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Summary

Commonly made assumption of Gaussian noise is an approximation to reality. The

occurrence of outliers, transient data in steady-state measurements, instrument fail-

ure, human error, process nonlinearity, etc. can all induce non-Gaussian process

data. Indeed whenever the central limit theorem is invoked - the central limit the-

orem being a limit theorem can at most suggest approximate normality for real

data. However, even high-quality process data may not fit the Gaussian distribu-

tion and the presence of a single outlier can spoil the statistical analysis completely.

In this thesis, instead of assuming Gaussian distributed noise, we use the genelized

t-distribution as noise model. By being a distribution superset encompassing Gaus-

sian, uniform, t and double exponential distributions, the generalized t-distribution

has the flexibility to characterize data with non-Gaussian statistical properties. We

also use the influence function, a robust statistic tool, to analyze the proposed es-

timator. Specifically how it can predict the change in the estimate due to outliers

and the variance of the estimate. Moreover, the influence function is also used to

formulate a recursive algorithm that gives an approximate solution making it suit-

able for real-time and on-line implementation. The proposed theory is verified by

simulation and experiments.
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Chapter 1

Introduction

1.1 Motivation

Commonly made assumption of Gaussian noise is an approximation to reality. The

occurrence of outliers, transient data in steady-state measurements, instrument fail-

ure, human error, process nonlinearity, etc. can all induce non-Gaussian process

data [1]. Indeed whenever the central limit theorem is invoked — the central limit

theorem being a limit theorem can at most suggest approximate normality for real

data [2]. However, even high-quality process data may not fit the Gaussian distribu-

tion and the presence of a single outlier can spoil the statistical analysis completely.

For instance, most of works on industrial measurement statistics usually carry out

under the assumption of Gaussian distribution noise. This raises an important

question of effect of gross error presenting in measurement on the estimate. The

presence of gross error may significantly cause the estimate to be biased, which

leads to the inconsistency of statistics analysis.
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In literature, Least-Squares (LS) and Kalman filter are the most common meth-

ods to reconcile the data measurement thanks to their simplicity and ease to im-

plement. However, as well known in robust statistics, LS is very sensitive to gross

error and outliers. A common method to robustify LS is to introduce preliminary

outlier test before applying LS, e.g. detecting gross error based on statistical tests

and constraint tests of residuals [3–7], using a serial compensation strategy to delete

suspicious measurements [8] or employing a detection method based on the bounds

of measurements [9]. However, a major drawback of all the above works is that

their techniques were still derived based on the assumption of Gaussian distribu-

tion noise which may not be plausible in real life situations. Another disadvantage

is that statistic tests can only be conducted before and/or after estimating, which

require extra computational time to detect gross errors [10]. Hence, it is better to

derive a versatile estimator that can efficiently reconcile data with the present of

outlier without any preliminary test.

Real time on-line optimization is a key requirement for industrial process. Hence,

it is necessary to derive an efficient estimator that can estimate and detect outlier

at the same time. Recently, Robust Statistics has become more and more popular

[1, 2, 10, 11] thanks to the property of simultaneously estimating and rejecting

gross error. This has inspired other researchers to applied robust statistics in data

reconciliation problem [12], parameter estimation [13], etc. However, there is a

disadvantage in their methods as they may fail to address the question of theoretical

evaluation of their estimators. Monte-Carlo simulation evaluation method is limited

to some certain circumstances only. Therefore, it is clear that a theoretical analysis
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of estimator evaluation is needed to analyze the performance of the estimator. Also

experiments might be needed to validate the proposed theory. Another problem

when applying robust statistics is the non-linear nature of the robust estimators.

Hence, it is necessary to develop a recursive algorithm by approximating the robust

estimator that makes it applicable to practical situations.
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1.2 Contribution of the thesis

The main contributions of this thesis are summarized as below:

In this thesis, instead of using normal distribution to model noise, we took

another approach of modeling noise by employing the Generalized t-distribution

(GT). Thanks to the flexibility of the GT distribution, various types of measurement

noise can be modeled, hence the estimator gives better results in the case of non-

Gaussian noise compared to the Least-Squares and Kalman Filter methods.

The influence function (IF), a powerful robust statistics tool [2], is used to

analyze the estimate from the estimator designed with GT noise model. Specifically

how it can predict the change in the estimate due to outliers and the variance of

the estimate. These equations enable us to compute the sample size needed by the

estimator to meet specified variance or tune the estimator to limit the impact of

outliers. Alternatively, these equations allow us to calculate the variances of the

estimates and hence their precisions if the number of data points used is given.

The theory is verified through simulations and an experiment on the thickness

measurements in the chemical-mechanical polishing of semiconductor wafers.

We also use IF approximation to derive a recursive solution for the maximum

likelihood estimation of the ARMAX Process with GT noise. We also show how the

IF can be used to analyze the filter, specifically how it can predict the filter output

due to outliers and the variance of the output. It will be shown through an example

that if the noise is Gaussian then the proposed ARMAX filter is equivalent to the

Kalman filter. Experiment on liquid-level couple tank is conducted to highlight the

4



advantage of our proposed method over the conventional Kalman filter.

We also extend the use of GT noise model and IF to data reconciliation frame-

work where multiple inputs are treated simultaneously. Moreover, the cases of

skewed and correlated noise are also be considered. The IF is also derived to make

use of its advantages. Simulation are conducted to verify the theory.

1.3 Scope of the thesis

This thesis is organized as follows. In the next chapter, we use the influence func-

tion to analyze the estimator behavior towards outlier. Chapter 3 is the extension

of work done in the previous chapter to the ARMAX problem. Moreover, instead of

using the IF as an analysis tool to analyze a given estimator, this chapter makes use

of the IF to construct a recursive estimator that can be used for real-time situation.

In chapter 4, we expand our maximum likelihood estimator to the data reconcilia-

tion problem where multiple outputs with different noise characters are needed to

be corrected. The follow up chapter will discuss the case of multivariate GT distri-

bution with correlated noise and skew GT distribution where noise distribution is

no longer symmetric which may cause bias on the conventional estimators. In the

end, conclusion and future work of this thesis are given in Conclusion chapter.
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Chapter 2

Parameter Estimation

2.1 Introduction

Commonly made assumption of Gaussian noise is an approximation to reality. The

occurrence of outliers, transient data in steady-state measurements, instrument

failure, human error, process nonlinearity, etc. can all induce non-Gaussian process

data [14]. Indeed whenever the central limit theorem is invoked — the central

limit theorem being a limit theorem can at most suggest approximate normality

for real data [2]. However, even high-quality process data may not fit the Gaussian

distribution and the presence of a single outlier can spoil the statistical analysis

completely.

Take the example of the chemical-mechanical polishing of semiconductor wafers

[15, 16]. The histogram of the distribution of 576 thickness measurements (see Fig-

ure 2.1) after chemical-mechanical polishing of twenty-four 200mm semiconductor

wafers and after subtracting the mean are plotted in Figure 2.2. Using the maxi-
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mum likelihood criterion, a Gaussian distribution was fitted to the histogram. It is

evident in Figure 2.2 that the Gaussian curve does not give a good fit. The Gener-

alized t-distribution (GT), by being a distribution superset encompassing Gaussian,

uniform, t and double exponential distributions, has the flexibility to characterize

data with non-Gaussian statistical properties [17–20]. It is evident in Figure 2.2

that the GT distribution fit the experimental data better than the Gaussian curve.

GT distribution was employed in the data reconciliation problem to model ran-

dom noise [14, 21–24]. It was shown [24] that the influence function (IF) [2, 25–27]

in robust statistics was useful in analyzing the data reconciliation problem with

GT noise. GT distribution was also used in econometrics [17, 20, 28, 29] to model

random noise in the parameter estimation problem. In this study, we use the IF

to analyze the parameter estimation problem with GT noise. The analysis is fur-

ther generalized to the case where the estimator designed with probability density

Figure 2.1: Thickness measurements on 24 semiconductor wafers after Chemical
Mechanical Polishing
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Figure 2.2: The maximum likelihood criterion was used to fit a Gaussian distribu-
tion (dotted-line, µ = 0, σ = 28.5nm) and GT distribution (solid-line, p = q = 2,
σ = 29.5nm) to the thickness measurement distribution.

function f(ε) is applied to noise with different probability density function gk(ε) at

different sampling instance, k, to provide a framework for the analysis of outliers.

In Section 2.2, we first describe the parameter estimator design problem, mod-

eling noise with the GT distribution instead of the usual Gaussian distribution.

With proper choice of the parameters, the GT distribution reduces to the Gaussian

distribution and the estimator reduces to the well-known batch least-squares esti-

mator. Hence within the more general framework of the parameter estimator with

GT distributed noise model is the least-squares estimator if the noise is Gaussian

distributed. If the noise is not Gaussian then the GT distribution has extra degrees

of freedom to model the noise. The proposed estimator is not applicable to non-

stationary noise time series. Other approaches [30–32] for handling non-Gaussian

8



noise include particle filters which is based on point mass or particle representation

of probability densities.

The main contribution of this chapter is in Sections 2.3 and 2.4 where we show

how the IF [2, 25–27] can be used to analyze the estimate from the parameter esti-

mator designed with GT noise model, specifically how it can predict the change in

the estimate due to outliers and the variance of the estimate. These equations enable

us to compute the sample size needed by the estimator to meet specified variance

or tune the estimator to limit the impact of outliers. Alternatively, these equations

allow us to calculate the variances of the estimates and hence their precisions if the

number of data points used is given. The theory is verified through simulations and

an experiment on the thickness measurements in the chemical-mechanical polishing

of semiconductor wafers.

2.2 Estimator Design

In this section, we discuss the estimator design problem using the GT noise model

which includes the Gaussian noise as a special case.

Consider the linear in the parameter model

y(k) = φ(k)T θ + ε(k) (2.1)

where the vector φ(k) =
[
φ1(k), ... , φn(k)

]T
are known, the parameters θ =[

θ1, ... , θn
]T

are to be estimated and k = 1, ... , N is the sampling instance.

9



2.2.1 GT Distributed Noise

Let the noise ε(k) be modeled by the zero mean GT probability density function

[17, 18, 20]

f(ε) = p

2σq1/pβ(1/p, q)
(
1 + |ε|p

qσp

)q+1/p (2.2)

where σ is the scale parameter, p and q are the shape parameters. The beta function

is given by β(a, b) =
∫ 1

0 z
a−1(1− z)b−1dz. By different choices of p and q, GT can

represent a wide range of distributions [17, 18]. The relationships between GT

distribution, Gaussian, uniform, t, double exponential distributions are shown in

Figure 2.3 [17, 18].

Figure 2.3: Different choices of the GT distribution shape parameters p and q can
give different well-known distributions.

To obtain the maximum likelihood estimate θ̂, we minimize the following cost

function [14, 18, 33]

J = −
N∑
k=1

ln
(
f(y(k)− φ(k)T θ

)
= −

N∑
k=1

ln(f(ε(k)) (2.3)

10



by differentiating

∂J

∂θ
= ψ(ε) = −(pq + 1)



∑N
k=1

φ1(k)ε(k)|ε(k)|p−2

qσp+|ε(k)|p

...

∑N
k=1

φn(k)ε(k)|ε(k)|p−2

qσp+|ε(k)|p


(2.4)

if p > 1 and setting

ψ(ε) = 0 (2.5)

Equation (2.5) can be solved for θ̂ numerically using the Newton Raphson or the

Expectation Maximization algorithm [34].

2.2.2 Gaussian Distributed Noise

To see things in perspective, we now show that by choosing p = 2, q = ∞, the

estimator reduces to the well-known least-squares estimator.

Consider the GT probability density function, f(ε), in Equation (2.2) with p =

2 and q = ∞,

p

2σq1/pβ(1/p, q)
(
1 + |ε|p

qσp

)1/p = 1√
πσ

1(
1 + |ε|p

qσp

)q = exp
(
− ε

2

σ2

)

and Equation (2.2) reduces to

f(ε) = 1√
2πΛ

exp
(
− ε2

2Λ2

)

11



the Gaussian probability density function with standard deviation Λ = σ√
2 . Thus

Equation (2.3) reduces to

J = −
N∑
k=1

ln 1√
2πΛ

exp
(
−ε(k)2

2Λ2

)

= 1
2Λ2

N∑
k=1

(
y(k)− φ(k)T θ

)2
−N ln 1√

2πΛ

Since the second term in the cost function J is independent of θ, minimizing J

with respect to θ reduces to the well-known least-squares optimization problem.

Equation (2.5) reduces to

ψ(ε) = − 1
Λ2



∑N
k=1 φ1(k)

(
y(k)− φ(k)T θ

)
...

∑N
k=1 φn(k)

(
y(k)− φ(k)T θ

)


= 0

and the well-known least-squares solution [35]

θ̂ =
(
ΦTΦ

)−1
ΦTY (2.6)

where

Φ =



φ(1)T

φ(2)T

...

φ(N)T


Y =



y(1)

y(2)

...

y(N)



2.3 Influence Function Analysis of the Estimate

In Section 2.2, the estimator was designed with f(ε), the GT noise model of Equa-

tion (2.2). In this section and the next section, we use IF to analyze the estimate

12



when the estimator designed with f(ε) is applied to actual noise with probability

density function g(ε) which is not necessarily equal to f(ε).

Recall that the first-order Taylor series expansion

y = y0 + dy

dx

∣∣∣∣∣
x=x0

(x− x0)

make use of the gradient dy
dx

∣∣∣
x=x0

at x = x0 to give the approximate value of y

at x. Consider θ̄, the asymptotic value of the estimate. Let θ̄ be associated with

the probability density function of (1− h)f(ε) + hδ(ε). Likewise, the Taylor series

expansion

θ̄ = θ̄0 + ∂θ̄

∂h

∣∣∣∣∣
h=0

(1− 0) (2.7)

make use of the gradient ∂θ̄
∂h

∣∣∣
h=0

at h = 0 to give the approximate value of θ̄ at h =

1.

The term for the gradient in Equation (2.7) is known as the influence function

(IF) defined as [2, 25]

IF(ε) = ∂θ̄

∂h

∣∣∣∣∣
h=0

= −
(∫ ∞
−∞

∂ψ(ε)
∂θ̄

f(ε)dε
)−1

ψ(ε) (2.8)

where

∫ ∞
−∞

∂ψ(ε)
∂θ̄

f(ε)dε =



∫∞
−∞

∂ψ1(ε)
∂θ̄1

f(ε)dε . . .
∫∞
−∞

∂ψ1(ε)
∂θ̄n

f(ε)dε

... ... ...
∫∞
−∞

∂ψn(ε)
∂θ̄1

f(ε)dε . . .
∫∞
−∞

∂ψn(ε)
∂θ̄n

f(ε)dε


(2.9)

For the linear in the parameter model of Equation (2.1)

∂ψi(ε)
∂θ̄j

=
N∑
k=1

φi(k)φj(k)(pq + 1)[(p− 1)qσp − |ε(k)|p]|ε(k)|p−2

(qσp + |ε(k)|p)2 (2.10)
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The derivation of Equation (2.8) is given in the Appendix A.

Using the definition of IF(ε) in Equation (2.8), Equation (2.7) gives

θ̄ = θ̄0 + IF(ε) (2.11)

In Equation (2.11), IF(ε) is the change in the estimate, θ̄− θ̄0. When ε is associated

with probability density function g(ε) then the mean is used in the following first-

order von Mises expansion [36, 37] to give θ̄.

θ̄ = θ̄0 +
∫ ∞
−∞

IF(ε)g(ε)dε (2.12)

Let ∆θ̄ = θ̄ − θ̄0 and rewrite Equation (2.12) as

∆θ̄ =
∫ ∞
−∞

IF(ε)g(ε)dε (2.13)

and the variance is given by [2]

Var θ̄ =
∫ ∞
−∞

IF(ε)IFT (ε)g(ε)dε (2.14)

Equations (2.13) and (2.14) are useful in analyzing the estimate when the actual

noise has probability density function g(ε) which is not necessarily equal to f(ε)

the noise model in the design of the estimator.

The assumption that g(ε) is the same for all k is commonly made. In this study,

we extend to the case where g(ε) could be different for different sample k denoted

as gk(ε). The case where g(ε) could be different for different sample k is useful for

the analysis of outliers (see Example 1). Hence, instead of integrating IF(ε) with

g(ε) in Equation (2.13), we first substitute Equation (2.4) into Equation (2.8) and

14



then integrate IF(ε) with different gk(ε) for different k giving

∆θ̄ =
 ∞∫
−∞

∂ψ(ε)
∂θ̄

f(ε)dε
−1

(pq + 1)



N∑
k=1

∞∫
−∞

φ1(k)ε(k)|ε(k)|p−2

qσp+|ε(k)|p gk(ε)dε

...

N∑
k=1

∞∫
−∞

φn(k)ε(k)|ε(k)|p−2

qσp+|ε(k)|p gk(ε)dε


(2.15)

Equation (2.15) is useful in the analysis of outliers.

