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Abstract

Video segmentation is a process that partitions a video into multiple

segments frame by frame. The goal of segmentation is to simplify the repre-

sentation of the video into something that is more meaningful and easier to

analyze. Different from image segmentation, it is more difficult to cut out an

object from video sequences than from one still image. Because in a video,

there are many more frames to be segmented. It is possible to propagate the

segmentation from the first frame to the later frames by analyzing the motion

information, while motion estimation is often fragile especially at occlusion

boundaries or motion blurred regions. Extensive research has been done in

video segmentation in recent years since it is fundamentally important and

useful. This thesis develops a novel interactive video segmentation algorithm.

Recently, local and global classifiers are considered as the key components

of a video cut out system such as Video SnapCut which is integrated into

Adobe After Effect. Shape prior is proposed in Video SnapCut to further

refine the segmentation boundary to make the probability map more reliable.

The global classifier use global image statistics to roughly classify every pixel

as background or foreground. In comparison, the local classifier focuses on

a local window to obtain more precise statistic information for classification.

In most of the cases, the segmentation boundary between two consecutive

frames changes gradually. Shape priors enforce the segmentation contour to

be similar to the previous frame, which is very important to deal with video



frames where the foreground and background have similar appearance and

are difficult to be separated by local or global statistic information.

This thesis makes several contributions to the video segmentation prob-

lem. Firstly, level set segmentation method is proposed to estimate the object

shape by integrating the local, global statistics, and also shape priors. In re-

cent state-of-art method, graph cut, its objective function aims at finding a

cut that could minimize the total energy cost with least penalty. However,

there are some problems with this graph cut based method. For example, it

usually cuts off the elongated object or can not deal with complex-structured

object in order to minimize the energy. Also, it may wrongly connect fore-

ground and background which the color space are similar or in blurred region.

It is more difficult to capture arbitrary topology and model complicated ob-

jects for graph cut. Unlike recent state-of-art method, graph cut, level set

handles elongate and branch-structure objects better and gives more reliable

results after propagation. Level set techniques seek local optimizations in

each frame and graph cut finds a global optimization in the whole video

sequences. While in many applications, a global optimal is preferable than

a local one. However, since the objective functions in segmentation can of-

ten be biased, a global segmentation might not be suitable. The proposed

methods produce better results both quantitatively and qualitatively than

existing approaches. In addition, the proposed method is generic and and

can be incorporated into any existing techniques.

Secondly, guided user interaction is proposed to provide user a friendly

graphic user interface and reduce human interaction in result correction.

All existing interactive video segmentation techniques require the user to
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manually identify segmentation errors and correct them after the initial au-

tomatic segmentation. The user typically needs to carefully examine every

video frame after each automatic segmentation step. This process is often

tedious considering there are often over hundreds of frames in a video block.

Therefore, auto detection and correction system are proposed and discussed

in detail. For this purpose, we train an automatic classifier to identify seg-

mentation errors. Specially, we sample overlapping windows along the seg-

mentation contour and classify them as correctly or incorrectly segmented

according to various features. We designed 10 different features, including

edge and boundary matching, global and local consistency, shape consistency,

local model confidence, etc.

Normally, it is not possible that single feature can divide the positive

and negative data precisely. It is very difficult to improve the quality of

segmentation by simply adjust one single feature or apply a same adjustment

for all the incorrect segmentation parts. Thus, ten designated features are

combined into a 10 dimensional feature vector, and this feature vector is

computed in a patch centered on the segment boundary. For each patch,

a score is measured as the difference between the segmentation result and

the ground truth. Moreover, we raise the weights for those mislabeled pixels

which are far from ground truth boundary. For the patches with higher

scores, they will be reported automatically with higher probability as segment

errors. Detecting error segments automatically could save user’s time for

inspecting the automatic results to identify segmentation errors. Moreover,

in order to make the modification more efficient and easier, after detecting

error local segment parts, several modification options are provided based on
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the designated feature vector analyzing. User can simply choose the most

correct one from the options. The designated features are also generic and

could be incorporated into any existing techniques.
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Chapter 1

Introduction

1.1 Overview of Video Segmentation

Video segmentation is a process that partitions a video into multiple seg-

ments frame by frame and it is still a challenge in Computer Vision. It is

a fundamental important research topic with the main purpose to simplify

the representation of a video into something that is more meaningful and

easier to analyze. Generally speaking, similar to image segmentation, the

purpose is to distinguish foreground and background from a still image. But

there are different difficulties between human and computers. Foreground

and background could be intuitively and easily distinguished by human, but

as for computers, they are all digital numbers with the range from 0 to 255.

It is still a long way from computers to do segmentation work unassisted. It

is difficult to do the segmentation work manually or automatically, the better

way to achieve this goal is to do it semi-automatically.

Generally, image segmentation applies a data clustering method such as
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K-Means [35] with foreground and background samples provided as input

data. Then distance measurement such as Euclidean distance or Mahalanobis

distance is used to computed the distance between the unknown sample to

foreground/background centers. After obtaining the distance, the unknown

sample would be assigned a score as the probability. After obtaining the

probability map, the unknown samples would be further classified to fore-

ground or background cluster. Different from image segmentation, video

segmentation solves image segmentation dependently frame by frame. It in-

herits and propagates information from previous frame to next frame as a

reference to further partition foreground and background.

Different from common segmentation task, this thesis focus on bi-layer

segmentation. We update probability map locally in each frame instead of

applying a global one like graph cut. Firstly, a global probability map is

obtained from the initial ground truth. Secondly, local windows [37] are

built along foreground boundary and propagated to next frame by Optical

Flow method [34]. In each local window, shape prior and the independent

classifier trained by designated features are merged into the original global

probability map. In the end, this updated probability map is applied to level

set method for final cut out optimization.

Traditionally, video segmentation is tedious because the user needs to

browse the frame back and forth in order to identify incorrect or improper

segmentations and interactively refine them. Tremendous methods have

been achieved on image and video segmentation such as clustering meth-

ods, compression-based methods, region-growing methods, graph partition-

ing methods, histogram-based methods, split-and-merge methods, partial dif-
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ferential equation-based methods, etc. These methods can be roughly divided

as discrete or continuous based on their mathematic formulation.

Discrete methods often regard images as graphs where each pixel is con-

sidered as a vertex. Segmentation is generated by partitioning the graph into

disconnected components by various optimization tools such as Normalized-

Cut [33] or Graph-Cut [29, 5, 17]. These methods can be applied to videos by

treating videos as a 3D graph directly. Bai et al. [37] sampled local windows

along the segmentation boundary and build local models within these win-

dows to better separate foreground and background in complicated scenes in

a graph-cut based segmentation framework. They further improved the local

color model by incorporating motion information in [3]. Zhong et al. [38]

took a similar to [2] for the final segmentation.

Continuous methods such as the ’Snakes’ [12] algorithm consider an image

as a continuous 2D domain, and evolve a continuous contour to segment the

image according to some predefined objective function. To handle topologi-

cal changes of curves, Malladi et al. [19] introduced the level set method [23]

to image segmentation. Late, Paragios and Deriche [25] combined geodesic

active contours [7] and level set for supervised texture segmentation. These

methods are widely used in medical image segmentation, where strong prior

knowledge of shape, color and texture can be applied to separate a predeter-

mined organ or tissue. Recently, there are a few works [31, 18] to apply level

set methods for interactive image segmentation.

