if the experiments were designed differently.  

Analyses follow directly from the posterior.  
e.g. no separate theories of estimation, testing, multiple comparisons etc. 
are needed. 

 

Strict rules and assumptions to follow. 
e.g. hypothesis testing applicable only for nested hypotheses and can only offer 
evidence against the null hypothesis. 
e.g. multiple testing inflates Type I error (false positives) 

Procedures are consistent and estimators are optimal, even for small samples 
and complex models 

 Require large samples for asymptotic properties. 

Disadvantages  Advantages 

Less efficient  Fully efficient when samples are large 

MCMC methods may be time-consuming  For standard applications, present closed-form solutions (i.e. fast) 
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Table 1.2 Distribution of Statistical Methods used in Selected Ophthalmic Journals 
during 2012 

 Statistical Method 
Articles containing the method 

Number* % 

0   No statistical methods or descriptive statistics only 162 20.8 
1   t-test 246 31.5 

2   Contingency tables 266 34.1 

3   Nonparametric tests 170 21.8 

4   Epidemiologic statistics   42 5.4 

5   Adjustments for epidemiologic statistics  15 1.9 

6   Diagnostic proportions 40 5.1 

7   Multiple comparison 49 6.3 

8   Pearson's correlation 67 8.6 

9   Spearman’s correlation 49 6.3 

10  Kappa statistics for agreement  25 3.2 

11  Bland-Altman 17 2.2 

12  Analysis of covariance 99 12.7 

13  Analysis of covariance 25 3.2 

14  Transformation 51 6.5 

15  Simple linear regression 64 8.2 

16  Multiple linear regression 66 8.5 

17  Multi-way tables 6 0.8 

18  Simple logistic regression 77 9.9 

19  Multiple logistic regression 89 11.4 

20  Survival methods 85 10.9 

21  Power analyses and sample size calculations 58 7.4 

22  Cost-benefit analysis 15 1.9 

23  Sensitivity analysis 21 2.7 

24  Repeated-measures analysis 18 2.3 

25  Missing-data methods 23 2.9 

26  Receiver operating characteristic 27 3.5 

27  Resampling 17 2.2 

28  Generalized estimating equations 41 5.3 

29  Linear mixed models 58 7.4 

30  Bayesian analysis 4 0.5 

31  Meta-analysis 8 1 

32  Rasch analysis and item response theory 3 0.4 

33  Generalized linear models (excluding linear and logistic) 10 1.3 

34  Other methods 25 3.2 

      Totals 2038  
*Multiple statistical methods may be used in some articles (total 780 articles reviewed) 



 

17 
 

 

Table 1.3 List of Statistical Journals and Issues Reviewed 

Journal Title 
Impact 
Factor 

Journals Issues Reviewed 
No. of 

Articles 
Biostatistics 3.394 October 2008 - April 2009 45 

Journal of the Royal Statistical Society, 2.835 November 2008 - September 2009 47 

Annals of Applied Statistics 2.448 September 2008 - June 2009 55 

Journal of the American Statistical Association 2.394 September 2008 - March 2009 92 

Annals of Statistics 2.307 February 2009 - June 2009 52 

Statistical Methods in Medical Research 2.177 October 2008 - August 2009 33 

Statistical Science 2.135 November 2007 - September 2008 17 

Statistics in Medicine 2.111 January 2009 - May 2009 89 

Biometrics 1.97 September 2008 - March 2009 100 

Biometrika 1.405 September 2008 - March 2009 53 

Total   583 
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Table 1.4 Categories of Statistical Research and Their Frequencies in Reviewed Journals

Category of Statistical Research Number (%) of Articles 

Nonparametric/semiparametric analysis 83 (14.2%) 

Regression analysis 81 (13.9%)* 

High-dimensional data 73 (12.5%) 

Bayesian analysis 71 (12.2%) 

Post hoc analysis 58 (9.9%) 

Study design 46 (7.9%) 

General inference 45 (7.7%) 

Casual inference 33 (5.7%) 

Genetic analysis 25 (4.3%) 

Other 68 (11.7%) 

Total 583 (100%) 

*Including 29 GLM (5.0%) and 52 survival regression analyses (8.9%) 
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CHAPTER 2 

Thesis structure, Study populations, design and methods 
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2.1 SPECIFIC AIMS 

The goal of the thesis is to develop solutions via statistical models in the Bayesian 

perspective for four research problems that may face difficulty or limitations when using 

the “classical” approach, with focus in eye diseases. The specific aims are: 

1. To develop a conversion algorithm based on Bayes’ principal for the conversion 

of cataract prevalence between any two cataract grading systems, illustrated with 

the LOCS III and Wisconsin system.  

Current limitations: Direct comparisons of cataract prevalence estimates across 

epidemiological studies from current literature limit meaningful inferences due to 

substantial variability in the various grading protocols adopted (grading methods, 

definitions of lens opacities and examination techniques). 

 

2. To develop Bayesian model for evaluation and comparison of diagnostic tests for 

tuberculous uveitis, tuberculin skin test and two (dependent) interferon γ release 

assay tests in the absence of a gold standard. 

Current limitations: The estimations of sensitivity and specificity of diagnostic 

tests from the “classical” approach assume independence of tests and requires a 

reference or gold standard for true disease status. 

 

3. To perform systematic review and develop Bayesian model to perform meta-

analysis for the global prevalence and burden projection of age-related macular 

degeneration for 2020 and 2040. 

Current limitations: To perform global meta-analysis using “classical” approach 

may face many limitations and restrictions in handling and combining numerous 

studies, such as small samples studies, differences in age range and age-group 

specific breakdowns across studies and various sources of heterogeneity etc.   
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4. To develop hierarchical Bayesian one-stage “joint analysis” approach to account 

for measurement errors of vision-specific latent trait in regression models. 

Current limitations: Rasch analysis and linear regression results and inferences 

are fine on its own, but naïve combination / integration of statistical methods 

lacking proper statistical considerations may lead to biased inferences.   

 

2.2 STRUCTURE OF THESIS 

The thesis is organized as follows. Chapter 1 introduces the concept, advantages and 

flexibility of Bayesian approach in handling complex research scenarios, lending 

motivation in advocating Bayesian analysis methods in ophthalmic research. Analyses 

performed in the thesis included data from the Singapore Malay Eye Study (SiMES), 

prospective cohort of patients presented with uveitis to a tertiary institution and data 

extracted when conducting meta-analysis. Specific aims, study design, methods and data 

details were documented in Chapter 2.  

Chapter 3 (Study 1) begins with an intuitive application of Bayes’ principal to 

develop a conversion algorithm and applied to two cataract classification systems to enable 

fairer comparison of cataract prevalence from the diversity of grading systems 

implemented across epidemiological studies.  

In many areas of medicine, gold standard diagnostic techniques are rare, yet accurate 

diagnosis of infectious diseases is essential in primary health care. In particular, the 

diagnosis of uveitis associated with tuberculosis is controversial and there is no established 

“gold standard” to diagnose tuberculous uveitis which makes it difficult to evaluate new 

medical diagnostic tests. Chapter 4 (Study 2) uses Bayesian Latent Class modeling to 

evaluate three diagnostic tests available in the absence of a gold standard and incorporating 

prior information obtained from previous meta-analysis literature. As two of the diagnostic 

tests are not independent (both are whole-blood tests), our model also accounted for their 
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dependency and further investigated the optimal choice of diagnostic test to be used, which 

is more interest to ophthalmologists. 

Chapter 5 (study 3) is a study on Bayesian approach in the meta-analysis of 

population-based studies of age related macular degeneration worldwide. Various sources 

of heterogeneity and uncertainty (e.g. ethnicity, geographic regions etc.) were accounted 

for and tested in our statistical model. Pooled prevalence and to projections would provide 

useful guide for global strategies. 

Vision functioning is one of the key latent traits for vision-specific instruments / 

questionnaires and its data were commonly evaluated using Rasch analysis. Subsequent 

applications using “classical” statistics (e.g. linear regressions) for association analysis of 

latent data without accounting for its measurement error may lead to biased estimations 

and statistical inferences. Chapter 6 (study 4) demonstrates the effectiveness of a 

modeling framework that integrates Rasch and regression models using hierarchical 

Bayesian approach that accounts for latent trait measurement errors to produce more 

accurate estimation of association effects. 

The above studies elucidate some Bayesian modeling techniques that are useful to 

resolve hypotheses / questions with complex settings in various areas of ophthalmic 

research. Finally, Chapter 7 summarizes the key findings of this thesis and discuss 

possible extensions and recommendations for future research work. Instructions for “step-

by-step” R codes to help researchers to perform their own Bayesian analysis for similar 

research settings were documented in Appendix 1. 

2.3 STUDY POPULATIONS, DESIGN AND METHODS 

Many interesting research questions differing in complexity in data structures / study 

deigns were encountered in the years of experience working in Singapore Eye Research 

Institute. However, some cannot be easily resolved with “classical” statistics. To improve 

and advance ophthalmic research, this thesis advocate the advantages and flexibility of 
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modern Bayesian approach in different areas of clinical and epidemiology research. Study 

1 and 4 are research questions / issues based on data from the Singapore Epidemiology of 

Eye Disease (SEED) program, mainly using the Singapore Malay Eye Study (SiMES) data. 

Study 2 is a clinical question that is of direct relevance to ophthalmologists, a diagnostic 

accuracy study based on data collected from a prospective cohort of patients presented with 

uveitis to a tertiary eye institution. Study 3 is a systematic review and meta-analysis and 

hence analysis was based on data extracted from published literature identified from our 

systematic review. 

2.3.1 Singapore Malay Eye Study (SiMES) 

The Singapore Epidemiology of Eye Disease (SEED) is a program that consists the 

Singapore Malay Eye Study (SiMES)1 and Singapore Indian Chinese Cohort (SICC) Eye 

Study,2 with aims to investigate the prevalence, risk factors, and impact of major eye 

diseases in  Chinese, Indians and Malays in Singapore. The SEED program includes 

database from three population-based, cross-sectional studies, conducted between 2004 

and 2011 for Malays, Indian and Chinese adults aged 40 and older in the south-western 

Singapore (Figure 1).  

Using an age-stratified random sampling strategy, 5,600 Malay names, 6,350 Indian 

names, and 6,752 Chinese names were selected from the Ministry of Home Affairs. A total 

of 4,168 Malays, 4,497 Indians, and 4,605 Chinese were deemed eligible to participate.1-2  

“Ineligible” persons were those who had moved from the residential address, had not lived 

there in the past six months, or were deceased or terminally ill.  In total, 3,280 Malays, 

3,400 Indians and 3,353 Chinese participated in the SEED program, giving a response rate 

of 78.7%, 75.6%, and 72.8% respectively (Figure 2).1-2  

The study adhered to the Declaration of Helsinki, and ethics approval was obtained 

from the Singapore Eye Research Institute (SERI) Institutional Review Board with written 

informed consent obtained from all subjects before participation. All participants 
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underwent a comprehensive ocular examination that was carried out at SERI. A detailed 

interviewer-administered questionnaire was used to collect relevant information such as 

socioeconomic status, lifestyle data and medical history of eye diseases.   

Recruitment 

Participants were invited to attend a comprehensive eye and physical exam at the SERI 

via telephone, by mail, and/or by home visit. A booklet outlining the overall eye study 

findings and an invitation letter (reply-paid postage) were sent to all baseline participants 

to elicit a strong spirit of cooperation. 

Questionnaire 

A questionnaire based interview was administrated by trained interviewers. These 

questionnaires, listed below, were either validated in the Blue Mountains Eye Study 

(BMES), a landmark population-based eye study in Australia) or other studies: 

 Contact and demographic information 

 Socioeconomic characteristics (education, income level, occupation) 

 Family and medical history 

 Smoking status 

 Questionnaire on access and barriers to use of general health and eye care services, 

 Vision-related quality of life, including the modified visual function-14 

questionnaire (VF-14). 

Systemic and ophthalmologic examinations 

 Blood pressure, height, weight 

 Presenting and best-corrected distance visual acuity using the Early Treatment 

Diabetic Retinopathy Study (ETDRS) Logarithm of the Minimum Angle of 

Resolution (LogMAR) chart 

 Auto-refraction, keratometry and lensometry.  
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 Axial length was measured using the IOL-Master®.  

 Central corneal thickness, anterior chamber and angle parameters were measured 

with anterior-segment Visante™ OCT (Carl Zeiss Meditec, Dublin, CA) 

 Gonioscopy and automated perimetry (Humphrey Visual Field Analyzer II, 24-2 

SITA, Carl Zeiss Meditec, Dublin, CA, USA) for all glaucoma suspects  

 Slitlamp biomicroscopy for anterior eye abnormalities and applanation intraocular 

pressure 

 After pupil dilation, slit-lamp based lens photographs were taken to measure 

nuclear cataract. Retroillumination photos of the anterior and posterior lens were 

taken on a Neitz digital cataract camera to measure cortical and posterior 

subcapsular cataract. The clinical grading of cataract was based on the Lens 

Opacities Classification System (LOCS III)3 

 ETDRS standard fundus fields 1 (optic disc) and 2 (macula) were taken using a 

digital retinal camera (Canon CR-1 Mark -II Nonmydriatic Digital Retinal Camera, 

Canon, Japan). Photographs then were graded using the BMES and Wisconsin 

protocols 

 Blood collection for assessment of HbA1c, serum glucose, lipid and CRP levels 

Imaging data 

 Signs of DR were graded from fundus photographs using the modified Airlie 

House classification system and a modification of the ETDRS severity system for 

DR. Graders assessed the presence/severity of diabetic macular edema, and sign 

of laser treatment scar.4-5 

 Presence of AMD was graded using the Wisconsin AMD grading system6 
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 Photography of lens through the dilated pupil for assessment of nuclear, cortical, 

and posterior subcapsular cataract were graded using the Wisconsin cataract 

grading system.7 

 Retinal vascular caliber are measured by using a semiautomatic computer-assisted 

program (Singapore I Vessel Assessment), according to standardized protocol.8 

Contributions 

My main contribution in the SEED program is in the management, consolidation and 

maintaining integrity of the database for the SiMES and SICC study (10,033 subjects) that 

includes questionnaire, clinic, imaging data and other sub-datasets. I have helped to 

organize and standardize definitions and codebooks across the studies, created data request 

forms for documentation of data sharing between collaborators, to ensure consistency of 

variables and that project topics do not overlap between researchers to avoid unnecessary 

conflicts.   

2.3.2 Diagnostic Accuracy Study 

We conducted a prospective study of all new consecutive patients with uveitis 

presenting to the Singapore National Eye Centre (SNEC) Ocular Inflammation and 

Immunology Service from 2008 to 2010. Ethics approval was obtained from our local 

institutional review board, and our research adhered to the tenets of the Declaration of 

Helsinki.  Patients were enrolled if they had clinical ocular signs indicative of tuberculous 

uveitis (TBU) and consented to participate in the study.   

All of the study subjects underwent a full systemic review, ocular examination, and 

standard baseline investigations.  Blood was taken for diagnostic tests T-SPOT.TB (Oxford 

Immunotec, Oxford, United Kingdom) before the tuberculin skin test (TST) was performed. 

Patients were excluded if they had (1) any other possible infectious or noninfectious cause 

that could account for the uveitis or (2) a T-SPOT.TB result that was “indeterminate”9 as 

these tests cannot be interpreted. Those suspected TBU were referred to infectious diseases 
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physician at Singapore General Hospital for evaluation. Anti-TB therapy (ATT) was 

prescribed if required. Patients’ treatment response and recurrence were monitored for six 

months after completion of ATT, if given, or 1 year if no ATT was given.  

From 1st January 2009, in addition to diagnostic tests T-SPOT.TB and TST, 

QuantiFERON-TB Gold In-Tube (Cellestis Incorporated, Carnegie, Australia) [QFT] was 

also performed for incoming patients. Blood was taken for QFT and T-SPOT.TB testing 

before the TST was performed to avoid any boosting effect (although it has been shown 

that this is unlikely to be significant).10-11 

Investigations 

 Complete blood count 

 Erythrocyte sedimentation rate analysis 

 Liver enzyme panel analysis 

 Infectious disease screen (which included Venereal Disease Research Laboratory 

test for syphilis, TST, urine microscopy) 

 Chest X ray 

 T-SPOT.TB was performed according to the manufacturer’s instructions,12 where 

two readers quantified the number of Interferon-gamma spot-forming T-cells 

visually and a third reader was consulted if the results were disparate. 

 TST was performed using the standard Mantoux method13 

 QFT was performed according to the recommended guidelines14 

Definitions 

 T-SPOT.TB considered positive if there were >8 spots compared to the negative 

control well; negative if there were <4 spots compared to the control well; or 

equivocal if the test wells had 5–7 spots more than the control.9 If the negative 
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control well had >10 spots and/or <20 spots in the mitogen positive control wells, 

the result was considered to be ‘indeterminate’. 

 TST induration was measured at 72 h with a ruler and considered positive if it was 

more than or equal to 15 mm, as validated in our population.15 

 QFT considered positive if the response to the specific antigens was ≥0.35 IU/mL, 

regardless of the level of the positive control; negative if the response to the 

specific antigens was <0.35 IU/mL and the Interferon-gamma level of the positive 

control was ≥0.5 IU/mL; and indeterminate if both antigen-stimulated samples 

were <0.35 IU/mL and the level of the positive control was <0.5 IU/mL.14 

2.3.3 Data for Meta-analysis 

In Study 3, we performed a systematic literature review to identify all population-

based studies of age-related macular degeneration (AMD) published before May, 2013 by 

searching the electronic databases of PubMed, Web of Science, and Embase.  

Inclusion criteria 

 Population-based study from a defined geographic area with response rate >50% 

 Studies with standardized photographic assessment of AMD, i.e. using grading 

classifications according to the Wisconsin age-related maculopathy grading 

system16, the international classification for age-related macular degeneration17, or 

the Rotterdam staging system18.  

Definitions 

 Early AMD defined as either any soft drusen (distinct or indistinct) and pigmentary 

abnormalities or large soft drusen 125 μm or more in diameter with a large drusen 

area (>500 μm diameter circle) or large soft indistinct drusen in the absence of 

signs of late-stage disease  
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 Late AMD defined as the presence of any of the following: geographic atrophy or 

pigment epithelial detachment, subretinal haemorrhage or visible subretinal new 

vessel, or subretinal fibrous scar or laser treatment scar. 

Data Extraction from each Study 

 Age-gender specific prevalence for early and late AMD (total number of subjects 

and number of cases recorded) 

 Study name 

 Age 

 Gender 

 Ethnicity 

 Geographical region 

 Publication year 

 Response rate 

Meta-analysis was performed according to the Meta analysis Of Observational Studies in 

Epidemiology (MOOSE) guidelines.19 
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2.5 Chapter 2 Figures	
 

Figure 2.1 Study sampling areas in Singapore 
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Figure 2.2 Enrolment of subjects into the study 
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CHAPTER 3 

Intuitive Application of Bayes’ Principle 

Study 1: Cataract Conversion assessment using Lens Opacity Classification System III 

and Wisconsin Cataract Grading System 
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3.1 RESEARCH MOTIVATION and CONTRIBUTIONS 

Literature review on the prevalence of cataract across epidemiological studies varied 

substantially with the different prevailing grading protocols. Differences in grading 

methods, definitions of lens opacities and examination techniques limit meaningful 

inferences from the comparisons across studies conducted using different assessment 

methods. Conclusions based on naïve pooling of estimates without consideration of the 

differences in classification systems may not be accurate. Hence to fill this gap, we 

developed a conversion algorithm to determine the equivalence of construct measurements 

performed on different scales that would be especially useful for diseases where there is 

yet to be global consensus for the adoption of a simple definition and classification system 

(e.g. cataract, chronic kidney disease). 

Bayes’ theorem is a result that is of importance in the mathematical manipulation of 

conditional probabilities. Conditional probability which represents the likelihood of one 

system’s grading score category (A) given another (B), can be easily transformed to the 

other direction (i.e. the likelihood of B given A). This relationship described in Bayes’ 

theorem links and converts between two conditional probabilities, i.e. P(A|B) to P(B|A) 

provides a natural solution for the transformation between scales. Hence, we developed a 

general algorithm that approximates conversion between any two cataract systems and 

illustrated its application in two major cataract classification systems, LOCS III and 

Wisconsin system. Our conversion algorithm was validated by using cross-validation and 

can be extended for use in the conversion between any two scales. We also provided step 

by step instructions to facilitate the use of our conversion codes that automates the 

iterations of our collapsing algorithm using R, a free statistical computing software (refer 

to Appendix 1).  
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3.2 INTRODUCTION 

 Age-related cataracts remain the leading cause of blindness worldwide, posing a 

big challenge to rapidly aging populations.1-3 Prevalence and incidence of cataracts have 

been well examined in many population-based epidemiologic studies.4-31 Understanding 

the burden of cataracts from these prevalence and incidence data is important in the 

planning of eye care services, particularly  health service delivery for cataract surgery.32 

 Several cataract classification systems have been developed and used to measure the 

presence and extent of cataracts including Lens Opacities Classification System (LOCS),6, 

8, 10, 11, 13-21, 27, 30 Wisconsin Cataract Grading System (Wisconsin system),7, 9, 23-26 Wilmer,12, 

33 Age-Related Eye Disease Study Grading System (AREDS),22, 31 World Health 

Organization Simplified Cataract Grading System (WHOSCGS),4 and Oxford Clinical 

Cataract Classification System (OCCGS)5 resulting in several arbitrary cut-offs derived 

within and across the various systems (Tables 3.1 and 3.2). It is important to note that 

direct comparison of prevalence of cataracts between different studies is hampered by the 

diversity of classification systems using various assessment methods.34 In fact, some 

studies adopted more than one classification system simultaneously to assess different 

cataract subtypes.13 Some other studies attempted to pool or compare prevalence of 

cataracts between studies despite having used different grading systems.19, 35 Few studies 

have developed conversion scores between cataract classification systems, such as the 

calibration performed for LOCS III and OCCGS.36 There is a gap in general formulas or 

conversion algorithm that enables one system’s grading to be converted into another to 

allow for reasonable comparison across centers or studies. 
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 In this study, we aim to develop a general algorithm that approximates conversion 

between any two cataract systems and illustrate the application in two major cataract 

classification systems, LOCS III and Wisconsin system. 

3.3 METHODS 

Study Population 

 The Singapore Malay Eye Study (SiMES) investigated the prevalence, causes and risk 

factors of blindness and visual impairment in the urban Malay community. SiMES is a 

population-based, cross-sectional epidemiological study of Asian Malays aged between 40 

and 80 years old living in south western Singapore. Comprehensive details of the study 

have been reported and published elsewhere.37-39 . Between August 2004 and June 2006, 

3280 (78.7% participation rate from a total of 4168 eligible) Malays were examined in our 

study clinic. In total, 6530 eyes from 3265 SiMES participants were graded for cataract 

using the LOCS III and Wisconsin system; data we used to derive the conversion algorithm. 

The SiMES study conducted adhered to the Declaration of Helsinki and ethics approval 

was obtained by the Singapore Eye Research Institute Institutional Review Board. The 

conversion algorithm was further validated in the Singapore Indian Eye Study40 (SINDI); 

a population-based cross-sectional study of 3400 (75.6% participation rate) Indian adults 

aged 40 and above using the same study protocol as in SiMES. 

Cataract Classification Systems and Grading Procedures 

 Lens opacity was assessed using both LOCS III and Wisconsin system , as described 

previously.34 Table 3 summarizes the main characteristics of the LOCS III41 and Wisconsin 

grading system42. Five study ophthalmologists examined all participants for cataract using 

slit lamp bio-microscopy with a Haag-Streit slit-lamp microscope (model BQ-900; Haag-

Streit, K¨oniz, Switzerland) in accordance to the LOCS III41,  comparing with standard 

photographic slides for nuclear opalescence, nuclear colour, cortical and posterior 

subcapsular  (PSC) cataract. Prior to the study, all study ophthalmologists were trained for 
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the standardized examination that includes documentation of clinical diseases according to 

written protocol (e.g., corneal pathology, diabetic retinopathy, etc), measurement of 

intraocular pressure and assessment of lens opacity using LOCSIII grading scale. Inter-rate 

reliability was assessed in a set of 30 patients with moderately high inter-rater reliability 

with intra-class correlation coefficients ranging from 0.70 to 0.85 between the study 

ophthalmologists. 

 Additionally, lens photographs were taken by digital slit-lamp (Topcon model DC-1 

with FD-21 flash attachment; Topcon, Tokyo, Japan) and retro-illumination (Nidek EAS-

1000, Nidek, Gamagori, Japan) cameras during the examination, and lens opacity was 

assessed using the Wisconsin system. The slit beam was adjusted to completely fill the 

pupil and to vertically bisect the lens at a 45o angle focusing on the sulcus of the lens. All 

photographs were graded by a single trained grader at the University of Sydney who also 

graded cataract for the Blue Mountains Eye Study. 14,378 photos were taken in total with 

at least two photos for each eye and only the best quality photo based on grader’s judgment 

was evaluated. These photographs were compared against a set of four standards to 

determine degree of nuclear opacity. Cortical and PSC cataracts were assessed from retro-

illumination photographs using an overlying grid to determine the location and percentage 

of lens involved by the opacity. Percentage of lens area involvement by cortical and PSC 

cataract were estimated for each segment of the grid in order to calculate the total 

percentage area of involvement. Adjudication was provided for images with positive 

nuclear cataract by a senior researcher and PSC cases were confirmed by a senior 

ophthalmologist. The intra-grader reliability was high, with an intra-class correlation 

coefficient of 0.95 (95% confidence interval: 0.93-0.97) in a random sample of 100 

photographs re-graded by the same grader. 

Statistical Analyses 
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 All statistical analyses were performed using R version 2.14.2 (http://www.R-

project.org/, provided in the public domain by R Development Core Team, 2012).43 Box 

plots were provided for graphical display of relationship between LOCS III and Wisconsin 

system for each cataract subtype.  

Conversion algorithm 

 A contingency table was used to record and analyze the multivariate frequency 

distribution of modified categorical LOCS III and Wisconsin system. In order to increase 

the power and also the counts in each cell of the contingency table, a collapsing method 

was performed as in the following algorithm:  

 1) Calculate the conditional frequency distribution;  

 2) Compare conditional frequency distribution of any two contiguous categories;  

 3) Collapse the two contiguous categories with smallest distance or similar 

distribution; 

 4) Repeat the first three steps until desired number of contiguous categories is 

achieved.  

In this algorithm, the smallest distance was defined as the least absolute shrinkage in terms 

of L1-norm.  

Conversion Application using LOCS III and Wisconsin System 

For nuclear opalescence score, LOCS III ranged from 0.1 to 6.9 with one decimal, 

while Wisconsin system used a five-point scale by comparing participant photographs of 

the eye with the set of four Wisconsin standard photographs. Also, a decimalized system 

of nuclear grading of one decimal place was estimated on a continuous scale between each 

standard by the grader (e.g., 3.8). We first start by collapsing the grading scheme used for 

LOCS III to encompass only half-unit steps: 0.1 to 0.4, 0.5 to 0.9, 1.0 to 1.4, 1.5 to 1.9 … 

6.5 to 6.9 before applying our algorithm in the contingency table with Wisconsin system 

using five-point scale.  LOCS III cortical and PSC scores ranged from 0.1 to 5.9, while 
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Wisconsin system measured the percentage of area involved. LOCS III cortical and PSC 

grading schemes were collapsed similarly as for nuclear score into half-unit steps. 

Continuous Wisconsin system for cortical was re-coded into fewer categories of 5% 

incremental steps from 0 to 100 while PSC was initially collapsed as 0 (since 0 may 

potentially be used as cut-offs), 1 to 4, and 5% increment steps thereafter from 5 to 100. 

Conversion algorithm was then applied to collapse LOCS III and Wisconsin system for all 

three cataract subtypes until we obtain five contiguous categories (i.e., 5 by 5 contingency 

table). The order of collapsing has little influence on the results. 

 The final collapsed contingency tables of nuclear opalescence, cortical, and PSC 

cataract were used as guidelines for conversion between LOCS III and Wisconsin system. 

This method works as a classification approach that tries to minimize the difference within 

each category and at the same time maximize the variability between any categories. We 

attempted to maximize the likelihood of the multivariate frequency distribution while 

restricting to five categories for each classification system. The conversion between LOCS 

III and Wisconsin system was based on conditional probabilities which reflect the 

likelihood of falling into corresponding LOCS III or Wisconsin system categories. 

Data cleaning 

 We started with the initial contingency table having maximal contiguous categories 

collapsed arbitrarily.  Data points in any cells of the final collapsed contingency table that 

have conditional probabilities of lesser than 10% were regarded as noise data (may be due 

to measurement errors) and were removed. Conditional probabilities were then 

standardized to ensure they summed up to one. 

Validation 

 The conversion was validated  using the cross-validation method.44 Our data was 

randomly divided into 10 subsets. Nine subsets of data were used to construct the collapsed 

contingency table to propose the conversion guideline. The remaining subset of data was 
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used to test the conversion trained by the nine parts of data. We further validated our 

conversion algorithm with the SINDI population. 

3.4 RESULTS 

Figure 3.1 shows the distributions of individual cataract subtypes in SiMES. We observed 

possible quadratic or non-linear relationship.  

     As the relationship between LOCS III and Wisconsin system is not one-to-one due to 

the differences in score ranges and interval sizes, the conversion from LOCS III to 

Wisconsin system was different from the reverse direction of Wisconsin system to LOCS 

III (i.e. not vice versa). We therefore performed collapsed algorithm for the conversion 

between the two systems, and the results of our final collapsed contingency table was 

tabulated in Appendix 2, Supplementary Table 3.1. Figure 3.2 illustrates our proposed 

conversion approximation results for nuclear, cortical, and PSC cataracts individually from 

LOCS III to Wisconsin system and the reverse order of Wisconsin system to LOCS III. 

Figure 3.3 shows our validation analysis performed in 10% test SiMES data and in SINDI 

data. Relative frequencies of subjects in corresponding collapsed categories after 

conversion is almost identical to that of original scale for moderate to severe cataract. 

     The guide to use Figure 3.2 is as follows: for example, to find the corresponding 

LOCS III score from Wisconsin system scale for nuclear opalescence, refer to the top left 

graph in Figure 3.2. Assuming the scale in Wisconsin system is 1, Figure 3.2 shows that 

two corresponding LOCS III categories, “0.1-2.9” and “3.0-3.9” are most likely to match 

this Wisconsin system scale of 1 with conditional probability of 0.65 and 0.35, respectively. 

We may infer that it is 65% likely to be in the “0.1-2.9” category and 35% likely to be in 

the “3.0-3.9” category. Hence, in the consideration of prevalence, this subject with 

Wisconsin scale 1 reading contributes 0.65 headcount to “0.1-2.9” and 0.35 headcount to 

“3.0-3.9”. 
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3.5 DISCUSSION 

 We applied our proposed algorithm to approximate the conversion between two major 

cataract grading systems, LOCS III and Wisconsin system by collapsing the multivariate 

frequency distribution contingency table. Our conversion algorithm can be extended and 

applied to other cataract grading systems. There is a need for such method of conversion, 

as prevalence and incidence of cataract cannot be compared directly between studies that 

were assessed using different classification systems. 