Like Section 2.2, we can connect with the well-known least-squares estimator if

we let the parameters of f(ε) of Equation (2.2) be p = 2, q =∞. If we do this then

Equations (2.4), (2.8) to (2.10) reduce to

ψ(ε) = − 1
Λ2



∑N
k=1 φ1(k)ε(k)

...

∑N
k=1 φn(k)ε(k)


IF(ε) = −Λ2

(
ΦTΦ

)−1
ψ(ε) (2.16)∫ ∞

−∞

∂ψ(ε)
∂θ

f(ε)dε = 1
Λ2 ΦTΦ (2.17)

∂ψi(ε)
∂θj

=
N∑
k=1

φi(k)φj(k)
Λ2

respectively. If we also let g(ε) = f(ε) in Equation (2.14) then

Var θ̄ = Λ2
(
ΦTΦ

)−1 (
ΦTΦ

)
Λ−2

(
ΦTΦ

)−1
Λ2

= Λ2
(
ΦTΦ

)−1
(2.18)

and Equation (2.18) is the well-known variance formula for the least-square estimate

[35]. If it is given that the distribution of the the noise is normal, then we should

set p = 2 and q = ∞. The proposed estimator in Equation (2.5) then reduces
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to Equation (2.6), the least-squares estimator, and the variance of the estimates

in Equation (2.14) reduces to Equation (2.18), the variance of the least-squares

estimates.

2.4 Examples

Equations derived in Section 2.3 are useful in determining the variance of the esti-

mates and the effect of outliers. This is illustrated through the 3 examples below

where the two estimators are also compared i.e. Equation (2.5) and Equation (2.6).

For easy reference, the parameters used to generate the figures for the results in the

3 examples are summarized in Table 4.1. As shown in Table 4.1, the actual noise

probability density function g(ε) is not necessarily equal to f(ε) the noise model

used in the estimator design. Note that the least-squares estimator of Equation

(2.6) may be considered as a special case of Equation (2.5) with p = 2 and q =∞

for f(ε).

2.4.1 Example 1: Outlier

In this example, we first do 1000 simulation runs and then show how the IF can be

used to predict the effect of an outlier in the simulation result where the probability

density function of the actual noise g(ε) and noise model f(ε) in the estimator design

are not the same.

Consider the autoregressive (AR) model

y(k) = ay(k − 1) + ε(k) (2.19)
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Table 2.1: Parameters used in Figures 2.4 – 2.12 of Examples 2.4.1 – 2.4.3.

Example Figure Estimator Line N f(ε) g(ε)
Number Number Equation p q σ

2.5 5 black & white 2 to 10 2 1.5 0.1
√

2

{
δ(ε1) k = 3
f(ε) k 6= 3

2.6 6 black & white 2 to 10 2 ∞ 0.1
√

2

{
δ(ε1) k = 3
f(ε) k 6= 3

1 2.7 5 dashed ∞ 2 1.5 0.1
√

2

{
δ(ε1) k = 2
f(ε) k 6= 2

2.7 5 solid ∞ 2 1.5 0.1
√

2

{
δ(ε1) k = 3
f(ε) k 6= 3

2.7 6 dotted ∞ 2 ∞ 0.1
√

2

{
δ(ε1) k = 2
f(ε) k 6= 2

2.7 6 dashed-dotted ∞ 2 ∞ 0.1
√

2

{
δ(ε1) k = 3
f(ε) k 6= 3

2 2.9 5 solid 127 2 1.5 0.1
√

2 f(ε)
2.10 6 solid 127 2 ∞ 0.1

√
2 f(ε)

3 2.11 5 solid 3 2 2 29.5 1
576δ(εi) i = 1, .., 576

2.12 6 solid 3 2 ∞ 29.5 1
576δ(εi) i = 1, .., 576

where y(1) = 1, a = 0.6 and ε(k) belongs to the t3 distribution with zero mean and

scale 0.1 except for an outlier of magnitude ε1 at k = k1. Compare with the linear

in the parameters model of Equation (2.1) gives φT (k) = y(k − 1) and θ = a.

Simulation

One thousand runs of the signal y(k) for k1 = 3 and ε1 = 1 is shown in Figure 2.4.

The average values for the 1000 runs is given by the white curve.

Figure 2.5 shows the solution of Equation (2.5) for the 1000 runs in Figure 2.4 for

batch size N from 2 to 10. A batch size of N = 10 means that 10 data points were

used to give 1 estimate. Equation (2.5) assumes a GT noise model and according

to Figure 2.3, f(ε) of Equation (2.2) with p = 2, q = 1.5 and σ = 0.1
√

2 can be

used to model the t3 noise.
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Figure 2.6 shows the solution of Equation (2.6), the least-squares estimator

where the average is given by the white curve. Notice that for batch size N = 10

which included the outlier ε1 = 1 at k = 3, the white curve in Figure 2.6 gives

â = 0.74 6= a = 0.6 for N = 10, not robust to even a single outlier.

On the other hand, the outlier is largely rejected by the proposed estimator and

the estimate hardly affected by the outlier as shown by the white curve in Figure

2.5.

Figure 2.4: AR model y(k) = 0.6y(k − 1) + ε(k), y(1) = 1, ε(k) belongs to t3
distribution for k 6= 3 and ε(k) = 1 for k = 3.

IF Analysis

Instead of simulation, Equation (2.15) can be used to give analytical results for

∆ā. The case where g(ε) could be different for different sample k is useful for the

analysis of outliers. Let

gk(ε) =


δ(ε1) k = k1

f(ε) k 6= k1

(2.20)
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Figure 2.5: Estimate â from Equation (2.5) with GT noise assumption for 1000
runs with different batch-size, N (white: mean, black: individual run).

Figure 2.6: Least-Squares Estimate of â from Equation (2.6) for 1000 runs with
different batch-size, N (white: mean, black: individual run).

where δ(ε1) is an impulse at ε1 to model the outlier of ε1 at k = k1. For the model

of Equation (2.19) and gk(ε) of Equation (2.20) with N ≥ k1, Equation (2.15) gives

∆ā = −
(

Γ
N∑
k=1

φ2(k)
)−1

(pq + 1)

×

∫ ∞
−∞

φ(k1)ε(k1)|ε(k1)|p−2

qσp + |ε(k1)|p δ(ε1)dε+
N∑

k=1, 6=k1

∫ ∞
−∞

φ(k)ε(k)|ε(k)|p−2

qσp + |ε(k)|p f(ε)dε


(2.21)
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where

φ(k) =



0 k = 1

ak−2y(1) 2 ≤ k ≤ k1

ak−1
[
a−1y(1) + a−k1ε1

]
k ≥ k1 + 1

(2.22)

Γ = (pq + 1)
∫ +∞

−∞

[(p− 1)qσp − |ε|p)]|ε|p−2

(qσ2 + |ε|p)2 f(ε)dε

Note that the second term in the square bracket of Equation (2.21) is zero because

the expectation of ε(k) for k 6= k1 is zero. Hence

∆ā = −
(

Γ
N∑
k=1

φ2(k)
)−1

(pq + 1)
[
φ(k1)ε1|ε1|p−2

qσp + |ε1|p

]
(2.23)

Substitute Equation (2.22) into (2.23) gives

∆ā = −(1− a2)ak1−2y(1)(pq + 1)ε1|ε1|p−2

Γ
[
(1− a2k1−2) y(1)2 + (a2k1 − a2N) (a−1y(1) + a−k1ε1)2

]
(qσp + |ε1|p)

(2.24)

If we substitute a = 0.6, p = 2, q = 1.5, σ = 0.1
√

2, k1 = 3, ε1 = 1 in Equation

(2.24) and plot ∆ā + a versus N then the white curve in Figure 2.5 for N ≥ k1 is

obtained. If instead of q = 1.5 we substitute q =∞ then the white curve in Figure

2.6 for N ≥ k1 is obtained. Equation (2.24) allows us to study the impact of an

outlier on the estimate.

To study the estimate when it has reached steady-state, substitute N = ∞,

a = 0.6, p = 2, q = 1.5, σ = 0.1
√

2 in Equation (2.24) to obtain the dashed-line for

k1 = 2 and the solid-line for k1 = 3 in Figure 2.7. For the least-squares estimator,

instead of q = 1.5, substitute q = ∞ in Equation (2.24) to give the dotted-line for

k1 = 2 and dashed-dotted-line for k1 = 3 in Figure 2.7.
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Some trends can be observed in Figure 2.7. Firstly, ∆ā increases with the outlier

ε1 for the least-squares estimator (see the dotted-line and dashed-dotted-line) giving

unacceptable ∆ā for large ε1. Whereas for the estimator with GT noise model, ∆ā

is small for large outlier ε1 (see solid-line and dashed-line). Notice in Equation

(2.24) that the term a2N ≈ 0 for N ≥ 10. Hence Figure 2.7 may be used to predict

the results for N = 10. At ε1 = 1, k1 = 3, Figure 2.7 predicted that ∆ā = 0.01

(solid-line) and ∆ā = 0.14 (dashed-dotted-line) giving ā = a + ∆ā = 0.61 (white-

line at N = 10 in Figure 2.5) and 0.74 (white-line at N = 10 in Figure 2.6). Hence

Equation (2.24) can be used to select p, q and σ to limit the effect of outlier on the

estimation results.

Figure 2.7: Change in estimate ∆ā for batch-size N =∞ and outlier ε1 (Equation
2.24). Least-square estimator for outlier at k1 = 2 (dotted-line), k1 = 3 (dashed-
dotted-line). Estimator with GT noise model for outlier at k1 = 2 (dashed-line)
and k1 = 3 (solid-line).

21



2.4.2 Example 2: Variance

In this example, we first do 1000 simulation runs and then show how the IF can be

used to predict the variance of the simulation results where the probability density

function g(ε) of the actual noise and the noise model f(ε) in the estimator design

are the same.

Consider the following autoregressive with exogenous input (ARX) model which

is commonly used to model first-order dynamics encountered in chemical processes

such as thermal processes or liquid-level systems:

y(k + 1) = ay(k) + bu(k) + ε(k + 1) (2.25)

where a = 0.6, b = 0.4 and ε(k) belongs to the t3 distribution with zero mean and

scale 0.1. Comparing with the linear in the parameters model of Equation (2.1)

gives φT (k) = [y(k) u(k)] and θ = [a b]T . The input signal is the Pseudo-random

Binary Sequences (PRBS)[38].

Simulation

An example of a simulation run with sample size N = 127 is shown in Figure

2.8 with â and b̂ estimated using Equations (2.5) and (2.6) where Equation (2.5)

assumes a GT noise model and from Figure 2.3, the parameters of f(ε) of Equation

(2.2) to model the t3 distribution are p = 2, q = 1.5 and σ = 0.1
√

2. Equation (2.6)

is the Least-Square estimator. A total of 1000 simulation runs were conducted.

The estimates â and b̂ at the end of each run were recorded in Figure 2.9 (GT noise

model) and Figure 2.10 (least-squares estimation) with their variances computed in
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Column 2 and 4 of Table 2.2 which clearly shows that the variance of the estimate

with the GT noise model is smaller and hence more precise.

Table 2.2: Variance in Example 2

Estimate Est w GT Noise Model, (Eq. 2.5) Least-Squares Est (Eq. 2.6)
Variance Variance Variance Variance

(Fig. 2.9 simulation) (Eqn. 2.27) (Fig. 2.10 simulation) (Eqn. 2.29)
â 0.71× 10−3 0.69× 10−3 1.26× 10−3 1.35× 10−3

b̂ 0.62× 10−3 0.58× 10−3 1.17× 10−3 1.14× 10−3

Figure 2.8: Response of the ARX model to pseudo random binary control signal
(dashed-line: u(k), solid-line: y(k)).

IF Analysis: GT Noise Model

Instead of simulation, Equation (2.14) can be used to give analytical result for the

variance of the estimate. Consider the estimator of Equation (2.5) which assumed
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Figure 2.9: Estimates â and b̂ using Equation (2.5) assuming the GT noise model.

Figure 2.10: Estimates â and b̂ using Equation (2.6), the least-squares estimator.

the GT noise model f(ε) of Equation (2.2). From Equation (2.8),

IF(ε) = (ΦTΦ)−1
(∫ ∞
−∞

0.03− ε2

(0.03 + ε2)2f(ε)dε
)−1


∑127
k=1

y(k)ε(k)
0.03+ε(k)2

∑127
k=1

u(k)ε(k)
0.03+ε(k)2



= 3
50(ΦTΦ)−1


∑127
k=1

y(k)ε(k)
0.03+ε(k)2

∑127
k=1

u(k)ε(k)
0.03+ε(k)2

 (2.26)
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where

ΦTΦ =


∑127
k=1 y(k)2 ∑127

k=1 y(k)u(k)

∑127
k=1 u(k)y(k) ∑127

k=1 u(k)2


Substituting the IF(ε) from Equation (2.26) into Equation (2.14) gives

Var θ̄ =
( 3

50

)2
(ΦTΦ)−1

∞∫
−∞




127∑
k=1

y(k)ε(k)
0.03+ε(k)2

127∑
k=1

u(k)ε(k)
0.03+ε(k)2


[

127∑
k=1

y(k)ε(k)
0.03+ε(k)2

127∑
k=1

u(k)ε(k)
0.03+ε(k)2

] g(ε)dε(ΦTΦ)−1

Because ε is assumed to be a zero mean independent random variable,

∫ ∞
−∞

ε(j)ε(k)
(0.03 + ε(j)2)(0.03 + ε(k)2)g(ε)dε = 0 for j 6= k

and

Var θ̄ =
( 3

50

)2
(ΦTΦ)−1

(∫ ∞
−∞

ε2

(0.03 + ε2)2 g(ε)dε
)

(2.27)

The variances in Column 3 of Table 2.2 were computed from Equation (2.27) which

is close to the variances obtained from simulation in Column 2. In Equation (2.27),

y(k) is taken from the first run and g(ε) = f(ε).

IF Analysis: Least-Squares Estimate

Consider the least-squares estimator of Equation (2.6). From Equation (2.16)

IF(ε) = (ΦTΦ)−1


∑127
k=1 y(k)ε(k)

∑127
k=1 u(k)ε(k)

 (2.28)

Substituting the IF(ε) from Equation (2.28) into Equation (2.14) gives

Var θ̄ = (ΦTΦ)−1
∞∫
−∞




127∑
k=1

y(k)ε(k)
127∑
k=1

u(k)ε(k)


[

127∑
k=1

y(k)ε(k)
127∑
k=1

u(k)ε(k)
] g(ε)dε(ΦTΦ)−1
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Because ε is assumed to be a zero mean independent random variable,
∫∞
−∞ ε(j)ε(k)

g(ε)dε = 0 for j 6= k and

Var θ̄ = (ΦTΦ)−1
∫ ∞
−∞

ε2g(ε)dε (2.29)

The variances in Column 5 of Table 2.2 were computed from Equation (2.29) which

is close to the variances obtained from simulation in Column 4. In Equation (2.29),

y(k) is taken from the first run and g(ε) = f(ε).

Equation (2.14) allows us to calculate the variances of the estimates and hence

their precisions if the number of data points, N , used is given. Alternatively, it

enables us to compute the sample size, N , needed by the estimator to meet specified

variance.

2.4.3 Example 3: Chemical-Mechanical-Polishing

Experiment

The linear in the parameter model with GT noise of Equation (2.1) can also be

used to estimate the states. Consider the chemical-mechanical polishing of twenty-

four 200mm wafers where the thickness at 576 points (24 points per wafer) were

measured after polishing. Figure 2.1 shows the data points. The process can be

modeled by Equation (2.1) where y(k) is the measurement and φ(k) = 1.

The maximum likelihood criterion can be used to find the parameters of the GT

probability density function [14, 17]. In this example we fixed p = 2 and then use

the maximum likelihood criterion to find the other parameters q, σ and µ of the

GT probability density function f(ε) of Equation (2.2) by maximizing the objective
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function

Jf =
576∑
k=1

ln p

2σq1/pβ(1/p, q)
(
1 + |y(k)−µ|p

qσp

)q+1/p

This gives q = 2, σ = 29.5nm, µ = 383nm and the resultant GT distribution is

superimposed on the data distribution in Figure 2.2. The estimate θ̂ which is also

the estimate ŷ obtained from Equations (2.5) and (2.6) for N = 3 are shown in

Figures 2.11 and 2.12 respectively.

IF Analysis: GT Noise Model

Consider the estimator of Equation (2.5). From Equation (2.8)

IF(ε) = 1
3

(∫ ∞
−∞

1740− ε2

(1740 + ε2)2f(ε)dε
)−1 3∑

k=1

ε(k)
1740 + ε(k)2

= 1020
3∑

k=1

ε(k)
1740 + ε(k)2 (2.30)

Equation (2.14) can be used to calculate the variance by using the empirical

discrete distribution (the histogram of data distribution in Figure 2.2) from the 576

experimental data points, ε, given as

g(ε) = 1
576δ(εi), i = 1, 2, . . . , 576 (2.31)

Substituting IF(ε) and g(ε) from Equations (2.30) and (2.31) into Equation (2.14)

gives

Var ȳ = 10202

576

∫ ∞
−∞

( 3∑
k=1

ε(k)
1740 + ε(k)2

)( 3∑
k=1

ε(k)
1740 + ε(k)2

)
δ(εi)dε

Because ε is assumed to be a zero mean independent random variable
∫∞
−∞

ε(j)ε(k)
(1740+ε(j)2)(1740+ε(k)2)δ(εi)dε = 0 for j 6= k and

Var ȳ = 5419
576∑
i=1

ε2
i

(1740 + ε2
i )2 (2.32)
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Variances obtained from the experimental results in Figure 2.11 and Equation (2.32)

are both 217nm. Hence Equation (2.32) can be used to predict the variance of the

experimental results.