Video SnapCut is the most commonly used video segmentation cut out

tool from Adobe After Effect. Graph-cut is its core algorithm. From our ex-

periments, it could be discovered that graph cut often cuts out the elephant’s
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nose incorrectly in order to minimize its energy cost regardless the correct

segments from previous frame. The compared result is shown in Fig. 1.1.

The comparisons are given the first frame a ground truth for initialization.

It could be seen that the results from graph cut and level set are still correct

in Fig. 1.1 (a) and (b), but graph cut unexpectedly cuts off the elephant’s

nose in (c). Fig. 1.1 (d) shows that the user iteratively corrects the result

by adding green and red strokes as foreground and background respectively.

But it is incorrectly segmented by graph cut in Fig. 1.1 (e) again. Because

graph cut looks for a global optimal in its energy optimization, the incorrect

segmentation would be very difficult to recover back automatically in the fol-

lowing frames. Thus, once the elongated object such as the elephant’s nose

in this example was segmented wrongly, the user always needs to refine it

back and forth repeatedly. Even the user interactively edits it back in current

frame, graph cut would cut off the nose in the next frame again. But from

the results of level set, user does not have to correct it after propagation.

In this example, it could be clearly found out that level set performs better

than graph cut especially when handling elongated objects. Graph cut tends

to converge to a global optimal which cuts off elongated object regardless

of the original topologies and results in neighboring frames. It is the main

reason that we use level set to segment video instead of using graph cut. In

fact, level set based methods are well suited for video segmentation. First,

it can capture arbitrary topology and model complicated objects easily. It

is also possible to explicitly enforce the segmentation contour to be close to

salient edges. Second, the segmentation of previous frames provides a nature

initialization of the result on the current frame. It naturally enforces tem-
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poral coherence and smoothness, which is difficult to achieve in graph-based

optimization. Thus, level set is more suitable for video segmentation. Also,

level set based method has already been used in [18] for image segmenta-

tion. We are motivated and further extend the basic framework of [18] for

video segmentation. We also borrow local windows of [37] in this thesis. To

achieve this goal we further combine probabilistic local window and depth

information into propagation. Moreover, we combine shape prior and local

models to refine and get more reliable results. As for better user interaction,

we add many editing tools into our program for user to refine easily.

1.2 Thesis Organization

The remainder of this paper is organized as follows: in Chapter 2, we survey

a variety of techniques and provided a tentative classification according to

their properties; in Chapter 3, the proposed algorithm of level set based video

segmentation is discussed in details; in Chapter 4, guided user interaction

system which includes auto detection and correction is discussed in detail.

Experiments, evaluation, and future study are given in Chapter 5. Chapter

6 concludes the thesis.
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(a)

(b)

(c)

(d)

(e)

Figure 1.1: Comparison in video of elephant. Shows the shortcoming of graph
cut that segments the elephant’s nose incorrectly for minimizing energy cost.
(a) and (b) The 2nd and 3rd frame respectively. (c) The 4th frame shows
that graph cuts tends to converge to a global optimal without caring original
topologies and neighboring frames. (d) The 4th frame after user’s correction.
(e) The 5th frame shows that graph cut incorrectly segments it again.
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Chapter 2

Literature Survey

2.1 Continuous methods

2.1.1 Snakes

A ’snake’ is an energy-minimizing active contour influenced by image forces

and guided by external constraint forces that enforce it moving toward fea-

tures such as edges or boundaries. Snakes are active contour because they

can clamp nearby edges and localize them accurately. Snakes bring a new

idea to visual problems such as edge and line detections, stereo matching, and

motion tracking. But as mentioned before in [21], if the input is too blurred

or not as sharp as enough, the forces that pushing snakes clamp onto edges

may not strong enough to lock onto edges or boundaries accurately. As can

be seen in Fig. 2.1, it could be discovered that if the edges/boundaries are

too complex or blurred, snakes are fail to lock onto exact object user wants

to cut out. And also, user may have to draw the snake curve may times in a
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Figure 2.1: A result done by Snake, this active contour model would like to
clamp onto the provided gradient map as accurate as possible.

complex region in order to get a better result which is too tedious.

2.1.2 Level Set

Level set based methods are well suited for video segmentation. It can cap-

ture arbitrary topology and can model complex objects. An introduction

of and applications of level set method can be found in [23, 19, 18, 32, 24].

Level set method has been utilized to supervised image segmentation in [25].

Users are allowed to draw some strokes as hints of the foreground object.

However, this work only relates to a simple statistical model and does not

consider the edge costs of pixels. The drawbacks of previous work of level set

based segmentation is not supervised. We will introduce and discuss about

this approach in next chapter, and promote this work to a significant position

with our methods.
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2.2 Discrete methods

2.2.1 K-Means

K-means clustering method [35] is a popular method for cluster analysis in

data mining. K-means clustering method aims at partitioning n points into

k clusters in which each point belongs to the cluster with its nearest mean.

For example, given a set of points (x1, x2, · · · , xn), where each point is a

d-dimensional real vector. K-means clustering method aims to partition the

n points into k sets (k ≤ n). S = {S1, S2, · · · , Sk} so as to minimize the

within-cluster sum of squares (WCSS):

arg min
S

k∑
i=1

∑
xj∈Si

‖xj − µi‖2 (2.1)

where µi is the mean of points in Si. Fig. 2.2 is an example for k-means of

partitioning data points into 3 clusters illustrated by different colors. Fig.

2.3 shows the segmentation of k-means with k equals to 16.

Figure 2.2: An illustration for K-means method of 3 clusters.
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Figure 2.3: An example from Wikipedia with k = 16.

2.2.2 Intelligent Scissor

Intelligent scissors [21] are an interactive tool used for image segmentation

and composition. It allows user to choose one point on an image and use

it as a ’seed’. Once the seed is anchored, intelligent scissor will compute a

global shortest path map by Dijkstra shortest path algorithm [8] and then

find out a shortest path from current cursor position to the selected seed.

Instant visual feedback is shown to user as in Fig. 2.4. Because Dijkstra

algorithm [8] uses color gradient to build the shortest path map, once the

edge is not sharp or clear enough, user may have to select more seeds for a

better segmentation.
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Figure 2.4: A segment of Pelvis bones cut out by Intelligent Scissor. The
yellow points dedicate every seed that user has drawn, and the purple point
dedicates the first seed.

2.2.3 Graph Cut

The theory of graph cut is first applied by Greig, Porteous, and Seheult in

[10]. In the Bayesian statistical context of smoothing noisy (or corrupted)

images, they show how the maximum a posterior (MAP) estimate of a binary

image can be obtained by maximizing the flow through an image. Later on,

this idea is further used in image segmentation. In graph theory, a cut could

be referred as a partition of the vertices of a graph into two disjoint subsets

that are joined by at least one edge. In an un-weighted undirected graph,

the size or weight of a cut is the number of edges crossing the cut. In a

weighted graph, the same term is defined by the sum of the weights of the
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edges crossing the cut.