     The estimation of prevalence of cataract varies substantially with different grading 

protocols,34 which may be often neglected in the pooling and comparison of estimates seen 

in a few studies.19, 35 The lack of universal epidemiologic definition of cataract cut-offs 

added to the inaccurate comparison of cataract prevalence even within studies using 

common grading systems. Pooling of cataract prevalence in the United States35 was 

performed to include Barbados Eye Study (BES) with LOCS II,8 Beaver Dam Eye Study 

(BDES) with Wisconsin,7 Blue Mountain Eye Study (BMES) with Wisconsin,9 Salisbury 

Eye Evaluation Project with Wilmer,12 and Melbourne Visual Impairment Project with 

Wilmer.45 Differences in grading methods, definitions of lens opacities and examination 

techniques limit the accuracy of conclusion with regards to pooled prevalence of cataract.  

The application of our proposed conversion method provided a conversion 

approximation to transform between LOCS III and Wisconsin system. For example, 

converting nuclear opalescence from Wisconsin system to LOCS III in our data gave 

estimated prevalence of 24.8% (based on the “classical” or optimal cut-off of ≥ 4) 

compared with prevalence of 26.7% from direct use of LOCS III with the same cut-off. 

The reverse conversion of nuclear opalescence from LOCS III to Wisconsin system gave 

estimated prevalence of 17.8% (based on the “classical” or optimal cut-off of ≥ 4) 

compared to prevalence of 16.8% from direct use of Wisconsin system. The small 

difference in the converted prevalence and original prevalence on the same scale suggests 
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good approximation derived from our conversion algorithm. Conversion for cortical and 

PSC had similar performance. Our conversion algorithm allows fairer and more accurate 

inferences based on the same scale than current naïve comparisons of prevalence and 

pooling analysis performed directly across studies using different systems. In addition, the 

cross-validation analysis (Figure 3) demonstrated that our method was very robust and that 

our conversion algorithm may be extended to other population data for all three cataract 

subtypes.  

Our findings have important insights and implications. We provided a general 

conversion algorithm and its application to approximate the conversion between LOCS III 

and Wisconsin system to improve the pooling or comparison of prevalence of cataracts. 

Wisconsin system for assessment of cataracts was also used in BMES and BDES, the two 

landmark epidemiological studies in eye research. At present, there continues to be 

important new papers on epidemiology of cataract from these two studies using the 

Wisconsin system,46, 47 while more recent studies have used LOCS III. Our study is 

therefore important by being the first study to directly compare the two systems. 

Large overlaps observed in early cataract scores between grading systems suggests 

difficulty in the discrimination of subtle lens opacity changes and the detection of early 

cataract. Newer methods under development such as Quasielastic or Dynamic Light 

Scattering (QELS or DLS) with Scheimpflug imaging system may be more objective and 

promising as such methods in clinical use have shown that a growing cataract can be 

detected at the molecular level using the technique of dynamic light scattering48.  

     The strengths of our study include a large sample size from two population-based 

samples, and having performed two standardized cataract grading protocols in the same 

population. Our main limitation in the study application is the grading variability between 

clinical grading at the slit-lamp compared to grading lens photos. However, in many 

clinical and epidemiological studies and multi-center trials, clinical grading at the slit-lamp 
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may be the only feasible (and less expensive and complex) approach, particularly when 

cataract is important but of secondary interest (e.g., many landmark trials on anti-VEGF 

injection treatment for age-related macular degeneration (AMD) had clinical LOCS 

grading for cataract such as [CATT]49, Anti-VEGF antibody for the treatment of 

predominantly classic choroidal neovascularization in AMD [ANCHOR]50, Minimally 

Classic/Occult Trial of the Anti-VEGF Antibody Ranibizumab in the Treatment of 

Neovascular AMD [MARINA],51 and a Study of rhuFAB V2 [Ranibizumab] in Subjects 

with Subfoveal Choroidal Neovascularization Secondary to AMD [PIER]52, 53). Our 

conversion algorithm application is therefore more practically relevant and allows 

comparison and conversion of clinical LOCS III grading performed at the slit lamp with 

grading of photographs using Wisconsin system. Further investigation needs to be 

conducted to ensure our conversion algorithm is widely applicable in other population data. 

Conversion based on original protocols of grading systems or lens images should be further 

explored.  

     In conclusion, we proposed a general algorithm that approximates conversion between 

any two cataract systems and illustrated its application in two major cataract classification 

systems, LOCS III and Wisconsin system. The transformation is not one-to-one and is 

validated by using cross-validation. The results of our study suggest that prevalence rates 

of cataract need to be converted to the same scale before comparison between different 

grading systems, and ideally with standardized universal epidemiologic definition of cut-

offs for cataract subtypes.  
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3.7 Chapter 3 Tables and Figures 

Table 3.1 Prevalence of Nuclear Opalescence, Cortical, and PSC with Various Cut-offs used from Population-based 

Studies 

 

Study 
Conduct 

Years 
Country/City Ethnicity Rural/Urban 

Age 
range 

Grading 
Method 

Nuclear 
(cut-off) 

Cortical 
(cut-off) 

PSC 
(cut-off) 

Beaver Dam Eye Study7 1988-1990 Wisconsin, US 
Caucasians (non-

Hispanic) 
Rural 43-84 Wisconsin 

17.3% 
(≥ 4) 

16.3% 
(≥ 5%) 

6% 
(≥ 5%) 

Blue Mountains Eye Study9 1992-1994 
Sydney, 
Australia 

Caucasians Urban 49-96 Wisconsin 
51.7% 
(≥ 4) 

23.8% 
(≥ 5%) 

6.3% 
(≥ 5%) 

Tanjong Pagar Survey11 1997-1998 Singapore Chinese Urban 40-79 LOCS III 
40.11% 

(≥ 4) 
38.55% 

(≥ 2) 
12.13% 

(≥ 2) 
Aravind Comprehensive Eye 

Study10 
1995-1997 South India Indian Rural 40+ LOCS III 

44.7% 
(≥ 3) 

27.1% 
(≥ 3) 

22.9% 
(≥ 2) 

Shihpai Eye Study19 1999-2000 Taiwan Chinese Urban 65+ LOCS III 
38.9% 
(≥ 2) 

21.9% 
(≥ 2) 

9.2% 
(≥ 2) 

Indonesia Eye Study17 2003 Indonesia Malay Rural 21+ LOCS III 
16.89% 

(≥ 4) 
15.68% 

(≥ 2) 
7.35% 
(≥ 2) 

Skovde Cataract Study18 2001 Sweden Caucasians Urban 70-84 LOCS III 
14.37% 

(≥ 4) 
6.69% 
(> 3) 

9.74% 
(> 1) 

Meiktila Eye Study14 2005 Myanmar Burmese Rural 40+ LOCS III 
27.35% 

(≥ 4) 
20.91% 

(≥ 2) 
11.34% 

(≥ 2) 

Kandy Eye Study15 2006-2007 Sri Lanka 
Sinhalese, Tamils, 

Moors 
Rural 40+ LOCS III 

4.5% 
(≥ 4) 

26.0% 
(≥ 2) 

7.9% 
(≥ 2) 

India Study of Age-related 
Eye Disease21 

2005-2007 North India Indian 
Rural and 

Urban 
60+ LOCS III 

48% 
(≥ 4) 

7.6% 
(≥ 3) 

21% 
(≥ 2) 

India Study of Age-related 
Eye Disease21 

2005-2007 South India Indian 
Rural and 

Urban 
60+ LOCS III 

38% 
(≥ 4) 

10.2% 
(≥ 3) 

17% 
(≥ 2) 

Handan Eye Study16 2006-2007 Hebei, China Chinese Rural 30+ LOCS III 
5.1% 
(≥ 4) 

18.3% 
(≥ 2) 

1.5% 
(≥ 2) 

Casteldaccia Eye Study6 1992 Italy Caucasians Rural 40-99 LOCS II 
18.5% 
(≥ 2) 

12.9% 
(≥ 2) 

10.8% 
(≥ 2) 

Barbados Eye Study8 1987-1992 Barbados Blacks Urban 40-84 LOCS II 
19% 
(≥ 2) 

34% 
(≥ 2) 

4% 
(≥ 2) 

   
Mixed (Blacks and 

Whites) 
  LOCS II 

20% 
(≥ 2) 

30% 
(≥ 2) 

5% 
(≥ 2) 

   Whites   LOCS II 
23% 
(≥ 2) 

15% 
(≥ 2) 

5% 
(≥ 2) 
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Los Angeles Latino Eye 
Study20 

2000-2003 California, US 
Latinos 

(Hispanics) 
Urban 40+ LOCS II 

9.0% 
(≥ 2)

13.4% 
(≥ 2)

3.1% 
(≥ 2) 

Andhra Pradesh Eye Disease 
Study13 

1996-2000 South India Indian 
Rural and 

Urban 
16+ 

LOCS III & 
Wilmer* 

12.4% 
(≥ 3) 

7.4% 
(≥ 2) 

8.1% 
(≥ 1) 

Salisbury Eye Evaluation 
Project12 

1993-1995 Maryland, US Blacks 
Rural and 

Urban 
65-84 Wilmer 

31.0% 
(≥ 2) 

54.5% 
(≥ 1/8) 

2.6% 
(Present) 

   Caucasians  65-84 Wilmer 
46.3% 
(≥ 2) 

23.9% 
(≥ 1/8) 

5.4% 
(Present) 

Beijing Eye Study22 2001 Beijing, China Chinese 
Rural and 

Urban 
40-101 AREDS 

82% 
(≥ 2) 

10.3% 
(≥ 5%) 

4.3% 
(≥ 1%) 

Kongwa Eye Project4 1996 Tanzania Blacks Rural 40+ WHOSCGS 
15.6% 
(≥ 1) 

8.8% 
(≥ 1) 

1.9% 
(≥ 1) 

*LOCS III was used for nuclear opalescence while Wilmer was used for cortical and PSC cataract. 
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Table 3.2 Incidence Rate of Nuclear Opalescence, Cortical, and PSC with Various Cut-offs used from Population-based 

Studies 

 

Study 

Start Year 
(Duration 

Years) Country/City Ethnicity Rural/Urban Age 
Grading 
Method 

Nuclear 
(cut-
off) 

Cortical 
(cut-off) 

PSC 
(cut-off) 

Blue Mountains Eye Study23 1992 (10) 
Sydney, 
Australia Caucasians Urban 49-97 Wisconsin 

36% 
(≥ 4) 

28% 
(≥ 25%) 

9.1% 
(> 0%) 

Beaver Dam Eye Study25 1988 (15) Wisconsin, US 

non-Hispanic 
Caucasian 
Americans 

Rural and 
Urban 43-84 Wisconsin 

29.7% 
(≥ 4) 

22.9% 
(≥ 5%) 

8.4% 
(≥ 5%) 

Barbados Eye Study27 1987 (9) Barbados African Barbadian Urban 40-84 LOCS II 
42% 
(≥ 2) 

33.8% 
(≥ 2) 

6.3% 
(≥ 2) 

   
Mixed (Black and 

White)  40-84 LOCS II 
42.2% 
(≥ 2) 

22.4% 
(≥ 2) 

3.6% 
(≥ 2) 

   White Barbadian  40-84 LOCS II 
36.5% 
(≥ 2) 

14.2% 
(≥ 2) 

7.1% 
(≥ 2) 

Los Angeles Latino Eye 
Study30 2000 (4) California, US 

Latinos 
(Hispanics) Urban 40+ LOCS II 

10.2% 
(≥ 2) 

7.5% 
(≥ 2) 

2.5% 
(≥ 2) 

Beijing Eye Study31 2001 (5) Beijing, China Chinese 
Rural and 

Urban 
40-
101 AREDS 

5.98% 
(≥ 4) 

11.14% 
(≥ 5%) 

5.47% 
(≥ 1%) 

LOCS III: Lens Opacity Classification III; Wisconsin system: Wisconsin Cataract Grading System; AREDS: Age-Related Eye Disease Study 
Grading System; PSC: posterior subcapsular cataract; Nuclear: nuclear opalescence. 
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Table 3.3 Characteristics of LOCS III and Wisconsin Cataract Grading System, 

WHOSCGS 

 
System LOCS III 40  Wisconsin system 41 

Method 
Clinical assessment with slit lamp or 

grading performed on retro-
illumination photographs 

 
Slit lamp photos for nuclear cataract; 
Retro-illumination photographs for 

cortical and PSC cataract 
Category NC 0-6.9  NO 0-5 

 NO 0-6.9  Cortical % involved 

 Cortical 0-5.9  PSC % involved 

 PSC 0-5.9    

Decimal Yes   No  
NO: nuclear opalescence, NC: nuclear colour, PSC: posterior subcapsular cataract 
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Figure 3.1 Scatter plots and box plots for each cataract subtypes (nuclear opalescence, cortical and PSC) using Wisconsin 
System (Wisconsin) and LOCS III 
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Figure 3.2 Conversion between LOCS III and Wisconsin system. Nuclear: nuclear 
opalescence; bold lines and numbers in plots were estimated from the conditional 
probabilities given either LOCS III or Wisconsin (conditional on the grading system 
to be converted). 
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Figure 3.3 Validation of Conversion Algorithm on Relative Subject Frequency in 10% Test data and SINDI data. Columns 
A, C: Original: percent of subjects in original LOCS III grade; Converted: percent of subjects using converted LOCS III 
grade (i.e. after conversion from Wisconsin to LOCS III scale). Columns B, D: Original: percent of subjects in original 
Wisconsin grade; Converted: percent of subjects using converted Wisconsin grade (i.e. after conversion from LOCS III to 
Wisconsin scale). 
 

Relative Frequency in collasped categories (10% test data) 

                             A                                                              B 

Relative Frequency in collasped categories (SINDI data) 

                             C                                                              D 
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CHAPTER 4 

Bayesian Approach in Diagnostic Classification 

Study 2: Comparison of Tuberculin Skin Test and two Interferon γ release assay for the 

diagnosis of Tuberculous Uveitis: Bayesian evaluation in the absence of a gold standard. 
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4.1 RESEARCH MOTIVATION and CONTRIBUTIONS 

It is important and essential for infectious diseases to be accurately diagnosed in the 

primary healthcare setting for the timely management of patient’s disease. However, gold 

standard diagnostic techniques are rare in many areas of medicine. Furthermore, the lack 

of established gold standards makes it harder to evaluate new diagnostic tests. In our area 

of research interest, the diagnosis of tuberculous uveitis is controversial. The widely used 

Mantoux test (TST) has a low specificity due to a false-positive response in patients 

infected with nontuberculous mycobacterium (NTM) or vaccinated with Bacille 

CalmetteeGuérin (BCG). Interferon-gamma (IFN-g)-release assays (IGRAs) are newer 

diagnostic tests based on in vitro detection of IFN-g released by T-cells in response to 

antigens specific to Mycobacterium tuberculosis (MTB). Clinicians may face diagnostic 

and therapeutic dilemma, especially with the availability of various tests. Diagnostic test 

comparisons and criteria guidelines would be useful information to aid ophthalmologists 

in interpretation of test results and advise course of actions for patients, such as the need 

and sequence of performing additional diagnostic tests or treatments. 

Our analysis approach is to use latent class model via Bayesian methods (avoids 

computational restrictions in “classical” approach), to model the relationship between 

results of several diagnostic tests and latent disease status to estimate the diagnostic 

accuracy (in terms of sensitivity and specificity) of all tests under consideration without 

explicitly using any of the tests as gold standard. This approach is increasingly used in the 

analysis of diagnostic accuracy studies without gold standards but yet to be commonly 

adopted in the field of ophthalmology, probably due to the statistical and programing 

complexity in modeling and implementation. We developed and described our models for 

the type and structure of our study data to estimate sensitivity and specificity of each 

diagnostic test, prevalence of disease and proposed sequential testing guidelines based on 

decision theory. We also provided step by step instructions to guide the implementation of 
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our model analyses in R (a free statistical computing software), that can be easily used by 

researchers without advanced statistical training (refer to Appendix 1). 

4.2 INTRODUCTION 

Tuberculosis (TB) remains one of the leading causes of morbidity and mortality 

worldwide, with 8.7 million incident cases in 2011.1 Currently, the diagnosis of TB still 

depends on the century-old Mantoux or tuberculin skin test (TST).2 However, TST has poor 

specificity due to false-positives in persons infected with non-tuberculous mycobacterium 

or vaccinated with Bacille Calmette–Guérin (BCG).3,4 Interferon-gamma (IFN-γ) release 

assays (IGRAs) are based on in-vitro detection of IFN-γ released by T-cells, in response to 

antigens specific to Mycobacterium tuberculosis (MTB);5 as opposed to TST which uses a 

crude extract of proteins from MTB i.e. purified protein derivative.6, 7 Commercially 

available IGRAs include the T-SPOT.TB (Oxford Immunotec, Oxford, United Kingdom) 

and QuantiFERON-TB Gold In-tube [QFT] (Cellestis Incorporated, Carnegie, Australia).8  

The main advantage of IGRA is that it is an objective, reproducible blood test that 

requires only one visit.8 However, its main disadvantages are higher cost, logistical issues 

as the samples are time and temperature sensitive, and the need for trained personnel to 

analyze the results. Though similar, there are some key differences between T-SPOT.TB 

and QFT. In T-SPOT.TB the number of IFN-γ producing T-cells are counted, after 

stimulating isolated peripheral blood mononuclear cells with early secretory antigenic 

target-6 (ESAT-6) and culture filtrate protein-10 (CFP-10), using an enzyme-linked 

immunospot assay.9 On the other hand, QFT is a whole blood assay that quantifies IFN-γ 

produced by T-cells in response to ESAT-6, CFP-10 and TB7.7 using an enzyme-linked 

immuno-sorbent assay.10  

Today, TB-associated uveitis is essentially a presumptive diagnosis. It is diagnosed 

when uveitis is present with a positive TST or IGRA and chest x-ray (CXR) findings 

suggestive of pulmonary TB and/or evidence of associated systemic TB infections in the 
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absence of other underlying disease.11 Few ocular biopsies3 are positive on culture, acid-

fast bacilli (AFB) smear or polymerase chain reaction (PCR) analysis.11 Thus, the impact 

of IGRAs in the diagnosis of TBU has become increasingly important as these may 

potentially affect treatment and prognosis.12 While the role of IGRAs in diagnosing 

tubercular uveitis has been studied, to our knowledge,13-15 there is currently no head-to-

head comparison between QFT and T-SPOT.TB specifically for the diagnosis of TBU. 

Thus, we conducted a prospective, direct comparative study to compare these two 

commercially available IGRAs to diagnose TBU in our population.  

4.3 METHODS 

Overview of Management 

We conducted a prospective study of consecutive patients presenting with new onset 

of uveitis to the Singapore National Eye Centre Ocular Inflammation and Immunology 

Service from 2008 – 2010 and added the QFT diagnostic test from 1st January 2009 

onwards.  Ethical approval was obtained from our Singapore Health Services Centralized 

Institutional Review Board, and our study adhered to the tenets of the Declaration of 

Helsinki. After obtaining informed consent, all patients underwent a full systemic review, 

ocular examination, and standard baseline investigations as previously described.13 We 

included all patients who were undergoing systemic review for acute uveitis and gave 

informed consent to be enrolled in the study. We excluded patients who did not consent to 

the minimum follow-up period of 1 year after completion of ocular and/or systemic therapy.  

Investigations 

At presentation, all patients were tested with a standard panel of investigations as 

described,13 essentially: a complete blood count, erythrocyte sedimentation rate analysis, 

liver enzyme panel analysis, and infectious disease screening, which included a venereal 

disease research laboratory (VDRL) test for syphilis, TST, urine microscopy, and a CXR.  

Other tests such as HLA-B27 screen, an AFB smear from throat swabs, and PCR assays 
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for TB DNA from ocular samples were performed if the patient consented to the procedure. 

Blood was taken for QFT and T-SPOT.TB testing before the TST was performed, to avoid 

any boosting effect (albeit shown that this is unlikely to be significant).16, 17 The TST was 

performed with the standard Mantoux method: intradermal injection of 0.1 ml (2 tuberculin 

units) purified protein derivative (PPD) (RT23 SSI – 2T.U./0.1 ml Statens Serum Institut, 

Copenhagen, Denmark).18 Induration was measured at 72 hours with a ruler and considered 

positive if it was more than or equal to 15 mm (as validated in our population).13  

T-SPOT.TB was performed according to the manufacturer's instructions.19 For each 

patient, 8 ml of blood was collected in Lithium Heparin tubes and processed within 8 hours 

of sampling. Peripheral blood mononuclear cells were prepared by density gradient 

centrifugation over Ficoll Paque™Plus (GE Healthcare). 250 000 cells were seeded in each 

of four wells of the assay plate. The cells were stimulated for 16–20 h (under 5% carbon 

dioxide at 37°C) with GIBCO AIM-V™ medium (nil control), phytohaemagglutinin 

(mitogen-positive control) or the TB-specific peptide antigens (peptide pools for ESAT-6 

and CFP-10 in separate wells) in a total volume of 150 μL per well. Two readers quantified 

the number of IFN-γ spot forming T-cells visually, and a third reader was consulted if the 

results were disparate. The T-SPOT.TB test was considered positive if there were >8 spots 

compared to the negative control well; negative if there were <4 spots compared to the 

control well; or equivocal if the test wells had 5–7 spots more than the control.14 If the 

negative control well had >10 spots and/or <20 spots in the mitogen positive control wells, 

the result was considered to be ‘indeterminate’. 

QFT was performed according to the recommended guidelines.10 Whole blood from 

each patient was divided into three tubes of 1 ml each (nil control, positive control and TB 

specific antigens [ESAT-6, CFP-10 and TB7.7]). Samples were incubated with the 

stimulating antigens for 16–24 h at 37C. Afterwards, plasma samples were harvested and 

the amount of IFN-γ released was measured via ELISA. The result obtained in the nil 
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control was subtracted from the mitogen control and the antigen-stimulated samples. The 

result was considered positive if the response to the specific antigens was 0.35 IU/mL, 

regardless of the level of the positive control; negative if the response to the specific 

antigens was <0.35 IU/mL and the IFN-γ level of the positive control was 0.5 IU/mL; and 

indeterminate if both antigen-stimulated samples were <0.35 IU/mL and the level of the 

positive control was <0.5 IU/mL. 

Treatment and Management of patients 

The infectious diseases physicians at the Singapore General Hospital independently 

evaluated all patients with a high clinical index of suspicion for TB. Those found to have 

associated systemic or pulmonary TB infection received anti-tuberculosis therapy (ATT), 

while uveitis patients with latent TB were advised on the risk-benefit ratio of ATT.20 

Patients consenting to treatment received standard ATT according to CDC guidelines 

(isoniazid 5 mg/kg daily, rifampicin 450-600 mg daily, pyrazinamide 30 mg/kg daily and 

ethambutol 15 mg/kg daily for 2 months, followed by 2 drugs for a 4 month continuation 

phase, for a total minimum of 6 months duration).20, 21 In patients with posterior segment 

inflammation where ATT was not indicated, oral prednisolone was used at a starting dose 

of 1mg/kg body weight, tapering slowly over the clinical course. Any anterior segment 

inflammation was treated with topical corticosteroids. The therapeutic response was 

monitored by one ophthalmologist (SPC), where a two-step decrease in inflammation 

(SUN working group activity score) was considered an improvement in clinical activity 

and a positive response to treatment.22  

Statistical Analysis 

In the diagnosis of tubercular uveitis, there is currently no gold standard, i.e. a 

diagnostic test with 100 percent sensitivity and specificity.23, 24 Bayesian statistics are used 

to compute probability distributions (i.e. posteriors) for parameters of interest in our 
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statistical models by updating prior knowledge with new data, expressed formally by 

integrating the prior distribution and the likelihood function. We used Bayesian latent class 

models to evaluate the frequencies of true positives derived from diagnostic tests as well 

as their sensitivities and specificities. As the ‘true’ numbers of patients with tuberculous 

uveitis are unknown, these were termed as ‘latent data’. In the first part of the study, we 

performed analysis for TST and T-SPOT.TB data.25 In the second part where we collected 

data for another diagnostic test, QFT in addition to TST and T-SPOT.TB for a new group 

of uveitis patients where T-SPOT.TB and QFT are IGRAs and hence closely related tests, 

we modified our model to take into consideration their dependency in the estimation of 

sensitivities and specificities. Furthermore, in addition to using non-informative prior for 

the prevalence of tuberculous uveitis in our model, we have conducted a separate meta-

analysis to estimate pooled prevalence, to incorporate informed prior knowledge as part of 

our sensitivity analysis.  

In summary, we performed the analysis in four major parts: (A) Estimation of 

Prevalence, Sensitivity, Specificity, Negative, and Positive Predictive Value; (B) Analysis 

of the tuberculin skin test, T-SPOT.TB and QFT in combination; (C) Optimal choice of 

diagnostic test; and (D) Sensitivity Analysis, where technical details are described below.26, 

27 The Gibbs sampler algorithm, an iterative Markov-chain Monte Carlo technique, was 

used for estimations using the R and JAGS program.28, 29 We used the JAGS software 

(version 3.3.0), running from R version 3.0.2 (R Development Core Team, 2013) to 

implement the Gibbs sampler, using specific marginal posterior densities.28, 29 Convergence 

of estimation was checked and confirmed using the Gelman–Rubin convergence 

diagnostic.28, 29 

The sensitivity (S) and specificity (C) of each test, as well as the prevalence of 

tuberculous uveitis (π), were the proposed model parameters to be estimated. Positive 

predictive value (PPV) and negative predictive value (NPV) can then be calculated with 
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the three estimated parameters using Bayes’ formula. Prior information for sensitivity and 

specificity of T-SPOT.TB, QFT and TST were obtained from a previous meta-analysis of 

tests for latent tuberculosis infection.23 To obtain relevant prior information from similar 

studies on the prevalence of tuberculous uveitis for patients with uveitis, we performed a 

meta-analysis of published literature using a similar Bayesian approach (Appendix 2, 

Supplementary Table 4.1 and Figure 4.1) and updated the information in the model as 

part of our sensitivity analysis. 

A. Estimation of Prevalence, Sensitivity, Specificity, Negative, and Positive Predictive 

Value 

Our Bayesian latent model describes the number of patients screened with tuberculin 

skin test (independent from IRGA tests) having tuberculous uveitis (  as distributed 

binomially:   ~ ,   where  is the number of patients and  is 

the probability of a positive tuberculin skin test result. We calculate  ∗

1 ∗ 1  where S and C represents the sensitivity and specificity of each test, 

and   is the prevalence of disease, i.e. tuberculous uveitis. 

 IGRAs T-SPOT.TB and QFT tests are closely related and our interest lies in 

estimation of sensitivities of T-SPOT.TB ( ) and QFT test ( ) and their respective 

specificities ( 	 	  while accounting for the correlation between test outcomes for a 

given patient. The cross-classified test results for T-SPOT.TB and QFT tests are assumed 

to follow a multinomial distribution: ~ , , , , , and the 

multinomial cell probability of test-outcome combination ij is given by ∗

1 ∗  , for i, j = 1, 2.  ( ) is the number of patients that test positive 

(negative) on both tests and  ( ) is the number of patients that test positive (negative) 

on 1 test and negative (positive) on the other test. We account for the correlation between 

diagnostic tests by incorporating covariance terms for sensitivity and specificity, i.e. , 
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the sensitivity for cell with positive result on both is given by ∗ _  and 

 is given by ∗ _ . Note that the two sensitivities and specificities 

are functions of the model parameters: , ,  

and  . 

As the “true” numbers of patients with tuberculous uveitis are unknown,  is the latent 

variable of interest in our analysis. The sensitivity (S) and specificity (C) of each test, as 

well as the prevalence of tuberculous uveitis ( ), were the proposed model parameters to 

be estimated. Positive predictive value (PPV) and negative predictive value (NPV) for 

individual tests can then be calculated as 
∗

∗ 	 	 ∗
 and 

∗

∗ 	 	 ∗
. Correlations between sensitivities and specificities were also investigated 

in the construction of our final statistical model. 

Beta distribution is a very flexible distribution family that applies to an unknown 

quantity that takes values between 0 and 1 (i.e. proportions). Hence it is appropriate to be 

used as the prior distribution for the prevalence of tuberculous uveitis, sensitivity and 

specificity of each test.  The shape of the beta distribution is determined by two parameter 

specification,   and  . Based on the obtained prior information,   and   were 

calculated to be 219.84 and 90.01 for prior distribution of sensitivity of tuberculin skin test; 

22.14 and 10.27 for specificity of tuberculin skin test; 17.64 and 17.64 for sensitivity of T-

SPOT.TB; 560.31 and 58.48 for specificity of T-SPOT.TB; 245.18 and 136.72 for 

sensitivity of QFT and 718.30 and 3.97 for specificity for QFT. Prior information for 

sensitivity and specificity of T-SPOT.TB, QFT TST were obtained from a previous meta-

analysis of tests for latent tuberculosis infection.23 Uniform prior distributions were used 

for the two covariances.27 
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B. Analysis of the TST and T-SPOT.TB and QFT in combination 

With the model described above, we also estimated the number of “true positives” in 

the multinomial cells for pair-wise diagnostic tests and reported the results as median with 

95% Bayesian credible interval (Crl). The multinomial cell probability of disease given 

joint test results can be derived using Bayes’ formula. The posterior distributions of “true 

positives” for discordant pair-wise diagnostic test results were also examined. 

C. Optimal Choice of Diagnostic test 

The choice of the diagnostic test sequence was analyzed using statistical decision 

theory by choosing the smallest risk of the decision rules.26 A “0-1 loss function” was used 

to calculate the risk of performing a diagnostic test where a loss or a risk was calculated 

for misclassification, i.e. false positive or false negative. The formulae used to calculate 

the risk of a diagnostic test, i.e. the misclassification rate is given by ∗ 1

1 ∗ 1 . 

D. Sensitivity Analysis 

Sensitivity analyses were performed to validate our model results. Multiple trial or 

mock data were applied into our Bayesian model to investigate if our data or the priors are 

driving model results. Varying posterior distributions should be observed with the 

application of multiple trial data (i.e. changing likelihood functions) to suggest that 

posterior distribution was calculated by the likelihood (i.e. data) incorporated with prior 

information rather than prior distribution alone influencing the results. Analysis using non-

informative prior was also perform. Also, we have performed meta-analysis using similar 

Bayesian approach on similar published studies for prevalence of tuberculous uveitis 

amongst patients with uveitis to be used as prior information for  (Supplementary Table 

1 and Figure 1). The model results updated with prior knowledge from our meta-analysis 

was compared to that using non-informative prior for prevalence of tuberculous uveitis.  
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4.4 RESULTS 

Based on data in the second part of our prospective study, we enrolled 120 patients 

(of whom 106 patients completed follow-up) with valid QFT and T-SPOT.TB test results. 

Mean age of our patients was 48  17 years, with an equal gender ratio (1:1, n = 52 males). 