IF Analysis: Least-Squares Estimate

Consider the least-squares estimator of Equation (2.6). From Equation (2.16)

IF(ε) = 1
3

3∑
k=1

ε(k) (2.33)

Substituting the g(ε) and IF(ε) of Equations (2.31 and (2.33) into Equation (2.14)

gives

Var ȳ = 1
32 × 576

∫ ∞
−∞

( 3∑
k=1

ε(k)
)( 3∑

k=1
ε(k)

)
δ(εi)dε

Because ε is assumed to be a zero mean, independent and identical distributed

random variable
∞∫
−∞

ε(j)ε(k)δ(εi)dε = 0 for j 6= k and

Var ȳ = 1
1728

576∑
i=1

ε2
i (2.34)

Variances obtained from the experimental results in Figure 2.12 and Equation (2.34)

are both 264nm. Hence Equation (2.34) can be used to predict the variance of the

experimental results.

The variances show that using the GT distribution to model the noise reduces

the variance by 18%
(

264−217
264

)
. Notice the 2 outlier measurements around k = 300

in Figure 2.1 gives rise to a large change in the least-squares estimate ŷ in Figure

2.12 at around Batch 100 but not the estimate ŷ in Figure 2.11 when the GT noise

model was used.
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In manufacturing, time and cost are incurred when measurements are taken

especially if these measurements have to be done separately, off-line from the man-

ufacturing process such as the thickness measurements here. If a desired measure-

ment variance is specified then Equation (2.14) enable us to calculate the number

of measurements (N) needed and not take more measurements than is needed.

Figure 2.11: Estimate of the thickness measurements, ŷ, with GT noise model.

Figure 2.12: Estimate of the thickness measurements, ŷ, using least-squares esti-
mation.
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2.5 Conclusion

In this chapter, we used IF to analyze the estimate from the parameter estima-

tor designed with the GT noise model instead of the usual Gaussian noise model.

The analysis is extended to the case where the estimator designed with probability

density function f(ε) is applied to noise with different probability density function

gk(ε) at different sampling instance, k, to provide a framework for analysis of out-

liers. Equations derived are useful in determining the variance of the estimates and

the impact of outliers. If the noise is modeled by the Gaussian distribution then

the proposed estimator reduces to the least-square estimator. Otherwise, the GT

distribution has the extra degree of freedom to model non-Gaussian noise. If we

do not know the distribution of the noise then one can use use the least-squares

estimator. However, if there is information on the distribution then it can be used

gainfully in the GT distribution framework to model non-Gaussian noise giving rise

to a smaller variance for the estimates and robustness to outliers.
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Chapter 3

Filtering of the ARMAX process

3.1 Introduction

In the statistical analysis of time series, the autoregressive-moving-average with ex-

ogenous inputs model (ARMAX) with Gaussian noise is commonly used. However,

the Gaussian noise assumption is an approximation to reality. The occurrence of

outliers, transient data in steady-state measurements, instrument failure, human

error, model nonlinearity, etc. can all induce non-Gaussian data [14]. Indeed when-

ever the central limit theorem is invoked — the central limit theorem being a limit

theorem can at most suggest approximate normality for real data [2]. However,

even high-quality model data may not fit the Gaussian distribution and the pres-

ence of a single outlier can spoil the statistical analysis completely for the case of

least-squares estimation [39] including the Kalman filter [40].

As stated in previous chapter, the GT distribution is applied in many applica-

tions. However, the problem of estimation with GT noise was usually solved nu-
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merically using the Newton Raphson or the Expectation Maximization algorithm

[14, 17, 20, 21, 24, 28, 29]. Unlike recursive algorithm such as the recursive least-

squares estimator, it is not suitable for real-time applications.

In this chapter, Influence Function (IF), an analysis tool in robust statistics

[2, 25], is used to formulate a recursive algorithm that give an approximate so-

lution making it suitable for real-time and on-line implementation. Specifically

the problem is formulated as the filtering of the ARMAX process with GT noise.

Other well-known approaches [30–32] for handling non-Gaussian noise include the

approach of particle filters which is based on point mass or particle representation

of probability densities.

The IF was used in chapter 2 to analyze parameter estimation with GT noise.

Instead of using the IF as an analysis tool to analyze a given estimator this thesis

make use of the IF to synthesize or construct an estimator. The other difference

is that while chapter 2 studied the estimation of the parameters in the transfer

function, this study estimates the states or output of the transfer function.

The main contribution of this chapter is in Sections 3.3 and 3.4 where we use IF

approximation to derive a recursive solution for the maximum likelihood estimation

of the ARMAX Process with GT noise. We also show how the IF can be used to

analyze the filter, specifically how it can predict the filter output due to outliers

and the variance of the output. To put things in perspective, it will be shown

through an example that if the noise is Gaussian then the proposed ARMAX filter

is equivalent to the Kalman filter [40]. Otherwise the ARMAX filter has the extra

degrees of freedom to model the noise.
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3.2 Maximum Likelihood Estimation of the

ARMAX Process with GT Noise

The ARMAX process and maximum likelihood estimation with GT distribution

[14, 17, 20, 21, 24, 28, 29] are already given in the literature. In this section we only

give the equations necessary for the derivation of the recursive algorithm using IF

approximation in the next section.

3.2.1 The ARMAX Process

Consider the single-input single-output ARMAX process:

A(q−1)y(k) = B(q−1)u(k) + C(q−1)ε(k) (3.1)

where

A(q−1) = 1 + a1q
−1 + · · ·+ anq

−n

B(q−1) = b1q
−1 + b2q

−2 + · · ·+ bnBq
−nB

C(q−1) = 1 + c1q
−1 + · · ·+ cnq

−n

k = 1, . . . , N is the sampling instance, nB ≤ n and q−1 is the backward shift

operator, i.e., q−1y(k) = y(k − 1). The polynomial C may be multiplied by an

arbitrary power of q as this does not change the correlation structure of C(q−1).

This is used to normalized C so that deg C = deg A = n. The input and output are

given by u(k) and y(k) respectively. Let the noise ε(k) be modeled by the zero-mean

GT probability density function (2.2) [17].
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3.2.2 The Diohpantine Equation

The Diophantine Equation [35, 41, 42] or Identity can be used to isolate the noise

term in the ARMAX process. The Diophantine Equation [35, 41, 42] is given as

C
(
q−1

)
= E(q−1)A(q−1) + q−jF (q−1) (3.2)

where C (q−1) is asymptotically stable and

E(q−1) = 1 + e1q
−1 + · · ·+ ej−1q

−j+1

F
(
q−1

)
= f0 + f1q

−1 + · · ·+ fnF q
−nF

nF = n− 1

Using Equation (3.2) for j = 1, Equation (3.1) becomes

y(k + 1) = F (q−1)
C(q−1)y(k) + B(q−1)

C(q−1)u(k + 1) + ε(k + 1) (3.3)

Multiplying by q−1, the current measurement can be obtained from Equation (3.3)

as

y(k) = F (q−1)
C(q−1)y(k − 1) + B(q−1)

C(q−1)u(k) + ε(k) (3.4)

As it was found to be more convenient to work in the state-space, expressing Equa-

tions (3.4) in the state-space form gives

x(k + 1) = Φx(k) + Γu(k) + Ωy(k) (3.5)

y(k) = Hx(k) + ε(k) (3.6)
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where

Φ =



−c1 1 0 . . . . . . 0

−c2 0 1 0 . . . 0

...

−cn−1 0 . . . . . . 0 1

−cn 0 . . . . . . . . . 0



Γ =



b1

b2

...

bNB

0



Ω =



c1 − a1

c2 − a2

...

cn − an


H =

[
1 0 . . . 0

]
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Iterating from the initial value x(1), Equations (3.5) and (3.6) gives

x(2) = Φx(1) + Γu(1) + Ωy(1)

x(3) = Φ2x(1) + ΦΓu(1) + Γu(2) + ΦΩy(1) + Ωy(2)

...

x(N) = ΦN−1x(1) + x̄(N) (3.7)

y(N) = HΦN−1x(1) +Hx̄(N) + ε(N) (3.8)

where

x̄(N) =
N−1∑
k=1

Φk−1Γu(N − k) +
N−1∑
k=1

Φk−1Ωy(N − k) (3.9)

3.2.3 Maximum Likelihood Estimation

Given N measurements y(k), k = 1, . . . N , the initial condition, x(1), can be esti-

mated using Equation (3.8) in the minimization of the following maximum likelihood

cost function

J = −
N∑
k=1

ln f(ε(k)) = −
N∑
k=1

ln f
(
y(k)−HΦk−1x(1)−Hx̄(k)

)

This can be done by differentiating wrt x(1)

∂J

∂x(1) = ψ(ε) = −(pq + 1)
N∑
k=1

(HΦk−1)T ε(k)|ε(k)|p−2

qσp − |ε(k)|p (3.10)

where p > 1 and setting

ψ(ε) = 0 (3.11)

Equation (3.11) can be solved for x(1) numerically using the Newton Raphson or

the Expectation Maximization algorithm [34, 43]. Unlike recursive algorithm such
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as the recursive least-squares estimator, Equation (3.11) is not suitable for real-

time applications. For example in real-time control, the information is used by

the controller to calculate the control signal for the next sampling instance. The

number of iterations required by Equation (3.11) to converge to a solution can be

different for different sample and hence there is no guarantee that the information

is available before the next sampling instance.

3.3 Influence Function Approximation

In this Section, we introduce the influence function to approximate and solve Equa-

tion (3.11) recursively.

Consider the function x = f(h). The first-order Taylor series expansion

x = dx

dh

∣∣∣∣∣
h=0

h

makes use of the gradient dx
dh

∣∣∣
h=0

to give the approximate value of x at h. Consider

x̂(1), the asymptotic value of the estimate of x(1). Let x̂(1) be associated with

the probability density function of (1 − h)f(ε) + hδ(ε). Likewise the Taylor series

expansion

x̂(1) = dx̂(1)
dh

∣∣∣∣∣
h=0

h (3.12)

makes use of the gradient dx̂(1)
dh

∣∣∣
h=0

to give the approximate value of x̂(1) at h. The

gradient term in Equation (3.12) known as the Influence Function (IF) is defined

in [2, 25] as

IF(ε) = ∂x̂(1)
∂h

∣∣∣∣∣
h=0

= −
(∫ ∞
−∞

∂ψ(ε)
∂x̂(1)f(ε)dε

)−1

ψ(ε)

∣∣∣∣∣∣
x(1)=0

(3.13)
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where

∂ψ(ε)
∂x̂(1) =

N∑
k=1

(HΦk−1)THΦk−1 (pq + 1)[(p− 1)qσp − |ε(k)|p]|ε(k)|p−2

(qσp + |ε(k)|p)2

Derivation of Equation (3.13) is given in the Appendix A. When h = 0, the associ-

ated probability density function of x̂(1) is f(ε) and the usual assumption of zero

initial condition for the ARMAX transfer function is made i.e. x(1) = 0.

3.3.1 The Recursive Algorithm

The solution for x̂(1) can be written in the form of a recursive algorithm. Substi-

tuting Equations (3.10), (3.13) and h = 1 into Equation (3.12) gives

x̂(1|N) = IF(ε) =
(

N∑
k=1

(HΦk−1)THΦk−1
)−1 ( N∑

k=1
(HΦk−1)T z(k)

)
(3.14)

where

z(k) =
(∫ +∞

−∞

[(p− 1)qσp − |ε|p]|ε|p−2

(qσ2 + |ε|p)2 f(ε)dε
)−1

ε(k)|ε(k)|p−2

qσp + |ε(k)|p

∣∣∣∣∣∣
x(1)=0

(3.15)

and x̂(1|N) denotes the estimate of x(1) at sample N .

Notice that Equation (3.14) gives the well known least-squares estimates x̂(1|N)

from the minimization of the least-squares loss function

V = 1
2

N∑
k=1

(
z(k)−HΦk−1x̂(1|N)

)2

and the recursive version in Equations (3.17) and (3.18) with the covariance matrix

P (1|N) =
(

N∑
k=1

(HΦk−1)THΦk−1
)−1

(3.16)

38



are given in many textbooks that discuss least-squares [35]. Equations (3.5) and

(3.8) are then used to obtain x̄(N) and ŷ(N |N) in Equations (3.19) and (3.20)

respectively.

The derivation is complete and the recursive ARMAX filter algorithm for N =

1, 2, 3 . . . is summarized below.

ARMAX filter:

P (1|N) = P (1|N − 1)− P (1|N − 1)(HΦN−1)THΦN−1P (1|N − 1)
1 +HΦN−1P (1|N − 1)(HΦN−1)T (3.17)

x̂(1|N) = x̂(1|N − 1) + P (1|N)(HΦN−1)T

×
[
z(N)−HΦN−1x̂(1|N − 1)

]
(3.18)

x̄(N + 1) = Φx̄(N) + Γu(N) + Ωy(N) (3.19)
ŷ(N |N) = HΦN−1x̂(1|N) +Hx̄(N) (3.20)

The covariance of x̂(1) and estimate ŷ(N) at sample N are denoted by P (1|N)

and ŷ(N |N) respectively. For initialization, P (1|0) can be set as an identity matrix

multiplied by some large number and x(1) = x̄(1) = 0. The derivation of the

ARMAX Filter is given in Appendix B.

3.3.2 Mean, Variance and Outlier

Let the actual noise be associated with probability density function g(ε) which is

not necessarily equal to f(ε) the noise model used in the design of the filter. The

mean is then given by the following first-order von Mises expansion [36, 37]

x̂(1|N) =
∫ ∞
−∞

IF(ε)g(ε)dε (3.21)
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and the variance

var x̂(1|N) =
∫ ∞
−∞

IFT (ε)IF(ε)g(ε)dε (3.22)

The assumption that g(ε) is the same for all k is commonly made. Here we

extend to the case where g(ε) could be different for different sample k denoted by

gk(ε). The case where g(ε) could be different for different sample k is useful for

the analysis of outliers (see Example 3). Hence, instead of integrating IF(ε) with

g(ε) in Equation (3.21), we first substitute Equation (3.10) into Equation (3.13)

and then integrate IF(ε) with different gk(ε) for different k giving

x̂(1|N) =
(∫ ∞
−∞

∂ψ(ε)
∂x̂(1)f(ε)dε

)−1

(pq + 1)

×
N∑
k=1

(HΦk−1)T
∫ ∞
−∞

ε(k)|ε(k)|p−2

qσp + |ε(k)|p gk(ε)dε
∣∣∣∣∣
x(1)=0

(3.23)

In the next section examples will be given to illustrate the properties of the AR-

MAX filter such as the equivalence to the Kalman filter if we design with Gaussian

noise in mind by choosing p = 2, q = ∞ (see Example 1) and the variance of the

filter output (see Examples 2 and 4).

3.4 Examples

Four examples are given to illustrate the properties of the ARMAX filter and the IF

analysis. For easy reference, the parameters of the ARMAX process and ARMAX

filter are summarized in Table 3.1. The parameters Φ, H, Γ and Ω depend on A,

B and C of the ARMAX process. In Examples 1, 2 and 3 the parameters p, q and

σ are chosen according to Figure 2.3 to give f(ε). In Example 4, p, q and σ are
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Table 3.1: Parameters of the ARMAX process and ARMAX filter in the Examples

Example 1 2 3 4
Figure Number – 2(a) 3 8

A 1 + aq−1 1 + aq−1, 1 + aq−1, 1 + aq−1,
a = −0.9 a = −0.6 a = −0.987

ARMAX B bq−1 bq−1, bq−1, bq−1,
Model b = 0.1 b = 0.4 b = 0.037

C 1 + cq−1 1 + cq−1, 1 + cq−1, 1 + cq−1,
c = a c = −0.8 c = a

f(ε) N(0, α) t3(0, 0.1) t3(0, 0.1) Equation (2.2)
Φ −c −c −c −c
H 1 1 1 1

ARMAX
Filter Γ b b b b

Ω c− a c− a c− a c− a
p 2 2 2 2
q ∞ 1.5 1.5 3.433
σ α

√
2 0.1

√
2 0.1

√
2 0.1636

Actual
Noise g(ε) f(ε) f(ε)

{
δ(ε1) k = k1 = 2; ε1 = −1
f(ε) k 6= k1

f(ε)

obtained by fitting the GT-distribution of Equation (2.2) to the experimental data.