Graph cut can be applied to solve a wide variety of computer vision

problems quickly, such as image smoothing, and many other computer vision

problems that could be formulated in terms of energy minimization. En-

ergy minimization problems could be reduced to instances of the maximum

flow problem in a graph. In most of such problems in computer vision, the

minimum energy solution corresponds to the MAP estimate of a solution.

Although many computer vision algorithms involve cutting a graph (e.g.,

normalized cuts [33]), the term ”graph cuts” is applied specifically to those

models which employ a max-flow/min-cut optimization. Fig. 2.5 shows a

toy example how graph cut finds a cut from those links.

On the other hand, graph cut is an algorithm that finds a globally op-

timal segmentation solution. Also known as min cut, and equivalent to

max flow [36]. Suppose an image is a graph G = 〈v, ε〉, v is the set of

all points, ε is the set of all arcs connecting adjacent points. It may be

4 or 8 connections between neighboring points. The goal is to assign a

unique label xi for each point i ∈ v. For example, xi ∈ {foreground(=

1), background(= 0)}. X = {xi} can be obtained by minimizing E(X) =∑
i∈v E1(xi) + λ

∑
(i,j)∈εE2(xi, xj). Where E1(xi) is the likelihood energy

term which encodes the cost when the label of node i is xi, E2(xi, xj) is the

prior energy term which denotes the cost when the labels of adjacent points i

and j are xi and xj, and λ is the weight of prior energy. E1 encodes the 3-color

similarity of a point, indicating if it belongs to foreground or background.
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As for the definitions, E1(xi) and E2(xi, xj) is defined as follows:

E1(xi = 1) = 1 E1(xi = 0) =∞ ∀i ∈ F

E1(xi = 1) =∞ E1(xi = 0) = 0 ∀i ∈ B

E1(xi = 1) =
dFi

dFi + dBi
E1(xi = 0) =

dBi
dFi + dBi

∀i ∈ U (2.2)

where dFi and dBi is the distance measurement of point i to foreground and

background mean centers respectively.

E2(xi, xj) = |xi − xj| · g(Cij)

g(ξ) =
1

ξ + 1
, andCij = ‖C(i)− C(j)‖2 (2.3)

where E2 is a function of the color gradient between two points i and j, on

the other hand, it can also be considered as the penalty of assigning different

labels to similar neighboring points.

Graph cut is further used in other application such as optimizing panorama

in [26] or lazy snapping [17]. Fig. 2.6 shows the panorama result that is op-

timized by graph cut. There are 6 images in total, different colors of patches

indicate which part is selected from those 6 images. Graph cut is also used

and implemented into an advanced algorithm called Grab Cut [29]. Fig.

2.7 shows the results of grab cut in Open Source Computer Vision Library

(OpenCV). It could be seen that the cut out segment is better than other

approaches, and it is the reason that graph cut [10] is recently and widely

used state-of-art algorithm in segmentation.
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Figure 2.5: A simple 2D segmentation toy example for a 3x3 image. The
seeds are O = {v} and B = {p}. The cost of each pixel is reflected by the
edge’s thickness. The regional term (2) and hard constraints (4,5) define
the costs of t-links. The boundary term (3) defines the costs of n-links.
Inexpensive edges are attractive choices for the minimum cost cut.

2.2.4 Lazy Snapping

Lazy Snapping [17]is an interactive image cutout tool which can partition

an object from an image easily. The core algorithms of it are Markov Ran-

dom Field (MRF) [16] and Graph Cut [10]. It provides instant visual feed-

back, once the user draws foreground and background strokes on the target

image, instant feedback is made and shown by an image segmentation al-

gorithm which combines graph cut with pre-computed over-segmentation.

Lazy Snapping provides a better user experience, and the segmentation re-
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Figure 2.6: A result of panorama after optimizing by graph cut.

Figure 2.7: A test image of pelvis bones and its result by grab cut.

sults are also better than normal image cutout tool such as Magnetic Lasso

in Adobe Photoshop. It could be seen that lazy snapping [17] based on graph

cut [10] is efficient and accurate in cutting out still images. It is also fur-

ther used in video segmentation in [37] and commercialized in Adobe After

Effect renamed as Roto Brush. But Roto Brush also has many drawbacks

such that it cannot deal with elongate objects or complex-structure models

properly. It could be seen in Fig. 1.1, the elephant’s nose is slight moving in

these 3 consecutive frames, but Roto Brush cuts it out since it finds a global

optimum.
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Figure 2.8: An illustration of lazy snapping. Usually, each yellow square
stands for a pixel of an image.

Figure 2.9: A result done by lazy snapping. Fig. (a) shows the inputs, blue
and red strokes stands for background and foreground inputs respectively;
Fig. (b) shows the binary result after graph cut algorithm; Fig. (c) shows
the visual instant feedback result to user.
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Chapter 3

Level Set Based Video

Segmentation

Level set based methods are well suited for video segmentation. First, it

captures arbitrary topology and can model complicated objects easily. It

is also possible to explicitly enforce the segmentation contour to be close

to salient edges. Second, the segmentation of previous frames provides a

nature initialization of the result on the current frame. It naturally enforces

temporal coherence and smoothness, which is difficult to achieve in graph-

based optimization. Because graph-based optimization computes a global

optimal regardless of the result in neighboring frames. Third, the algorithm

seeks for a local optimal near the initial, which makes results easy to control.

It might be different from the user’s expectation. When an elongated object

is cut off, the user might need to correct it in all frame which is tedious and

involved lots of human works.
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3.1 Preprocessing

To facilitate the following level set based segmentation, we compute edge,

texture and motion information at each pixel. We apply the Canny edge

detection algorithm [6] to compute edges at each frame. In each frame, we

detect Canny edges with different thresholds in order to obtain a much more

detailed edge information. After that, a more reliable multi-threshold Canny

edge result is obtained. We believe that level set could converge to the ground

truth better by giving more promising edge detections. We compute a texture

descriptor at each pixel by oriented filter banks. We employ 18 Gabor filters

[20] within total 3 orientations and 2 scales at all color channels. Orientations

and scales could be tuned with the video complexity. If there is a video with

very high motion or in cluttered scenes with many foreground objects, more

orientations and larger scales are required for parameter adjustments and

feature extractions. We further compute the optical flow at all neighboring

frames by the method described in [34]. Optical flow is implemented in

CUDA for propagation optimization.

3.2 Level Set with Probabilistic Classifier

In level set based methods, the object boundary is implicitly represented

as Φ(x) = 0, where x is an image coordinate. We refer Φ as the level set

function in this paper. We segment video frames one by one, and at each

frame, Φ is initialized by the propagated result with optical flow from its

proceeding frame. We transfer segmented boundary of proceeding frame to
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next frame optical flow. The zero level set is initialized on this propagated

boundary. The values of Φ is updated according to the following equation,

∂Φ

∂t
= −

α ·R(x, t)︸ ︷︷ ︸
region

+ β ·B(x, t) + γ · C(x, t)︸ ︷︷ ︸
boundary

 ‖∇Φ‖ (3.1)

where t denotes the time of iteration. Roughly speaking, this equation evolves

the segmentation boundary by the region force, edge force and curvature

force.

3.2.1 Region Term

Region term includes statistic models of foreground and background regions.