Majority of the patients in our study were of Chinese ethnicity (65/106, 61.3%), followed 

by Indian (22/106, 20.8%) and Malay (7/106, 6.6%) - reflective of the racial distribution 

in our South-East Asian population. Of the 106 patients (152 eyes), 46 patients (43.4%) 

presented with bilateral uveitis. Uveitis was predominantly anterior (91/152, 59.9%), 

intermediate (4/152, 2.6%), or posterior (23/152, 15.1%); while 34 eyes (22.4%) presented 

with panuveitis.  Suggestive clinical features of a tubercular cause such as granulomatous 

inflammation (38 eyes, 25.0%), extensive posterior synechiae (29 eyes, 19.1%), vasculitis 

(19 eyes, 12.5%), single nodular or serpinginous choroiditis (1 eye, 0.7%) were observed 

in our study cohort. We found no significant differences in terms of age, gender, race or 

anatomical classification of uveitis when we compared the different QFT, T-SPOT.TB and 

TST test results for the patients. We also did not have any definite cases of ocular TB 

infection i.e. culture-positive TB from ocular samples, in this study cohort.  One patient 

(0.9%) had Mycobacterium tuberculosis smear-positive sputum samples, and 1 patient 

(0.9%) had positive PCR results for Mycobacterium fortuitum from the urine sample.  The 

majority of patients (n=90, 84.9%) had CXR findings that were not suggestive of 

pulmonary TB infection. None of the study subjects were found to be 

immunocompromised nor had BCG vaccinations within 10 years from the study enrolment. 

Using all diagnostic tests results, we had more data to improve estimations for 

individual tests (Table 4.1) and found that the QFT was estimated to be more specific (QFT: 

0.995, 0.988-0.999) than T-SPOT.TB (0.905, 0.879–0.926); and slightly less sensitive 

(QFT: 0.64, 0.60-0.69) compared to T-SPOT.TB (0.67, 0.60–0.74). TST, as a reference 

has sensitivity (0.69, 0.64–0.74) and specificity (0.74, 0.60–0.85).  The correlations for 
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sensitivities between QFT and T-SPOT.TB was estimated to be 0.62 (0.43-0.77) but 

specificities was not found be correlated. The pooled prevalence of tuberculous uveitis 

from our meta-analysis of similar studies was 1.62 (95% CrI: 0.88, 2.81) (Appendix 2, 

Supplementary Figure 4.1). Comparisons between estimations for our final model and 

the model updated with prior knowledge from our meta-analysis for prevalence of 

tuberculous uveitis were also shown in Table 4.1. Sensitivity and specificity estimates 

were similar. Predictive values differ greatly but was not surprising as they are dependent 

on the prevalence of disease.  

Table 4.2 shows the estimated number of “true positives” corresponding to each of 

the four possible outcomes of the diagnostic tests. All tested QFT and T-SPOT.TB positive 

in our study were estimated to be ‘true positive’. However, amongst discordant results, 

QFT was significantly more accurate compared to T-SPOT.TB (QFT positive 98% versus 

T-SPOT.TB positive 76% with ratio 1.28, 95%Crl: 1.11-1.72 i.e. 95%Crl > 1.0, strong 

statistically evidence). Similarly, both QFT (0.99 95%Crl 0.98-1.00) and T-SPOT.TB 

(0.90 95%Crl 0.82-0.96) were more accurate than the tuberculin skin test amongst the 

discordant results. Using the estimated sensitivity and the specificity of each diagnostic test 

(TST, T-SPOT.TB and QFT), we then calculated the risk of each test expressed as the 

function of probability of tuberculous uveitis (Figure 4.1).  Based on statistical decision 

theory, QFT is the first-line test and should be performed ahead of T-SPOT.TB and the 

TST for diagnosis of tuberculous uveitis. Our sensitivity analysis confirmed that posterior 

distribution of parameters with mock data varied appreciably with the changing likelihood 

functions suggesting that our results are data driven and were not overly influenced by 

priors. Furthermore, the optimal choice of diagnostic test is QFT as seen in Figure 4.1, 

regardless of influence from choice of prior for prevalence of tuberculous uveitis. 



 

66 
 

4.5 DISCUSSION 

There is increasing evidence that suggests that Interferon-gamma release assays are 

more specific and/or accurate for the diagnosis of TB compared to the TST.30-33 The 

improved specificity of Interferon-gamma release assays over tuberculin skin testing has 

been shown to reduce unnecessary ATT.34 There have also been several studies which 

suggest that Interferon-gamma release assays are more useful than tuberculin skin test in 

the diagnosis and management of patients with uveitis and TB infection.13, 15, 25, 35-37 

However, there have been no direct comparative studies between QFT and T-SPOT.TB for 

the diagnosis of tuberculous uveitis. In the first part of our study data, we found that T-

SPOT.TB is more specific but less sensitive than TST and should be used in preference to 

TST in low TB-prevalence populations. When used in conjunction, the likelihood of 

tuberculous uveitis is greatest if both T-SPOT.TB and TST are positive.25 Based on new 

patient data in the second part of data collection, QFT was estimated to be more specific 

than T-SPOT.TB in diagnosing tuberculous uveitis. A recent meta-analysis suggested that 

QFT was more specific but less sensitive as compared to T-SPOT.TB, albeit for diagnosis 

of active TB instead of tuberculous uveitis.38 Our final model incorporates the covariances 

between related estimates QFT to be more specific than T-SPOT.TB; while the sensitivity 

of T-SPOT.TB was better in diagnosing tuberculous uveitis compared to previous studies 

(0.50 to 0.67). We then derived the optimal risk of using either the QFT or the T-SPOT.TB, 

while varying the prevalence or probability of tuberculous uveitis. Our analysis using 

statistical decision theory suggested that whether the prevalence of tubercular uveitis in TB 

endemic subpopulations is low or relatively high, the QFT remains superior and should be 

used as a first-line test.  

Of note and more important to clinician, is the fact that the QFT has a high PPV with 

a moderate NPV, i.e., a positive QFT assures you that the result of the test is reliable. The 

estimated sensitivity and specificity for each diagnostic test (final model seen in Table 4.1) 
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is particularly useful in the calculation of PPV, NPV and post-test odds for a new patient 

to aid the clinician in advising their patient. For example, if a new patient in a low TB 

endemic population (e.g. prevalence of tuberculous uveitis is assumed to be 2%) is positive 

for QuantiFERON-TB Gold In-Tube, using the estimated sensitivities and specificities in 

Table 4.1, the PPV of the patient is calculated to be 0.72 and the post-test odds is 2.62. 

This suggests that given positive QFT result, the patient has a 72% probability of having 

disease and is about thrice as likely to have the disease than not. Predictive values are 

influenced by the prevalence of disease in the population being screened,39 and for low 

disease prevalence, diagostic tests have low sensitivities as there would be fewer “affected” 

or “diseased” subjects. Predictive values of Interferon-gamma release assays can be 

increased by performing these diagnostic tests only in patients with a high clinical index 

of suspicion - for example, if they have clinical signs consistent with tuberculous uveitis.40 

We also studied the usefulness of performing both tests in combination, QFT and the 

T-SPOT.TB.  If both were positive, it increased the likelihood of a tubercular cause in our 

patients who present with suggestive clinical signs to 100% in our data.  However, if both 

tests were negative, there is still the possibility of excluding a tubercular cause, i.e. there 

was a 46% chance that the patient may have tuberculous uveitis.  For discordant results, 

QFT was more accurate than T-SPOT.TB; of note, both QuantiFERON-TB Gold In-Tube 

and T-SPOT.TB were more accurate than the tuberculin skin test. These results suggest 

that performing QFT and T-SPOT.TB tests increases the accuracy of diagnosing 

tuberculous uveitis, although discordant or negative results are less useful.  

Both the QFT and T-SPOT.TB provide an objective, single-visit blood test that detects 

and quantify Interferon-gamma release from T-cells in persons infected with TB. However, 

the QFT uses more peptide-simulating specific TB antigens: ESAT-6, CFP-10, and TB7.7 

(p4), as opposed to T-SPOT.TB which only uses ESAT-6 and CFP-10. This may explain 

the higher specificity in QFT as compared to T-SPOT.TB.38 Nonetheless, as these antigens 
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are absent from all BCG strains and most NTM, both QFT and T-SPOT.TB impart greater 

specificity than tests using PPD, which is reflected in most studies including ours.33 T-

SPOT.TB also differs from QFT in that the former involves harvesting and counting viable 

peripheral mononuclear blood cells (PMBCs) that release Interferon-gamma; while the 

latter uses an enzyme-linked immuno-sorbent assay (ELISA) to study Interferon-gamma 

release from T-cells in whole blood. The technique used in T-SPOT.TB may provide better 

resolution of blood samples with reduced T-cell numbers (e.g. samples from 

immunocompromised individuals) that would usually give indeterminate QFT results.8 

However, in individuals undergoing immunosuppressive therapy, both QFT and T-

SPOT.TB appear to have comparable efficacy. 41-43 

The main aim of this current study is to compare QFT and T-SPOT.TB. However, 

TST results were also included as a reference and to allow comparisons with previous 

studies. Our results confirm that both QFT and T-SPOT.TB have lower sensitivity 

compared to the tuberculin skin test. This means that a negative or indeterminate result is 

difficult to interpret, and may not be useful in diagnosing tuberculous uveitis. 

Indeterminate QFT or T-SPOT.TB results can occur, due to low mitogen levels, heterophile 

antibodies or high background IFN- Interferon-gamma levels; while equivocal T-SPOT.TB 

results are likely to be negative but require repeat testing.14 The other setback of Interferon-

gamma release assays is the high cost and technical difficulty. Cost-effectiveness studies 

have thus affected clinical practice and guidelines: the UK-based National Institute for 

Health and Care Excellence (NICE) guidelines advocate a two-step approach using 

tuberculin skin testing and chest radiography as first line investigations, with subsequent 

confirmatory Interferon-gamma release assays testing in cases with positive tuberculin skin 

test results. These guidelines have been widely accepted in the rest of Europe. In contrast, 

the USA Centers for Disease Control and Prevention (CDC) guidance recommends one-

step Interferon-gamma release assays testing for screening of latent TB infection. This lack 
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of agreement likely reflects the current areas of uncertainty with regards to Interferon-

gamma release assays and will continue to evolve as ongoing research rapidly fills the gaps 

in our current knowledge. 44, 45 

The limitation with all studies involving extrapulmonary TB, including “ocular TB,” 

is the small number of patients who actually have a positive TB culture from ocular samples, 

which is the ‘gold standard’ for diagnosis.46 Thus, most studies use a diagnosis of 

“presumed” tubercular uveitis or employ meta-analysis to evaluate new diagnostic tests 

such as T-SPOT.TB.  We used the Bayesian technique, which has also been employed in 

a variety of studies of other infectious diseases that face the same diagnostic dilemmas as 

tubercular uveitis.47-53 We had previously compared the tuberculin skin test and T-

SPOT.TB using a similar Bayesian analysis, in patients with clinical signs suggestive of 

tuberculous uveitis;25 as opposed to the current study where we included all patients who 

presented with uveitis for the first time. Due to small numbers of patients who are culture-

positive or have evidence of AFB on smears or MTB DNA using PCR from ocular biopsies, 

it is difficult to evaluate the QFT or T-SPOT.TB as a diagnostic test using ‘classical’ 

hypothesis testing.  Our Bayesian analysis using the established latent class model 

considered estimation of the accuracy of two correlated tests and a third test that is 

conditionally independent of the two tests of interest, allowed contemporary comparison 

of the T-SPOT.TB and QFT accuracy without a gold standard. We recognize the limitation 

of applying prior information into our model with relatively limited data as priors are 

subjective and may influence the final results. However, our choice of prior distribution 

used was based on prior information derived from a recent meta-analysis performed on 

published studies 23, 24. Moreover, our sensitivity analyses confirmed that our results and 

models were robust, and not overly influenced by prior information. However, we 

recognize that these results may only apply to patients who present with uveitis to a tertiary 

eye centre.  
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In conclusion, this head-to-head comparison of two commercially available 

Interferon-gamma release assays suggests that QFT is the optimal choice test to diagnose 

patients with tuberculous uveitis. This analysis was consistent after performing sensitivity 

analyses and varying the prevalence or probability of tuberculous uveitis. In the absence of 

a gold standard test, our study confirms that a combination of any two Interferon-gamma 

release assays or “classical” tests such as tuberculin skin testing can improve the diagnostic 

accuracy using Bayesian modeling. However, further study into the most optimal or cost-

effective combination and sequence of tests to diagnose tuberculous uveitis is required.  
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4.7 Chapter 4 Tables and Figures 

 
Table 4.1 Estimated sensitivity and specificity and the positive and negative predictive values for the TST, T-SPOT.TB and 

QFT  

 
Data presented as median (95% Bayesian Credible Interval) using data from all diagnostic tests 
*Prior distribution and data derived from meta-analysis (Reference 23) 
†Final model, accounted only for correlated sensitivities between tests 
Model 1 considers correlated sensitivities and specificities between tests; Model 2 accounted only for correlated specificities between tests 
S = sensitivity, C = specificity, PPV = positive predictive value, NPV = negative predictive value 
 

 
 

  
Prior information 

for S and C* 

Informative Prior for Prevalence 
0.0162 (0.0088-0.0281) 

Non-Informative Prior for Prevalence 

Model 1 Model 2 Model 1 Model 3† 

Prevalence 
 

0.048 
 (0.028-0.078) 

0.042  
(0.025-0.067) 

0.750 
 (0.638-0.860) 

0.750  
(0.642-0.867) 

       

TST 

S 
0.709  

(0.658-0.761) 
0.711  

(0.658-0.758) 
0.710  

(0.657-0.760) 
0.690  

(0.638-0.739) 
0.689 

 (0.639-0.739) 

C 
0.683  

(0.522-0.844) 
0.531  

(0.451-0.609) 
0.528 

 (0.453-0.604) 
0.743 

 (0.596-0.861) 
0.739 

 (0.597-0.853) 

PPV 
 

0.070  
(0.040-0.118) 

0.062  
(0.035-0.102) 

0.893  
(0.795-0.955) 

0.890  
(0.798-0.953) 

NPV 
 

0.973  
(0.955-0.986) 

0.976 
 (0.960-0.986) 

0.442  
(0.261-0.590) 

0.443  
(0.252-0.589) 

T-SPOT.TB 

S 
0.500 

(0.334-0.666) 
0.603  

(0.452-0.738) 
0.613 

 (0.437-0.759) 
0.669  

(0.593-0.741) 
0.670  

(0.595-0.743) 

C 
0.906 

(0.882-0.929) 
0.880  

(0.856-0.902) 
0.879 

 (0.853-0.901) 
0.905  

(0.881-0.927) 
0.905 

 (0.879-0.926) 

PPV 
 

0.199  
(0.103-0.336) 

0.180  
(0.094-0.311) 

0.955  
(0.920-0.978) 

0.955  
(0.924-0.978) 

NPV 
 

0.978  
(0.964-0.988) 

0.981 
 (0.970-0.989) 

0.480  
(0.289-0.631) 

0.481  
(0.289-0.634) 

       

QFT 
S 

0.642  
(0.593-0.691) 

0.661  
(0.614-0.704) 

0.658  
(0.610-0.704) 

0.643  
(0.595-0.686) 

0.643  
(0.597-0.687) 

C 
0.996  

(0.989-1.000) 
0.945  

(0.924-0.967) 
0.940  

(0.921-0.958) 
0.995 

 (0.988-0.998) 
0.995  

(0.988-0.999) 
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PPV 
0.372  

(0.216-0.618)
0.326  

(0.190-0.508)
0.997 

(0.993-0.999)
0.998  

(0.993-0.999)

NPV 
 

0.982  
(0.972-0.990) 

0.984 
 (0.975-0.991) 

0.480  
(0.299-0.622) 

0.482  
(0.294-0.617) 

       

Correlations 
between related 

tests 

S 
 

0.527 
 (-0.266, 0.890)  

0.619  
(0.420-0.761) 

0.621 
 (0.426-0.765) 

C 
 

0.596 
 (0.398-0.730) 

0.645  
(0.527-0.759) 

0.091 
 (-0.017, 0.272)  

 
 
 
 
   



 

76 
 

Table 4.2 Estimated “true positives” in our study data 

 
*Study data are counts 
†Estimated counts from Final Model, Bayesian median (95% Crl) 
 

 
   

Study Data*  Estimated “true positive” Counts† 

T-SPOT.TB 
QFT 

Total  T-SPOT.TB 
QFT 

Total 
+ - + - 

+ 72 16 88  + 72 (1.00 ,1.00-1.00) 12 (0.76 ,0.57-0.88) 84 

- 7 57 64  - 7 (0.98 ,0.93-1.00) 27 (0.46 ,0.30-0.67) 34 

Total 79 73 152  Total 79 39 118 
         

T-SPOT.TB 
TST 

Total  T-SPOT.TB 
TST 

Total 
+ - + - 

+ 57 27 84  + 56 (0.98 ,0.96-0.99) 24 (0.90 ,0.82-0.96) 80 

- 18 43 61  - 14 (0.75 ,0.56-0.89) 14 (0.32 ,0.18-0.54) 28 

Total 75 70 145  Total 70 38 108 
         

QFT 
TST 

Total  QFT 
TST 

Total 
+ - + - 

+ 55 20 75  + 55 (1.00 ,1.00-1.00) 20 (0.99 ,0.98-1.00) 75 

- 20 50 70  - 15 (0.75 ,0.56-0.88) 16 (0.31 ,0.19-0.53) 31 

Total 75 70 145  Total 70 36 106 
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Figure 4.1 Optimal Choice of Diagnostic Test, QFT or T-SPOT.TB?  

The risk (misclassification rate) of all tests increases with the prevalence of tuberculous uveitis.  In our study, the risk of QFT was 

the lower than T-SPOT.TB even as the prevalence of tuberculous uveitis varied, suggesting that QFT should be performed ahead of 

T-SPOT.TB. Risk for tuberculin skin test was included as for reference. 

 

Non-informative Prior for Prevalence† 
Informative Prior for Prevalence 

0.0162 (0.0088-0.0281) 

  

†Final model 



 

78 
 

CHAPTER 5 

Bayesian Approach in Systematic Review and Meta-analysis 

Study 3: Global Prevalence and Burden of Age-Related Macular Degeneration,  

A Meta-Analysis and Disease Burden Projection for 2020 and 2040. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Publications: 

Wong WL*, Su XY*, Li X, Cheung CM G, Klein R, Cheung CY#, Wong TY#. Global 

Prevalence and Burden of Age-Related Macular Degeneration: A Meta-Analysis and 

Disease Burden Projection for 2020 and 2040. Invest Ophthalmol Vis Sci. 2013 Jan 

9;54(1):280-7. doi: 10.1167/iovs.12-10657. 

 

*Equal contributions 
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5.1 RESEARCH MOTIVATION and CONTRIBUTIONS 

It is desirable and useful to have available updated summarized evidence of diseases, 

be it treatment or exposure relationships consolidated from the many related but 

independent health research studies of various design types (i.e. randomized controlled 

trials, cross-sectional studies, cohort studies and case-control studies) provides better 

confidence and guidance in clinical decisions and future research directions. However, the 

key challenge faced in integrating results across studies conducted by investigators 

worldwide is the involvement of multiple sources of uncertainty, such as the variability in 

clinical practices between multi-centers, measurement uncertainties of exposures and 

differences in patient populations such as social-demographics like ethnicities and 

geographical regions. In epidemiology, pooled prevalence of diseases and effect sizes is 

essential information for the healthcare planning of disease burden. 

We conducted a literature review to incorporate recently published population based 

studies data to provide an updated pooled global prevalence and projections (to the UN 

data) of age-related macular degeneration (AMD) for years 2014 to 2040 by ethnicity and 

geographical regions using the Hierarchical Bayesian approach. Ethnicity, geographical 

regions, gender and publication year effects were assessed with Bayes factor. Our model 

carefully took into account the various levels of uncertainty and pulls strength across 

studies in estimating both the study specific effects and population effect, giving robust 

estimation to study prevalence especially for studies with small sample sizes. We also 

compared and evaluated our model of AMD prevalence estimation with “classical” 

random-effect model in a simulation study. Detailed instructions to run our model analyses 

in R (free statistical computing software) were given in Appendix 1 (requires some 

perseverance for researchers with little statistical and computing experience). Our codes 

can be expanded to perform similar meta-analyses. 
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5.2 INTRODUCTION 

Age-related macular degeneration (AMD) is responsible for 8.7% of all global 

blindness and is the most common cause of blindness in developed countries,1-5 particularly 

in elderly people above 60 years. The prevalence of AMD is likely to increase globally as 

a consequence of exponential population ageing. There have been significant advances in 

the management of exudative or “wet” AMD with the introduction of anti-angiogenesis 

therapy and patients now have effective treatment options that can prevent blindness, and 

in many cases, even restore vision.6-10 However, these treatments are expensive, and not 

available to all patients in many countries.11-14 Thus, understanding the prevalence, burden 

and population impact of AMD is essential for adequate health care planning and provision, 

and this requires both precise and contemporary estimates of disease prevalence.  

Although there have been many population-based studies of AMD around the world, 

there are no summarized data to guide global strategies. Furthermore, studies have 

suggested substantial racial/ethnic differences in prevalence of AMD. In the Baltimore Eye 

Study, persons of European (white) ancestry were more likely to have early and late AMD 

than those of African ancestry.15, 16 Two meta-analyses conducted in populations of 

European 17 and Asian ancestry4 suggest that among persons ages 40-79, age-specific 

prevalence of late AMD in Asians (0.56%) appears comparable to Europeans (0.59%), but 

early AMD signs were less common among Asians (6.8%) than Europeans (8.8%). There 

are no studies that have systematically compared the prevalence of AMD amongst 

Europeans or Asians with Africans or Hispanics, nor across geographical regions.  

To address this gap, we performed a systematic review of the literature on AMD to 

estimate the prevalence of AMD, to determine differences by ethnicity, region and gender, 

and to project the number of individuals affected with AMD globally in 2020 and 2040. 
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5.3 METHODS 

Sources and Methods of Literature Search 

We systematically reviewed publications that reported prevalence of AMD by 

searching the electronic databases of PubMed, Web of Science and EMBASE for relevant 

papers published up to May, 2013, with the following search terms (formatted for PubMed 

search): 

1. (“Macular Degeneration”[Mesh] AND (“Prevalence”[Mesh] OR “Epidemiology”[Mesh] 

OR “Cross-Sectional Studies” [Mesh] OR “Cohort Studies”[Mesh])) 

2. ((“age-related maculopathy”[All Fields] OR “age-related maculopathy”[All Fields] OR 

“age-related macular degeneration”[All Fields] OR “age related macular degeneration”[All 

Fields] OR “macular degeneration”[All Fields]) AND (“prevalence”[All Fields] OR 

“incidence”[All Fields] OR “epidemiology”[All Fields] OR “risk factors”[All Fields])) 

The strategy identified all articles used in previous reviews.4, 17 In addition, reference lists 

of identified reports were scanned to identify other relevant studies. Initial search was 

scrutinized in detail by clinician scientist XYS and reviewed by senior clinician scientist 

CYC. Data checks were conducted by statisticians (WLW, XL). Disagreements were 

resolved by discussion. 

Inclusion and Exclusion Criteria 

Our meta-analysis was conducted according to the meta-analysis of observational 

studies in epidemiology (MOOSE) guideline.18 The full texts of potentially relevant articles 

were reviewed to identify studies which met the inclusion and exclusion criteria. The 2 

criteria for inclusion were (I) population-based study from a defined geographic area and 

(II) standardized photographic assessment of AMD.  

For (I), studies were included if they quantified the prevalence of AMD (including 

early, late and exudative or neovascular AMD [nvAMD], and geographic atrophy [GA]) 

in population-based samples, with clearly defined methods of sampling. A response rate of 
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50% or higher is considered adequate for the purpose of this meta-analysis19 with the 

exception of the European Eye Study (EUREYE) study20 as it was a large population study 

but sensitivity analysis showed almost no effect on our robust model estimates (Appendix 

2, Supplementary Table 5.2). Surveys or audits of hospital eye departments or clinics 

were excluded. Studies inviting nonspecific volunteers or particular professions were 

excluded, as were studies that relied on self-reported diagnoses or carried out fundus 

examinations only in those with reduced vision.  

For (II), we included studies that had used retinal photography and standardized 

grading methods to diagnose and classify AMD lesions (i.e., grading of retinal photographs 

following either the Wisconsin Age-Related Maculopathy Grading System [WARMGS],21 

the International AMD classification22 or the Rotterdam Staging System23) with 

reproducible grading results.   

Studies fulfilling any one of the following were excluded:  (1) used only clinical 

examination by ophthalmoscopy or slit-lamp biomicroscopy for diagnosis of AMD (i.e. 

lack of any grading reproducibility assessment), (2) reports of number of eyes with AMD 

as opposed to the number of individuals, (3) studies in which determination of AMD 

prevalence was not one of the primary study objectives (e.g. studies determining AMD risk 

factors) and (4) not population based, but were interview based or audits of hospital eye 

departments. Although we did not specifically exclude non-English literature, studies 

included in the final analysis were all written in English. 

Appendix 2, Supplementary Figure 5.1 shows the flow chart of the selection process 

to identify relevant studies. A total of 2,751 published original research articles, letters, 

abstracts, and review articles based on abstracts and titles were identified as of May 2013 

from our literature search. After initial abstract review, 54 potentially eligible articles were 

retrieved for evaluation. Of these, we applied the inclusion and exclusion criteria and 
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identified 39 eligible articles reporting on 39 population-based studies (12,727 any AMD 

cases in 129,664 participants) (Appendix 2, Supplementary Figure 5.1). 

Definition of Early, Late and Any AMD 

The classification systems used to define those with early, late and any AMD (GA and 

NVAMD) in each study was recorded, that is, the Wisconsin Age-Related Maculopathy 

Grading System [WARMGS]21 or the International AMD classification22. Early AMD was 

defined by either any soft drusen (distinct or indistinct) and pigmentary abnormalities or 

large soft drusen 125μm or more in diameter with a large drusen area (> 500μm diameter 

circle) or large soft indistinct drusen in the absence of signs of late AMD. Late AMD was 

defined by the presence of any of the following: geographic atrophy or pigment epithelial 

detachment, subretinal hemorrhage or visible subretinal new vessel, or subretinal fibrous 

scar or laser treatment scar for AMD. Any AMD was defined by presence of either Early 

or Late AMD. 

Modeling and Hierarchical Bayesian Approach 

Because intrinsic difficulties exist when conducting meta-analysis to summarize the 

overall prevalence of data from varied studies with differing characteristics such as disease 

definition, age distribution of the sample, and prevalence estimates stratified by age and 

gender versus single prevalence estimates, we constructed statistical models to best 

describe and fit our extracted data in this study. Heterogeneity issues were addressed in our 

pooled meta-analysis using a Hierarchical Bayesian (HB) approach to determine the 

prevalence of AMD globally. The HB approach models the hierarchical structure of data 

extracted, taking into account the difference in age distribution across studies and effects 

of ethnicity, gender and region to ensure greater precision in AMD estimates. 

Meta-analysis can be naturally described in a hierarchical structure in a HB model. 

The number of people with AMD (  can be specified as binomially distributed: 
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~ , , where  is the total number of participants and  is the 

prevalence of AMD in the  study of the  category of the varying covariate (e.g. each 

study may consist of more than one ethnicity). 

In the Bayesian approach, prevalence of AMD,  is considered as a random variable 

(that has a probability density distribution) in contrast to a fixed unknown parameter (an 

unknown value) in the “classical” approach. Hence, the logit transformation of  follows 

a Normal distribution:   and ~ , , where 1/ . 

To investigate and account for the heterogeneity within and between studies, we 

modeled  as a linear combination of covariates that varies across studies (i.e. age, gender, 

ethnicity, regions). Hence, our base model to pool the overall prevalence of AMD was: 

∗ ∗ ∗  , where  and  are the 

centered and standardized lower and upper bounds of the age group range for participants 

of each study and  is a right censoring indicator for studies with right-censored age 

range data for the upper bound, i.e. 80+ years. The lower and upper bounds of age range 

was centered to 45 and 85 years respectively and then standardized by dividing by their 

respective standard deviations to ensure that pooled estimates are comparable as they were 

being mapped onto the same age range, i.e. 45 to 85 years. Gender, ethnicity and regions 

covariates were then individually added to the base model to determine their impact and 

for covariate-specific pooled prevalence. The percentage of variability in prevalence 

estimates due to various sources of heterogeneity compared to chance alone were examined 

(refer to heterogeneity analysis described in Appendix 2, Supplementary text 5.1). 

Finally, non-informative prior (to represent ignorance) was specified for residual 

variability  using the conjugate gamma distribution: 0.01,0.01 . Gamma 

distribution is applicable to unknown quantities that take values between 0 and ∞. All age 
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coefficients and intercept in the model were specified with non-informative Normal priors, 

i.e. ~ 0,0.0001 .  

The Gibbs sampler algorithm, an iterative Markov-chain Monte Carlo technique, was 

used to estimate the posterior distributions of our random variables using the R and JAGS 

program.24, 25 We used the JAGS software (version 3.3.0), running from R version 3.0.2 (R 

Development Core Team, 2013) to implement the Gibbs sampler, using specific marginal 

posterior densities.24, 25 Convergence estimation was assessed by calculating the Gelman–

Rubin convergence statistics.24, 25 

Ethnicity, Region and Gender Effects 

Bayesian hypothesis testing was performed to examine the effect of ethnicity, 

geographic regions and gender on the prevalence of any, early and late AMD using Bayes 

factors (BF) to compare hypotheses of differences between groups, implementing the 

Gibbs variable selection as proposed by Dellaportas et al.26 using the JAGS software. The 

comparison of the posterior probabilities of hypothesis is given by: 

P H | /P H |  = P |H /P |H  * P H /P H  

         (posterior odds)                  (Bayes factor)              (prior odds) 

where H  is the null hypothesis and H is the alternative hypothesis. Jeffreys27 proposed an 

interpretation scheme for the magnitude of BF in terms of weak (BF 1-3), substantial (BF 

3-10), strong (BF 10-30), very strong (BF 30-100), and decisive (BF > 100) for H , while 

BF < 1 suggests support for .  

We evaluated four major ethnic groups (European ancestry populations [Europeans], 

African ancestry populations [Africans], Asian, and Hispanics) and six geographic regions 

(Africa, Asia, Europe, Latin America and the Caribbean, Northern America and Oceania). 

Publication year was also tested to assess the trend of prevalence over the years for 

consideration in projection estimates. 

Simulation Study to Compare Hierarchical Bayesian and Random-Effect Methods 
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Because the random effect (RE) model is the most frequently used meta-analytic 

method to account for the heterogeneity between the studies by incorporating a random 

effect estimate of between-study variation in the weighting, we performed simulation study 

to assess and compare HB and RE methods. This analysis is presented in Appendix 2, 

Supplementary text 5.2 and Figure 5.2.  

Projection Estimates 

Model ∗ ∗ ∗  was used to estimate 

the prevalence for each year increase in age for the  region. Global and region effects 

were incorporated as fixed and random effects in  and . Age-specific prevalence 

was often reported as interval (e.g. 40-49) or censored (e.g. 80+) age range in the published 

papers and hence the median of interval was used to represent the age interval while 

censored age range was taken as the age with a censoring indicator in the analysis model. 

The estimated prevalence were used to calculate the global and region specific total number 

of individuals with AMD in 2020 and 2040 by multiplying the age- and region-specific 

estimated prevalence rates to the population projection data in World Population Prospects 

of the United Nations.28 Age group-specific prevalence rates were assumed to be constant 

over the next 27 years for our global projection to year 2040 as Bayesian hypothesis testing 

of publication year covariate suggests no evidence to support any trend for prevalence from 

year 1989 to 2013 in our reviewed literature data. 

5.4 RESULTS 

Our meta-analysis included 129,664 individuals in 39 published articles from 39 

population-based studies comprising of 5 ethnic ancestry groups with details listed in 

Appendix 2, Supplementary Table 5.1. Any, early and late AMD were pooled separately. 

