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Abstract 

 

The characterization of the artificial heart valve flow fields is a crucial step to 

improve heart valve engineering. With the advancement of Computational 

Fluid Dynamics, the study of complex hemodynamics in details such as 

stagnation, recirculation zones and shear stresses can be performed on 

artificial heart valve models. The objective of this study is (1) to develop a 

prescribed motion code to study the flow through a bileaflet mechanical heart 

valve with prescribed motions in body fitted grid framework using arbitrary 

Lagrangian Eulerien (ALE) method (2) To study the effect of sinus and 

downstream geometry on the flow fields in the hinge region and the effect of 

implantation angles on the downstream flow field of bileaflet mechanical heart 

valve (3) To study the flow hemodynamic through a trileaflet mechanical heart 

valve design and compare it with that of a bileaflet mechanical heart valve 

and (4) To develop the Fluid-Structure Interaction of a rigid mechanical heart 

valve using solid body motion 

 

The 3-dimensional numerical simulation to study the hemodynamic 

performance of a bileaflet mechanical heart valve was performed using 

OpenFOAM, and was validated experimentally for both laminar and pulsatile 

flows with prescribed motion. The influence of the flow fields in the hinge 

regions by different aortic sinus shape, the downstream aortic arch geometry 

and the location of the hinge recess were investigated. Regions of high wall 

shear stress which cause platelet activation were highlighted in the study. 

Differences in the flow field contours of the four hinges were observed even 

though the leakage flow rate through the hinges had minimal variation. 

Nevertheless, the hinge should be simulated with a three-sinus aortic root 

geometry and curved downstream aortic arch since this geometry resembled 

that of native human model.  

 

The effects of implantation angles of bileaflet mechanical heart valves on the 

sinus region and downstream flow profiles were also investigated. The 

simulation results showed that the flow profile through valve implanted at 

anatomically correct position at angle 0° has more distributed flow and lower 

velocity gradient. The implantation angle affected the flow recirculation region 
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in the sinus chambers and the downstream flow. Subsequently, comparisons 

between the flow of bileaflet and trileaflet mechanical heart valves were 

made, followed by the effect of implantation angles of trileaflet mechanical 

heart valves on the downstream flow profiles. The implantation angles of 

trileaflet mechanical heart valves did not affect the downstream flow field 

much as compared to the bileaflet mechanical heart valves. The 

hemodynamics showed that the placement of bileaflet mechanical heart valve 

models in an anatomical correct position is important to minimize the high 

velocity gradients in the downstream aorta. 

 

Finally, the continuous and full interaction between the blood flow and the 

valve leaflets, using Fluid-Structure Interaction to investigate the flow through 

a bileaflet mechanical heart valve was considered and compared with the 

prescribed and experimental results. The FSI model was able to capture 

accurately flow structures at early systole when the leaflets were in motion. 

The prescribed leaflet motions were not able to replicate the important flow 

parameters during the valve motion.  

 

This research aims to provide a more accurate representation to study the 

hemodynamic parameters of artificial heart valves. The current study should 

be conducted in the pre-clinical evaluation phase for all new artificial heart 

valve design and downstream aorta geometry due to the importance of 

hemodynamic flow fields observed. The numerical study may potentially 

determine the clinical performance of the valve.  
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CHAPTER 1: BACKGROUND 

 

In this chapter, an overview of the human heart physiology, the diseases 

associated with heart valves and the existing treatments are provided. 

Specifically, the different types of artificial heart valves and the complications 

with these valves are presented. Following that, the different types of 

hemodynamic assessments of artificial heart valves are described. Finally, 

different types of studies (in vitro, in vivo and computational fluid dynamics) 

conducted to assess the artificial heart valves performances are shown. 

 

In the last 50 years, different types of artificial prosthetic heart valve have 

been implanted to replace defective heart valves. Since the first heart valve 

replacement in the 1960s, mechanical heart valve remains the most 

frequently used largely due to its durability among all prosthetic heart valves 

implanted. Of all the mechanical heart valves, bileaflet mechanical heart valve 

(BMHV) is regularly used. Despite mechanical valve being able to function 

well, patients require life-long anti-coagulation therapy after heart valve 

replacement. As early as 1970, it was shown that patients with the first 

generation mechanical heart valve suffered from decreased half-life of 

platelet destruction (Harker and Slichter 1970). Additionally, complications 

such as hemolysis, chronic platelet activation and initiation of thrombus 

formation associated with mechanical heart valve implantation have resulted 

in ischemic attacks and strokes (Bourguignon et al., 2011, Yin et al., 2004, 

Sacks 2002). Besides material properties and contact activation, 

hemodynamics performance and shear stress are believed to be the main 

causes for the complications (Shahriari et al., 2012, Dumont et al., 2007). 

Taking hemolysis as an example; as blood passes through the BMHV, valve 

leaflet act as obstruction to the flow of blood, which causes velocity jet 

through the valve orifices. The velocity jet results in elevated shear stress, 

leading to hemolysis and platelet activation. 

 

In vitro and in vivo testing of different valves prototypes have been 

conducted. In the valve design process, virtual valve prototypes are 

computer-designed and tested in the early stage. Computational fluid 

dynamics (CFD) simulation emerged as a potentially useful tool to predict the 
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hemodynamic performance of these heart valves. Most early works of CFD 

used 2-dimensional simulations or symmetrical 3-dimensional models due to 

limited computational power. 2-dimensional and 3-dimensional simulations 

provide insights into the flow pattern near peak systole Reynolds Number. 

However, in order to have a better understanding, the continuous and full 

interaction between the valve leaflets and the blood flow should be 

considered, which will be helpful in getting insight of the hemodynamics in the 

areas where it is difficult to capture experimentally. 

 

1.1 Anatomy and physiology of human heart valves 

The human heart is a four-chambered muscular pump that provides the 

circulation of blood in both the systemic and pulmonary circulatory systems 

as shown in Figure 1-1. The dynamics of blood flow and intrachamber 

pressures are different on each side of the heart. The left atrium receives 

oxygenated blood from pulmonary vein and pumps the blood to aorta via left 

ventricle. Right atrium on the other hand, receives deoxygenated blood from 

inferior and superior vena cava. The deoxygenated blood is pumped to 

pulmonary artery via right ventricle. The four cardiac valves function to 

maintain unidirectional blood flow through the chambers of the heart. These 

valves are of two types; the atrioventricular (AV) and semilunar valves. AV 

valves separate the atria from the ventricles while semilunar valves separate 

the pulmonary artery and the aorta from their corresponding ventricles.  The 

opening and closing of the valves in a synchronized manner is in response to 

the pressure and volume changes within the cardiac chambers and vessels 

(Price and Wilson 2003). 

 

The AV valves leaflets are delicate but durable. The tricuspid valve contains 

three cusps, or leaflets and is located between the right atrium (RA) and right 

ventricle (RV). The mitral valve that separates the left atrium (LA) and left 

ventricle (LV) is a bicuspid valve with two leaflets. Both semilunar valves; the 

aortic valve and pulmonic valve, are similar in configuration and prevent 

backflow from the aorta or pulmonary artery into the ventricles during 

ventricular relaxation. These four valves ensure the one-way flow of the blood 

circulation in human by opening and closing in a synchronized manner.  
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Figure 1-1: Anatomy of human heart (Mc-Graw Hill, 2014) 

 

1.2 The cardiac cycle 

The cardiac cycle describes the sequence of ventricular contraction and 

emptying (systole), and ventricular relaxation and filling (diastole). During 

each heartbeat, there is a sequence of events collectively known as the 

cardiac cycle that lasts approximately 0.86s. This corresponds to about 70 

beats per minute (bpm) for a healthy person. There are two major stages in a 

single cardiac cycle; the ventricular diastole and the ventricular systole.  

 

The cycle begins with the “late diastole” of the heart. Both semilunar valves 

are closed and both atrioventricular valves are open. The entire heart is in a 

relaxed state and blood flows down a pressure gradient from the vena cava 

and pulmonary veins into the right and left atria respectively and 

subsequently into the right and left ventricles. The ventricular pressure rises 

as more blood flows into the ventricles. The flow rate of atrial blood entering 

the ventricles decreases as the ventricular pressure reaches the level of the 

atrial pressure. The diminishing pressure gradient no longer allows blood to 

flow passively into the ventricles. This is when atrial systole occurs. The 

isotonic contraction of both atria increases the atrial pressure, forcing the 

remaining blood into the ventricles through the atrioventricular valves. As the 

ventricular pressure exceeds the atrial pressure, the atrioventricular valves 

close to prevent backflow of blood into the atria. Ventricular systole follows, 
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with the contraction of both ventricles. The atrioventricular and semilunar 

valves are all close and the ventricular pressure increases without a change 

in ventricular volume. This is also referred to as the “isovolumetric ventricular 

contraction” (Klabunde, 2011).  

 

Eventually, the semilunar valves open as ventricular pressure exceeds the 

pressure in the aorta or pulmonary arteries. Blood is ejected from the 

ventricles. This is the “ventricular ejection” phase with isotonic contraction of 

the ventricular muscles, where the aortic velocity is about 1 to 1.4ms-1, while 

ventricular and aortic pressures increase to 120mmHg. Once blood has been 

forced out of the ventricles, ventricular pressure decreases sharply. The 

semilunar valves immediately close to prevent backflow of blood from the 

aorta or pulmonary arteries. As the atrioventricular valves remain close, no 

blood flows into the ventricles as they relax – “isovolumetric ventricular 

relaxation”. The cardiac cycle ends with complete cardiac diastole where both 

atria and ventricles relax (Laberge 2002). At this phase, blood enters the left 

and right atria passively from pulmonary veins and vena cava respectively 

and the cycle repeats. Figure 1-2 shows the pressure change in left atrium, 

left ventricle and aorta at different phase of cardiac cycle. Typically, an adult 

male pumps blood at an average flow rate of 5 liters per minute. The heart 

beats about 100,000 times and pumps about 7500 liters of blood every day. 

In a life span of about 70 years, an average human heart beats more than 2.5 

billion times (American Heart Association 2012a). 

 
Figure 1-2: Cardiac cycle illustrating the pressure changes in the heart during systole 

and diastole (Klabunde, 2011) 
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1.3 The heart valves 

The heart has two distinct sides and four chambers for blood circulation. 

There are four valves located within these chambers and their roles are 

critical to ensure the proper flow of blood through the heart. When the valves 

function normally, they act as one-way valves by allowing blood to flow either 

from one chamber to another or allowing blood to flow out of the heart and 

preventing it from flowing backwards. 

 

1.3.1 Semilunar Valves 

The semilunar valves (Figure 1-3) are composed of three delicate half-moon 

shape leaflets attached to the fibrous ring located at the base of the aorta 

(aortic valve) and pulmonary artery (pulmonic valve). They have no cords but 

consist of flaps of tissue or cusps at the exit from the chamber. The rising of 

ventricular systolic pressure forces the aortic and pulmonic valve leaflets 

open. The individual cusp has a margin that is attached to the wall of the 

aorta or pulmonary artery and another free margin. The cusps are positioned 

such that a portion of their free margin overlaps the adjacent cusp. This is to 

prevent backflow of blood into the ventricles throughout the remainder of 

diastole (Price and Wilson 2003).  

 
Figure 1-3: Semilunar valves (Carson-DeWitt, 2014, Price and Wilson, 2003) 

 

1.3.2 Atrioventricular valves 

The atrioventricular valves (Figure 1-4) are located between the atria and the 

ventricles. The right AV valve (tricuspid valve) has three leaflets while the left 

AV valve (mitral valve) has two leaflets; a larger anteromedial leaflet and a 

smaller posterior leaflet. These two valves are connected by fibrous cords 

(chordae tendineae) to the papillary muscles in the chamber walls. During 
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diastole, the leaflets passively open into ventricles and form a funnel like 

shape. During systole, the leaflets spread out like an open parachute and are 

pushed upward by rising intraventricular pressure. The contraction of the 

papillary muscles during systole applies tension to the chordae tendineae 

which helps to prevent the leaflets from flipping upward into the atria (Price 

and Wilson 2003). 

 
Figure 1-4: Atrioventricular valve (WebMD, 2014) 

 

1.4 Characteristics of Human Blood 

The properties of blood are important for experimental and numerical studies 

because they will affect the behavior of heart and valves. Human blood is a 

liquid tissue comprising of plasma (55%) and cells (45%), or corpuscles. The 

various types of corpuscles include the red blood cells, or erythrocytes (99%), 

platelets, or thrombocytes (0.6-1.0%), and the white blood cells, or leukocytes 

(0.2%) (Fung, 1984). The red blood cells are bi-concave discs with a flattened 

center of about 6 – 8μm in diameter. Platelets are smaller disc-shaped, 2 -3

μm in diameter. White blood cells have irregular shapes and typically about 

twice the size of red blood cells. Plasma is a liquid intercellular material made 

up of 99% water by weight, 7% plasma proteins, 1% other organic 

substances and 1% inorganic substances.  

 

Blood is a two-phase non-Newtonian flow medium and its fluidity is measured 

over a range of shear rates, resulting in a viscosity curve for a blood sample. 

Figure 1-5 shows the shear-thinning behavior of normal human blood 

(Baskurt and Meiselman 2003).  
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Figure 1-5: Shear rate-viscosity curves for normal blood, blood in protein-free buffer 

(no aggregation) and chemically hardened blood in plasma (no deformation) (Baskurt 
and Meiselman 2003) 

 

At low shear rates (γ < 10s-1), the apparent viscosity is high due to the 

aggregation of red blood cells. Increased in shear rates will deform the red 

blood cells and eventually decrease the viscosity (Dupire et al., 2012, Chien, 

1975, Merrill, 1969, Rand et al., 1964). Blood viscosity was observed to 

decrease in tubes with small diameters (< 500μm) but since heart valves 

have much bigger diameter, this effect will not be discussed further (Fahraeus 

and Lindqvist 1931). In most literature of blood flow in large arteries and heart 

valves, blood is usually modeled as a Newtonian fluid with constant viscosity 

value and high shear rate limit viscosity of blood (μ=μ∞) (Nguyen et al., 

2012, Borazjani and Sotiropoulos 2010, Govindarajan et al., 2010, Simon et 

al., 2010, Leo et al., 2006, Ge et al., 2005, De Hart et al., 2003). Non-

Newtonian character of the blood is only important when analyzing the shear 

stress flow characteristics at low speeds. Carreau model is commonly used to 

model the shear rate dependent viscosity of blood (Morbiducci et al., 2011, 

Banerjee et al., 2008, Gijsen, 1999a, Gijsen, 1999b, Yasuda and Cohen, 

1981, Carreau, 1972).  

                                         𝜇 = 𝜇! + 𝜇! − 𝜇! 1 + 𝜆𝛾 !
!!!
!              (1.1) 

where the viscosity at high shear rate 𝜇! equals the value for the Newtonian 

model (i.e. 0.0035 Pa.s) while the value at zero shear is 𝜇! = 0.056 Pa.s. 

Also, 𝜆=3.313s, n=0.3568 and 𝛾=shear rate in s-1. (Johnston et al., 2004, Cho 

and Kensey, 1991). 
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Other models used for modeling of the non-Newtonian behavior of blood in 

the low shear rate region are Walburn-Schneck model and power-law model. 

At large flow speeds in aorta, the differences between the different models 

are reduced, especially for models such as the Carreau model that limit the 

change in viscosity at large strains (Siebert and Fodor, 2009). 

 

1.4.1 Platelet Activation and Blood Coagulation 

Platelet has been regarded as the pre-eminent cell involved in both 

physiologic hemostasis and pathologic thrombosis. Platelet activation and 

blood coagulation are complementary, mutually dependent process in 

hemostasis and thrombosis. The mechanical force that is most relevant to 

platelet-mediated hemostasis and thrombosis is shear stress. Fluid shear 

stress is the force per unit area generated by flow of a viscous liquid (Obi et 

al., 2009, Kroll et al., 1996). 1 dynes/cm2 is equal to 0.1Pa. Shear stress is 

defined as “the force per unit area between laminae” and blood flow can be 

described as an “infinite number of infinitesimal laminae sliding across one 

another, each lamina suffering some frictional interaction with its neighbors.” 

(Bird et al., 1960). Exposures to high shear stresses lasting a few 

milliseconds were known to cause platelet activation (Sheriff et al., 2010, 

Wurzinger et al., 1985). Since the blood is approximately to behave as a 

Newtonian fluid in a relatively high flow environment of the arterial circuit, 

shear stress (𝜏) in a tubular chamber with radius r and flow direction z can be 

represented by  

                                                    𝜏 = −𝜇 !!!
!"

                                                (1.2) 

where !!!
!"

 is the local velocity gradient (shear rate) and dynamic viscosity 𝜇 is 

the proportionality constant.  

 

In Figure 1-6, it is shown that blood flow in a tubular chamber generates a 

parabolic velocity flow profile, with shear rate !!!
!"

 is designated as 𝜏. As a 

result, minimum velocity and maximum shear located at vessel wall, while 

maximum velocity and minimum shear at the center of the blood flow stream. 

The difference in the velocity between the laminae of flowing blood generated 

the shearing forces. 
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Figure 1-6: Parabolic flow velocity profile of blood in a tubular chamber, with the 

difference in shear rate (Kroll et al., 1996) 
 

Wall shear stress of Newtonian fluids in a tubular chamber can be calculated 

as a function of volumetric flow rate as follows: 

                                                    𝜏! = !!"
!!!

                                                  (1.3) 

where µ is dynamic viscosity, Q is the volumetric flow rate and r is radial 

distance of the tubular chamber. The shear forces in vivo based on this 

formula can be found in Table 1-1.  

 
Table 1-1: Typical Ranges of Wall Shear Rates and Wall Shear Stresses, with 

viscosity is 3.8 x 10-6 m2s-1 (Kroll et al., 1996) 
 

Blood Vessel Wall Shear Rate (s-1) Wall Shear Stress 

(dynes/cm2) 

Large arteries 300 – 800 11.4 – 30.4 

Arterioles 500 – 1,600 19.0 – 60.8 

Veins 20 – 200 0.76 – 7.6 

Stenotic Vessels 800 – 10,000 30.4 - 380 

 

An in vitro study found that the maximum shear stress for human blood for 

platelet activation to occur was 300 dynes/cm2 (Lu et al., 2013). The 

expressions of proteins, which influence the aggregation of platelets, have 

been shown to be controlled by physiological shear. Blood elements in 

turbulent flow were found to encounter higher shear and rate of collision with 

the wall of the chambers. This led to prolonged contact with the surface. As a 

result of turbulent flow, the higher collision rate between activated and/or 

damaged blood elements caused by flow eddies and recirculation flow formed 

near the wall chambers (Tokarev et al., 2011, Smith et al., 1972). 
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1.5 Heart valve diseases 

Valvular diseases cause abnormalities in blood flow across the cardiac 

valves. In normal valves, the two key characteristics are unimpeded flow and 

unidirectional flow. The valves open when the chamber upstream to the valve 

exceeds the pressure in the chamber or vessel downstream of the valve. It 

closes when pressure downstream of the valve exceeds pressure in the 

upstream chamber. When a valve is not working, it is due to several causes. 

Regurgitation happens when the valve leaflets fail to close properly which 

allow backward flow (also known as insufficiency and incompetence). Such 

condition causes the heart to pump harder and become less efficient over 

time. Stenosis occurs when the valve orifice becomes restricted, allowing only 

a small amount of blood through the valve due to the resistance to forward 

flow (Price and Wilson, 2003). There are several causes of heart valve 

diseases, such as (American Heart Association, 2012b, Cebi and Bozkurt, 

2004, Goldsmith et al., 2002): 

• Rheumatic fever – This heart disease is caused by one or more 

attacks of rheumatic fever, which is an inflammatory condition that 

damages the heart, particularly the heart valves. The damage is 

caused by an autoimmune response which may result in the 

weakening of heart muscle, damaging the sac enclosing the heart or 

scarring of valves. Sometimes, the valves are scarred badly that they 

do not open or close normally. 

• Congenital valve disease - Inborn defects of connective tissue and 

malformed leaflets or have leaflets that are not attached correctly. 

• Ischemic heart disease – The narrowing of the coronary arteries 

cause heart ailments and reduce the blood supply to the heart.  

• Infective endocarditis – The inner lining of the heart muscle and heart 

valves (endocardium) is infected by bacteria, viruses, fungi or other 

infectious agents. 

• Atherosclerosis – Dysfunction or rupture of the papillary muscles as a 

result of thicken and stiffening of arteries walls due to plaques. 

• Other causes – Heart valve diseases may be a result of other heart 

disease such as cardiomyopathy (heart muscle disease), heart attack, 

connective tissue diseases, aortic aneurysms and high blood 

pressure.  
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Generally, both the mitral and aortic valves on the left heart have a higher 

failure rate compared to the valves on the right heart. The mitral and aortic 

valves experience blood pressure variations of 0 – 120 mmHg and 80 – 120 

mmHg respectively. Meanwhile, the blood pressure variation on the right 

chambers of the heart is typically less than 40 mmHg.  

 

1.5.1 Type of heart valve diseases 

There are several types of valvular diseases (Curtin and Griffin, 2008, 

American Heart Association, 2012b, Vahanian, 2012); mitral stenosis, mitral 

valve prolapse, mitral regurgitation, aortic stenosis, aortic regurgitation, 

tricuspid valve disease, pulmonic valve disease and compound valvular 

disease.  

• Mitral stenosis – The mitral valve orifice is narrowed that results in 

impedance of filling of the left ventricle during diastole. This build-up of 

pressure gradient across the valve during diastole causes an increase 

in left atrial and pulmonary venous pressures. It is usually caused by 

rheumatic heart disease.  

• Mitral valve prolapse – A common condition that causes the leaflets of 

the mitral valve to flip back into the left atrium during the heart’s 

contraction. The tissues of the valve become stretchy and abnormal, 

causing the valve to leak. 

• Mitral regurgitation – During systole, the blood leaks from the left 

ventricle into the left atrium. This disease is usually caused by various 

mechanisms related to structural or functional abnormalities of the 

mitral apparatus, adjacent myocardium, or both. During each 

heartbeat, the volume in the left ventricle is overloaded due to the 

significant mitral regurgitation as it has to take into account the stroke 

volume. To compensate for this, the left ventricle dilates and becomes 

hyper dynamic. 

• Aortic stenosis – The aortic valve opening narrows and restricts the 

blood flow from the left ventricle to the aorta. This affects the pressure 

in the left ventricle, as the ventricle must work harder to pump blood 

through the narrow valve opening into the aorta. The thickened wall 

allows less room for an adequate amount of blood to be supplied to 

the body. 
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• Aortic regurgitation – During each diastole, the aortic valve leaks back 

into the left ventricle, resulting in an increase in volume and pressure 

of blood. The wall of the ventricle then thickens and becomes less 

effective. Eventually, the heart may fail.  

• Other types of heart valve diesases: tricuspid and pulmonary stenosis 

and regurgitation. 

 

1.6 Treatment 

1.6.1 Medication Therapy 

The clinical progression of mitral valve disease is gradual and prolonged. 

However, the major function of drugs administered in valve disorder is to 

reduce the severity of symptoms and to prevent further complications. The 

medical therapy is not able to cure severe valve diseases. Such medication 

therapy consists of (Price and Wilson, 2003): 

• Diuretics – To lower the salt and fluid levels in the body and to reduce 

intra and extravascular volumes. It is also used to reduce congestion 

and swelling by decreasing the volume of blood that needs to be 

pumped. 

• Digoxin – To reduce the ventricular response to atrial fibrillation or to 

increase contractile force in the presence of mitral regurgitation  

• Anti-dysrhythmics – To maintain a regular heartbeat and prevent the 

occurrence of atrial fibrillation. 

• Vasodilators – To dilate venules and peripheral arterioles, to reduce 

afterload by decreasing regurgitant flow and increasing forward blood 

flow. This therapy is used to treat congestive heart failure associated 

with heart valve disease (typically valve insufficiency). 

• Anticoagulants – To prevent formation of blood clots especially when 

systemic embolization becomes a threat. 

 

1.6.2 Balloon valvuloplasty 

This technique, also known as catheter balloon valvotomy, is used 

increasingly as an alternative to surgical repair. Balloon valvuloplasty is a 

non-surgical procedure, performed in which a long balloon catheter with a 

small-deflated balloon is inserted through the skin into the blood vessels in 

the groin and guided into the chambers of the heart. A tiny hole is created in 
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the septum to provide an opening to access the left atrium. The balloon is 

inflated, which stretches the valve open to relieve some valvular obstructions. 

However, this technique will not cure valve diseases (Vahanian, 2012, 

Dumont, 2005). 

 

1.6.3 Surgical Repair 

Techniques of repairing deformities of the mitral valve have been improved 

tremendously in recent years. Mitral valve repair is generally performed to 

treat mitral regurgitation and mitral stenosis to remove calcium deposits and 

repair leaflets so that they close normally. Repair of the valve can involve 

lengthening and shortening the chordae tendineae or repositioning of the 

chordae. A prosthetic ring is inserted to the valve annulus to stabilize and 

repair the valve orifice to support an enlarged annulus. Calcification and cusp 

retraction appear to be the main adverse factors for repair procedures 

(Vahanian, 2012). Surgical repair is associated with steep learning curve and 

resulted in higher complication rates than desired.  

 

1.6.4 Valve Replacement Surgery 

Valve replacement is recommended when the valve is severely damaged or 

when aortic regurgitation and calcific aortic stenosis is observed (Vahanian, 

2012).  Existing commercial prosthetic heart valve designs can be classified 

into two groups: mechanical heart valves and bioprosthetic, or tissue valves. 

The latter is made from a combination of synthetic materials or chemically 

treated animal tissue mainly porcine in origin, whereas the former is 

manufactured entirely from synthetic materials. There are several essential 

requirements of an artificial heart valve design (Ghanbari et al., 2009): 

• The valve must fit well into the host anatomy. 

• Minimum resistance to the forward flow by the valve leaflets and open 

at a minimum trans-valvular-pressure difference. 

• Minimize thrombogenicity and damage to blood cells. 

• Guarantee appropriate sealing of the leaflets in the closed position to 

minimize backward flow. 

• Low peak stress on the valve components during cardiac cycle to 

ensure durability and minimal changes to the geometric features. 
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1.8 Types of Artificial Heart Valves 

1.8.1 Mechanical Heart Valves 

In the 1960s, Dr. Charles Hufnagel performed one of the earliest successful 

mechanical heart valve surgeries where six of the eight patients who received 

a caged ball heart valve survived the operation (Hufnagel et al., 1966). Lots of 

progress has been made in the last 50 years in the development of 

mechanical heart valves to improve its performance in reducing hemolysis 

and thromboembolic complications. Different types of mechanical heart 

valves designs are shown in Figure 1-7.  

(A)     (B)   (C)    

(D)  (E) (F)  
Figure 1-7: Types of mechanical heart valves (A) Starr-Edwards Caged ball valve, (B) 

caged disc heart valve, (C) Björk-Shiley tilting disc valve, (D) Medtronic Hall tilting-
disc (single-leaflet) valve, (E) St Jude Medical (SJM) bileaflet valve, and (F) 

CarboMedics bileaflet valve (Matthews, 2011, Chandran et al., 2012) 
 

The materials used in these valves are made from pyrolytically coated carbon 

disc, which is attached to a polyester sewing cuff. The most commonly used 

heart valve today is the bileaflet mechanical heart valve. This design 

overcomes two major drawbacks of the earlier designs such as the high 

profile configurations and excessive occlude-induced turbulence in the flow 

through and distal to the valve (Chandran et al., 2012). BMHV would be the 

focus in this study. Existing bileaflet models include St Jude Medical (SJM) 

Valve, CarboMedics Valve and ATS Open Pivot Valve. Figure 1-8 shows the 

typical structure of a BMHV, which consists of two approximately semi-

circular, hinged, pyrolytic carbon occluders leaflets. 
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Figure 1-8: Structure of Bileaflet Mechanical Heart Valve (Pick, 2014) 

 

This design allows the leaflets to pivot within the hinge made in the valve 

orifice housing. The leaflets open to an angle of 70° - 85° in fully open 

position, and provide minimal disturbance to the flow. The CarboMedics 

Valve is made of pyrolite that is durable and thromboresistance. Its two 

leaflets are radiopaque, semicircular, and open to a maximum angle of 78°. 

The SJM valve has increased internal orifice area compared to CarboMedics 

Valve available for flow, which offers an improved bulk flow hemodynamics. 

The ATS Open Pivot valve is different in the pivot design compared to SJM 

valve by inverting the pivot mechanism, which expose the pivot to bulk 

forward flow. Typical bileaflet valve designs comprise of an extension of 

leaflet fitting into a housing recess where the tendency of thrombus 

occurrence is high.  

 

One major drawback associated with the implantation of mechanical heart 

valves is the need for daily chronic anti-coagulation therapy to reduce the risk 

of thrombosis and thromboembolic complications. Patients with such 

therapies are exposed to an increased risk of bleeding, infection, and/or 

autoimmune response (Walker and Yoganathan, 1992). Blood flow through 

mechanical prostheses can lead to high turbulent stresses that may damage 

and/or activate blood elements and initiate platelet aggregation. Platelet 

aggregation can lead to thrombus formation with disastrous consequences for 

the patient. Thrombi may even detach from the valve and become lodged in a 

downstream blood vessel, thus reducing or even cutting off the blood supply 

to vital tissues. Moreover, the hemodynamics of mechanical heart valve 

differs significantly from that of natural healthy heart valve.  
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1.8.2 Trileaflet Mechanical Heart valves 

The prosthetic trileaflet mechanical heart valves strive to combine the best 

features of tissue and mechanical valves, which focus on improving the flow 

characteristics of tissue valves and increase the durability of mechanical 

valves. Trileaflet mechanical heart valves (TMHVs) are similar to natural ones 

in which the trileaflet design ensures central blood flow with a decreased in 

disturbance of blood due to the steady movements of the leaflets. The valve 

closure will also be similar to the native valves where the vorticity at the aortic 

root sinus will push the aortic valve leaflets in during diastole. The fan-shaped 

leaflets are curved to form a circular central orifice and maximize the EOA as 

can be seen in Figure 1-9. There are three small projections with smooth 

round sockets on both sides that serve as the leaflet hinges on the annulus 

ring. Triflo mechanical heart valve (Triflo Medical, Inc) is an experimental 

trileaflet prosthesis with three leaflets, nozzle-shaped and streamlined 

configuration valve orifice. The leaflet configuration provides a soft and early 

closure mechanism which is similar to the native aortic valve. The features of 

the valve include minimal regurgitation, low tendency for cavitation and 

streamlined design which minimizes flow separation. However, more 

extensive studies are required to study the long-term implantation of trileaflet 

mechanical heart valves in patients. 

(A) (B)   
Figure 1-9: (A) Trileaflet mechanical heart valves studied by Li and Lu (2012) and (B) 

Triflo Medical mechanical heart valve 
 

1.8.3 Tissue Valves 

An alternative to mechanical valves is using tissue valves that utilize the 

concept of a trileaflet configuration with one central orifice that mimics the 

design of the native valve. These valves have a lower potential for blood 

element damage than their mechanical counterparts. Porcine (manufactured 

from pig aortic valves) and bovine (manufactured from cow aortic valves) 
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valves are non-thrombogenic but are less durable compared to mechanical 

heart valves. The valve tissue is chemically stabilized and a frame made from 

synthetic materials supports the valve structure. Nevertheless, the 

mechanical properties of tissue valves appear to have limited durability, and 

they are prone to calcification due to the immune response (Manji et al., 

2014). Often, implanted tissue valves do not last for more than fifteen years, 

and reoperation is necessary. These valves tend to be recommended for 

elderly patients or when anti-coagulation is not to be used. An example of a 

tissue valve is shown in Figure 1-10. 