Most of the interactive segmentation methods such as [5, 37] build Gaussian

Mixture Models (GMM) to separate foreground and background points. We

train an Adaboost based classifier [30, 11] for such a separation. It is well

known [22, 14] in the machine learning that discriminative models such as

Adaboost outperform generative models such as GMM. Also, since we prop-

agate the result of previous frame to next frame in our work. We believe that

it is better to use discriminative models rather than using generative ones.

We train a global classifier for each video sequence. The key frame which

segmented by user provides us a training data set of discriminative classifier.

Both the 3-color channels and the Gabor filter responses are concatenated

together to form a 4 dimensional vector. This vector would be used as the

feature descriptor of a pixel, which is the input of discriminative classifier. We

sample more pixels near the segmented boundary and less pixels outside in
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order to capture the object with higher correctness. Also, to get a reasonable

training data, there is a maximum number of sampled pixels in every bin of

color histogram.

In most of the time, the information available from a local frame neigh-

borhood is already sufficient to perform foreground/background classification

on a pixel. Such information includes pixel colors and Gabor filter responses.

To fully utilize local pixels’ classification results in global image segmenta-

tion, our first goal is to make the global posterior probabilities close to the

likelihoods estimated by a local pixel classifier. We use the following energy

term ER to measure the degree of inconsistency between the two pixels and

then try to minimize this energy:

ER =

¨
I

(Φ(x) + 2(P (x)− 0.5))2dx (3.2)

where P ((x)) denotes the likelihood of pixel (x) being part of the target

object according to a local discriminative probabilistic classifier which only

gathers evidences available from a local neighborhood.

Similar to [37], we also train local models in local windows sampled along

the segmentation contours. Local windows are propagated by optical flows

between adjacent frames. The final probability of each pixel belong to fore-

ground is computed as

P (x) = λGPG(x) +
∑
i

λiP
i
L(x), (3.3)

where PG(x) is the output of global classifier of pixel x, P i
L(x) is the output
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of ith local window (x ∈ LWi), and λG +
∑
i

λi = 1. The weight of λi is

computed as

λi = λ′i(x)
λ′G(x)+

∑
λ′i(x)

, λ′i(x) = exp(−‖x− xic‖) , (3.4)

where xic is central pixel of ith local window.

We compute R(x) = Φ − 2P(x) + 1, where P (x) ∈ [0,1] is the proba-

bility that x belongs to foreground. This term minimizes inconsistency of Φ

and output of classifiers PG(x). Updating Φ according to this region term

essentially minimized the following integration in (3.2).

We design the following force term to reduce the energy defined in (3.2):

R(x)
∇Φ

‖∇Φ‖
= (Φ(x) + 2(P (x)− 0.5))

∇Φ

‖∇Φ‖
, (3.5)

where ∇Φ
‖∇Φ‖ represents the unit outward normal vector of the zero level set.

Suppose x is a point on the zero level set. P (x) > 0.5 means x is con-

sidered inside the target object by the local classifier. To make the posterior

probability consistent with the local classifier, the zero level set should be

expanded along the outward normal direction, which is consistent with the

force term prescribed in (3.5). On the other hand, P (x) < 0.5 means x is

considered outside the target object by the local classifier. To make the pos-

terior probability consistent with the output of classifiers, the zero level set

should be shrunk along the reversed normal direction, which is also consistent

with the force term prescribed in (3.5).
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3.2.2 Boundary Term

Boundary term enforces the segmentation boundary to be close to salient

image edges or some prior edges propagated from previous frames. We further

some suppress edges εC near the boundary εB of propagated from previous

frame. We use minimum distance as criteria to suppress Canny edges εC

near εB. We select useful Canny and suppress the spurious edges as follows,

xi ∈ Se, if


xi ∈ εC

arg min
xi

‖xi − xj‖ ,∃xj ∈ εB
, (3.6)

That means there is a pixel in εB and xi is its the nearest pixel. Then xi is

selected in set Se.

The result is called an edge field, Ψ(x).

Ψ(xi) =

 0 for xi ∈ Se;
min(dmax,minxj∈Se d(xi,xj))

dmax
for xi /∈ Se,

(3.7)

where Se is the set of edge pixels, and d(xi,xj) is the Euclidean distance

between two pixels xi and xj.

We define Ψ(x) as edge field. It equals to zero at remaining edges and

gradually increases when moving away from an edge. We compute B(x) =

−(∇Ψ(x) · ∇Φ(x)
||∇Φ(x)||).

If there is no Canny edges detected in local windows or probabilities of

pixels in a local window, we use mask transferred from previous segmented

mask to be a shape prior of this local window. Shape prior is another force

Sp(x) combine in boundary term B(x).
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Our second goal is to make the zero level set snap to salient edges in

the image because salient edges are likely to lie on the boundary of the

target object. We rely on the edge field computed in the previous section to

facilitate distant interactions between edges and level sets. Since the edge

field reaches its minimal value at edge pixels and has a magnitude increasing

monotonically with the distance from edge pixels, we design the following

energy term EB to measure the overall proximity between the zero level set

and the set of detected edge pixels:

EB(Γ) =

˛
Γ

Ψ(Γ(s))‖Γ̇(s)‖ds, (3.8)

where Ψ(x) is the edge field defined in (3.7), Γ(s) is a 1D parametric repre-

sentation of the zero level set and s ∈ [0, 1], ‖Γ̇(s)‖ represents the derivative

of the arc length of the zero level set with respect to the parameter. To min-

imize the energy EB, we apply the Euler-Lagrange equations [39] to (3.8),

and obtain the following equation for optimizing the position of points on

the zero level set:

dx

dt
= − (Ψ(x(s))κ(x(s)) +∇Ψ(x(s)) ·N(x(s))) N(x(s)) (3.9)

where κ(x) is the curvature of the zero level set at x and N(x) is the outward

normal of the zero level set at x. The first term in (3.9) tries to make the

zero level set as straight as possible while the second term tries to move the

zero level set towards relatively distant edges along the negative gradient of

the edge field. Both terms can reduce the energy term defined in (3.8).
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The first term in (3.9) concerns the smoothness of the detected object

boundary, which we will be addressed in the next subsection. Therefore,

here we only focus on the second term, which improves boundary localization.

Since the normal of the zero level set can be formulated using the gradient

of the level set function, we can replace the unit normal vector N(x) in (3.9)

with the normalized gradient, ∇Φ(x)
‖∇Φ(x)‖ . Thus, we design the second force term

for boundary localization as follows:

B(x)
∇Φ

‖∇Φ‖
= −

(
∇Ψ(x) · ∇Φ(x)

‖∇Φ(x)‖
−δSp(x)

)
∇Φ

‖∇Φ‖
(3.10)

δ is computed from probabilities of local classifier as follows,

δ = 1−
2

n∑
i=1

|P i
L(x)− 0.5|

n
, (3.11)

The curvature term is a standard force term in level set methods. It is

primarily used for improving boundary smoothness. However, it is unnec-

essary to enforce boundary smoothness unconditionally, especially when the

true object boundary has rough details. Our curvature term tries to provide

a tradeoff between boundary smoothness and boundary faithfulness. That

means in the neighborhood of unsuppressed edge pixels, boundary localiza-

tion is still a more important goal than boundary smoothness. But in the

absence of edge pixels, boundary smoothness serves as an effective prior to

determine the shape and position of the local object boundary. Thus, we
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define the curvature force term as follows:

C(x)
∇Φ

‖∇Φ‖
= −(µκ(x) + (1− µ)Ψ(x)κ(x))

∇Φ

‖∇Φ‖
, (3.12)

where κ(x) denotes the curvature of the level set passing through x, and

0 ≤ µ ≤ 1. Locally convex regions have κ > 0 on the boundary while locally

concave regions have κ < 0 on the boundary. The second term in (3.12)

modulates curvature with the edge field to weaken the curvature term in

the neighborhood of edges. Nevertheless, the first term guarantees that the

curvature term does not disappear completely as long as µ remains positive.