The ARMAX filter is designed with p = 2, q = ∞ for Gaussian noise in Example

1, p = 2, q = 1.5 for t3 noise in Examples 2 and 3 and p = 2, q = 3.433 for the

noise in Example 4. Note that the distribution f(ε) used for the filter design need

not be the same as g(ε), the distribution of the actual noise in the last row of the

table. One thousand simulation runs were conducted in Examples 2 and 3 and one

hundred experimental runs were conducted in Example 4 to give the variance of the

estimate. The simulation is started with P (1|0) = 1000I and x̂(1|0) = 0.

3.4.1 Example 1: The Kalman Filter Connection

This example shows that if the ARMAX filter is designed with Gaussian noise in

mind then it is equivalent to the Kalman filter although it was formulated through

maximum likelihood estimation with GT noise and IF approximation.
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Kalman Filter for the 1st Order ARMAX Process

x̂(N |N) = x̂(N |N − 1) + p(N |N − 1)
1 + p(N |N − 1)[y(N)− x̂(N |N − 1)] (3.25)

x̂(N + 1|N) = bu(N)− ay(N) + c

1 + p(N |N − 1)
×
[
y(N)− x̂(N |N − 1)

]
(3.26)

p(N + 1|N) = p(N |N − 1)c2

1 + p(N |N − 1) (3.27)

ŷ(N |N) = x̂(N |N) (3.28)

The Kalman Filter

Consider the ARMAX process with Gaussian noise in Example 1 of Table 3.1. A

state-space representation is given by

x(k + 1) = −ax(k) + bu(k) + (c− a)ε(k)

y(k) = x(k) + ε(k)
(3.24)

The Kalman filter [35] for the above state-space model of Equation (3.24) is

given in Equations (3.25) to (3.28) below.

The ARMAX Filter

The ARMAX filter is designed for the ARMAX process with Gaussian noise of

standard deviation α. According to Figure 2.3, the GT parametes to model the

Gaussian noise are p = 2, q =∞, σ = α
√

2 as shown in Table 3.1. Equations (3.15)

and (3.8) give z(N) = ε(N) = y(N) − x̄(N) and Equations (3.17) to (3.20) give

the ARMAX filter Equations (3.29) to (3.32) below.
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ARMAX Filter for the 1st Order ARMAX Process with Gaussian Noise

p(1|N) = p(1|N − 1)
1 + p(1|N − 1)c2(N−1) (3.29)

x̂(1|N) = x̂(1|N − 1) + p(1|N)(−c)N−1

×
[
y(N)− x̄(N)− (−c)N−1x̂(1|N − 1)

]
(3.30)

x̄(N + 1) = −cx̄(N) + bu(N) + (c− a)y(N) (3.31)
ŷ(N |N) = (−c)N−1x̂(1|N) + x̄(N) (3.32)

where from Equation (3.16)

p(1|N) =
(

N∑
k=1

c2(k−1)
)−1

(3.33)

The Connection

To connect the ARMAX filter with the Kalman filter, we will now show that the

Kalman filter Equations (3.25) to (3.28) can be obtained from the ARMAX filter

Equations (3.29) to (3.32).

Multiplying Equation (3.30) by (−c)N−1 and then add x̄(N) to both sides of the

equation gives

(−c)N−1x̂(1|N) + x̄(N) = (−c)N−1x̂(1|N − 1) + x̄(N) + p(1|N)(−c)2(N−1)

×[y(N)− x̄(N)− (−c)N−1x̂(1|N − 1)] (3.34)

Multiplying Equation (3.30) by (−c)N and then add Equation (3.31) gives

(−c)N x̂(1|N) + x̄(N + 1) = (−c)N x̂(1|N − 1) + p(1|N)(−c)2N−1

×
[
y(N)− x̄(N)− (−c)N−1x̂(1|N − 1)

]
− cx̄(N) + bu(N) + (c− a)y(N) (3.35)
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Note that from Equation (3.7), x(N) = (−c)N−1x(1) + x̄(N) and so Equations

(3.32), (3.34) and (3.35) can be written as

ŷ(N |N) = x̂(N |N) (3.36)

x̂(N |N) = x̂(N |N − 1) + p(1|N)c2(N−1)[y(N)− x̂(N |N − 1)] (3.37)

x̂(N + 1|N) = bu(N)− ay(N) + [c+ p(1|N)(−c)2N−1]

× [y(N)− x̂(N |N − 1)] (3.38)

Substitute x̂(1|N) = x̂(N+1|N)−x̄(N+1)
(−c)N from Equation (3.7) into Equation (3.14)

to give

x̂(N + 1|N)− x̄(N + 1) =
(

1
c2N

N∑
k=1

c2(k−1)
)−1 ( 1

(−c)N
N∑
k=1

(−c)k−1z(k)
)∣∣∣∣∣∣

x(1)=0

(3.39)

and corresponding to Equation (3.16) the covariance matrix

P (N + 1|N) =
(

1
c2N

N∑
k=1

c2(k−1)
)−1

(3.40)

Using Equation (3.33), Equation (3.40) becomes

p(1|N) = p(N + 1|N)
c2N (3.41)

Substituting Equation (3.41) into Equations (3.37), (3.38), (3.29) and (3.36) gives

the Kalman filter Equations (3.25) to (3.28) respectively. For simplicity, we have

used the first-order ARMAX process as an example. It can be shown that in general,

the ARMAX filter is equivalent to the Kalman filter if the GT parameters p and q

in the ARMAX filter design are chosen as 2 and ∞ respectively to model Gaussian

noise.
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3.4.2 Example 2: Variance

In this example, the ARMAX filter is designed for the ARMAX process with t3

noise. According to Figure 2.3, to model the t3 noise, the GT parameters are p =

2, q = 1.5 and σ = 0.1
√

2 as shown in Table 3.1.

Simulation

We conducted 1000 simulation runs using the ARMAX filter (Equations 3.17 to

3.20) and Kalman filter (Equations 3.25 to 3.28). The results are shown in Figure

3.1 where the mean value for the 1000 runs is given by the white curve. The mean

and variance at N = 1, 5, . . ., 20 are tabulated in Table 3.2 under the Column

“Eq. (3.17) to (3.20)” and “Eq. (3.25) to (3.28)”. The result of solving Equation

(3.11) numerically for x̂(1|N) and then ŷ(N |N) from Equation (3.20) is also given

under the Column “Eq. (3.11) and (3.20)”. Figure 3.1 and Table 3.2 show clearly

that the variance from the Kalman filter is larger than the ARMAX filter. The

Kalman filter assumes Gaussian and not t3 noise. This example shows that the GT

parameters in the ARMAX filter can be chosen gainfully to give smaller variance.

Table 3.2: Mean and Variance of ŷ(N) in Figure 3.1

ARMAX Filter Kalman Filter
Eq. (3.11) and (3.20) Eq. (3.17) to (3.20) Eq. (3.44) Eq. (3.25) to (3.28) Eq. (3.48)
Numerical Solution Recursive Solution Recursive Solution

N Mean Var
(
10−2) Mean Var

(
10−2) Var

(
10−2) Mean Var

(
10−2) Var

(
10−2)

1 0.00 3.062 0.00 1.460 1.500 0.00 3.062 3.000
5 0.34 0.268 0.34 0.190 0.188 0.34 0.399 0.377
10 0.61 0.051 0.61 0.049 0.049 0.61 0.102 0.097
15 0.77 0.016 0.77 0.015 0.016 0.77 0.032 0.031
20 0.86 0.006 0.86 0.005 0.005 0.86 0.011 0.011
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(a) ARMAX filter output ŷ(N).

(b) Kalman filter output ŷ(N).

Figure 3.1: Simulation results of Example 2.

IF Analysis: ARMAX Filter

The IF can be used to derive an equation to calculate the variance in Table 3.1.

Using Equation (3.14)

IF(ε) =
(

N∑
k=1

c2(k−1)
)−1 (∫ +∞

−∞

0.03− ε2

(0.03 + ε2)2f(ε)dε
)−1 ( N∑

k=1

(−c)k−1ε(k)
0.03 + ε(k)2

)
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Using Equation (3.22)

var x̂(1|N) =
(

N∑
k=1

c2(k−1)
)−1 (∫ +∞

−∞

0.03− ε2

(0.03 + ε2)2f(ε)dε
)−2

×
(∫ +∞

−∞

ε2

(0.03 + ε2)2 g(ε)dε
)

= 3
200

1− c2

1− c2N (3.42)

where
∫+∞
−∞

0.03−ε2

(0.03+ε2)2f(ε)dε = 50
3 ,
∫+∞
−∞

ε2

(0.03+ε2)2 g(ε)dε = 25
6 and since ε is assumed to

be a zero mean independent random variable,
∫+∞
−∞ ε(j)ε(k)/((0.03 + ε(j)2)(0.03+

ε(k)2))g(ε)dε = 0 for j 6= k. From Equation (3.14) x̂(1|N) is zero-mean as ε(k)

is zero-mean and since x̄(N) is not a function of the random variable ε, Equation

(3.20) gives

var ŷ(N |N) = c2(N−1)var x̂(1|N) (3.43)

Substituting Equation (3.42) into Equation (3.43) gives

var ŷ(N |N) = 3
200

c2(N−1) − c2N

1− c2N (3.44)

Equation (3.44) is used to calculate the variance in the Column “Eq. (3.44)” and

Table 3.2 shows that it is close to the values obtained from simulation in Column

“Eq. (3.17) to (3.20)”. The table also show that for N ≥ 10, the variances in the

Columns “Eq. (3.44)” and “Eq. (3.17) to (3.20)” from IF approximation are close

to the variance in Column “Eq. (3.11) and (3.20)” obtained by solving Equation

(3.11) numerically without approximation.
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IF Analysis: Kalman Filter

Although the Kalman filter assumes Gaussian noise, the IF can also be used to

derive an equation to calculate the variance of the Kalman filter when the actual

noise is t3. Example 1 shows that the ARMAX filter designed with p = 2, q = ∞

is equivalent to the Kalman filter and so from Equation (3.14)

IF(ε) =
(

N∑
k=1

c2(k−1)
)−1 ( N∑

k=1
(−c)k−1ε(k)

)
(3.45)

Using Equation (3.22)

var x̂(1|N) =
(

N∑
k=1

c2(k−1)
)−1 (∫ ∞

−∞
ε2g(ε)dε

)
(3.46)

where
∫∞
−∞ ε(j)ε(k)g(ε)dε = 0 for j 6= k and g(ε) is the GT probability density

function of Equation (2.2) with p = 2, q = 1.5 and σ = 0.1
√

2 to model the actual

t3 noise. This gives

var x̂(1|N) = 3
100

1− c2

1− c2N (3.47)

since
∫∞
−∞ ε

2g(ε)dε = 3
100 . Using Equation (3.4.2)

var ŷ(N |N) = c2(N−1)var x̂(1|N) = 3
100

c2(N−1) − c2N

1− c2N (3.48)

Equation (3.48) is used to calculate the variance in the Column “Eq. (3.48)” of

Table 3.2. It is clear that it matched the variance from the simulation in the

Column “Eq. (3.25) to (3.28)”.

3.4.3 Example 3: Outlier

This example shows how the IF can be used to calculate the ARMAX and Kalman

filter output in the presence of an outlier.

48



Simulation

Consider the ARMAX process in Example 3 of Table 3.1. It has an outlier of ε1 =

−1 at k = k1 = 2. Here g(ε) will be different at each sample k and is given as

gk(ε) =


δ(ε1), k = k1

f(ε) k 6= k1

(3.49)

where δ(ε1) is an impulse at ε1 to model the outlier of ε1 at the sample k = k1.

The ARMAX filter is design with p = 2, q = 1.5 and σ = 0.1
√

2 to model the t3

noise. Unlike Example 2, here f(ε) 6= g(ε). The output ŷ(N) of the ARMAX filter

(Equations 3.17 to 3.20) and Kalman filter (Equations 3.25 to 3.28) are shown in

Figures 3.2 and 3.3 respectively. The mean value of the 1000 runs is given by the

white curve. It is clear that the Kalman filter output is greatly affected by the

outlier at k = 2 unlike the ARMAX filter. It is known that a single outlier can

spoil the statistical analysis completely for the case of least-squares estimation [2]

including the Kalman filter [39].

Figure 3.2: ARMAX filter output ŷ(N).
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Figure 3.3: Kalman filter output ŷ(N).

IF Analysis

Equation (3.23) can be used to draw the white or mean curves in Figures 3.2 and

3.3. With gk(ε) of Equation (3.49) and p = 2, Equation (3.23) gives

x̂(1|N) =
(

N∑
k=1

c2(k−1)
)−1 (∫ +∞

−∞

qσ2 − ε2

(qσ2 + ε2)2f(ε)dε
)−1

×
[∫ +∞

−∞

(−c)k1−1ε(k1)
qσ2 + ε(k1)2 δ(ε1)dε

+
N∑

k=1, 6=k1

∫ +∞

−∞

(−c)k−1ε(k)
qσ2 + ε(k)2 f(ε)dε

 , N ≥ k1 (3.50)

Note that the second term in the square bracket of Equation (3.50) is zero because

the expectation of ε(k) for k 6= k1 is zero. Simplifying gives

x̂(1|N) = (−c)k1−1(1− c2)
(1− c2N)

(
ε1

qσ2 + ε2
1

)(∫ +∞

−∞

qσ2 − ε2

(qσ2 + ε2)2f(ε)dε
)−1

, N ≥ k1

(3.51)

From Equation (3.20),

ŷ(N |N) = (−c)N+k1−2(1− c2)
(1− c2N)

(
ε1

qσ2 + ε2
1

)

×
(∫ +∞

−∞

qσ2 − ε2

(qσ2 + ε2)2f(ε)dε
)−1

+ x̄(N), N ≥ k1 (3.52)
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Note that according to Figure 2.3, the t3 and Gaussian distribution are modeled

by setting q = 1.5 and q = ∞ respectively. So the white curve in Figure 3.2 is

obtained by substituting q = 1.5 and σ = 0.1
√

2 into Equation (3.52) to give

ŷ(N |N) = (−c)N+k1−2(1− c2)
300(1− c2N)

(
ε1

0.03 + ε2
1

)
+ x̄(N), N ≥ k1

where
∫+∞
−∞

qσ2−ε2

(qσ2+ε2)2f(ε)dε = 300. The white curve in Figure 3.3 is obtained by

substituting q = ∞ into Equation (3.52) to give

ŷ(N |N) = (−c)N+k1−2(1− c2)
1− c2N ε1 + x̄(N), N ≥ k1

3.4.4 Example 4: Liquid Level Estimation Experiment

Consider the liquid-level estimation problem commonly encountered in chemical

processes in the coupled tank of Figure 3.4. The transfer function between the

liquid level in Tank 1, y(k), and the control voltage, u(k), at sampling interval of 1

second is given as

y(k) = 0.037q−1

1− 0.987q−1u(k) + ε(k) (3.53)

The polynomials A, B and C in the ARMAX model can be obtained by comparing

Equations (3.53) and (3.1) and is given in Table 3.1 under Column “Example 4”.

Experiment

One thousand measurements of the liquid level y(k) were collected as shown in

Figure 3.5 when the control voltage u(k) was held constant at 2V . The histogram

of the measurements y(k) after subtracting the mean are plotted in Figure 3.6 and

is considered as the noise, ε(k), distribution.
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Figure 3.4: Photo of the coupled-tank

The maximum likelihood criterion can be used to find the parameters of the

GT probability density function. In this example we fixed p = 2 and then use

the maximum likelihood criterion to find the other parameters q and σ of the GT

probability density function f(ε) of Equation (2.2) by maximizing the objective

function

Jf =
1000∑
k=1

ln p

2σq1/pβ(1/p, q)
(
1 + |ε(k)|p

qσp

)q+1/p

This gives q = 3.433, σ = 0.1636 and the resultant GT distribution is superimposed

on the distribution in Figure 3.6. Using maximum likelihood, a Gaussian distri-

bution was also fitted to the histogram. It is evident in Figure 3.6 that the GT
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Figure 3.5: Measurement y(N) for the liquid level estimation experiment.

distribution gives a better fit. In this example, p was not obtained by maximizing

the objective function Jf but simply chosen as 2 gives an indication that the results

do not depend critically on the value of p. The papers [14, 21] give further detailed

discussion on the choice and determination of p, q and σ.

With the control voltage u(k) = 2V, we estimated the liquid level y(k) for

10 samples using the ARMAX filter (Equations 3.17 to 3.20) and Kalman filter

(Equations 3.25 to 3.28). This was repeated 100 times. The results are shown in

Figures 3.7 and 3.8 and the variances are tabulated in Table 3.3 in the rows labeled

as “Experimental Value”. Figures 3.7 and 3.8 and Table 3.3 show that the variance

from the ARMAX filter is about 10% smaller than the Kalman filter. This example
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Figure 3.6: The maximum likelihood criterion was used to fit a GT distribution
(solid-line) and Gaussian distribution (dashed-line) to the noise distribution

shows that the GT parameters in the ARMAX filter can be chosen gainfully to give

smaller variance.