(A)   (B)  
Figure 1-10: Tissue valve by (A) Perimount Aortic Valve, (B) Mosaic Tissue Valve 

(Kardon, 2010) 
 

1.8.4 Transcatheter Valves 

The first percutaneous transcatheter aortic valve was implanted into the 

human in 2002 (Cribier et al., 2002). Transcatheter heart valve (THV) 

replacement is performed on heavily symptomatic patients who are unable to 

undergo open-heart surgery. THVs leaflets are of animal origins sutured 

within a crimpable metallic stent frame (Narayan and Sharma, 2012). Usually, 

these stents may be coated with a layer of expanded polyfluoroethylene 

(ePTFE) to minimize paravalvular (Lozonschi et al., 2008). The native heart 

valve is not removed but is pushed to the walls of the heart by the artificial 

valve. So far, several designs have been created and implanted into animal 

studies as shown in Figure 1-11. The design by Boudjemline et al., (2005) 

consists of bovine jugular venous valve mounted on the central part of a 2-

discs nitinol stent. Meanwhile Bai et al., (2010) developed a similar valve but 

used the porcine pericardial leaflets instead. The double-edge design of its 

nitinol stent functioned as an anchorage without the use of traumatic hooks.  
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Figure 1-11: Top (A) and lateral (B) view without the PTFE coating and leaflets, (C) 
Valve with PTFE coating and bovine jugular venous valve sutured onto the central 
tubular section by Boudjemline et al., (2005), (D) and (E) Transcatheter tricuspid 

valve by Bai et al., (2010) 
  

1.8.5 Polymeric Heart Valves 

There are attempts to develop leaflet valves from man-made materials such 

as block-copolymers or modified polyurethanes. The polyurethane (PU) 

trileaflet polymeric heart valve has been researched as an alternative to 

prosthetic heart valve (Hyde et al., 1999). The design is based on the natural 

aortic valve and is appealing from a hemodynamic perspective. Although the 

polymeric heart valve design is still in a developmental stage, preliminary 

studies have shown good forward flow hemodynamic properties, which is 

equivalent to that of a tissue heart valve and promise better durability 

comparable to that of a mechanical heart valve (Kidane et al., 2009, 

Gallocher et al., 2006, Daebritz et al., 2004). However, other animal trials 

using polymeric valves have reported problems mainly related to thrombus 

formation occurring along the stent region of the valve and tearing of the 

leaflets (Wheatley, 2001). In addition, results of long term in vivo evaluations 

have suggested that calcification could be a limiting factor to long-term 

function of polymeric valves. The leaflets and basal attachments, such as the 

commissural region of the polymer valves, have been shown to undergo 

extrinsic calcification associated with surface micro thrombi that appear to be 
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independent of structural defects, suggesting that the flow characteristics 

inside the polymeric valve may be a contributor to the observed blood clots. 

An example of polymeric heart valves made from polycarbonatuerethane 

(PCU) is shown in Figure 1-12. 

 
Figure 1-12: The ADIAM® PCU valve for aortic position (Daebritz et al., 2004) 

 

1.9 Complications with Artificial Heart Valves 

There is no ideal heart valve currently available in the market. These artificial 

heart valves are still exposed to risks of thrombosis and thromboembolism, 

pannus tissue overgrowth, infection, anti-coagulant related hemorrhage, and 

valve failure due to material fatigue or chemical change (Whitlock et al., 2012, 

Starr et al., 2002, Yoganathan, 2000, Korossis et al., 2000,).  

 

1.9.1 Valve Thrombosis 

Valve thrombosis occurring in patients with hemodynamic instabilities will 

decrease the disc movement and reduce the orifice area by encapsulating the 

valve. In most cases, the thrombus formation prevents the valve from opening 

or closing properly, leading to stenosis and flow regurgitation. In Figure 1-13, 

the bilateral thrombus were found at the hinge mechanism area that has led 

to both leaflets to be fixed in the slightly open position in a SJM valve while a 

massive thrombus fills the valve pockets on the outflow area of the tissue 

valve, leading to prosthetic valvular stenosis. 
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(A)   (B)  
Figure 1-13: Thrombus formation on (A) SJM bileaflet valve,  

(B) Tissue porcine valve (Rose 2008) 
 

1.9.2 Structural Failure 

The risk of embolization increases when implanted with artificial heart valves. 

Fracture embolization of a mechanical valve is uncommon since the valve is 

durable and semi-permanent. However, if it fails, it is potentially fatal and will 

lead to acute severe valve regurgitation and subsequently heart failure. 

Nevertheless, leaflet fracture embolization, which relates to mechanical 

failure, may occur due to the structural fragilities. A case of fatal Edward-

Duromedics mechanical mitral valve leaflet fracture embolization implanted 

20 years ago was reported in Korea (Lee et al., 2011). The patient suffered 

from severe acute heart failure and shock. Only one leaflet remained as seen 

in Figure 1-14 and the patient died due to low cardiac output and cardiogenic 

shock. Another unique example of mechanical heart valve failure was the 

Björk-Shiley convexoconcave valve, which was implanted in approximately 

86,000 patients between 1978 and 1986. The design resulted in an 

unanticipated increase in stress which led to outflow strut fracture and disc 

migration (Blot et al., 2005).  

 
Figure 1-14: Damaged 31mm Edwards-Duromedics mechanical valve showing the 

remaining leaflet (Lee et al., 2011) 
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Structural failure for tissue heart valves occurs usually within 10 – 15 years. 

When the valves fail, it is usually due to a rupture or tear in one or more of the 

valve leaflets and/or the calcification of the leaflets. The failure of tissue 

valves is particularly high in patients below 40 years old. In a case reported in 

Japan, a patient was admitted with acute high failure. She had been 

diagnosed as having severe mitral stenosis and had undergone valve 

replacement with a 27mm Carpentier-Edwards mitral pericardial valve. The 

cause of the severe mitral regurgitation was found to be a tear in one of the 

leaflets of the tissue valve, as seen in Figure 1-15. Calcification was also 

observed on the leaflets (Ito et al., 2011). 

 

 

 

 

 

 

 

 

 
Figure 1-15: A view showing a tear in leaflet 1 (Ito et al., 2011) 

 

1.9.3 Regurgitation 

Tissue valves may cause a small amount of regurgitation due to incomplete 

closing of the leaflets. A patient was reported to have hemolysis and transient 

prosthetic valve regurgitation occurred in the early stage after valve 

replacement with a Carpentier-Edwards pericardial bioprosthetic (Sezai et al., 

2005). On the other hand, paravalvular regurgitation is an uncommon but 

important complication resulting from valve replacement surgery. The 

reported incidence ranges from 18–48%  of patients with a mitral or aortic 

prosthesis. Generally, the leaks are mild and do not progress beyond a two- 

to five-year follow-up (Rallidis et al., 1999, O’Rourke et al., 2001). Patients 

with mild to moderate paravalvular leakage may have a mild hemolytic 

anemia while in serious cases; patients may have severe anemia or heart 

failure. Such cases should be treated with surgical procedures or valve 

replacements.  
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1.9.4 Calcification 

Calcification remains a major cause of clinical failure when deposits of 

calcium phosphates or other calcium-containing compounds form on 

cardiovascular devices. The causes of heart valve calcification are due to 

host factors, mechanical effects, and fixation conditions. Calcium phosphates 

deposit and occur more frequent at regions of stress concentrations in cusps 

(Vyavahare et al., 1997). The hemodynamic function of the polymeric heart 

valves will be affected when high calcium phosphates deposit on the valve 

surface. This often leads to valve obstruction and subsequently stiffening of 

leaflet cusps (Otto, 2002). Studies have shown that higher tendency of 

calcification occurs at the commissural region of the valve leaflets. This is 

mainly due to the high deformations and strains that occur in this region due 

to the valve movements (Corden et al., 1995). In addition, the abnormal flow 

patterns due to elevated shear stresses may induce leaflet calcification and 

tear in polymeric and tissue valves (Dasi et al., 2009). Figure 1-16 shows the 

calcification of a Hancock porcine aortic valve prosthesis which produced 

severe mitral stenosis.  

 
Figure 1-16: Calcification of a Hancock porcine valve (Rose, 2008) 

 

With all these problems associated with existing artificial heart valves, it is 

difficult to create replacement valve with same anatomical and functional 

characteristics of a native valve. Nevertheless, polymeric valves can be 

designed in any shape and with different types of materials. There have been 

major factors such as long term biocompatibility issues and material 

degradation, which limit the success of polymeric heart valves. Even though 

there are no polymeric heart valves currently available in the market, 

polymeric materials are increasingly researched in heart valves development 
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because of their wide variety of functions. Modifications of materials would 

result in substantial improvement in the long-term biostability and 

biocompatibility. Improving the valve design can reduce the stresses in the 

leaflets. There have been improvement works to reproduce the behavior of 

native valves such as the long-term performance and durability (Kuan et al., 

2011).  

 

1.10 In vitro Study of Valve Performance 

In vitro studies are conducted to determine the performance of artificial heart 

valves. Many of these valves have been tested in vitro under pulsatile flow 

conditions for the hydrodynamic functions.  

 

In vitro studies have shown that a centralized flow with a relatively flat profile 

comparable to that of tissue and native heart valves was generated by 

polymeric heart valves. The flow patterns of four different trileaflet 

polyurethane heart valves were compared to the Hancock porcine heart valve 

and Ionescu-Shiley pericardial valve by measuring the down-stream velocity 

distributions using Laser Doppler Anemometry or also known as Laser 

Doppler Velocimetry (LDV) (Herold et al., 1987). It was observed that the 

velocity distributions at peak systole were very similar between the 

polyurethane valve and Hancock prosthesis. Both flow fields could be 

characterized as a triangular jet-flow, with the recirculation areas located near 

the right aortic wall downstream of the stent post and in the opposite sinus 

cavity. However, flat plug type flow was observed for the Ionescu-Shiley 

valve. The flow was positive with recirculation in the aortic sinus cavity and 

one small transient recirculating vortex near the right aortic wall. Overall, the 

flat flow profile of polyurethane valves was similar to those of the native and 

tissue valves with vortex formation observed behind the leaflets in the sinus 

cavity.  

 

D’Souza et al., (2003) characterized the turbulence and velocity waveforms 

distal to several trileaflet polymeric heart valves with varying degrees of 

stenosis. They observed that the orientation and shape of the spatial velocity 

profile in a polyurethane heart valve depicted the effect of the constriction 
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caused by the valve leaflet in a similar manner to that observed in tissue 

valves.  

 

In another study, the flow dynamics of two polyurethane valves were 

investigated; one with leaflets bound to the edge of the supporting stents (PU-

I) and the other with leaflets mounted outside the stents (PU-II) (Chandran et 

al., 1989). The PU-II valves had larger inlet EOA diameter with a smaller 

tissue annulus diameter, which provided more unobstructed area for blood 

flow. Such valve design was also found to reduce the maximum turbulent 

shear stresses distal to the valves, which appeared more advantageous. 

Furthermore, the turbulent shear stress in the PU-II valve was half that in the 

PU-I valve showing that the increase in orifice diameter can help reduce the 

turbulent shear stresses and corresponding damage to blood elements. 

When compared to tissue valves, polymeric valves have larger turbulent 

shear stresses. The orifice diameters in polymer valves are usually smaller 

than those in tissue valves, and as a result, polyurethane valves have larger 

observed velocity magnitudes and larger velocity gradients than the tissue 

valves.  

 

There were studies which have shown that the trileaflet design was more 

efficient than double or quadruple arrangements (Cheeta and Llyod 1980, 

Jansen et al., 1991, Leat and Fisher 1995, Mackay et al 1996), and that the 

maximal stresses in these trileaflet configurations were found near the 

commissural attachment, which was consistent with other synthetic and 

tissue valves (Leat and Fisher 1995). Corden and team calculated the 

bending stresses and strains at the free leaflet edge by measuring the 

curvature and the study showed that the highest curvatures occurred at the 

commissural regions when the valves were fully open (Corden et al., 1995).  

 

There are several flow visualization techniques used to measure the flow 

profiles of in vitro studies of artificial heart valves. One flow visualization 

technique includes the hydrogen bubble techniques which is based on the 

electrolysis of water. Hydrogen bubbles are formed at the cathode and 

oxygen bubbles are formed on the anode when electrodes are inserted in the 

fluid and a voltage is applied to the electrodes. All kinds of flow streak lines 
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and time can be obtained by isolating some parts of the electrodes and by 

varying the voltage level. Another technique is through photochemical 

reaction where a visible tracer (dye) is produced in the fluid by focusing a 

laser to produce a dye along a line in a fluid. Typically, the fluid should not be 

disturbed at all (Post and van Walsum, 1993). 

 

Laser Doppler Velocimetry uses the Doppler shift in a laser beam to measure 

the velocity in fluid flows. Two beams of monochromatic and coherent laser 

light intersect in the flow field of the fluid to be measured. Usually, the two 

beams are obtained by splitting a single beam. This ensures the coherence 

between the two beams. Particles in the fluid will reflect light, which is then 

collected by a photo detector. One disadvantage of LDV is that the sensors 

are range-dependent and have to be calibrated precisely. LDV only allows 

measurement of velocity only at a particular point 

 

The most commonly used flow visualization technique is Particle Image 

Velocimetry (PIV). It is a technique to provide instantaneous velocity vector 

measurements and related properties in a cross-section of a fluid flow. The 

fluid is seeded with sufficiently small tracer particles, which are assumed to 

follow the flow dynamics. The flow is illuminated with a sheet of double-

pulsed laser and the movement of particles between the pulses is measured. 

The most commonly used laser sources is the pulsed Neodyme-YAG 

(Nd:YAG) laser, doubled in frequency at 532nm. The pulse duration Δt is 

usually 5-10ns, and repetition rate is on the order of 10Hz.  The laser energy 

used in PIV typically can reach 400 mJ/pulse. The PIV systems are made of 

two independent laser cavities. However the laser sheets illuminate the exact 

same area by superimposing the laser beams in the near and far-fields. A 

camera is used to capture the images, typically digital image recording via a 

Charge-Coupled Device (CCD) sensor, which converts photons to an electric 

charge based on the photoelectric effect. The CCD sensor consists of many 

individual sensors that are arranged in a rectangular array, with size of about 

10×10μm (Brossard et al., 2009). The captured motion of the seeding 

particles will be used to calculate speed and the velocity field of the flow. PIV 

can produce two or three dimensional vector fields. The individual particles 
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within an image can be identified with PIV. Figure 1-17 shows the concept of 

PIV.  

 
Figure 1-17: PIV system (Dantec Dynamics, 2011) 

 
 

Leo and colleagues performed LDV and PIV studies of three Aortech 

polymeric heart valves investigating the effect of commissural design and 

leaflet thickness on the hemodynamic performance of the heart valves (Leo 

2005). These studies indicated that leaflet thickness and commissural design 

could influence the thrombogenic potential of tri-leaflet polymeric valves. The 

studies, as seen in Figure 1-18, identified the following regions of high shear 

stress and high velocity flow in the three polymeric heart valves: 1) the 

leakage jet inside the valve during diastole; 2) the trailing edge of the valve; 

3) the vortex ring surrounding the forward jet during the acceleration phase; 

4) the edge of the central orifice jet, which extended from the inside of the 

valve into the distal part of the flow chamber; and 5) the distal region of the 

flow chamber where turbulence mixing occurred during systole. 
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Figure 1-18: Velocity fields at the center plane of an Aortech polymeric heart valve 

during peak systole. Velocity central orifice jet of 2.3ms-1 was observed issuing from 
the valve orifice with flow separation occurring at the trailing edge of the leaflet. Plug 

flow profile was evident at the immediate downstream of leaflet trailing edge and 
became more parabolic at the distal end of the flow chamber (Leo, 2005)  

 
Using flow visualization, several studies have demonstrated that trileaflet 

tissue valves produced jet-type flow fields like those observed in the 

polymeric heart valves (Woo et al., 1983, Yoganathan et al., 1983, 

Yoganathan et al., 1986). Under the same CO, valves with larger orifice sizes 

tend to have reattachment points closer to the trailing edge of the valve 

leaflet. Reattachment of the orifice jet occurred at different downstream 

locations in the upper and lower parts of the flow chamber. This observation 

was attributed to the asymmetric nature of the central orifice jet.  

 

Table 1-2 compares the Reynolds shear stress values and peak velocities of 

previous valve studies and the polymeric valve experiments in the study by 

Leo (2005). The peak Reynolds shear stress levels at downstream of all the 

valves during systole was found to be between 1,000 – 2,900 dynes/cm2. In 

the study, typically, elevated Reynolds shear stress levels were observed 

along the edge of the central orifice jet and spread out over to a wider area 

further downstream from the valve as the energy of the central jet becomes 

dissipated. Reynolds shear stress in excess of 200 dynes/cm2 were producd 

by all the aortic valves during the majority portion of systole. Therefore, it was 

obvious that the elevated Reynolds shear stress levels could potentially lead 

to sub-lethal and/or lethal damage to the blood elements (Leo, 2005). 
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Table 1-2: Comparison of the velocity magnitudes and Reynolds shear stresses from 
different trileaflet valve designs (Leo 2005) 

 

 

1.11 In vivo Valve Performance on Animal Models 

Pre-clinical assessment for artificial heart valves includes in vivo testing in 

animal models. Animal models are good at evaluating anti-calcification 

strategies in polymeric heart valves. Typical animal studies involve both 

subdermal (rat) and circulatory (sheep or calf) implants. Sheep is widely use 

 

 

Effective 

annular orifice 

diameter (mm) 

Maximum phase 

averaged velocity 

during systole 

(ms-1) 

Maximum phase 

averaged shear 

stress during 

systole 

(dynes/cm2) 

Carpentier-Edwards 2625 

porcine valve (27 mm) 

23.0 3.3 4,500 

Hancock modified orifice 

porcine valve (25 mm) 

21.8 3.0 2,900 

Ionescu-Shiley pericardial 

valve (27 mm) 

23.4 2.3 2,500 

Carpentier-Edwards 2650 

porcine valve (27 mm) 

25.0 2.0 2,000 

Hancock II porcine valve  

(27 mm) 

24.0 2.6 2,500 

Hancock pericardial valve 

(27 mm) 

23.3 1.8 2,100 

Ionescu-Shiley low profile 

pericardial valve (27 mm) 

23.0 2.2 2,400 

Carpentier-Edwards 

pericardial valve (27 mm) 

25.7 1.8 1,000 

Abiomed (21 mm) 18.6 3.7 4,500 

Abiomed (25 mm) 22.8 2.2 2,200 

Aortech prototype A  

(23 mm) 

23.0 2.8 

 

8,347 

 

Aortech prototype B  

(23 mm) 

23.0 2.5 

 

1,725 

 

Aortech prototype C  

(23 mm) 

23.0 2.3 1,327 
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to investigate thromboembolic complications as it is generally less 

thrombogenic than humans. Meanwhile, in an extreme calcification model, a 

growing calf model is used as it is more thrombogenic than sheep, due to the 

extreme hemodynamic workload and fast growth (Schoen et al., 1992). 

 

In animal studies performed in the 1950s, polyurethane trileaflet valves were 

implanted in dogs. However, most dogs only survived for a few hours post 

operation (Akutsu et al., 1959). Years later, a study on calves were conducted 

by comparing various polyurethane valves with two Ionescus-Shirley bovine 

pericardial valves. The study demonstrated that polyurethane valves have 

similar advantages to tissue valves in term of thrombus formation (Herold et 

al., 1987). However, all explanted valves were calcified and thrombosed, 

which was likely due to the severe hemodynamic and surface alterations by 

the calcium deposits on the upstream and downstream sides of the leaflets. 

 

Polyurethane valves were assessed in vivo in a growing sheep model and 

showed good comparison with tissue valves and other mechanical valves 

(Wheatley et al., 2000). The hemodynamic performance was better than the 

tissue valves and lower thrombogenicity when compared to mechanical 

valves. The team found that high intensity transient signals (HITS) were less 

frequent in either the porcine or the polyurethane valve groups than the 

mechanical valve group. There was also a relationship between the HITS 

count and platelet aggregation in the valves, suggesting that these 

phenomenons were related and that changes in valve factors, such as 

reduction in flow orifice area, that tend to increase valve thrombogenicity 

could also increase the number of HITS. However, three of the eight valves 

showed serious thrombosis, which highlighted a concern as sheep are less 

thrombogenic than humans.  

 

In a research conducted by Daebritz et al. (2003), PCU valve prostheses 

meant for mitral position showed great durability and hemodynamic 

performance in vivo when implanted in a growing calf model for 22 weeks. 

When implanted correctly, the valve showed minimal degradation of material 

and pathological findings showed that animals with PCU valves did clinically 

better than those with Perimount and Mosaic commercial valves. Minor 
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thrombus deposits were observed at the commissural regions of the SPU 

valves, but the tissue valves showed moderate to severe thickening and 

deformation of the leaflets. One tissue valve in the mitral position was 

completely covered by a huge thrombus.  

 

The ideal artificial heart valve which has both the blood compatibility and flow 

hemodynamics of a tissue heart valve prosthesis, and the durability of a 

mechanical prosthesis, does not exist. In the recent years, studies have 

focused on the trileaflet mechanical heart valve which has several key design 

features, such as minimal flow disturbance and flow stagnation around the 

hinge region, central flow and durability. In a study by Sato et al., (2003), the 

blood compatibility of a 29mm Triflo MHV in the mitral position of eight calves 

was evaluated for 5 months without any post-operative anticoagulation and 

exhibited excellent results. Another study by Gallegos et al., (2006) also 

showed the equivalent safety levels and performance of Triflo MHV compared 

to the standard SJM BMHV when implanted in the aortic and mitral positions. 

The valve was implanted in 26 sheep and allocated to 150- and 365-day 

survival cohort. The Triflo valve appeared to emulate the hemodynamic 

properties of the native tissue valve compared to the traditional bileaflet 

design. However, more studies have to be performed to evaluate the long 

term outcome on the effectiveness of TMHV. 

 

Both in vitro and in vivo experiments are expensive to setup. Most of the 

setups vary from one another and difficult when results are compared. In vitro 

testing allows valve to undergo tests to characterize its performances in the 

following hemodynamics performances: steady flow pressure gradient, 

dynamic function visualization and energy loss, static competence and 

dynamic regurgitation (Herold et al., 1987). However, the disadvantage of in 

vitro experimental studies is that it can be challenging to match the 

physiological conditions and many assumptions are made. For in vivo testing, 

Herold et al. (1997) also conducted in vivo testing by implanting the valves in 

35 animals over 3 ½ years. Such long period of testing is expensive and not 

desirable if the valve is still in the design refinement phases.  
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With the advancement of computational power, much attention has been 

given to CFD as a potentially promising alternative to investigate the 

hemodynamics within the heart valves. There are various flow characteristics 

that are of concern when accessing the hemodynamic performance of heart 

valves such as high shear stress, cavitations, stagnation point and high 

separation flow. The application of computational model enhances the 

development of improved artificial valves by significantly reducing the number 

of experiments required and giving insight in system responses that cannot or 

hard to be obtained experimentally.  

 

1.12 Computational Fluid Dynamics of Heart Valves 

A detailed description on the CFD analysis will be presented in Chapter 3. A 

numerical study was performed by Ge et al., (2005), where full 3-dimensional 

flows over BMHV were investigated at different Reynolds numbers. The study 

simulated two flow conditions through aortic position at Re=750 

corresponding to the flow at unsteady laminar regime, and Re=6000 

corresponding to the flow near peak-systole which is fully turbulent. For 

turbulent flows, the unsteady Reynolds Averaged Navier-Stokes (URANS) 

and detached eddy simulation (DES) models were employed. The study 

shows triple-jet structure and the switching of central orifice jet from horizontal 

axis to vertical axis. However, pulsatile effects and leaflet motions were not 

considered. Figure 1-19 shows the axis switching of central orifice jet. 

 
Figure 1-19: Plan view of streamwise velocity contours showing the axis switching of 

central orifice (Ge et al., 2005) 
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There are several challenges in CFD simulations such as the complex 

geometry, leaflet motion and flow unsteadiness. Studies have been done to 

investigate the wall shear stresses in the clearance region with the leaflets in 

closed position (Lee and Chandran, 1995, Reif, 1991). Nevertheless, the 

effect of leaflet motion was neglected. Bluestein et al., (1994) performed a 

simulation of the motion of leaflets for the last few degrees of motion during 

valve closure. Another study was conducted using a prescribed valve motion 

in a simplified flow domain (Aluri and Chandran, 2001). It was reported that 

the simulation with leaflet motion was simplified by restricting it to a 2-

dimensional model. Lai et al., (2002) also used a 2-dimensional model with a 

prescribed motion of the leaflets obtained from experimental data. 

 

In 1994, Bluestein et al., studied the squeeze flow phenomenon at the closing 

phase of BMHV. Cavitation is a phenomenon that occurs when “local 

pressure in the flow field falls below the vapor pressure of the field”, resulting 

in “small vapor bubbles formation”. Usually, these bubbles last for only 

microseconds before they are destroyed when entering high-pressure region. 

The violent collapse process, also known as implosion induces erosion to the 

surface and rupture of blood cells. Several factors contribute to mechanical 

heart valve cavitation, including regurgitant leak flow between valve leaflet 

and valve body, reduced pressure in accelerating flow, negative pressure 

generated at downstream surface of the leaflet when the valve suddenly 

closes and the squeeze flow pattern during valve closure. A laminar fluid flow 

of velocity magnitude as high as 14.17ms-1 was observed in the simulation, 

when the fluid squeezed through closing of BMHV (Bluestein et al., 1994). 

The study suggested that cavitation could cause damage to the formed 

elements of blood and increased the risk of thromboembolic complications.  

 

Yin et al., (2004) conducted experiments in vitro to quantify platelet activation 

induced by flow through monoleaflet (Björk-Shiley) and bileaflet 

(CarboMedics) valves. Also, flow patterns that may induce platelet activation 

were predicted using CFD simulations. The study employed 2-dimensional 

simulation of Non-Newtonian flow with valve 15° off the flow axis. The 

simulation focused at the moment when the leaflet was in the fully open 

position during flow deceleration following peak systole when shed vortices 
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started to appear. This study was able to show the difference in the shear 

stresses between the bileaflet and monoleaflet valves. However, it did not 

consider the contribution of other cardiac cycle flow phases, such as, leaflet 

closure, regurgitant flow during diastole, and effects of flow in the valve hinge 

region. Figure 1-20 shows shed vortices developed in the valve area after 

peak systole.  

 

Despite numerous advantages, there were still drawbacks associated with the 

BMHVs, which include platelet activation, thromboembolic complications and 

hemolysis. These complications were often associated with non-physiological 

high fluid shear stresses imposed on the blood elements through the BMHVs, 

particularly in the hinge recesses about which the leaflets pivot (Ellis et al., 

1996, Ellis et al., 2000, Lu et al., 2001). 

 
Figure 1-20: Shed vortices developed in the valve area after peak systole (Yin et al., 

2004) 
 

Many in vitro studies have been conducted to characterize the flow field 

inside the hinge regions in order to better understand the relationship 

between the thromboembolic complications and hinge designs (Ellis et al., 

2000, Kelly et al., 1999, Leo et al., 2002). Many of these studies mainly 

captured 2-dimensional velocity fields at selected locations within the hinge 

recess (Elllis et al., 1996, Saxena et al., 2003, Simon et al., 2004). One major 

challenge faced by the experimental studies is the limited optical access to 
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the small hinge regions, which is made worse by the moving leaflet and 

opacity of the actual BMHV implants. Therefore, in recent years CFD has 

emerged as a potentially promising alternative to investigate the hinge 

microflow field.  

 

An earlier CFD study conducted by Wang et al., (2001) on a protruded hinge 

design was conducted on fixed and fully open leaflets under steady flow. 

Small vortices were observed behind the protruded stopper and reverse flow 

was evident inside the hinge socket. In another computational simulation, the 

hinge flow field of a 25mm ATS valve placed under aortic flow condition was 

studied (Kelly et al., 1999). Here, the authors assumed a simplified sinusoidal 

pulse wave and modeled only the forward flow phase. In recent years, more 

complex 3-dimensional hinge simulation studies were conducted: Simon et 

al., (2010) studied the microflow field characteristics of one hinge of a SJM 

valve at the aorta position in a straight pipe with an axisymmetric expansion 

sinus region while Yun et al., (2012) studied the blood damage in the hinge 

area during diastolic phase in a straight pipe. The study observed high 

reverse flow and elevated wall shear stress in the hinge regions. In the survey 

of past hinge microflow studies, it was observed that most studies focused on 

one hinge recess, which was based on the assumption of flow symmetry 

across the valve. However, this assumption may mask the actual variations in 

hinge microflow fields at the different location of a BMHV.  

 

All mechanical heart valve designs encounter leakage flow upon the valve 

closure. The space between the leaflets and the valve housing is to ensure 

the leaflets can freely open or close with minimal pressure difference across 

the valve. However, this free space inadvertently becomes regions of high 

leakage flow when the valve closes. Experimental studies have shown that 

the BMHV hinge regions were prone to high Reynolds shear stresses and 

have blood flow velocity exceeding 4ms-1. The observed high Reynolds shear 

stress may predispose the valve to higher incidence of hemolysis and platelet 

activation in the hinge regions.  

 

Another area of interest is the angle of implantation of artificial heart valves. 

Usually, surgeons use as large an artificial heart valve as possible to fit into 
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the annulus. Tight suturing of the valve to the native human annulus may 

distort the surrounding tissues. One of the key issues that have not been 

studied extensively in earlier works is the impact of valve implantation 

orientation on the prostheses’ performance on the sinus shape and 

downstream geometries. Often, the orientation of the implanted BMHVs is 

dependent on the discretion and skill of the surgeons. It has been found in 

earlier studies that both the valve type and implantation orientation affect the 

valve performance (Kleine et al., 1998, Kleine et al., 2002, Borazjani and 

Sotiropoulos, 2010). Studies have shown that there were differences in 

pressure drop across the valve and turbulent Reynolds stresses in an in vitro 

model when valves were implanted in different orientations (Travis et al., 

2002). Most of the valve models used in earlier CFD studies consisted of an 

axisymmetric sinus chamber in a straight pipe (Nguyen et al., 2012, Simon et 

al.,, 2010, Dumont et al., 2007, Ge et al., 2005) or the Valsalva sinuses in a 

straight downstream pipe (Nobili et al., 2008). These earlier simulations setup 

may not be physiological relevant as compared to a curved aortic arch 

downstream. 

 

Results of the numerical study conducted by Hong and Kim (2011) showed 

that the rotation angle of BMHV increased the degree of asymmetry in the 

blood flow. In their study, the valves were placed at three different rotation 

angles of 0°, 15° and 30°. The flow recirculation regions were different among 

different sinuses, leading to asymmetrical blood flow near the heart valve 

leaflets. An in vivo study conducted by Kleine et al., (2002) demonstrated that 

the turbulences downstream of both Medtronic and SJM valves changed 

significantly with rotation, although they found that Reynolds stresses 

downstream in the supravalvular aorta were less susceptible to change in 

SJM valve orientations (Kleine et al., 1998). Another numerical study 

conducted by Borazjani and Sotiropoulos (2010) which used three 

implantation angles (0°, 45° and 90°) found that the valve orientation did not 

have a significant effect on the hemodynamic stresses experienced by blood 

elements. In their simulations, the leaflets model was simplified and the hinge 

mechanism connecting the leaflets and the valve housing was neglected. 

Nevertheless, limited studies have been conducted to look at the impact on 
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the downstream flow of different sinus geometry and downstream anatomy 

due to different valve orientation.  

 

In the numerical study of TMHV, Kaufmann et al., (2011) simulated a flow 

through a Triflo MHV and analyzed the pressure and shear stress rates for 

each leaflet position to investigate the thrombus formation. The mesh 

consisted of approximately 900,000 tetrahedral elements and only 1/6 of the 

geometry was simulated, which was the smallest symmetrical element. One 

complete cycle of the valve was simulated and performed using ANSYS CFX 

11.0. Li and Lu (2012) used a new trileaflet valve design and simulated the 

flow using Fluent 6.3 and compared with the SJM BMHV. The mesh of the 

trileaflet valve was about 540,000 elements and simulated using k-ω 

turbulence model. The flow in the TMHV was mainly central compared to 

obstructions in the BMHV. However, the turbulence model and boundary 

conditions were simplified to ideal conditions.  Esquivel et al., (2003) also 

simulated the flow through and found similarities, with the central flow through 

a TMHV account for 86–95% of the total flow. Limited simulations were 

performed to understand the flow profile in the downstream regions of TMHV 

and compared with BMHV. 