Of the study participants, 43.5% were of European ancestry, 12.4% were of African 

ancestry, 33.1% were Asian, 9.7% Hispanic and 1.3% were others.   
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Forest plots in Figure 5.1 show the overall and ethnic-specific pooled prevalence of 

AMD. The lack of overlaps in credible intervals from graphical inspection of forest plots 

suggest presence of heterogeneity. Further analysis showed that heterogeneity in ethnicity 

and geographic regions for any AMD were 99.5% (95% CrI: 99.2%, 99.8%) and 99.7% 

(95% CrI: 99.5%, 99.9%) respectively (Appendix 2, Supplementary Table 5.4). The 

pooled global prevalence (accounting for various sources of heterogeneity) of early and 

late AMD in adult populations were 8.01% (95% CrI: 3.95%, 15.49%) and 0.37% (95% 

CrI: 0.18%, 0.77%), respectively. The overall prevalence of any AMD was 8.69% (95% 

CrI: 4.26%, 17.40%). Detailed estimated prevalence by AMD subtypes, ethnicity and age 

groups from meta-analysis using HB approach are provided in Appendix 2, 

Supplementary Table 5.5. Appendix 2, Supplementary Table 5.6 provides further 

detailed prevalence estimates stratified by geographic regions.  

Early AMD was found to be more prevalent in populations of European ancestry 

(11.2%) than in Asians (6.8%), with a BF of 3.9, suggesting substantial evidence for the 

difference between groups (Figure 5.2A and Appendix 2, Supplementary Table 5.3). 

Likewise, any AMD was more prevalent in populations of European ancestry compared to 

Asians (12.3% vs. 7.4%; BF = 4.3). Compared to African ancestry populations, European 

ancestry populations had higher prevalence of early, late or any AMD (late AMD: 12.3% 

vs. 7.5%; BF = 31.3, suggesting very strong evidence). Geographically, early and any 

AMD were less prevalent in Asia, compared to Europe and Northern America (all BFs > 

2) (Figure 5.2B and Appendix 2, Supplementary Table 5.3). There was no evidence of 

difference in the prevalence of early, late, or any AMD between gender (all BFs < 0.05, 

Appendix 2, Supplementary Table 5.3). 8 (21%) out of the 39 studies examined provided 

information on GA and nvAMD subtypes. Sub-group analysis showed similar overall 

prevalence of GA and nvAMD, 0.44% (95% CrI: 0.15%, 1.36%) and 0.46% (95% CrI: 

0.18%, 1.08%) respectively. European has evidence of higher prevalence of GA as 
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compared to African, Asian and Hispanic (1.11 [95% CrI: 0.53%, 2.08%] compared to 

0.14% [95% CrI: 0.04%, 0.45%], 0.21% [95% CrI: 0.04%, 0.87%] and 0.16% [95% CrI: 

0.05%, 0.46%] respectively). There was no difference in prevalence of nvAMD between 

ethnicities. 

The prevalence of early and late AMD increased with age in each of the ethnic groups 

and regions (Figure 5.3). Prevalence of late AMD in European ancestry populations 

increased most rapidly after age 75 and similar trend was observed in Europe and Oceania 

regions. 

The projected number of people with AMD by regions in years 2014, 2020 and 2040 

are provided in Figure 5.4. In year 2040, projected AMD cases globally are 288 million 

(95% CrI: 205, 399). Asia will have the largest number of people with AMD. Appendix 2, 

Supplementary Table 5.7 provides more detailed data on the projected number of people 

with AMD from 2012 to 2040. Pairwise comparison between geographical regions were 

presented in Appendix 2, Supplementary Table 5.8 and showed statistical evidence for 

the larger projected number of people with any AMD in 2040 in Asia compared to Latin 

America and the Caribbean, Northern America and Oceania and up to 2038 for Africa. 

5.5 DISCUSSION 

This systematic review and meta-analysis provided comprehensive and up-to-date 

pooled estimates of early, late and any AMD prevalence in the four major ethnic groups 

pooled from 39 studies and nearly 130,000 persons conducted in the six geographic regions 

around the world. Estimated prevalence were also projected for these geographically 

regions and worldwide to obtain number of people with AMD in years 2014 to 2040. We 

showed that 8.7% of the population globally have AMD, and the projected number of 

people with AMD is 196 million in 2020, increasing to 288 million in 2040. We describe 

ethnic and regional variations. Our study provides data that reflect the substantial burden 

of AMD which can be used for planning health care services around the world. 
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Our meta-analysis updates two earlier reviews focused on single ethnicities, one 

carried out in Europeans by Rudnicka et al17 and one in Asians by Kawasaki et al4. In our 

study, compared to the Asian meta-analysis, we included four additional Asian studies 

published after 2010, including the Handan Eye Study29, the Central India Eye and Medical 

Study30, one multiethnic Asian cohort study in Singapore31 and one study in Thailand32. In 

comparison to Rudnicka et al, six studies published earlier in the 1970s to 1990s were 

excluded as they relied only on eye examinations without taking fundus photos and on 

study-specific definitions.33-38 In our current study, we included only those with 

internationally recognized definitions of AMD21, 22 confirmed using retinal photographs.  

Our study provides estimates on ethnic differences in AMD prevalence. First, we 

found substantial evidence that early AMD was more prevalent in Europeans than Asians 

but that late AMD was similar. This results confirms the previous meta-analysis4 and multi-

ethnic population-based studies.15 It has been suggested that Asians (Chinese) may be more 

likely to develop exudative or nvAMD than whites,15, 33 but our sub-group analysis suggest 

no evidence for ethnicity difference. Also, most population-based studies were unable to 

reliably diagnose polypoidal choroidal vasculopathy (PCV), which often manifests like 

exudative AMD. Taking into consideration that PCV is markedly more common in Asians 

compared to Europeans, we may be overestimating the true prevalence of late AMD in 

Asians.39-41 Second, our study provided substantial to very strong evidence that early, late 

and any AMD are more prevalent in people of European ancestry than those of African 

ancestry, which validates observations derived from previous individual studies, such as 

the Baltimore Eye Study.15, 16 These patterns are in line with a previous multi-ethnic 

population-based study in the US, whereby the prevalence of early AMD was highest in 

the people of European ancestry, compared to Hispanics, Asians (Chinese) and African 

Americans.15  
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Analysis of pooled prevalence by geographical regions showed greater variability, 

indicated by the larger 95% credible intervals as compared to prevalence pooled by ethnic 

ancestry groups. This could be due to heterogeneity contributed by various ethnic groups 

within each region. This lends further support to the hypothesis that inherited genetic 

factors determined by ethnic ancestry play a substantial role in AMD,42-44 in addition to 

established environmental risk factors such as smoking. Northern America and Europe 

were found to have higher pooled prevalence of early and any AMD as compared to Asia, 

in accordance with the higher prevalence of AMD in people of European ancestry 

compared to Asians as reported both in the literature and substantiated in our meta-analysis 

study. 

Female gender was considered a weak risk factor with inconsistent association for late 

AMD.45, 46 In our meta-analysis, there was no evidence of gender difference in both early 

and late AMD prevalence. This is consistent with previous reviews in people of European 

ancestry, where no significant gender difference was found in the prevalence of nvAMD 

or GA47. Similarly in Asians, men do not have a higher prevalence of late AMD compared 

to women after adjusting for risk factors such as smoking.48-50   

Asia is the most populous continent, accounting for over 60% of the world population 

and hence will see the largest projected number of AMD cases (113 million [95%CrI: 60, 

203] in 2040, a third of AMD cases globally) and is expected to increase more rapidly than 

other regions over the years, despite having the lowest estimated prevalence. Europe, being 

the third most populous region (11%) with the highest AMD prevalence, follows after Asia 

in the number of projected AMD cases (69 million [95%CrI: 40, 109] in 2040), with 

moderate increase over the years. Our models project that in 2040 there will be 39 million 

[95%CrI: 12, 93] people with AMD in Africa, 39 million [95%CrI: 15, 82] in Latin 

America and the Caribbean, 25 million [95%CrI: 15, 38] in the North America and 2 

million [95%CrI: 1, 5] in Oceania. The trends and differences are mainly influenced by the 
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demographic progression in population structure (e.g. aging population) of the regions 

based on the population projection data by the United Nations.28 These data are important 

as more than 2/3 of the AMD patients in Asia, Africa and Latin America may not have 

access to expensive anti-angiogenesis therapies now widely used in North America and 

Europe 

Our study has a number of strengths. First, we pooled data that used fundus 

photography and standardized protocols to assess AMD. Our study was limited by the fact 

that despite the large number of studies included in this meta-analysis, our sub-group 

analysis on the prevalence of late AMD subtypes (i.e nvAMD vs. GA) with ethnicity was 

based on data from only 8 studies. Moreover, there is evidence that without harmonization 

of classification systems and definitions of AMD lesions, estimates of early AMD may 

substantially vary due to a variety of factors. These include varying definitions used for 

grading AMD and inconsistencies in quality of images.51 Although there are inherent 

disadvantages in performing a meta-analysis based on data sets pooled together from 

disparate population studies, we have attempted to circumvent this issue by only including 

studies in which standard protocols are used to grade fundus photos.  

In conclusion, our study estimates reflect the significant present and future burden of 

AMD globally. There is substantial evidence for higher prevalence of early AMD in people 

of European ancestry than in Asians, and early and late AMD in people of European 

ancestry than those of African ancestry. We observed that late AMD prevalence increases 

rapidly after age 75, especially in people of European ethnicity and in Europe and Oceania 

regions, but Asia will see the largest number of people with AMD despite having the lowest 

prevalence. These data provide important information for the design and implementation 

of eye care programs for both specific ethnic groups and geographical regions, as well as 

worldwide.  
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5.7 Chapter 5 Tables and Figures 

Figure 5.1 Forest Plots of Overall and Race-specified Pooled Prevalence of AMD: (A) 

Early AMD, (B) Late AMD and (C) Any AMD. Dashed line refers to the overall pooled 

prevalence estimate presented in bold.  
 

Figure 5.1A 
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Figure 5.1B 
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Figure 5.1C 
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Figure 5.2 Prevalence of AMD by Ethnic Groups (A) and (B) Geographic Regions 
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Figure 5.3 Age Trends of AMD Prevalence by Ethnicity (A & B) & Regions (C & D) 
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Figure 5.4 Projection of Number of People with Early and Late AMD by Regions in 2014, 2020 and 2040 

 

 

World Region 
Early AMD (million)  Late AMD (million)  Any AMD (million) 

2014 2020 2030 2040  2014 2020 2030 2040  2014 2020 2030 2040 

Africa 15.36 18.47 25.67 35.53  0.77 0.93 1.30 1.80  16.87 20.29 28.20 39.06 

Asia 55.51 66.29 86.22 105.76  4.59 5.52 7.66 9.92  59.16 70.68 92.14 113.21 

Europe 47.81 50.87 56.28 58.65  2.57 2.79 3.29 3.69  54.98 58.78 65.82 69.32 

Latin America & Caribbean 19.87 23.59 30.47 36.95  0.86 1.02 1.32 1.61  20.93 24.80 31.90 38.53 

Northern America 14.77 16.70 19.80 21.30  0.76 0.90 1.20 1.36  17.07 19.41 23.25 25.08 

Oceania 1.21 1.43 1.79 2.07  0.09 0.11 0.15 0.19  1.37 1.62 2.06 2.40 

Total 154.55 177.35 220.22 260.26  9.64 11.26 14.92 18.57  170.38 195.58 243.38 287.59 
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CHAPTER 6 

Bayesian Approach in Vision and Quality of Life Research 

Study 4: Accounting for Measurement Errors of Vision-specific Latent Trait 

In Regression Models 
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6.1 RESEARCH MOTIVATION and CONTRIBUTIONS 

Objective means of measuring frequency of disease, magnitude of associations 

between exposure and disease and the collective impact on public health are the building 

blocks of epidemiologic research. Assessing whether observed study results represent valid 

associations that reflect the true relationships between the exposures and the disease, is a 

matter of determining the likelihood that alternative explanations such as chance, bias, 

measurement errors, or confounding could account for the findings. Vision-specific 

functioning is an intangible aspect of visual impairment. Vision-specific quality-of-life 

questionnaires are designed to assess the impact of vision impairment in patients. However, 

the statistical modeling and estimation of association effects are not straightforward when 

dealing with quality-of-life survey with many questions, collectively measuring a single 

latent construct. Our literature review of association analyses involving vision-specific 

instruments revealed current inappropriate handling of measurement errors of vision 

functioning, one of the key latent traits using Rasch analysis. 

Hence in this study, we developed a statistical model that is appropriate for the 

assessment of association effects related to vision-specific latent trait, with proper 

treatment of its associated measurement error to produce accurate and contemporary 

estimates of association effects. We demonstrated the effectiveness this modeling 

framework that integrates Rasch and regression models using Hierarchical Bayesian 

approach and documented the model codes in Appendix 1 which can be altered to conform 

to other instruments.  
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6.2 INTRODUCTION 

There is increasing recognition that patient-reported outcomes [PRO] (commonly 

referred as questionnaires or instruments) is important to assess the impact of vision loss 

in ophthalmic research.1-9 For vision-specific instruments, vision functioning is one of the 

key latent traits. Recently, Rasch analysis has been used to estimate and evaluate latent 

traits, producing Rasch-scaled scores in preference to raw scores from questionnaire data. 

Numerous vision-specific instruments have been rigorously validated using Rasch analysis 

for daily living activities dependent on vision10, 11 and for a spectrum of eye conditions such  

cataract,8, 12, 13 diabetic retinopathy,6 age-related macular degeneration,4, 14 and glaucoma.7, 

15, 16 A literature review for instruments for the assessment of vision-specific quality of life 

identified 22 instruments.17  

However, the handling of latent variables and their interpretation can be challenging 

as they are not observed scores and so estimation of latent variables comes with uncertainty 

commonly termed as measurement error. Subsequent applications of “classical” statistics 

such as t-tests and linear regressions are not strictly appropriate for association analysis of 

latent data as they require dependent/outcome variables to be known. The analysis of latent 

variables requires the associated measurement error to be accounted for as failure to do so 

may lead to biased estimates of correlations, associations and statistical inferences.18, 19 

Multilevel item response theory (MLIRT) models have been shown to allow for a better 

estimation of relationships between predictor variables and MLIRT latent traits.20, 21 

However, appropriate handling of measurement errors of latent dependent variable in 

multilevel models are only more often practiced in some fields, such as in educational22, 23 

and psychometric24, 25 research.  

The purpose of our study was to demonstrate the effectiveness of a modeling 

framework that integrates Rasch and regression models using Hierarchical Bayesian (HB) 

approach that accounts for latent trait measurement errors. This modeling is appropriate 
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for the assessment of association effects related to vision-specific latent trait, with proper 

treatment of its associated measurement error for a more accurate and contemporary 

estimates of association effects. We compared the one-stage “joint analysis” and two-stage 

“separate analysis” model results using real data and assessed the performance of the 

methods in a simulation study based on the frequently used Andrich rating scale model26.  

6.3 MATERIALS AND METHODS 

Literature Review 

We systematically reviewed publications that used Rasch analysis by searching the 

electronic databases of PubMed in the top four Ophthalmic journals (Ophthalmology, 

American Journal of Ophthalmology [AJO], British Journal of Ophthalmology [BJO] and 

Investigative Ophthalmology & Visual Science [IOVS]) for relevant papers published up 

to July, 2013, with the following search terms (formatted for PubMed search): 

1. (rasch[All Fields] AND ("analysis"[Subheading] OR "analysis"[All Fields])) AND 

"Ophthalmology"[Journal] 

2. (rasch[All Fields] AND ("analysis"[Subheading] OR "analysis"[All Fields])) AND 

("Am J Ophthalmol"[Journal] OR "american journal of ophthalmology"[All Fields]) 

3. (rasch[All Fields] AND ("analysis"[Subheading] OR "analysis"[All Fields])) AND ("Br 

J Ophthalmol"[Journal] OR "british journal of ophthalmology"[All Fields]) 

4. (rasch[All Fields] AND ("analysis"[Subheading] OR "analysis"[All Fields])) AND 

("Invest Ophthalmol Vis Sci"[Journal] OR "investigative ophthalmology and visual 

science"[All Fields]) 

The strategy identified 70 articles and the full texts were reviewed (by WLW and XL) 

to identify studies having performed Rasch analysis on visual functioning questionnaire 

data. Of the 70 articles identified, two were letters,27, 28 one study applied Rasch model to 

investigate inter-reader agreement,29 and another focused on the genetic components of the 

optic nerve head30 were excluded. The remaining 66 articles related to visual functioning 
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data were reviewed for choice of Rasch model, implementation software and sample size 

of studies (Table 6.1). 

Pitfalls in Observed Analysis Framework (two-stage “separate analysis” procedure) 

All 66 articles reviewed performed Rasch analysis to evaluate the validity, reliability 

and measurement characteristics of instruments (i.e. visual functioning) for their 

population sample data. Most (86.4%) performed further statistical analysis on the Rasch-

scaled score (i.e. vision-specific latent trait), such as performing correlations or linear 

regressions with visual acuity, demographic or clinical data to assess the impact of visual 

impairment and other patients’ characteristics or factors on visual functioning . 

However, none of the articles mentioned or discussed the potential bias in estimation 

of association effects and the underestimation of their standard errors31 having ignored the 

associated uncertainties involved in the estimation of the latent trait when used naively in 

subsequent association analysis. In the first stage, the vision-specific latent trait (i.e vision 

functioning) was modeled and estimated given a set of item responses using a polytomous 

Rasch model (e.g. Andrich rating scale model when item response options are more than 

dichotomous i.e. three or more). In the second stage, relationships between the estimated 

Rasch-scaled data (treated as known outcome variable) and risk factors were analyzed 

using regression techniques. Ignoring the uncertainty regarding the abilities within the 

regression model may lead to biased estimation of association effects. Underestimation of 

standard errors may also result in false identified positive factors and hence mislead 

statistical inferences.  

Moreover, a key assumption in Rasch model states that a change in the latent variable 

is completely described by the item characteristic functions (the relationship of the latent 

trait and responses of the items) and hence any association analysis on the latent trait with 

other covariates performed in the second stage can violate and contradict the key 

assumptions in the first stage of Rasch analysis (having assumed that vision-specific latent 
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trait only dependents on item response data). Such estimation procedure can cause serious 

underestimation of the standard errors of the model parameters. 

Our literature review also observed that studies assessing visual functioning traits 

were often conducted for moderately small sample sizes (median 240 with interquartile 

range of 497) and together with response data (and Rasch-scaled scores) that are typically 

non-normally distributed; it is precarious to rely on asymptotic approximations and the 

properties of conditional maximum likelihood estimates obtained from analysis software 

without showing them to be accurate.32 Similarly, validation inference based on 

correlations may not be accurate.  

Our study analysis and discussion will focus on the Andrich rating scale26 because it 

is the most frequently used polytomous Rasch model for vision-specific instruments. 

Andrich Rating Scale Model 

The Andrich rating scale26 model is an extension of the Rasch model33 for 

polychotomous responses (i.e. three or more categories). The natural log of the likelihood 

ratio of adjacent response category probabilities is given by 

ln , / ,  

where ,  is the probability of person  on encountering item  would be observed in 

category .  is ability trait for the th person (i.e. i = 1, …, n) ,  is the item  difficulty 

parameter (i.e. k items means k = 1, …, k) and  is the threshold for category  (e.g. items 

with 5 categories means y is in the range of integers 1 to 5), which is constant across items.  

Proposed Analysis Framework (one-stage “joint analysis”) 

A rigorous alternative is to combine the observed two-stage analysis procedure to 

overcome the problematic issues described above. Item response data structure are 

hierarchical since item responses are nested within respondents and respondents may also 

be nested (e.g. patients nested in hospitals). Such relationships can be adequately explained 



 

107 
 

by the multilevel Rasch model using the Hierarchical Bayesian (HB) approach. Model 

parameters can also be incorporated and estimated from the item response data without 

having to condition on estimated person ability parameter (i.e. latent trait). In Appendix 2, 

Supplementary Figure 6.1, a path diagram of this multilevel Rasch model is depicted and 

explained.  

For example, the combined model for linear regression (i.e. continuous latent trait 

outcome) can be written as 

			ln , / ,

					 																																					
. 

where  is the beta coefficient from linear regression,  is the observed covariates of 

person  and 	 is the residual random error. The HB approach provides an elegant 

execution of the multilevel Rasch modeling framework that allows the incorporation of 

explanatory variables or covariates at different levels of hierarchy by specifying parameters 

to come from a specific distribution with parameters and possibly hyper-parameters that 

are, themselves, estimated prior information.31 All model parameters can then be estimated 

simultaneously using the Monte Carlo Markov Chain method with the JAGS software.34, 35 

The proposed procedure enables direct estimation of beta coefficients for association 

effects without having to explicitly know the latent trait measurements, i.e. personal ability. 

The JAGS codes used to fit our example model in one-stage “joint analysis” HB approach 

is provided in the Appendix 1, can be altered readily to conform to different data structure. 

Comparison of Methods Using Real Data 

Both the HB one-stage “joint analysis” and the two-stage “separate analysis” methods 

were performed to assess the relationship of reading and writing literacy on visual 

functioning (measured by a modified VF-9 questionnaire) using data from the Singapore 

Malay Eye Study (SiMES)36, a population-based cross-sectional study of 3,280 

Singaporean Malays aged above 40. Previous studies suggest an association of inadequate 



 

108 
 

literacy with systemic health and hence the influence of literacy on vision functioning (in 

addition to visual impairment), another aspect contributing to vision-specific quality of life 

is important.37, 38 Association of reading and writing literacy with visual functioning were 

adjusted for age, gender, language of interview, body mass index, occupation, marital 

status, income, housing type, education, smoking status and presenting visual acuity in the 

better-seeing eye. 

Simulation Study 

As there is no “gold standard” in the comparison of methods using real data, we 

conducted a simulation study to demonstrate the performance of our proposed HB one-

stage “joint analysis” approach as compared to the observed two-stage “separate analysis” 

procedure. Two independent covariates ( ,	 ), a continuous variable data such as 

standardized age and a binary variable such as gender were simulated with pre-specified 

association effects ( ,	 ) for the impact of these two covariates with the latent visual 

functioning ability parameter and hence, these were considered as the “true” association 

effects or “gold standard” for reference when we re-run analysis on our simulated data 

using both analytical methods. Association estimates and their standard errors from both 

approaches were computed to assess their performance, where estimates closer to the “gold 

standard” indicate higher accuracy and smaller standard errors suggest greater precision. 

The calibration of nine item difficulty parameters,  was fixed according to Table 3 of a 

study conducted by Ecosse L. Lamoureux et. al.,39 that performed a systematic evaluation 

of the reliability and validity of the visual functioning questionnaire (VF-11) using Rasch 

analysis that was later modified to nine items (VF-9) to tailor fit to the Asian population. 

We also investigated the empirical power for both approaches. We provided detailed 

description of our simulation study in Appendix 2, Supplementary text 6.1. 
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6.4 RESULTS 

Table 6.1 shows the summary of articles reviewed in the four major ophthalmic 

journals that have performed Rasch analysis for visual functioning related instrument data. 

The majority (65.1%) performed Rasch analysis using Andrich rating scale model and most 

(68.2%) conducted Rasch analysis using Winsteps software. The median sample size of 

these studies was 240 with interquartile range of 497.  

Associations of inadequate reading and writing literacy with visual functioning 

adjusted for potential confounding variables (model 1 and 2 respectively) derived from 

both approaches analyzed on our simulated data were shown in Table 6.2. Comparison of 

both approaches for Model 1 assessing reading literacy showed no difference in terms of 

statistical evidence for factors identified but results were not consistent for writing literacy 

in Model 2. Inadequate writing was statistically significant based on the HB one-stage 

“joint analysis” but was not significant in the two-stage “separate analysis” approach. 

Smaller association effects were also estimated in the two-stage “separate analysis” 

approach which is consistent with the attenuation bias observed in simulation study. 

Simulation results on the association effects and their standard errors of a continuous 

measurement such as standardized age ( ) and that for a binary factor such as gender ( ) 

with the vision-specific latent trait compared to the “gold standards” for both approaches 

are depicted in Figure 6.1. There is greater inaccuracy (average of 5 folds increase in bias) 

in effect size estimations from the frequently used two-stage “separate analysis” procedure 

compared to the proposed HB one-stage “joint analysis” approach. We also observed an 

attenuation bias in estimations (shrunk towards zero) from the two-stage procedure. 

Smaller standard errors for estimates were expected for the two-stage procedure having 

assumed no uncertainty in the latent trait measurements but the slightly larger standard 

errors (average of one-tenth fold difference) from the HB approach suggest comparable 

precision for a more accurate estimation of associations. Furthermore, similar power (no 



 

110 
 

difference for beta ≥ 0.5 at 5% significance level and less than one-twelfth fold difference 

for beta at 0.2 for both continuous and categorical variables) in our proposed HB approach 

despite taking into account uncertainty in the latent trait (Appendix 2, Supplementary 

Table 6.1). 

6.5 DISCUSSION 

This is the first study to assess the performance of two regression models for visual 

functioning, comparing the frequently used two-stage “separate analysis” method (ignoring 

measurement error of the dependent latent trait) and our proposed one-stage “joint analysis” 

approach in terms of estimation accuracy of association effects, precision of their standard 

errors and power. Association effect sizes from our real data analysis were observed to be 

smaller in the two-stage “separate analysis” approach with slightly tighter intervals and the 

identification of significant factors between approaches were different. Our simulation 

study results (assessing methods performance) provided support for these observations. 

Attenuation bias, the shrinking of estimations towards zero, was found using the two-stage 

procedure (a phenomenon expected from ordinary least squares regression of explanatory 

variables with measurement errors) that explains the (artificial) smaller association effects 

observed in our real data analysis.  

One-stage “joint analysis” approach allows the estimation of all models parameters 

simultaneously and hence integrates visual functioning in the regression model accounting 

for its measurement errors. Simulation results also showed that the one-stage “joint analysis” 

method produced highly accurate estimations (average of 5 folds decrease in bias) with 

comparable precisions and power as compared to the commonly used two-stage “separate 

analysis” procedure. The magnitude of measurement error also affects the size of 

attenuation bias. Accurate estimation of effect size and its variance are both critical to 

statistical significance testing results that directly influence our interpretation of risk factors. 

Hence moving forward, the one-stage “joint analysis” approach is preferred when we 
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perform regression analysis with dependent outcome that is essentially a latent variable 

being derived from some prior analyses.  

Our model codes provided in the Appendix 1 can be altered readily to analyze data 

from any instruments/questionnaires with any choice of Rasch or item response theory 

models (e.g. Partial Credit model, Graded Response model etc.) and complexity of 

multilevel regression models as depicted in Appendix 2, Supplementary Figure 6.1 to 

adequately describe the hierarchical data structure, incorporate different sources of 

uncertainty and inclusion of explanatory covariates at different levels. Furthermore, latent 

variable can also be analyzed as independent covariate (as required) instead of an outcome 

variable used in our simulation example. 

In our literature review, visual functioning rating scale instruments/questionnaires 

were mainly validated using Rasch analysis for their well-known scaling and measurement 

properties. Without a realist interpretation of latent variables, actual Rasch-scaled scores 

do not have straightforward meaning and its interpretations are based on relative 

comparisons of the scaled scores (i.e. relative difference tells us how much more of persons’ 

visual functioning ability compared to another). Many reviewed articles provide ready-to-

use spread sheets that convert raw scores entered to Rasch-scaled scores for their respective 

instruments to benefit clinicians and researchers unfamiliar with Rasch analysis who may 

wish to use its scoring benefits. It is important to note that the population of respondents 

plays an important part in the probability model for each response and so the personal 

ability and item parameters will always be estimated with respect to a population. Hence, 

ready-to-use spread sheets should only be used on different samples of individuals from 

the same population as validated for in the article and that Rasch-scaled scores are not 

comparable between studies from different populations unless it happens (rarely) that both 

populations have identical item characteristic functions. Researchers were also unaware of 

the measurement errors associated with Rasch-scaled scores and performed further analysis 
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directly with simple statistical tests such as independent t-tests to examine between group 

differences in the instrument scores across various socio-demographic variables and levels 

of vision impairment. 

The strength of our study includes the simulating datasets with various pre-specified 

association effects that acts as “ground truth” to enable the comparison between methods. 

The simulating conditions in our study were however, limited to only the Andrich Rating 

Scale model with linear regression analysis for covariates at the respondents’ level. 

Statistical computations are necessary for applying our proposed analysis using the HB 

approach and some background in statistics and programming skills are needed to alter 

codes to conform to other conditions. 

In conclusion, there is a need to account for measurement error associated with vision-

specific latent trait in association analysis. We demonstrated that our HB one-stage “joint 

analysis” approach is a better method that produces greater accuracy with comparable 

power and precision in estimation of association effects compared to the frequently used 

two-stage procedure, despite taking into account greater uncertainty due to the latent trait. 

The study finding has direct implications in our inference drawn from statistical 

significance of risk factors.  
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6.7 Chapter 6 Tables and Figures 

 

Table 6.1 Summary of Articles Reviewed (N=66) 

AJO: American Journal of Ophthalmology; BJO: British Journal of Ophthalmology; 

IOVS: Investigative Ophthalmology & Visual Science; PCM: partial credit model.  