Table 3.3: Variance (×10−3) of ŷ(N) in Figures 3.7 and 3.8.

N 1 2 3 4 5 6 7 8 9 10

ARMAX Filter Experimental Value 17.7 8.2 4.8 4.1 3.1 2.5 2.2 1.8 1.7 1.5

(Figure 3.7) Equation (3.56) 16.8 8.3 5.5 4.0 3.2 2.6 2.2 1.9 1.7 1.5

Kalman Filter Experimental Value 20.0 9.6 5.8 4.9 3.6 3.1 2.6 2.2 1.9 1.7

(Figure 3.8) Eqn (3.60) 18.7 9.2 6.1 4.5 3.6 2.9 2.5 2.1 1.9 1.7

IF analysis for ARMAX Filter

The IF can be used to derive an equation to calculate the variance in Table 3.3.

Using Equation (3.14)

IF(ε) =
(

N∑
k=1

c2(k−1)
)−1 (∫ +∞

−∞

0.0919− ε2

(0.0919 + ε2)2f(ε)dε
)−1 ( N∑

k=1

(−c)k−1ε(k)
0.0919 + ε(k)2

)
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Figure 3.7: ARMAX filter estimate ŷ(N).

Figure 3.8: Kalman filter estimate ŷ(N).
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Using Equation (3.22)

var x̂(1|N) =
(

N∑
k=1

c2(k−1)
)−1 (∫ +∞

−∞

0.0919− ε2

(0.0919 + ε2)2f(ε)dε
)−2

×
(∫ +∞

−∞

ε2

(0.0919 + ε2)2 g(ε)dε
)

= 0.0168 1− c2

1− c2N (3.54)

where
∫+∞
−∞

0.0919−ε2

(0.0919+ε2)2f(ε)dε = 7.57,
∫+∞
−∞

ε2

(0.0919+ε2)2 g(ε)dε = 0.963 and since ε is as-

sumed to be a zero mean independent random variable,
+∞∫
−∞

ε(j)ε(k)/((0.0919 + ε(j)2)

(0.0919 + ε(k)2))g(ε)dε = 0 for j 6= k. From Equation (3.14) x̂(1|N) is zero-mean

as ε(k) is zero-mean and since x̄(N) is not a function of the random variable ε,

Equation (3.20) gives

var ŷ(N |N) = c2(N−1)var x̂(1|N) (3.55)

Substituting Equation (3.54) into Equation (3.55) gives

var ŷ(N |N) = 0.0168c
2(N−1) − c2N

1− c2N (3.56)

Equation (3.56) is used to calculate the variance in Row “Equation (3.56)” of Table

3.3. It is close to the experimental values given in the row just above.

IF analysis for Kalman Filter

Although the Kalman filter assumes Gaussian noise, the IF can also be used to

derive an equation to calculate the variance of the Kalman filter when the actual

noise is not Gaussian. Example 1 shows that the ARMAX filter designed with p =

2, q = ∞ is equivalent to the Kalman filter and so from Equation (3.14)

IF(ε) =
(

N∑
k=1

c2(k−1)
)−1 ( N∑

k=1
(−c)k−1ε(k)

)
(3.57)
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Using Equation (3.22)

var x̂(1|N) =
(

N∑
k=1

c2(k−1)
)−1 (∫ ∞

−∞
ε2g(ε)dε

)
(3.58)

where
∫∞
−∞ ε(j)ε(k)g(ε)dε = 0 for j 6= k and g(ε) is the GT probability density

function of Equation (2.2) with p = 2, q = 3.433 and σ = 0.1636 to model the

noise. This gives

var x̂(1|N) = 0.0189 1− c2

1− c2N (3.59)

since
∫∞
−∞ ε

2g(ε)dε = 0.0189. Using Equation (3.55)

var ŷ(k|N) = c2(N−1)var x̂(1|N) = 0.0189c
2(N−1) − c2N

1− c2N (3.60)

Equation (3.60) is used to calculate the variance in Row “Equation (3.60)” of

Table 3.3. It is close to the experimental values given in the row just above.

The values in Table 3.3 show that the variance of the estimate from the ARMAX

filter is about 10% smaller than the one from Kalman filter. If the noise is non-

Gaussian and can be modeled by the GT distribution then the ARMAX filter

with GT noise model can produce more a accurate estimate of the process output

y(k) because of the more accurate noise model. The ARMAX filter can be used

gainfully in control systems. For example in adaptive control, the process output

y(k) is fed back to the adaptive controller which make use of the information to

adapt itself to meet performance criteria. The more accurate estimate of y(k) from

the ARMAX filter can then be used gainfully by the same adaptive controller to

enhanced performance.
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3.5 Conclusion

The IF is employed to give an approximate solution to the maximum likelihood es-

timation problem in the ARMAX filter. The solution is recursive making it suitable

for on-line and real-time implementation. We also used the IF to analyze the output

of the filter designed with the GT noise model instead of the usual Gaussian noise

model. Equations derived are useful in determining the variance of the estimates

and the impact of outliers. If the noise is modeled by the Gaussian distribution

then the proposed filter reduces to the Kalman filter. Otherwise the GT distribu-

tion has the extra degree of freedom to model non-Gaussian noise. If we do not

know the distribution of the noise then one can use the Kalman filter but if there is

information then it can be used gainfully in the GT distribution framework to take

into account the non-Gaussian noise.
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Chapter 4

Data Reconciliation for

Estimation of Film Thickness

4.1 Introduction

Chemical-Mechanical Polishing is common and critical in semiconductor manufac-

turing. Surfaces uniformities is an important issue with stringent specifications

and significant impact on the structure of integrated circuits. To obtain uniform

and planar surface, chemical-mechanical polishing is applied to flatten the surface

[15, 44]. Run-to-run control for the chemical-mechanical polishing process is con-

sidered in [45]. If the oxide layer has not been sufficiently thinned or the desired

degree of planarity has not been obtained during chemical-mechanical polishing

then the wafer may have to be reworked or even scrapped. Hence the measurement

of the thickness must be precise and variance is a common measure of precision,

the smaller the variance the more precise it is.
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The measurement, however, is usually corrupted by noise and the noise needs

not to be distributed from Gaussian distribution. Take the example of chemical-

mechanical polishing of semiconductor wafers. The data distribution of 1,152 film

thickness measurements after chemical-mechanical polishing of twenty-four 200mm

blanket oxide semiconductor wafers and after subtracting the mean are plotted in

Figure 4.1. Using the maximum likelihood method, a Gaussian distribution was

fitted to the data but is evident in Figure 4.1 that the Gaussian curve does not

give a good fit. The averages are 353 nm and 382 nm for the inner and outer

zone respectively and that the distributions are different is evident in Figure 4.1.

The measurement points for the inner (center) and outer (edge) zones are shown in

Figure 4.2.

There are three main proposals in this chapter. The first proposal is to take

into account the measurements of both zones irrespective of whether we estimate

the thickness of the inner or outer zone. In process engineering, this technique is

known as data reconciliation [46–49]. The dispersion of the measurements would

relate to how well the measurement were made. Their average would provide an

estimate of the thickness that generally would be more reliable when more data

points were averaged. In this chapter, equations are derived to take into account

the measurements of both zones. Since more data points (two zones instead of one)

were taken into consideration, the variance of the estimate is expected to decrease.

The second proposal is to model the measurement distribution with the Gen-

eralized t-distribution (GT) instead of the usual Gaussian distribution. We will

show that with proper choice of parameters, the GT distribution reduces to the
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(a)

(b)

Figure 4.1: GT and Gaussian approximation of the experimental data distribution
for (a) inner zone and (b) outer zone.

Gaussian distribution and the proposed estimation scheme reduces to the well-

known least-squares estimation which is basically simple averaging if only one zone

is considered. Hence within the more general framework of the estimation with GT

distribution model is the least-squares estimation if the distribution is Gaussian. If

the measurement is not Gaussian then the GT distribution has the extra degree of

freedom to model the measurement. GT distribution has previously been employed
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Figure 4.2: Measurement points on the inner zone (crosses) and outer zone (circles)
of a wafer.

in econometrics [20] to model random residuals in regression parameter estimation.

By being a distribution superset encompassing Gaussian, uniform, T and double

exponential distributions [17], GT distribution has the flexibility to characterize

data with non-Gaussian statistical properties. Data reconciliation, i.e. equations to

take into account both zones are also derived for the GT model. Three zones were

considered in [16] but the Gaussian assumption and least-squares estimation were

used to estimate film thickness.

The third proposal is to make use of the Influence Function (IF) [2] to relate

variance of the estimates to sample size. These equations enable us to compute the

sample size needed by the estimator to achieve a desired variance. It would be shown

that using GT, instead of Gaussian distribution, to characterize measurement data

gives rise to estimate with a smaller variance. The theoretical results were verified
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experimentally. Figure 4.1 provides an intuitive explanation: the flexibility of GT

gives a distribution curve that is a better description of the experimental data

represented by the histogram.

4.2 Maximum Likelihood Estimation of Film

Thickness

Assume that the thickness measurement can be divided into n zones. The measure-

ment vector y(k) can be related to the thickness vector x- by

y(k) = x+ ε(k) (4.1)

s.t. Ax = 0

where y, x and ε are all n × 1 vectors whose elements are yi, xi, εi, i = 1, . . . , n.

The sampling instance is given by k = 1, . . . , N and A is a m × n matrix.

4.2.1 GT Distribution

Consider the ith zone. Let the noise εi be modelled by the GT distribution (2.2)

f(εi) = pi

2σ1/piβ(1/pi, qi)
(
1 + |εi|p

qiσ
p
i

)qi+1/pi
(4.2)

In the framework of GT, the maximum-likelihood method is used to estimate
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the optimal thickness value which minimizes

J = −
n∑
i=1

N∑
k=1

ln f(εi(k)) (4.3)

s.t. Ax = 0 (4.4)

εi(k) = yi(k)− xi, i = 1, . . . , n (4.5)

with respect to x. The solution to the optimization in Equations (4.3) and (4.4) can

be obtained using Lagrange multipliers. The objective function for the optimization

problem is then

L = −
n∑
i=1

N∑
k=1

ln f(εi(k))− λTAx (4.6)

where λ is the vector of Lagrange multipliers. To minimize J , equate all relevant

partial derivatives of L in Equation (4.6) to zero

∂L

∂xi
= ψ(εi) + λTai = 0, i = 1, ..., n (4.7)

∂L

∂λ
= Ax = 0 (4.8)

where ai is the ith column vector of A and the term ψ(εi) is given as

ψ(εi) =
N∑
k=1

∂

∂xi
ln f(εi(k)) =

N∑
k=1

(piqi + 1)sgn(εi(k))|εi(k)|pi−1

qiσ
pi
i + |εi(k)|pi (4.9)

The solution for x in Equations (4.7) and (4.8) can be determined numerically [? ]

and the covariance matrix can be approximated from the Influence Function (IF)

[2]:

Cov x ≈ E
{
IF(ε)× IFT (ε)

}
≈ [Γ− ΓAT (AΓA)−1AΓ]E{ψ(ε)ψT (ε)}[Γ− ΓAT (AΓA)−1AΓ]T(4.10)
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where

IF(ε) = (Γ− ΓAT (AΓAT )−1AΓ)ψ(ε) (4.11)

Γ−1 = diag
{
−
∫ +∞

−∞

d

dx1
ψ(ε1)f(ε1)dε1, . . . ,

−
∫ +∞

−∞

d

dxn
ψ(εn)f(εn)dεn

}
(4.12)

dψ(εi)
dxi

= −
N∑
k=1

(piqi + 1) ((pi − 1)qiσpii − |εi(k)|pi) |εi(k)|pi−2

(qiσpii + |εi(k)|pi)2

ψ(ε) =
[
ψ(ε1), . . . , ψ(εn)

]T

E{ψ(ε)ψT (ε)} = diag
{ ∫+∞

−∞ ψ2(ε1)f(ε1)dε1, . . . ,
∫+∞
−∞ ψ2(εn)f(εn)dεn

}

as the off-diagonal elements are zeros because for i 6= j, εi and εj are independent.

Expressions (4.10) and (4.11) are derived in the Appendix C.

4.2.2 Gaussian Distribution

In this section, we show that if ε is Gaussian distributed then by choosing p = 2, q

= ∞, our estimator reduces to the well-known least-squares estimator.

Consider the GT distribution in Equation (4.2) with pi = 2 and qi = ∞,

pi

2σiq1/pi
i β(1/pi, qi)

(
1 + |εi|pi

qiσ
pi
i

)1/pi
= 1√

πσi

1(
1 + |εi|pi

qiσ
pi
i

)qi = exp
(
− ε

2
i

σ2
i

)

and Equation (4.2) reduces to

f(εi) = 1√
2πΛi

exp
(
− ε2

i

2Λ2
i

)

the Gaussian distribution with standard deviation Λi = σi√
2 .
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Thus Equations (4.3) and (4.4) reduce to

J = 1
2

n∑
i=1

N∑
k=1

(
εi(k)
Λi

)2

−
n∑
i=1

N ln 1√
2πΛi

s.t. Ax = 0

Since the second term in the cost function J is independent of x, minimizing J with

respect to x reduces to the well-known least-squares optimization with constraint.

Equation (4.12) reduces to

Γ = diag
{

Λ2
1
N
, . . . , Λ2

n

N

}
(4.13)

Equations (4.7) and (4.8) reduce to

Γ−1 1
N

N∑
k=1

ε(k) + ATλ = 0 (4.14)

Ax = 0 (4.15)

Equations (4.1), (4.14) and (4.15) yields

x = 1
N

N∑
k=1

y(k)− ΓAT (AΓAT )−1A
1
N

N∑
k=1

y(k) (4.16)

the well-known least-squares solution [46, 48].

As

E{ψ(ε)ψT (ε)} =
∫ ∞
−∞

ψ(ε)ψT (ε)f(ε)dε = Γ−1

Expression (4.10) reduces to

Cov x = Γ− ΓAT (AΓAT )−1AΓ (4.17)

the well-known covariance matrix of the least-squares solution [48].
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4.3 Sample Calculations

To illustrate the calculations, four sets of three (N = 3) data points consisting of

only −1, 0 and 1 are given in Table 4.1 while their corresponding averages and

variances are given in Table 4.2. The parameters were chosen as p1 = p2 = q1 = q2

= 2 and σ1 = σ2 = 1. Example of calculations to obtain the values for x1 in Table

4.2 from data Set 1 in Table 4.1 are as follows.

GT model without data reconciliation

Without data reconciliation means that if we consider y1(k) then y2(k) will not

be taken into account. In this case, n = 1, A = 0, λ = 0 and Equation (4.7) can

be written as

5(0− x1)
2 + (0− x1)2 + 5(1− x1)

2 + (1− x1)2 + 5(0− x1)
2 + (0− x1)2 = 0

giving x1 = 0.29 in entry (3,d) of Table 4.2. The average and variance for x1 are

calculated as

Ave x1 = 0.29− 0.29 + 0 + 0
4 = 0

Var x1 = 0.292 + 0.292 + 0 + 0
4 = 0.042

as shown in entries (3,h) and (3,i) respectively. GT model with data reconciliation

With data reconciliation means that if we consider y1(k) then y2(k) will be taken

into account. In this case n = 2. Let A = [1 − 1] and (4.7) gives for i = 1

5(0− x1)
2 + (0− x1)2 + 5(1− x1)

2 + (1− x1)2 + 5(0− x1)
2 + (0− x1)2 + λ = 0 (4.18)

for i = 2,

5(0− x2)
2 + (0− x2)2 + 5(0− x2)

2 + (1− x2)2 + 5(0− x2)
2 + (0− x2)2 − λ = 0 (4.19)
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and Equation (4.8),

x1 − x2 = 0 (4.20)

Since there are 3 equations (4.18), (4.19) and (4.20) with 3 unknowns, they can be

solved to give x1 = x2 = 0.13, and λ = −0.95 as shown in entries (5,d) and (6,d)

of Table 4.2.

Gaussian model without data reconciliation

In this case, n = 1, A = 0 and Equation (4.16) gives

x1 = 1
3(0 + 1 + 0) = 0.33

in entry (7,d) of Table 4.2.

Gaussian model with data reconciliation

In this case n = 2. Equation (4.13) gives

Γ = diag
{

1
3
√

2
√

2
,

1
3
√

3
√

3

}

Let A = [1 − 1] and Equation (4.16) gives x1

x2

 = 1
3

 0 + 1 + 0

0 + 0 + 0

− ΓAT (AΓAT )−1A× 1
3

 0 + 1 + 0

0 + 0 + 0

 =

 0.17

0.17


in entries (9,d) and (10,d).