 

1.12.1 Turbulence Modeling in CFD 

When the flow reaches a certain Reynolds number, the flow goes from being 

laminar to turbulent. Turbulence is a three dimensional and highly transient 

continuum phenomenon in which fluid irregular motions are described in a 

continuously wide range of scale, from the smallest turbulence eddies (or 

eddies of turbulence) defined by Kolmogorov scales to the largest eddies 

characterized by the particular flow and these eddies carry most of the 

turbulent kinetic energy. The Reynolds number for most of pulsatile 

cardiovascular flows ranges from 0 to around 104 based on vessels geometric 

configuration. The pulsatile fluid flow downstream of mechanical heart valves 

transforms from laminar to turbulent over the cardiac cycle.  

 

The scale distribution of the large coherent “noisy” eddies agrees very well 

with the phenomenological predictions of Kolmogorov, which assumes that 

the turbulent energy content of isotropic (invariant under rotation) turbulence 
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is dependent only on the rate of energy dissipation, at which the smallest 

scales of turbulence convert motion into heat and the wave number, k, 

(proportional to the inverse of the eddy length scale). This implies that 

provided the length scale at which the turbulence energy is injected into the 

system is sufficiently far removed from that at which the energy dissipates 

into heat, the character of the turbulence will be independent of both the large 

forcing scales and molecular viscosity. 

 

Depending on the level of resolution of turbulence scales, various 

methodologies for modeling turbulence can be employed. Among those, 

Direct Numerical Simulation (DNS), Large Eddy Simulation (LES) and 

Reynolds Averaged Navier-Stokes (RANS) approaches have gained much 

attention and exploration over the last few decades. DNS appears to be the 

most desirable solution to a turbulent flow problem. However, it is also more 

computationally intensive. LES is less complex and RANS is the least 

complex.  

 

In the DNS approach, the fully nonlinear solutions of the NS equations are 

computed directly by discretization and numerical algorithms. DNS will fully 

resolve the flow by attempting to solve all scales of motions in the fluid, from 

the largest coherent structures to the smallest dissipating eddies, without any 

averaging and smoothing of the solution field. This captures the important 

flow structures in the process of transition as well as turbulence. However, 

the difficulty in using DNS is that the turbulence contains wide range of 

vortices with equal physical importance. When the Reynolds numbers 

increase, the size ratio of the largest to the smallest vortices increases. Modi 

(1999) found it difficult to perform the DNS of turbulent flow with a higher 

Reynolds number. 

 

In the LES approach, large scales are resolved on a given computational 

mesh, using the same spatial discretization method for flow variables. 

Compared to DNS, the LES approach is able to provide a more detailed 

description of turbulent flows. However, the requirements on mesh resolution 

and time-step size put very high demands on the computer resources; thus, 

rendering it a more computational intensive method.  
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LES has shown good accuracy in calculation of traditionally difficult turbulent 

flow cases, such as recirculation and unsteady flows. However, it is 

computationally costlier compared to conventional RANS approach. The way 

in which LES interacts with the wall boundaries has been identified as a major 

contributor to the problem. Villiers (2006) addressed the issue through the 

application of approximate wall treatments and improved mesh distribution. 

 

LES does not resolve the full range of turbulent scales unlike DNS, but it 

captures a much larger range of scales than the Reynolds average equations. 

Large eddies contain most of the energy, do most of the transporting of 

conserved properties and vary most from case to case. In contrast, the 

smaller eddies are believed to be more universal (largely independent of the 

boundary conditions) and therefore easier to model. Since the contribution of 

the small-scale turbulence to the resolved flow field is small, the errors 

introduced by their modeling should also be small. In addition, the resolved 

scales carry much more information than the mean flow predicted by the 

RANS approach. 

 

RANS approach approximates time-averaged solutions to the Navier-Stokes 

equations based on the properties of the flow turbulence was used to. In 

RANS turbulence modeling, all of the unsteadiness in the flow is averaged out 

and regarded as part of the turbulence. The instantaneous flow field is divided 

into a time-averaged part and a fluctuating part, expressed in terms of mean 

quantities. Although known as a less detailed turbulence simulation method, 

RANS solutions show reasonable resolutions to turbulent flows, especially for 

relatively large Reynolds numbers. In addition, the method is the least 

expensive of all the turbulence modeling methods where the total arithmetic is 

independent of Reynolds number while it is in the order of Re2 and Re3 for 

LES and direct numerical simulations, respectively.   

 

Numerical simulations of turbulent flows have a key disadvantage in 

engineering applications, which is their inability to guarantee accuracy in all 

conditions unless validated. As such, the development of a cost effective and 

accurate simulation method is the key focus of research in CFD. The flow at 
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physiologic conditions takes place in complex geometries with compliant 

walls, undergoes transition to turbulence, and is dominated by the pulsatile 

flow effects. 

 

1.12.2 Verification of Numerical and Experimental Results 

Validation of numerical and experimental results is a very important step 

forward to gain confidence in the results of the numerical simulations. King et 

al., (1997) compared and analyzed flow through a BMHV using experimental 

and numerical methods. Laser Doppler Velocimetry (LDV) experiments were 

performed and compared with CFD simulation based on FIDAP, a 

commercially available finite element code. The study showed a fair 

agreement between numerically predicted and experimental results. Ge et al., 

(2005) validated their studies by measuring the flow velocities using the 

Particle Image Velocimetry (PIV) technique. The flow was seeded with silver 

coated glass spheres and was illuminated by a YAG double cavity laser, 

which double pulsed at a rate of 15Hz. The team was able to validate the 

simulation results at laminar and turbulent flow as shown in Figure 1-21. The 

black line denotes numerical simulations while the circle denotes 

experimental measurements. 

 
Figure 1-21: Velocity profile comparison between simulation and experimental (Ge et 

al., 2005) 
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Shu et al., (2003) also conducted a velocity validation between CFD 

simulations with pivot flow visualization (PFV). The study comprised of three 

different techniques to overcome limitation of each technique: PFV, CFD 

simulation and LDV. The technique used enabled pivot flow structure 

detection, such as “vena contractas, flow recirculation zones, small vortices, 

continuous-flow washing and absence of persistent flow stasis”. Vena 

contractas is the jet flow contraction at opening of heart valve. These 

detections agree with other journal paper findings on flow through BMHV. The 

only difference was probably be continuous-flow washing, which was 

observed only in Medtronic ADVANTAGE heart valve and absent in SJM 

heart valve. The measured and computed velocities resembled each other 

closely in terms of velocity magnitudes and profile shapes. Figure 1-22 shows 

the comparison between CFD simulated and LDV experimental velocities 

value. 

 
Figure 1-22: Velocity Validation with PFV and CFD in a cardiac cycle (Shu et al., 

2003) 
 

Other analyses and validations of simulation results have been performed 

using PIV to understand the flow in the vicinity of BMHV. Lim et al., (2001) 

performed a 2-dimensional PIV to map the velocity flow fields and Reynolds 

shear stresses in the immediate downstream of a porcine bioprosthetic heart 

valve. The data from these experimental studies will be very important in 

comparing the results from numerical simulations. Manning et al., (2003) 

analyzed the regurgitant flow field of the SJM BMHV using PIV under 

physiological pulsatile flow conditions.  
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1.12.3 Fluid-Structure Interaction 

The numerical simulation techniques in valve modeling focus on the valve 

structure rather than the Fluid-Structure Interaction (FSI). The complex 

interaction between the blood, the valve leaflets and heart wall plays an 

important role in response of the system to its physiological loading.  

 

Several studies have been conducted on computational modeling of the 

recirculation region and the wall shear stresses in the clearance region (Lee 

and Chandran 1995). Often, these studies neglect the interaction between the 

leaflet motion and the flow field. There are also other studies which coupled 

the fluid flow with the leaflet motion using a prescribed valve motion from the 

fully open to fully closed position (Lai et al., 2002). This simplified flow domain 

helps to avoid the complex problem of the leaflet-fluid interaction during 

systole and diastole. However, it does not address the actual movement of 

the heart leaflets in physiological conditions. As such, it is important to have 

an accurate simulation of the heart valve by developing a validated FSI 

algorithm for the prediction of the leaflet motion resulting from the fluid 

stresses acting on the leaflet. Some of the recent work focused on moving 

leaflets and pulsatile flow. Many attempts have been reported to develop a 

FSI algorithm for mechanical heart valve function. However, such studies 

were restricted to 2-dimensional analyses (Cheng et al., 2003). A complete 2-

dimensional FSI algorithm for the ATS Open Pivot heart valve was attempted 

by Dumont (2005) using ANSYS Fluent Inc. However, further experimental 

measurements are needed to validate the agreement between the measured 

and calculated 2-dimensional flow field around the moving valve leaflet.  

 

FSI is the interaction of a deformable structure with the surrounding fluid flow. 

Generally, two main approaches are used in the simulation of FSI problems: 

(1) Monolithic approach where the equations governing the flow and the 

displacement of the structure are solved simultaneously, with a single solver, 

(2) Partitioned approach where the equations governing the flow and the 

displacement of the structure are solved separately, with two distinct solvers. 

In the monolithic approach, a code developed for this particular combination 

of physical problems is required. In the partitioned approach, software 

modularity is preserved as the existing flow solver and structural solver are 
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coupled. Besides that, the solution of the flow equations and the structural 

equations are facilitated by the partitioned approach with different and 

possibly more efficient techniques. These have been developed for either 

flow equations or structural equations. Meanwhile, a stable and accurate 

coupling algorithm required in partitioned simulations should be developed. A 

strong coupling algorithm for the simulation of BMHV was presented by 

Annerel et al., (2011) to study the wall shear stresses on the valve leaflet 

surfaces which was able to predict the leaflet gangular accelerations.  

 

3-dimensional FSI models are computationally expensive and have been 

restricted to study native or prosthetic heart valves placed in simplified 

domains, such as in straight axisymmetric aortic lumens (Griffith 2013).  

Dumont et al., (2007) have demonstrated that the hemodynamics of BMHV is 

dependent on the geometric design parameters of the valve. Their FSI 

algorithm is based on the dynamic mesh model of the commercial CFD 

software package FLUENT (Fluent, Inc). Using an implicit coupling 

procedure, flow profiles through SJM Regent Valve and ATS Open Pivot 

Valve were investigated and the shear stress on the leaflets and platelets 

were then measured as shown in Figure 1-23.  

 

(A)  (B)  
Figure 1-23: Flow field and wall shear stress during (A) Opening of the valves [ATS 
(left panel)], [SJM (right panel)], (B) Closing of the valves [ATS (left panel)], [SJM 

(right panel)] (Dumont et al., 2007) 
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The numerical results were able to show that the designs of the SJM and 

ATS valves, which differ mostly in their hinge mechanism, had led to different 

potential for platelet activation, especially at the regurgitation phase. 

However, they may have underestimated the shear stress levels in the 

leakage jets, and accordingly the platelet stress accumulation values due to 

the difference in the estimated clearance gaps in the constructed model. 

 

There are two main methods suitable to handle the full FSI problem, which 

involves the compliant aortic/left ventricle walls and moving valve leaflets. 

They are moving grid methods and fixed grid methods. 

 

In the moving grid method, the computational grid is fitted to and deforms with 

the moving boundary, using the arbitrary Lagrangian Eulerian (ALE) method. 

This method has been used to simulate the flow through mechanical heart 

valves (Cheng et al., 2004). Nevertheless, at all times, the mesh must 

conform to the moving boundary and constantly deform according to the 

motion of the boundary. It can be quite challenging to update the mesh in 

every time-step, especially for such a complicated problem. The difficulties 

with ALE methods involve large structural displacements (in this case the 

movement of the valve leaflets). The mesh quality needs to be maintained at 

every time-step but it is possible to simulate the flow using ALE approach. 

Furthermore, the 3D FSI simulation carried out had a grid of about 200,000 

nodes to discretize the flow domain. The study used a quadrant symmetry 

assumption which only focused on one quarter of the valve for simulation. van 

Loon et al., (2005) have also performed a 3D FSI simulation of a tissue valve 

with symmetry assumption. 

 

Dumont (2005) studied the Fluid-Structure Interaction with highly flexible 

bodies using strong coupling of a commercial CFD solver (Fluent Inc) with an 

in-house coded structural solver using the moving grid method. He studied 

the opening and closing of a 2-dimensional model of a flexible aortic valve 

leaflet during the complete cardiac cycle as seen in Figure 1-24, using an 

implicit iteration scheme. The dynamic mesh approach used ALE formulation 

of the NS equations to simulate the flow in which shape of the domain 
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changes with time due to the movement of the domain boundaries. The shear 

stress on the leaflets was calculated accordingly.  

 
Figure 1-24: 2-dimensional Flexible Aortic Valve model (A) Geometry of the 2-

dimensional aortic valve (B) Aortic flow boundary condition (C) Example of mesh 
(Dumont 2005) 

 
Fixed grid method has been increasingly popular due to their capability in 

simulating FSI problems which involve large structural displacements (De 

Hart et al., 2003, Dasi et al., 2007, Tai et al., 2007, Borazjani et al., 2008). 

The entire fluid domain is discretized with a single, fixed, and non-boundary 

conforming grid system. Usually, a Cartesian mesh is used as the fixed 

background mesh. Meanwhile, the structural domain is further discretized 

with a separate grid, which can move inside the fluid domain freely. In order 

to move the immersed body in the fluid, body forces are calculated and added 

to the governing equations of the fluid motion. As such, the presence of a no-

slip boundary at the location of the solid/fluid interface can be felt by the 

surrounding flow. An example of the fixed grid method used by De Hart is 

shown in Figure 1-25 to analyze the Fluid-Structure Interaction of the aortic 

valve in 3-dimensional. 
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Figure 1-25: 3-dimensional FEM model of the stented aortic valve (A) part of the 

valve used for the computation, (B) Structure mesh, and (C) fluid mesh (De Hart et 
al., 2003) 

 

Peskin’s pioneering work in immersed boundary method is the earliest work 

in applying a fixed grid method to simulate heart valve flow (Peskin 1972). 

The presence of the immersed deformable solid boundary on the surrounding 

fluid grid nodes was accounted for by adding a body force in the Navier–

Stokes equations. The body force was then distributed on all nodes of the 

fixed background grid through a discrete delta function that has the effect to 

diffuse the solid boundary over several fluid grid nodes in the vicinity of the 

boundary. To obtain accurate results, such methods usually require an 

increased in grid resolution in the vicinity of the boundary. A practical 

approach to simulate FSI problems is to partition the domain into two 

separate fluid and structure domains. Such approach can be implemented in 

either a loosely coupled or strongly coupled domain. For loosely coupled 

domain, the boundary conditions at the interface are obtained from the 

domain solutions from the previous time level (explicit in time). For strongly 

coupled domain, the boundary conditions are obtained from the domain 

solutions from the current time level (implicit in time). This is achieved by 

performing several sub-iterations at every time-step, until the FSI equations 

have converged within a desired tolerance. There is a need to capture the 

hemodynamics of the heart valves more accurately near the interface, such 

as the wall shear stresses in particular, when analyzing the effects of flow in 

the heart.  
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Borazjani et al., (2008) developed a Curvilinear Immersed Boundary 

(CURVIB) method where the moving boundary was immersed in a domain 

that can be discretized efficiently with a curvilinear body-fitted mesh. 

However, the difficulty faced was that the loose coupling algorithm was 

unstable and difficult to converge during the valve opening phase. 

 

Major progress has been made in the past few years to perform numerical 

simulations of BMHV flows at physiological conditions. The simulations are 

able to provide sufficiently high resolution to investigate the link between 

valve fluid mechanics and thromboembolic complications. A major 

computational challenge is to develop a computational model with 

physiological conditions and anatomically more accurate model that can look 

into the flow hemodynamics in the microscopic regions of BMHV designs, 

such as the hinge recess. Such phenomenon can induce shear stresses that 

may damage red blood cells and lead to platelet activation. The numerical 

simulation acted as a tool for thromboembolic potential characterization to 

observe the physical viscous stresses experienced by the blood elements 

and the capability to refine the analysis to a level of spatial details that would 

be hard to achieve experimentally. The research will contribute to the use of 

an ALE method with moving mesh technique using an open source software 

OpenFOAM by the validation study performed for both laminar and pulsatile 

flow. Also through this contribution, the understanding of the effect of 

anatomical model and the implantation angles of both bileaflet and trileaflet 

mechanical heart valve on the hinge and downstream aorta flowfields can 

further be advanced. The computational model from this research will also 

look into the optimization of valve implantation angle that analyses the flow 

dynamics of the mechanical heart valves. This may potentially determine the 

clinical performance of the valve. 
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CHAPTER 2: HYPOTHESIS AND PROJECT AIMS 

 

This chapter focuses on the hypothesis and project aims of the research. A 

code based on open source codes was developed and used for the 

simulations. 

 

Hypothesis: 

In this study, a computational method using OpenFOAM software package is 

proposed to incorporate leaflet motions by simulating the flow dynamics in a 

BMHV model. By constructing an ALE based fluid structure interaction model 

using solid body motion technique to investigate the flow hemodynamics, the 

valve movement in the aortic root was applied successfully. Specifically, a 

code based on open source codes have been developed and tailored to 

incorporate the leaflet motion by simulating the flow dynamics in a BMHV 

model. This method is hypothesized to be a more accurate approach for 

investigations of a heart valve simulation in a cardiac cycle. The numerical 

method once validated experimentally, will be able investigate the valve 

hemodynamics and predict important parameters such as regions of 

recirculation and wall shear stress loading on the valve leaflets. The effect of 

implantation angles on the downstream flow field as well as the influence of 

the sinus and downstream geometry on the hinge flow fields will be 

investigated. This computational model can be used as a research tool to 

understand the hemodynamics of existing and new artificial heart valves. This 

current investigation forms part of a continuing study of heart valve 

engineering. The broader objective of this study is to provide an improved 

quantitative and qualitative understanding of the functionality and potential 

thrombogenicity of BMHVs beyond that available from previous studies. The 

current study helps to push forward our effort to develop a computational 

framework, which can support decision-making for clinicians. The results of 

this work will also provide new insight into the roles the subtle design features 

have on the potential for blood damage. 

 

Project Aim 1: To develop a prescribed motion code to study the flow 

through a bileaflet mechanical heart valve with prescribed motions in 

body fitted grid framework using ALE techniques 
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This aim of the study is to allow us to simulate deformable moving bodies in a 

3-dimensional simulation. To accomplish this, the flow through a BMHV in a 

prescribed motion will be studied. The robustness of the developed open 

source code will be tested with various turbulence models (k-epsilon, Spalart-

Allmaras and LES) and the motion of the leaflets. Simulations of flows over 

fixed valve leaflets will be performed and validated with experiments. The 

leaflet motion will also be prescribed from a fully open position to full closure, 

corresponding to the velocity wave profile of a typical cardiac cycle. By 

comparing the simulation results with the experimental data, the pulsatile flow 

model can be validated for the entire phase of the cardiac cycle. The 

experimental data will be obtained from the in vitro studies, using Particle 

Image Velocimetry (PIV). 

 

Project Aim 2a: To study the effect of sinus and downstream geometry 

on the flow fields in the hinge region and the effect of implantation 

angles on the downstream flow field of bileaflet mechanical heart valve 

 

The aim of this study is to provide a detailed 3-dimensional flow features in 

the hinge region of a BMHV with two different aortic sinus shapes and 

downstream geometries. This study constitutes the first attempt to evaluate 

the flow fields of all four hinges in a single BMHV. The results of this work will 

provide insights into impact of different aortic sinus shape, the aortic arch 

geometry and the location of the hinge recess on hinge microflow fields 

during systolic and diastolic phase. In order to accurately capture the impact 

of valve’s orientation on its downstream flow profile, the study quantifies the 

flow through the valve placed in different sinus and aortic arch models. The 

study will compare the downstream flow fields of two different sinus geometry 

and two different downstream aortic arch geometry as a result of different 

valve orientations (0°, 30°, 60° and 90°) during peak systole. The result of this 

work will provide insights into the impact of different valve orientation on the 

flow fields of aortic sinus and aortic arch.  
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Project Aim 2b: To study the flow hemodynamic through a trileaflet 

mechanical heart valve design and compare it with that of a bileaflet 

mechanical heart valve 

 

The aim of this study is to provide a detailed 3-dimensional flow simulation in 

a trileaflet mechanical heart valve placed in a downstream curved aorta. The 

study will evalute the flow fields through a trileaflet mechanical heart valve 

and compare it with that of the BMHV to predict important parameters such 

as regions of recirculation and wall shear stress loading on the valve leaflets 

and aorta wall. This study will compare the downstream flow fields of different 

trileaflet valve orientations (0°, 30°, 60° and 90°) during peak systole. The 

result of this work will provide insights into the impact of different valve 

orientation on the flow fields of aortic sinus and aortic arch for trileaflet 

mechanical heart valve. 

 

Project Aim 3: To develop the Fluid-Structure Interaction of a rigid 

mechanical heart valve using solid body motion 

 

It has become increasingly important for simulations of coupled problems in 

engineering. When modeling the aortic valve, the interaction between the 

blood and the valve determines the valve movement and the valvular 

hemodynamics. Nevertheless, only a few studies have focused on the 

opening and closing behavior during systole. For this Project Aim, the FSI for 

the mechanical heart valve using solid body motions will be performed. In 

order to predict the numerical behavior of the coupling procedure more 

accurately, a complete model of the BMHV configuration has to be 

considered, including the hinge mechanism. A grid and time-step 

independence study will be conducted to demonstrate the robustness of the 

FSI algorithm. The algorithm will be developed in OpenFOAM framework with 

a customized solver. The simulated data (pressure and velocity fields) will be 

used to calculate and characterize the valve hemodynamic performance. The 

results will be compared with the prescribed leaflet movements simulation of 

the pulsatile flow and experimental results. 
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CHAPTER 3: NUMERICAL METHODS 

 

This chapter is organized to provide the description on numerical tools, 

parameters and methods used in the study.  

 

3.1 Simulation Tools 

Various CFD tools have been developed and used by researchers in heart 

valves flow simulation. Some of the common CFD tools include FIDAP CFD 

package by Yin et al., (2004), Bluestein et al., (1994), Ge et al., (2005) and 

King et al., (1997). CFD-ACE+ version 6.4 and FEMSTRESS used by Choi et 

al., (2003), ANSYS used by Ghaeb et al., (2009) and FLUENT used by 

Dumont et al., (2007), and Li and Lu (2012). Su et al., (2014) also used 

ANSYS FLUENT to conduct simulations. FlowVision HPC 3.08 was used by 

Marom et al., (2013) to manage the coupling of the FSI codes. Simon et al., 

(2010) sued the Generalized Minimal Residual Method (GMRES) solver 

coupled by immersed boundary approach proposed by Glimanov and 

Sotiropoulos (2005). 

 

As for creating mesh for simulation, Gambit is used by Dumont et al., (2007), 

Li and Lu (2012), and Yin et al., (2004). Another type of mesh generator 

created by Marom et al., (2013) using TrueGrid (XYZ Scientific Applications).  

 

The improvement and development of open source codes have certainly 

invited much needed comparison of their performances with commercial 

ones. In particular, there are several aspects, which differentiate between the 

open source and commercial codes: 

• Ease of use 

• Portability 

• Pre and post-processing of input and output data respectively 

• Accuracy of simulations 

• Simulation speed and scalability 

• Additional priorities in handling industrial needs 

• Availability and applicability of physical models 
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CFD analysis consists of mainly three different stages; pre-processing, solver 

and post-processing as shown in Figure 3-1. The pre-processing involves the 

creation of model, generation of surface meshes and the setup of boundary 

conditions for computer modeling.  

 

Mesh generation is an important step to ensure accurate results. The correct 

mesh density and mesh continuity are needed to efficiently capture the 

boundary layer effects and compute the results. The solver involves the use 

of various physical models to perform simulation. The initialization phase, 

time-step and convergence criteria for the solver is performed before it solves 

the transport equations. In the post-processing, the simulation results are 

interpreted and visualized. Various analysis such as the velocity vectors, 

graphs, flow rate and streamlines can be analyzed.  

 

Since the pioneering work of 2-dimensional simulations by Peskin, the CFD 

study of flows in BMHV has achieved a considerable progress towards 

understanding of hemodynamics and the issues associated with artificial 

heart valves failure (Peskin 1972, Peskin 1982). King et al., (1997) 

investigated the effect of opening angles on the time-dependent flow through 

a BMHV using a quarter valve symmetric model. The assumption of a 

symmetric flow failed to show other secondary flow features such as 

interaction on the edges of the jets and spiraling vortices shed downstream of 

the valve. The differences observed between experimental and CFD 

simulations demonstrate that a 3-dimensional model is required for a better 

accuracy. 
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Figure 3-1: The flow diagram of a CFD analysis 

 

3.1.1 Pre-processing: GAMBIT (Fluent, Inc) 

OpenFOAM has built-in mesh generating software such as blockMesh and 

snappyHexMesh functions. blockMesh generates block-structured 

hexahedral meshes that are converted into arbitrary unstructured format of 
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OpenFOAM; but this requires tremendous effort for complex geometries. 

Compared to blockMesh, snappyHexMesh does not require as much work, 

although it still requires lots of parameters to refine the various local mesh 

shapes and boundary layer cells. Even though OpenFOAM has this built-in 

mesh generating capability, the heart valve structure is too complicated to be 

generated using OpenFOAM mesh functions. Therefore, a different mesh 

creating software is essential to allow control over mesh generation and easy 

integration to other software. GAMBIT (Fluent, Inc) suits the requirement 

perfectly as drawings from other software such as SolidWorks could be 

imported and meshed accordingly. The GAMBIT preprocessor was 

introduced into the Fluent CFD package in 1998 but has not been developed 

further in the recent years. GAMBIT provides a single graphic user interface 

(GUI) for geometry creation, mesh generation and mesh quality diagnostic. It 

has advanced meshing-techniques using mapped quad/hexahedral, 

unstructured triangle/tetrahedral as well as hybrid meshing. Mesh created by 

GAMBIT could be further defined, for instance by size-function. Size-function 

enables users to specify the mesh spacing at different regions and 

boundaries, allowing the user to have a finer mesh in the region of interest 

and a coarser mesh in regions further away. In this research, GAMBIT was 

utilized in specifying the boundary types, defining the solution domain, and 

generating suitable computational domain by accessing the mesh quality. 

With this in mind, a fine mesh can be created immediately downstream of the 

valve leaflets to better capture the velocity jet structure, as well as the gap 

between the leaflet ears and the valve housing at the hinge regions. The 

conversion of mesh from GAMBIT .msh file to OpenFOAM compatible file can 

be performed using the command fluentMeshToFoam with the appropriate 

scale.  

 

3.1.2 Simulation: OpenFOAM 

The intention for this research is to develop a FSI model using OpenFOAM, 

which is an open source, C++ toolbox for the numerical solution of the 

continuum mechanics problems including CFD program. OpenFOAM 

provides flexibility towards model development and numerical simulation to 

the user, even though assistance is still required from other open source 

and/or commercial tools for pre-/post-processing. OpenFOAM is an open 
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platform and offers immediate access and freedom to customize and extend 

its existing computational fluid dynamics capabilities for users. OpenFOAM 

has been well utilized by many research institutions and industries (ESI 

Group, ICON, Silicon Graphic International (SGI) Corp, Australia National 

Computational Infrastructure, Imperial College London, Delft University of 

Technology) for the flexibility of fine-tuning the code to suit their specific 

needs. OpenCFD became a wholly owned subsidiary of the ESI Group in 

2012, following acquisition from SGI Corp (who had acquired OpenCFD in 

2011). For this study, the source code is accessible and all the required tools 

to build a customized application. The OpenFOAM library functions make it 

simple to create a solver. There are many advantages to OpenFOAM, such 

as: 

• User-friendly syntax for partial differential equations 

• Source code accessible at both top solver and bottom library level 

• Freely available and well validated quality code 

• Ease of interface with commercial pre-processor software 

• Unstructured polyhedral grid capabilities 

• Wide range of models and applications ready to use 

• High scalability, extendibility and parallelization of applications written 

using OpenFOAM high-level syntax 

• Commercial training and support provided by the developers 

• Free and open source software under the GNU General Public 

License 

 

Nevertheless, the disadvantages associated with OpenFOAM are as follows: 

• Absence of an integrated graphic user interface (stand-alone Open 

source and proprietary options are available) 

• The learning curve is steep as the user guide does not provide 

sufficient details 

• Difficult for new users due to the lack of maintained documentation 

 

The OpenFOAM versions used in the studies are OpenFOAM-1.5-dev and 

OpenFOAM-1.6-ext. There are several main solvers from OpenFOAM which 

are used in this study. For Project Aim 1, the code used is the modified 

icoFoam, which solves the incompressible laminar NS equations using 
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pressure implicit with splitting of operator (PISO) algorithm. The code is 

provided in Appendix A. The code in this solver requires an initial condition 

and boundary conditions, and is inherently transient. The icoFoam code can 

take the non-orthogonality of the mesh into account with successive non-

orthogonality iterations. The user input can control the number of PISO 

corrections and non-orthogonality corrections. The modified icoFoam 

contains a variable time-step, which limits the maximum time-step 

(maxDeltaT). In simulations, the Courant-Friedrichs-Lewy (CFL) condition is 

important to ensure stability while solving the partial differential equations by 

the method of finite differences. The need for CFL condition arises in the 

numerical analysis of implicit time integration schemes, when used for 

numerical solution.  

                                               𝐶 =    !∆!
∆!
  ≤ 𝐶!"#                                              (3.1) 

where C is the dimensionless number known as the Courant number, with u 

is the velocity, ∆𝑡 is the time-step, and ∆𝑥 is the length interval.  

 

The value of Cmax changes with the method used to solve the discretized 

equation with implicit solvers, which are typically less sensitive to numerical 

instability. As such, larger values of Cmax may be tolerated. The Courant 

number is an important parameter to control the time-step in transient 

simulations, which affects the stability and computational cost.  

 

The next solver used is a modified turbFoam, which solves incompressible, 

turbulent flow with adjustable time-step. The code is provided in Appendix A. 

There are several methods and models to simulate turbulence in OpenFOAM, 

which are highlighted below (OpenFOAM 2012):  

• Reynolds-Average Navier-Stokes: The governing equations are 

solved in ensemble-average form and include appropriate models for 

the effect of turbulence. Several incompressible RANS models are 

used in OpenFOAM such as the standard k-epsilon, k-omega, and 

Spalart-Allmaras (SA). 

• Large eddy simulation (LES): The governing equations resolve the 

large turbulent structures in the flow, while the effect of the sub-grid 

scales is modeled.  
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• Detached eddy simulation (DES): The hybrid method between RANS 

and LES method whereby RANS approach is used on near-wall 

regions and LES approach is used on the bulk flow. 

 

For LES modeling, pisoFoam can be modified to include moving mesh 

features. 

 

Another solver used in OpenFOAM is icoMMeshTrackFoam and 

turbMMeshTrackFoam solver, which solves incompressible NS equation of 

a deformable mesh in a prescribed motion and will be used for Project Aims 

1, 2a and 2b. To simulate the turbulent flow, both the icoMMeshTrackFoam 

and turbMMeshTrackFoam were modified based on the governing equation 

used in icoFoam and turbFoam. This solver uses a mesquite mesh quality 

improvement toolkit (Brewer et al., 2003). These two codes are provided in 

Appendix A. 

 

To conduct the FSI simulation for Project Aim 3, another solver has to be 

used, pimpleDyMFoam, when performing the simulations. It is important to 

ensure the convergence of the sub-iteration process when working on such 

FSI problems (Maus 2009). These solvers are useful for flow computation 

when valve is on the transition from open to closed position or vice versa. 

Flow condition can be simulated as the heart valve moves. The codes are 

provided in Appendix A. 

 

3.1.3 Post-processing: ParaView (Kitware) 

After OpenFOAM carries out the simulation, only velocity and pressure at 

each node is stored. This numbers are not easy to analyze or view. Thus, a 

post- processing is required to translate the simulation data into a more user-

friendly form, such as a contour or vector plot. ParaView is an open-source, 

multi-platform data analysis and visualization application, and is designed to 

harness the power of distributed memory-computing resources. ParaView is 

an application framework and turnkey application. It is possible to quickly 

build visualizations to analyze data using qualitative and quantitative 

techniques, as well as with data exploration done interactively in 3-

dimensional or programmatically using ParaView's batch processing 
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capabilities. Besides that, the ParaView code base is designed so that all of 

its components can be reused to quickly develop vertical applications. This 

flexibility allows ParaView developers to quickly develop applications that 

have specific functionality for a specific problem domain (Kitware 2014). In 

ParaView, various parameters such as velocity, pressure or shear stress can 

be shown as a plot, allowing user to see the distribution of these parameters 

on the mesh. Besides, ParaView can show how these parameters change as 

a function of time similar to an animation. Flow profile, pressure profile and 

wall shear stress distribution of valve in vivo can be simulated and analyzed. 