 

 
Major Ophthalmic Journals 

Total 
Ophthalmology AJO BJO IOVS 

No. of Articles 8 (12.1%) 3 (4.6%) 8 (12.1%) 47 (71.2%) 66 (100.0%) 
Method      
  Andrich 6 (75.0%) 1 (33.3%) 5 (62.5%) 31 (66.0%) 43 (65.1%) 
  PCM 0 (0.0%) 0 (0.0%) 1 (12.5%) 4 (8.5%) 5 (7.6%) 

Not indicated 2 (25.0%) 2 (66.7%) 2 (25.0%) 12 (25.5%) 18 (27.3%) 
Software      
  Winsteps 5 (62.5%) 2 (66.7%) 5 (62.5%) 33 (70.2%) 45 (68.2%) 

RUMM2020 3 37.5%) 0 (0.0%) 1 (12.5%) 10 (21.3%) 14 (21.3%) 
  BIGSTEPS 0 (0.0%) 0 (0.0%) 0 (0.0%) 3 (6.4%) 3 (4.5%) 
  Facets 0 (0.0%) 0 (0.0%) 1 (12.5%) 0 (0.0%) 1 (1.5%) 

Not indicated 0 (0.0%) 1 (33.3%) 1 (12.5%) 1 (2.1%) 3 (4.5%) 

Sample size      
  Median 1992 411 360 192 240 
  Range 108 - 14817 135 - 3400 16 - 3280 22 - 7363 16 - 14817 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

116 
 

Table 6.2 Comparison between Approaches Using Real Data* 

*Based on SiMES data 

Model 1 adjusted for factors in table (excluding writing literacy);  

Model 2 adjusted for factors in table (excluding reading literacy) 

Data represented are difference in Rasch-scaled score with 95% Credible interval in 

parentheses 

P-value < 0.05 suggests evidence of associations in 2-stage “separate-analysis” approach 

95%Credible Intervals not including 0 suggests evidence of associations in 1-stage “joint-

analysis” approach 

 Model 1 (reading literacy)  Model 2 (writing literacy) 

Approach 2-Stage P  1-Stage  2-Stage P  1-Stage Approach 

Age, years 
0.000 

(-0.008, 0.008) 
0.906  

-0.001 
(-0.020, 0.014) 

 
0.001 

(-0.007, 0.009) 
0.892  

-0.002 
(-0.018, 0.014) 

Gender          

  Male vs. Female 
0.012 

(-0.161, 0.184) 
0.894  

0.073 
(-0.330, 0.474) 

 
0.010 

(-0.163, 0.182) 
0.913  

0.053 
(-0.265, 0.399) 

Language of 
interview 

         

  English vs. Malay 
-0.227 

(-0.501, 0.046) 
0.103  

-0.442 
(-1.026, 0.142) 

 
-0.229 

(-0.502, 0.045) 
0.101  

-0.482 
(-1.001, 0.027) 

  Others vs. Malay 
0.659 

(-0.685, 2.002) 
0.336  

6.389 
(-0.604, 26.143) 

 
0.649 

(-0.696,1.994) 
0.343  

5.657 
(-0.515, 17.086) 

BMI 
0.002 

(-0.010, 0.014) 
0.739  

0.003 
(-0.021, 0.027) 

 
0.002 

(-0.010, 0.014) 
0.733  

0.005 
(-0.021, 0.028) 

Occupation          

  Office work Reference   Reference  Reference   Reference 

  Service work 
-0.060 

(-0.263, 0.143) 
0.559  

-0.127 
(-0.633, 0.380) 

 
-0.062 

(-0.265, 0.141) 
0.549  

-0.133 
(-0.655, 0.343) 

  Factory work 
-0.186 

(-0.451, 0.078) 
0.166  

-0.402 
(-1.013, 0.226) 

 
-0.181 

(-0.446, 0.083) 
0.178  

-0.396 
(-0.890, 0.212) 

  Homemaking 
-0.118 

(-0.376, 0.141) 
0.371  

-0.210 
(-0.809, 0.420) 

 
-0.104 

(-0.363, 0.155) 
0.431  

-0.273 
(-0.797, 0.304) 

 Unemployed/others 
-0.091 

(-0.334, 0.152) 
0.463  

-0.197 
(-0.750, 0.424) 

 
-0.090 

(-0.333, 0.153) 
0.468  

-0.227 
(-0.775, 0.339) 

Maratial Status          

  Never married Reference   Reference  Reference   Reference 

  Married 
0.072 

(-0.165,0.309) 
0.552  

0.227 
(-0.304, 0.772) 

 
0.074 

(-0.164, 0.311) 
0.543  

0.232 
(-0.216, 0.727) 

  Separate/divorced 
-0.218 

(-0.527,0.091) 
0.167  

-0.305 
(-0.866, 0.304) 

 
-0.213 

(-0.522, 0.097) 
0.177  

-0.272 
(-0.828, 0.283) 

  Widowed 
0.082 

(-0.237,0.400) 
0.615  

0.307 
(-0.348, 0.990) 

 
0.093 

(-0.227, 0.414) 
0.568  

0.324 
(-0.253, 0.929) 

Income          

  > SGD$1000/month Reference   Reference  Reference   Reference 

  < SGD$1000/month 
0.049 

(-0.114, 0.212) 
0.556  

0.106 
(-0.219, 0.475) 

 
0.049 

(-0.115, 0.212) 
0.557  

0.082 
(-0.257, 0.406) 

  Retirement income 
0.065 

(-0.127, 0.256) 
0.508  

0.105 
(-0.338, 0.570) 

 
0.067 

(-0.125, 0.259) 
0.495  

0.135 
(-0.278, 0.491) 

Current housing status          
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  1/2 room flat Reference   Reference  Reference   Reference 

  3/4 room flat 
-0.259 

(-0.416, -0.101) 
0.001  

-0.580 
(-0.944, -0.182) 

 
-0.255 

(-0.413, -0.098) 
0.002  

-0.526 
(-0.843, -0.214) 

  5 room/private house 
-0.281 

(-0.477,-0.085) 
0.005  

-0.617 
(-1.147, -0.194) 

 
-0.278 

(-0.474, -0.082) 
0.006  

-0.547 
(-0.926, -0.192) 

Education          

  No formal education Reference   Reference  Reference   Reference 

  Primary education 
-0.164 

(-0.394,0.066) 
0.162  

-0.360 
(-0.930, 0.135) 

 
-0.160 

(-0.393, 0.074) 
0.180  

-0.342 
(-0.789, 0.115) 

  Secondary education 
-0.152 

(-0.411,0.107) 
0.249  

-0.318 
(-0.976, 0.237) 

 
-0.151 

(-0.414, 0.112) 
0.261  

-0.297 
(-0.794, 0.201) 

  Poly/University 
-0.124 

(-0.427,0.180) 
0.424  

-0.178 
(-0.965, 0.508) 

 
-0.120 

(-0.426, 0.187) 
0.443  

-0.147 
(-0.75, 0.506) 

Smoking status          

  Past or never Reference   Reference  Reference   Reference 

  Current 
-0.203 

(-0.359,-0.048) 
0.010  

-0.461 
(-0.802, -0.141) 

 
-0.201 

(-0.356, -0.045) 
0.012  

-0.411 
(-0.706, -0.159) 

PVA of better eye 
-0.934 

(-1.165,-0.703) 
0.000  

-1.568 
(-2.112, -1.085) 

 
-0.950 

(-1.180, -0.720) 
0.000  

-1.468 
(-1.999, -1.022) 

Read          

  Yes vs. No 
0.297 

(0.026,0.568) 
0.032  

0.578 
(0.051, 1.193) 

     

Write          

  Yes vs. No      
0.245 

(-0.010, 0.500) 
0.060  

0.462 
(0.0496, 0.966) 
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Figure 6.1 Association Effects and Standard Errors: Comparison of Proposed One-Stage HB and Observed Two-Stage Analysis Framework 

from Simulation Results  

Attenuation Bias: red dots were shrunk towards zero and greater bias observed from the greater distance away from the black dots, the true value 

as compared to blue dots from one-stage approach 
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Bias of Beta1  
(Beta 2 constant) 

Beta2 

-1 -0.5 0 0.5 1 

Two-stage; One-stage Two-stage; One-stage Two-stage; One-stage Two-stage; One-stage Two-stage; One-stage 

Beta1 

-1 
0.105 (0.075);  
-0.008 (0.084) 

0.104 (0.076);  
-0.028 (0.093) 

0.116 (0.077);  
-0.022 (0.094) 

0.137 (0.080); 
 -0.021 (0.087) 

0.167 (0.074); 
 -0.022 (0.091) 

-0.5 
0.038 (0.056); 
 -0.006 (0.068) 

0.050 (0.053); 
 -0.005 (0.075) 

0.045 (0.052);  
-0.008 (0.073) 

0.076 (0.058); 
 -0.001 (0.076) 

0.070 (0.062); 
 -0.018 (0.065) 

0 
-0.007 (0.056);  
-0.013 (0.059) 

0.003 (0.049); 
 0.005 (0.057) 

0.001 (0.053);  
-0.002 (0.059) 

0.007 (0.059); 
 0.001 (0.058) 

0.001 (0.054); 
 0.003 (0.062) 

0.5 
-0.038 (0.059); 
 0.017 (0.067) 

-0.039 (0.058); 
 0.004 (0.067) 

-0.052 (0.064); 
 0.005 (0.062) 

-0.071 (0.063); 
 0.012 (0.073) 

-0.087 (0.060) 
; 0.009 (0.076) 

1 
-0.085 (0.081); 
 0.025 (0.089) 

-0.091 (0.076);  
0.020 (0.095) 

-0.118 (0.080); 
 0.020 (0.092) 

-0.150 (0.076); 
 0.022 (0.102) 

-0.176 (0.081); 
 0.010 (0.092) 

Bias of Beta2 
(Beta 1 constant) 

Beta2 

-1 -0.5 0 0.5 1 

Two-stage; One-stage Two-stage; One-stage Two-stage; One-stage Two-stage; One-stage Two-stage; One-stage 

Beta1 

-1 
0.112 (0.122); 
 -0.031 (0.132) 

0.063 (0.117); 
 0.001 (0.128) 

-0.005 (0.122); 
 -0.003 (0.121) 

-0.073 (0.117);  
-0.006 (0.122) 

-0.153 (0.140); 
 0.007 (0.151) 

-0.5 
0.082 (0.131); 
 -0.008 (0.133) 

0.031 (0.121);  
-0.006 (0.131) 

0.002 (0.107);  
-0.007 (0.126) 

-0.078 (0.116);  
0.007 (0.131) 

-0.145 (0.108);  
0.022 (0.129) 

0 
0.081 (0.133); 
 -0.013 (0.116) 

0.063 (0.116); 
 -0.005 (0.110) 

-0.022 (0.103); 
 -0.005 (0.129) 

-0.054 (0.116);  
0.013 (0.126) 

-0.140 (0.129); 
 0.019 (0.121) 

0.5 
0.069 (0.132); 
 -0.015 (0.131) 

0.047 (0.122);  
-0.009 (0.133) 

-0.014 (0.099); 
 0.010 (0.126) 

-0.068 (0.115); 
 0.010 (0.138) 

-0.165 (0.116);  
0.042 (0.139) 

1 
0.061 (0.130); 
 -0.018 (0.147) 

0.030 (0.136); 
 0.004 (0.137) 

0.012 (0.134); 
 -0.018 (0.138) 

-0.059 (0.108);  
0.024 (0.138) 

-0.160 (0.128);  
0.038 (0.144) 

 
Based on 100 simulations using N=300; K=9; C=5  
Data represented as average bias of Two-stage and One-stage estimates of Beta1 (holding Beta2 constant) and Beta2 (holding Beta1 constant), with standard 
error of Betas in the parentheses (true model is given by Beta1*Continuous variable + Beta2*Binary variable). 
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CHAPTER 7 

Summary, Extensions and Future Research 
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7.1 SUMMARY 

In the first chapter (Chapter 1), we reviewed published literature on the types of 

statistics used in ophthalmic journals and the major areas of developments in biostatistics 

research in recent years. New statistics and advanced methods improve efficiency and 

reliability of analysis results, in which its developments are driven by dynamic clinical and 

research questions, where study designs and nature of data collected can be complex due 

to limited resources, restrictions and factors not within control. Mathematical statistics uses 

two major paradigms, “classical” and Bayesian approach. This thesis focuses on the 

Bayesian methods, which is less understood and not commonly applied in ophthalmic 

research as observed from a current literature review but offers an alternative solution to 

solve many of the difficulties faced by conventional methods. Bayesian approach is 

fundamentally sound, flexible, provides clear and direct inferences and makes use of all 

available information and the main criticism of using priors was also discussed. We 

developed statistical models and used Bayesian inference to resolve different areas of 

common but complex clinical and epidemiologic research questions in the thesis.  

Contributions were highlighted in each study chapter.  

The study design, methods and data details for analyses performed in the thesis were 

documented in Chapter 2. Clinical and epidemiologic research questions were 

encountered in my work experience with clinicians and scientists in the Singapore Eye 

Research Institute, and hence the study data were from the Singapore Malay Eye Study 

(SiMES), a prospective cohort of patients presented with uveitis to Singapore National Eye 

Center and also data extracted from literature review to conduct meta-analysis.  

Study 1 (Chapter 3)  

Few studies have developed conversion scores between cataract classification systems. 

There is a need for such a method of conversion, as prevalence and incidence of cataract 

cannot be compared directly between studies that were assessed using different 
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classification systems. In this study, we developed a conversion algorithm and applied our 

algorithm to transform between the LOCS III and Wisconsin system. The conversion 

between the two cataract classification systems is affected by the direction of 

transformation. The conversion algorithm was validated and R program codes to automate 

the collapsing iterations of the conversion algorithm was provided in Appendix 1. 

Extensions and future research 

 Our conversion algorithm can be applied to other cataract grading systems and be 

extended for use in other diseases that requires harmonizing of classification systems and 

definitions of lesions such as for age-related macular degeneration, or chronic kidney 

disease where the classification system may lack coherence1. The usefulness of our 

conversion algorithm should be further investigated in its application to other research 

areas or improved/modified to overcome limitations. 

Chapter 4 (Study 2) 

The clinical diagnosis of infectious disease such as tuberculous uveitis is controversial, 

and without an established “gold standard” diagnostic test, it is difficult to evaluate current 

and new diagnostic tests results using “classical” statistics without knowing the correct 

disease status. Furthermore, IGRAs tests are not independent which complicates modeling. 

Our study have shown how analysis can be performed using Bayesian approach to estimate 

parameters (sensitivity and specificity of diagnostic tests) of latent class model for 

tuberculous uveitis, accounting for tests dependency and considering all available 

information. We have also investigated the optimal choice of diagnostic test to be used.  

Extensions and future research 

Our statistical model can be extended or made to confirm to other situations or 

limitations for analysis of other diagnostic tests or screening programs, such as dilated 

ophthalmoscopy or retina image grading for screening of diabetic retinopathy2, or in 

assessment of rapid tests for dengue diagnosis3. Correct classification rate, validity, cost, 
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urgency and invasiveness of tests are some of the many factors to be considered in the in-

depth evaluation of diagnostic or screening tests. Further research can be done in the 

sequence of multiple tests to be performed, whether sequentially or simultaneously; and 

the reproducibility, repeatability and reliability of tests. 

Chapter 5 (study 3)  

Numerous population-based studies of age-related macular degeneration have been 

reported around the world, with the results of some studies suggesting racial or ethnic 

differences in disease prevalence. Integrating these resources to provide summarized data 

to establish worldwide prevalence and to project the number of people with age-related 

macular degeneration from 2020 to 2040 would be a useful guide for global strategies. In 

this study, we conducted a systematic literature review to identify all population-based 

studies of age-related macular degeneration published before May, 2013 and included only 

studies using retinal photographs and standardized grading classifications (the Wisconsin 

age-related maculopathy grading system, the international classification for age-related 

macular degeneration, or the Rotterdam staging system).  

Various sources of heterogeneity and uncertainty (e.g. ethnicity, geographic regions 

etc.) were accounted for and tested in our statistical model using Hierarchical Bayesian 

approach; and to estimate the pooled prevalence, the 95% credible intervals (CrI), and 

examine the difference in prevalence by ethnicity (European, African, Hispanic, Asian) 

and region (Africa, Asia, Europe, Latin America and the Caribbean, North America, and 

Oceania). We then projected the number of people affected in 2014 and 2040 based on the 

UN World Population Prospects. These estimates indicate the substantial global burden of 

age-related macular degeneration. Our study provided summarized evidence for 

understanding the effect of the condition and provide data towards designing eye-care 

strategies and health services around the world. 

Extensions and future research 
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Further research should be done in addressing the overall disease burden such as on 

visual acuity or the effect of vision loss on quality of vision and quality of life as suggested 

in commentary article by Jost B Jonas.4 Our study provided the first step in examination of 

the overall prevalence of age-related degeneration; the next step would require further 

investigation on the factors associated with age-related macular degeneration, whether the 

factors and its influence differs between countries or ethnicities or caused the prevalence 

varies between regions. The answers to these questions could help in the prevention of the 

disease, in elucidating the pathogenesis, and could give hints for the development of new 

therapeutic procedures. 

Chapter 6 (study 4) 

Numerous vision-specific instruments have been rigorously validated using Rasch 

analysis for daily living activities dependent on vision and for a spectrum of eye conditions 

such as cataract, diabetic retinopathy, age-related macular degeneration, and glaucoma. 

Vision functioning is one of the key latent traits for vision-specific instruments and Rasch 

analysis has been used to estimate and evaluate latent traits, producing Rasch-scaled scores 

in preference to raw scores from questionnaire data. Subsequent applications of “classical” 

statistics such as t-tests and linear regressions are not strictly appropriate for association 

analysis of latent data as they require dependent/outcome variables to be known. The 

analysis of latent variables requires the associated measurement error to be accounted for 

as failure to do so may lead to biased estimates of correlations, associations and statistical 

inferences.  

In this study, we demonstrated the effectiveness of a modeling framework that 

integrates Rasch and regression models using HB approach that accounts for latent trait 

measurement errors, producing accurate estimation of association effects in our simulation 

study compared to the frequently used approach. Both methods applied on real data showed 

different identification of significant factors between approaches. HB one-stage “joint 
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analysis” is a better approach, producing accurate effect size estimations and information 

about the independent association of exposure variables with vision-specific latent traits. 

Extensions and future research 

Our model codes could be further improved and made into a simple graphical user 

interface program with easy implementation, to reach out to more researchers. The 

application of advanced/improved bio-statistical methodology should be encouraged to 

advance analysis of research data. 

7.1.1 Significance and Impact on Health Research 

The discipline of biostatistics is clearly a fundamental scientific component of 

biomedical, public health and health services research.5 In particular, epidemiology and 

clinical trials are two major fields of medical research that depends on statistics as a 

fundamental tool in the achievement of their goals. The focus of this thesis is on 

epidemiologic research - the study of how often diseases occur, and reasons for differences 

in different groups of people.  

Epidemiological information is used to plan and evaluate strategies to prevent illness, 

and serves as a guide for the management of patients in whom disease has already 

developed. The involvement of biostatisticians contribute in advising on the conditions for 

valid inference, from the design of the study to concerns on various sources of uncertainty 

and bias due to possible confounding factors in the evaluation of effects of potential risk 

factors for diseases. These effects are quantified by measures of association such as the 

odds ratio or relative risk, involving probabilistic concepts to be estimated appropriately 

according to the type of study (e.g. case-control, cross-sectional, cohort) and specific 

conditions for individual research project. The variety of statistical methods required in 

epidemiology is immense, where the increase in diversity of new research questions has 

led to significant contributions of biostatistics to the ongoing advancement in 

epidemiological research. 
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It is important for researchers to communicate with biostatisticians to take full 

advantage of newly developed and advanced statistical methods to advance cutting edge 

research and knowledge. This thesis contributes in the development of modern Bayesian 

models applied to different areas of clinical and epidemiology research, to bridge the 

transfer of advanced statistical methods into the mainstream of ophthalmic research. 

Bayesian approached is useful to resolve research questions that may be difficult with 

conventional statistics. A documented “step-by-step” R codes to help researchers to 

perform their own Bayesian analysis for similar research settings was proposed.  

7.1.2 Bayes Methods and Other Modern Statistics 

The thesis is limited to development of mainly hierarchical Bayesian models focusing 

on eye research topics in clinical and epidemiological settings. There are many other 

Bayesian techniques and its applications in other disciplines that were not discussed, such 

as Bayesian approach in handling missing data, in the analyses of longitudinal data, clinical 

trials, health economics, model selection methods or survival analysis.6-7 The empirical 

Bayes is another approach to Bayesian that uses observed data to estimate final-stage prior 

(e.g. hyper-parameters) and proceed as though the priors were known (as in our usual 

Bayesian approach), that may produce superior estimates of parameters.6-11 Continual 

explorations in Bayes applications provides potential analytic benefits to advance research.  

Because research questions health research are diverse, biostatistics has expanded its 

domain to include any quantitative methods that may be used to answer these questions. 

This thesis focused on Bayesian approach as an alternative to the “classical” approach. 

Literature review on current research in biostatistics in Chapter 2 revealed other current 

popular research to be in the area of nonparametric and semi-parametric approaches to 

inference techniques and variable selection. The management of high-dimensional data, 

data mining techniques, discrimination and classification models and neural networks are 

other important and useful modern statistics applicable to epidemiology research. 
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7.1.3 Conclusions 

Restricting ourselves to the use of a single specific data analysis method may impede 

the progress of research. When various statistical methods come up with different answers, 

efforts in figuring out why would lead to a better understanding of the underlying reality. 

The arising diversity of clinical questions, new research problems with increasingly 

complex study designs require both continual development of “classical” techniques and 

the creation of new statistical methods crafted for specific research scenarios.12  

In summary, efficient methodological and modeling tools should be used, especially 

in cases where the usual modeling assumptions are not applicable to the data under 

consideration. Simulation studies and data analyses of research projects provided in this 

thesis illustrate the practical utility of the Bayesian approach helps to improve and advance 

ophthalmic research. These statistical models and analyses procedures formulated (and 

codes provided) may be emulated and further improved for other research studies. 
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APPENDICES 

APPENDIX 1: R programming Codes 

 

Points to take note: 

Comments are in green. 

Variable names to be used according to own research data are in blue. 

Data specifications to be changed according to own research preference are in red. 

 

R Codes for Chapter 3 

 

General steps to perform conversion algorithm: 

1) Organize data spreadsheet and read into R 

2) Recode/Categorize continuous scales 

3) Run collapsed algorithm to obtain collapsed frequency table to required categories (run 

twice if both scales needs to be collapsed) 

4) Data Cleaning (any cells with conditional probabilities of < 10% were regarded as 

noise) and calculation of conditional probabilities 

 

Step 1: Data input for R 

Data spreadsheet should be arranged in the below manner and saved as .csv file type, e.g. 

“locs_w.csv”. 

 

Data Legend: sno = unique subject identifier, i.e. study number; nl = LOCS nuclear 

score; nw = Wisconsin nuclear score; cl = LOCS cortical score; cw = Wisconsin cortical 

score; pl = LOCS PSC score; pw = Wisconsin PSC score. 

 

 



 

130 
 

Step 2: R programming codes to convert scores between scales 

Converting Nuclear cataract  

### R to read “locs_w.csv” spreadsheet data saved on C drive 

data<-read.csv("C:/locs_l.csv",header=T) 

 

## Step 2a) Recode LOCS (range 0-6.9) into half unit steps (14 categories), i.e. 0-0.4 

coded as 1, 0.5-0.9 coded as 2 etc. 

library(car) 

nl_cg<-recode(nl,"0:0.4=1;0.5:0.9=2;1:1.4=3;1.5:1.9=4;2:2.4=5;2.5:2.9=6;3:3.4=7; 

3.5:3.9=8;4:4.4=9;4.5:4.9=10;5:5.4=11;5.5:5.9=12;6:6.4=13;6.5:6.9=14") 

## Display nuclear Wisconsin and LOCS 14 by 5 frequency table 

u<-!is.na(nl)&!is.na(nw) 

lik<-matrix(0,ncol=5,nrow=14) 

for(i in 1:14){ 

for(j in 1:5){ 

lik[i,j]<-sum(nl_cg==i&nw==j&u) 

}} 

lik 

 

## Step 2b) Collapsed algorithm to obtain collapsed frequency table 

library(gmodels) 

i<-1 

nl_cg->nl_cb 

while(i<=9){     

i<-i+1 

CrossTable(nl_cb,nw,prop.c=F,prop.t=F,prop.chisq=F)->ct 

ct$prop.row->cpr 

nrow(cpr)->nr 

cprd<-numeric(nr-1) 

for(j in 1:(nr-1)){ 

sum(abs(cpr[j,]-cpr[j+1,]))->cprd[j] 

} 

which(cprd==min(cprd))->ij 

as.numeric(row.names(cpr)[ij])->ij1 

# Have to collapse 9 times to get 5 categories from 14 categories  

(Reduce number of iterations for rows with complete zero counts)  
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as.numeric(row.names(cpr)[ij+1])->ij2 

nl_cb2<-nl_cb 

nl_cb2[nl_cb==ij1&!is.na(nl)]<-ij2 

nl_cb<-nl_cb2 

} 

table(nl_cb,nw)->xt;  

xt   # Collapsed results (frequency counts) 

 

## Step 2c) Data Cleaning – any cells with conditional probabilities of < 10% were 

regarded as noise 

## Convert Wisconsin to LOCS  

## (To convert from LOCS to Wisconsin, swap the row and column variables) 

tem1<-nl_cb   # To convert LOCS to Wisconsin, replace tem1 with variable nw, 

i.e.“tem1<-nw”     

tem2<-nw    # To convert LOCS to Wisconsin, replace tem2 with variable nl_cb, i.e. 

“tem2<-nl_cb” 

table(tem1,tem2)->ct    # Rows are LOCS, columns are Wisconsin 

result<-matrix(0,ncol=5,nrow=5) 

for(i in 1:5){ 

sum(ct[,i])->si 

result[,i]<-ct[,i]/si 

(result[,i]>=0.1)->indi    # <10% were regarded as noise 

sum(result[indi,i])->s2 

result[indi,i]<-result[indi,i]/s2 

result[!indi,i]<-0 

} 

round(result,2)    # Conversion results (conditional probabilities) 

write.csv(round(result,2),"R_conver.csv",row.names=F)    # Output results into MS excel 

 

Converting Cortical cataract  

## Step 2a) Recode/Categorize both scales 

## Recode LOCS (range 0-5.9) into half unit steps (12 categories), i.e. 0-0.4 coded as 1, 

0.5-0.9 coded as 2 etc. 

library(car) 
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cl_cg<-

recode(cl,"0:0.4=1;0.5:0.9=2;1:1.4=3;1.5:1.9=4;2:2.4=5;2.5:2.9=6;3:3.4=7;3.5:3.9=8; 

4:4.4=9;4.5:4.9=10;5:5.4=11;5.5:5.9=12") 

## Recode Wisconsin (range 0-100%) into 5% unit steps (20 categories), i.e. 0-4.99 

coded as 1, 5-9.99 coded as 2 etc. 

cw_cg<-recode(cw,"0:4.99=1;5:9.99=2;10:14.99=3;15:19.99=4;20:24.99=5; 

25:29.99=6;30:34.99=7;35:39.99=8;40:44.99=9;45:49.99=10;50:54.99=11;55:59.99=12;

60:64.99=13;65:69.99=14;70:74.99=15;75:79.99=16;80:84.99=17;85:89.99=18;90:94.99

=19;95:100=20") 

## Display cortical LOCS and Wisconsin 12 by 20 frequency table 

u<-!is.na(cl)&!is.na(cw) 

lik<-matrix(0,ncol=20,nrow=12) 

for(i in 1:12){ 

for(j in 1:20){ 

lik[i,j]<-sum(cl_cg==i&cw_cg==j&u) 

}} 

lik 

 

## Step 2b) Collapsed algorithm to obtain collapsed frequency table 

library(gmodels) 

# Collapse LOCS 

i<-1 

cl_cg->cl_cb 

cw_cg->cw_cb 

while(i<=7){    # Have to collapse 7 times to get 5 categories from 12 categories 

i<-i+1 

CrossTable(cl_cb,cw_cb,prop.c=F,prop.t=F,prop.chisq=F)->ct    # 12 rows (LOCS) by 20 

columns (Wisconsin)  

ct$prop.row->cpr 

nrow(cpr)->nr 

cprd<-numeric(nr-1) 

for(j in 1:(nr-1)){ 

sum(abs(cpr[j,]-cpr[j+1,]))->cprd[j] 

} 
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which(cprd==min(cprd))->ij 

as.numeric(row.names(cpr)[ij])->ij1 

as.numeric(row.names(cpr)[ij+1])->ij2 

cl_cb2<-cl_cb 

cl_cb2[cl_cb==ij1&!is.na(cl)]<-ij2 

cl_cb<-cl_cb2 

} 

table(cl_cb,cw_cb)->xt;  

xt     # Collapsed results (frequency counts) 

 

## Collapse Wisconsin 

i<-1 

while(i<=15){    # Have to collapse 15 times to get 5 categories from 20 categories 

i<-i+1 

CrossTable(cw_cb,cl_cb,prop.c=F,prop.t=F,prop.chisq=F)->ct    # 20 rows (Wisconsin) 

by 5 columns (LOCS)  

ct$prop.row->cpr 

nrow(cpr)->nr 

cprd<-numeric(nr-1) 

for(j in 1:(nr-1)){ 

sum(abs(cpr[j,]-cpr[j+1,]))->cprd[j] 

} 

which(cprd==min(cprd))->ij 

as.numeric(row.names(cpr)[ij])->ij1 

as.numeric(row.names(cpr)[ij+1])->ij2 

cw_cb2<-cw_cb 

cw_cb2[cw_cb==ij1&!is.na(cw)]<-ij2 

cw_cb<-cw_cb2 

} 

table(cw_cb,cl_cb)->xt;  

xt     # Collapsed results (frequency counts) 

 

## Step 2c) Data Cleaning – any cells with conditional probabilities of < 10% were 

regarded as noise 
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## Convert Wisconsin to LOCS  

## (To convert from LOCS to Wisconsin, swap the row and column variables) 

tem1<-cl_cb    # To convert LOCS to Wisconsin, replace tem1 with variable nw, i.e. 

“tem1<-cw_cb” 

tem2<-cw_cb    # To convert LOCS to Wisconsin, replace tem2 with variable nl_cb, i.e. 

“tem2<-cl_cb” 

table(tem1,tem2)->ct    # Rows are LOCS, columns are Wisconsin 

result<-matrix(0,ncol=5,nrow=5) 

for(i in 1:5){ 

sum(ct[,i])->si 

result[,i]<-ct[,i]/si 

(result[,i]>=0.1)->indi 

sum(result[indi,i])->s2 

result[indi,i]<-result[indi,i]/s2 

result[!indi,i]<-0 

} 

round(result,2)    # Conversion results (conditional probabilities) 

write.csv(round(result,2),"R_conver.csv",row.names=F)    # Output results into MS excel 

 

Converting PSC cataract  

## Step 2a) Recode/Categorize both scales 

## Recode LOCS (range 0-5.9) into half unit steps (12 categories), i.e. 0-0.4 coded as 1, 

0.5-0.9 coded as 2 etc. 

library(car) 

pl_cg<-recode(pl,"0:0.4=1;0.5:0.9=2;1:1.4=3;1.5:1.9=4;2:2.4=5;2.5:2.9=6;3:3.4=7; 

3.5:3.9=8;4:4.4=9;4.5:4.9=10;5:5.4=11;5.5:5.9=12") 

## Recode Wisconsin (range 0-100%) into 0%, 1-4%, then 5% unit steps (21 categories), 

i.e. 0 coded as 1, 0.01-4.99 coded as 2, 5-9.99 coded as 3, 10-14.99 coded as 4 etc. 

pw_cg<-recode(pw,"0=1;0.01:4.99=2;5:9.99=3;10:14.99=4;15:19.99=5;20:24.99=6; 

25:29.99=7;30:34.99=8;35:39.99=9;40:44.99=10;45:49.99=11;50:54.99=12;55:59.99=13

;60:64.99=14;65:69.99=15;70:74.99=16;75:79.99=17;80:84.99=18;85:89.99=19;90:94.9

9=20;95:100=21") 

## Display PSC LOCS and Wisconsin 12 by 21 frequency table 

u<-!is.na(pl)&!is.na(pw) 
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lik<-matrix(0,ncol=21,nrow=12) 

for(i in 1:12){ 

for(j in 1:21){ 

lik[i,j]<-sum(pl_cg==i&pw_cg==j&u) 

}} 

lik 

 

## Step 2b) Collapsed algorithm to obtain collapsed frequency table 

library(gmodels) 

# Collapse LOCS 

i<-1 

pl_cg->pl_cb 

pw_cg->pw_cb 

while(i<=7){    # Have to collapse 7 times to get 5 categories from 12 categories 

i<-i+1 

CrossTable(pl_cb,pw_cb,prop.c=F,prop.t=F,prop.chisq=F)->ct    # 12 rows (LOCS) by 

21 columns (Wisconsin)  

ct$prop.row->cpr 

nrow(cpr)->nr 

cprd<-numeric(nr-1) 

for(j in 1:(nr-1)){ 

sum(abs(cpr[j,]-cpr[j+1,]))->cprd[j] 

} 

which(cprd==min(cprd))->ij 

as.numeric(row.names(cpr)[ij])->ij1 

as.numeric(row.names(cpr)[ij+1])->ij2 

pl_cb2<-pl_cb 

pl_cb2[pl_cb==ij1&!is.na(pl)]<-ij2 

pl_cb<-pl_cb2 

} 

table(pl_cb,pw_cb)->xt;  

xt     # Collapsed results (frequency counts) 

 

## Collapse Wisconsin 
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i<-1 

while(i<=16){    # Have to collapse 16 times to get 5 categories from 21 categories  

i<-i+1 

CrossTable(pw_cb,pl_cb,prop.c=F,prop.t=F,prop.chisq=F)->ct    # 20 rows (Wisconsin) 

by 5 columns (LOCS)  

ct$prop.row->cpr 

  nrow(cpr)->nr 

  cprd<-numeric(nr-1) 

  for(j in 1:(nr-1)){ 

    sum(abs(cpr[j,]-cpr[j+1,]))->cprd[j] 

  } 

  which(cprd==min(cprd))->ij 

  as.numeric(row.names(cpr)[ij])->ij1 

  as.numeric(row.names(cpr)[ij+1])->ij2 

  pw_cb2<-pw_cb 

  for(k in 1:length(ij1)){    #  For more than 2 adjacent rows to be collapsed at a time 

    pw_cb2[pw_cb==ij1[k]&!is.na(pw)]<-ij2[k] 

    pw_cb<-pw_cb2 

  } 

  i=i+(length(ij1)-1)   

} 

table(pw_cb,pl_cb)->xt;  

xt     # Collapsed results (frequency counts) 

 

## Step 2c) Data Cleaning – any cells with conditional probabilities of < 10% were 

regarded as noise 

## Convert Wisconsin to LOCS  

## (To convert from LOCS to Wisconsin, swap the row and column variables) 

tem1<-pl_cb    # To convert LOCS to Wisconsin, replace tem1 with variable nw, i.e. 