The curvature of a level set in a two dimensional level set method can be

computed using the following equation, which has been proved in [15]:

κ =
ΦxxΦy

2 − 2ΦxΦyΦxy + ΦyyΦx
2(

Φx
2 + Φy

2
) 3

2

, (3.13)

where Φ represents a signed distance transform of the zero level set in our

method. Since it is extremely unlikely to have a circle with a radius smaller

than the size of a pixel, we clamp any computed curvature to [− 1
∆x
, 1

∆x
],

where ∆x represents the size of a pixel [24]. Since the default level set

function in our method is defined using probabilities, the signed distance

transform of the zero level set needs to be recomputed during every time

step.

According to [7], this term essentially minimizes the following integration

3.8
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3.3 Optimization

The equation in (3.1) can be efficiently solved using the Narrow Band Method

in [32, 24] and the Fast Local Level Set Method in [27]. They restrict most

computation to a narrow band of active pixels immediately surrounding the

zero level set. In general, the narrow band is the following set of pixels,

{x : |Φ(x)| < θb} where θb is a prescribed threshold (typically set to 6), and

Φ is the signed distance transform of the zero level set. Note that we only

need to update the signed distance transform within the narrow band during

every time step.

Figure 3.1: Comparison. Upper: frames in videos. Middle: results of Roto
Brush. Bottom: results of our algorithm. It could also be seen that even
our algorithm is still incorrectly segmenting the grass beneath the player, the
overall result is still better than graph cut. (left: Frame 82 of Shrek, right:
Frame 114 of Footballer.)
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Figure 3.2: Comparisons of percentages misclassified pixels from Fig. 3.1.
It shows our algorithm is more promising and seems Roto Brush usually
requires constant initialization.

Because level set method is a local optimization tool and there is spatial

coherence of frames in a video, level set based propagation in video seg-

mentation is stronger than graph-cut in Snapcut. Fig. 3.1 and 3.2 show

the comparisons of our algorithm and Roto Brush. If there is faster shape

changes in video, the worse results are produced by Roto Brush. For ex-

ample, the Shrek’s left hand gets up quickly as shown in Fig. 3.1. Because
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of local windows in previous frame can’t follow this fast shape changes of

Shrek, so the left hand is missed in the result of Roto Brush. Roto Brush is

over dependent to boundaries and previous frame. For another example, a

footballer is rolling in playground as shown in Fig. 3.1. There is a obvious

straight-line edge in playground. Because a lot of local windows snap to this

false and obvious boundary, a big patch of grassland becomes to foreground

in result of Roto Brush. Roto Brush is liable to local minima in segmenta-

tion. Both Fig. 3.1 and 3.2 show that Roto Brush only cares the image patch

in its local windows. Thus, local minimum cues, such as edges, become final

segmented boundary and mislead Roto Brush to unreasonable results.

Fig. 3.3 shows the successful results from a video of a jumping cat. All

of the results are only given a ground truth in 1st frame as a key frame.

Although there is a motion blur occurred when the cat jumped, it could still

be discovered that our method captures its hands in (c). It could also be

seen that our method perfectly captured the cat’s shape even when it played

with a paper in (d), (e), (f), (g), and (h).

28



(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.3: Successful results in video of Cat with our method. (a) The 51st
frame, (b) the 56th frame, (c) the 60th frame, (d) the 62nd frame, (e) the
64th frame, (f) the 67th frame, (g) the 72nd frame, (h) the 81st frame.
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Chapter 4

Guided User Interaction

Even there are tremendous researches about video segmentation and it has

been achieved in many applications. The performance of video segmenta-

tion is still far from perfect. Users need to locate segmentation errors by

retrieving frames back and forth and then draw additional strokes to correct

them frequently. It is the most tedious part of video segmentation to browse

the segmented frames back and forth and add new strokes repeatedly. In-

tuitively, if a system can automatically locate error segments, the users will

be relieved from carefully checking the segmentation results. Furthermore, if

the system can provide possible corrections for the user to select, the users do

not even need to draw more strokes while correcting error segments. In order

to achieve such way, interactive video segmentation would be more efficient

and friendly.

Auto detection and auto correction could be one of the solutions to re-

duce these tedious refinements by the user. If we could collect the error

segments and train a patch based classifier to identify incorrect segmenta-
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tions. Furthermore, if the program could not only detect errors but also

provide many possible segments and let the user select the ideal one. It

will be more convenient since that the users do not need to do corrections

anymore. The users only need to select the most correct segment patches

which are provided automatically by the system. Toward this goal, we build

a patch based classifier to identify incorrect segmentations. This classifier

is trained from manually labeled ground truth data, and is applied to local

windows of each frame. We define feature according to the property of video

and segmentation parameters.

4.1 Segmentation Error Detection

4.1.1 Feature Design

Given a patch, P , centered on the boundary of the segmentation in frame

Fi, and pj = (Xj, Fi) ∈ P are pixels inside the patch P , the features for a

patch is defined below.

1. Optical Flow. The propagation of local model and shape prior all de-

pends on optical flow. Hence, we take its accuracy measures as features

to detect incorrect segmentation.

• Disocclusion often causes problems for video segmentation. It can

be measured by the number of non-matched pixels inside a patch.

We define the set N(Fi) as all the pixels in the frame Fi that are

not destination of any pixel in the frame Fi−1 according to the

optical flow. We count the number of non-matched pixels as the
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Non-Matched Point feature.

f = Size({pj ∈ P} ∩ {pj ∈ N(Fi)}) (4.1)

• The length of optical flow measures the speed of moving object

in image. When in case with high speed motion, the motion blur

may cause ambiguity for segmentation. Also the reliability of the

optical flow would also be impaired. We compute the average

length of optical flow for pixels inside a patch as the Optical

Flow Length feature.

f =
∑
pj∈P

||Xj −XB
j ||2 (4.2)

2. Statistic models. We can analyze global and local statistic models to

detect incorrect segmentations.

• The global model and the local model measures the probability of

foreground for each pixel. The probability evaluated at foreground

(and background) pixels should be 1 (and 0). A pixel is ambiguous

if its probability is close to 0.5. So we define the confidence of the

global and local model as the Global Model Confidence and

Local Model Confidence features.

f =
∑
pj∈P

|Global(pj)− 0.5|, f =
∑
pj∈P

|Local(pj)− 0.5| (4.3)

in which Global(pj) and Local(pj) are the probabilities of pixel pj
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under the global model and local model respectively.

• The foreground probability of a pixel is evaluated by both the

global model and the local model. If these two models are in-

consistent, the segmentation could be optimized according to the

wrong one. We define a feature according to this consistency as

the Global & Local Consistency feature.

f =
∑
pj∈P

|Global(pj)− Local(pj)| (4.4)

3. Image features. We also analyze image features such as edge and blur

to evaluate segmentation quality.