 

3.2 Problem Statement 

To handle the movement of the heart valves, an ALE technique was used to 

discretize the system. The moving mesh velocity, uS at the interface must be 

equal to the boundary velocity, uΓ, for the prescribed movement of fixed 

boundaries. The movement of the boundaries cause the computational mesh 

to deform and unable to preserve its quality. As such, a moving mesh solver 

is necessary to deform the mesh and move the internal points in order to 

maintain the quality of the mesh and avoid solution degeneration due to 

mesh validity. A six degree of freedom (DOF) solid body motion approach in 

OpenFOAM was used to address this issue. The method was applied for 

simulation of pulsatile flows over BMHV with prescribed leaflet motions in the 

cardiac cycle and simulated for two cycles. In all the models, the flow was 

assumed to be continuous from the inlet to outlet and the valve leaflets were 

rotated along the Y-axis along the hinges. The finite volume method was 

used in the simulation. 

 

3.3 Hemodynamic Assessment of Artificial Heart Valves 

The heart valve performance depends mainly on the principles of flow fluid 

mechanics passing through it. Several hemodynamic parameters typically 

used in evaluation are transvalvular pressure gradients (∆𝑃), effective orifice 

area (EOA), Regurgitation, Flow Patterns and Shear Stress, and Cardiac 

Output (CO). These parameters help the design and evaluation of artificial 

heart valves. In this study, the flow patterns, shear stresses and cardiac 

output will be used as an assessment for the hemodynamic performances. 
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3.3.1 Transvalvular Pressure Gradients  

An ideal way to quantify aortic stenosis is through transvalvular pressure 

gradients, which are flow-dependent and measurement of the pressure drop 

(∆𝜌) across an artificial heart valve (Vahanian, 2012). This can affect the 

pressure within the left ventricle and is related to the energy lost due to the 

valves’ presence. In natural valves, the pressure drops can be measured with 

invasively performed catheterization, where catheters are passed through the 

valves. This however cannot be performed through an artificial heart valve 

and has to be measured using continuous wave Doppler ultrasound 

velocimetry. The simplified Bernoulli equation is derived based on the 

assumptions that the flow through the stenosis is laminar with negligible 

viscous effects. Under mean conditions, it is shown: 

                                            𝑃! − 𝑃! =
!
!
𝜌 𝑢!! − 𝑢!!                                      (3.2) 

where P1 and u1 is the upstream location pressure and velocity and P2 and u2 

is the downstream location pressure and velocity near the orifice. If the 

velocity downstream of the valve is much higher than the upstream velocity 

(v2>>v1), such that u1 can be neglected, then a simplified Bernoulli equation 

can be obtained: 

                                                      ∆𝑃 = 4𝑢!!                                               (3.3) 

where ∆𝑃 is in (mmHg) and u2 is in ms-1. 

 

3.3.2 Effective Orifice Area (EOA) 

The convergence of streamlines blood flow through an opening of the valve 

(orifice) forms the flow passage, where high velocities, turbulence, shear 

stress and associated high-pressure drops are avoided. EOA is a standard 

measure of the clinical assessment on the effectiveness of valve opening 

during the forward flow phase (Dasi et al., 2009). The flow through the valve 

is usually narrower compared to the geometric orifice area (GOA), as seen in 

Figure 3-2. A small EOA is usually linked with a higher net blood pressure 

loss across the valve.  
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Figure 3-2: Comparison of the flow through the effective orifice area (EOA) and 

geometric orifice area (GOA) 
 

Using the Gorlin relation, EOA is computed from measured flow and pressure 

drop and is based on the principle of conservation of energy: 

                                        𝐸𝑂𝐴 𝑐𝑚! =    !!"#
!".! ∆!

                                  (3.4) 

where Qrms is the root mean square systolic/diastolic flow rate (cm3s-1) and ∆𝑝 

is the mean systolic/diastolic pressure drop (mmHg).  

 

3.3.3 Regurgitation  

Regurgitation is the reversed flow observed through the ‘one-way’ valve, and 

corresponds to the closing volume during valve closure and leakage volume 

after closure, as can be seen in Figure 3-3. 

 
Figure 3-3: The forward flow, closing and leakage volume across artificial heart valve 

(Yoganathan 2000) 
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The percentage of regurgitation of the total stroke volume (SV) is calculated 

as follows: 

                                          %  𝑟𝑒𝑔 =    !!"#
!!"#!!"

                                    (3.5) 

where Vreg is the total volume of regurgitation due to Vclose, regurgitation 

during closing and Vleak, regurgitation during leakage. The overall tendency 

for regurgitation is more prevalent in mechanical heart valves compared to 

tissue valves. 

 

3.3.4 Flow Patterns and Shear Stress 

The analysis of the blood flow patterns can determine the efficacy of the 

cardiovascular system. Non-physiological flow patterns can be detrimental 

and damage blood elements, often lead to thrombus formation. Recirculation 

regions are vortical areas where the concentration of coagulation inducing 

proteins and activated platelets can be found. These regions have high shear 

rates, and may cause stagnation points when platelets are directed toward a 

vessel wall in a fluid path. The speed of flow in the vessels influences the 

platelet collision frequency. As a result, higher platelet aggregation in 

recirculation region and adhesion to vessel walls are observed. Laminar or 

turbulent flow are often observed in a circulatory system and can be 

quantified by Reynolds number. 

                                                 𝑅𝑒 =   𝜌 !  !
!

 (3.6) 

 where ρ is the density of the fluid (kgm-3), u is the velocity of the flow (ms-1), 

D is the diameter of the vessel (m) and μ is the dynamic viscosity of the fluid 

(Pa.s). Generally, a fluid flow is laminar for Re < 2000. Transition flow occurs 

between laminar and turbulent flow at 2000 < Re < 4000. At higher Reynolds 

number Re > 4000, fluid flow becomes turbulent. At peak flow in an aortic 

valve, the average Reynolds number is 4500 (Stalder et al., 2011).  

 

Blood flowing through a vessel will exert a physical force on the vessel wall. 

The tangential force is known as shear stress, which is the frictional force 

exerted by the flowing blood at the endothelial surface of the wall, as seen in 

Figure 3-4. 
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Figure 3-4: Shear stress (τ) is the frictional force exerted by the flowing blood on the 

endothelial surface of the vessel wall (Dumont, 2005) 
 

The shear stress on the wall is usually known as wall shear stress, whereas 

the normal stress or pressure is perpendicular to the wall. The laminar flow 

shear stress is as follows: 

                                    𝜏!"#$%"& =   𝜇 ∙ !!
!"
=   𝜇 ∙ 𝛾 (N/m2)                              (3.7) 

where μ is the dynamic viscosity of the fluid, 𝑈 is the velocity vector and 𝛾 is 

the shear rate. Meanwhile, the resistance to flow is increased by turbulent 

flow in the blood system, which leads to higher pressure gradients. The 

turbulent shear stress is as follows: 

                                       𝜏!"#$"%&'! =   𝜇 ∙ !!
!"
− 𝜌𝑢!𝑣!                                  (3.8) 

where u’ and v’ are the turbulent fluctuations of the velocities u and v 

respectively. High shear stresses in the blood have shown to activate platelet, 

leading to thrombosis formation and risk of embolism (Kroll et al., 1996).  

 

3.3.5 Cardiac Output (CO) 

The performance of the valve often depends on the blood flow through the 

valve. One of the important parameters used in valve performance evaluation 

is the total flow rate. In each cardiac cycle, the stroke volume (SV) of blood is 

pumped from the heart. The amount of cardiac cycles or beats per minute 

refers to the body heart rate (HR). The CO is the total volume of blood 

pumped by the ventricles per minute, which is usually 4-6 liters/min at rest 

and up to 20-35 liters/min during exercise. 

                                                CO = SV x HR                                           (3.9) 

 

3.4 Finite Volume Method 

This section has been published in an earlier work (Nguyen et al., 2012). In 

this study, flows were modeled for an incompressible viscous fluid and 
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governed by incompressible NS equations. The governing equations were 

then discretized using the finite volume method where a finite set of discrete 

equations was constructed on unstructured hybrid grids to approximate the 

NS equations. The construction was performed by a cell-centered FV 

approach where the FV discretization was based on the integral form of the 

governing equation over a polyhedral control volume. To handle movement of 

heart valves, the ALE formulation was used to discretize the system. ALE 

method was used to test the robustness of the moving mesh solver in 

OpenFOAM. The solver also allows simulation of the movement of the valve 

leaflets. A dynamic moving mesh approach was adopted to deform and 

regenerate the mesh, following the moving boundaries. The resulting 

numerical scheme was able to solve for flow through moving heart valves.  

 

A second order Crank-Nicholson implicit time discretization with adjustable 

time-step at CFL number = 1 was used. A dynamic moving mesh approach 

was adopted to deform and regenerate the mesh following the moving 

boundaries. The resulting numerical scheme was able to solve for flows over 

moving heart valves. To understand the flow regimes in a cardiac cycle, CFD 

simulations was performed to investigate flow through the BMHV at aortic 

area under the pulsatile conditions of velocity and pressure deduced from a 

typical human cardiac cycle.  

 

3.4.1 Governing Equations 

For blood flow through heart valves, the governing equations are the 3-

dimensional unsteady incompressible continuity and Navier-Stokes (NS) 

equations (Sotiropoulos et al., 2009): 

                                                       !!!
!!!

= 0          (3.10) 

                                                        !!!
!"
= !"

!!!
+ !

!"
!!!!
!!!!"!

                          (3.11)     

where 𝑢! are the Cartesian velocity components, p is the pressure divided by 

the density ρ, and Re is the Reynolds number of the flow based on a 

characteristic length and velocity scale. d/dt is the material derivative defined 

as: 

                                           !
!"

∙ =    !
!"

∙ +   𝑢!
!
!!!

∙                               (3.12) 
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Blood is assumed to be Newtonian even though there are small regions of the 

flow domain (areas at the valve hinges and jet leakage during valve closure) 

in which non-Newtonian effects could be important. According to Sotiropoulos 

et al., (2009), Equation 3.11 needs to be solved in a domain defined by the 

aortic lumen and the left ventricle within which the leaflets are immersed. The 

motion of the left ventricle, which creates the physiologic pulse that drives the 

blood flow through the aorta, will be replaced by a physiologic inflow 

waveform. 

 

In the study by Dumont et al., (2007), blood was assumed to be laminar, 

incompressible and Newtonian with a density of 1050kgm-3 and viscosity of 

4×10-3kgm-1s-1. The blood flow followed a prescribed velocity waveform, with 

a systole lasting 0.4s and diastole 0.6s. Inlet velocity had a spatial trapezoidal 

distribution, which later developed into a parabolic velocity profile. Figure 3-5 

shows the inlet velocity-time pattern and trapezoidal spatial inlet profile. 

(A)  

(B)  
Figure 3-5: Inlet aortic velocity-time pattern and spatial profile, (A) inlet aortic velocity-

time pattern, (B) Trapezoidal spatial inlet velocity profile (Dumont et al., 2007) 
 

In the study by Choi et al., (2003), the pressure boundary condition followed 

the pressure waveforms measured in vitro as shown in Figure 3-6. Blood was 
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also modeled as Newtonian fluid with density of 1000kgm-3 and dynamic 

viscosity 3.5×10-3kgm-1s-1. Leaflet opening angle varied between 25° and 85° 

where opening angle was computed at each time-step. 

 
Figure 3-6: Pressure waveform at simulation boundaries (Choi et al., 2003) 

 

In this research, considering incompressible viscous flows over a domain Ω, 

the governing incompressible NS equations and boundary condition that 

express the conservation of mass and momentum are written as follows:         

                                                ∇ ∙ 𝒖 = 0      in Ω,                                         (3.13) 

                           !"𝒖
!"

+ 𝒖 ∙ ∇𝜌𝒖 = −∇𝑝 + ∇ ∙ 𝜇∇𝒖 + 𝒇     in Ω,                   (3.14)   

                                             𝒖 𝑡 = 0 = 𝒖𝟎    in Ω.                                     (3.15) 

In these equations, velocity vector is denoted by u, ρ is the density, p is the 

pressure and μ is the dynamic viscosity of the fluid. The blood is considered 

as Newtonian fluid of density ρ=1050kgm−3 and kinematic viscosity of 

ν=3.81x10−6m2s−1. f is the body force and the total fluid stress tensor 

including pressure and viscous force can be expressed as: 

                                      𝜎 = 𝝉 − 𝑝𝑰,        𝝉 = 𝜇 ∇𝒖 + ∇𝒖!                               (3.16) 

where τ is the viscous stress. The flow is characterized by Reynolds number, 

                                                    𝑅𝑒 = !!"#!!"#
!

                              (3.17)  

where Uref and Lref are the reference velocity and length scale. The equations 

are closed with boundary conditions imposed on the boundary of the domain 

Γ=δΩ as: 

                                                      𝒖 = 𝒖    𝑖𝑛  𝛤!,                                          (3.18)  

                                                    𝝈.𝒏 = 𝒕    𝑖𝑛  𝛤! ,                                         (3.19) 
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where 𝛤 =   𝛤! ∪ 𝛤! . ΓN denotes a boundary where Neumann conditions are 

applied in the form of prescribed tractions (𝒕) and ΓD corresponds to a 

Dirichlet boundary on which the velocity is imposed (Nguyen et al., 2012). 

 

3.4.2 Finite Volume Discretization 

Finite volume method is based on the integral form of the governing 

equations over the arbitrary moving domain Ω bounded by closed surface Γ 

as follows: 

                                              𝒏 ∙ 𝒖𝑑𝑆 = 0.
!                                                (3.20) 

!
!"

𝜌𝒖𝑑𝑉 +    𝒏 ∙ 𝜌 𝒖 − 𝒖! 𝒖𝑑𝑆 =    𝒏 ∙ 𝜇∇𝒖 𝑑𝑆 − ∇.! 𝑝𝑑𝑉 +.
!

.
!

.
! ∇.! 𝒇𝑑𝑉 (3.21) 

In the above expression, n is the outward normal vector to the bounding 

surface Γ and uS is the moving velocity of the surface. As the boundary 

moves, the geometric conservation law (GCL) (Ferziger and Peric 1999) 

defines the conservation of space with respect to the change in volume and 

boundary velocity 

                                         !
!"

𝑑𝑉 − 𝒏 ∙ 𝒖!𝑑𝑆 = 0.
!

.
!                                   (3.22) 

 

The computational domain is then subdivided into a set of non-overlapping 

polyhedral elements or control volumes. Figure 3-7 shows a sample control 

volume at point P and its notations of faces and neighboring cells. The FV 

discretization transforms surface and volume integrals into a sum of face and 

control volume integrals and approximates them to second order accuracy. 

The FV discretization of momentum equation (3.21) for every moving control 

volume VP is written as: 
!
!"
𝜌𝒖!𝑉! + 𝐹 − 𝐹! 𝒖! = 𝜇!𝒏! ∙ ∇𝒖 !𝑆! + (∇𝑝)!𝑉!!!            (3.23) 

where the subscript P denotes volume values, f represents face values, VP is 

the cell volume and Sf is the face area. In this expression F is the face fluid 

flux 𝐹 = 𝜌!(𝒏! ∙ 𝒖!)𝑆𝒇 and FS is the face moving volume flux satisfying the 

GCL condition (3.22). 



 68 

 
Figure 3-7: Illustration of polyhedral control volume VP around point P located at the 
centroid of the cell. The control volume is bounded by convex polygons or faces Si 

with the face unit normal vector ni. Each face Si is only shared between two adjacent 
cells P and Q 

 

In the discrete form, equation (3.22) is expressed as 

                                             !!
(!!∆!)!!!

!

∆!
− 𝐹!! = 0                                     (3.24) 

Thus the moving volume flux FS is consistently computed as the volume 

swept by the face f in motion during the current time-step rather than from the 

mesh velocity uS. The spatial and temporal discretizations have been 

implemented and well tested in the open source package OpenFOAM (Weller 

et al., 1998). 

 

3.5 Simulation parameters 

3.5.1 Geometric Model 

Different valve geometries were used in the various studies. There were four 

general geometries modeled as follows: (i) a simplified axisymmetric sinus in 

a straight downstream pipe (simple-straight), (ii) a simplified axisymmetric 

sinus in a downstream curved aortic arch (simple-arch), (iii) a three-sinus 

aortic root model in a straight downstream pipe (three-sinus straight) and (iv) 

a three-sinus aortic root model in a simplified downstream curved aortic arch 

(three-sinus arch), as shown in Figure 3-8. The different heart valve designs 

were inserted in the each geometric model.  The computational fluid domain 

of each of the four cases; namely simple-straight, three-sinus straight, simple-

arch and three-sinus arch was subdivided into an unstructured mesh of 

ranging from approximately 3.6x106 tetrahedral elements.  
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Figure 3-8: Different geometric models used in the simulation studies consist of 

simple-straight, simple-arch, three-sinus straight, and three-sinus arch 
 
Figure 3-9 shows one of the meshes created for the heart valve model 

simulation using Gambit and viewed in ParaView. Mesh is drawn based on 

the geometry of the valve holder with SJM Bileaflet Mechanical Heart Valve. 

The centerline of the aorta followed the curvature of the normal diameters for 

the thoracic aorta of adults obtained by helical computed tomography (Hager 

et al 2002). To minimize the computational time, the normal model under 

steady-state was selected for grid independence test. Models with 2.5x106, 

3.6x106, 4.5x106 and 5.6x106 elements were simulated, and the one with 

3.6x106 elements was chosen based on the critern that the relative difference 

between the maximum velocity with respect to the one with 5.6x106 elements 

was less than 0.5%.  

 
Figure 3-9: Computational grid of the 3-dimensional mechanical heart valve in a 

simplified aorta with curved downstream and magnified grid section 



 70 

3.5.2 Valve Models 

The GAMBIT preprocessor was utilized to create the mesh for heart valve 

simulation. For mechanical valve, the 29mm ATS Open Pivot Heart Valve and 

29mm SJM Masters Series were used. The ATS valve was drawn without 

hinge while the SJM was drawn with hinge. The other valve that was drawn in 

Gambit is the trileaflet mechanical heart valve which is based on Li and Lu 

(2012). GAMBIT allows the freedom to define the size function, the cell gaps 

and the growth rate. The mesh between the hinge and the hinge holder was 

set to 10 cells per gap, while several different growth factors were adjusted to 

ensure that the mesh quality is maintained. The mesh element can be set as 

primarily hexahedral or tetrahedral. The three valves can be viewed in 

ParaView as shown in Figure 3-10. The 3-dimensional models of the 

mechanical heart valves were drawn based on the geometry of commercially 

available valves as accurate as possible as shown in Figure 3-11. It is 

assumed that the valve is in the maximum opening angle of 85°. 

(A) (B)   

(C)  
Figure 3-10: Heart Valve model as viewed in ParaView (A) ATS Open Pivot Bileaflet 
Heart Valve without hinge (B) SJM Masters Series Bileaflet Mechanical Heart Valve 

(C) Trileaflet Mechanical Heart Valve  
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(A) 

 
(B) 

 
(C) 

 
Figure 3-11: Heart Valve model as viewed in Gambit (A) ATS Open Pivot Bileaflet 

Heart Valve without hinge (B) SJM Masters Series Bileaflet Mechanical Heart Valve 
(C) Trileaflet Mechanical Heart Valve  

 



 72 

3.5.3 Boundary Conditions 

Generally, the Dirichlet and Neumann boundary conditions can be effectively 

implemented in the context of the current finite volume discretization. For a 

Dirichlet type of boundary conditions where a fixed value of dependent 

variables Φb is prescribed at the boundary, the value of the variable can be 

directly set as the boundary value Φf = Φb while the gardient of the variable 

can be reconstructed as 

 𝑺! ∙ ∇𝜙 ! = 𝑆!
!!!!!

!
                                  (3.25) 

In this expression, d is the distance vector from a point on the surface to the 

control point P. As for Neumann type of boundary conditions, gradient of 

variables in normal direction to the boundaries are specified  

 𝑔! =
𝑺
𝑺
∙ 𝜙

!
                                                (3.26) 

Thus the gradient of the variables at the face can be recovered directly as 

𝑺! ∙ ∇𝜙 ! = 𝑆 !𝑔!, while the value of the variable can be interpolated as 

 ϕf = ϕP + |d | gb            (3.27) 

 

In the study, a fully developed parabolic velocity profile was generated based 

on the Hagen-Poiseuille equation. No slip boundary condition was assumed 

at the channel walls as well as at the valves wall. Parabolic laminar flow for 

the cylindrical tube was generated using a user defined velocity, Groovy 

Boundary Condition (groovyBC) as shown in Figure 3-12. The code is 

provided in Appendix A. Pulsatile flow mimics flow in an actual human heart 

through a BMHV in aortic position. To generate a user defined velocity profile, 

timeVaryingUniformFixedValue pressure inlet and velocity outlet were 

used.  

 
Figure 3-12: Parabolic flow using groovyBC 
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3.5.4 Full Cardiac Cycle Modeling  

Typically, a cardiac cycle is divided into a systolic and diastolic time interval 

where the heart’s atria and ventricles are working synchronously to pump the 

blood through the circulatory system. In order to investigate the errors of the 

initial configuration over multiple cardiac cycles, the BMHV was simulated 

over two cardiac cycles. Usually, simulation is done over at least three 

cardiac cycles. However, no significant difference was found between the first 

and second cardiac cycles. As such, results were presented for the second 

cycle. 

 

The prescribed periodic condition started at fully open position of the valve, 

where ejecting velocity kept increasing from zero to a peak value of 1.35ms-1. 

The duration of the systole was 0.3s. During this period, aortic pressure also 

increased. The valve then moved from open to closed position in about 0.04s, 

while velocity dramatically dropped to zero until full closure of the valve 

leaflets. The valve remained at fully closed position during diastole for about 

0.48s. Backflow occurred at the inlet when it opened again for about 0.04s 

due to a further decrease in aortic pressure. The whole cycle of about 0.86s 

was derived from a heart beat condition of a healthy person, which 

corresponds to about 70 bpm. The leaflets motion was set at a constant 

angular velocity of 1000degs-1 to correspond to the inlet velocity and for the 

valve to move from fully open to closed position. 

 

The complete cardiac cycle of the flow which is divided into four main phases: 

valve fully opened, valve closing, valve fully closed and valve opening, is 

shown in Table 3-1.  

 
Table 3-1: Duration for each flow phase 

 
Heart Valve Phase Duration (seconds) 

Fully Opened 0.30 

Closing 0.04 

Fully Closed 0.48 

Opening 0.04 

Total 0.86 
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The flow has a periodic pressure and velocity arising from systematic 

pumping of the heart. In this study, inlet refers to the flow from left ventricle 

and has the pressure defined, whereas outlet refers to the aorta and has the 

velocity defined. Flow inlet does not have both the pressure and velocity fixed 

simultaneously because of the likelihood of simulation error occurrence. 

 

The outlet velocity-time profile was obtained through regression and 

interpolation of several data points. As the velocity-time profile varies from an 

individual to another, most sources do not display every data points but a 

graph instead. However, regression and interpolation of several data points 

provides a reasonable estimate. Data points for velocity profile from the left 

ventricle were obtained from Lim et al., (2001). Using the data points, a 

Piecewise Cubic Interpolating Polynomial (PCHIP) interpolation method was 

adopted using MATLAB to create a list of data points with time-step of 

0.0005s. The finalized velocity-time profile is as shown in Figure 3-13. In the 

study, flows over the BMHV were initialized with free stream initial conditions 

where velotiy  and pressure were given.  

 
Figure 3-13: Outlet velocity-time profile 

 

Pressure-time profile at the outlet is obtained with similar methods as 

velocity-time profile. Data points for aorta pressure-time profile were obtained 

from Nichols and O'Rourke (2005) and interpolated using MATLAB. The 

finalized pressure-time profile is as shown in Figure 3-14. 
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Figure 3-14: Inlet pressure-time profile 

 

As the velocity-time and pressure-time profile were obtained from different 

sources, it is vital to ensure that these two graphs have valve movement 

timing synchronized. Rate of change of the left ventricle volume could 

represent the inlet velocity from the left ventricle. The no-slip boundary 

condition was assumed at the walls. 

 

3.5.5 Wall Shear Stress 

OpenFOAM uses wallShearStress command to calculate and write wall 

shear stress for the specified times when using RANS turbulence models. 

The code is provided in Appendix A. The wall shear stress, τw, is given by 

                                                𝜏! = 𝜇 !"
!" !!!

                                          (3.28) 

where μ is the dynamic viscosity, u is the flow velocity parallel to the wall and 

y is the distance to the wall. The unit of wall shear stress is Pascal (Pa) or 

kgm-1s-2. 

 

3.6 Laminar Modeling for Steady Flow 

For steady laminar flow simulation, a fully developed flow condition is 

required. The flow profile changes with position in the entrance region as 

shown in Figure 3-15. To minimize difficulty in predicting the flow profile at the 

instant when fluid arrives at BMHV, it would be optimum to ensure that the 

flow is fully developed upon reaching the valve in both experiment validations 
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and simulations. Three laminar flow cases were performed by simulations as 

well as experimentally for Reynolds numbers 350, 750, and 1,000. The mean 

velocity of the fluid can be related to Hagen-Poiseuille equation through the 

maximum velocity of the fluid. 

 
Figure 3-15: Change in velocity profile along entrance region (Tu et al., 2013) 

 
 

Table 3-2 shows the maximum velocity of fluid for each of the Reynolds 

number. 

 
Table 3-2: Average and maximum velocity for Re=350, 750 and 1,000 

 
Re  ρ (kgm-3) D (m) μ (kgm-1s-

1) 

u (ms-1) umax  (ms-1) 

350 1050 0.028 4.0 x 10-3 0.0476 0.0953 

750 1050 0.028 4.0 x 10-3 0.102 0.204 

1000 1050 0.028 4.0 x 10-3 0.136 0.272 

 

3.7 Turbulence Modeling 

Turbulence modeling contructs and uses a model to predict the effects of 

turbulence. It includes the additional algebraic or transport equations to 

augment the governing averaged equations (momentum, continuity and 

energy) to account for the turbulence fluxes and Reynolds stresses. The 

turbulence modeling in CFD was described earlier in section 1.12.1. The 

current study aims to develop a code, which can help the decision-making 

process for clinicians in the most effective way. The decision was to solve the 

RANS appended with a turbulence model. Since the large-scale features of 

the flow dynamics is the focus in this study, RANS provides a good balance 

between the results and the computational cost. In this work, RANS 

equations are solved with two most popular turbulence models, namely 
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Spalart-Allmaras and k-epsilon. In both models, the transport equation for 

turbulence kinetic energy is written as: 

                         !"
!"
+ 𝑢!

!"
!!!

= 𝜏!"
!!!
!!!

− 𝜖 + !
!!!

(𝜐 + 𝜐! 𝜎!)
!"
!!!

                   (3.29) 

The Reynolds Averaged for velocity can be written as  

                                      𝒖 𝒙, 𝑡 = 𝒖 𝒙, 𝑡 +   𝒖! 𝒙, 𝑡                                    (3.30) 

where u’(x,t) is the fluctuation about the average value ū(x,t). In these 

expressions, 

𝜖 = 𝜐𝑢!𝑢!:∇𝑢′ is the dissipation of the kinetic energy, σk is the closure 

coefficient and νt is the turbulent or eddy viscosity which is determined by 

the appended turbulence model. 

 

3.7.1 Spalart-Allmaras Model 

In the SA model (Spalart 2000), kinematic eddy viscosity is modeled as 

                                𝑣! = 𝑣𝑓!!, 𝑓!! =
!!

!!!!!!!
,          𝑋 = !

!
,                                (3.31) 

where 𝑣 is the modified kinematic viscosity. 

The transport equation for eddy viscosity is deduced from (4.19) as 

       !!
!"
+ 𝑢!

!!
!!!

= 𝑐!!𝑆𝑣 − 𝑐!!𝑓!
!
!

!
+ !

!!

!
!!!

(𝑣 + 𝑣) !!
!!!

+ !!!
!!

!!
!!!

!!
!!!

,      (3.32) 

where d is the distance from the closest surface. The standard SA model 

includes eight closure coefficients: 

                    cb1=0.1335,   cb2=0.622,   cv1=7.1,   σk=2/3,                       (3.33) 

                   𝑐!! =
!!!
!!
+ (!!!!!)

!!
,   cw2=0.3, cw3=2,   κ=0.41                (3.34) 

There are many different forms of SA models whose details can be found in 

(Spalart 2000). 

 

3.7.2 k-epsilon Model 

In the k-epsilon model, the kinematic eddy viscosity is expressed as a 

function of the turbulent kinetic energy k and its dissipation rate ε as 

                                                     𝑣! = 𝐶!
!!

!
                                              (3.35) 

The transport equation for the dissipation rate is written as follows 

                       !"
!"
+ 𝑢!

!"
!"!

= 𝐶!!
!
!
𝜏!"

!!!
!!!

− 𝐶!!
!!

!
+ !

!!!
(𝑣 + !!

!!
) !"
!!!

             (3.36) 

The closure coefficients are: 

                  Cε1=1.44,  Cε2=1.92,   Cμ=0.09,   σk=1.0,   σε=1.3                (3.37) 
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There are several other two-equation models that try to describe the 

turbulence including the RNG k−epsilon model (Yakhot and Orszag 1986) 

and the nonlinear k-epsilon Shih model (Shih et al., 1994). Many of them are 

based on the k−epsilon model described above; however, they are more 

complicated and contain more parameters than the standard k−epsilon 

model. All of these models including the above one-equation SA model are 

implemented in the OpenFOAM package.  

 

3.8 Moving Mesh Technique using ALE 

To handle the mesh movement in the simulation, the moving mesh technique 

using ALE is used, where the moving mesh velocity, uS, can be arbitrarily 

found such that the moving velocity at the interface is equal to the boundary 

velocity, uΓ, either prescribed for fixed boundaries or obtained from the 

structure response in applications of Fluid-Structure Interaction. Due to the 

movement of the boundaries, the computational mesh is deformed and 

possibly fails to preserve its quality. A moving mesh solver is necessary to 

deform the mesh and move the internal points in order to maintain the quality 

of the mesh and avoid solution degeneration due to mesh validity. In the 

context of ALE framework, one has to either regularize the grid moving 

velocity or decide to re-mesh after certain steps, which often leads to an 

increased computational cost and loss of accuracy and conservation. 

Deriving a robust and efficient scheme of constructing mesh velocity could 

help in reducing the effort of remeshing. This has motivated many different 

approaches for computing the grid velocity, including the velocity smoothing 

technique in which the mesh velocity is directly computed from the velocity of 

the moving boundaries in order to minimize the grid distortion, such as 

Laplacian smoothing with variable diffusivity approaches (Lohner and Yang 

1996, Lomtev et al., 1999). 

 

The Laplacian smoothing is able to distribute the nodes according to a certain 

distribution function. However, it is not directly related to a measure of 

element quality and may cause badly shaped elements during the process, 

especially for 3-dimensional unstructured grids. In parallel development, a 

mesh optimization-based smoothing approach (Brewer et al., 2003), adopted 

in the work, is more attractive in maintaining the quality of the mesh for 
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moving boundary problems. Casting the mesh smoothing as an optimization 

problem, the method optimizes the mesh quality based on a particular quality 

metric and optimization criteria to ensure the quality of mesh. Given a 

distorted mesh ℳ(vi, ej) of n vertices and k elements, the objective of the 

method is to distribute the mesh points such that the quality of the mesh is 

maximized. Mathematically, the mesh optimization problem can be 

formulated as follows: 

                       x=arg max ℱ=f(qi(x)),  ∀𝒙, 𝑖 ∈ℳ                              (3.38) 
where qi(x) is the element or vertex based quality metric of mesh entities and 

f(qi(x)) is the objective function. The objective functions operating on different 

quality metrics can be combined together to provide maximum flexibility in 

controlling the mesh quality. When the mesh is modified, conjugate gradient 

or feasible Newton optimization algorithms can be used to look for optimal 

positions. The method is proven to be capable of extensively providing an 

effective way to maintain and improve the mesh quality due to the movement 

of the domain boundaries. In situations of large deformations, vertices may 

undesirably deform too much; and upon exceeding the smoothing capability, 

mesh topology needs to be modified. In order to maintain the mesh quality, 

topology modification operations, including edge swapping, bisection and 

collapse as shown in Dai and Schmidt (2005), can be employed. Figure 3-16 

shows the application of the approach for a simple problem of two cubes 

rotating with prescribed velocities using Mesquite Smoother in OpenFOAM.  