“tem1<-cw_cb” 

tem2<-pw_cb    # To convert LOCS to Wisconsin, replace tem2 with variable nl_cb, i.e. 

“tem2<-cl_cb” 

table(tem1,tem2)->ct    # Rows are LOCS, columns are Wisconsin 

result<-matrix(0,ncol=5,nrow=5) 
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for(i in 1:5){ 

sum(ct[,i])->si 

result[,i]<-ct[,i]/si 

(result[,i]>=0.1)->indi    # <10% were regarded as noise 

sum(result[indi,i])->s2 

result[indi,i]<-result[indi,i]/s2 

result[!indi,i]<-0 

} 

round(result,2)    # Conversion results (conditional probabilities) 

write.csv(round(result,2),"R_conver.csv",row.names=F)    # Output results into MS excel 
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R Programming Codes for Chapter 4 

 

General steps in analyses: 

a) Organize data spreadsheet and read into R  

b) Building our Bayesian Latent model (QFT, TspotTB correlated, TST independent) to: 

i. Estimate prevalence of disease, sensitivity and specificity of diagnostic tests and 

calculate their PPV and NPV 

ii. To predict “true” cell counts and analyze discordant results 

iii. Develop decision rules to evaluate optimal choice of diagnostic tests 

c) Perform sensitivity analysis 

 

Step 1: Data input for R 

Data spreadsheet should be arranged in the below manner and saved as .csv file type, e.g. 

“data.csv”. 

 

Data Legend: id = patient identifier; Diagnostic tests were coded as 1 for positive result 

and 0 for negative result. 

 

### R to read “tb_data.csv” spreadsheet data saved on C drive 

data<-read.csv("C:/data.csv",header=T) 

 

Step 2, part bi): R programming codes for Parameter Estimations 

 

### Step 2a) Building/Setting up model and save as “model.txt” in your R working 

directory 

model{ 



 

139 
 

## Correlated test 

y[1:4]~dmulti(p[1:4],n[1])  # multinomial distribution 

p[1]<-P*Se11+(1-P)*Sp11  # ++ 

p[2]<-P*Se12+(1-P)*Sp12  # +- 

p[3]<-P*Se21+(1-P)*Sp21  # -+ 

p[4]<-P*Se22+(1-P)*Sp22  # -- 

## Sensitivity 

Se11<-Se[1]*Se[2]+covSe;Se12<-Se[1]-Se11; 

Se21<-Se[2]-Se11;Se22<-1-Se11-Se12-Se21 

## covSe (covariance of sensitivity between related diagnostic tests) 

lSe<-(Se[1]-1)*(1-Se[2]);uSe<-min(Se[1],Se[2])-Se[1]*Se[2] 

covSe~dunif(lSe,uSe);rhoSe<-covSe/sqrt(Se[1]*(1-Se[1])*Se[2]*(1-Se[2])) 

## Specificity 

Sp22<-Sp[1]*Sp[2]+covSp;Sp12<-Sp[2]-Sp22;Sp21<-Sp[1]-Sp22;Sp11<-1-Sp22-Sp12-

Sp21 

## covSp (covariance of specificity between related diagnostic tests) 

lSp<-(Sp[1]-1)*(1-Sp[2]);uSp<-min(Sp[1],Sp[2])-Sp[1]*Sp[2] 

covSp~dunif(lSp,uSp);rhoSp<-covSp/sqrt(Sp[1]*(1-Sp[1])*Sp[2]*(1-Sp[2])) 

##  Independent diagnostic test  

y[5]~dbin(p[5],n[2])  # binomial distribution 

p[5]<-P*Se[3]+(1-P)*(1-Sp[3]) 

 

##  Input of Prior specifications  

for(k in 1:3){ 

Se[k]~dbeta(beta_Se[k,1],beta_Se[k,2])  # informative beta prior distribution for 

sensitivity 

Sp[k]~dbeta(beta_Sp[k,1],beta_Sp[k,2])  # informative beta prior distribution for 

specificity 

PPV[k]<-Se[k]*P/(Se[k]*P+(1-Sp[k])*(1-P))  # calculation of PPV 

NPV[k]<-Sp[k]*(1-P)/(Sp[k]*(1-P)+(1-Se[k])*P)  # calculation of NPV 

} 

P~dbeta(beta_P[1],beta_P[2])  # non-informative beta prior distribution for prevalence 

 

} 
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### Step 2b) Execute Bayesian model 

## Load library 

source("rounds.R") 

library(R2jags) 

library(car) 

## Specification of informative beta priors for Sensitivity & Specificity of all 3 

diagnostic tests (in the order of TST, TspotTB, QFT) derived from previous literature 

mm=c(709,683,500,906,642,996)/1000  # prior – mean 

ml=c(658,522,334,882,593,989)/1000  # prior – lower limit 

mu=c(761,844,666,929,691,1000)/1000  # prior – upper limit 

mu0=(mu+ml)/2;sd0=(mu-ml)/4 

beta_Se0=t(apply(cbind(mu0[c(1,3,5)],sd0[c(1,3,5)]),1,ab)) 

beta_Sp0=t(apply(cbind(mu0[c(2,4,6)],sd0[c(2,4,6)]),1,ab)) 

beta_Se=matrix(beta_Se0[c(2,3,1),],nrow=3) 

beta_Sp=matrix(beta_Sp0[c(2,3,1),],nrow=3) 

beta_P=c(1,1)  # non-informative beta prior distribution for prevalence 

 

tem_data=data[,c("TspotTB","QFT")] 

y=table(tem_data);y=y[c(2,1),c(2,1)];y=c(y[1,],y[2,])  # cell counts for TspotTB & QFT 

n=sum(y)  # total counts, i.e. sample size 

tem_data=data[,"TST"] 

tem_data=tem_data[!is.na(tem_data)] 

y=c(y,sum(tem_data))  # to include positive counts for TST 

n=c(n,length(tem_data))  # to include sample size of TST 

 

dat=list("y","n","beta_Se","beta_Sp","beta_P") 

parameters=c("P","Se","Sp","PPV","NPV","rhoSe","rhoSp")  # parameters to be tracked 

for their posterior distributions 

inits=function(){list(P=0.5,Se=c(0.5,0.5,0.5),Sp=c(0.5,0.5,0.5))}  # initial values 

set.seed(1213)  # set seed number 

## R to launch JAGS software and load and run “model.txt” 

corr2ind1=jags.parallel(dat,inits,parameters,model.file="model.txt",n.chains=2,n.iter=25

000,n.burnin=5000,DIC=F,digits = 5,working.directory=getwd()) 

corr2ind1$BUGSoutput$summary[,c("2.5%", "50%", "97.5%")]  # display results 
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Step 2, part bii): To predict “true” cell counts and analyze discordant results 

###To include the below into model.txt in Step 2a above & re-run analyses 

 

###  TSpotTB & QFT (correlated tests) 

P_pred[1,1]<-P*Se11/p[1]  # ++ 

P_pred[1,2]<-P*Se12/p[2]  # +- 

P_pred[1,3]<-P*Se21/p[3]  # -+ 

P_pred[1,4]<-P*Se22/p[4]  # -- 

for(i in 1:4){N_pred[1,i]~dbin(P_pred[1,i],Y[1,i])} 

 

###  T-SPOT.TB & TST (independent tests) 

P_pred[2,1]<-(Se[1]*Se[3]*P)/(Se[1]*Se[3]*P+(1-Sp[1])*(1-Sp[3])*(1-P))  # ++ 

P_pred[2,2]<-(Se[1]*(1-Se[3])*P)/(Se[1]*(1-Se[3])*P+(1-Sp[1])*Sp[3]*(1-P))  # +- 

P_pred[2,3]<-(Se[3]*(1-Se[1])*P)/(Se[3]*(1-Se[1])*P+(1-Sp[3])*Sp[1]*(1-P))  # -+ 

P_pred[2,4]<-((1-Se[1])*(1-Se[3])*P)/((1-Se[1])*(1-Se[3])*P+Sp[1]*Sp[3]*(1-P))  # -- 

for(i in 1:4){N_pred[2,i]~dbin(P_pred[2,i],Y[2,i])} 

 

###  QFT & TST (independent tests) 

P_pred[3,1]<-(Se[2]*Se[3]*P)/(Se[2]*Se[3]*P+(1-Sp[2])*(1-Sp[3])*(1-P)) # ++ 

P_pred[3,2]<-(Se[2]*(1-Se[3])*P)/(Se[2]*(1-Se[3])*P+(1-Sp[2])*Sp[3]*(1-P)) # +- 

P_pred[3,3]<-(Se[3]*(1-Se[2])*P)/(Se[3]*(1-Se[2])*P+(1-Sp[3])*Sp[2]*(1-P)) # -+ 

P_pred[3,4]<-((1-Se[2])*(1-Se[3])*P)/((1-Se[2])*(1-Se[3])*P+Sp[2]*Sp[3]*(1-P)) # -- 

for(i in 1:4){N_pred[3,i]~dbin(P_pred[3,i],Y[3,i])} 

 

for(i in 1:3){Ratio[i]<-P_pred[i,2]/P_pred[i,3]} 

 

Step 2, part biii): Optimal choice of diagnostic test 

###To include the below into model.txt in Step 2a above & re-run analyses 

for(i in 1:NP){ 

for(k in 1:3){risk[k,i]<-(1-Se[k])*PP[i]+(1-Sp[k])*(1-PP[i])} 

} 

## Plot to illustrate sequential testing of QFT, TSpot.TB and TST 

## To first plot risk line for QFT 

i=1;temi=model$BUGSoutput$summary[paste("risk[",i,",",1:NP,"]",sep=""),"50%"] 
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plot(PP,temi,type="l",ylim=c(0,0.5),ylab="Risk (misclassification 

rate)",xlab="Probability of Tuberculous Uveitis",lwd=2,lty=2)   

## To add risk line for TspotTB in plot 

i=2;temi=model$BUGSoutput$summary[paste("risk[",i,",",1:NP,"]",sep=""),"50%"] 

lines(PP,temi,lty=1,lwd=2) 

## To add risk line for TST in plot 

i=3;temi=model$BUGSoutput$summary[paste("risk[",i,",",1:NP,"]",sep=""),"50%"] 

lines(PP,temi,lty=4,lwd=2) 

legend("bottomright",c("QFT","T-SPOT.TB","TST"),lty=c(1,2,4),bty="n",lwd=2) 

 

Part c) Step 3: Sensitivity analysis 

 

## Generate multiple trial or mock data, “0s” and “1s” data. 

mockdata1<-cbind(sample(0:1,152,replace=T),sample(0:1,152,replace=T), 

sample(0:1,152,replace=T)) 

mockdata1<-data.frame(mockdata1) 

names(mockdata1)<-c("QFT","TspotTB","TST") 

 

## Repeat model analysis documented above to investigate if our data or priors are 

driving model results. Varying posterior distributions should be observed with the 

application of multiple trial or mock data. 

 

## To re-run analyses using informative prior based on information obtained previous 

literature if available to compare with model results using non-informative priors. 
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R Programming Codes for Chapter 5 

 

General steps in analyses: 

a) Build Hierarchical Bayesian model to pool overall and subgroup prevalence estimates:  

i. Ethnicity  

ii. Geographic regions 

b) Projection of number of people with AMD by regions 

c) Bayesian hypothesis testing to examine ethnicity effect  

(codes can be expanded/modified for analysis of gender, region, publication year effects) 

 

Step 1: Data input for R 

Data spreadsheet should be arranged in the below manner and saved as .csv file type, e.g. 

“amd_data.csv”. 

 

Data Legend: study = study name abbreviation; year = publication year; gender coded as 

1 for male, 2 for female and 3 for both; n = study sample size; ye = number of subjects 

with early amd; yl = number of subjects with late amd; yb = number of subjects with any 

amd; region_wl = geographical region coded as 1 for Africa, 2 for Asia, 3 for Europe, 4 

for Altin America & Caribbean, 5 for Northern America, 6 for Oceania; race_wl = 

ethnicity coded as 1 for African, 2 for Asian, 3 for European, 4 for Hispanic, 5 for Others. 

 

### R to read “amd_data.csv” spreadsheet data saved on C drive 

data_amd<-read.csv("C:/amd_data.csv",header=T) 

 

Step 2, part a): R programming codes for Meta-analysis 

 

## Load library 

source("rounds.R") 
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library(car) 

library(R2jags) 

library(coda) 

library(dummies) 

library(metafor) 

 

## Data manipulation 

# Create agel variable – lower bound of age group 

tem=sapply(strsplit(as.character(data_amd$agegp),split=" - ",fixed=T),function(x){x[1]}) 

tem1=sapply(strsplit(as.character(tem),split="> ",fixed=T),function(x){x[2]}) 

tem[!is.na(tem1)]=tem1[!is.na(tem1)] 

data_amd$agel=as.numeric(tem) 

# Create ageu variable – upper bound of age group 

tem=sapply(strsplit(as.character(data_amd$agegp),split=" - ",fixed=T),function(x){x[1]}) 

tem1=sapply(strsplit(as.character(tem),split="> ",fixed=T),function(x){x[2]}) 

tem0=sapply(strsplit(as.character(data_amd$agegp),split=" - 

",fixed=T),function(x){x[2]}) 

tem0[!is.na(tem1)]=tem1[!is.na(tem1)] 

data_amd$ageu=as.numeric(tem0) 

# Create ageuid variable – indicator variable if upper bound is not deterministic, e.g. 80+  

data_amd$ageuid=as.numeric(sapply(strsplit(as.character(data_amd$agegp),split="", 

fixed=T),function(x){sum(x==">")>0})) 

 

### Prepare/collapse subgroups data, e.g. data3 Region, data4 for Ethnicity  

tem_data=data_amd 

studyu=unique(tem_data$study);Ns=length(studyu) 

 

data3=NULL;data4=NULL 

for(i in 1:Ns){ 

  studyi=studyu[i]   

  ## Region  

  regioni=unique(tem_data$region_wl[tem_data$study==studyi]) 

  temi=tem_data[tem_data$study==studyi & tem_data$region_wl==regioni,] 

  if(sum(temi$gender==3)>0){   # Need to drop male only studies 
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    temi=temi[temi$gender==3,] 

    ybi=sum(temi$yb);yei=sum(temi$ye);yli=sum(temi$yl);ni=sum(temi$n) 

    ageuidi=max(temi$ageuid);ageui=max(temi$ageu);ageli=min(temi$agel) 

datai=data.frame(sname=studyi,n=ni,ye=yei,yl=yli,yb=ybi,agel=ageli,ageu=ageui,ageuid

=ageuidi,region=regioni)     

    data3=rbind(data3,datai) 

  }else if(sum(temi$gender==1)>0 & sum(temi$gender==2)>0){ 

    temi=temi[temi$gender==1 | temi$gender==2,]  

    ybi=sum(temi$yb);yei=sum(temi$ye);yli=sum(temi$yl);ni=sum(temi$n) 

    ageuidi=max(temi$ageuid);ageui=max(temi$ageu);ageli=min(temi$agel)    

datai=data.frame(sname=studyi,n=ni,ye=yei,yl=yli,yb=ybi,agel=ageli,ageu=ageui,ageuid

=ageuidi,region=regioni) 

    temi1=temi[temi$gender==1,];temi1=temi1[order(temi1$agegp),] 

    temi2=temi[temi$gender==2,];temi2=temi2[order(temi2$agegp),] 

    data3=rbind(data3,datai) 

  } 

   

  ## Ethnicity 

  racei=unique(tem_data$race_wl[tem_data$study==studyi]) 

  for(j in 1:length(racei)){ 

    temi=tem_data[tem_data$study==studyi & tem_data$race_wl==racei[j],] 

    if(sum(temi$gender==3)>0){   # Need to drop male only studies 

      temi=temi[temi$gender==3,]       

      ybi=sum(temi$yb);yei=sum(temi$ye);yli=sum(temi$yl);ni=sum(temi$n) 

      ageuidi=max(temi$ageuid);ageui=max(temi$ageu);ageli=min(temi$agel) 

datai=data.frame(sname=studyi,n=ni,ye=yei,yl=yli,yb=ybi,agel=ageli,ageu=ageui,ageuid

=ageuidi,race=racei[j]) 

      data4=rbind(data4,datai) 

      check4=c(check4,0) 

    }else if(sum(temi$gender==1)>0 & sum(temi$gender==2)>0){ 

      ybi=sum(temi$yb);yei=sum(temi$ye);yli=sum(temi$yl);ni=sum(temi$n) 

      ageuidi=max(temi$ageuid);ageui=max(temi$ageu);ageli=min(temi$agel) 

datai=data.frame(sname=studyi,n=ni,ye=yei,yl=yli,yb=ybi,agel=ageli,ageu=ageui,ageuid

=ageuidi,race=racei[j]) 
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      temi1=temi[temi$gender==1,];temi1=temi1[order(temi1$agegp),] 

      temi2=temi[temi$gender==2,];temi2=temi2[order(temi2$agegp),] 

      data4=rbind(data4,datai) 

    } 

  } # j 

} # i 

 

## Create agedl and agedu variables to map age to (45, 85) 

data2$agedl=data2$agel-45;data2$agedu=data2$ageu-85 

data3$agedl=data3$agel-45;data3$agedu=data3$ageu-85 

data4$agedl=data4$agel-45;data4$agedu=data4$ageu-85 

 

### Step 2a) Building/Setting up model and save as text file in your R working 

directory 

## Prevalence estimation 

## Part a, i) By ethnicity (to use data4) 

## Model for overall pooled prevalence – saved as “pooledS_map.txt” 

model{ 

for (i in 1:N){ 

y[i]~dbin(p[i],n[i]) 

logit(p[i])<-u[i] 

u[i]~dnorm(mu[i],tau) 

mu[i]<-inprod(Z[i,],Zbeta[])+inprod(S[i,],Sbeta[]) 

} 

# Non-informative gamma prior distribution specified for tau 

tau~dgamma(0.01,0.01);sigma<-pow(tau,-1/2) 

# Non-informative normal prior distribution for regression coefficients 

for(i in 1:NZ){Zbeta[i]~dnorm(0,0.0001)} 

for(i in 1:NS){Sbeta[i]~dnorm(0,Stau)} 

# Non-informative gamma prior distribution specified for tau (between study variability) 

Stau~dgamma(0.01,0.01);Ssigma<-pow(Stau,-1/2) 

 

logit(P)<-Zbeta[1] 

} 
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## Model for pooled prevalence by ethnicity – saved as “pooledXS_map.txt” 

model{ 

for (i in 1:N){ 

y[i]~dbin(p[i],n[i]) 

logit(p[i])<-u[i] 

u[i]~dnorm(mu[i],tau) 

mu[i]<-inprod(Z[i,],Zbeta[])+inprod(S[i,],Sbeta[])+inprod(X[i,],Xbeta[]) 

} 

# Non-informative gamma prior distribution specified for tau (residual variability) 

tau~dgamma(0.01,0.01);sigma<-pow(tau,-1/2) 

# Non-informative normal prior distribution for regression coefficients 

for(i in 1:NZ){Zbeta[i]~dnorm(0,0.0001)} 

for(i in 1:NS){Sbeta[i]~dnorm(0,Stau)} 

# Non-informative gamma prior distribution specified for Stau & Xtau (between study & 

between race variability) 

Stau~dgamma(0.01,0.01);Ssigma<-pow(Stau,-1/2) 

for(i in 1:NX){Xbeta[i]~dnorm(0,Xtau)} 

Xtau~dgamma(0.01,0.01);Xsigma<-pow(Xtau,-1/2) 

 

for(i in 1:NX){logit(P[i])<-Zbeta[1]+Xbeta[i]} 

} 

 

## Part a, ii) By regions (to use data3) 

## Model for overall pooled prevalence – saved as “pooled_map.txt” 

model{ 

for (i in 1:N){ 

y[i]~dbin(p[i],n[i]) 

logit(p[i])<-u[i] 

u[i]~dnorm(mu[i],tau) 

mu[i]<-inprod(Z[i,],Zbeta[]) 

} 

# Non-informative gamma prior distribution specified for tau 

tau~dgamma(0.01,0.01);sigma<-pow(tau,-1/2) 

# Non-informative normal prior distribution for regression coefficients 
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for(i in 1:NZ){Zbeta[i]~dnorm(0,0.0001)} 

 

logit(P[1])<-Zbeta[1] 

} 

 

## Model for pooled prevalence by regions – saved as “pooledX_map.txt” 

model{ 

for (i in 1:N){ 

y[i]~dbin(p[i],n[i]) 

logit(p[i])<-u[i] 

u[i]~dnorm(mu[i],tau) 

mu[i]<-inprod(Z[i,],Zbeta[])+inprod(X[i,],Xbeta[]) 

} 

# Non-informative gamma prior distribution specified for tau (residual variability) 

tau~dgamma(0.01,0.01);sigma<-pow(tau,-1/2) 

# Non-informative normal prior distribution for regression coefficients 

for(i in 1:NZ){Zbeta[i]~dnorm(0,0.0001)} 

for(i in 1:NX){Xbeta[i]~dnorm(0,Xtau)} 

# Non-informative gamma prior distribution specified for Xtau (between region 

variability) 

Xtau~dgamma(0.01,0.01);Xsigma<-pow(Xtau,-1/2) 

 

for(i in 1:NX){logit(P[i])<-Zbeta[1]+Xbeta[i]} 

} 

 

### Step 2b) Execute HB model 

## Part b, i) By ethnicity 

data42=data4[data4$race!=5,]   # Drop “others” race data 

set.seed(1213) 

pools=list();pools_race=list() 

for(i in 3:5){ 

  cat(paste("\n\n...",i,"...",sep="")) 

  tem_data=data42[!(is.na(data42[,i])),] 

  y=tem_data[,i];n=tem_data$n;N=nrow(tem_data);study<-tem_data$study 



 

149 
 

   

  map=cbind((tem_data$agedl-mean(tem_data$agedl))/sd(tem_data$agedl), 

(tem_data$agedu-mean(tem_data$agedu))/sd(tem_data$agedu),tem_data$ageuid) 

   

  Z=cbind(1,map);NZ=ncol(Z);S<-dummy(study);NS<-ncol(S) 

  dat<-list("n","y","N","Z","NZ","S","NS") 

  parameters<-c("p","P") 

  inits<-function(){list(tau=1,Stau=1)} 

  pools[[i-2]]<-jags.parallel(dat, inits, parameters,  

model.file = "pooledS_map.txt",n.chains=2,n.iter=50000,n.burnin=5000,DIC=F, 

digits = 5,working.directory=getwd()) 

   

  X=dummy(tem_data$race);NX=ncol(X) 

  dat<-list("n","y","N","Z","NZ","S","NS","X","NX") 

  parameters<-c("P") 

  inits<-function(){list(tau=1,Stau=1,Xtau=1)} 

  pools_race[[i-2]]<-jags.parallel(dat, inits, parameters,  

model.file = "pooledXS_map.txt",n.chains=2,n.iter=80000,n.burnin=8000,DIC=F,digits 

= 5,working.directory=getwd()) 

} 

 

## By ethnicity 

# Display overall pooled early amd prevalence 

pools[[1]]$BUGSoutput$summary["P", c("2.5%","50%","97.5%")]*100 

# Display overall pooled late amd prevalence 

pools[[2]]$BUGSoutput$summary["P", c("2.5%","50%","97.5%")]*100 

# Display overall pooled any amd prevalence 

pools[[3]]$BUGSoutput$summary["P", c("2.5%","50%","97.5%")]*100 

 

# Display pooled early amd prevalence by race 

pools_race[[1]]$BUGSoutput$summary[, c("2.5%","50%","97.5%")]*100 

# Display overall pooled late amd prevalence by race 

pools_race[[2]]$BUGSoutput$summary[, c("2.5%","50%","97.5%")]*100 

# Display overall pooled any amd prevalence by race 
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pools_race[[3]]$BUGSoutput$summary[, c("2.5%","50%","97.5%")]*100 

 

## Part b, i) By regions 

data32=data3 

set.seed(1213) 

pools=list();pools_region=list() 

for(i in 3:5){ 

  cat(paste("\n\n...",i,"...",sep="")) 

  tem_data=data32[!(is.na(data32[,i])),] 

  y=tem_data[,i];n=tem_data$n;N=nrow(tem_data) 

   

  map=cbind((tem_data$agedl-mean(tem_data$agedl))/sd(tem_data$agedl), 

(tem_data$agedu-mean(tem_data$agedu))/sd(tem_data$agedu),tem_data$ageuid) 

   

  Z=cbind(1,map);NZ=ncol(Z) 

  dat<-list("n","y","N","Z","NZ") 

  parameters<-c("p","P") 

  inits<-function(){list(tau=1)} 

  pools[[i-2]]<-jags.parallel(dat, inits, parameters, model.file = "pooled_map.txt", 

n.chains=2,n.iter=50000,n.burnin=5000,DIC=F,digits = 5,working.directory=getwd()) 

    

  X=dummy(tem_data$region);NX=ncol(X) 

  dat<-list("n","y","N","Z","NZ","X","NX") 

  parameters<-c("P") 

  inits<-function(){list(tau=1,Xtau=1)} 

  pools_region[[i-2]]<-jags.parallel(dat, inits, parameters, 

 model.file = "pooledX_map.txt",n.chains=2,n.iter=80000,n.burnin=8000,DIC=F,digits = 

5,working.directory=getwd()) 

} 

# Display overall pooled early amd prevalence 

pools[[1]]$BUGSoutput$summary["P", c("2.5%","50%","97.5%")]*100 

# Display overall pooled late amd prevalence 

pools[[2]]$BUGSoutput$summary["P", c("2.5%","50%","97.5%")]*100 

# Display overall pooled any amd prevalence 
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pools[[3]]$BUGSoutput$summary["P", c("2.5%","50%","97.5%")]*100 

 

# Display pooled early amd prevalence by region 

pools_region[[1]]$BUGSoutput$summary[, c("2.5%","50%","97.5%")]*100 

# Display overall pooled late amd prevalence by region 

pools_region[[2]]$BUGSoutput$summary[, c("2.5%","50%","97.5%")]*100 

# Display overall pooled any amd prevalence by region 

pools_region[[3]]$BUGSoutput$summary[, c("2.5%","50%","97.5%")]*100 

 

Step 3, part b: Projection of Number of People with AMD by Regions 

## Region-specific estimated prevalence rates obtained in part a) were multiplied to the 

population projection data in World Population Prospects of the United Nations. 

 

projs=read.csv("WPP2010.csv",header=T) 

years=seq(2011,2050) 

regions=c("AFRICA","ASIA","EUROPE","LATIN AMERICA AND THE 

CARIBBEAN","NORTHERN AMERICA","OCEANIA","WORLD") 

 

output_mid=matrix(0,ncol=length(years),nrow=7) 

output_low=matrix(0,ncol=length(years),nrow=7) 

output_upper=matrix(0,ncol=length(years),nrow=7) 

 

for(j in 1:6){ 

  for(i in 1:length(years)){     

output_low[j,i]=sum(pools_region[[3]]$BUGSoutput$summary[j,c("2.5%")]*projs[whic

h(projs$year==years[i] & projs$region==regions[j]),c(8:14,16)])   

output_mid[j,i]=sum(pools_region[[3]]$BUGSoutput$summary[j,c("50%")]*projs[which

(projs$year==years[i] & projs$region==regions[j]),c(8:14,16)])   

output_upper[j,i]=sum(pools_region[[3]]$BUGSoutput$summary[j,c("97.5%")]*projs[w

hich(projs$year==years[i] & projs$region==regions[j]),c(8:14,16)]) 

  } #i 

} #j 

j=7 

for(i in 1:length(years)){     
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output_low[j,i]=sum(pools[[3]]$BUGSoutput$summary["P",c("2.5%")]*projs[which(pro

js$year==years[i] & projs$region==regions[j]),c(8:14,16)])    

output_mid[j,i]=sum(pools [[3]]$BUGSoutput$summary["P",c("50%")]* 

projs[which(projs$year==years[i] & projs$region==regions[j]),c(8:14,16)])    

output_upper[j,i]=sum(pools [[3]]$BUGSoutput$summary["P",c("97.5%")]* 

projs[which(projs$year==years[i] & projs$region==regions[j]),c(8:14,16)]) 

  } #i 

} #j 

   

## Per Million 

output_mid=output_mid/1000 

output_low=output_low/1000 

output_upper=output_upper/1000 

 

## To repeat for early and late AMD projections, i.e. “[[1]]” for early, “[[2]]” for late 

 

Step 4, part c: Bayesian hypothesis testing to examine effects 

### Step 4a) Building/Setting up model and save as text file in your R working 

directory 

## By ethnicity (to use data4) 

## Model – saved as “VSS.txt” 

model{ 

for (i in 1:N){ 

y[i]~dbin(p[i],n[i]) 

logit(p[i])<-u[i] 

u[i]~dnorm(gmu[i],tau) 

gmu[i]<-inprod(S[i,],Sbeta[])+inprod(X[i,],gbeta[]) 

} 

tau~dgamma(0.001,0.001);sigma<-pow(tau,-1/2) 

 

for(i in 1:NS){Sbeta[i]~dnorm(0,Stau)} 

Stau~dgamma(0.001,0.001);Ssigma<-pow(Stau,-1/2) 

 

for(i in 1:(NX+1)){gbeta[i]<-g[i]*Xbeta[i]} 
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g[1]<-1;for(i in 2:(NX+1)){g[i]~dbern(0.5)} 

 

Xbeta[1:(NX+1)]~dmnorm(mb[1:(NX+1)],T[1:(NX+1),1:(NX+1)]) 

#Mu for Xbeta 

for(i in 1:(NX+1)){mb[i]<- (1-g[i])*prop.mean[i]}  # g[] is the variable selection variable 

#Tau for Xbeta 

for(i in 1:(NX+1)){ 

for(j in 1:(NX+1)){ 

T[i,j]<- g[i]*g[j]*Tt[i,j]+(1-g[i]*g[j])*equals(i,j)*pow(prop.sd[i],-2) 

}} 

 

for(j in 1:NX){mindex[j]<-pow(2,j)} 

mm<-g[1]+inprod(g[2:(NX+1)],mindex[]) 

} 

 

### Step 4b) Execute HB model 

## Execute model in similar manner as Step 2b above 

inits<-function(){list(tau=1,Stau=1)} 

parameters<-c("Xbeta","sigma","g","mm") 

vs<-jags.parallel(dat, inits, parameters, model.file = 

"VSS.txt",n.chains=2,n.iter=100000,n.burnin=10000,DIC=F,digits = 5, 

working.directory=getwd()) 

 

## Bayesian hypothesis testing can be similarly done for region, gender and publication 

year. 
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R Programming Codes for Chapter 6 

 

Steps to perform “one-stage” HB association analysis: 

a) Organize data spreadsheet and read into R  

b) Perform association analysis:  

i. Build the “one-stage” HB model  

ii. Execute the “one-stage” HB model 

(note that the validity of instrument should be determined before association analysis) 

 

Step 1: Data input for R 

Data spreadsheet should be arranged in the below manner and saved as .csv file type, e.g. 