• Intuitively, segmentation is difficult at image regions with less con-

trast caused by low resolution or motion blur. So we define the

image blurriness following [1]. Specifically, for a pixel pj, we se-

lect a 5 ∗ 5 patch centered at it and compute eigenvalues of the

image intensity matrix, which are λ1
j , ..., λ

5
j in descend order. The

Blurriness feature are defined as

f =
∑
pj∈P

(∑2
m=1 λ

m
j∑5

n=1 λ
n
j

)
(4.5)

• The segmentation would be more likely to be correct if the bound-

ary matches well the edges in the image. We compute shape con-

text [4] descriptor at the center of each patch for both the seg-

mentation boundary and image edges. Suppose S(P ) and E(P )

as the descriptors of the segmentation boundary and image edges
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for patch P respectively. We measure the consistency of these two

descriptors as the Edge & Boundary Matching feature.

f =
S(P ) · E(P )

||S(P )|| · ||E(P )||
(4.6)

Besides shape matching, we also measure the distance between

canny edge and the boundary of our segmentation. For a pixel

pj, let d(pj) be the minimal distance from the pixel to any point

on boundary, and let c(pj) be the strength of the canny edge on

pixel pj. The Edge & Boundary Distance feature could be

computed as

f =
∑
pj∈P

d(pj) ∗ c(pj) (4.7)

Moreover, the segmentation contours at neighboring frames should

be similar. Hence, we also evaluate the consistency of the shape

context descriptor of segmentation contours at neighboring frames

as the Shape Consistency feature.

f =
S(P ) · S(P ′)

||S(P )|| · ||S(P ′)||
(4.8)

Here, P ′ is the corresponding position of patch P in the frame

Fi−1 located by the optical flow of the center pixel of the P .

• The segment boundary would be wrong if it was far away from

the center of the patch. To measure the closeness between seg-

ment boundary and the patch center, we compute the Boundary
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Center Pass feature.

f =
∑
pj∈P

max(0,
−d(pj)

2 + 100

100
) (4.9)

4.1.2 Detection

In this section, we will introduce the training and detection of the automatic

error report detector.

We collect training data from a set of videos with variety of topics. For

a clip of video, we label the ground truth segmentations for all frames and

run the result of our segmentation system. Training samples are collected

as the local windows defined before. We consider each local window as a

patch, typically with 31 ∗ 31 pixels. The 10 dimensional feature of a patch

is computed as introduced above. To obtain the label for a patch, we first

compute a score for each patch to measure the segmentation error inside the

patch. The score is computed as the difference between our segmentation

result and the ground truth in the patch. Moreover, we give larger weights

for those mislabeled pixels far from ground truth boundary. For patches with

higher scores, they should be reported by auto error report system with higher

probability, and thus be positive training data(with label +1), and vice versa

for the negative training data. Intuitively, the label of the training data could

be obtained by assigning a threshold on the mislabel score. However, since

the ground truth may contain noise, there exists a range of score which is

hard for making decision of wrong or correct segmentation. So while training,

we exclude patches with scores drop in such an confused range, and use only
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Figure 4.1: Precision Recall Curve on testing data.

those could be definitely classified by the mislabel score.

Considering the quite acceptable performance of our propagation system,

it turns out that our training data is apparently unbalanced–the number of

negative data(correct local segmentation) is more than that of the positive

data. Also, it is not proper to arbitrarily predefine a model for fitting feature

space to the label. We use the most traditional Gentle Adaboost as the

classifier.

Figure 4.1 shows a precision-recall curve of our error detector on testing

data. The average precision is 77.7%. In practice, we may choose a point

on the precision recall curve as the working point based on our requirement

on the quality of the reports. In our case, we want to ensure most of the

reports to be really incorrect segmented parts, so we apply a comparatively

high threshold on the output score of the Adaboost detector.
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4.2 Suggestive Auto-Correction

Detecting error segmentations automatically could save users’ time for trying

to find error everywhere on segmentation boundary. Moreover, in order to

make the modification more efficient and easier, after detecting error local

segmentation parts, we try to provide several modification options. Users

could simply choose one of the options (if any one modify the error correctly),

but no longer need to consider about how to give supportive information, such

as drawing strokes.

To provide modification choices, we first analyze the error detector. In

Adaboost, a feature would be frequently selected by weak classifiers if it is

informative in splitting the training data. In other words, the error segmented

parts are much easier to be detected due to these features; and hence these

features would have a large probability of leading to error.

Figure 4.2: Feature Selection by Adaboost detector.

Figure 4.2 shows the times of each feature been selected by weak clas-

sifiers. It shows that Edge & Boundary Matching, Global & Local
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Consistency, Shape Consistency, and Local Model Confidence are

some most informative features. Accordingly, these discriminative features

provide some suggestions in modifying the segmentation result as following.

Figure 4.3: Feature distribution of 4 most discriminant features. The solid
line shows the distribution of wrong segmentation parts, while the dash line
is for correct segmentation parts.

1. Edge & Boundary Matching. Figure 4.3(a) shows the distribu-

tion of this feature on positive and negative samples, in which correct

segment patches fits canny edge closer. This suggest that we should

increase the force towards canny edges.

2. Shape Consistency. Figure 4.3(b) shows the distribution of this fea-

ture. Almost the same as Edge & Boundary Distance, incorrectly

segmented parts should try to increase the weight of constraint from

shape prior.

3. Local Model Confidence and Global & Local Consistency. It
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is expectable that our algorithm would be weak when local classifier

cannot clearly divide the pixel in patch. While local classifiers are weak

or strongly conflict with global model, we may change to borrow the

information from the global model, and hence increase the weight of

global model. Figure 4.3(c)(d) shows the feature distribution of global

and local model confidence. Both features show that the segmentation

would be more likely to be correct if with higher color model confidence.

From the feature distributions, we see that there is no one feature which

can precisely divide the positive and negative data, so it is hard to improve

the quality of segmentation by simply adjust a single feature or apply a

same adjustments for all the wrong segmentation parts. We pass the job

of deciding rectification methods from several options to the users. After

the algorithm automatically segment the video, the error detector will run

on every local window and assign large scores to those windows with high

probabilities to be error. Then we provide 4 choices of rectification, which

emphasis on local model probability, global model probability, canny edge, or

shape prior respectively, for users to make decision. To make the prediction

precisely, for every 50 frames, we report the top 20 windows with the highest

scores for users to process. After this, the system will run auto segmentation

throughout the 50 frames again. This loop will stop until there are very few

windows to report or most of the reported windows are actually correctly

segmented.

With this system, it could be obviously discovered that the user could

obtain better refined results by given fewer corrections especially in small and
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detailed boundary. Normally the user needs to manually correct errors with

carefulness for complicated boundary. Zoom in might be needed for precise

corrections. But it could be seen from Fig. 4.4 and 4.5, our system already

provides the most possible refinements with the most reliable and significant

features trained by AdaBoost. Our system helps the user to describe complex

object boundary automatically without human’s supervision. We believe

that the user will no longer need to deal with complex and cluttered errors

such as Fig. 4.5. With more training experiences, our system will provide

more precise and much higher reliable auto correction results.