 

 
Figure 3-16:  Moving mesh solver for motion of 2 cubes in a channel: Initial Mesh 

(top), deformed mesh conforming to the motion of the cubes (bottom) 
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Another type of mesh motion was used to solve the Laplace smoothing 

equation for a given mesh by the Finite Element Method. The mesh is rebuilt 

after a decomposition of all cells and faces (Kassiotis, 2008).  

 

3.9 Fluid-Structure Interaction 

The prescribed movement of the valve leaflets do not take into account the 

interaction of the fluid flow with respect to the leaflets. These interactions 

change the boundary conditions of the flow and rotate the leaflets based on 

the force generated from the fluid flow. As such, there is a need to consider 

fluid structure interaction in the study. The FSI phenomenon involves two 

domains; the fluid and the structure domains. Different types of boundary 

conditions couple the two domains. The first type of boundary condition is the 

force exerted on the immersed structure by the fluids. The fluid forces on the 

structures are interpolated for the structural nodes on the FSI interface after 

the computation of flow field. Subsequently, the movement of the structure 

will be applied. The other type of boundary condition is the velocity continuity 

at the fluid-structure interface. At the same location on the surface, the 

velocity of fluid is equal to that of the structure. This simply means that the 

structure movement follows the movement of its surrounding fluids. According 

to Xia et al., (2009), the velocity continuity is enforced through the velocity 

extrapolations for the ghost nodes, thus representing the influence of the 

immersed structure on the fluid flow and providing a boundary condition for 

the computation of fluid flow. 

 

The computation is to be performed with dynamic mesh model in the 

OpenFOAM using modified FSI solver package. The leaflet is assumed to be 

a rigid body in rotation around a fixed hinge axis. The equation of motion for 

the stiff valve leaflet is as follows (Dumont, 2005): 

                                                     𝜃 + 𝜁𝜃 =   𝑀 𝐼                                        (3.39) 

with M as the moment resulting from the forces acting on the surface of the 

leaflet, I as the moment of inertia, θ as the angle that determines the position 

of the leaflet, and 𝜁 is the damping coefficient which is often neglected due to 

the small value compared to the flow forces.  
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For the valve leaflet, the moment of inertia, I, with the rotational axis at the 

end of the leaflet is given by: 

                                                 𝐼 = 1
3 𝑚𝑙!                                            (3.40) 

with m = ρlt, where m is the mass of the leaflet per unit length, ρ is the 

density of the leaflet, t is the thickness of the leaflet and l is the length of the 

leaflet. 

 

In most FSI algorithms, the fluid and structure domains are coupled by these 

two boundary conditions. The process of FSI between the flow and leaflets is 

shown in Figure 3-17. There is a sub-iteration FSI cycle besides the time 

advancement cycle for the fluid. At the start, the variables 

𝑡,∆𝑡, 𝑛, 𝑘, 𝐼, 𝜃, 𝜃  𝑎𝑛𝑑  𝜃 are initialized. The subsequent position of the leaflets is 

calculated. 

                                            𝜃!!! = 𝜃! + 𝜃!!! ∙ ∆𝑡                                     (3.41) 

                                            𝜃!!! = 𝜃! + 𝜃!!! ∙ ∆𝑡                                     (3.42) 

The indices n and n+1 correspond to the time t and t+Δt. An iterative 

approach is used to obtain the new position θn+1 at t + Δt. For each time-

step, k iterations are performed in order to reach convergence of equation 

3.39.  

 

Using OpenFOAM package, the new position of 𝜃!!!!!! is computed with the 

previous value of the angular acceleration 𝜃!. Using equation 3.41 and 3.42, 

the angle of the leaflets can be established. The mesh is then adapted with 

the dynamic mesh model at t+Δt based on the initial guess of the new 

position. Following that, OpenFOAM will solve the continuity and momentum 

equations of the flow. When the NS equations converge, 𝑀!!!
!!! is calculated 

based on equation 3.43. 

                                              𝜀 > |𝑀!!!
! − 𝐼𝜃!!!! |                                      (3.43) 

After each sub-iteration, the convergence value is checked whether it is 

below the threshold, 𝜀, at 500s-2 (Nobili et al., 2008). This step will be 

repeated until convergence of equation 3.43 is achieved. The simulation ends 

when t=TEND. 
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Figure 3-17: Fluid-Structure Interaction process between flow and leaflets 
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CHAPTER 4: EXPERIMENTAL SETUP AND PROCEDURES 

 

This chapter is organized to give a description of each of the experimental 

procedures for the validation study of both laminar and pulsatile flow using 

the PIV setup. The laminar flow validation study is for Project Aim 1 while the 

pulsatile flow validation study is for Project Aim 1 and 3.  

 

4.1 Bileaflet Heart Valve Prostheses  

The important design feature of a BMHV is that the two leaflets are shaped as 

semicircular discs and held within the ring or valve annular housing by four 

hinges. The hinge mechanism allows a slight protrusion called the ear on 

either end of each leaflet mates with the recess of the hinge profile inside the 

valve annular housing. As such, blood may leak through the hinge when the 

valve is either closed or open due to the design of the hinge geometry. The 

two leaflets move independent of one another and open to allow unimpeded 

flow through both the central and lateral areas of the opening orifice. The 

leaflets open and close due to the forces exerted by the blood flow through 

the valve. Typically, at fully open position, the leaflets form an angle of 

between 77° and 90° with respect to the orifice ring plane. At fully closed 

position, the two leaflets meet while leaving a narrow opening of 

approximately 100μm between the edges for leakage. The leakage flow 

through the narrow opening and hinges allow continuous flushing of all 

surfaces of the components and parts of the prosthesis during the cardiac 

cycle. The leaflets and valve housing are made of pyrolytic carbon, which is 

biocompatible with very high strength and wear resistance. Generally during 

implantation, the bileaflet prosthetic valves use a rigid sewing ring or cuff to 

help the attachment of the valve to the surrounding tissue. This sewing ring or 

cuff is made of non-thrombogenic Dacron cloth or polyester fabric, which 

helps to ensure the encapsulation of endothelialized tissue or pannus growth. 

It also prevents the tissue from interfering with the leaflets motion (Leo, 

2005). Figure 4-1 shows a typical BMHV prosthesis.  
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Figure 4-1: Picture of a typical bileaflet mechanical heart valve 

 

4.1.1 ATS Open Pivot Bileaflet Heart Valve 

The ATS Open Pivot Bileaflet Heart Valve is a low profile bileaflet consisting 

of pyrolytic carbon orifice ring and leaflets. The leaflets consist of pyrolytic 

carbon coated over a graphic substrate with 20% tungsten for radiopacity. 

The pivot guides are located in the inner circumference of the orifice ring and 

control the leaflet motion range. The pivot area does not have any recesses 

or cavities and the geometry comprises of spherical protrusions at four places 

on the orifice and arc-shaped notches at either end of each leaflet. The plane 

of each leaflet forms an angle of 85° with the orifice ring at fully open position, 

while at fully closed position, the plane of each leaflet forms an angle of 25° 

with the orifice ring plane. The 29mm ATS valve has an internal diameter of 

24.8mm, which forms an EOA of 4.59cm2. The valve-sewing cuff is made of 

double velour polyester fabric. It is mounted on the orifice using titanium 

stiffening ring and secured with two titanium lock rings and a lock wire (ATS 

Medical 2014). Figure 4-2 shows the ATS valve used in the experimental 

study. 

 
Figure 4-2: 29mm ATS Open Pivot Bileaflet Heart Valve 

 

 



 85 

4.1.2 SJM Masters Series Bileaflet Mechanical Heart Valve  

The SJM Masters Series Bileaflet Mechanical Heart Valve consists of 

pyrolytic carbon, which coats the graphite substrates of the leaflets and orifice 

ring. It offers exceptional biocompatibility, durability and increased 

thromboresistance.  The valve housing has an extension upstream known as 

the pivot guard, which is designed to reduce exposure with subvalvular 

structures. This pivot guard reduces the working profile by allowing the leaflet 

to open and close entirely within the orifice ring. The SJM hinge is a butterfly-

shaped recess. Projections on the leaflets within these hinge recesses, which 

are washed by blood during systole and diastole, minimize thrombogenesis. 

At fully closed position, the plane of each leaflet forms an angle of 35° with 

the orifice ring. At fully open position, the plane of each leaflet forms an angle 

of 85° which offers improved laminar flow and reduces turbulence. The 

sewing cuff is made of polyester polyethylene terephthalate (PET) or 

polytetrafluoroethylene (PTFE) and contains additional suture markets for 

more accurate placement; and it has controlled torque rotation mechanism 

that allows easy rotation and intraoperative adjustment (SJM 2014). Figure 4-

3 shows the 29mm SJM Masters Series Bileaflet Mechanical Heart Valve 

used in the experimental study. 

 
Figure 4-3: 29mm SJM Masters Series Bileaflet Mechanical Heart Valve 

 

4.2 Valve Mounting Chambers and Setup 

Figure 4-4 shows the clear valve chamber fabricated from a solid acrylic block 

which can be divided into two sections. The internal inlet diameter is 28mm. 

Section 1 is the upstream inlet section of the valve housing while section 2 

consists of the simplified axisymmetric sinus chamber representing the 

human aortic root downstream of the valve housing. The valve used in the 
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experimental study is placed within a recess section and is held in place 

when the two blocks are fastened together by four bolts.  

 
Figure 4-4: Acrylic valve holder for heart valve prostheses 

 

The chamber was polished to allow optical access necessary to obtain the 

velocity measurement. The valve used in the study is placed in between 

additional gaskets and rapid prototyped valve extension holder to prevent 

fluid leakage as shown in Figure 4-5. The inlet and outlet of the model were 

connected to PVC piping and connected to the flow system. The 29mm ATS 

Open Pivot Bileaflet valve and 29mm SJM Masters Series valve were used in 

the experimental study. 

   
Figure 4-5: Gaskets and valve extension to secure the SJM valve 

 

4.3 Steady Laminar Flow Loop Experimental Setup 

Flow experiments were conducted with setups and operating conditions 

similar to the simulation runs. The mechanical heart valve used for the study 

was a 29mm ATS Medical Open Pivot Heart Valve. The valve was placed in a 

clear acrylic test section of length of at least 5D and 10D upstream and 

downstream, respectively (D is the diameter of the pipe inlet), to facilitate 

visualization and measurement of the flow. A steady flow water pump was 

used to provide constant fluid velocity. The flow setup was mainly comprised 

of sections of PVC tubing fitted together with rubber tubing and hose clamps. 

A plastic bucket was used as the fluid reservoir. The flow entering the test 

section had a fully developed profile matching that of the numerical 
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simulations, by passing the flow through a straight circular pipe of length 1.8m 

in the upstream of the valve as shown in Figure 4-6. 

                                                      𝐸𝑙 =    !!
!
                                                    (4.1) 

                                               𝐸𝑙!"#$%"& = 0.06  𝑅𝑒                                      (4.2) 

where El is the Entrance Length Number, le is the entrance length to fully 

developed velocity and D is the tube diameter. Based on the steady laminar 

flow loop validation study of up to Reynolds number 1000, the minimum 

length for the velocity to become fully developed is 1.68m. As such the 

straight circular pipe of length 1.8m in the upstream is sufficient to achieve 

this fully developed velocity profile.  

 
Figure 4-6: Steady flow experimental setup for bileaflet mechanical heart valve 

validation 
 

4.4 Pulsatile Flow Loop Experimental Setup 

In the validation study for a pulsatile flow of a BMHV for Project Aim 1, a 

modification to the steady laminar flow loop is required. Figure 4-7 shows the 

schematic diagram of the pulsatile loop used to investigate the flow field in  

the downstream of the 29mm SJM Masters Series Bileaflet Mechanical Heart 

Valve. The loop was used to simulate the physiological conditions 

corresponding to the left side of the human heart. The setup consists of the 

flow loop, and the pulse generation and delivery system. The pulse 

generation consisting of a high-precision piston pump (SuperPump AR, 

Vivitro Labs, Inc, Canada) was used to simulate the cardiac input flow. The 

piston pump is operated by the ViVitro ViViGen software application, which 
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allows new waveforms to be quickly created or modified by inserting the 

desired wave profile. The pump can control the power of each stroke and can 

be synchronized to activate the pulse (i.e. trigger signal) for velocity 

measurement at the particular timeframe of the cardiac cycle.  

 

The flow loop comprised of the heart valve mounted in the acrylic chamber, a 

flow meter, a compliance chamber, a reservoir, and a one-way valve. PVC 

tubing and flexible rubber hose at joints connect the loop together. The 

compliance chamber placed downstream of the aortic valve was adjusted to 

achieve accurate flow waveform. The reservoir was a tower acrylic chamber.  

 
Figure 4-7: Schematic Diagram of Pulsatile Flow Loop Setup 

 

A TTL signal (5V) was sent by the pump interface unit as the trigger to 

activate the laser pulse at specific time in order to record the required time 

frame of the flow profile.  

 

The experiment setup for the pulsatile flow loop is shown in Figure 4-8. 
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Figure 4-8: Pulsatile Flow Loop Experimental Setup 

 

4.5 Working Medium and Seeding Particles 

4.5.1 NaI/Glycerin/Deionized H2O 

The fluid used in the pulsatile experiments was composed of 59% saturated 

sodium iodide (NaI) solution, 40% glycerin and 1% deionized water by 

volume, which was transparent to allow the measurement of flow velocities 

using Particle Image Velocimetry (PIV) technique. The combined density and 

dynamic viscosity of the mixture matched the kinematic viscosity, ν, of blood 

at high shear rates which was between 3.5–4.0cSt or 3.5x10-6–4.0x10-6m2s-1. 

With such fluid ratio, a kinematic viscosity 0.0038kgm-1s-1 was similar to that 

of blood (0.0035–0.004kgm-1s-1). The refractive index of the fluid, (1.445) was 

tried to be as close as possible to that of the acrylic valve mounting chambers 

(1.49) in order to minimize the optical distortion of laser beams used in these 

studies. The viscosity of the working medium was determined by using a 

glass Cannon-Fenske routine viscometer (Viscometer Size 75, S695, Cannon 

Instruments Company, PA) and the refractive index was determined by 

means of a transparent liquid refractometer (Hand-held refractometer R5000, 

Atago, Japan). 

 

Dynamic similarity was assumed between the fluid flow created by the 

prosthesis within the mounting chamber and the blood flow created by the 
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prosthesis within the human aorta by matching the kinematic viscosity of 

blood.The lifespan of saturated NaI solution had a lifespan of approximately 

6–8 months depending on the experiments usage frequency because of the 

oxidation of the NaI constituent of the working fluid. The NaI turned dark 

brown after contact with atmosphere. The solution’s viscosity and refractive 

index had to be corrected regularly due to evaporation of water in the 

solution.  

 

4.5.2 Seeding Particles 

PIV relies on scattering particles suspended in the flow to provide the velocity 

information for continuous fluid flow. To choose the optimal diameter for 

seeding particles, it is necessary to compromise between a quick response of 

the tracer particles in the fluid, requiring small diameters to follow fluid motion 

and not alter fluid flow properties, and a high signal-to-noise ratio (SNR) of 

the particle images, necessitating large diameters to be visible by the camera 

(Melling 1997). 

 

Fluorescent polymer particles (FPP-RhB-10, Dantec Dynamics, Denmark) 

based on melamine resin were used in the PIV velocity measurement of 

steady laminar flow experiment. The size of the fluorescent particles is 1–20 

μm in diameter and were delivered in suspension with the 

NaI/Glycerin/Deionized H2O. These fluorescent particles were used to 

eliminate the laser glare off the polymeric valve surface. The laser light is 

absorbed by the particles at a wavelength of 532nm. Light is emitted at above 

560nm. An orange lens filter (Quantaray, 60mm, Wolf Camera) mounted on 

the camera lens only allowed wavelengths of 560–600nm to pass, thus 

blocking the laser light that was reflected from the valve surface. For the 

pulsatile flow loop setup, Polyamide Seeding Particles with diameter 50μm 

(PSP-50, Dantec Dynamics, Denmark) were used and added to the mixture of 

NaI/Glycerin/Deionized H2O. An orange lens filter (La Vision VZ-Image Filter 

532nm, 10nm) was mounted on the camera lens.  
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4.6 Equipment Measurement and Calibration 

4.6.1 Flow Rate Measurement 

The flow rate was measured using a calibrated Transonic Flow Probe (ME 25 

PXN, Transonic System, Inc, USA). The voltage signal from the flow probe 

was received by flow output display (T402, Transonic System, Inc, USA). A 

laptop installed with LabView (National Instruments, USA) was also 

connected to measure the velocity profile. 

 

4.6.2 Velocity Measurement 

4.6.2.1 Particle Image Velocimetry 

The system used for steady laminar flow experimental study was a 15Hz Q-

switched, double cavity pulsed Nd:YAG laser (Minilase-III PIV system, New 

Wave Research, USA) with an energy of 150 mJ at a wavelength of 1064 nm, 

producing a light sheet which was adjusted to illuminate the seeding particles 

in the symmetry plane of the model. The particles’ motion was recorded with 

a charge coupled device (CCD) camera (FlowSense, Dantec Dynamics, 

Denmark) with a spatial resolution of 1600×1200 pixels, and a Nikon lens (AF 

Micro Nikkor, 60/2.8) positioned normal to the laser sheet. All of these 

components were connected to a host computer, which controlled the 

measurement and post-processing using the DynamicStudio software 

(Version 2.20.18, Dantec Dynamics, Denmark).   

 

The system used for pulsatile flow experimental study was a Nano PIV 

Pulsed Nd:YAG Lasers (Model Number: S35-15PIV – Class 4 Laser Product, 

Litron Lasers, England). The setup was a dual head high-energy laser system 

with output up to 300mJ at 1064nm, 4ns long pulses at up to 15Hz.  

 

The CCD camera used was a LaVision camera (VC-Imager Pro X 2M, 1GB, 

CamLink, LaVision, Germany) with a spatial resolution of 1600×1200 pixels, 

and a Sigma Lens (100mm F2.8 EX Macro) was used to allow sequence of 

PIV data to be captured at freely adjustable intervals between image frames 

with similar intensities.  

 

The correlation of the digital image pairs to calculate the velocity fields was 

performed using commercially available PIV software (DaVis 8.0.5, LaVision, 
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Germany). In the cross correlation program, each camera image was divided 

into rectangular regions, known as interrogation areas. In each interrogation 

area, the particle images captured during the first and second pulse of the 

laser light sheet were correlated to produce an average particle displacement 

vector. It was assumed that all particles move homogeneously between two 

laser pulses within one interrogation area. The vector map of average particle 

displacements was produced after the calculation for all interrogation areas 

were performed. These displacement vectors are divided by the known pulse 

separation time.  

 

4.6.2.2 Important Considerations for PIV Experiments 

Image Processing 

The background intensities and image noise were removed by pre-processing 

of recorded image pairs. Non-fluid regions with zero pixel value intensity were 

masked to reduce bias error originating from wall reflections. The image pairs 

for steady flow were analyzed by a two-frame FFT adaptive multi-grid cross-

correlation algorithm with the final interrogation areas of 32×32 pixels, 

overlapped by 50% on each side, to yield the local displacement vector for 

each interrogation area, using DynamicStudio software. The image pairs for 

pulsatile flow were analyzed by a two-frame FFT adaptive multi-grid cross-

correlation with multi pass (decreasing size) iterations. The image pairs were 

overlapped by 50% on each side and with interrogation area of 128×128 

pixels followed by 64×64 pixels using the LaVision Davis software. 

 

Illumination 

An important aspect of the PIV setup is sufficiently strong laser to illuminate 

the seeding particles in the flow. This enables scattered light to reach the 

CCD cameras. The interrogation area should be located where the light sheet 

is the thinnest so as to reduce the effect of out-of-plane particles. The control 

panel of the PIV setup allows adjustment of the laser gain.  

 

Time delay between illumination pulses 

The pulses must illuminate the displacement of particles between image pairs 

in order to have sufficient resolution yet short enough to prevent seeding 

particles with an out-of-plane velocity component from leaving the light sheet 
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between the pulses. For each image pair, there was a mix of both high and 

low velocity flows. As such, the time delay between the illumination pulses 

must be optimal to capture both types of flow. For steady laminar flow, the 

pulse separation time was set to values in the range of 100-500μs. 

Meanwhile, as the flow changes throughout the cardiac cycle and it was 

necessary to have a different time delay setting at each particular point of the 

cycle. The time delay ranged from 100-900μs.  

 

Number of image pairs  

The number of image pairs affects the accuracy of the calculated velocity 

components. The higher number of image pairs can improve the signal-to-

noise ratio and lower the errors in the measured values. However, this would 

also mean longer time spent on data acquisition and processing, and higher 

cost on storage space. 200 image pairs were obtained from the Dantec 

Dynamics system for steady laminar flow setup while 150 image pairs were 

obtained from the LaVision Davis software. Only a maximum of 150 image 

pairs could be obtained using LaVision setup. 

 

4.7 Experimental uncertainties 

One source of systematic error resulting from instrumentation factor is the 

misalignment between the plane of investigation and the laser light sheet. 

This can be minimized by calibration and adjustment of the laser light on the 

arcylic. Systematic error due to the refractive index of the working fluid 

(1.445) which is lower than the acrylic valve mounting chambers (1.49) may 

result in optical distortion of laser beams. As such, the near wall regions were 

generally excluded from analysis. The leaflet in the simulation model was 

limited to prescribed rotation only while in experimental setup, the leaflets are 

free to rotate and translate up and down along the leaflet axis. This may 

induce some errors on the computational results of the leaflet movement.  
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CHAPTER 5: RESULTS AND DISCUSSIONS  

 

In this chapter, the results from simulations and experimental validations for 

the project aims listed in Chapter 2 will be presented. The discussion on the 

hemodynamic performance of the mechanical heart valves will be presented 

in the following order: 

Project Aim 1: 

• Steady Laminar Flow Simulation and Validation Study 

• Turbulent Flow Simulation 

• Pulsatile Flow Simulation And Validation Study 

Project Aim 2a: 

• Comparison of Hinge Microflow Fields of Bileaflet Mechanical Heart 

Valves Implanted in Different Sinus Shape and Downstream 

Geometry 

• Comparison of Different Implantation Angles for Bileaflet Mechanical 

Heart Valves 

Project Aim 2b: 

• Comparison of Trileaflet Heart Valve and Bileaflet Mechanical Heart 

Valve, and Different Implantation Angles of Trileaflet Heart Valves 

Project Aim 3: 

• Fluid-Structure Interaction Study of Bileaflet Mechanical Heart Valve 

using the six degree of freedom (DOF) solid body motion approach in 

OpenFOAM 

 

5.1 Steady Laminar Flow Simulation and Validation 

The results in this section have been published in an earlier work by Nguyen 

et al., (2012) and is for Project Aim 1. 

 

5.1.1 3-dimensional Valve Model and Flow Domain 

The valve geometry used in the steady laminar flow study for Re=350, 750, 

and 1000, was a valve based on the design of a 29mm ATS Open Pivot 

Valve placed in a simplified model of aortic chamber. This chamber consisted 

of a single axisymmetric sinus in a straight pipe. The BMHV model used in 

the simulation was simplified by omitting the hinge mechanism of the valve 

leaflets. The computational domain was subdivided into an unstructured 
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mesh of approximately 2.2 million tetrahedral elements. Mesh independence 

study was performed at steady laminar flow condition. Mesh refinement was 

performed by changing the size function and mesh growth rate at the edges 

of the leaflets. Further refinement of the grid did give much change to the 

simulation results with a percentage difference of 5%. Figure 5-1 shows the 

cross-section view of the model with the simplified hinge mechanism. 

 
Figure 5-1: Cross section view of the simulation model of BMHV placed in an axis-

symmetric simplified sinus chamber 
 

5.1.2 Boundary Conditions 

For the fully developed flow simulation, parabolic velocity profile was imposed 

at the inlet. The maximum velocity was 0.0953ms-1, 0.204ms-1 and 0.272ms-1 

for steady inflow conditions corresponding to Reynolds numbers Re=350, 750 

and 1000 respectively. The inflow velocity was compared with experimental 

data as shown in Figure 5-2 using the Minilase-III PIV system (New Wave 

Research, USA) at the upstream of the mechanical valve to find out the 

incoming flow profile. The experimentally obtained flow profiles were similar 

to the fully developed flow in the simulations for all the simulated Reynolds 

numbers. The shape and magnitude of the time-averaged flow profiles were 

similar for both the simulation and experiment for all the three Reynolds 

numbers. 
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Figure 5-2: Fully developed inlet flow profile validated using PIV system  

(A) Re=350, (B) Re=750 and (C) Re=1000 
 

5.1.3 Results and Discussion 

The laminar flow was studied at the maximum opening of the valves at 85o 

and comparisons with experimental data were made to validate the 

simulations. Experimental validations under laminar conditions were 

(A) 

(B) 

(C) 
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conducted for the valve fixed at the fully opened condition for Reynolds 

numbers ranging from 350 to 1000. The velocity flow fields were averaged 

from 200 image pairs which were analyzed using the DynamicStudio software 

(Dantec Dynamics, Denmark).  The investigation area was a 99x74 vector 

field and the velocity range observed in the experiment was 0 to 0.3ms-1. In 

order to reduce the near wall bias, the boundary of the interrogation areas 

was matched with that of the model.  

  

The origin of X and Y-axes is at the center of the flow channel with the Z=0 

plane located at the trailing edge of the leaflets with the corresponding 

velocity components u, v and w respectively. Comparisons for the streamwise 

velocity profiles were made at three different locations as follows: Z=1D, 2D 

and 4D, as shown in Figure 5-3. 

 
Figure 5-3: Plan view of streamwise velocity contours (Re=1000) at three cross 

section planes Z=1D, 2D and 4D 
 

In Figure 5-4, the predictive capabilities of the numerical model re 

demonstrated by comparing the numerical results with the experimental time-

averaged, streamwise velocity profiles for laminar flow at Re=350 at the three 

locations downstream of flow. At position 1D, the triple-jet structure of the flow 

can be seen clearly, just as predicted by the simulation. However, the center 

jet measured in the experimental result showed lower values of velocity at 

0.0855ms-1 compared to 0.0893ms-1 obtained from the simulation (Nguyen et 

al., 2012). On the other hand, two lateral jet profiles were evidently shown 

and accurately predicted from both numerical simulation and experiment. At 
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position 2D, the velocity profile was near the transition phase from a triple-jet 

structure merging into two lateral jets downstream, as can be seen with a 

flatter center jet velocity profile. The simulation was able to provide an 

accurate prediction as compared to the experimental results in terms of 

magnitude and velocity profile. Further downstream at position 4D, two flatter 

lateral jets were visibly taking shape. At this location, the simulation results at 

the center profile had a nearly identical velocity magnitude to the 

experimental results. 
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Figure 5-4: Velocity profile comparisons between experimental (o) and numerical 

simulation (–) for Re=350 at position Z=1D, 2D and 4D 
 

The two lateral jet profiles in the experiment were within 10% of the 

simulation results. Hence, it is shown that the numerical simulations are able 

to capture essential features as observed in the experiments with good 

accuracy in terms of the magnitude and general velocity profile. It can be 

observed that the complex transverse velocity distribution across the Y-axis 

and the fluid velocity of the flow profiles in Figure 5-4. The well-known triple-

jet structure of the flow in the wake of the leaflets can be seen clearly at 

position 1D before it merged into two lateral jets further downstream at 

position 4D. 

 

In Figure 5-5, similar comparison can be seen for Re=750 and Re=1000 at 

position 1D. The flow profile and velocity magnitude obtained in the 

simulation showed good agreement with the experimental results. A 

significant feature captured by the simulation, which was also verified 

experimentally, was the formation of vortices near the edge of the wall. The 

magnitude of the vortices obtained from the simulation was almost identical to 

the experimental results. The triple-jet structure was also visible at position 

1D for Re=750 and Re=1000.  
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Figure 5-5: Velocity profile comparisons between experimental (o) and numerical 

simulation (–) for Re=750 and Re=1000 at position Z=1D 
 

However, there were asymmetries in the experimental results obtained where 

the velocity profile was slightly shifted to the right-hand side (higher X values). 

The likely reason is the breakdown of the steady flow assumptions in the flow 

domain. It could also be due the valve not being at fully open position at the 

time of experiment. The experiments and the simulations in terms of the 

velocity profiles and velocity magnitudes were quite instructive. The 

simulations were able to capture the essential features of the mean flow in 

the experiment, notably the vortices near the walls of the sinus chamber. As 

mentioned earlier, the triple-jet structure which resulted from the blockage of 

the flow by the two valve leaflets and the vortex formation can be observed in 

the simulations at both Reynolds numbers, which was also reported by (Ge et 

al., 2005). 
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5.1.4 Limitations 

The BMHV model used in the simulation was simplified by neglecting the 

hinge mechanism of the valve leaflets. The lack of hinges may play a role in 

the upstream region during regurgitation. In reality, the hinge may vary from 

one side to another due to manufacturing tolerances. As shown by Simon et 

al., (2010), the design of the hinge might play a role in the thromboembolic 

complications of the valve due to the unsteadiness of the hinge flow fields. 

The presence of hinge geometry should be accessed for a more accurate 

simulation. 

 

5.1.5 Summary  

The study has developed and validated the laminar using a 29mm ATS Open 

Pivot Valve with simplified hinge design. The flow profiles for different planes 

downstream of the valves were compared and showed close accuracy with 

the simulated results. The 3-dimensional model used in the numerical study 

was successfully validated using the experimental model. 
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5.2 Turbulent Flow Simulation 

The results in this section were continuation from an earlier work published by 

Nguyen et al., (2012) to achieve Project Aim 1. 

 

5.2.1 3-dimensional Turbulent Flow Simulations 

A CFD simulation of flow at near peak systolic condition was considered in 

this study. As the flow approached this condition, Reynolds number was 

estimated at about Re=5000 to 6000 in which full turbulent regimes were 

expected to be observed in the flows. Similar to the laminar flow study, the 

valve geometry used in the turbulent flow study for Re=5000, was a valve 

based on the design of a 29mm ATS Open Pivot Valve placed in a single 

axisymmetric sinus in a straight pipe. The hinge mechanism of the valve 

leaflets was omitted in the BMHV model. Simulations were performed for 

three different turbulent models. For k-epsilon and SA turbulent models, the 

same geometry as the laminar flow study was used, which were subdivided 

each into an unstructured mesh of approximately 2.2 million tetrahedral 

elements. For the LES simulation, the surface boundary layers on the leaflets 

were included, and the size of the unstructured mesh was approximately 3.4 

million tetrahedral elements. The close up view of the surface boundary layer 

on one of the leaflets is shown in Figure 5-6. 