“eg_data.csv”. 

 

 

Data Legend: sno = patient number; age_rec = age; gender coded as 0 for male, 1 for 

female; bmi = body mass index; smks_curr coded as 1 for current smoker and 0 for past 

or non-smoker; read coded as 1 for can read and 0 for can’t read; write coded as 1 for can 

write and 0 for can’t write; vfstair_rev to vftelbk_rev are the 9 items in modified VF-9 

questionnaire, each item graded on level of difficulty on scale of 1 to 4 where 4 = a little, 

3 = moderate, 2 = a great deal, 1 = unable to do activity.  

 

Step 2: R programming codes for Association analysis 

### Step 2a) Building/Setting up model and save as “model.txt” in your R working 

directory 

model { 

for (i in 1:N) { 
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for (k in 1:K) { 

for (c in 1:C) { q[i,k,c]<-exp(1.7*(c-1)*(theta[i]-eta[k])-sum(gamma[1:c])) }   ## 

Andrich model 

for (c in 1:C) { p[i,k,c]<-q[i,k,c]/sum(q[i,k,1:C]) }  

Y[i,k]~dcat(p[i,k,1:C]) 

}  

mutheta[i]<-inprod(X[i,],beta[])   ## Regression model 

theta[i]~dnorm(mutheta[i],tau)    

}  

## Difficulty or location parameter 

for (k in 1:(K-1)) { eta[k]~dnorm(0,etau) } 

etau~dgamma(0.01,0.01);esigma<-pow(etau,-1/2) 

eta[K]<-(-sum(eta[1:(K-1)])) 

## Threshold 

gamma[1]<-0 

for (c in 2:C) { gamma[c]~dnorm(0,1) } 

## Beta and Sigma for Theta 

for (i in 1:Q) { beta[i]~dnorm(0,0.01) } 

tau~dgamma(0.01,0.01);sigma<-pow(tau,-1/2) 

} 

 

### Step 2b) Execute “one-stage” HB model 

## Load library 

library(R2jags) 

library(coda) 

library(dummies) 

 

N=3280  # specify the sample size of data 

K=9  # specify number of items in instrument/questionnaire 

C=4  ## specify number of categories in each item 

 

set.seed(1213)  # set seed number 

gamma=rnorm(C-1);gamma=c(0,gamma) 
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data_gamma=NULL 

data_eta=NULL 

data_beta=NULL 

 

## Analysis to investigate factor “read” (creating tem_data to exclude “write” variable) 

tem_data=eg_data[,c(2:6,8:16)] 

indexy=apply(tem_data,1,function(x){sum(is.na(x))}) 

tem_data=tem_data[indexy==0,] 

 

###  ONE - Stage  ### 

X=tem_data[,1:12]  # X: risk factors 

Y=tem_data[,13:21]  # Y: instrument items 

colnames(X)  # display variable names 

cats=c(1:2,4:15)  # variables that are categorical 

 

tem_X=NULL;name_X=NULL 

for(i in 1:ncol(X)){ 

  if(i %in% cats){ 

    tem_X=cbind(tem_X,dummy(X[,i])[,-1]) 

    name_X=c(name_X,paste(colnames(X)[i],2:length(unique(X[,i])),sep="")) 

  }else{ 

    tem_X=cbind(tem_X,X[,i]) 

    name_X=c(name_X,colnames(X)[i]) 

  } 

} 

colnames(tem_X)=name_X;name_X 

 

X=tem_X 

X=cbind(1,X) 

Q=ncol(X);N=nrow(X) 

dat=list("N","K","C","Y","X","Q") 

inits=function(){list(etau=1,tau=1,beta=rep(0,Q))} 

parameters=c("eta","gamma","beta") 
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model=jags.parallel(dat,inits,parameters,model.file="Andrich_X.txt",n.chains=2,n.iter=3

00,n.burnin=30,DIC=F,digits=5,working.directory=getwd()) 

 

data_beta=model$BUGSoutput$summary[paste("beta[",2:Q,"]",sep=""),c("2.5%","50%",

"97.5%","Rhat")] 

row.names(data_beta)=colnames(X)[-1] 

 

sigs=!(data_beta[,1]<0 & data_beta[,3]>0) 

(colnames(X)[-1])[sigs] 

data_beta[sigs,] 

 

## Output estimations of association effects (of latent trait) and its 95% credible intervals 

into Excel 

write.csv(data_beta,paste("Date_beta.csv"))   
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APPENDIX 2: Additional Tables and Figures 

 

Chapter 3 

 
Supplementary Table 3.1 Collapsed contingency table between LOCS III and 
Wisconsin system for nuclear opalescence, cortical and posterior subcapsular 
cataract (PSC). 
 

LOCS III Wisconsin system 

Nuclear      
 1 2 3 4 5 
0.1-2.9 64 1038 635 26 0 
3.0-3.9 34 867 1431 146 0 
4.0-4.9 4 93 559 493 5 
5.0-6.4 0 2 34 281 38 
6.5-6.9 0 0 0 13 26 

      

Cortical      
 0-4 5-44 45-74 75-79 80-100 
0.1-1.4 3750 134 0 0 0 
1.5-2.4 307 280 2 0 0 
2.5-3.9 89 764 17 0 3 
4.0-5.4 5 143 77 1 6 
5.5-5.9 0 3 5 0 9 

      

PSC      
 0-4 5-29 30-64 65-69 70-100 
0.1-2.9 5246 100 0 0 0 
3.0-4.4 20 98 27 0 0 
4.5-4.9 0 2 9 1 0 
5.0-5.4 1 12 14 0 8 
5.5-5.9 0 3 12 3 3 

LOCS III: Lens Opacity Classification III; Wisconsin system: Wisconsin Cataract 
Grading System. 
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Chapter 4 

 

Supplementary Table 4.1 Data for Meta-analysis for prevalence of tuberculous 

uveitis 

Year Author Country Total no of 
patients 

No. of 
TBU 

Prevalence 
of TBU 

2008 Kazokoglu et al. 1 Turkey 761 3 0.3% 
2008 Pathanapithoon et 

al. 2 
Thailand 200 3 2.2% 

2007 Khairallah et al. 3 Tunisia 472 5 1.1% 
2007 Rathinam and 

Namperumalsamy4 
India 8759 488 5.6% 

2005 Yang et al. 5 China 1752 13 0.7% 
2005 Sengun et al. 6 Turkey 300 4 1.3% 
2004 Soheilian et al. 7 Iran 544 8 1.5% 
2004 Singh et al. 8 India 1233 125 10.1% 
2003 Wakabayashi et al. 

9 
Japan 189 13 6.9% 

2002 Islam and 
Tabbara10 

Saudi 
Arabia 

200 21 10.5% 

2002 Morimura11 Japan 126 10 7.9% 
2001 Mercanti et al. 12 Italy 655 46 7.02% 
1998 Kaimbo wa 

Kimbo et al. 13 
Congo 336 30 6% 

1997 Kotake et al. 14 Japan 551 1 0.2% 
1997 Merrill et al. 15 USA 385 2 0.5% 
1996 Rodriguez et al. 16 USA 1273 8 0.06% 
1996 Thean et al. 17 UK 712 2 0.28% 
1995 Das et al. 18 India 465 3 0.6% 
1993 Smit et al.19 Netherland 750 20 2.7% 
1992 Rothova et al. 20 Netherland 865 12 1.4% 
1991 Weiner and 

BenEzra21 
Israel 400 3 0.7% 

1990 Palmares et al. 22 Portugal 450 10 2.2% 
1987 Henderly et al. 23 USA 600 1 0.2% 

 
TBU: Tuberculosis-associated uveitis 
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Supplementary Figure 4.1 Meta-analysis for prevalence of tuberculous uveitis 
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Chapter 5 

 
Supplementary Table 5.1 Global Population-Based Studies included in Meta-analysis  

* ‘-‘ represents prevalence data were not published and thus unavailable.  

† (1), International classification and grading system for age-related maculopathy and age-related macular degeneration; (2), Wisconsin Age-

related Maculopathy Grading System; and (3), Rotterdam Staging System.  

 

World 
Region 

Study/ Location 
Study 

Abbreviation Year 
Age 

Group 
Early  

AMD* 
Late  

AMD*
Any 

AMD*
Response 

Rate 
Sample 

Size 
AMD 

Grading† 
Ethnic 

Ancestry 

Asia 
Andhra Pradesh Eye Disease Study1  

(Andhra Pradesh, India) 
APEDS 2005 40-70+ - - 71 86.7% 3723  (1) Asian 

 Beijing Eye Study (Beijing, China)2 Beijing 2006 40-75+ 63 9 
 
- 

83.4% 4376  (2) Asian 

 Funagata Study (Funagata, Japan)3 Funagata 2008 35-75+ 58 8 
 
- 

53.3% 1625  (1), (2) Asian 

 Hisayama Study (Fukuoka, Japan)4 Hisayama 2001 50-80+ 178 13 
 
- 

60.7% 1486  (1), (2) Asian 

 INDEYE Study (Haryana, North India)5 INDEYE 2007 50-80 77 15 
 
- 

 
87.6% 

1260 (2) Asian 

 Shihpai Eye Study (Taipei, Taiwan)6 Shihpai 2008 50-80+ 97 20 
 
- 

66.6% 1361 (2) Asian 

 Singapore Malay Eye Study (Singapore)7 SiMES 2008 40-80 160 23 
 
- 

 
78.7% 

3280  (2) Asian 

 Handan Eye Study (Hebei Province, China)8 Handan 2011 30-70+ 241 4 
 
- 

90.3% 6830  (2) Asian 

 
Central India Eye and Medical Study9  

(Nagpur, India) 
CIEMS 2011 30-80+ 215 7 

 
- 

80.1% 4711  (2) Asian 

 
Thailand  

(7 regions: central, north, northeast, south, 
east, west, and Bangkok metropolitan area)10 

Thailand 2011 50-80+ 294 27 
 
- 

66.7% 21711  (1) Asian 

 
Singapore Prospective Study Program 

(Singapore)11 
SP2 2012 40-80+ - - 211 72.0% 5157  (2) Asian 

Europe 
EUREYE study (Norway, Estonia, United 
Kingdom, France, Italy, Greece, Spain)12 

EUREYE 2006 65-75+ - - 165 45.0% 4753  (1), (3) 
European 
ancestry 
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 Reykjavik Eye Study (Reykjavik, Iceland)13 RS 2003 50-80+ 338 32  75.8% 1045 (1), (2) 
European 
ancestry 

 Crete, Greece14 Crete 1999 40-80+ 76 15 - 70.6% 777 (2), (3) 
European 
ancestry 

 Oslo Macular Study (Oslo, Norway)15 Oslo 2006 51-90+ 197 13 - 59.6% 770  (1) 
European 
ancestry 

 Oulu Country, Finland16 Oulu 1995 70-90+ 160 39 - 89% 500 (1) 
European 
ancestry  

 Salandra, Southern Italy17 Salandra 1997 60-75+ - - 147 63.5% 366 (1) 
European 
ancestry  

 
Copenhagen City Eye Study (Copenhagen,  

Denmark)18 
Copenhagen 1995 60-80+ 151 112 - 75% 946 (2) 

European 
ancestry 

 Tromso Eye Study (Tromso, Norway)19 Tromso 2012 65-87+ 892 92 - 87% 3025  (1) 
European 
ancestry 

 Spanish Eyes Epidemiological Study (Spain)20 SEE 2010 65-80+ 225 10 - 70.9% 2132  (1) 
European 
ancestry 

 Speedwell Eye Study (Bristol, UK)21 Speedwell 2011 65-75+ 86 8 - 68.9% 949  (2) 
European 
ancestry 

Latin 
America 
and the 

Caribbean 

Londrina, Brazil22 Londrina 2008 60-80+ 66 6  80.5% 483  (1) Asian 

 Barbados Eye Study (Barbados, West Indies)23 BES 1995 40-80+ 561 19 - 83.4% 3444 (1) 
African 
ancestry 

Africa  Nakura, Kenya24 Kenya 2013 50-80+ 366 38 - 88.1% 4414 (1) 
African 
ancestry 

Northern 
America 

Greenland Inuit Study (Greenland)25 GIES 2008 60-80+ 328 61 - 74.8% 695  (2) Others 

 
National Health and Nutrition Examination 

Survey III (USA)26 
NHANESIII 1999 40-60+ 832 18 - 79.1% 8270  (2) 

European/
African 
ancestry 

Hispanics 

 
Atherosclerosis Risk in Communities Study 

(North Carolina, Minneapolis, Maryland, 
USA)27 

ARIC 1999 48-72+ 555 16 - 55.5% 11532  (2) 

European/
African 
ancestry 

 

 Beaver Dam Eye Study (Wisconsin, USA)28 BDES 1992 43-75+ 773 79 - 83.1% 4771  (2) 
European 
ancestry 
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 Baltimore Eye Survey (East Baltimore, US)29 Baltimore 1999 40-80+ 1133 63 - 73.0% 5308  (1) 

European/
African 
ancestry 

 

 
Cardiovascular Health Study (Pennsylvania, 

North Carolina, California and Maryland, 
USA)30 

CHS 2002 69-97 366 30 - 57.3 2361 
 (2) 

 

European/
African 
ancestry 

 

 
Los Angeles Latino Eye Study  

(California, USA)31 
LALES 2004 40-80+ 551 25 - 88.0% 6870  (2) Hispanic 

 
Multi-ethnic Study of Atherosclerosis 
(Maryland, Illinois, North Carolina, 

California, New York and Minnesota, USA)32 
MESA 2006 45-85+ 236 27 - 59.5% 6167  (2) 

European/
African 
ancestry 

Hispanic/ 
Asian 

 Proyecto VER (Arizona, USA)33 VER 2005 50-80+ 676 15 - 72% 4774  (2) Hispanic 

 
Chesapeake Bay Watermen  

(Maryland, USA)34 
Chesapeake 

Bay 
1989 30-79 - 8 - 70% 755  (2) 

European 
ancestry 

 Vision Keepers Study (Oklahoma, USA)35 VKS 2011 48-82+ 339 21 - 66.7% 1019 (2) 
Others 

(Indian) 

 
National Health and Nutrition Examination 

Survey (USA)36 
NHANES05-

08 
2011 40-60+ 375 59 - 95.9% 5553 (2) 

European/
African 
ancestry 

/Hispanic 

 
Beaver Dam Offspring Study  

(Wisconsin, USA)37  
BOSS 2010 21-84+ 95 0 - 66.2% 3285 (2) 

European 
ancestry 

Oceania 
Blue Mountains Eye Study  

(Sydney, Australia)38 
BMES 1995 49-85+ 423 101 - 82.4% 3654  (2) 

European 
ancestry 

 
Visual Impairment Project  
(Melbourne, Australia)39 

VIP 1999 40-90+ 865 76 - 82.0% 5147 (2) 
European 
ancestry 
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Supplementary Table 5.2 Sensitivity Analysis 

Data are % (95% credible intervals) 

  Any AMD Early AMD Late AMD 

All (39 studies) 
8.69 

(4.26, 17.40) 
8.01 

(3.95, 15.49) 
0.37 

(0.18, 0.77) 

≥50% (38 studies) 
8.69 

(4.26, 17.40) 
8.01 

(3.95, 15.49) 
0.36 

(0.18, 0.73) 
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Supplementary Table 5.3 Bayesian Hypothesis Testing of Gender, Ethnicity, Region 

and Publication Year Effect on the Prevalence of AMD subtypes 

*Bayes factor describes level of statistical evidence: negative evidence (BF <1), weak (BF 1-3), 

substantial (BF 3-10), strong (BF 10-30), very strong (BF 30-100), and decisive (BF > 100). BFs 

of >1 are in bold. 

 
Bayes Factor* 

Early AMD Late AMD Any AMD 

Gender     

  Male vs. Female 0.03 0.04 0.03 

Ethnicity groups     

  European vs. African 12.16 3.74 31.26 

  European vs. Asian 3.94 0.20 4.31 

  European vs. Hispanic 0.06 0.34 0.08 

  African vs. Asian 0.15 0.41 0.10 

  African vs. Hispanic 0.24 0.11 0.19 

  Asian vs. Hispanic 0.33 0.18 0.26 

Geographic regions     

  Africa vs. Asia 0.24 0.17 0.20 

  Africa vs. Europe 0.28 0.20 0.30 

  Africa vs. Latin America & Caribbean 0.44 0.62 0.20 

  Africa vs. Northern America 0.14 0.16 0.15 

  Africa vs. Oceania 0.14 0.29 0.19 

  Asia vs. Europe 2.32 0.80 7.55 

  Asia vs. Latin America & Caribbean 0.52 0.12 0.76 

  Asia vs. Northern America 3.02 0.14 3.75 

  Asia vs. Oceania 0.24 0.62 0.14 

  Europe vs. Latin America & Caribbean 0.24 0.36 0.24 

  Europe vs. Northern America 0.12 0.26 0.16 

  Europe vs. Oceania 0.19 0.17 0.20 

  Latin America & Caribbean vs. Northern America 0.13 0.18 0.11 

  Latin America & Caribbean vs. Oceania 0.12 0.91 0.05 

  Northern America vs. Oceania 0.15 0.21 0.15 

Publication Year    

  1989 to 2013 0.12 0.47 0.12 
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Supplementary Table 5.4 Heterogeneity Analysis of Ethnicity and Geographical 

Regions Effects 

Data presented as mean (95% CrI) of percentage of total variability; posterior mean is 

used instead of median to ensure the sum of total between and within study equal to one 

*Variability between ethnic groups in the same study 

 

Percentage of total variability 
AMD 

Early Late Any 

Ethnicity    
Total between-study 99.5 (99.2, 99.8) 95.2 (91.6, 98.5) 99.5 (99.2, 99.8) 
   Ethnicity covariate (within ethnicity) 18.5 (1.7, 68.8) 23.1 (1.1, 73.7) 21.0 (2.2, 70.9) 
   Between ethnicity* 74.9 (23.3, 95.5) 32.6 (0.9, 81.1) 69.7 (15.4, 94.1) 
   Residual 6.2 (0.7, 25.6) 39.5 (2.0, 86.6) 8.8 (0.8, 37.5) 
Total within-study 0.5 (0.2, 0.8) 4.8 (1.5, 8.4) 0.5 (0.2, 0.8) 

        

Region    
Total between-study 99.7 (99.5, 99.9) 96.6 (94.3, 98.4) 99.7 (99.5, 99.9) 
   Region covariate (within region) 27.3 (1.4, 72.9) 11.6 (0.6, 50.4) 30.0 (2.2, 74.8) 
   Residual 72.4 (27.0, 98.2) 85.0 (47.0, 96.7) 69.7 (25.1, 97.5) 
Total within-study 0.3 (0.1, 0.5) 3.4 (1.6, 5.7) 0.3 (0.1, 0.5) 
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Supplementary Table 5.5 Age-group Specific Prevalence Estimates of Any, Early and Late AMD by Ethnic Ancestry 

Groups 

Data in parentheses are 95% credible intervals. 

 

Age Group 
Early AMD 

African Asian European Hispanic Total 

45-49 3.73 (2.25, 6.04) 2.89 (1.67, 4.80) 3.67 (2.28, 5.76) 4.63 (2.82, 7.70) 3.53 (2.34, 5.25) 
50-59 5.10 (3.24, 7.83) 4.29 (2.60, 6.98) 5.86 (3.83, 8.83) 6.87 (4.29, 10.77) 5.39 (3.64, 7.93) 
60-69 7.45 (4.84, 11.14) 7.01 (4.36, 11.12) 10.40 (7.06, 14.95) 11.01 (7.05, 16.93) 9.04 (6.20, 12.92) 
70-79 10.73 (6.93, 16.45) 11.27 (6.97, 17.46) 17.68 (12.32, 24.42) 17.31 (10.77, 26.45) 14.71 (10.18, 20.83) 
80-84 13.88 (8.62, 21.52) 15.44 (9.43, 23.56) 24.91 (17.58, 33.65) 23.20 (14.22, 35.59) 20.26 (14.10, 28.33) 
Total 7.06 (3.41, 13.15) 6.81 (3.14, 13.94) 11.19 (5.63, 20.39) 9.87 (4.97, 18.90) 8.01 (3.95, 15.49) 

 Late AMD 

45-49 0.13 (0.06, 0.25) 0.06 (0.03, 0.11) 0.03 (0.02, 0.06) 0.04 (0.02, 0.09) 0.05 (0.03, 0.08) 
50-59 0.20 (0.10, 0.34) 0.14 (0.08, 0.24) 0.10 (0.06, 0.16) 0.10 (0.05, 0.20) 0.13 (0.08, 0.18) 
60-69 0.35 (0.20, 0.55) 0.41 (0.27, 0.63) 0.41 (0.27, 0.60) 0.35 (0.19, 0.58) 0.42 (0.30, 0.57) 
70-79 0.61 (0.31, 1.08) 1.26 (0.79, 1.96) 1.71 (1.17, 2.44) 1.19 (0.61, 2.12) 1.41 (1.00, 1.92) 
80-84 0.90 (0.42, 1.84) 2.69 (1.56, 4.61) 4.56 (2.96, 6.73) 2.75 (1.23, 5.69) 3.25 (2.21, 4.60) 
Total 0.28 (0.12, 0.63) 0.37 (0.17, 0.85) 0.50 (0.26, 1.08) 0.32 (0.13, 0.75) 0.37 (0.18, 0.77) 

 Any AMD 

45-49 4.06 (2.39, 6.47) 3.21 (1.98, 5.20) 3.10 (1.99, 4.79) 4.80 (2.90, 7.81) 3.49 (2.32, 5.23) 
50-59 5.65 (3.58, 8.35) 4.92 (3.14, 7.60) 5.66 (3.74, 8.41) 7.28 (4.62, 11.28) 5.66 (3.83, 8.26) 
60-69 8.41 (5.53, 12.21) 8.28 (5.35, 12.27) 11.63 (7.95, 16.36) 12.08 (7.73, 18.01) 10.19 (7.10, 14.29) 
70-79 12.35 (8.12, 18.14) 13.61 (8.96, 19.73) 22.50 (15.83, 29.93) 19.24 (12.37, 28.71) 17.61 (12.53, 23.87) 
80-84 16.06 (10.15, 24.09) 18.87 (12.27, 27.22) 33.57 (24.17, 42.86) 25.84 (16.25, 38.64) 24.96 (18.01, 33.25) 
Total 7.53 (3.80, 14.89) 7.38 (3.40, 14.46) 12.33 (6.46, 22.75) 10.43 (5.27, 20.01) 8.69 (4.26, 17.40) 
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Supplementary Table 5.6 Age-group Specific Prevalence Estimates of Early, Late and Any AMD by Geographic Regions 

Data in parentheses are 95% credible intervals. 

 

Age Group 
Early AMD 

Africa Asia Europe 
Latin America & 

Caribbean 
Northern America Oceania Total 

45-49 
3.92 

(1.08, 14.22) 
2.29 

(1.16, 4.74) 
6.47 

(2.86, 14.81) 
8.14 

(2.51, 26.63) 
4.93 

(2.82, 8.93) 
3.32 

(1.20, 9.18) 
4.18 

(2.77, 6.51) 

50-59 
6.14 

(1.78, 19.48) 
3.37 

(1.71, 6.89) 
9.81 

(4.65, 20.40) 
9.84 

(3.15, 29.22) 
7.30 

(4.35, 12.59) 
5.57 

(2.06, 14.25) 
6.26 

(4.24, 9.51) 

60-69 
10.53 

(3.32, 30.42) 
5.47 

(2.83, 10.76) 
16.00 

(8.18, 28.98) 
12.27 

(4.15, 33.90) 
11.88 

(7.32, 19.33) 
10.46 

(3.98, 23.79) 
10.31 

(6.96, 15.22) 

70-79 
17.43 

(5.93, 43.78) 
8.75 

(4.49, 16.85) 
24.99 

(13.63, 40.77) 
15.46 

(5.30, 41.51) 
18.65 

(11.65, 29.19) 
18.58 

(7.57, 37.90) 
16.45 

(11.29, 23.63) 

80-84 
24.04 

(8.38, 55.42) 
12.01 

(6.16, 22.94) 
33.19 

(18.65, 51.17) 
18.14 

(5.99, 45.71) 
24.92 

(15.99, 37.83) 
26.60 

(11.46, 49.87) 
22.29 

(15.41, 31.24) 

Total 
11.18 

(3.41, 32.28) 
6.32 

(2.58, 15.60) 
14.43 

(6.48, 31.59) 
13.58 

(4.37, 42.75) 
12.79 

(6.83, 23.52) 
12.71 

(4.00, 35.77) 
11.33 

(5.93, 20.87) 
 Late AMD 

45-49 
0.17 

(0.05, 0.61) 
0.07 

(0.03, 0.14) 
0.03 

(0.01, 0.08) 
0.36 

(0.11, 1.11) 
0.06 

(0.03, 0.11) 
0.03 

(0.01, 0.07) 
0.06 

(0.04, 0.10) 

50-59 
0.28 

(0.12, 0.76) 
0.16 

(0.09, 0.28) 
0.10 

(0.05, 0.22) 
0.44 

(0.18, 1.01) 
0.15 

(0.09, 0.26) 
0.09 

(0.04, 0.19) 
0.15 

(0.10, 0.23) 

60-69 
0.54 

(0.28, 1.12) 
0.44 

(0.27, 0.68) 
0.45 

(0.27, 0.75) 
0.56 

(0.28, 1.11) 
0.47 

(0.30, 0.74) 
0.43 

(0.23, 0.83) 
0.49 

(0.35, 0.68) 

70-79 
1.04 

(0.50, 2.26) 
1.20 

(0.69, 1.87) 
1.95 

(1.18, 3.15) 
0.71 

(0.32, 1.53) 
1.46 

(0.89, 2.30) 
2.01 

(1.08, 4.02) 
1.56 

(1.07, 2.17) 

80-84 
1.62 

(0.63, 4.19) 
2.41 

(1.29, 4.19) 
5.33 

(3.07, 9.18) 
0.85 

(0.31, 2.25) 
3.21 

(1.82, 5.35) 
5.76 

(2.88, 11.82) 
3.44 

(2.24, 4.98) 

Total 
0.65 

(0.24, 1.82) 
0.55 

(0.24, 1.23) 
0.75 

(0.32, 1.81) 
0.64 

(0.23, 1.79) 
0.67 

(0.32, 1.37) 
0.68 

(0.27, 1.97) 
0.64 

(0.32, 1.27) 
 Any AMD 

45-49 
4.28 

(1.17, 14.42) 
2.38 

(1.29, 4.76) 
5.47 

(2.45, 11.62) 
9.32 

(3.39, 26.18) 
5.05 

(2.84, 9.14) 
2.88 

(1.06, 7.83) 
4.17 

(2.71, 6.27) 

50-59 
6.81 

(2.09, 20.53) 
3.59 

(1.99, 7.02) 
9.64 

(4.74, 18.56) 
11.01 

(4.36, 27.28) 
8.02 

(4.68, 13.78) 
5.45 

(2.16, 14.00) 
6.65 

(4.43, 9.68) 

60-69 
11.90 

(3.95, 30.70) 
5.88 

(3.29, 11.34) 
18.48 

(10.21, 32.06) 
13.23 

(5.69, 30.38) 
13.88 

(8.30, 22.40) 
11.62 

(4.99, 27.47) 
11.61 

(7.99, 16.30) 
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70-79 
19.61 

(6.96, 44.58)
9.59 

(5.35, 17.78)
32.52 

(19.77, 49.89)
15.88 

(6.76, 35.15)
23.05 

(14.10, 34.95)
23.06 

(10.46, 46.42)
19.55 

(13.75, 26.36) 

80-84 
27.14 

(9.49, 56.37) 
13.25 

(7.32, 24.25) 
45.33 

(28.95, 63.31) 
17.93 

(7.44, 40.87) 
31.59 

(19.69, 45.65) 
34.86 

(17.31, 60.89) 
27.17 

(19.46, 35.82) 

Total 
11.93 

(3.42, 32.48) 
6.86 

(2.95, 15.61) 
18.25 

(8.18, 35.90) 
12.94 

(4.55, 33.30) 
14.29 

(7.39, 25.28) 
13.97 

(4.58, 37.23) 
12.34 

(5.99, 22.78) 
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Supplementary Table 5.7 Projection of Number of People with Early, Late and Any AMD by Regions 

97.5% Upper bound = Upper limit of 95% Credible Interval; 2.5% Lower bound = Lower limit of 95% Credible Interval 

 

Year 2014 2016 2018 2020 2022 2024 2026 2028 2030 2032 2034 2036 2038 2040 

 Early AMD (millions) 

97.5% Upper bound               

   Africa 39.72 42.14 44.73 47.67 50.69 54.10 57.81 61.76 66.15 70.56 75.40 80.42 85.60 91.30 

   Asia 102.04 108.39 114.83 121.63 127.95 134.66 141.92 149.48 157.71 165.37 173.28 180.40 186.78 193.78 

   Europe 82.08 83.76 85.41 87.16 88.25 89.70 91.54 93.42 95.28 96.42 97.57 98.34 98.59 98.88 

   Latin America & Caribbean 48.69 51.54 54.42 57.52 60.61 63.93 67.24 70.60 74.10 77.32 80.61 83.72 86.64 89.63 

   Northern America 23.06 23.98 24.95 26.10 27.02 28.01 28.96 29.88 30.75 31.29 31.83 32.28 32.65 33.01 

   Oceania 2.51 2.64 2.78 2.94 3.07 3.22 3.35 3.49 3.63 3.73 3.84 3.95 4.06 4.18 

Total 221.19 231.43 242.29 255.12 266.88 279.60 292.31 305.48 320.45 333.56 346.57 359.16 370.22 381.98 

Mean               

   Africa 15.36 16.31 17.32 18.47 19.65 20.98 22.42 23.96 25.67 27.38 29.27 31.24 33.29 35.53 

   Asia 55.51 58.98 62.52 66.29 69.84 73.64 77.66 81.76 86.22 90.37 94.67 98.53 101.98 105.76 