Set 1 Set 2 Set 3 Set 4
y1(k), k = 1, 2, 3 0, 1, 0 0, −1, 0 0, 0, 0 0, 0 , 0
y2(k), k = 1, 2, 3 0, 0, 0 0, 0 , 0 0, 1, 0 0, −1, 0

Table 4.1: Data Sets for Sample Calculation example
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a b c d e f g h i
1 Distribution Reconciliation States Estimates ¯̂xi var(x̂i)
2 Model Set 1 Set 2 Set 3 Set 4
3 Without x1 0.29 −0.29 0 0 0 0.042
4 GT x2 0 0 0.29 −0.29 0 0.042
5 With x1 0.13 −0.13 0.13 −0.13 0 0.017
6 x2 0.13 −0.13 0.13 −0.13 0 0.017
7 Without x1 0.33 −0.33 0 0 0 0.055
8 Gaussian x2 0 0 0.33 −0.33 0 0.055
9 With x1 0.17 −0.17 0.17 −0.17 0 0.029
10 x2 0.17 −0.17 0.17 −0.17 0 0.029

Table 4.2: Comparison of Estimation with and without Reconciliation for the Data
Sets in Table 4.1.

4.4 Experimental Verification

The data were collected from the film thickness measurement after chemical-mechanical

polishing of 24 semiconductor wafers. The wafer is divided into inner and outer zone

with 24 measurement points each, giving a total of 1,152 data points. Since there

are two zones, n = 2. The average thicknesses of the inner (i = 1) and outer (i

= 2) zones were 353 nm and 382 nm respectively and hence A =
[
1 − 353

382

]
. The

distributions of the inner and out zones are shown in Figure 4.1.

For simplicity, we fixed p1 = p2 = 2 and then the rest of the GT parameters

were obtained by fitting the GT probability density function to the data distribution

using the maximum likelihood criteria giving q1 = 2.7, q2 = 2, σ1 = 98.5, σ2 = 205.9.

They are shown in Figures 4.1a and 4.1b.

The experimental data for N = 3 are tabulated in Table 4.3. The calculations

in Table 4.4 mirror that of Table 4.2 except that the data y1(k) and y2(k), (k =
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1, 2, 3) are taken from the 1,152 measurements on the wafers giving 192 sets (see

Table 4.3) instead of only 4 sets of data in Table 4.1. The values in the last column

of Table 4.4, Theory (Variance), were obtained from Equations (4.10) and (4.17)

for the GT and Gaussian model respectively. Notice that they are close to the

sample variance calculated from the experimental data in the second last column

Experiment (Variance). Hence, before doing the experiment, one can use Equations

(4.10) and (4.17) to predict the variance and decide on the sample size N to achieve

a desired variance.

We will restrict our discussion to x1 as the analysis for x2 is similar. Notice the

average values for x1 are all equal to 353 i.e. Gaussian or GT model with or with-

out reconciliation gives the same result. Consider column Experiment (Variance).

Notice that without reconciliation i.e. when we only consider y1(k), the variance

of the standard Least-Square Estimation (Gaussian model) has the largest variance

of 43.8. As expected, the variance is reduced when more data i.e. y2(k) data is

taken into account through reconciliation giving 34.8. Similarly, for the GT model,

the variances reduced from 40.5 to 33.8 with reconciliation. We can also compare

the variances using Gaussian and GT models. For the case without reconciliation,

the variance reduced from 43.8 to 40.5 when GT model is used. For the case with

reconciliation, the variance reduced from 34.8 to 33.8. In conclusion, the thickness

estimate with the smallest variance is obtained when the GT model is used with

data reconciliation.
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Set 1 . . . Set 192
y1(k), k = 1, 2, 3 377, 351, 346 . . . 356, 377, 348
y2(k), k = 1, 2, 3 363, 372, 396 . . . 370, 384, 361

Table 4.3: Experiment Data Sets (nm).

Noise DR State Estimates Average Variance
model Set 1 . . . Set 192 Experiment Theory

Without x1 355 . . . 358 353 40.5 42.0
GT x2 376 . . . 372 382 212.2 219.7

With x1 353 . . . 354 353 33.8 34.3
x2 382 . . . 383 382 39.6 40.2

Without x1 358 . . . 360 353 43.8 45.4
Gaussian x2 377 . . . 372 382 251.1 282.1

With x1 356 . . . 357 353 34.8 38.2
x2 386 . . . 387 382 40.7 44.7

Table 4.4: Theoretical and Experimental Results (nm) for N = 3

4.5 Conclusion

It was observed that the thickness after chemical-mechanical polishing can be di-

vided into zones. The thickness estimate with the smallest variance is obtained

when the GT model is used with data reconciliation. The use of GT distribution

model can give smaller variance is because of the extra degree of freedom in the

model such that it could give equal or better result than the Gaussian model and

the use of data reconciliation can give smaller variance is because more measure-

ment data (both inner and outer zones) were taken into account. The equations

derived for computing the variance were verified by the experimental results. These

equations enable us to compute the sample size needed by the estimator to achieve

a desired variance.
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Chapter 5

Skewed and Multivariate

Generalized t-distributions

In previous chapters, measurement noise is always assumed as symmetric, indepen-

dent and identically distributed. However, in practice, these assumptions might not

always be satisfied. In this chapter, we present some preliminary works about the

situation where noise is asymmetric and dependent to each other. Equations are

derived for parameter and data reconciliation cases. However, further investigation

and validation are required in the future work to complete the theory.
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5.1 Parameter Estimation using skew

Generalized t-distribution noise model for

asymmetric measurement noise

5.1.1 Introduction

In Chapter 2, parameter estimation problem is investigated extensively where vari-

ous types of noise are modeled by the generalized t-distribution. However, measure-

ment noise is assumed to be symmetric which might not always be true in practice.

When the noise is asymmetric, the conventional estimator will produce a bias re-

sult. Jaeckel [50] has provided a solution by modeling noise to be asymmetric with

small data size but become symmetric when the sample size grows bigger. MacCul-

lagh and Nelder [51] developed a generalized linear model that can be used with

any type of noise belonging to the exponential distribution family. Bianco et al.

[52] extended the MM-estimator for the generalized linear model to achieve high

efficiency and high break down point. In this chapter, we propose a method as

an extension for the conventional estimator to eliminate the bias when the noise is

asymmetric while still maintain acceptable result in case of symmetric noise. We

also introduce a new estimator based on the skew Generalized t-distribution (SGT)

to achieve the optimal result when the shape of the noise is known. Equations for

predicting estimate variance are also derived for performance comparison and batch

size choosing. The simulation case is presented to verify the proposed theory.
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5.1.2 Parameter Estimation

The parameter estimation problem (2.1) is re-stated here

y(k) = φ(k)T θ + ε(k) (5.1)

where the vector φ(k) =
[
φ1(k), ... , φn(k)

]T
are known, the parameters θ =[

θ1, ... , θn
]T

are to be estimated and k = 1, ... , N is the sampling instance.

There are several techniques to solve the problem (5.1), such as the popular LS

(2.6) which is the solution of the Equation

ψ(ε) =
N∑
k=1

φ(k)T
(
y(k)− φ(k)T θ

)
= 0 (5.2)

In Chapter 2, we also proposed the GT Estimator (2.5) of which the estimate is

obtained by solving the following Equation

ψ(ε) =
N∑
k=1

φ(k)T (pq + 1)sign(ε(k))|ε(k)|p−1

qσp + |ε(k)|p = 0 (5.3)

where ε(k) = y(k)−φ(k)T θ. Both equations (5.2) and (5.3) can be rewritten in the

form of
N∑
k=1

φ(k)Tψ(ε(k)) = 0 (5.4)

where

φ(ε(k)) = ε(k) in case of equation (5.2).

φ(ε(k)) = (pq + 1)sign(ε)|ε|p−1

qσp + |ε|p in case of equation (5.3).

5.1.3 Asymmetric noise distribution

It is well-known that when ε(k) is asymmetric or Eε(k) 6= 0 the estimator (5.4) will

provide bias results [53].
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Let α = Eε(k) be the expectation value of ε(k), Equation (5.1) can be rewritten as

y(k) = φ(k)T θ + α− α + ε(k)

= [φ(k) 1]

θ
α

+ (ε(k)− α)

= φn(k)xn + (ε(k)− α) (5.5)

where

xn =
[
θT α

]T
φn(k) = [φ(k) 1]

Because E(ε(k)−α) = Eε(k)−α = 0, hence with noise model (5.5) Estimator (5.4)

will be unbiased. By using the noise model (5.5), the LS estimator (5.2) becomes

N∑
k=1

φn(k)T (y(k)− φn(k)xn) = 0 (5.6)

and the GT estimator (5.3) becomes

N∑
k=1

φn(k)T (pq + 1)sign(y(k)− φn(k)xn)|y(k)− φn(k)xn|p−1

qσp + |y(k)− φn(k)xn|p
= 0 (5.7)

5.1.4 Parameter Estimation with skew GT noise model

Skewed Generalized t-distribution

The Skewed Generalized t-distribution (SGT) was first introduced by Theodossiou

in 1998 [28]. Since then, it has been developed by many researchers and been mostly

used in econometric problems [20, 29, 54–57]. The probability density function (pdf)
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of the SGT distribution is given by

f(x; µ, λ, σ, p, q) = p

2σpq1/pβ(1/p, q)
(
1 + |x−µ|p

(1+λsign(x−µ))pqσp
)q+1/p (5.8)

where x is the random variable, µ is the mean, σ is the scale, λ is the skew factor

and p, q are the shape parameters. By changing {p, q, σ, λ}, the SGT distribution

can transform into many kinds of distributions, e.g the skew-elliptical distribution

[58] and skew-t distribution [59] etc., as shown in Fig. 5.1.

Figure 5.1: The Skewed Generelized T distribution family tree.

Parameter Estimation using SGT noise model

The Parameter Estimator using SGT noise model can be derived using the maxi-

mum likelihood estimation which minimizes the following cost function

J = −
N∑
k=1

ln f
(
y(k)− φ(k)T θ

)
(5.9)
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where f(.) is defined in (5.8). Differentiating (5.9) with respect to θ and equating

it to zero give

N∑
k=1

φ(k)T (pq + 1)|y(k)− φ(k)T θ|p−1sign(y(k)− φ(k)T θ)
(1 + λsign(y(k)− φ(k)T θ))p qσp + |y(k)− φ(k)T θ|p = 0 (5.10)

The Estimator (5.10) is very useful when the skewness of noise, i.e. λ, is known.

However, if the noise skewness is different than λ in (5.10), the Estimator (5.10)

will tend to be biased. A remedy to this problem can be achieved by estimating

both λ and θ simultaneously, that is
∑N
k=1 φ(k)T (pq+1)|y(k)−φ(k)T θ|p−1sign(y(k)−φ(k)T θ)

(1+λsign(y(k)−φ(k)T θ))pqσp+|y(k)−φ(k)T θ|p = 0

∑N
k=1

(pq+1)sign(y(k)−φ(k)T θ)|y(k)−φ(k)T θ|p

qσp[1+λsign(y(k)−φ(k)T θ)]p+1+[1+λsign(y(k)−φ(k)T θ)]|y(k)−φ(k)T θ|p = 0

(5.11)

where the second equation of (5.11) is derived by differentiating (5.9) with respect

to λ and equating it to zero. Because Estimator (5.11) is Maximum Likelihood

Estimation, the estimate θ̂ and λ̂ will tend to the true values of θ and λ when

N →∞.

5.1.5 Analysis of Estimators

In this section, we will derive the Influence Function (IF) [2, 25] of the above estima-

tors. The derived Influence Function then will be used to compare the performance

of those estimators. From [2, 25], by using IF, one can predict the estimate vari-

ances calculated by Equation (2.14). Equation (2.14) will also provide us useful

information to choose the suitable batch size N for suitable circumstances.
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In chapter 2, we have derived the Influence Function of the Estimator (5.2)

which is given by

IF(z) =
(
ΦTΦ

)−1
Φz (5.12)

We also provided the Influence Functions of Estimator (5.3)

IF(z) = M−1ΦT (pq + 1)|z|p−1sign(z)
qσp + |z|p (5.13)

where M is

M = ΦTΦ
+∞∫
−∞

(pq + 1) [(p− 1)(qσp + εp)εp−2 − pε2p−2]
(qσp + εp)2 f(ε)dε

Influence Functions of Estimators with noise model (5.5)

Let Φn = [φn(1) · · · φn(N)]T . Substituting Φ by Φn into (5.12) gives the Influ-

ence Function of the Least-squares estimator with noise model (5.5)

IF(z) =
(
ΦT
nΦn

)−1
Φnz (5.14)

The Influence Function of the GT-estimator with noise model (5.5) is also given by

substituting Φ by Φn into (5.13)

IF(z) = M−1
n ΦT

n

(pq + 1)|z|p−1sign(z)
qσp + |z|p (5.15)

where Mn is

Mn = ΦT
nΦn

+∞∫
−∞

(pq + 1) [(p− 1)(qσp + εp)εp−2 − pε2p−2]
(qσp + εp)2 f(ε)dε

Note that the IF in (5.14) and (5.15) are ((m + 1)× 1) vectors as the bias term is

an estimate together with the parameter θ.
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Influence Function of SGT Estimator

The Influence Function of Estimator (5.10) is given by

IF(z) = M−1ΦT (pq + 1)|z|p−1sign(z)
(1 + λsign(z))p qσp + |z|p (5.16)

where M is

M = ΦTΦ
+∞∫
−∞

∂ψ(ε)
∂ε

f(ε)dε

∂ψ(ε)
∂ε

is the derivative of ψ(ε) and is defined as

∂ψ(ε)
∂ε

= (pq + 1)(p− 1)|ε|p−2 (1 + λsign(ε))p qσp + (p− 1)|ε|2p−2 − p|ε|2p−2

((1 + λsign(ε))pqσp + |ε|p)2

The derivation of (5.16) is given in Appendix D.

Since the Estimator (5.11) involves the skew factor λ, the Influence Function

becomes more complicated. It is defined as

IF(z) =


+∞∫
−∞

∑N
k=1 φ(k)T ∂ψ1(ε)

∂ε
f(ε)φ(k)dε −

+∞∫
−∞

∑N
k=1 φ(k)T ∂ψ1(ε)

∂λ
f(ε)dε

+∞∫
−∞

∑N
k=1

∂ψ2(ε)
∂ε

f(ε)φ(k)dε −
+∞∫
−∞

∑N
k=1

∂ψ2(ε)
∂λ

f(ε)dε


−1

×


∑N
k=1 φ(k)Tψ1(z)

∑N
k=1 ψ2(z)

 (5.17)
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where

ψ1(ε, λ) = (pq + 1)|ε|p−1sign(ε)
(1 + λsign(ε))p qσp + |ε|p

ψ2(ε, λ) = (pq + 1)sign(ε)|ε|p

qσp [1 + λsign(ε)]p+1 + [1 + λsign(ε)] |ε|p

dψ1(ε, λ)
dε

= (pq + 1)(p− 1)|ε|p−2 (1 + λsign(ε))p qσp − |ε|2p−2

((1 + λsign(ε))pqσp + |ε|p)2

dψ1(ε, λ)
dλ

= −(pq + 1)pqσ
p|ε|p−1 (λsign(ε) + 1)p−1

(|ε|p + qσp (λsign(ε) + 1)p)2

dψ2(ε, λ)
dε

= (pq + 1)

 p|ε|2p−1 (λsign(ε) + 1)(
qσp [1 + λsign(ε)]p+1 + [1 + λsign(ε)] |ε|p

)2

+ p|ε|p−1

qσp [1 + λsign(ε)]p+1 + [1 + λsign(ε)] |ε|p

)
dψ2(ε, λ)

dλ
= −(pq + 1) |ε|2p + (p+ 1)qσp|ε|p (λsign(ε) + 1)p(

qσp [1 + λsign(ε)]p+1 + [1 + λsign(ε)] |ε|p
)2

The derivation of Equation (5.17) is given in Appendix E.

5.1.6 Simulation Case Study

In this section, we give a simulation to show the effectiveness of the new derived

estimators when the noise is asymmetric. The simulation is conducted with the

above mentioned estimators, those are

• E1 : The origin Least-squares (5.2).

• E2 : The GT Estimator (5.3).

• E3 : The modified Least-squares Estimator (5.6).

• E4 : The modified GT Estimator (5.7).

• E5 : The skew-GT Estimator (5.10).
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• E6 : The simultaneous skew-GT Estimator (5.11).

The estimate bias and the estimate variance are used to justify the performance of

each estimator.

Consider a linear in parameter system (5.1) with φ(k) = 0.9k−1 and ε(k) is

drawn from the asymmetric t3-distribution defined in [60] with location of 0, scale

of 1 and skewness of 0.1. The histogram of ε(k) is shown in Figure 5.2.

The shape parameters of {p = 2, q = 1.5, σ =
√

2} are used for Estimator E2,

E4, E5 and E6. The skew parameter λ = 0.05 is used for Estimator E5. Let θ = 1,

we run 2000 simulations with batch size of N = 60 then use the estimate variances

for comparison. The simulation results are shown in Table 5.1. Column “Ave”

is the average of the estimate; Column “Bias” is the absolute value of the average

estimate minus the true value “1”; Column “Var Exp” is the variance of the estimate

obtained from Simulation; and Column “Var Thr” is the variance calculated using

the Influence Functions and Equation (2.14).