 
Figure 5-6: Close up view of the surface boundary layer at the leaflets for LES 

modeling 
 

5.2.2 Boundary Conditions 

For the fully developed turbulent flow simulation, the power law inlet velocity 

was used for Reynolds number Re=5000. Figure 5-7 shows the inlet 

boundary condition for turbulent flow for all the k-epsilon, SA and LES 

simulations. 
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Figure 5-7: Inlet boundary condition for turbulent flow 

 

5.2.3 Results and Discussion 

The URANS approach was used to simulate turbulent flow. Figure 5-8 shows 

time-averaged velocity contour of flow at Reynolds number Re=5000 using 

SA turbulence model. The current model was able to capture flow features at 

high Reynolds number in which the three-jet structure was present and the 

rotation of flow axis at downstream was observed through velocity vector 

profile at four X-Y planes at Z=0D, 1D, 2D and 4D downstream.  
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Figure 5-8: Flow at Re=5000 using Spalart-Allmaras turbulence model plan view and 

4 cut planes of Z=0D, 1D, 2D and 4D 
 

The flow solutions of k-epsilon and SA models could only predict the time-

averaged quantities and it required a more detailed turbulent flow model, such 

as LES or DES to be able to probe more turbulent flow statistics. The three 

turbulent flow models, k−epsilon, SA and LES were compared as shown in 

Figure 5-9. The velocity profiles at three different cut-planes for all the three 

models showed difference in the time-averaged velocity. The k−epsilon and 

SA results showed more symmetric profiles than LES. The general shape and 

velocity magnitude between the three turbulent flow models were similar. LES 

showed a more detailed representation of the turbulent flow although this 

simulation model consumes much more computational resources, about three 

times as much as the k-epsilon and SA models. Comparing k-epsilon and SA 

model, it was shown that the SA model could be used as a simplified version 

of the LES model for optimal consideration between the computational costs 

and closely resembling shape and flow magnitude, as compared to the k-

epsilon model. In the subsequent simulations, SA model was used for the 

studies.  
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Figure 5-9: Comparison of velocity profiles at different cut-planes for k-epsilon and 

SA model at position Z=1D, 2D and 4D 
 

Similar vorticity contours can be observed in Figure 5-10 where the two 

turbulent flow models, k-epsilon and SA are shown.  
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(A) (B)  
Figure 5-10: Comparison of vorticity profiles at Re =5000 (A) k-epsilon, (B) Spalart-

Allmaras 
 

5.2.4 Summary 

The study investigated the turbulence modeling using SA, k-epsilon and LES 

models. Comparing all these three models, the study has shown that the SA 

model could be used as a simplified version of the LES model for optimal 

consideration between the computational costs and closely resembling shape 

and flow magnitude, as compared to the k-epsilon model.  
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5.3 Pulsatile Flow Simulation and Validation Study 

To investigate the flow through BMHV under physiological condition for 

Project Aim 1, the numerical model is required to be capable of simulating the 

moving boundaries of the valve leaflets. One of the most important flow 

features of cardiovascular flow is its pulsatile nature. The CO in the aorta 

changes in time and peaks at a flow rate of about 25Lmin-1. The blood flow 

through the BMHV undergoes periodic transition to turbulent flow as the peak 

systolic flow rate approaches.  

 

5.3.1 3-dimensional Model of Straight Pipe  

The valve simulation model used for pulsatile flow was similar to the earlier 

studies, which was a simplified axisymmetric sinus in a straight downstream 

aorta as shown in Figure 5-11. The valve was based on the design of a 

29mm SJM Masters Series Bileaflet Mechanical Heart Valve with the hinge 

mechanism. The geometry was subdivided into an unstructured mesh of 

approximately 3.6 million tetrahedral elements to accommodate the mesh in 

the hinge regions. The simulation was performed using ALE moving mesh 

technique with turbMMeshTrackFoam solver in OpenFOAM.  

 
Figure 5-11: 3-dimensional model of a SJM valve placed in a straight pipe with an 

axis-symmetric sinus 
 

The pulsatile flow was studied for the entire cardiac cycle and comparisons 

with experimental data were made to validate the simulations. Experimental 

validations were performed using the pulsatile flow setup with piston pump 

(Vivitro SuperPump). In this study, the simulation of a pulsatile flow for the 

cardiac cycle has successfully been validated using PIV. The origin of X and 

Y-axes is at the center of the flow channel with the Z=0 plane located at the 

trailing edge of the leaflets with the corresponding velocity components u, v 

and w, respectively. Comparisons for the streamwise velocity profiles were 

made at Z=1D, as well as the upstream of the flow at four different time 

points. The velocity flow fields were averaged from 150 image pairs which 

were analyzed using the LaVision PIV software (Davis 8.0.5, LaVision, 
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Germany). The pulse trigger was activated to synchronize the laser and the 

piston pump at the four time points. The velocity range observed in the 

experiment was between -0.4 to 1.3ms-1.  

 

5.3.2 Boundary Conditions 

As one of the project aims in this study, a 3-dimensional flow was simulated 

over a typical human cardiac cycle in which the SJM valve was placed at the 

aortic position. The valve was operated under a prescribed motion using 

given inlet and outlet waveforms. Typically, a cardiac cycle was divided into  

systolic and diastolic time intervals where the heart’s atria and ventricles were 

working synchronously to pump the blood through the circulatory system. The 

prescribed periodic condition started at fully open position of the valve where 

ejecting velocity kept increasing until it reached a peak flow rate of 25Lmin-1. 

The whole cardiac cycle was about 0.86s, which was derived from a heart 

beat condition of a healthy person at 70bpm. The motion of the leaflets was 

prescribed to rotate from fully open position (85°) to fully closed position (35°). 

The simulation was driven by the inlet pressure and outlet velocity boundary 

conditions. Figure 5-12 shows the flow rate of the complete cardiac cycle 

obtained experimentally with the peak flow rate at 24.1Lmin-1, which is close 

to peak systolic flow rate of 25Lmin-1 (Ge et al., 2005). Four different time 

points for the simulations and experimental studies were compared. The 

experimental results were repeatable. 

 
Figure 5-12: Comparison of simulation and experimental flow rate of the cardiac 

cycle. Four velocity time points were compared at t=0.07s, 0.115s, 0.14s and 0.23s 
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5.3.3 Results and Discussion 

The flow rate profile between simulation and experiment was similar generally 

in terms of the shape and flow rate magnitude. In the time frame between 

0.275s and 0.475s, slight deviation was observed between the simulation and 

experiment model, partially due to the compliance chamber and the pipe 

length in the experimental setup. It was tried to mimic the physiological flow 

as close as possible. There was also a slight difference in the exact time 

frame of the peak velocity between the simulation and experiment. In 

simulation, the peak velocity was at time 0.115s while in the experiment, the 

peak velocity was at time 0.14s. The difference in these two time frames was 

also due to the difficulty in mimicking exactly the peak systole flow 

experimentally. Five different time points captured experimentally were 

chosen to capture the systolic flow. Out of these five points, two time points 

were chosen near the peak velocity. The flow data captured experimentally 

was averaged out from 150 image pairs.  

 

The numerical method was applied for simulations of pulsatile flows over 

BMHV with prescribed motions in a typical human cardiac cycle. The motion 

of the leaflets as well as boundary conditions is described in the earlier 

section. In order to investigate the errors of the initial configuration over 

multiple cardiac cycles, the BMHV was simulated over two cardiac cycles. 

The results from the first and second cycles were compared and there were 

no significant differences. As such, the results presented for the second cycle 

and single cardiac cycle simulation was found to be sufficient to represent the 

dynamic operation of BMHV. During diastole, there was no flow from left 

ventricle to aorta while the aortic valve was fully closed. However in this 

study, the BMHV was not fully closed, with a small gap which was necessary 

for the simulation to converge. Figure 5-13 shows the velocity contour 

obtained experimentally for position Z=1D at time t=0.115s. 
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Figure 5-13: Velocity contour of the experimental study and simulation which show 

the plane at position Z=1D at time t=0.115s  
 

In this study, using prescribed inlet velocity boundary condition, the peak 

systole was set at time 0.115s at the second cycle. Figure 5-14 shows the 

velocity variation comparison between simulation and experiment along the 

radial distance at position upstream, Z=1D downstream of the valve. First, the 

inlet velocity at the upstream position was compared and found to be similar 

in terms of the velocity profile and magnitude. The flat inlet velocity profile is 

consistent with the turbulent flow profile, which was expected at peak systole. 

 

At position 1D, the results showed that the central jet was slightly higher in 

the simulation (1.07ms-1) than the to experiment (0.9ms-1). The triple-jet 

structure of the flow can be seen clearly even though the structure in the 

experiment appeared to be squashed to the center flow. The achieved 
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velocity distribution along X-axis in the simulation study had a triple-jet 

structure with central jet (1.07ms-1) having roughly equal magnitude with the 

lateral jets (1.13ms-1). In the experiment, the central jet appeared to be lower 

in magnitude (0.9ms-1) as compared to the lateral jets (1.05ms-1). Negative 

velocity was seen near the left and right boundaries, arisen from recirculation 

in the aortic sinus, can be clearly observed in both the simulation and 

experimental results, both having comparable magnitude at (0.3ms-1). The 

simulation was able to provide quite an accurate prediction in terms of the 

magnitude and some velocity contours. The well-known triple-jet structure 

can be seen in both simulation and experiment. 

(A)  

(B)  
Figure 5-14: Velocity profile comparisons between experimental (o) and numerical 
simulation (–) at peak systole time t=0.115s for positions (A) Upstream, (B) Z=1D 

 
Comparisons were also made at the other near peak systole time point at 

t=0.14s. Figure 5-15 shows the velocity contour obtained experimentally for 
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position Z=1D at time t=0.14s. The triple-jet structure merges downstream of 

the valve. In Figure 5-16 at position Z=1D, the triple-jet structure was visible 

although the velocity magnitude in the experiment was lower by about 10% 

compared to the simulation.  

 
Figure 5-15: Velocity contour of the experimental study which shows the plane at 

position Z=1D at time t=0.14s 
 

(A)  
Figure 5-16: Velocity profile comparisons between experimental (o) and numerical 

simulation (–) at time t=0.14s for positions Z=1D 
 

Similar comparison can be seen for the velocity profile at two other time 

points (t=0.07s and t=0.23s) as shown in Figure 5-17 at position Z=1D. The 

flow profile and velocity magnitude obtained in the simulation showed good 
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agreement with the experimental results, where the triple-jet structures have 

merged.  

 (A)  

(B)  
Figure 5-17: Velocity profile comparisons between experimental (o) and numerical 

simulation (–) for position 1D at (A) time t=0.07s, and (B) t=0.23s  
 

The simulations were able to capture essential features of the pulsatile flow in 

the experiments. The recirculations near the walls of the sinus chamber at 

peak systole were captured in both experiment and simulation and showed 

comparable results. The triple-jet structure which was resulted from the 

obstruction of the flow by the two valve leaflets could be observed accurately, 

with the flow merging into two lateral flow downstream. Interesting flow 

features were often observed at the peak systole where the high velocity flow 

may cause blood shear and result in thrombogenicity. The diastole time 
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points were not captured because the flow rate was minimal. The interesting 

flow features to be observed during diastole would be the flow leakage 

through the hinges. However, this data was not able to be captured 

experimentally due to the opacity of the valve which obstructed the laser 

sheet. 

 

Wall shear stress is another important parameter in BMHV simulations. 

Research has shown the association of wall shear stress with platelet 

activation, hemolysis and thrombus initiation on top of material properties and 

contact activation (King et al., 1997, Cheng et al., 2004). As the valve leaflets 

open, the blood is being forced through the valve leaflets, resulting in high 

velocity jets. These velocity jets will in turn cause high velocity gradients and 

induce high shear stress. The shear stress may then cause hemolysis or 

platelet activation. Figures 5-18 shows the wall shear stress distribution on 

the valve leaflet during the leaflet motion. It was seen from the contour plot 

that the shear stress was highest at the valve leaflet edge especially at the 

edge close to the inlet. This agreed with CFD simulation results by (Dumont 

et al., 2007). It was also observed that the wall shear stress was higher on 

the side of the lateral orifice than the central orifice, which could be due to the 

tilting direction of the valve leaflet when the valve was fully opened. When it 

was fully opened, the leaflet was at 85° from the transverse plane tilting 

toward lateral side. Therefore, the leaflet surface at the lateral side would be 

exposed more to the fluid flow, which caused elevated wall shear stress at 

the lateral surface. 

 
Figure 5-18: Wall shear stress distributions on valve leaflets from fully open to close 
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5.3.4 Limitations 

The PIV laboratory experiments and time-accurate simulations were carried 

out for a flow through SJM Masters Series BMHV mounted in an 

axisymmetric sinus chamber. The simulation was started with the leaflets in 

the fully open position even though in reality, the valve moves from the closed 

position to the fully open position during diastole as the ventricular chamber is 

filled. The simulation was conducted in such a way because of the problem 

faced in mesh regeneration at the start of the simulation if the valve moves 

from the closed to fully open position; a very high velocity jet was observed in 

the small clearance region between the leaflets. However, such problem was 

not encountered when the valve moved from fully open to closed position. 

Nevertheless, it is important to study the solver to include the motion of the 

leaflet according to the actual cardiac cycle for a more realistic simulation. 

The experimental data was captured only during the valve opening and 

closure as each time point of the valve closure varied slightly during the 

experiment. As the PIV only averages out the 150 image pairs (which was 

150 heart beats), it was not possible to obtain the correct position of the valve 

movement during opening and closing. The valve only has a window of about 

0.04s for each of the opening and closing rotation of the leaflets in one 

cardiac cycle. Also the laser pulse was synchronized with the movement of 

the piston pump. The valve might have been closed at a slightly varied time 

due to several factors such as the pressure difference in the compliance and 

the pulsatile nature of the flow.  

 

5.3.5 Summary 

The study has developed and validated the pulsatile flow with prescribed 

leaflet motion for a 29mm SJM Masters Series BMHV. The flow profiles for 

different planes downstream of the valves were compared and showed close 

accuracy with the simulated results. The 3-dimensional model used in the 

numerical study was successfully validated using the experimental model.  
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5.4 Comparison of Hinge Microflow Fields of BMHVs implanted in different 

sinus shapes and downstream geometries 

 

The objective of this study is to provide a detailed 3-dimensional flow 

simulation study in the hinge region of a SJM Masters Series bileaflet 

mechanical heart valve with two different aortic sinus shapes and 

downstream geometries. This study fulfilled Project Aim 2a by attempting to 

evaluate the flow fields of all four hinges in a single BMHV (α, β, γ and δ), 

as shown in Figure 5-21(A). The simulation results showed asymmetrical 

triple-jet structures in anatomical-straight and anatomical-arch cases, with 

velocity magnitude of 2ms-1 observed in the hinge recess during systolic 

phase. During early diastolic phase, high-speed leakage jets through the 

hinge gap regions for all four cases were observed with a maximum velocity 

of 4.7ms-1. This also corresponded with high wall shear stresses in all four 

cases. The results of this work provided insights into impact of different aortic 

sinus shape, the aortic arch geometry and the location of the hinge recess on 

hinge microflow fields during systolic and diastolic phase.  

 

In the simulation, a second-order Crank Nicholson implicit time discretization 

with adjustable time-step throughout the simulation with the average time-

step in the magnitude of 10-5s, The time-step was dependent on the 

maximum CFL number = 1. The Courant Number mean was about 0.08. In 

the unsteady, time-accurate, moving boundary simulation, the turbulent 

model used was SA model and implemented using the OpenFOAM package. 

Various forms of SA models can be found in Spalart (2000). The ALE 

formulation was used to discretize the system with prescribed leaflet motions 

over two cardiac cycles. The details of the finite volume method used in this 

study as discussed in the previous work (Nguyen et al., 2012).  

 

5.4.1 Hinge Model and Flow Domain 

The valve geometry in this study was based on the design of a 29mm SJM 

Masters Series BMHV. In order to investigate the effects of sinus and aortic 

geometries on the flow fields, four different cases were modeled in this study, 

as follows: (i) a simplified axisymmetric sinus in a straight downstream pipe 

(simple-straight), (ii) a simplified axisymmetric sinus in a downstream curved 



 117 

aortic arch (simple-arch), (iii) a three-sinus aortic root model in a straight 

downstream pipe (three-sinus straight) and (iv) a three-sinus aortic root 

model in a simplified downstream curved aortic arch (three-sinus arch), as 

shown in Figure 5-19(B).  In this study, all the four hinges were modeled 

together with the entire valve geometry. The hinge gap width was the 

distance between the tip of the leaflet ear and the bottom of the hinge recess, 

defined as (y - x), as shown in Figure 5-19(C). In the model, the leaflet ear 

was placed within the butterfly-shaped depression (hinge recess) with a hinge 

gap width of 150μm, as observed in clinical valves (Simon et al., 2010). In 

the first case, the BMHV was inserted into a simplified aorta model consist of 

a straight pipe with axisymmetric sinus and three-sinus aortic root. In the 

second case, the BMHV was inserted into a simplified curved aortic arch with 

the axisymmetric sinus and three-sinus aortic root in an anatomical position.  

 

The centerline of the aorta followed the curvature of the normal diameters for 

the thoracic aorta of adults obtained by helical computed tomography (Hager 

et al., 2002). However the three branches on the top were excluded to 

minimize the complexity of the flow simulation. The computational fluid 

domain of each of the four cases; namely simple-straight, three-sinus straight, 

simple-arch and three-sinus arch was subdivided into an unstructured mesh 

of approximately 3.6 million tetrahedral elements. The grid contained 

approximately 100,000 nodes with resolution of 7-8μm in the 150μm gap. 

During systolic phase, the valve was fully opened at an angle of 85° between 

the leaflet and the X-Y plane. After valve closure, the fully closed SJM leaflets 

formed a 35° angle.  

(A)  Inlet View 
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(B)  Top View 

 

 

(C)  Top View 

 
Figure 5-19: (A) the inlet view of the valve leaflet in the two sinus chambers, (B) Four 
simulation models with two different sinus chambers and two downstream geometries 
where a SJM valve model is inserted, (C) Hinge model with the butterfly shape hinge 
recess of SJM valve visible. The gap between the leaflet and the housing is about 

0.15mm 
 

5.4.2 Boundary Conditions 

The BMHV was subjected to physiologic conditions and the velocity profile 

was obtained from the experimental data of the left ventricle study published 

by Lim et al., (2001). The prescribed periodic condition started at fully open 

position where the ejecting velocity increased from zero to a peak velocity of 

1.35ms-1. The data points for aorta outlet pressure-time profile corresponded 

to the aorta blood pressure (Nichols and O’Rourke, 2005) and the peak flow 

rate was set at approximately 25Lmin-1. The full cardiac cycle was 0.86s, 

     (i)         (ii)                    (iii)     (iv) 
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which corresponded to a heart rate of about 70bpm. At the inlet and outlet of 

the simulation cases, the velocity and pressure were prescribed using the 

given waveforms, shown in Figure 5-20. No-slip boundary condition was 

imposed at the channel walls, the leaflet walls and all body surfaces. The 

cardiac cycle condition used in this simulation was described earlier in section 

3.4.4. In total, four time points were investigated for each model at peak 

systole (t=0.115s), early diastole (t=0.340s), mid-diastole (t=0.58s) and end 

diastole (t=0.82s). The leaflets rotated from 85° in their fully opened position 

to 35° at fully closed position.  

 
Figure 5-20: Velocity and pressure wave profile. Four time points were analyzed at 

peak systole 0.115 s, early-diastole 0.34 s, mid-diastole 0.58s and late-diastole 0.82s 
 

5.4.3 Results 

The terminologies used to describe the hinge recess geometry and flow 

patterns were shown in Figure 5-19. The flat level of the leaflet was used as 

the plane of reference. The vertical direction was the direction perpendicular 

to the flat level and parallel to the leaflet axis. The direction parallel to the 

main flow was the axial direction while the direction from the b-datum plane to 

the valve housing was the transverse direction.  

 

5.4.3.1 Downstream flow fields of BMHV 

During the systolic phase, the general flow fields were observed to be highly 

3-dimensional with strong forward flow. The downstream flow profiles for both 
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the straight and the curved aortic arch were compared. The origin of X and Y-

axes was at the center of the flow channel with the Z=0 plane located at the 

trailing edge of the leaflets with corresponding velocity components u, v and 

w respectively. The streamwise velocity profiles were compared at position 

Z=1D (D = inlet diameter). 

 

Figure 5-21 showed the velocity contour plot in the mid-plane at peak systole 

for all the simulation cases. At peak systole, the triple-jet structures of the flow 

were observed in all simulation cases. The flow features were the result of the 

presence of the two valve leaflets and have been reported in previous BMHV 

studies and were considered a typical flow pattern observed in BMHV placed 

in a straight pipe (Leo 2005, Ge et al., 2005, Nguyen et al,. 2012).  

 
Figure 5-21: Plan view of streamwise velocity contours for all four simulation models 

at cross sectional plane, Z=1D at peak systole 0.115s 
 

For the simple-straight model, the triple-jet structure appeared to be 

symmetrical at position Z=1D, as shown in Figure 5-22 (i). However, for the 

simple-arch model in Figure 5-22 (ii), the downstream flow profile was not 

symmetrical and deviated towards the inner arch of the aorta. Similarly, in the 

three-sinus straight and three-sinus arch models, the triple-jet structure was 

not symmetrical, as shown in Figure 5-22 (iii) and (iv). The simulation of 

BMHV placed in a curved aorta downstream has not been studied before. In 

both the latter cases, the central jet shifted away from the sinus chamber on 

the right towards the inner arch, as viewed from the inlet position for the 

three-sinus aortic root.  
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Another key feature observed in the simulations was the formation of vortices 

near the wall edge in the sinus chambers. The flow recirculation in the sinus 

chambers was observed in both simple-arch and three-sinus arch cases. 

Interestingly, regions of recirculation were also observed downstream in both 

the simple-arch and three-sinus arch cases, as highlighted in Figure 5-23. 

These flow features have not been discussed in earlier studies and could be 

the cause for flow stagnation in the downstream regions. The formation of 

vortices in the aortic sinus was also observed at the downstream of the hinge 

regions. In general, the downstream flow velocity during diastolic phase was 

low and decreased to almost stagnat in all four simulated cases.  

 
Figure 5-22: Cross sectional planes at Z=1D which show the triple-jet structures at 

peak systole 0.115s for (A) simple-straight, (B) simple-arch, (C) three-sinus straight, 
and (D) three-sinus arch 
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Figure 5-23: Recirculation regions observed in the circled regions at peak systole 

0.115s in (A) simple-arch and (B) three-sinus arch 
5.4.3.2 Hinge Microflow Fields during Systole 

The velocity contour plot for the two hinges, α and β, for each model were 

shown in Figure 5-24 (A). Generally, the flow velocity was higher at the outer 

face of the leaflet ears from the center plane than that at the inner face of the 

leaflet ears. The flow velocity throughout the hinge recess followed closely 

the magnitude of the valvular flow rate in all the four-simulation cases with the 

maximum velocity magnitude within the hinge recess reaching approximately 

2ms-1 during peak systole. No significant differences in velocity magnitude 

were observed at the hinge region when comparing between the straight pipe 

models (Figure 5-24 (A)(i) and 5-24 (A)(iii)), and between the simplified aortic 

arch models (Figure 5-24 (A)(ii) and Figure 5-24 (A)(iv)). However, velocity 

differences were observed in the inner flow circled region between the 

straight pipe and aortic arch models. The flow velocities in hinge β of aortic 

arch models were lower compared to those in the straight pipe models. The 

flow fields between the two hinges (α and β) were not symmetrical in the 

aortic arch models. To investigate further, the hinge flow fields for all four 

hinges (α, β, γ and δ) in the three-sinus arch model were compared. 

Figure 5-24 (B) compared the velocity contours in all of the four hinges in the 

three-sinus arch model at peak systole. The flow patterns were different 

among the four hinges and they were not identical. The flow fields for the 

other three cases exhibited similar asymmetric flow patterns during peak 

systole (not shown here). The velocity values at the inner face region of the 

four hinges were different from each other especially at the outer face and the 

trailing edge regions.  The flow velocity in hinge α at the inner face region 

was higher than the other three hinges.  At the leading edge of the leaflet 
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regions, hinges γ and δ appeared to have smaller regions of high velocity 

flow compared to α and β. These flow pattern differences affect the shear 

stress distribution in the hinge regions. 

(A)  

(B)  
Figure 5-24: (A) Flow fields at hinge α and β for (i) simple-straight, (ii) simple-arch, 

(iii) three-sinus straight, and (iv) three-sinus arch at peak systole, (B) Hinge flow 
fields for all four hinges α, β, γ and δ for three-sinus arch at peak systole 

 

5.4.3.3 Hinge Microflow Fields during Diastole 

Figure 5-25 (A) compared the velocity fields at early diastolic phase for 

hinges α and β, for all the four cases. The general trend of the flow within 

the hinge recess was similar across all four cases at the near wall regions, 

except with higher velocity observed at the trailing edge region when 

compared to the leading edge region of the hinge recess. Unlike at peak 

systole, no significant differences in velocity magnitude were observed in the 

hinge regions between the straight pipe and aortic arch models during early 

diastole. Figure 5-25 (B) compared the flow field among the four hinges in the 
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three-sinus arch model. In the circled region of the outer face of the leaflets 

for hinge α, the velocity appeared to be slightly lower than the other three 

hinges β, γ and δ.  

(A)  

(B)  
Figure 5-25: (A) Flow fields at hinge α and β for (i) simple-straight, (ii) simple-arch, 
(iii) three-sinus straight, and (iv) three-sinus arch at early diastole, (B) Hinge flow 

fields for all four hinges α, β, γ and δ for three-sinus arch at early diastole 
 
The leakage flow rates observed in the 29mm SJM BMHV at early diastole 

were shown in Table 5-1. The average leakage flow rate for the four models 

was found to be 0.457 ± 0.001Lmin-1. This leakage rate was observed to be 

between that of the high leakage prototype (0.490 ± 0.021Lmin-1) and low 

leakage prototype valves (0.049 ± 0.001Lmin-1) reported by Leo et al., (2006). 

Comparing the leakage rates through each individual hinge, the difference 

between the highest and lowest flow rate for the cases were 2.80% (simple-

straight), 2.62% (simple-arch), 2.35% (three-sinus straight), and 3.06% 

(three-sinus arch). The indifference in the leakage rates showed that they ere 

independent of the different sinus shapes and downstream geometries. 

Nevertheless, the leakage rates were not able to account for the shear stress 
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distribution within the hinge recess. The shear stress distribution was based 

on the flow profiles in the hinges. 

 
Table 5-1: Leakage flow rate through the hinge regions 

 
 Hinge α 

Lmin-1 
Hinge β 
Lmin-1 

Hinge γ 
Lmin-1 

Hinge δ 
Lmin-1 

Total Flow 
Rate Lmin-1 

Simple-straight 0.1134 0.1166  0.1139 0.1145  0.4584 
Simple-arch 0.1155 0.1135 0.1125 0.1149 0.4564 
Three-sinus 

straight 
0.1122 0.1149 0.1138 0.1147 0.4556 

Three-sinus 
arch 

0.1161 0.1139 0.1126 0.1146 0.4572  

 
5.4.3.4 Hinge Flow Fields In Anatomical-Arch Model 

Figure 5-26 showed the flow fields within hinges β during diastole phase. 

High-velocity jets were observed at the position c and d at early diastole. 

These high-velocity leakage jets had large out-of-plane velocity components 

with a maximum velocity of 4.7ms-1. Figure 5-26 (A) showed the six planes, 

which were 100μm apart from each other starting from the flat level. High 

reverse velocities were observed in all planes within the hinge recess. The 

leakage flow between the leaflets at the hinge housing was observed at the 

side view. The strong and highly 3-dimensional flow structures showed the 

complexity of the flow in the hinge regions during early diastole. There were 

not much flow variations among the four simulation cases during early 

diastole. At mid-diastole in Figure 5-26 (B), high-velocity jets were also 

observed at the position c and d but at comparatively lower velocity 

magnitudes of 0.46ms-1. The highest leakage flow velocity was also observed 

at the area between of the tip of the leaflet ears and the hinge recess at 100

μm from the flat level (point e). The flow leakage was also observed between 

the hinge and the leaflet ear. The highest leakage velocity was 0.076ms-1 in 

the backflow direction through the gap between the leaflet ear and the hinge 

recess. Figure 5-26 (C) showed the flow field at late diastole when the flow 

was almost zero. 

(A)    Top View           Side View 
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(B)   Top View           Side View 

  
(C) 

 
Figure 5-26: Hinge flow fields along six different planes within the hinge recess at (A) 

early diastole, (B) mid-diastole and (C) late-diastole for three-sinus arch. The six 
planes shown here are 100μm apart from each plane starting from the flat level. 

Leakage flow can be observed at the side view 
 

5.4.3.5 Wall Shear Stress Distribution 

At peak systole, the wall shear stress magnitude at the hinge recess for all 

four cases was approximately 270Pa. High wall shear stress magnitude was 

typically observed during early diastole phase (with the maximum level at 

1.6kPa in hinge β). There were slight variations in the wall shear stress 

distribution among the four cases largely because the velocity profile near the 

wall of the leaflets were largely similar. However, only the three-sinus arch 

results for hinge β at peak systolic and early diastolic phase will be 

presented (Figure 5-27). In general, the wall shear stress levels within the 

hinge recess during peak systole were lower compared to those during the 

early diastole (Figure 5-27 (A)). At early diastole, the high-wall shear stress 

region was coincident with the region of high-velocity leakage jets, as shown 

at positions f and g in Figure 5-27 (B). The wall shear stress in the hinge 

recess cavity at peak systole was about the same magnitude at 270Pa as 

seen in Figure 5-27 (C). On the other hand, the hinge recess cavity 

demonstrated a slightly higher wall shear stress magnitude of approximately 
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1.65kPa when compared to the hinge area during early diastole. Elevated 

wall shear stress was also observed in regions h and j at the upstream of the 

flow, during early diastolic phase in Figure 5-27 (D). In mid-diastole and late 

diastole, the wall shear stress was observed in the same location but with 

smaller magnitude.  

(A)  

(B)  

(C)  

 (D)  
Figure 5-27: Wall shear stress along six different planes within the flow domain in 

hinge recess for three-sinus arch. The six planes shown here are 100μm apart from 
each plane starting from the flat level at (A) peak systole, (B) early diastole, Wall 

shear stress of the hinge recess surface for three-sinus arch at (C) peak systole, (D) 
early diastole 
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5.4.4 Discussion 

In this study, a 3-dimensional, time-accurate flow simulation of a SJM valve 

was performed under physiological flow conditions. All the four hinges were 

modeled in order to identify the flow differences within these pivot recess 

regions. Four types of geometries were performed to understand the effects 

of the sinus shape on the hinge recess flow. Simulations based on a section 

of the cardiac cycle; such as the forward flow phase (Kelly et al., 1999) or 

limited to just steady flow conditions (Wang et al., 2001) are not able to 

capture the flow unsteadiness accurately. As such, physiological flow 

conditions were imposed so as to observe these flow characteristics in the 

hinge flow fields, as recommended by Simon et al., (2010) too. It is important 

to model the flow based on physiological boundary conditions in order to 

access the performance of the hinge design. The prescribed motion of the 

leaflets was performed with a constant angular velocity and a closing time 

equal to that of the opening time 

 

The current model uses the ALE method so that the mesh is deforming with 

time as leaflet is rotating from its full open position (85°) to valve closure 

(35°). The use of ALE method has many advantages although it relies on the 

continuous regeneration of mesh while maintaining good mesh quality. By 

performing a constant angular velocity, the flow field during the hinge 

movement may not be captured accurately. However, during the four time 

points that was observed in the simulation (peak systole, early diastole, mid 

diastole and late diastole), the time varying nature of the angular velocity of 

the leaflets are not as critical. As such, imposing a constant velocity 

movement was conducted. The flow field was analyzed during peak systole, 

when the leaflets are fully open with majority of the bulk flow through the open 

valve, and the early, mid and late diastole when the leaflets are fully closed.                                                                          

 

The rotation angle was determined based on the pressure and the velocity 

flow at both the inlet and outlet. The resistance offered to the flow by the 

hinges and the peripheral gap was also dependent on the dimensions and 

geometry of these gaps. To achieve optimal spatial resolution while managing 
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the computational resources, each element was about 7-8μm in size in the 

150μm gap, as observed in clinical valves.  

 

5.4.4.1 Downstream Flow Fields of the BMHV 

In this simulation, a 3-dimensional, time-accurate flow simulation of a SJM 

valve was performed under physiological flow conditions. Each of the four 

valve geometry was modeled with all four hinges. The results showed that the 

hinge microflow fields are highly 3-dimensional and complex. The 

downstream geometry between straight pipe and aortic arch were shown to 

have affected the hinge flow fields during peak systole although such 

differences were not observed during diastole. Triple-jet structures were 

observed among the four cases during peak systole but with non-symmetrical 

downstream flow profiles observed in both the three-sinus aortic root cases. 

With the simplified aortic arch geometry, the triple-jet structures shifted 

towards the inner arch wall with the formation of flow recirculation regions 

observed between position 2D and 4D downstream from the valve. Such flow 

structures were not evident in the straight pipe cases. The difference was due 

to the shape of the arch which forced the flow to be directed towards the inner 

arch direction. The significance of such observation helped to highlight the 

potential area where thrombosis may occur and this can affect the angle of 

implantations in a clinical setting.  