   Europe 47.81 48.79 49.80 50.87 51.52 52.44 53.66 54.97 56.28 56.96 57.65 58.13 58.37 58.65 

   Latin America & Caribbean 19.87 21.05 22.27 23.59 24.86 26.22 27.61 29.01 30.47 31.81 33.18 34.48 35.69 36.95 

   Northern America 14.77 15.37 16.00 16.70 17.32 17.99 18.63 19.23 19.80 20.16 20.51 20.81 21.06 21.30 

   Oceania 1.21 1.28 1.35 1.43 1.50 1.57 1.65 1.72 1.79 1.84 1.90 1.96 2.01 2.07 

Total 154.55 161.79 169.27 177.35 184.69 192.84 201.63 210.64 220.22 228.53 237.18 245.14 252.40 260.26 

2.5% Lower bound               

   Africa 4.29 4.56 4.85 5.17 5.50 5.87 6.27 6.70 7.18 7.66 8.19 8.74 9.30 9.92 

   Asia 26.87 28.55 30.26 32.07 33.78 35.63 37.69 39.76 41.95 43.99 46.09 47.99 49.68 51.54 

   Europe 24.07 24.60 25.16 25.75 26.08 26.59 27.26 27.93 28.59 28.95 29.36 29.72 29.85 29.93 

   Latin America & Caribbean 5.78 6.10 6.42 6.79 7.18 7.60 8.04 8.48 8.95 9.40 9.83 10.25 10.63 10.98 

   Northern America 8.89 9.26 9.65 10.10 10.50 10.91 11.31 11.69 12.04 12.27 12.48 12.66 12.81 12.95 

   Oceania 0.44 0.47 0.49 0.52 0.55 0.58 0.61 0.64 0.66 0.68 0.70 0.73 0.75 0.77 

Total 104.97 110.11 115.35 120.35 125.01 130.35 136.01 142.13 148.27 153.50 159.04 164.13 168.77 173.52 

 Late AMD (millions) 
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97.5% Upper bound               

   Africa 1.57 1.67 1.77 1.89 2.01 2.14 2.29 2.45 2.62 2.80 2.99 3.18 3.39 3.60 

   Asia 6.93 7.37 7.82 8.34 8.85 9.44 10.11 10.82 11.59 12.33 13.06 13.72 14.30 14.98 

   Europe 4.03 4.13 4.25 4.36 4.37 4.43 4.63 4.89 5.15 5.29 5.44 5.58 5.69 5.82 

   Latin America & Caribbean 1.71 1.80 1.89 2.00 2.11 2.22 2.34 2.44 2.55 2.65 2.76 2.86 2.96 3.05 

   Northern America 1.16 1.21 1.28 1.36 1.45 1.55 1.64 1.73 1.82 1.88 1.95 2.00 2.04 2.08 

   Oceania 0.17 0.18 0.19 0.21 0.22 0.24 0.25 0.27 0.29 0.30 0.31 0.32 0.34 0.35 

World 13.45 14.13 14.87 15.70 16.45 17.33 18.38 19.58 20.83 22.06 23.24 24.25 25.18 26.23 

Mean               

   Africa 0.77 0.82 0.87 0.93 0.99 1.06 1.13 1.21 1.30 1.38 1.48 1.58 1.68 1.80 

   Asia 4.59 4.88 5.18 5.52 5.86 6.25 6.69 7.15 7.66 8.15 8.64 9.08 9.46 9.92 

   Europe 2.57 2.64 2.72 2.79 2.79 2.84 2.96 3.13 3.29 3.38 3.46 3.55 3.61 3.69 

   Latin America & Caribbean 0.86 0.91 0.97 1.02 1.08 1.14 1.20 1.26 1.32 1.38 1.44 1.50 1.55 1.61 

   Northern America 0.76 0.80 0.84 0.90 0.95 1.02 1.08 1.14 1.20 1.24 1.28 1.31 1.34 1.36 

   Oceania 0.09 0.10 0.10 0.11 0.12 0.13 0.14 0.15 0.15 0.16 0.17 0.17 0.18 0.19 

World 9.64 10.14 10.68 11.26 11.79 12.42 13.19 14.03 14.92 15.69 16.47 17.19 17.83 18.57 

2.5% Lower bound               

   Africa 0.37 0.39 0.42 0.45 0.48 0.51 0.55 0.58 0.63 0.67 0.72 0.77 0.82 0.87 

   Asia 2.76 2.93 3.11 3.31 3.51 3.73 3.99 4.25 4.55 4.82 5.11 5.37 5.60 5.87 

   Europe 1.51 1.55 1.60 1.64 1.64 1.67 1.74 1.84 1.93 1.98 2.03 2.08 2.11 2.16 

   Latin America & Caribbean 0.39 0.41 0.44 0.47 0.50 0.53 0.56 0.59 0.62 0.65 0.68 0.71 0.73 0.76 

   Northern America 0.46 0.48 0.51 0.54 0.57 0.61 0.65 0.68 0.72 0.74 0.76 0.78 0.80 0.81 

   Oceania 0.05 0.05 0.05 0.06 0.06 0.06 0.07 0.07 0.08 0.08 0.08 0.09 0.09 0.09 

World 6.46 6.80 7.15 7.54 7.91 8.33 8.85 9.41 10.02 10.52 11.06 11.53 11.98 12.46 

 Any AMD (millions) 

97.5% Upper bound               

   Africa 40.50 42.98 45.63 48.63 51.72 55.20 58.98 63.01 67.48 71.99 76.93 82.08 87.41 93.21 

   Asia 106.65 113.33 120.17 127.49 134.41 141.59 149.43 157.37 165.91 173.86 182.07 189.46 196.09 203.32 

   Europe 88.76 90.61 92.51 94.55 95.82 97.58 99.86 102.26 104.64 105.89 107.15 107.93 108.31 108.99 

   Latin America & Caribbean 45.80 48.39 51.12 54.05 56.77 59.54 62.43 65.38 68.31 71.12 74.19 77.07 79.49 82.03 

   Northern America 26.57 27.68 28.86 30.08 31.17 32.33 33.50 34.47 35.43 36.05 36.65 37.16 37.58 38.00 



 

176 
 

   Oceania 2.85 3.00 3.17 3.34 3.50 3.66 3.83 4.01 4.18 4.30 4.43 4.56 4.69 4.83 

World 233.30 244.54 256.30 269.51 280.91 293.52 307.15 321.43 336.52 349.14 362.66 374.95 386.61 399.38 

Mean               

   Africa 16.87 17.92 19.03 20.29 21.59 23.05 24.64 26.32 28.20 30.09 32.16 34.33 36.58 39.06 

   Asia 59.16 62.87 66.65 70.68 74.50 78.58 82.92 87.33 92.14 96.62 101.24 105.40 109.13 113.21 

   Europe 54.98 56.18 57.43 58.78 59.58 60.75 62.35 64.10 65.82 66.75 67.67 68.37 68.80 69.32 

   Latin America & Caribbean 20.93 22.16 23.43 24.80 26.12 27.53 28.96 30.40 31.90 33.28 34.68 36.01 37.26 38.53 

   Northern America 17.07 17.79 18.55 19.41 20.18 21.01 21.81 22.55 23.25 23.70 24.13 24.50 24.79 25.08 

   Oceania 1.37 1.45 1.53 1.62 1.71 1.80 1.89 1.98 2.06 2.13 2.19 2.26 2.33 2.40 

World 170.38 178.36 186.62 195.58 203.67 212.72 222.56 232.68 243.38 252.55 262.08 270.87 278.88 287.59 

2.5% Lower bound               

   Africa 5.02 5.34 5.67 6.05 6.44 6.88 7.36 7.86 8.43 8.99 9.62 10.27 10.96 11.71 

   Asia 31.31 33.26 35.24 37.33 39.28 41.39 43.71 46.08 48.66 51.08 53.56 55.79 57.79 60.00 

   Europe 31.09 31.78 32.51 33.27 33.71 34.38 35.35 36.41 37.59 38.23 38.82 39.27 39.56 39.86 

   Latin America & Caribbean 7.98 8.46 8.96 9.48 10.02 10.57 11.14 11.73 12.29 12.82 13.40 13.94 14.46 14.97 

   Northern America 10.10 10.55 11.04 11.60 12.06 12.59 13.08 13.54 13.96 14.23 14.49 14.72 14.90 15.08 

   Oceania 0.56 0.59 0.63 0.67 0.71 0.74 0.78 0.82 0.86 0.89 0.92 0.95 0.98 1.01 

World 121.89 127.56 133.61 140.36 146.10 152.38 159.61 167.00 174.64 181.09 187.77 193.90 199.44 205.49 
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Supplementary Table 5.8 Pairwise Comparison of Projected Number of People with Early, Late and Any AMD by Regions 

Data represented as indicator of whether 95% credible interval contains zero. If A-B=1, A>B; if A-B=0, A=B; if A-B=-1, A<B. 

 

Pairwise Comparisons, (A) – (B) 2014 2016 2018 2020 2022 2024 2026 2028 2030 2032 2034 2036 2038 2040 

 Early AMD 

Africa - Asia -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 0 

Africa - Europe -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 

Africa - Latin America & Caribbean 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Africa - Northern America 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Africa - Oceania 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Asia - Europe 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Asia - Latin America & Caribbean 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Asia - Northern America 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Asia - Oceania 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Europe - Latin America & Caribbean 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Europe - Northern America 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Europe - Oceania 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Latin America & Caribbean - Northern America 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Latin America & Caribbean - Oceania 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Northern America - Oceania 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

 Late AMD 

Africa - Asia -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

Africa - Europe -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 

Africa - Latin America & Caribbean 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Africa - Northern America 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Africa - Oceania 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Asia - Europe 0 0 1 1 1 1 1 1 1 1 1 1 1 1 

Asia - Latin America & Caribbean 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Asia - Northern America 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Asia - Oceania 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
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Europe - Latin America & Caribbean 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Europe - Northern America 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Europe - Oceania 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Latin America & Caribbean - Northern America 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Latin America & Caribbean - Oceania 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Northern America - Oceania 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

 Any AMD 

Africa - Asia -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 

Africa - Europe -1 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 0 

Africa - Latin America & Caribbean 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Africa - Northern America 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Africa - Oceania 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Asia - Europe 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Asia - Latin America & Caribbean 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Asia - Northern America 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Asia - Oceania 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Europe - Latin America & Caribbean 1 1 1 1 0 0 0 0 0 0 0 0 0 0 

Europe - Northern America 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Europe - Oceania 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Latin America & Caribbean - Northern America 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Latin America & Caribbean - Oceania 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Northern America - Oceania 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
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Supplementary Figure 5.1 Flowchart of the Article Selection Process 

                                      
 
 
 
 
 
 
 
 
 
 
 
                                                       
 
 
 
 
 
                           
 
 
 
 
 
 
 
 

 

 

 
 
 

 

 

 

 

 

 

 

 

2751 published studies, letters, abstracts and 
review articles on the prevalence of AMD 
were identified using PubMed, Medline, 

Embase and Web of Science up to May 2013 

54 potentially eligible reports were 
retrieved after abstract review for 

detailed evaluation 

39 reports from 39 population-based 
studies (n = 129,664) were included in the 
meta-analysis (12,727 any, 12,931 early 

and 1,121 late AMD cases) 

15 excluded due to: 1) used only clinical 
examination by slit-lamp biomicroscopy for 

diagnosis of AMD without fundus photos nor 
standardized grading definitions for AMD; (2) 

reports not written in English; (3) reports 
numbers of eyes with AMD as opposed to 
number of individuals; (4) studies in which 
determination of AMD prevalence was not 

one of the primary study objectives; and (5) 
not population based, but interview based / 

audits of hospital eye departments 

2696 were excluded after abstract review 
as prevalence of AMD was not measured 
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Supplementary Figure 5.2 Simulation Study Results 
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Supplementary text 5.1 Heterogeneity Analysis 

Age groups, gender, ethnicity, geographic regions-specific data for early and late 

AMD types were the only information available from all 39 published studies and hence 

we were only able to investigate and account for heterogeneity derived from these sources 

in our statistical models. 

Some studies may comprise of more than one ethnic group, which may result in 

between-ethnicity heterogeneity in the study. Hence, the between-ethnicity variance  in 

the same study was accounted as random effects with Normal distribution, i.e. 

0, , to describe this correlation. Conditioning on these random effects, 

ethnicity groups within the same study are considered independent. Similarly, for ethnicity 

covariate, its variability  was accounted for as random effects with Normal distribution, 

i.e. 0, . Other residual variability encompassing between study variance (after 

accounting for other sources of uncertainty) was explained by . The total between-study 

variability can be calculated as the sum of the above three variances, denoted by . When 

analyzing ethnicity effect, the between-study variability is  if the two ethnic 

groups are from the same study; is  if the two studies are in the same ethnic group; 

and is  if the two studies are in different ethnic groups. These random effects were useful 

in pooling information together for sub-groups with small sample sizes or with few number 

of available studies, by borrowing strength from other covariate-specific groups. 

Each population-based study would originate from only one region, hence in 

performing analysis of region effect, there is no need for parameter  in the model. As 

with ethnicity covariate, region effect was accounted as random effects with  and the 

residual variance was explained by . The total between-study variability can be 

calculated as the sum of the above two variances, denoted by . When analyzing region 

effect, the between-study variability is  if the two studies are in the same region 

group; and is  if the two studies are from different region groups. 

As described by Higgins and Thompson (2002), within-study variance can be 

estimated by 
∑

∑ ∑
, where is the reciprocal of the estimate’s variance and  

is the number of study. As logit link function was used in our model, variance of the logit 

prevalence estimate can be obtained by using delta method, given by , where  and 

 are the sample prevalence estimate and sample size respectively. Then the total 

variability is the sum of between and within study variance, .  (Higgins 
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and Thompson, 2002) was calculated to describe the proportion of total variability 

explained by the heterogeneity. Separate sources of heterogeneity (e.g. ethnicity and region) 

can be calculated accordingly. 

Fixed effect was used for age and gender. Age is a well-known risk factor for AMD 

and is strongly associated with AMD (Bayes factor > 100). Whereas for gender, Bayes 

factors were all < 1 (Supplementary Table 5.3), suggesting strong statistical evidence of 

no gender effect.  
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Supplementary text 5.2 Simulation Study 

Simulation data was derived from our estimated global prevalence of early AMD 

(pooled by region data) of 11.40% and the between and within study variations obtained 

from our meta-analysis. We generated 39 distributions with their own prevalence (  and 

within study variance (  with the between study variance obtained from our meta-

analysis. Binary AMD data was then created for a sample size of 100, with the probability 

of AMD for each data point (pseudo-subject) as  for the  pseudo-study (total 39 

pseudo-studies) to form our pseudo-global population data (i.e. generated 3,900 data points 

from the 39 pseudo-studies, representing the individual data for our pseudo-populations). 

Analysis of the pseudo-population data was performed with our HB model and the 

frequently used RE model. We perform such simulation 100 times to obtain the pooled 

prevalence estimates for both models and for a range of sample sizes (i.e. 100, 250, 500, 

750, 1000 and 1500). 

Our simulation results showed that based on simulated sample size of 1000, the 

prevalence of overall any AMD was estimated as 11.5% (95% CrI: 8.1, 15.9) by HB and 

15.1% (95% CI: 12.1, 18.1) by RE methods (Supplementary Figure 5.2). Estimation from 

HB model was always more accurate than RE model but the difference decreases as sample 

size increased. This result was expected because the inference made from RE model was 

based on asymptotic properties which requires very large sample sizes while HB model 

depends on the posterior distribution. Hence HB model would be preferred especially for 

small sample sizes. 
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Chapter 6 

 

Supplementary Figure 6.1 Path Diagram for the Multilevel Rasch Model 

Path diagram for multilevel Rasch model: Item response data can be considered as level 0, 

nested within respondents with covariate information such as demographic or clinical data 

considered in level 1 that can be further nested in groups considered in level 2. Higher 

levels may be needed to model complex data structure which is common in survey research. 

The levels in the rectangular box illustrate the nesting of item observations in individuals 

and individuals in groups. Levels 1 and 2 constitute the multilevel model for . There are 

uncertainties involved at each level, i.e. at the level of observations, at the individual level 

and at the group level. Explanatory information  and  at levels 1 and 2 explain 

variability in the latent abilities between individuals within groups and across groups 

respectively. The dotted inverse L-box describes the Rasch model where item parameters, 

,  are not influenced by the nested data structure. 
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Supplementary Table 6.1 Power Analysis: Comparison of Proposed One-Stage HB and Observed Two-Stage Analysis Framework from 

Simulation Results 

Based on 200 simulations using K=9; C=5 

Data represented as empirical power of Two-stage and One-stage estimates of Beta, where the true model is given by Beta*Continuous or 

Beta*Categorical 

 

 
Continuous Variable 

 
Categorical Variable 

Effect Size Effect Size 
 Beta=0.2 Beta=0.5  Beta=0.2 Beta=0.5 Beta=1.0 

alpha 
level 

N=100 
alpha 
level 

N=100 
One-
stage 

Two-
stage 

One-
stage 

Two-
stage 

One-
stage 

Two-
stage 

One-
stage 

Two-
stage 

One-
stage 

Two-
stage 

1% 0.245 0.250 0.970 0.970 1% 0.045 0.045 0.440 0.445 0.950 0.955 
5% 0.490 0.505 0.995 0.995 5% 0.150 0.135 0.670 0.675 0.990 0.990 
10% 0.610 0.605 1 1 10% 0.225 0.225 0.780 0.775 0.995 1 

 N=300  N=300 

1% 0.755 0.74 1 1 1% 0.130 0.145 0.900 0.910 1 1 
5% 0.915 0.905 1 1 5% 0.315 0.320 0.985 0.985 1 1 
10% 0.960 0.950 1 1 10% 0.475 0.470 0.995 1 1 1 
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Supplementary text 6.1 Simulation Study 

We simulated our data as follows: two independent covariates ( ,	 ), a continuous 

variable data such as standardized age was drawn from standard normal distribution and a 

binary variable such as gender drawn from binomial distribution with equal probability of 

being male or female gender (i.e. probability 0.5). The association effects ( ,	 ) of these 

two covariates with the latent visual functioning ability parameter were fixed for a range 

from -1 to 1 by steps of 0.5 (i.e.  = -1, -0.5, 0, 0.5, 1) and hence, these were considered 

as the “true” association effects for our simulated datasets. The calibration of nine item 

difficulty parameters,  was fixed according to Table 3 of a study conducted by Ecosse L. 

Lamoureux et. al.,36 that performed a systematic evaluation of the reliability and validity 

of the visual functioning questionnaire (VF-11) using Rasch analysis that was later 

modified to nine items (VF-9) to tailor fit to the Asian population. The threshold parameters 

were specified with normal distribution of mean 0 and standard deviation 1. Hence, 

multinomial response data for each of the nine items with five response categories were 

then generated for a sample size of 300 with probability of response determined by the 

Andrich rating scale model with the model parameters specifications described above, to 

form our pseudo-visual functioning questionnaire (modified VF-9) data (i.e. n = 300, k= 9 

and y in the range of integers 1 to 5 for five response categories for each item resulted in 

2,700 response data generated). 

Analysis of the generated pseudo-visual functioning sample data was performed with 

our one-stage HB approach and the frequently used two-stage procedure. Based on 100 

replicates for each pair of our specified “true” association effects (25 pairs of “ ,	 ”), 

average association estimates and their standard errors from the one and two-stage 

approach were computed to assess their performance in comparison to our pre-specified 

“true” effects. Finally, we performed another 200 simulations for continuous and 

categorical variable separately to investigate and compare the empirical power between 

one and two-stage approach. 



 

187 
 

APPENDIX 3: Publications during Candidature (2011-2014) 

 
 
1.   Narayanaswamy A, Chung RS, Wu RY, Park J, Wong WL, Saw SM, Wong TY, Aung T. 
Determinants of Corneal Biomechanical Properties in an Adult Chinese Population. Ophthalmology. 
2011 Jul;118(7):1253-9. Epub 2011 Feb 18. 
 
2.   Zheng Y, Lavanya R, Wu R, Wong WL, Wang JJ, Mitchell P, Cheung N, Cajucom-Uy H, 
Lamoureux E, Aung T, Saw SM, Wong TY. Prevalence and Causes of Visual Impairment and 
Blindness in an Urban Indian Population: The Singapore Indian Eye (SINDI) Study Ophthalmology. 
2011 Sep;118(9):1798-804.  
 
3.   Gillies MC, McAllister IL, Zhu M, Wong WL, Louis D, Arnold JJ, Wong TY. Intravitreal 
Triamcinolone Prior to Laser Treatment of Diabetic Macular Edema: 24-Month Results of a 
Randomized Controlled Trial. Ophthalmology 2011 May; 118(5):866-72. 
 
4.   Zheng Y, Cheung CY, Wong TY, Wong WL, Loon SC, Aung T. Determinants of Image Quality 
of Heidelberg Retina Tomography II and Its Association with Optic Disc Parameters in a 
Population-based Setting. Am J Ophthalmol 2011 Apr; 151(4):663-70. 
 
5.   Siak JK, Tong L, Wong WL, Cajucom-Uy H, Mohamad R, Saw SM, Wong TY. Prevalence 
and Risk Factors of Meibomian Gland Dysfunction: The Singapore Malay Eye Study. Cornea 2012 
Nov; 31(11):1223-8. 
 
6.   Ang M, Wong WL, Chee SP. Clinical significance of an equivocal interferon {gamma} release 
assay result. Br J Ophthalmology 2011 May 10. [Epub ahead of print] 
 
7.   Ang M, Hedayatfar A, Wong WL, Chee SP. Duration of anti-tubercular therapy in uveitis 
associated with latent tuberculosis: a case-control study. Br J Ophthalmol 2012 Mar;96(3):332-6. 
 
8.   Ang M, Wong W, Park J, Wu R, Lavanya R, Zheng Y, Cajucom-Uy H, Tai ES, Wong TY. 
Corneal Arcus is a Sign of Cardiovascular Disease, Even in Low-Risk Persons. Am J Ophthalmol. 
2011 Nov;152(5):864-871.e1. 
 
9.   Koh V, Loon SC, Wong WL, Wong TY, Aung T. Comparing Stereometric parameters between 
Heidelberg Retinal Tomography 2 and 3 in Asian Eyes: The Singapore Malay Eye Study Journal of 
Glaucoma 2012 Feb; 21(2): 102-6. 
 
10.   Ang M, Wong WL, Ngan CC, Chee SP. Interferon-gamma release assay as a diagnostic test 
for tuberculosis-associated uveitis. Eye (Lond). 2012 May;26(5):658-65. 
 
11.   Chia A, Chua WH, Cheung YB, Wong WL, Lingham A, Fong A, Tan D. Atropine for the 
Treatment of Childhood Myopia: Safety and Efficacy of 0.5%, 0.1%, and 0.01% Doses (Atropine 
for the Treatment of Myopia 2). Ophthalmology. 2012 Feb; 119(2):347-54. 
 
12.   Chua D, Wong WL, Lamoureux EL, Tin Aung, Saw SM, Wong TY. The Prevalence and Risk 
Factors of Ocular Trauma: The Singapore Indian Eye Study (SINDI). Ophthalmic Epidemiology 
2011 Aug 14. [Epub ahead of print] 
 
13.   Tan AC, Wang JJ, Lamoureux EL, Wong W, Mitchell P, Li J, Tan AG, Wong TY. Cataract 
prevalence varies substantially with assessment systems: comparison of clinical and photographic 
grading in a population-based study. Ophthalmic Epidemiology 2011 Aug;18(4):164-70. 
 
14.   Zheng Y, Lavanya R, Wu R, Wong WL, Wang JJ, Mitchell P, Cheung N, Cajucom-Uy H, 
Lamoureux E, Aung T, Saw SM, Wong TY. Prevalence and causes of visual impairment and 



 

188 
 

blindness in an urban Indian population: the singapore Indian eye study.  Ophthalmology 2011 
Sep;118(9):1798-804. 
 
15.   Sng C, Cheung CY., Man RE., Wong WL, Lavanya R, Mitchell P, Tin Aung, Wong TY. 
Influence of Diabetes on Macular Thickness Measured Using Optical Coherence Tomography: The 
Singapore Indian Eye Study. Eye 2012 May; 26(5):690-8. 
 
16.   Koh V, Carol Y Cheung, Wong WL, Cheung CM, Wang JJ, Mitchell P, Younan C, Saw SM, 
Wong TY. Prevalence and Risk factors of Epiretinal Membrane in Asian Indians. Invest Ophthalmol 
Vis Sci. 2012 Jan 12;11-8557. 
 
17.   Wickremasinghe SS, Guymer RH, Wong TY, Kawasaki R, Wong W, Qureshi S. Retinal 
venular calibre dilatation after intravitreal ranibizumab treatment for neovascular age-related 
macular degeneration. Clin Experiment Ophthalmol. 2012 Jan-Feb;40(1):59-66. 
 
18.   Rosman M, Zheng Y, Wong W, Lamoureux E, Saw SM, Tay WT, Wang JJ, Mitchell P, Tai 
ES, Wong TY. Singapore Malay Eye Study: rationale and methodology of 6-years follow-up study 
(SiMES-2). Clin Experiment Ophthalmol. 2012 Aug;40(6):557-68. 
 
19.   Ang M, Li X, Wong W, Zheng Y, Chua D, Rahman A, Saw SM, Tan DT, Wong TY. Prevalence 
of and Racial Differences in Pterygium: A Multi-Ethnic Population Study in Asians. Ophthalmology 
2012 Aug;119(8): 1509-15. 
 
20.   Amrith S, Hosdurga Pai V, WL Wong. Periorbital necrotizing fasciitis - a review. Acta 
Ophthalmol 2012 Apr 20. doi: 10.1111/j.1755-3768.2012.02420.x. [Epub ahead of print] 
 
21.   David Zhiwei Law, Seng Chee Loon, Wan Ling Wong, Marilou Sevilla Ebreo, Xiang Li, 
Shantha Amrith. Surgical Outcomes of Phacoemulsification Surgery in a Restructured Asian 
Training Hospital. Asian J Ophthalmol. 2011; 12:201-7. 
 
22.   Xiang Li, Wan Ling Wong, Ecosse L Lamoureux et al. Are linear regression techniques 
appropriate for analysis when the dependent (outcome) variable is not normally distributed? (Letter) 
Invest Ophthalmol Vis Sci. 2012 May 1; 53(6):3082-3. 
 
23.   Ng JY, Sundar G, Wong WL, Amrith S. The Pediatric Orbital Blow-out Fractures: Surgical 
Outcomes. Asia-Pacific Journal of Ophthalmology 2012 May 15. [Epub ahead of print] 
 
24.   Koh VT, Tham YC, Cheung CY, Wong WL, Baskaran M, Saw SM, Wong TY, Aung T. 
Determinants of ganglion cell-inner plexiform layer thickness measured by high-definition optical 
coherence tomography. Invest Ophthalmol Vis Sci. 2012 Aug 24;53(9):5853-9 
 
25.   Shabana N, Aquino MC, See J, Ce Z, Tan AM, Nolan WP, Hitchings R, Young SM, Loon SC, 
Chelvin Sng, WL Wong, Chew PT. Quantitative evaluation of anterior chamber parameters using 
anterior segment optical coherence tomography in primary angle closure mechanisms. Clin 
Experiment Ophthalmol. 2012 Nov; 40(8):792-801. 
 
26.   Bhargava M, Cheung CY, Sabanayagam C, Kawasaki R, Harper CA, Lamoureux EL, Chow 
WL, Ee A, Hamzah H, Ho M, Wong WL, Wong TY. Accuracy of diabetic retinopathy screening 
by trained non-physician graders using non-mydriatic fundus camera. Singapore Med J. 2012 
Nov;53(11):715-9. 
 
27.   Wong WL, Li X, Li J, Cheng CY, Lamoureux EL, Wang JJ, Cheung CY, Wong TY. Cataract 
Conversion assessment using Lens Opacity Classification System III and Wisconsin Cataract 
Grading System. Invest Ophthalmol Vis Sci. 2013 Jan 9;54(1):280-7. doi: 10.1167/iovs.12-10657.  
  



 

189 
 

28.   Ngo CS, Aquino MC, Noor S, Loon SC, Sng CC, Gazzard G, Wong WL, Chew PT. A 
prospective comparison of chronic primary angle-closure glaucoma versus primary open-angle 
glaucoma in Singapore. Singapore Med J. 2013 Mar;54(3):140-5. 
 
29.   Li X*, Wong WL*, Cheung CY, Cheng CY, Ikram MK, Li J, Chia KS, Wong TY. Racial 
Differences in Retinal Vessel Geometric Characteristics: A Multi-Ethnic Study in Healthy Asians. 
Invest Ophthalmol Vis Sci. 2013 May 7. doi:pii: iovs.12-11126v1. 10.1167/iovs.12-11126. (Voted 
3rd most read in IOVS 2013) 
 
30.   Ang M*, Wong WL*, Li X, Chee SP. Interferon γ release assay for the diagnosis of uveitis 
associated with tuberculosis: a Bayesian evaluation in the absence of a gold standard. Br J 
Ophthalmol. 2013 May 30. [Epub ahead of print] 
 
31.   Narayanaswamy A, Baskaran M, Zheng Y, Lavanya R, Wu R, Wong WL, Saw SM, Cheng 
CY, Wong TY, Aung T.The Prevalence and Types of Glaucoma in an Urban Indian Population: The 
Singapore Indian Eye Study. Invest Ophthalmol Vis Sci. 2013 Jun 6. doi:pii: iovs.13-11950v1. 
10.1167/iovs.13-11950. [Epub ahead of print] 
 
32.   Sng Chelvin, Wong WL, Cheung CY, Lee J, Tai ES, Wong TY. Retinal Vascular Fractal and 
Blood Pressure in a Multi-Ethnic Population. Journal of Hypertension 2013 Apr [Epub ahead of 
print] 
 
33.  Tan MH, McAllister IL, Gillies ME, Verma N, Banerjee G, Smithies LA, Wong WL, Wong 
TY. Randomized controlled trial of intravitreal ranibizumab versus standard grid laser for macular 
edema following branch retinal vein occlusion. Am J Ophthalmol. 2014 Jan;157(1):237-247.e1. doi: 
10.1016/j.ajo.2013.08.013. Epub 2013 Oct 7. 
 
34.   Wong CW, Wong WL, Yeo IY, Loh BK, Wong EY, Wong DW, Ong SG, Ang CL, Lee SY. 
Trends and Factors Related to Outcomes for Primary Rhegmatogenous Retinal Detachment Surgery 
in a Large Asian Tertiary Eye Center. Retina. 2013 Oct 28. [Epub ahead of print] 
 
35.   Wong WL*, Su X*, Li X, Cheung CM, Klein R, Cheng CY, Tien W. Global prevalence of 
age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic 
review and meta-analysis. Lancet Glob Health 2014 Jan 3. http://dx.doi.org/10.1016/S2214-
109X(13)70145-1. 
 
36.   Ang M, Wong WL, Kiew SY, Li X, Chee SP. Prospective Head-to-Head Study Comparing 
Two Commercial Interferon-gamma Release Assays for the Diagnosis of Tuberculous Uveitis. Am 
J Ophthalmol. 2014 Feb 4. pii: S0002-9394(14)00061-0. doi: 10.1016/j.ajo.2014.01.031. [Epub 
ahead of print] 
 

 

 