As can be seen in Table 5.1, when the noise is slightly asymmetric ,e.g. skewness

of 0.1, the Estimator E1 and E2 provide bias results (0.19 for E1 and 0.16 for E2).

The Estimator E3 and E4 provide a remedy for bias problem by greatly reducing the

bias term (0.04 compare with 0.19 and 0.01 compare with 0.16); however, there’s

also a trade-off that is the estimate variances become greater. When the noise is

well-fitted by the skew GT, i.e. the λ is known, the estimator E5 gives the best

results with small estimate variance and almost no bias. When the skewness λ

is not well-defined, the Estimator E6 still gives good result which is about 11%
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improvement over the Estimator E4 which is the modified GT estimator.

Estimator E1 (5.2) Estimator E2 (5.3)
Ave Bias Var Exp Var Thr Ave Bias Var Exp Var Thr

θ̂ 1.19 0.19 0.53 0.53 1.16 0.16 0.29 0.28
Estimator E3 (5.6) Estimator E4 (5.7)

Ave Bias Var Exp Var Thr Ave Bias Var Exp Var Thr
θ̂ 0.96 0.04 0.79 0.77 0.99 0.01 0.41 0.41

Estimator E5 (5.10) Estimator E6 (5.11)
Ave Bias Var Exp Var Thr Ave Bias Var Exp Var Thr

θ̂ 1.02 0.02 0.28 0.28 1.00 0.00 0.38 0.36

Table 5.1: Simulation Results.

Figure 5.2: The histogram of ε(k) in Simulation Example.

5.1.7 Conclusion

In this section, we proposed an extension for the conventional estimators to deal

with the asymmetric error in the parameter estimation problem. We also introduce

two new estimators based on the skew Generalized t-distribution to achieve better

performance. Equations to predict the estimate variance are also derived. These
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Equations are useful for one to choose a suitable batch sizeN for a selected estimator

to meet a specific requirement. The proposed theory are verified by simulation

case study. However, Arslan and Genç [57] pointed out that the estimation of the

skewness λ in (5.11) is still affected by large outlier. A suggestion is to use robust

measure of skewness [61, 62] to facilitate the problem. Influence Function will still

need to be derived to ensure the performance of the estimator.

5.2 Data Reconciliation using Multivariate

Generalized t-distribution noise model

5.2.1 Introduction

In Chapter 4, we have proposed a DR estimator using the GT noise model. The

Influence Function was also derived to give the asymptotic variance of the estimate.

Robust statistics have been applied to DR problems to robustify the DR frame-

work [12, 13, 63–66]. However, DR problem requires reconcile data from multiple

inputs/nodes simultaneously and the measurements might be cross correlated [48].

In this chapter, a new DR estimator is proposed to address the noise correlation

problem by employing the multivariate Generalized t-distribution (MGT) [67, 68].

By being a natural extension of the univariate Generalized t-distribution [17], the

MGT contains all the characteristics of the GT distribution, moreover, the noise

correlation is also be considered. Hence, more accurate estimate can be achieved

by this new proposed estimator. An industry simulation case study is presented
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to support the proposed theory. However, the case of unknown covariance matrix

Σ might need to be further investigated to make it possible to apply the proposed

theory to practical systems.

5.2.2 The Multivariate Maximum Likelihood for Data

Reconciliation

The Maximum Likelihood Estimation (MLE) is one of the most widely used meth-

ods of statistical estimation. It is reported to be best under most circumstances

[33]. It is also the start point for various kinds of estimator [69]. The objective of

the MLE is to maximize the likelihood function, this is equivalent to

min J = −
N∑
k=1

log f(y(k)− x)

s.t. Ax = 0

(5.18)

where y(k), x and A are the (p×1) measurement vector, (p×1) true value vector and

the (m × p) constraint matrix, respectively. ε(k) = y(k) − x is the measurement

noise which is assumed as zero-mean noise. N is the batch size, i.e., collect N

measurements for one estimate.

To solve (5.18), the Lagrange Multipliers method is used as follows

L = −
N∑
k=1

log f(ε(k))− γAx =
N∑
k=1

ρ(ε(k))− γAx (5.19)

where γ is the (1×m) Lagrange multiplier and ρ(ε(k)) = − log f(ε(k)).

In the multivariate framework, f(ε(k)) in (5.19) is usually in form of f(s(k))

with s(k) = ε(k)TΣ−1ε(k) where Σ is the covariance matrix. Taking derivative of
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(5.19) with respect to x gives
∂L
∂x

=
N∑
k=1

∂ρ(ε(k))
∂x

− ATγT = 0

∂L
∂γ

= Ax = 0

(5.20)

where

∂ρ(ε(k))
∂x

= ∂ρ(ε(k))
∂f(ε(k))

∂f(ε(k))
∂s(k)

∂s(k)
∂ε(k)

∂ε(k)
∂x

= − 1
f(ε(k))

∂f(ε(k))
∂s(k) 2Σ−1ε(k)

Denote

ψ(ε(k)) = −ε(k) 1
f(ε(k))

∂f(ε(k))
∂s(k) (5.21)

Equation (5.20) becomes
∂L
∂x

=
N∑
k=1

2Σ−1ψ(ε(k))− ATγT = 0

∂L
∂γ

= Ax = 0

(5.22)

(5.22) is the multivariate maximum likelihood DR estimator. By solving (5.22),

the estimated value x̂ can be acquired. By similar technique as in Chapter 4, the

Influence Function of Estimator (5.22) is derived as follows

IF(z) =
(
M−1 −M−1A

(
AM−1AT

)−1
AM−1

)
2Σ−1ψ(z) (5.23)

where

M =
∫ +∞

−∞
2Σ−1∂ψ(ε)

∂ε
f(ε)dε (5.24)

Derivation of Equation (5.23) is given in Appendix F.

By using the Influence Function, [24] showed that with batch size N , the estimate

variance can be approximated by the following
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Var(x̂) = 1
N

∫ ∞
−∞

IF(z)× IF(z)Tf(z)dz (5.25)

5.2.3 The multivariate GT-based Data Reconciliation

The univariate GT distribution is first introduced by McDonald and Newey [17].

Later, Reinaldo B. Arellano-Valle [67] proposed a family of multivariate GT distri-

bution which includes multivariate t-distribution as a special case. A more general

family of multivariate GT distribution is later introduced by Arslan [68] of which

the probability density function is

f(x; µ,Σ, λ, β,q) = Cλ−p/2|Σ|−1/2 1{
q +

(
s
λ

)β}q+
p
2β

(5.26)

where

s = (x− µ)TΣ−1(x− µ)

and

C =
βΓ(p/2)qq

π
p
/2B(q, p2β )

p is the size of random variable vector x (one should note that this p is not the

p in previous chapter which is one of the shape parameters). B and Γ are the

Beta function and Gamma function, respectively. The constants {λ, β, q} are the

shape-parameters. Set p = 1, (5.26) will turn into the univariate GT distribution

[17]. By varying the shape-parameters {λ, β, q}, the multivariate GT distribution

can be transformed to various types of distribution including the multivariate skew

t distribution [70] and the multivariate normal distribution [71]. Some visual illus-
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trations of the MGT distribution with different values of {λ, β, q} are shown in

Figure 5.3.

(a) β = 0.25 (b) β = 1

(c) β = 3 (d) β = 10

Figure 5.3: PDF Plots of MGT2(0, I2, 1, β, 2) with different values of β.

Substituting f(ε(k)) in (5.26) into (5.22) gives the multivariate GT-based state-

estimator 
N∑
k=1

(
q + p

2β

)
2Σ−1ε(k) s(k)β−1

qλβ+s(k)β − A
TγT = 0

Ax = 0

(5.27)

(5.27) is the multiple non-linear equations which can be solved by Newton-Raphson

method.
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5.2.4 The multivariate Least-Square Estimator

It is known that the multivariate GT distribution tranforms to the multivariate

Gaussian distribution when β = 1, λ = 2 and q→∞ [68]. Consider the multivari-

ate GT probability density function in Equation (5.26) with β = 1 and λ = 1

f(x) = |Σ|−1/2 Γ(p/2)qq

πp/2B
(
q, p/2

) × 1

q
q
q
p/2

(
1 + s

q

)q+p/2

= |Σ|
−1/2

πp/2
×

Γ(p/2)
B
(
q, p/2

)
q
p/2 ×

1(
1 + s

q

)q+p/2 (5.28)

Note that

lim
q→∞

(
1 + s

q

)q+p/2

= exp (s)

lim
q→∞

B
(
q, p/2

)
q
p/2 = Γ(p/2)

Substituting q→∞ and the above equations into (5.28) gives

f(x) = π−p/2|Σ|−1/2 exp(−s) (5.29)

Let Σ = 2Λ, hence

Σ−1 = 1
2Λ−1

|Σ|−1/2 = 2−p/2|Λ|−1/2

s = (x− µ)TΣ−1(x− µ)

= 1
2(x− µ)TΛ−1(x− µ)

Equation (5.29) then becomes

f(x) = (2π)−p/2|Λ|−1/2 exp
(
−1

2(x− µ)TΛ−1(x− µ)
)

(5.30)
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the multivariate Gaussian probability density function [71] with the co-variance

matrix Λ = Σ/2. As (5.29) is same as (5.30), substituting (5.29) into (5.21) and

(5.22) gives

ψ(ε(k)) = ε(k) = y(k)− x
∂L
∂x

=
N∑
k=1

2Σ−1
(
y(k)− x

)
− ATγT = 0

∂L
∂γ

= Ax = 0

(5.31)

Solving (5.31) gives

λT = 2
(
AΣAT

)−1
A

N∑
k=1

y(k)

x̂ = 1
N

N∑
k=1

y(k)− ΣAT
(
AΣAT

)−1
A

1
N

N∑
k=1

y(k)

= 1
N

N∑
k=1

y(k)− ΛAT
(
AΛAT

)−1
A

1
N

N∑
k=1

y(k) (5.32)

If vector noise ε(k) is independent, i.e. Λ is diagonal, (5.32) becomes the univariate

LS estimator (4.16) [46, 48].

5.2.5 Analysis of Estimator Performance

In this section, we derive the Influence Function (IF) [2] to predict the variances of

estimate for each estimator. The IF will also tell one about the robust characteristic

of one estimator. The IF is well-studied in [2], it has been shown to be very useful

for realistic situation. IF formulas for the multivariate state-estimator (5.22) is

derived in Appendix F, in this section, the IF for the multivariate GT-based and

LS estimators are then determined.

89



IF of the Multivariate GT-based DR Estimator

Substituting f(ε(k)) in (5.26) into (5.21) gives

ψ(ε(k)) = − 1
f(ε(k))

∂f(ε(k))
∂s(k) ε(k) =

(
q +

p

2β

)
ε(k) s(k)β−1

qλβ + s(k)β

where s(k) = ε(k)TΣ−1ε(k). For the sake of brevity, we drop the suffix (k). It then

follows that

∂ψ

∂ε
=

p + 2βq
2β

 sβ−1

qλβ + sβ
Ip + 2εεTΣ−1 s

β−2
(
(β − 1)qλβ − sβ

)
(
qλβ + sβ

)2


where Ip is the identity matrix with size of p. The matrix M (5.24) is calculated as

M =
p + 2βq

β
Σ−1

∫ ∞
−∞

 sβ−1

qλβ + sβ
Ip + 2εεTΣ−1 s

β−2
(
(β − 1)qλβ − sβ

)
(
qλβ + sβ

)2

 f(ε)dε

Substituting the above Equations into Equation (5.23) gives the IF for the estimator

(5.27). Using the obtained IF, the estimate variance of estimator (5.27) can also be

approximated by Equation (5.25).

IF of the Multivariate LS DR Estimator

The IF of the Multivariate LS DR Estimator is calculated by substituting ψ(ε) = ε

into Equations (5.23) and (5.24)

M = 2Σ−1

IF(z) =
(
Ip − ΣA

(
AΣAT

)−1
A
)
z =

(
Ip − ΛA

(
AΛAT

)−1
A
)
z

Equation (5.25) then becomes

Var x̂ = 1
N

(
Λ− ΛA(AΛAT )−1AΛ

)
With the unit batch size and diagonal matrix Λ, the above equation becomes the

one given in [46, 48].
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5.2.6 Simulation Case Study

In this section, we will give some examples to show the advantage of the multivariate

GT-based estimator (5.27) over the conventional LS estimators (4.16), (5.32) and

the univariate GT-based estimator (4.7).

Consider the chemical reactor with four flows in [48]. The elemental balances define

the following constraint matrix

A =



0.1 0.6 −0.2 −0.7

0.8 0.1 −0.2 −0.1

0.1 0.3 −0.6 −0.2


The simulated measurement is generated from the multivariate t-distribution with

3 degree of freedom and the covariance matrix

Σt =



1 0.5 0.5 0.5

0.5 1 0.5 0.5

0.5 0.5 1 0.5

0.5 0.5 0.5 1


The parameters for the univariate and multivariate LS (uLS and mLS) are chosen

to be the identity matrix and the variance of the generated data respectively. The

parameters for the univariate GT (uGT) are chosen based on Figure 2.3 which gives

p1 = . . . = p4 = 2, q1 = . . . = q4 = 1.5 and σ1 = . . . = σ4 =
√

2. The parameters

for the multivariate GT (mGT) is chosen from [68] which gives λ = β = 1, q = 1.5

and Σ = 2Σt. The simulation is conducted with the batch size of N = 5 using 2000

data. The results are presented on Table 5.2 and Figure 5.4.
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Table 5.2: Estimate variances in simulation case study section

Flow # uLS (4.16) mLS (5.32) uGT (4.7) mGT (5.27) Eqn (5.25)
1 6.59 ×10−4 3.89×10−4 3.70×10−4 1.90×10−4 1.84×10−4

2 0.55 0.33 0.31 0.17 0.15
3 3.23×10−2 1.91 ×10−2 1.82 ×10−2 0.97×10−2 0.90×10−2

4 0.35 0.21 0.20 0.10 0.10

(a) Flow #1 (b) Flow #2

(c) Flow #3 (d) Flow #4

Figure 5.4: Comparison based on estimate variances of the four estimators for the
simulation case study (lower is better).

As can be seen in Table 5.2, the univariate LS gives the worst result as it not

only does not handle the long-tail distribution but also the noise correlation. The

multivariate LS aids the noise correlation problem, which gives much better re-

sults. And the univariate GT estimate aids the non-Gaussian noise. The proposed
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multivariate GT estimator takes the best of both methods resulting a significant

improvement in term of estimate variance hence estimate accuracy. A clear visual

representation of the results are shown in Figure 5.4 for illustrative purpose. More-

over, Equation (5.25) gives the variance values close to the experiment (see the last

two columns in Table 5.2). This indicates that Equation (5.25) can be used to pre-

dict the estimate variance with a chosen batch size N , hence N can be calculated

for a required estimate variance specification.

5.3 Conclusion

In this chapter, we first proposed an extension for the conventional estimators to

deal with the asymmetric error in the parameter estimation problem. We also in-

troduce two new estimators based on the skew Generalized t-distribution to achieve

better performance. Equations to predict the estimate variance are also derived.

These Equations are useful for one to choose a suitable batch size N for a selected

estimator to meet a specific requirement. The proposed theory are verified by sim-

ulation case study. However, Arslan and Genç [57] pointed out that the estimation

of the skewness λ in (5.11) is still affected by large outlier. A suggestion is to use

robust measure of skewness [61, 62] to facilitate the problem. Influence Function

will still need to be derived to ensure the performance of the estimator.

We also introduced a new DR estimator using the multivariate GT distribution

as noise model. By using the MGT distribution, the noise correlation has been

taken into account and the achieved estimate is more accurate than the one from the
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univariate estimators. Influence Function of the proposed estimator is also derived

to give an approximated estimate variance. The theory is verified by an industry

simulation example. In this work, however, there are some drawbacks. First, the

covariance matrix Σ must be known before applying the proposed estimator. Some

techniques, e.g. [72] and [73], can be used to estimate the noise covariance matrix.

Second, the Influence Function for the proposed estimator is only applicable for the

linear constraint case. For non-linear systems, the Influence Function might be very

complicated and requires further investigation.
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Chapter 6

Conclusion

In this thesis, instead of using Gaussian distribution as noise model, we take a differ-

ent approach by modeling noise using the Generalized t-distribution. This resulted

new estimators for the parameter estimation, ARMAX filtering and data reconcilia-

tion problems. The performance of our proposed estimator was validated by Monte

Carlo simulation and by experiment on couple-tank liquid level and Chemical Me-

chanical Polishing (CMP) process thickness measurements. It was found that the

proposed estimator is very reliable in handling various kinds of noise. It is also

very robust against outlier and gross error. This is because the Generalized-T dis-

tribution is very flexible in transforming into many other distributions. By being a

superset encompassing Gaussian, uniform, t and double exponential distributions,

GT distribution has the flexibility to characterize data with non-Gaussian statis-

tical properties. The simulation and experiment results also suggest that a good

understanding of measurement noise may give high accuracy of estimate.