Figure 4.4: A case of auto correction system.

Figure 4.5: Another case of auto correction system.
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Chapter 5

Evaluation & Experiment

5.1 Evaluation

5.1.1 Limitation

Although in most of cases, our segmented results are better than Video Snap-

Cut. There are still many limitations of our approach such as computational

time, memory problem, matting optimization, and hardware requirement,

etc.

Computational Time

In our program, the average time of propagating one frame is 3 ∼ 5 seconds

for the image with resolution 640x480. As for images with larger resolution

such as 1024x720, the time may increase to 7 ∼ 15 seconds depends on the

number of local windows. Since local windows are fully covered the entire

boundary of the object, if the area of the object was very huge then the
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computational time will increase proportionally. If the feature with those

local windows is more complicated, then the computational time may increase

exponentially. As for the computational time in Video SnapCut, the average

time of each frame is under 1 second regardless image resolution since finding

a global optimum is much faster than finding many local optimums.

Although we encode and speed up optical flow and level set optimization

by GPU, the computational time is still longer than Video SnapCut. This

limitation could be solved by a hard way which using clusters servers or a

computer with higher hardware requirement and more powerful capacities.

It could also be solved by a soft way that optimizing the source code to

speed up classifiers’ training time and propagations progress. It is believed

that better data structures and memory pooling access could reduce time

cost and make the program more efficient and less buggy.

Memory Problem

In the propagation progress, result of Canny edges, optical flow, histogram,

Gabor feature, original video sequences are used during propagation. Espe-

cially in the preprocessing stage, pre-computed features such as edges, optical

flow vectors, and Gabor feature response are saved into a mat file in MAT-

LAB for further using. Once the video sequences are too long, for example,

over 300 frames, the memory will overflow due to the storage limitation. It

could be solved by increasing memory space but it is not the best solution.

It is better if we could compute each feature whenever we need to use it and

release its’ memory while it is no longer used. But on the other hand, the

computational time will increase and be shared to each frame since we have

42



to compute all the features we need for propagation in each frame.

So far we have not come up with a better solution for this problem. To

use Solid Storage Disk (SSD) or to handle these feature with better data

structure arrangement may be workable. But apparently, more related re-

search or studies are needed to address and conquer this problem reasonably

and properly.

Hardware Requirement

We run our level set based video segmentation program on a powerful com-

puter with 24.0 GB RAM, 64-bit operating system, 3.33GHz processor, and

NVIDIA Quadro 2000 independent graphic card. Because we use GPU to

speed up optical flow and level set algorithm, a specific graphic card is needed

for our program which is not general enough. And the memory size in the

specific graphic card has to be large enough to handle optical flow buffering.

From our experiment, overflow occurs when the image resolution is too large

such as a raw image data with resolution 1600x900. Rewrite and encode the

algorithm to a simpler one may be helpful. Because it is more convincing

and general for normal users if this program could be generally used without

such great hardware requirements.

5.1.2 Future Study

Specific Issue

Although most of the experimental results obtained by our presented meth-

ods are better and more accurate than by graph cut, the performance in the
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scenes with very high motion or in cluttered scenes with many foreground

objects is still far from perfect. To make the proposed methods work with

such scenarios, we might have to come up with other new approaches. This is

still an important issue worthy we spending time doing research on it. We do

believe that this thesis would inspire not only us but also other researchers

who are working on these topics and fields.

Additional Feature

Additional feature can be added into classifier training process such as depth

map information, hard color constraint depends on the environment, or some

other textures which could be specific to input data. It could be seen in Fig.

5.1 that the result of the human head is correctly segmented by integrating

depth information into classifier. It yields that by adding additional and

reasonable features into original feature space, performance can be promoted

into a more significant position.

Bi-Direction Propagation

Most of the current video cut out systems, even ours, are segmenting object

in a forward propagation. But it could be observed that sometimes the

incorrectness occurs in forward propagation but could be correctly obtained

in backward propagation. For an example, if a human waves his arm from

background scene into his body, then new background which was covered by

his arm will appear in sample spaces. It may cause some errors because new

appeared area is not trained before and may be classified into wrong clusters.

From another point of view, if a human waves his arm from inside his body
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to outside, his arm may be tracked correctly by local windows.

So far bi-direction propagation is not widely used in any video segmen-

tation tool. It may be useful somehow, but it may also be impractical since

the computational time will be doubled. Therefore, how to find a balance

between bi-direction propagation and merge it properly and efficiently could

be one of the future study options.

Guided User Interaction

Although we have presented a guided user interaction system in chapter

4, but the performance is still far from perfect. We trained the Adaboost

classifier only based on the features observed from our experiments. The per-

formance could be further improved by adding more discriminative features

to training space. Although the system pops up 4 the most possible results

from our classifier, but there is still a chance that all of these provided results

are unexpected and unreasonable. Further study is still needed to increase

the correctness of this system and make it more reliable. It is believed that

the accuracy and correctness could improved by better feature design.

Matting Optimization

Unlike Video SnapCut, we did not apply any Matting algorithm into our

program. The boundaries of segmented objects sometimes are indented and

not smooth enough. Since we did not apply any Matting algorithm to smooth

the final cut out boundary, the boundary with more motion blur may return

unexpected result to the user. Once an improper or unexpected result was

obtained, user may have to correct it frame by frame which is too tedious
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and unacceptable.

Nowadays, tremendous research on matting algorithm such as [9, 28, 13]

has been achieved. In SnapCut, they already integrated matting algorithm to

optimize the final cut outs. In the future, we would like to integrate matting

algorithm and make the final result smoother and more reasonable.

5.2 Experiment

In the experiment, we compare our results with Video SnapCut [37] only

since it is the current state-of-art video segmentation tool. We try to find

the reasons of some awkward performances of Video SnapCut. In the compar-

isons of Video SnapCut and our algorithm based on level set, Video Snap-

Cut is a segmentation tool which has less stronger ability of propagation

than we thought at first. Especially in the situation of fast motions and

foreground/background shape changes. However, we could not obtain the

explanations of it from the source code of Video SnapCut. Therefore, we

have to make some assumptions based on the paper [37] and various experi-

ments. Finally, we think that local optimized solutions is better than global

ones in performance of propagation from segmented results of key frames

might be one of the possible reasons.

At present, the unique video cutout system to be used in commercial pro-

duction is Video SnapCut [37] (renamed Roto Brush) which has been trans-

ferred to Adobe After Effects CS5. This method adopts a key frame-based

forward propagation workflow, which means that the accurate segmentations

in key frames provided by users are propagated to the adjacent frames based
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on a set of local classifiers. Although this system has been put into practical

use, it does not conform to user’s habit in object selection. Besides, since

the interactions only happen in key frames, the final results depend on accu-

rate selections in key frames and stable propagations. If the video scenes are

complicated, a lot of tedious manual corrections are still needed to obtain

good results in every frame. We list the failure cases of Video Snapcut as

follows.

Failure case 1: nose of elephant. The nose of elephant is a slim part of

object. The elephants initialized to be foreground as shown in Fig. 5.2(a).