 

5.4.4.2 Sensitivity of Hinge Flow Fields  

Flow unsteadiness in the lateral and ventricular corners of the hinge region 

was observed at peak systole and early diastole. By investigating the four-

hinge geometries in this study, the results showed that the four hinges 

generally exhibit slightly different flow fields. During systolic phase, the shape 

of the sinus chambers appeared to have minimal effect on the bulk flow 

through the fully open valve and the hinge flow regions. However, the 

downstream shape affected the flow in the hinge regions where lower 

velocities were observed in the aortic arch downstream models at peak 

systole. One possible explanation would be due to the asymmetrical 

downstream flow profile in the aortic arch downstream models. The triple jet 

structures were pushed towards the inner walls and affected the hinge flow 

profiles. 
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Highly complex 3-dimensional flow fields were observed throughout the 

diastolic phase with decreasing leakage flow rate from early diastole to late 

diastole. The backflow velocity through the hinge regions was much higher at 

4.7ms-1 compared to the rest of the flow domain with average velocities 

ranging from 0.042ms-1 to 0.156ms-1. The high-speed leakage jets could 

impact the level of hemolysis and platelet activation at the ventricular corner, 

which may potentially affect the performance of the valves. The backflow in 

the simulations conducted in an earlier paper was 4.75ms-1 (Simon et al., 

2010).  

 

5.4.4.3 The Relative Position Of The Hinge Does Not Affect Hinge Flow 

Leakage Rate 

The reported leakage rate between the various cases differs by 2-3%. These 

results suggest that the difference between the four cases may not be 

significant. Nevertheless, there is still merit to study the difference in the 

various velocity contours in each of the four hinges as shown earlier for three-

sinus arch. The velocity contours of the hinges were subtlety different from 

each other, especially when a non-symmetric sinus chamber was modeled. A 

human native aorta bulges outwards to form the three-sinuses (Ho 2009). 

The three-sinus model was used in the simulation to mimic the human native 

aortic sinus. The study demonstrated subtly differences in the hinge flow 

fields contour between straight pipe and downstream aortic arch at peak 

systole. Hinge flow patterns differences were observed when the flow fields in 

all four hinges were analyzed within the aortic arch model although the 

leakage rate suggested similar rate. Using a model which closely resembled 

geometry to the native aortic sinus would be a better choice, hence a more 

accurate representation of the hinge micro flow fields. As such, the hinges in 

conjunction with a three-sinus aortic root geometry and curved downstream 

aortic arch that closely resembled that of native human model should be 

included in future hinge flow contours study. It is not necessary to simulate all 

four hinges if the research focuses on the leakage rate through the valves 

and not the flow contours. 
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5.4.4.4 Elevated Wall Shear Stress May Lead To Hemolysis And Platelet 

Activation 

The threshold level responsible for red blood cell hemolysis to occur was 

found to be approximately 400Pa, below which a sublethal region of zero 

hemolysis was observed (Sallam and Hwang, 1984). Earlier studies also 

reported that platelet activation and aggregation could occur at shear stress 

as low as 5Pa, and irreversible platelet aggregation occurs at shear stress of 

10Pa (Hung et al., 1976, Ramstack et al., 1979, Slack et al., 1993). The blood 

elements experienced higher rate of collision with the valve wall due to the 

recirculation flow formed near the wall as a result of turbulent flow. Such 

platelet activation by high wall shear stresses may lead to thromboembolic 

complications (King et al., 1997 and Cheng et al., 2004). These regions were 

associated with high wall shear stress, and may lead to hemolysis and 

platelet activation. The large wall shear stress during diastolic phase may be 

more detrimental to blood elements compared to the systolic phase. This 

observation is consistent with earlier studies (Ellis et al., 1996, Lamson et al., 

1993, Maymir et al., 1997, Steegers et al., 1999, Simon et al., 2010). As a 

result, the design of the leaflet ear, the wall curvature of the hinge recess and 

the upstream of the leaflet edge may contribute significantly to the 

thromboembolic risk in the BMHV. Higher wall shear stress was observed 

during diastole phase compared to peak systole, which suggest that diastole 

played a bigger role in causing detrimental damage to the blood elements. 

Nevertheless, through this numerical simulation, it can be postulated that the 

hinge design is important to minimize any unfavorable flow features during 

the cardiac cycle. It can also be used as an important tool to characterize 

potential thromboembolic complications in regions which cannot be measured 

experimentally due to the design and opacity of the hinge. 

 

During the forward flow phase at peak systole, the highest shear stress 

regions are located at the upstream and downstream of the hinge and along 

the surface of the leaflets. The shear rate recorded here is about 0.25kPa, 

which potentially lead to thrombosis due to platelet activation. On the other 

hand, the simulations showed the maximum elevated wall shear stress at the 

hinge recess during early diastole recorded at 1.65kPa at near wall regions, 

which include the peripheral gap formed by the closed leaflet and the valve 
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housing, the tip of the leaflet ear and the hinge recess, and the wall of the 

ventricular side of the hinge. This suggests that during this phase, the blood 

elements flowing through the hinge regions can lead to hemolysis as a result 

of the high shear rates they experience.  

 

 

 

5.4.5 Limitations 

The leaflet in the simulation model was limited to prescribed rotation only 

while in actual scenario, the leaflets are free to rotate and translate up and 

down along the leaflet axis. The blood was modeled as an incompressible 

single-phase Newtonian fluid (Yun et al., 2012, Leo et al., 2006, Simon et al., 

2004, Ellis et al., 2000a). The blood exhibits non-Newtonian properties at low 

shear rates in reality. The downstream aorta was simplified to omit the head 

vessels in the arch region and coronary outlets due to the computational 

difficulties to set multiple outlet boundary conditions with physiological 

pressure waveforms. 

 
5.4.6 Summary 

The study has highlighted the regions of high wall shear stress in the hinge 

regions which may cause platelet activation leading to thromboembolic 

complications. There were differences noted within the flow field profile of the 

four hinges during peak systole of the three-sinus arch model. Nevertheless 

each individual hinge did not vary much in terms of the leakage flow rate 

through the valves. As such, it is not necessary to simulate all four hinges 

together but the hinge should be simulated with a three-sinus aortic root 

geometry and curved downstream aortic arch since this geometry resembled 

that of native human model.   
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5.5 Comparison of Different Implantation Angles for Bileaflet Mechanical 

Heart Valves 

 

The current study quantifies the flow through the valve placed in different 

sinus and aortic arch models in order to accurately capture the impact of 

valve’s orientation on its downstream flow. This study compared the 

downstream flow fields of two different sinus geometries and two different 

downstream aortic arch geometries due to the different valve orientations (0°, 

30°, 60° and 90°) during peak systole. The flow in valves implanted at 0° with 

respect to the anatomical position showed lower velocity magnitude and more 

evenly distributed flow profiles while flow in valves implanted at 90° (anti-

anatomical position) displayed larger velocity gradients. The result of this 

work provided insights into the impact of different valve orientation on the flow 

fields of aortic sinus and aortic arch. This results of this section has been 

accepted for publication in Journal of Heart Valve Disease. 

 

5.5.1 Geometry of BMHV and Aortic Sinuses 

The valve geometry used in this study was based on the SJM 29mm BMHV 

design. The native aortic valve consists of three leaflets and three aortic 

sinuses (Valsalva sinuses), with approximately 120° rotational symmetry. To 

investigate the effects of sinus shape and downstream geometry of aortic 

arch on the flow field, the flow through four different geometric models were 

analyzed and compared with each other. The four models are (i) a simplified 

axisymmetric sinus in a straight downstream pipe (simple-straight), (ii) a 

simplified axisymmetric sinus in a downstream curved aortic arch (simple-

arch), (iii) the three-sinus aortic root in a straight downstream pipe (three-

sinus straight) and (iv) the three-sinus aortic root in a downstream curved 

aortic arch (three-sinus arch), as shown in Figure 5-28(A). In the models with 

downstream curved aortic arch, the geometry was simplified without the main 

aorta branches on the aortic arch.  The computational models and boundary 

conditions were similar to those used in Section 5.4, including, the aorta 

geometry, sinus geometry (both simplified and three-sinus shape), BMHV 

design and flow waveform. In each model, BMHVs were positioned at 

different angles (0°, 30°, 60° and 90°), as shown in Figure 5-28 (B and C). 

The reference 0° is the preferable orientation of aortic valve, known as 
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anatomic position, is shown in Figure 5-29 (Kheradvar and Pedrizzetti, 2012). 

The valve leaflets were fully opened at an angle of 85° between the leaflet 

and the X-Y plane during systolic phase. The computational fluid domain of 

each case was subdivided into an unstructured mesh of approximately 3.5 

million tetrahedral elements.  

(A) Top View 

 
(B) Inlet View 
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(C) Inlet View 

 
Figure 5-28: (A) Four geometric models with two different sinus chambers and two 
downstream geometries where a SJM valve model is inserted; four different valve 
orientations for (B) simplified axisymmetric sinus and (C) three-sinus aortic root 

geometry 
 

 
Figure 5-29: Anatomical and anti-anatomical orientation of a BMHV at the aortic 

positions (outlet view) 
5.5.2 Numerical Methodology and Boundary Conditions 
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Only a brief description of the numerical method was presented as the details 

of this methodology have been discussed in the previous work (Nguyen et al., 

2012). The blood was modeled as an incompressible viscous Newtonian fluid, 

with properties representative for healthy adult; density of ρ=1050kgm-3 and 

kinematic viscosity of ν=3.81Î10-6m2s-1. The flow was governed by NS 

equations and was discretized in space using a FV method. The second-

order Crank Nicholson implicit time discretization with adjustable time-step, 

dependent on the CFL number = 1, was used. In the simulations, SA 

turbulence modeling was used and implemented using the OpenFOAM 

package. The ALE formulation was used to discretize the system with 

prescribed leaflet motions over two cardiac cycles. The cardiac cycle 

condition used in this simulation was described earlier in section 3.4.4, with 

the peak flow rate was set at approximately 25Lmin-1. Figure 5-30 shows the 

prescribed velocity and pressure at the outlet and inlet of the simulation 

cases. No-slip boundary condition was assigned at the channel walls, the 

leaflet walls and all body surfaces. The flow field at peak systole (time 

t=0.115 s) for each case was investigated. 

 

 
Figure 5-30: Inlet velocity and outlet pressure wave profiles; the flows were analyzed 

at peak systole (t=0.115 s)  
5.5.3 Results 
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5.5.3.1 Hemodynamic Performances 

The origin of X and Y-axes was at the center of the flow channel with Z=0 

plane located at the trailing edge of the leaflets with the corresponding 

velocity components u, v and w respectively. The streamwise velocity profiles 

of different valve sinus geometries and downstream anatomy between curved 

and straight pipe were compared at three different locations, Z=1D, 2D, and 

4D (D = inlet diameter) along the center line of the models at all four 

implantation angles. Figure 5-31 showed one of the implantation angles at 

90°. The general flow fields were found to be highly 3-dimensional with strong 

forward flow during the systolic phase at all implantation angles. The triple-jet 

structures of the flow were visible in all simulation cases at peak systole 

which were consistent with earlier research studies (Nguyen et al., 2012, Ge 

et al., 2005, Leo 2005). The triple-jet structures were formed due to the flow 

disruption by the two valve leaflets and were observed all other studies of 

BMHV placed in a straight pipe. The velocity magnitudes were similar for all 

four models with four different implantation angles. Recirculation regions were 

observed in the sinuses as well as near the inner wall of the aortic arch 

curvature between Z=2D and 4D. 

 
Figure 5-31: Plan view of streamwise velocity contours for all simulation models with 
the valve implanted at 90°. Cross sectional positions Z=1D, 2D and 4D downstream 

along the center line were shown for different geometric models  
 

Simple-straight model 

For the simple-straight model, the triple-jet structures appeared to be 

symmetrical at position Z=1D, as shown in Figure 5-32 for all four 

implantation angles. The triple-jets were observed to be oriented according to 

the implantation angle of the BMHV. At position Z=2D, the flow profile was 

not symmetrical but similar observations can be seen with regards to the 
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effect of implantation angles on the downstream flow. When the valve was 

rotated, the flow downstream shifted as well at similar angles. At this position, 

the velocity profile was near the transition phase from a triple-jet structure 

merging into two lateral jets downstream, as could be seen with a more 

evenly distributed velocity contour. Further downstream at position Z=4D, two 

symmetrical lateral jets were visible. This symmetrical flow was observed in 

all four cases, regardless of the valve implantation angle. 

 
Figure 5-32: Velocity contours of simple-straight model with implantation angle of 0°, 

30°, 60° and 90° at positions Z=1D, 2D and 4D at peak systole (inlet view) 
 

Simple-arch model 

The triple-jet structures were visible in the simple-arch model at all four 

implantation angles. Again, these flow features appeared to be symmetrical at 

position Z=1D, as shown in Figure 5-33. The peak velocity at this position 

was approximately 2.6ms-1. At position Z=2D, the flow profiles were highly 

irregular in all four angles of implantations. At position 0°, the triple-jet 
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structures appeared to shift away from the center of the sinus chamber 

towards the inner arch, as viewed from the inlet position. Lower velocity 

regions were observed in the region near the outer wall of the arch’s 

curvature, at position a. At 30°, this low velocity region faded and higher 

velocity flow was observed near the inner wall of the arch’s curvature. As the 

valve rotated further, the tilted triple-jet structures were visible, with more 

defined high velocity flow at the inner wall of the arch’s curvature compared to 

the outer wall. At 90°, it was observed that the center jet shifted towards the 

outer wall of the arch with the bulk of the high velocity at the inner wall of the 

arch’s curvature. Further downstream at position Z=4D, lower velocity regions 

were observed at the inner wall.  The flow profile was more evenly distributed 

at angle 0°. Lateral jets were not seen in this region of the aortic downstream 

compared to the straight pipe downstream. At implantation angle 90°, the 

change in the flow profile was steeper. Recirculation regions were also more 

apparent at this implantation angle. 

 
Figure 5-33: Velocity contours of simple-arch model with implantation angle of 0°, 

30°, 60° and 90°at positions Z=1D, 2D and 4D at peak systole (inlet view) 
Three-sinus straight model 
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For the anatomical-straight model at position Z=1D, as shown in Figure 5-34, 

the triple-jet structures were generally symmetrical at implantation angles 0° 

and 60°. The center jet shifted away from the right coronary cusp at 30° and 

away from the non-coronary cusp at 90°. At position Z=2D, symmetrical 

profiles were found at implantation angles 0° and 60°. As for the other two-

implantation angles, the center jet profile continued to shift away from the 

right coronary cusp and non-coronary cusp. The jet profiles nearer to these 

two cusps began to show signs of flow division into two smaller jets. Further 

downstream at position Z=4D, the triple-jet structures were merged into two 

lateral jets. At implantation angles 30° and 90°, the jet profiles nearer to the 

two cusps continued to be divided into two smaller jets although not 

completely separated yet. 

 
Figure 5-34: Velocity contours of three-sinus straight model with implantation angle of 

0°, 30°, 60° and 90° at positions Z=1D, 2D and 4D at peak systole (inlet view) 
 

Three-sinus arch model 

Figure 5-35 shows the downstream profiles for three-sinus arch model at 

different implantation angles. At position Z=1D, the flow profiles were similar 

to the three-sinus straight model for all four implantation angels. Further 
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downstream at position Z=2D, the triple-jet structures were shifted away from 

the center of the sinus chamber towards the inner wall of the arch’s curvature, 

as viewed from the inlet position. Two low velocity regions were observed 

near the center, while most of the high velocity flow was at the regions near 

the inner wall of the arch’s curvature. Unlike the axisymmetric sinus, the flow 

profile at this position for three-sinus arch model had regions of low velocity 

magnitude. At position 30°, the flow velocity near to the inner wall of the 

arch’s curvature increased in magnitude while the flow velocity towards the 

outer arch decreased in magnitude. At the valve implantation angle 60°, the 

high velocity regions near the inner wall of the arch’s curvature increased in 

size. At implantation angle 90°, the center jet was faintly visible but deviated 

slightly towards the inner wall as compared to the simple-straight model. At 

position Z=4D, low velocity regions were observed at the inner wall, similar to 

that in the simple-straight model for all four implantation angles. At angle 0°, 

the flow profile appeared to be more evenly distributed, similar to that in the 

simple-arch model. Higher velocity magnitudes and larger regions of 

recirculation were observed at 90°. 

 
Figure 5-35: Velocity contours of three-sinus arch model with implantation angle 0°, 

30°, 60° and 90° at positions Z=1D, 2D and 4D at peak systole (inlet view) 
 

5.5.3.2 Wall Shear Stress 
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The wall shear stress magnitude in the downstream aortic arch between 

positions 2D and 4D was found to be minimal, as shown in Figure 5-36. In all 

four implantation angles for both simple-arch and three-sinus arch models, 

the wall shear stress at the inner wall of the arch’s curvature had a magnitude 

of about 0.2kPa. There was no significant difference in the wall shear stress 

distribution among the models with various implantation angles.  

 
Figure 5-36: Wall Shear Stress distribution for simple-arch and three-sinus arch of the 

inner wall of the arch’s curvature between cross section Z=2D and Z=4D 
 

5.5.4 Discussion 

In this study, 3-dimensional time-accurate flow simulations of SJM valve at 

different implantation angles were performed under physiological flow 

conditions. Triple-jet structures were visible in the four geometric cases and 

at four different implantation angles during peak systole. However, non-

symmetrical downstream flow profiles were observed in all the three-sinus 

aortic root cases. Another key feature observed in the simulations was the 

formation of vortices near the wall edge in the sinus chambers. The flow 

recirculation was stronger in the three-sinus chamber than in the simplified 

sinus geometry. Regions of recirculation were also observed downstream in 

both the simple-arch and three-sinus arch cases for all angles of 
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implantations, as highlighted in Figure 5-33. In the simplified aortic arch 

geometry, the triple-jet structures were shifted towards the inner wall of the 

arch’s curvature with the formation of flow recirculation regions between 

positions 2D and 4D downstream the valve. These flow features have not 

been discussed and may be the cause for flow stagnation in the downstream 

regions. Such flow structures were not evident in the straight pipe cases.  

 

The simulation results showed that the position and orientation of BMHVs 

could affect the downstream flow field. An asymmetric and complex 3-

dimensional flow field is dependent on the valve orientation with respect to 

the three-sinuses of Valsalva in the aortic root and the anatomic geometry of 

the aortic arch (Borazjani and Sotiropoulos, 2010, Nobili et al., 2008). The 

placement of BMHVs with optimal orientation at aortic root has to consider 

the eccentric blood flow pattern in the anatomical aortic sinus. It has been 

found that hemodynamic conditions similar to normal physiological flow can 

be obtained in optimal orientation where the large orifice is directed toward 

the right coronary cusp, equivalent to the implantation angle of 0° (Laas et al., 

1999). Kleine et al., (2002) found that such implantation results in less 

turbulence and higher coronary perfusion. This observation was confirmed by 

the simulation results performed in this study. The observations for valves 

implanted at 0° with respect to the anatomical position showed lower velocity 

magnitude and more evenly distributed flow profiles. In contrast, BMHVs 

implanted at anti-anatomical position displayed larger velocity gradients. 

 

The sinus shape and downstream geometry were shown to have an effect on 

the flow field at the immediate downstream of the valve leaflets. The 

formation of flow recirculation in the sinus regions was more noticeable in the 

three-sinus aortic root than in the simplified axisymmetric sinus. The 

simplified three-sinus aortic arch model was used in this simulation to follow 

closely the natural anatomy of the aortic sinus. The vortical structure was 

expanded towards the modified sinus cavity and stayed there during most of 

the acceleration phase. The anatomic curvature of the downstream aorta 

resulted in a more significantly asymmetric flow condition. Unlike typical 

symmetrical straight downstream pipe, the forward jets flowing through the 

leaflets were suppressed and defused rapidly downstream of the aortic sinus. 
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As a result, local turbulence and recirculation downstream of the leaflets were 

formed (Kheradvar and Pedrizzetti 2012). 

 

The orientation of the BMHVs did not have significant effects on the wall 

shear stresses experienced by blood elements. An earlier work has reported 

that Reynolds stresses downstream of similar bileaflet valves were less 

sensitive to orientation (Borazjani and Sotiropoulos, 2010).  

 

5.5.5 Limitations 

The leaflets in the present simulations were prescribed during the cardiac 

cycle. The simulations for the models were only performed during a single 

cycle of the physiological flow, as the simulation of the moving heart valves 

for the four valve orientations in four different models would exceed the 

currently available computational resources. The blood exhibits non-

Newtonian properties at low shear rates in reality. Nevertheless in most blood 

flow in large arteries and heart valves, blood is usually modeled as an 

incompressible single-phase Newtonian fluid with constant viscosity value 

and high shear rate limit viscosity of blood (μ=μ∞) which is the case in the 

earlier simulations (Nguyen et al., 2012, Yun et al., 2012, Ge et al., 2005, Leo 

et al., 2006, Simon et al., 2004, Ellis et al., 2000b, De Hart et al., 2003). 

 

5.5.6 Summary 

The different implantation angles of the valves, as well as the sinus and 

downstream geometries in the simulation model, affects the flow 

hemodynamics as shown in this study. Implantation of valves often depend 

on the surgeon’s skillset in a surgical operation. The simulation results 

showed that the flow profile through valve implanted at anatomical correct 

position (at angle 0°) has more uniform flow and lower velocity gradient 

compared to the rest. The implantation angles different from the anatomical 

correct position may have dire consequences on the flow in the sinus 

chamber and downstream. 
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5.6 Comparison of Trileaflet Heart Mechanical Valve and Bileaflet Mechanical 

Heart Valve, and Different Implantation Angles of Trileaflet Mechanical Heart 

Valves 

 

For Project Aim 2b, the understanding of the hemodynamics of a trileaflet 

mechanical heart valve design placed in a downstream curved aorta will be 

investigated. This study is to provide a detailed 3-dimensional flow simulation 

results of a trileaflet mechanical heart valve (TMHV) and to compare it to the 

existing BMHV implanted at anatomical position. Following that, the study 

compares the downstream flow fields of the TMHV implanted at different 

valve orientations (0°, 30°, 60° and 90°) during peak systole.  

 

5.6.1 Heart Valve Model 

The BMHV geometry used in this study was based on the SJM 29mm BMHV 

design placed in a downstream curved aorta at the anatomic position at 0°, 

which is the preferable orientation of the aortic valve (Kheradvar and 

Pedrizzetti, 2012). The 29mm new TMHV design was also placed in another 

downstream curved aorta at similar anatomic position at 0°. The TMHV 

design was designed in-house, as shown in Figure 5-37.  

 
Figure 5-37: Velocity contour of the TMHV placed in the downstream curved aorta 

 

The geometry of the curved aortic arch model was simplified without the three 

branches on the aortic arch to minimize the complexity of the flow simulation. 
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The centerline of the aorta model followed the curvature and dimension of the 

normal diameters for the thoracic aorta of adults obtained by helical 

computed tomography (Hager et al. 2002) with a 5D upstream. The sinus 

design was based on Pisani et al. (2013) which was similar to the native 

aortic valve. The native valve consists of three aortic Valsalva sinuses, with 

approximately 120° rotational symmetry. The orientation of the valve in 

relation to the sinus is important in modulating the obstruction of the flow 

present during the cardiac output. Figure 5-38 shows the orientation of the 

SJM BMHV and trileaflet mechanical heart valve as viewed from the inlet 

position at 0°. 

 
 Figure 5-38: Orientation of BMHV and TMHV in anatomic position at 0° 
 

5.6.2 Boundary Conditions 

The numerical method has been described in earlier work (Nguyen et al.,, 

2012) similar to earlier sections. The flow was governed by NS equations and 

was discretized in space using finite volume method. The blood was modeled 

as an incompressible viscous Newtonian fluid, with density of ρ=1050kgm-3 

and kinematic viscosity of ν=3.81Î10-6m2s-1. The SA turbulence modeling 

was used and implemented using the OpenFOAM package. Figure 5-39 

shows the prescribed velocity and pressure. No-slip boundary condition was 

assigned at the walls, the leaflets and all body surfaces. The cardiac cycle 

condition used in this simulation was described earlier in section 3.4.4. The 

flow field at peak systole (t=0.115s) for each case was investigated. The 

computational domain for the SJM 29mm BMHV was subdivided into an 

unstructured mesh of approximately 3.6 million tetrahedral elements while the 

TMHV was subdivided into an unstructured mesh of approximately 3.5 million 

tetrahedral elements.  During the systolic phase, the BMHV was fully opened 
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at an angle of 85° between the leaflet and the X-Y plane. For the TMHV, the 

leaflets were fully opened at 90°.  

 
Figure 5-39: Velocity and Pressure wave profiles with three different time points 

during the systolic phase (mid-acceleration t=0.07s, peak systole t=0.115s, and mid-
deceleration t=0.22s) at which the results were analyzed 

 

The centerline of the aorta followed the curvature of the normal diameters for 

the thoracic aorta of adults obtained by helical computed tomography (Hager 

et al., 2002) without the three aortic branches on the top to minimize the 

complexity of the flow simulation. The origin of X and Y-axes is at the center 

of the flow channel with the Z=0 plane located at the leading edge of the 

leaflets. The streamwise velocity profiles for the BMHV and TMHV were 

compared at three different locations, Z=1D, 2D and 4D (D = inlet diameter) 

along the centerline of the models, as indicated in Figure 5-40.  

 
Figure 5-40: Plan view of streamwise velocity contours for BMHV and TMHV with 

valve implanted at 0°. Cross sectional positions Z=1D, 2D and 4D downstream along 
the center line were shown with different geometric models 
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5.6.3 Results  

In this section, the results from the simulations of the BMHV and TMHV will 

be presented and discussed in the following order. The velocity plots of 

BMHV and TMHV at position Z=1D, 2D and 4D at three different timepoints 

mid-acceleration t=0.07s, peak systole t=0.115s and mid-deceleration 

t=0.22s. The velocity profiles at each cross-sectional plane for the BMHV and 

TMHV were compared at the three locations Z=1D, 2D and 4D for the 

respective timepoints. Finally, the wall shear stress at the valve leaflets, hinge 

regions, sinus and aorta between the BMHV and TMHV were analyzed and 

compared. 

 

5.6.3.1 Hemodynamic performances 

The velocity plots at cross sectional view of Z=1D, 2D and 4D for both BMHV 

and TMHV during mid-acceleration, peak systole and mid-deceleration as 

viewed from the outlet are shown in Figure 5-41. During mid-acceleration 

(t=0.07s), the flow through the BMHV showed a triple-jet structure visibly 

taking shape. Similarly, the central orifice flow of the TMHV can be seen at 

position Z=1D. There was no obstruction in the TMHV in the central region 

unlike the leaflets of the BMHV which gave rise to the triple-jet structures. The 

shape of the central orifice flow was a hexagon and it followed the position of 

the leaflets. At peak systole (t=0.115s), the profile of the triple-jet structure of 

the flow was fully visible in the BMHV model while central orifice jet flow was 

visible in the TMHV at position Z=1D. During mid-deceleration (t=0.22s), 

triple-jet structure of the flow in the BMHV model has decreased in strength 

while central orifice jet flow was higher in the TMHV at position Z=1D. The 

velocity plots showed higher vorticity forming along the curvature of the sinus 

in the BMHV compared to TMHV. This feature appeared strongly in all three 

timepoints in BMHV whereas in the BMHV, the vorticity was less visible at 

mid-acceleration and peak systole. At position Z=2D, the higher velocity flow 

was observed nearer to the inner arch at mid-acceleration for both BMHV and 

TMHV although higher velocity plots were found in the BMHV model. At peak 

systole, the velocity plots and profiles in the BMHV and TMHV were 

completely different. There are several regions of high velocity gradients in 

the BMHV, with the majority of the high velocity flow around the wall of the 

aorta nearer to the inner arch. Meanwhile, the central orifice flow was more 
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evenly distributed in the TMHV. The vortices at the BMHV were located 

nearer to the center-line away towards the outer arch while the vortices in the 

TMHV were located near the wall towards the inner arch. At mid-deceleration, 

two vortices in the BMHV were still visible in the same region. Meanwhile, the 

vorticity in the TMHV was no longer visible with a more evenly distributed 

velocity plot along the center-line. At position Z=4D, the velocity plots and 

profiles during mid-acceleration were similar for both BMHV and TMHV. 

During peak systole, the vortices in the BMHV were still visible at this 

position. At mid-deceleration, the two vortices in the BMHV combined into 

one with a more complex flow profile compared to the TMHV. 

 

 (i) Bileaflet mechanical heart valve 
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(ii) Trileaflet mechanical heart valve 

 
Figure 5-41: Velocity plots at cross sectional view of Z=1D, 2D and 4D for both (i) 
BMHV and (ii) TMHV during mid-acceleration t=0.07s, peak systole t=0.115s and 

mid-deceleration t=0.22s as viewed from the outlet  
 

Figure 5-42 shows the velocity profiles at each cross-sectional plane at the 

three locations Z=1D, 2D and 4D for both the BMHV and TMHV at mid-

acceleration t=0.07s. At this time point, the peak velocity for BMHV was 

1.84ms-1 while for TMHV, it was 2.13ms-1. A flat velocity profile was visible in 

majority of the plane for TMHV while only a small portion of the velocity profile 

was flat in BMHV. The backflow at the sinus region was of a higher velocity 

magnitude for TMHV at 0.64ms-1 compared to BMHV at 0.33ms-1 as observed 

at the non-coronary cusp in the cross sectional view Z=1D. At position Z=2D, 

the flow shifted towards the inner arch. The peak velocity for BMHV was 

1.47ms-1 which was almost 16% lower than the peak velocity of TMHV at 

1.75ms-1. Further down at position z=4D, the flow profiles for both BMHV and 

TMHV were identical.  
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)  

(ii)  

(iii)  
Figure 5-42: Comparison of the velocity profiles of BMHV and TMHV at positions (i) 

Z=1D, (ii) 2D and (iii) 4D at mid-acceleration t=0.07s 
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Figure 5-43 shows the velocity profiles at each cross-sectional plane at the 

three locations Z=1D, 2D and 4D for both the BMHV and TMHV at peak 

systole t=0.115s. At this point, the peak velocity of BMHV was 2.5ms-1 while 

the peak velocity for TMHV was 2.75ms-1. Two regions of recirculation in the 

BMHV were observed with velocity of about 0.87ms-1. On the other hand, the 

TMHV displayed minimal recirculation flows as confirmed, with lower velocity 

values recorded at 0.36ms-1. This was quite different compared to the mid-

acceleration phase and could be attributed to the majority of the flow through 

the central orifice for the TMHV compared to BMHV, At position Z=2D, the 

triple-jet structure and lateral jets of the BMHV shifted towards the inner arch. 

For the TMHV, the central orifice jet was still prominent at this location. The 

hexagonal shape disappeared at this stage. The difference between the 

BMHV and TMHV was obvious with three different peaks observed in the 

BMHV while only one peak observed in the TMHV. The peak velocity values 

were 2.42ms-1 and 2.65ms-1 in the BMHV and TMHV, respectively. At position 

Z=4D, the flow velocity has reduced to a magnitude of 1.73ms-1. The velocity 

shape and profile observed for the two models were generally similar except 

the region from the centerline towards the inner arch. At this position, both the 

BMHV and TMHV displayed a central orifice jet shifted more towards the 

outer wall of the arch’s curvature, with regions of low velocity and 

recirculation at the inner wall. The centrifugal force is prevailing due to the 

curvature of the aortic arch.   
 
 

(i)  
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(ii)  

(iii)  
Figure 5-43: Comparison of velocity profiles between BMHV and TMHV at positions 

(i) Z=1D, (ii) 2D and (iii) 4D at peak systole t=0.115s 
 
Figure 5-44 shows the velocity profiles at each cross-sectional plane at the 

three locations Z=1D, 2D and 4D for both the BMHV and TMHV at mid-

deceleration t=0.22s. The peak velocity of BMHV at the mid-deceleration was 

1.9ms-1 while the peak velocity for TMHV was 2.2ms-1. The BMHV model has 

a bigger region of recirculation flow at the non-coronary cusp compared to the 

TMHV model even though the velocity magnitude was about 1ms-1 for both 

the models. Further downstream, the strength of the central orifice flow for 

TMHV decreased minimally with the peak velocity at about 2ms-1. On the 

other hand, the highest velocity recorded for BMHV was 1.4ms-1 with regions 

of back flow near the inner arch of the model. This was not visible in TMHV 

and could be due to the merging of the triple jet structure into two lateral jets 
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for the BMHV model. At position Z=4D, two peaks were observed in the 

BMHV while only one peak observed for TMHV.  
 