In Chapter 2, The Influence Function of the parameter estimator using GT
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noise model was derived for the analysis purpose. With the Influence Function,

the estimate variance can be predicted, hence the batch size N can be calculated

for a require specification. We also extend the use of Influence Function to predict

the change of estimate due to one outlier. This is useful for choosing estimator

parameters to minimize the effect of outlier. The proposed theory is verified by

both simulation and experiment on CMP wafer thickness measurement.

In Chapter 3, a novel filter for ARMAX model is derived. It has been shown that

the proposed filter is very robust against the outlier. We also make use of the influ-

ence function to establish a recursive algorithm for the proposed filter. The derived

recursive algorithm significantly reduces the computational time and data storage,

which makes it applicable for practical processes. The proposed algorithm is veri-

fied by Monte Carlo simulation and experiment on couple-tank liquid measurement

model.

Chapter 4 extends the use of GT distribution to multivariate framework with

constraint where multiple input measurements need to be treated simultaneously

and the estimate must follow some physical constraints. The Influence Function

for the framework is also derived to make use of the estimate variance prediction

capability. As shown in Chapter 3, by using IF, one might find it possible to

approximate a batch estimator to a recursive estimator. The proposed estimator is

validated by simulation and experiment on CMP wafer thickness measurement.

Chapter 5 presents some preliminary works on asymmetric and correlated noise

by making use of the skewed GT distribution and multivariate GT distribution

for the parameter estimation and data reconciliation respectively. The simulation
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results suggest that with the knowledge of noise correlation, the estimate accuracy

would be vastly improved. The Influence Function is also to derived. However,

experiment verification might be needed to validate the proposed theory.

The experimental results on the Chemical Mechanical Processing wafer thickness

and the couple-tank liquid level suggests that real-life measurement noise needs not

to be Gaussian or any other known distributions; hence our proposed estimator

can easily handle them. Another point in the experiment is that even with slightly

asymmetric measurement noise, the derived estimator can still be able to handle it

with almost no loss of accuracy.

In this work, however, there are some limitations for our proposed estimator.

Firstly, only the case of known measurement noise is considered. If measurement

noise is poorly modeled, the reconciled data can be badly estimated, which will

critically affect the whole statistic analysis. Further research is needed to deal with

the case of unknown noise or un-fixed shape noise to ensure the reliability and

stability of the estimator. The main challenge is to develop an adaptive system in

which the noise model can adapt to the change of measurement noise.

Another limitation is that our proposed estimator and framework only consider

noise that is independent and identically distributed. In case of correlated or time-

variant noise, the proposed estimator may not give optimal solution. However, in

case of correlated noise, the proposed estimator still can give acceptable result,

even if it is not optimal. To address the problem of correlation noise, future studies

should include noise correlation in consideration of expanding our framework. In

the future work chapter, the multivariate DR estimator is proposed by employing
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the multivariate GT distribution as noise model. However, experiment is needed to

validate the theory, and also the estimation of covariance matrix might need further

investigation.

Our studies can also be extended to the state estimation problem as ARMAX

filtering and state estimation are similar and both are optimization problems. How-

ever, the main difficulty is that in state estimation there exists state noise which is

usually unmeasurable.
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Appendix A

Derivation of the Influence

Function (2.8) and (3.13)

By taking expectation, Equation (2.5) can be written as

∫ +∞

−∞
ψ(ε)f(ε)dε = 0 (A.1)

To study the change ∆θ̄ when the distribution changes from f(ε) to a new distribu-

tion f1(ε), replace f(ε) in Equation (A.1) by (1−h)f(ε) +hf1(ε) where 0 ≤ h ≤ 1,

giving

∫ +∞

−∞
ψ(ε)((1− h)f(ε) + hf1(ε))dε = 0

Differentiating with respect to h gives

∂

∂h

(∫ +∞

−∞
ψ(ε)((1− h)f(ε) + hf1(ε))dε

)
= 0

+∞∫
−∞

ψ(ε)(−f(ε) + f1(ε))dε+
 +∞∫
−∞

∂ψ(ε)
∂θ̄

((1− h)f(ε) + hf1(ε))dε
 ∂θ̄

∂h
= 0 (A.2)
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Let h = 0 and using Equation (A.1), Equation (A.2) reduces to

∂θ̄

∂h

∣∣∣∣∣
h=0

= −
(∫ +∞

−∞

∂ψ(ε)
∂θ̄

f(ε)dε
)−1 ∫ +∞

−∞
ψ(ε)(f1(ε))dε (A.3)

Let f1(ε) = δ(ε) an impulse function at ε and (A.3) reduces to the influence function

IF(ε) = ∂θ̄

∂h

∣∣∣∣∣
h=0

= −
(∫ ∞
−∞

∂ψ(ε)
∂θ̄

f(ε)dε
)−1

ψ(ε) (A.4)

This gives Equations (2.8) in Chapter 2 and (3.13) in Chapter 3.
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Appendix B

Derivation of the Recursive

Algorithm

To derive the equations, let

Φ(N) =



φ(1)T

...

φ(N)T



Z(N) =



z(1)

...

z(N)


It is assume that the matrix Φ(N)TΦ(N) is regular for all N . The estimate x̂ is

then given by Equation (3.14)

x̂ =
(
Φ(N)TΦ(N)

)−1
Φ(N)TZ(N) =

(
N∑
k=1

φ(k)φ(k)T
)−1 ( N∑

k=1
φ(k)z(k)

)
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Introduce the matrix

P (N) =
(

N∑
k=1

φ(k)φ(k)T
)−1

=
(
Φ(N)TΦ(N)

)−1

A recursive updating is given by

P (N)−1 = P (N − 1)−1 + φ(N)Tφ(N)

x̂ = P (N)
(
N−1∑
k=1

φ(k)z(k) + φ(N)z(N)
)

= P (N)
(
P (N − 1)−1x̂+ φ(N)z(N)

)
= x̄+ P (N)φ(N)

(
z(N)− φ(k)T x̄

)
(B.1)

where x̄ is the previous estimate of x̂. Notice that

P (N) =
(
Φ(N − 1)TΦ(N − 1) + φ(N)Tφ(N)

)−1
=
(
P (N − 1)−1 + φ(N)Tφ(N)

)−1

(B.2)

Apply of the matrix inversion relation

(D + EF )−1 = D−1 −D−1E
(
I + FD−1E

)−1
FD−1

to the expression in Equation (B.2) gives

P (N) =
(
P (N − 1)−1 + φ(N)Tφ(N)

)−1

= P (N − 1)− P (N − 1)φ(N)
(
1 + φ(N)TP (N − 1)φ(N)

)−1
φ(N)TP (N − 1)

(B.3)

Using Equations (B.1) and (B.3), the derivation for the recursive algorithm in Chap-

ter 3 is complete.
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Appendix C

Derivation of Equations (4.10) and

(4.11)

Take expectation and Equation (4.7) can be written as

aTi λ+
∫ +∞

−∞
ψ(εi)f(εi) dεi = 0 i = 1 . . . n (C.1)

To study the change ∆xi when the distribution changes from f(εi) to g(εi), replace

f(εi) by (1− h)f(εi) + hg(εi), 0 ≤ h ≤ 1, in Equation (C.1) giving

aTi λ+
∫ +∞

−∞
ψ(εi) ((1− h)f(εi) + hg(εi)) dεi = 0 i = 1 . . . n (C.2)

Differentiating Equations (C.2) and (4.8) with respect to h gives

0 =
∫ +∞

−∞
ψ(εi) (−f(εi) + g(εi)) dεi

+
(∫ +∞

−∞

dψ(εi)
dxi

((1− h)f(εi) + hg(εi)) dεi
)
dxi
dh

i = 1 . . . n (C.3)

0 = A

[
dx1
dh

. . . dxn
dh

]T
(C.4)
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Let h = 0, g(εi) = δ(εi) and substract aTi λ from both sides of Equation (C.3) gives

ψ(εi) +
(∫ +∞

−∞

d

dxi
ψ(εi)f(εi)dεi

)
IF(εi) = −aTi λ i = 1 . . . n (C.5)

A

[
IF(ε1) . . . IF(εn)

]T
= 0 (C.6)

where

IF(εi) = dxi
dh

∣∣∣∣∣
h=0,g(εi)=δ(εi)

(C.7)

Rewriting Equations (C.5) and (C.6) in matrix form −Γ−1 AT

A 0


 IF(ε)

λ

 =

 −ψ(ε)

0



where

Γ−1 = diag
{
−
∫+∞
−∞

d
dx1
ψ(ε1)f(ε1)dε1, . . . , −

∫+∞
−∞

d
dxn

ψ(εn)f(εn)dεn

}

IF(ε) =
[
IF(ε1), . . . , IF(εn)

]T

and solving it gives

IF(ε) = (Γ− ΓAT (AΓAT )−1AΓ)ψ(ε)

λ = −(AΓAT )−1AΓψ(ε)

From Equation (C.7) using Taylor series expansion

∆xi ≈ IF(εi)∆h
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To obtain the expression for the covariance matrix in Equation (4.10) under distri-

bution g(ε), set ∆h = 1 giving

E{∆x∆xT} ≈ E
{
IF(ε)× IFT (ε)

}
≈ [Γ− ΓAT (AΓA)−1AΓ]E{ψ(ε)ψT (ε)}[Γ− ΓAT (AΓA)−1AΓ]T

where

E{ψ(ε)ψT (ε)} = diag
{ ∫+∞

−∞ ψ2(ε1)g(ε1)dε1, . . . ,
∫+∞
−∞ ψ2(εn)g(εn)dεn

}

as the off-diagonal elements are zeros because for i 6= j, εi and εj are independent.
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Appendix D

Derivation of Equation (5.16)

Take Expectation of (5.10)
+∞∫
−∞

N∑
k=1

φ(k)T (pq + 1)|ε(k)|p−1sign(ε(k))
(1 + λsign(ε(k)))p qσp + |ε(k)|pf(ε)dε = 0 (D.1)

Replacing f(ε) in (D.1) by (1− h)f(ε) + hg(ε) gives
+∞∫
−∞

N∑
k=1

φ(k)T (pq + 1)|ε(k)|p−1sign(ε(k))
(1 + λsign(ε(k)))p qσp + |ε(k)|p ((1− h)f + hg)dε = 0 (D.2)

Denote

ψ(ε) = (pq + 1)|ε(k)|p−1sign(ε(k))
(1 + λsign(ε(k)))p qσp + |ε(k)|p

Differentiating (D.2) with respect to h gives +∞∫
−∞

N∑
k=1

φ(k)T ∂ψ(ε)
∂θ

((1− h)f + hg)dε
 ∂θ

∂h
+

+∞∫
−∞

N∑
k=1

φ(k)Tψ(ε)(−f + g)dε = 0

(D.3)

Note that ε(k) = y(k) − φ(k)T θ, hence ∂ψ
∂θ

= −∂ψ
∂ε
φ(k). At h = 0 and g = δ(z),

(D.3) becomes

IF(z) =
 +∞∫
−∞

N∑
k=1

φ(k)T ∂ψ(ε)
∂ε

f(ε)dε
−1

N∑
k=1

φ(k)Tψ(z) (D.4)
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where

IF(z) = ∂θ

∂h

∣∣∣∣∣
h=0,g=δ(z)

Rewriting (D.4) in matrix form gives Equation (5.16)

IF(z) = M−1ΦT (pq + 1)|z|p−1sign(z)
(1 + λsign(z))p qσp + |z|p

where M is

M = ΦTΦ
+∞∫
−∞

∂ψ(ε)
∂ε

f(ε)dε

122



Appendix E

Derivation of Equation (5.17)

Take expectation of Equation (5.11)
+∞∫
−∞

∑N
k=1 φ(k)Tψ1(ε, λ)f(ε)dε = 0

+∞∫
−∞

∑N
k=1 ψ2(ε, λ)f(ε)dε = 0

(E.1)

where

ψ1(ε, λ) = (pq + 1)|ε|p−1sign(ε)
(1 + λsign(ε))p qσp + |ε|p

ψ2(ε, λ) = (pq + 1)sign(ε)|ε|p

qσp [1 + λsign(ε)]p+1 + [1 + λsign(ε)] |ε|p
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Substituting f(ε) = (1−h)f(ε)+hg(ε) into (E.1) and differentiating it with respect

to h give

+∞∫
−∞

N∑
k=1

φ(k)Tψ1(−f + g)dε+
 +∞∫
−∞

N∑
k=1

φ(k)T ∂ψ1

∂θ
((1− h)f + hg)dε

 ∂θ

∂h

+
 +∞∫
−∞

N∑
k=1

φ(k)T ∂ψ1

∂λ
((1− h)f + hg)dε

 ∂λ

∂h
= 0

+∞∫
−∞

N∑
k=1

ψ2(ε, λ)f(ε)dε+
 +∞∫
−∞

N∑
k=1

∂ψ2

∂θ
((1− h)f + hg)dε

 ∂θ

∂h

+
 +∞∫
−∞

N∑
k=1

∂ψ2

∂λ
((1− h)f + hg)dε

 ∂λ

∂h
= 0

(E.2)

Substituting h = 0 and g = δ(z) into (E.2) and rewriting it in matrix form give
+∞∫
−∞

∑N
k=1 φ(k)T ∂ψ1

∂ε
φ(k)f(ε)dε −

+∞∫
−∞

∑N
k=1 φ(k)T ∂ψ1

∂λ
f(ε)dε

+∞∫
−∞

∑N
k=1

∂ψ2
∂ε
φ(k)f(ε)dε −

+∞∫
−∞

∑N
k=1

∂ψ2
∂λ
f(ε)dε



∂θ
∂h

∂λ
∂h



=


∑N
k=1 φ(k)Tψ1(z)

∑N
k=1 ψ2(z)


Note that ∂ψi

∂θ
= −∂ψi

∂ε
φ(k) with i = 1, 2 as ε(k) = y(k)− φ(k)T θ. From [2],

IF(z) =


∂θ
∂h

∂λ
∂h


∣∣∣∣∣∣∣∣∣
h=0,g=δ(z)

Equation (E.2) then becomes

IF(z) =


+∞∫
−∞

∑N
k=1 φ(k)T ∂ψ1(ε)

∂ε
f(ε)φ(k)dε −

+∞∫
−∞

∑N
k=1 φ(k)T ∂ψ1(ε)

∂λ
f(ε)dε

+∞∫
−∞

∑N
k=1

∂ψ2(ε)
∂ε

f(ε)φ(k)dε −
+∞∫
−∞

∑N
k=1

∂ψ2(ε)
∂λ

f(ε)dε


−1

×


∑N
k=1 φ(k)Tψ1(z)

∑N
k=1 ψ2(z)


This gives Equation (5.17).

124



Appendix F

Derivation of Equation (5.23)

Take expectation of the first Equation of (5.22) with assumption of unit batch size

∫ ∞
−∞

1
f(ε)

∂f(ε)
∂s

2Σ−1εf(ε)dε− ATγT = 0 (F.1)

Sub f = (1− h)f + hg into (F.1) and diff w.r.t h

∫ ∞
−∞

2Σ−1∂ψ(ε)
∂h

(
(1− h) + hg

)
dε+

∫ ∞
−∞

2Σ−1ψ(ε)(−f + g)dε = 0 (F.2)

where ψ(ε) = 1
f(ε)

∂f(ε)
∂s

ε. Note that

∂ψ

∂h
= ∂ψ

∂ε

∂ε

∂x

∂x

∂h
= −∂ψ

∂ε

∂x

∂h
(F.3)

Sub (F.3) into (F.2) and let h = 0

∫ ∞
−∞

2Σ−1
(
−∂ψ
∂ε

∂x

∂h

)
f(ε)dε+

∫ ∞
−∞

2Σ−1ψ(ε)(−f + g)dε = 0 (F.4)

Add ATγT to both sides of (F.4)

∫ ∞
−∞

2Σ−1
(
−∂ψ
∂ε

∂x

∂h

)
f(ε)dε+

∫ ∞
−∞

2Σ−1ψ(ε)(−f + g)dε+ ATγT = ATγT (F.5)
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Using (F.1), (F.5) becomes

∫ ∞
−∞

2Σ−1
(
−∂ψ
∂ε

∂x

∂h

)
f(ε)dε+

∫ ∞
−∞

2Σ−1ψ(ε)gdε = ATγT

At g = δ(z)

∫ ∞
−∞

2Σ−1∂ψ

∂ε
f(ε)dε∂x

∂h
(z) + ATγT = 2Σ−1ψ(z) (F.6)

Make use of the constraint in (5.20)

A
∂x

∂h
(z) = 0 (F.7)

Define

IF(z) = ∂x

∂h
(z)

(F.6) and (F.7) can be rewritten in matrix formM AT

A 0


IF(z)

γ

 =

2Σ−1ψ(z)

0

 (F.8)

where

M =
∫ ∞
−∞

2Σ−1∂ψ

∂ε
f(ε)dε

Solving (F.8) gives

IF(z) =
(
M−1 −M−1A

(
AM−1AT

)
AM−1

)
2Σ−1ψ(z) (F.9)

Equation (F.9) is the Equation (5.23).
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