However, the nose of elephant was classified to be background in next frames

immediately in Fig. 5.2(b) and (c). We re-initialized segmented results in the

23rd frame as a key frame manually in Fig. 5.2(d). However, video SnapCut

continued to do error segmentation in Fig. 5.2(e). It seems that there is only

a slight movement of nose of elephant in these frames. But users have to

do a lot of tedious segmentation work in every frame manually in order to

correct it. So we guess that it caused by graph cut likes to cut slim object

in foreground.

Failure case 2: Shrek’s waving arm. In this experiment, the left arm of

Shrek was wrongly classified when waving his arm. Firstly, we set the size of

local window to be 30 by 30 pixels. So we guess that it caused by accuracy

of optical flow. Then we set the size of local window to be 80 by 80 pixels.

However, the left arm of Shrek was still missed in final result when waving

his arm as shown in Fig 5.3 (b). Because this hand is contained in the search

region as shown in Fig. 5.3 (c) and (d) separately, we think it is caused by

graph cut in Video SnapCut wants to find global optimization and get rid of
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the slim part of foreground.

Failure case 3: Nemo’s tail. Nemo swings its tail quickly in the water as

shown in Fig. 5.4. Segmentation result of Video SnapCut snaps to a wrong

edge in Nemo’s tail. This edge seems be the strongest edge in Nemo’s tail.

Finally, Video SnapCut missed Nemo’s tail immediately from segmented key

frame Fig. 5.4(a).

Failure case 4: tail of parrot. It seems to be similar to failure case 3 as

shown in Fig. 5.5. Video SnapCut missed the slim tail of parrot when parrot

swings its tail quickly in the video.

In the experiments, Video SnapCut often cuts out or connect regions

incorrectly in order to minimize its energy cost. It could be discovered from

the following results that level set handles elongated objects and complex

scene better than Video SnapCut. The compared results are shown in Fig.

5.6, 5.7, 5.8, and 5.9. All of those comparisons are given only the first frame

as ground truth to initialize the entire propagation. It could be clearly seen

that without any user interaction, our video cut out system can provide

better results for such elongated objects.

Case 1: left hand of the man. The shadow area occurs while the man

puts down his hands. In the progress of seeking global optimum in Video

SnapCut, it cuts off his shadow-cover left hand. It could be seen in Fig. 5.6

(b)∼(d) that the left hand is cut off more and more in the propagation. In

Fig. 5.6 (d) only the thumb is correctly segmented. User needs to refine the

very hand almost frame by frame.

Case 2: left armpit area of the man. The original correct cut out region

converges in the propagation. It shows another drawback of Video SnapCut
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that it cannot handle elongated object well compare to our result. In could

be discovered that the area is nearly disappeared in Fig. 5.7 (c). In this case,

user also needs to refine that converged area frame by frame by hand.

Case 3: the blue t-shirt is wrongly cut out together with the black jacket.

As mentioned before, Video SnapCut finds a global optimum. It is the rea-

son that the blue t-shirt is considered as part of foreground. The incorrect

segment did not correctly cut out even in Fig. 5.8 (d).

Case 4: both hands of the man are wrongly classified as part of back-

ground. When the hands move inside his body, they are considered as a

foreground in order to optimize the energy function of graph cut. Even the

right hand is recovered in Fig. 5.9 (d), but the left hand is still error. Instead

of finding a global optimum, it could be seen that local optimum gives better

result as shown in left-hand side images.
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(a)

(b)

Figure 5.1: Comparison in video of walking man. (a) The 23rd segmented
frame with original features, (b) the 23rd segmented frame with additional
depth information added into training space.
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 5.2: Comparison in video of elephant. (a) The initial segmented
1st frame, (b) the 2nd segmented frame with Video SnapCut, (c) the 3rd
segmented frame with Video SnapCut, (d) user refined the 23rd as a new key
frame, (e) segmented result of 25th frame propagated from (d), (f) the 3rd
segmented frame with our method, (g) the 25th frame propagated from (a)
with our method.

51



(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 5.3: Comparison in video of Shrek. (a) The re-initialized segmented
the 42nd frame, (b) the 43rd segmented result with Video SnapCut, (c) the
search region of the 42nd frame with Video SnapCut, (d) the search region
of the 42nd frame with Video SnapCut, (e) initialized 1st frame as key frame
for propagation, (the segmentation results of (f)-(h) are propagated from
(e)), (f) the 42nd segmented frame with our method, (g) the 43rd segmented
frame with our method, (h) the 44th segmented frame with our method.
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(a)

(b)

Figure 5.4: Failure case of Video SnapCut. (a) The 37th frame is segmented
as a key frame, (b) propagated result of the 38th frame from (a).
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(a)

(b)

Figure 5.5: Failure case of Video SnapCut. (a) The 81th frame is segmented
as a key frame, (b) propagated result of the 82th frame from (a).
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(a)

(b)

(c)

(d)

Figure 5.6: Comparison in video of cloth fitting. The figures from left to right
are results from Video SnapCut and our program respectively by giving only
the first ground truth as initialization without any user interaction. (a)∼(d)
The results of 412th, 413th, 416th, and 418th frame respectively.
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(a)

(b)

(c)

Figure 5.7: Comparison in video of cloth fitting. Shows the shortcoming of
Video SnapCut that the left armpit part converges during the propagation.
(a)∼(c) The results of 451th, 452th, and 453th frame respectively.
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(a)

(b)

(c)

(d)

Figure 5.8: Comparison in video of cloth fitting. Shows the shortcoming of
Video SnapCut that connects the black jacket incorrectly during the propa-
gation. (a)∼(d) The results of 454th, 464th, 482th, and 515th frame respec-
tively.
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(a)

(b)

(c)

(d)

Figure 5.9: Comparison in video of cloth fitting. Shows Video SnapCut cuts
off both of the hands during the propagation. (a)∼(d) The results of 459th,
450th, 595th, and 597th frame respectively.
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Chapter 6

Conclusion

Video segmentation is a fundamentally important research topic and is widely

used in many applications. In this thesis, existing video segmentation algo-

rithms are reviewed and another kind of video segmentation related algorithm

is proposed.

In chapter 3, we have presented a new framework for video segmentation

that combines global/local classifiers and level set algorithm. Our approach

firstly connect adjacent frames by optical flow to maintain color consistency.

In the propagation phase, our predefined feature is also considered as a con-

straint to retain object topology between neighboring frames. The predefined

feature evolves Gabor feature to retain textures welly. From the feature de-

scriptor, shape prior is also utilized to improve the propagation performance

and make the result more reasonable. In addition, our approach is particu-

larly flexible to incorporate with other features or constraints. For example,

depth information could be integrated into the feature descriptor as well to

avoid results with unexpected object boundary.
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In chapter 4, we have introduced an auto detection and correction system

based on multiple features trained by Adaboost classifier. We also evaluated

the influences of each feature from our experiments. Our approach advocates

using less human interaction and getting expectable and qualitative results.

In the meanwhile, our approach is generic and can be used with existing

global/local classifiers and feature descriptors.

In chapter 5, evaluation and more experiment results are introduced.

In the evaluation section, the limitations of our system and future study

for further improvement are discussed in detail. In the experiment section,

more results are shown to further compare the performance of our system

and others. Although in most of cases our results are better and with less

human interaction than current state-of-art algorithm, but there are still

many limitations in our approach. Further research is still needed to be

developed in the future.
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