(i)  

(ii)  

(iii)  
Figure 5-44: Comparison of velocity profiles of BMHV and TMHV at positions (i) 

Z=1D, (ii) 2D and (iii) 4D at mid-deceleration t=0.22s 
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Figure 5-45 shows the velocity vector of the flow through the BMHV and 

TMHV with regions of recirculation at the aortic sinus. Higher recirculation 

flows were observed in the BMHV model, especially near the sinus region at 

the non-coronary cusp compared to TMHV. The flow through the BMHV was 

not in a streamline pattern as a result of blood hitting and reflecting through 

the aortic wall, as can be seen in the figure. Comparatively, the TMHV has a 

streamline flow with the majority of flow along the central orifice.  

(i)  (ii)   
Figure 5-45: Velocity vectors of the flow through (i) BMHV and (ii) TMHV at Y=0 at 

peak systole t=0.115s 
 

5.6.3.2 Wall Shear Stress 

Figure 5-46A shows the wall shear stress at the hinge region of the BMHV 

and TMHV at peak systole t=0.115s. The regions of high wall shear stress in 

the BMHV were mainly on the leading and trailing hinges at 0.255kPa. On the 

other hand, the concentration of high wall shear stress for the TMHV was 

within 10% of the BMHV at 0.27kPa. The distribution of the wall shear stress 

regions were mainly on the leading hinges nearer to the inlet and appeared to 

be in a bigger region compared to BMHV. The TMHV also has an evenly 

distributed wall shear stress on the peripheral gap between the leaflets and 

the valve holder. Figure 5-46B shows the wall shear stress distribution at the 

sinus region and the downstream aorta wall. The sinus region in the BMHV 

has a higher wall shear stress compared to the TMHV. Meanwhile, the wall 

shear stress also appeared to be distributed more evenly in the TMHV 

compared to BMHV although the area seemed to have higher wall shear 

stress. The wall shear stress of the valve leaflets are shown in Figure 5-46C. 

The side profile showed the wall shear stress distributed across the external 

surface of the BMHV. For the TMHV, the wall shear stress was observed at 

Flow 
direction 

Non 
coronary 
cusp 

Non 
coronary 
cusp 
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the region where leaflets were contained within the valve holder. From the 

inlet view, it was shown that the higher wall shear stress distributions were 

observed at the inner edge of the leaflets. High wall shear stress also 

occurred at the hinge of the leaflets for both BMHV and TMHV although it 

was observed that the stress concentration on the hinges was lesser in the 

TMHV model. 

(A)  

(B)  
 

(C)  
Figure 5-46: Wall shear stress at the (A) hinge region, (B) aorta wall and sinus region, 

and (C) valve leaflets of the BMHV and TMHV at peak systole t=0.115s 
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5.6.4 Discussion 

5.6.4.1 Hemodynamic Performances 

The bileaflet divides the area available for the flow into three regions which 

consist of the central orifice and two lateral orifices, as reported by Dasi et al. 

(2009). This flow feature is also commonly known as the triple jet structure. 

The flow in the BMHV becomes more disturbed as it travels further 

downstream of the valve compared to the TMHV which has a central orifice 

flow. The upstream flow profiles through the mechanical heart valves played 

an important role in the shape of the downstream flow profile from the peak 

systole onwards as observed.  

 

According to Li et al. (2011), the closure mechanisms were different between 

the TMHV and the BMHV, and the TMHV only required very little reversed 

flow to seal it. The vortices that formed in the sinus regions counter-act the 

closure mechanism of the BMHV leaflets and is not physiological desired. On 

the other hand, these vortices would benefit the closure of the TMHV leaflets 

as the vortices push the leaflets inwards during closure, which is similar to 

how the native aortic valve functions. The higher velocity plots near the sinus 

wall in the BMHV during the mid-acceleration phase may lead to higher wall 

shear stress. At the locations with high-velocity gradients especially in the 

BMHV, high turbulent shear stresses are present which may lead to 

hemolysis and platelet activation. The wake flow regions downstream of the 

valve leaflets generally correspond to the large regions of vorticity. As such, 

the flow may slow down or even stay in these regions with longer residue 

time. This can be dangerous as it may cause formation of thrombus, and 

eventually leading to thromboembolic complications. Compared to BMHV, it 

appeared that the flow velocity through the TMHV was larger with lower 

distribution of vorticity along the central orifice. 

 

Placement of the BMHV with optimal orientation at the aortic root has to be 

considered to ensure eccentric blood flow pattern in the anatomical aortic 

sinus.  The flow at downstream position Z=4D showed desirable 

hemodynamic velocity profile due to lower velocity gradients. Despite the 

hemodynamic superiority of the BMHV implanted in the optimal position 

which was equivalent to the implantation angle of 0° (Laas et al., 1999), the 
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flow profiles for BMHV at position Z=1D and 2D showed higher velocity 

gradient and larger recirculation regions. When the flow profile through a 

TMHV was compared with that of a BMHV, less turbulence were observed. 

The observations for the TMHV implanted at 0° with respect to the anatomical 

position showed even more evenly distributed flow profiles.  

 

The triple-jet structures and lateral jets observed in a BMHV are not 

physiological and the long-term effect of such flow structures in human 

circulatory system has yet to be understood. Such flow profiles are potentially 

more damaging to the aorta compared to the streamline central orifice flow of 

the TMHV. The regions with higher blood hit along the aorta wall correlates 

with an increased in wall shear stress.  

 

5.6.4.2 Wall Shear Stress 

For the BMHV, non-uniform distributions of high wall shear stress regions 

were observed at the hinge regions. The difference in the wall shear stress 

distribution was largely due to the design of the two valves. When the TMHV 

was fully open, there were gaps between the leaflets and the valve holder. 

The flow through the gap caused a slightly elevated wall shear stress 

compared to the BMHV. The regions of high wall shear stress were found at 

the frontal side of the leaflets. 

 

It was observed that the wall shear stress was the highest at the inner edge 

of the valve leaflet. At fully open position, the BMHV leaflets were at 85° from 

the transverse plane tilting toward lateral side, while the TMHV leaflets were 

at 90° from the transverse plane. Therefore, the leaflet surface at the lateral 

side would be exposed more to the fluid flow, which caused elevated wall 

shear stress at the lateral surface.  

 

The associated increase in wall shear stress often correlates to higher risk of 

hemolysis and platelet activation. One of the common congenital conditions 

of the aortic valve is the bicuspid aortic valve, where the aortic valvular 

leaflets fused during the development. As a result, instead of a normal 

tricuspid configuration, a bicuspid valve appeared. Bicuspid aortic valve often 

lead to non-physiological flow hemodynamics as well as the tendency to 
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develop ascending aortic aneurysm due to the higher wall shear stress along 

the surface of aorta arch. Similarly, it was observed that higher wall shear 

stress in the sinus regions of the BMHV are susceptible to increased risk of 

aortic aneurysm compared to TMHV. The hemolysis red blood cell occurs at 

approximately 400Pa, below which a sublethal region of zero hemolysis was 

observed (Sallam and Hwang, 1984). Meanwhile, irreversible platelet 

aggregation can occur as low as at shear stress of 10Pa (Hung et al., 1976, 

Ramstack et al., 1979, Slack et al., 1993). 
 

The blood elements experienced higher rate of collision with the valve wall 

due to the vorticity formed near the wall as a result of turbulent flow. The 

platelet activation by high wall shear stresses may lead to thromboembolic 

complications (King et al., 1997 and Cheng et al., 2004). These regions were 

often associated with high wall shear stress, and may lead to hemolysis and 

platelet activation 

 

The high wall shear stress at the hinge regions for both BMHV and TMHV 

showed that the hinge joints are critical to the design of an artificial heart 

valve. The concentrated area of wall shear stress in this study was consistent 

with earlier findings (Kiang-ia and Chatpun 2013, Yuan et al. 2003, Dumont et 

al. 2007). The design of the hinge in mechanical heart valve is important to 

minimize any undesirable flow features and wall shear stress during the 

cardiac cycle. It can also be used as an important tool to characterize 

potential thromboembolic complications in regions which cannot be measured 

experimentally due to the design and opacity of the hinge. 

 

Generally, the major drawback associated with the implantation of 

mechanical heart valves is the need for chronic daily anti-coagulation therapy 

to reduce the risk of thrombosis and thromboembolic complications. Patients 

with such therapies are exposed to an increased risk of bleeding, infection, 

and/or autoimmune response (Walker and Yoganathan, 1992). The present 

numerical study has shown that the TMHV provided a flow condition which is 

more similar to the natural valve due to its large central free region compared 

to the triple jet structures of BMHV. The central orifice flow in TMHV 

presented a configuration with smaller resistance for blood flow. The velocity 
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gradient in any radial direction in the TMHV is also smaller compared to the 

BMHV. Clinically, this will reduce the wall shear stress level in TMHV since 

the incidence of blood hits on the wall decreases due to the more concentric 

streamlined flow of the TMHV. 

 

Blood flow through mechanical prostheses can lead to high turbulent stresses 

that may damage and/or activate blood elements and initiate platelet 

aggregation. Platelet aggregation can lead to thrombus formation with 

disastrous consequences for the patient. Thrombi may even detach from the 

valve and lodge in a downstream blood vessel, thus reducing or even cutting 

off the blood supply to vital tissues. The hemodynamics of a BMHV differs 

significantly from that of natural healthy heart valve. As such the use of a 

TMHV valve may yield a more physiological hemodynamics due to the central 

orifice flow similar to that of native human valve. 

 

To understand the flow through the TMHV further, the impact of the valve 

implantation angle on the downstream flow was investigated. The trileaflet 

valve was positioned at different angles (0°, 30°, 60° and 90°), as shown in 

Figure 5-43, in a curved downstream aortic arch model. The reference 0° is 

the preferable orientation of aortic valve, known as anatomic position as 

described earlier.  

 
Figure 5-47: Four different valve orientations for TMHV model 
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The flow field at peak systole (t=0.115s) was investigated for each case at the 

three different positions Z=1D, 2D and 4D downstream along the centerline of 

the geometric model. Comparisons of the flow field velocity contours are 

presented in Figure 5-44. 

 
Figure 5-48: Velocity contours of four implantation angles of 0°, 30°, 60° and 90° at 

positions Z=1D, 2D and 4D at peak systole (inlet view) 
 

As described earlier for implantation angle 0°, the flow profile through the 

TMHV at position Z=1D was a bulk flat profile. For the other two implantation 

angles (30° and 90°), similar flat profiles were observed. The recirculation 

regions were also similar with comparable velocity magnitude as shown in 

Figure 5-45. On the other hand, the velocity profile for 60° had a shorter flat 

profile and a bigger velocity magnitude for recirculation region at 1.7ms-1. This 

unusual big recirculation region could be due to the position of the leaflets 

where the hinges were located along the centerline of the sinus chamber at 

the non-coronary cusp. Meanwhile, at the downstream positions Z=2D and 

4D, similar flow profiles were observed for all the valves implanted at the 

different angles.  
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Figure 5-49: Velocity profile comparison between the different implantation angles of 
TMHV (0°, 30°, 60° and 90°) at position Z=1D, 2D and 4D at peak systole t=0.115s 

 



 163 

The implantation angles of the TMHV have a limited effect on the 

downstream flow profile, especially at the immediate downstream as seen at 

position Z=1D. The difference further downstream at positions Z=2D and 4D 

was not noticeable. The simplified three-sinus aortic root model used in the 

simulation followed closely the natural anatomy of the aortic sinus without the 

three aortic branches. The anatomic curvature of the downstream aorta 

resulted in an asymmetric flow condition, and the flow feature was consistent 

among all the models in general despite the different valve implantation with 

more distributed flow profile.  

 

The wall shear stress distributions of the valves in all implantation angles 

were similar. Figure 5-46 shows the wall shear stress distribution on the valve 

leaflets at orientation 0°. As the valve leaflets opened, the blood was being 

forced through the valve leaflets, resulting in high velocity jets. These velocity 

jets will in turn cause high velocity gradients and induce high shear stress. 

The shear stress may then cause hemolysis or platelet activation. It was seen 

from the contour plot that the shear stress was highest at valve leaflet edge 

especially at the edge close to the inlet. This agreed with the CFD simulation 

results of the earlier study by Dumont et al., (2007). It was also observed that 

the wall shear stress was higher on the side of the lateral orifice than the 

central orifice, which could be due to the tilting direction of the valve leaflet 

when the valve was fully opened. When the valves were fully opened, the 

external surfaces of the trileaflet valves had elevated wall shear stress values 

as compared to the inner surfaces. However, the trailing edges of the valves 

exhibited higher wall shear stresses at the inner edges than at the outer 

edges. 

 
Figure 5-50: Wall Shear Stress distribution on the leaflet found to be higher at the 

inner edges of the valves 
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5.6.5 Limitations 

The leaflets’ motion in the present simulations was prescribed during the 

cardiac cycle. Blood was modeled as Newtonian fluid even though in reality, 

blood exhibits non-Newtonian properties at low shear rates. The curved aorta 

model was simplified by omitting the three aortic branches, but in reality, the 

anatomy of the human aorta is more complex. 

 

5.6.6 Summary 

The simulation results showed different flow fields at the downstream 

positions at Z=1D and 2D for BMHV and TMHV. At further downstream at 

Z=4D, it was found that the flow field shared similarities in terms of the flow 

profile and the velocity magnitude. The study also showed implantation of the 

TMHVs in different angles did not affect the downstream flow field as much 

compared to the BMHVs. In the simulations, it was observed that the flow 

profile through the valve implanted at all the four locations shared similar flow 

structures, except for the valve implanted at 60° as compared at position 

Z=1D. Wall shear stress distribution on the leaflets was similar in all four 

cases. 
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5.7 Fluid-Structure Interaction Study of Bileaflet Mechanical Heart Valve 

Using the Dynamic Mesh Method in OpenFOAM 

 
5.7.1 Heart Valve Model 

For Project Aim 3, the 2-dimensional model of the BMHV consists of an inlet 

flow, a simplified sinus and the leaflets at the center plane Y=0. The 

computational mesh is shown in Figure 5-47. The mesh contains about 

150,000 unstructured tetrahedral elements. Due to the limitations of the 

dynamic mesh model using ALE method, a minimum of one cell is required to 

cover the gap between the valve leaflet and the wall and the gap between the 

two leaflets. This one cell is required to ensure the continuity and 

preservation of the fluid domain as one entity. To increase the accuracy of the 

flow calculations, the mesh at the gap is increased. The valve model for the 

prescribed leaflet movement was based on Section 5-3.

 
 Figure 5-51: Geometry and mesh of the 2-dimensional BMHV model 

 
5.7.2 Boundary Conditions 

The boundary condition used for the inlet and outlet followed the earlier sub 

sections. Variable time-step was used in the simulations with maximum 

Courant number = 1. The fluid was assumed to be incompressible Newtonian 

fluid with a density of ρ=1050kgm-3 and kinematic viscosity of ν=3.81Î10-6 

m2s-1. The flow was governed by NS equations and the domain was 
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discretized in space using finite volume method. Figure 5-48 shows the 

boundary conditions velocity and pressure. No-slip boundary condition was 

assigned at the walls, the leaflets and all body surfaces. The flow field at four 

different time points, namely early systole (t=0.01s), mid systole (t=0.07s), 

peak systole (t=0.115s) and late systole (t=0.23s) were investigated and 

compared with the prescribed leaflet motions at position Z=1D. The FSI 

technique was implemented in OpenFOAM by the functions described in 

Chapter 3. The code runs a sub-iteration loop for every time-step in order to 

solve the blood-leaflet interaction to calculate the numerical derivative of the 

moment of the leaflets. Once converged, a new flow solution is computed 

starting from the results of the previous time-step. Unless the equation of 

motion is satisfied, the process continues. For every new time-step, a new 

valve leaflet position is computed. In every time-step, at least two sub-

iterations are required. The FSI problem converged in four to six sub-iteration 

steps. The simulation of the prescribed leaflet movement was conducted 

using a 3-dimensional model and presented in Section 5-3. Validation study 

for the streamwise velocity profiles were conducted at Z=1D at three different 

time points (t=0.07s, 0.115s and 0.23s). Experimental validations were 

performed with the pulsatile flow setup using the piston pump (Vivitro 

SuperPump). The velocity flow fields were averaged from 150 image pairs 

which were analyzed using the LaVision PIV software (Davis 8.0.5, LaVision, 

Germany). The pulse trigger was activated to synchronize the laser and the 

piston pump at the three time points. The velocity range observed in the 

experiment was between -0.4 to 1.3ms-1. In this study, the simulation of a FSI 

and prescribed leaflet movement flow for the cardiac cycle has successfully 

been validated using PIV. 
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Figure 5-52: Velocity profile with four time points investigated at early systole 

(t=0.01s), mid systole (t=0.07s), peak systole (t=0.11s) and late systole (t=0.23s) 
 

5.7.3 Results and Discussion 

Figure 5-49 compares the velocity contours for FSI and prescribed leaflet 

movements at position Z=1D at time point t=0.01s. The flow velocity contour 

for prescribed leaflet movement was obtained at the center plane Y=0. In 

early systole at t=0.01s, the valve leaflets were pushed away from the wall 

towards the center. During this phase in the FSI simulation, it was shown that 

the three small velocity jets were visible moving through the gap in the 

leaflets. The two lateral jets appeared to be of higher velocity magnitude at 

0.26ms-1  compared to the center jet at 0.04ms-1. In the prescribed leaflet 

movement, the leaflets were rotated based on a constant angular velocity. At 

this point, the velocity jets were not visible at all in the prescribed leaflet 

movement. At position D1, there was a significant difference between the FSI 

and prescribed movements in the lateral leakage jets. The velocity recorded 

for FSI simulation was about 0.26ms-1  while the velocity in the prescribed 

movements was only 0.05ms-1. The difference in the velocity profile was due 

to the prescribed motion of the leaflets being unable to match that of the flow 

domain at this time point. 
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(A)  

(B)  
Figure: 5-53: Comparison of (A) velocity contours and (B) velocity profile, for FSI and 

prescribed leaflet movements at position Z=1D at time t=0.01s 
 
Figure 5-50 shows the comparison of velocity profile for FSI, prescribed 

leaflet movement and experimental results at three different time points, 

namely mid systole (t=0.07s), peak systole (t=0.115s), and late systole 

(t=0.23s). The FSI and prescribed leaflet movement simulations were similar 

in terms of the velocity magnitude and flow hemodynamics. At mid systole 

(t=0.07s), the velocity profile for the FSI, prescribed leaflet movement 

simulations and experimental results showed comparable velocity magnitude 

and profiles. At this point, the leaflets have rotated from fully closed to fully 

open at an angle of 85° between the leaflet and the X-Y plane. The difference 

in the peak velocity was about 10%. The triple-jet structures were visible at 

mid systole when the flow was still in acceleration phase. At peak systole 

(t=0.115s), the FSI and prescribed leaflet movements showed comparable 

results with the experimental data. The triple-jet structures were fully 

developed at this stage when the flow reached the maximum velocity. It was 

also observed that both simulations captured the recirculation regions near 
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the edges with comparable velocity magnitudes, and these flow structures 

were validated experimentally. At late systole (t=0.23s), the leaflets were still 

fully open when the flow was in a deceleration phase. The strength of the 

triple-jet structures decreased to a lower magnitude at 0.75ms-1 from 1.1ms-1  

at peak systole. The FSI simulation was able to capture the flow recirculation 

regions better than the prescribed leaflet movement simulation at this time. 

(A)  

(B)  
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(C)  
Figure: 5-54: Comparison of velocity profile for FSI, prescribed leaflet movements 
and experimental results at position Z=1D at time (A) t=0.07s, (B), t=0.115s, (C) 

t=0.23s 
 
Comparing the FSI and prescribed leaflet movement simulations, it was 

observed that there were drastic differences at early systole (t=0.01s) when 

the leaflets were in motion. The prescribed leaflet movement was not able to 

capture the flow velocity that pushed the leaflets near the wall edges as well 

as leakage through the b-datum gap between the two leaflets. On the other 

hand, the FSI simulation was able to capture the velocity profiles showing the 

interaction between the fluid and solid domain. 

 

When the leaflets were fully opened at mid diastole (t=0.07s), peak diastole 

(t=0.115s) and late systole (t=0.23s), it was shown that the simulation results 

for both FSI and prescribed leaflet movement were quantitatively comparable, 

and the velocity profiles were similar to that of the experimental results. The 

key flow velocity structures such as the triple-jet structures and recirculation 

regions were visible and captured in both simulations. These two simulation 

results were validated experimentally at all three time points. Nevertheless, 

the validation study when the leaflets were in motion during the opening and 

closing phase has not been performed due to the difficulty in capturing the 

motion of the valve in the short time frame consistently. 

 
5.7.4 Limitations 
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This study was a preliminary study to investigate the effectiveness of the 

OpenFOAM to perform FSI in a large deformable domain. The gap in the 

computational model between the leaflets and the wall may induce some 

errors in the computational results. The current remeshing technique does not 

allow simulation of fully closed leaflets, and this is the main limitation of this 

technique. Only a 2-dimensional FSI model was developed using the open 

source codes due to the limitations in computational power using the existing 

infrastructure.  

 

5.7.5 Summary 

In this study, the FSI model of the BMHV which was based on the dynamic 

mesh method of the OpenFOAM software was developed, demonstrated and 

validated experimentally. The FSI results showed the opening of the valve 

during the ejection phase of the cardiac cycle at the start of the systole and 

showed different flow structures compared to prescribed leaflet movement. At 

other time points of the systolic phase, the FSI simulation was able to 

highlight the important structures of the flow profile of a BMHV (i.e. the triple-

jet structure) as reported by Ge et al., (2005). When the valve was closed at 

the start of the cardiac cycle, the force exerted by the fluid domain started to 

push forward the leaflets. As the velocity increased, the leaflets continued to 

open from 35° to 85° which was the maximum angle that the leaflets could 

open to. The FSI study provided a platform to further investigate the flow 

especially the opening and closing stage of the heart valves.  
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CHAPTER 6: CONCLUSION AND RECOMMENDATION 

 

Artificial heart valves failures and complications arising from the implantation 

remain a crucial factor in determining the quality of life for patients with heart 

valve diseases. In the quest to design an improved artificial heart valve in the 

market, there is a need to look at the fundamentals involving fluid 

hemodynamics and interaction between the valve leaflets with the flow. Since 

in vivo and in vitro experiments are expensive and time consuming to setup, 

CFD provides a platform to study and identify areas, which cannot be 

captured experimentally. From CFD perspective, the challenging task ahead 

would be to model the dynamic interaction of the artificial heart valves with 

the surrounding blood, and to calculate the local deformations and stresses 

on the structure, as well as other hemodynamic properties. The potential of 

this numerical model as a research and development tool to study 

mechanical heart valves has been demonstrated in this study.  

 

The study has developed and validated both laminar and pulsatile flow with 

prescribed motion. In the numerical simulations, the turbulence modeling 

using SA, k-epsilon and LES models was utilized. This was then extended to 

include the full cardiac cycle modeling. In the process to simulate the 

movement of leaflets, a solver in OpenFOAM was used to regenerate the 

mesh using ALE in a prescribed motion. The solver packages allowed the 

simulation of the valve leaflets rotation. A PIV experimental study for laminar 

flow using a 29mm ATS Open Pivot Valve was performed. The validation 

study for pulsatile flow used a 29mm SJM Masters Series BMHV. The flow 

profiles in the simulation studies for different planes downstream of the valves 

were compared and showed close similarity with the PIV experimental 

results. This showed that 3-dimensional model used in the numerical study 

was successfully validated using the experimental model. 

 

With the validated simulation model, the study proceeded to investigate the 

importance of hinge microflow simulation so as to understand the complexity 

of the leakage flow during diastolic phase. The 3-dimensional and unsteady 

nature of the flow fields have highlighted the regions of high wall shear stress 

which may cause platelet activation leading to thromboembolic complications. 
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There were differences noted within the flow field profiles of the four hinges 

during peak systole in the three-sinus arch model. The hinge microflow fields 

may yield a dynamically complicated vortical flow structures and could impact 

the level of hemolysis and platelet activation. However, each individual hinge 

did not vary much in terms of the leakage flow rate through the valves. As 

such, it is not necessary to simulate all four hinges together. However, the 

hinge should be simulated with a three-sinus aortic root geometry and curved 

downstream aortic arch since this geometry resembled that of native human 

model. This may potentially determine the clinical performance of the valve. 

The numerical simulation acted as a tool for thromboembolic potential 

characterization to observe the physical viscous stresses experienced by the 

blood elements and the capability to refine the analysis to a level of spatial 

details that would be hard to achieve experimentally.  

 

The next investigation focused on the implantation position of the BMHVs 

with respect to the three-sinus aortic root chamber to study its effect on the 

flow fields and the downstream blood flow characteristics. The study has 

shown that the implantation orientation angle of the valve, as well as the 

sinus and downstream geometries in the simulation model, affects the valve 

performance and flow hemodynamics. The valves could be implanted with 

various angles depending on the surgeon’s performance in a surgical 

operation. The simulation results showed that the flow profile through valve 

implanted at anatomically correct position (at angle 0°) has more distributed 

flow and lower velocity gradient. It is important to note that implantation 

angles different from the anatomically correct position may have dire 

consequences on the flow in the sinus chamber and downstream. There were 

differences in the flow field which could impact the level of hemolysis and 

platelet activation. The 3-dimensional and unsteady nature of the flow fields 

downstream of the aortic arch has highlighted the regions of recirculation and 

high velocity flow. The rotated implantation affected the size of flow 

recirculation region in the sinus chambers and the downstream flow, which 

would lead to asymmetrical flow near the BMHVs. This may potentially affect 

the clinical performance and lifespan of the BMHVs. 
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Following that, the investigation focused on the comparison of the flow fields 

through BMHVs and TMHVs implanted at anatomical position. The simulation 

results showed different flow fields at the downstream positions at Z=1D and 

2D. At further downstream at Z=4D, it was found that the flow field shared 

similarities in terms of the flow profile and the velocity magnitude. Further 

investigation was performed to study the effect of implantation position of 

TMHVs in a three-sinus aortic root chamber with a curved downstream aortic 

arch to look at the downstream flow fields and characteristics. The study 

showed that the implantation angles of the TMHVs did not affect the 

downstream flow field much as compared to the BMHVs. Generally, the flow 

profile through the valve implanted at all the four locations shared similar flow 

structures, except for the valve implanted at 60° as compared at position 

Z=1D. It is important to highlight that the implantation angles of the TMHVs 

have minimal consequences as compared to the BMHVs. Nevertheless, the 

effect of the implantation angle on the valve closure, which may affect the 

clinical performance of the TMHVs has not been investigated.  

 

Finally, at this stage, a FSI model of the BMHV hemodynamics using the 

remeshing technique in OpenFOAM was presented for the acceleration 

phase of the cardiac cycle. The FSI model was able to capture more 

accurately the flow structures at early systole when the leaflets were in 

motion. When the leaflets were fully opened, the FSI model and the 

prescribed leaflet motion showed comparable results, and were validated 

experimentally. At this stage, only a 2-dimensional model was being 

developed using the open source codes. An extension to a full 3-dimensional 

model using different valve designs can help to uncover important 

parameters, especially at the opening and closing phase of the leaflets in 

order to simulate the cardiac cycle with a more accurate physiological flow. 

 

In summary, the research has demonstrated that the moving mesh technique 

in OpenFOAM has successfully studied detailed and complex heart valve 

fluid dynamics. The numerical simulation codes have also been validated 

using the PIV method. With the OpenFOAM code, an accurate in vitro 

computational model was developed to investigate the hemodynamic 

characteristics of artificial valves especially on the effect of hinges and valve 
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implantations on downstream flow. The use of anatomical correct aortic arch 

which was seldom researched into and new trileaflet mechanical heart valve 

model designed in house were used in the simulations. The results of the 

simulation allows biomedical engineers to identify regions of high wall shear 

stress to better understand, develop and improve on new mechanical heart 

valves. This research sets the foundation to further improve the numerical 

model to include 3D FSI for mechanical heart valves using OpenFOAM. It is 

believed that the work done will be useful in developing a more accurate flow 

simulation in heart valves, such as the FSI for TMHV. Through this research, 

we are able to capture the essential 3D flow fields and will be able to provide 

feedback to the biomedical engineers to further improve the design of 

mechanical heart valves. With the 3D simulation where the maximum shear 

stress occurs, doctors are able to pin point the high wall shear stress which is 

the key indicator on potential structural failure. This will enable clinicians and 

engineers to further improve in understanding and developing better artificial 

heart valves. New valve design has potential to improve quality of life of MHV 

recipients by reducing or possibly eliminating need for long-term anti-

coagulant therapy  
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APPENDIX A: OpenFOAM Code 

myIcoFoam 
/*---------------------------------------------------------------------------*\ 
  =========                 | 
  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 
   \\    /   O peration     | 
    \\  /    A nd           | Copyright held by original author 
     \\/     M anipulation  | 
------------------------------------------------------------------------------- 
License 
    This file is part of OpenFOAM. 
    OpenFOAM is free software; you can redistribute it and/or modify it 
    under the terms of the GNU General Public License as published by the 
    Free Software Foundation; either version 2 of the License, or (at your 
    option) any later version. 
    OpenFOAM is distributed in the hope that it will be useful, but WITHOUT 
    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
    FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License 
    for more details. 
    You should have received a copy of the GNU General Public License 
    along with OpenFOAM; if not, write to the Free Software Foundation, 
    Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 
Application 
    myIcoFoam 
Description 
    Transient solver for incompressible, laminar flow of Newtonian fluids. 
\*---------------------------------------------------------------------------*/ 
#include "fvCFD.H" 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
int main(int argc, char *argv[])  
{ 
#    include "setRootCase.H" 
#    include "createTime.H" 
#    include "createMesh.H" 
#    include "createFields.H" 
#    include "initContinuityErrs.H" 
#    include "readTimeControls.H" 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
Info<< "\nStarting time loop\n" << endl; 
while (runTime.run()) 
//  for (runTime++; !runTime.end(); runTime++) 
 { 
      Info<< "Time = " << runTime.timeName() << nl << endl; 
     # include "readPISOControls.H" 
     # include "CourantNo.H" 
     # include "setDeltaT.H" // added 
     # set deltaT equivalent for solid  

runTime++; // added 
          

fvVectorMatrix UEqn 
         ( 
              fvm::ddt(U) 
            + fvm::div(phi, U) 

           - fvm::laplacian(nu, U) 
); 
solve(UEqn == -fvc::grad(p)); 
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// --- PISO loop 
for (int corr=0; corr<nCorr; corr++)  
{ 

volScalarField rUA = 1.0/UEqn.A(); 
U = rUA*UEqn.H(); 

      phi = (fvc::interpolate(U) & mesh.Sf()) 
                + fvc::ddtPhiCorr(rUA, U, phi); 
 
   adjustPhi(phi, U, p); 
 

for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)  
{ 

           fvScalarMatrix pEqn 
           ( 
                fvm::laplacian(rUA, p) == fvc::div(phi) 
           ); 
            

pEqn.setReference(pRefCell, pRefValue); 
           pEqn.solve(); 

 
if (nonOrth == nNonOrthCorr)  
{ 

                phi -= pEqn.flux(); 
           } 

} 
# include "continuityErrs.H" 

          
U -= rUA*fvc::grad(p); 

          U.correctBoundaryConditions(); 
     } 
 
    runTime.write(); 
    Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s" 
        << "  ClockTime = " << runTime.elapsedClockTime() << " s" 
        << nl << endl; 
} 
 
Info<< "End\n" << endl; 
 
return(0); 
} 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
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myTurbFoam  
 
/*---------------------------------------------------------------------------*\ 
  =========                 | 
  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 
   \\    /   O peration     | 
    \\  /    A nd           | Copyright held by original author 
     \\/     M anipulation  | 
------------------------------------------------------------------------------- 
License 
    This file is part of OpenFOAM. 
    OpenFOAM is free software; you can redistribute it and/or modify it 
    under the terms of the GNU General Public License as published by the 
    Free Software Foundation; either version 2 of the License, or (at your 
    option) any later version. 
    OpenFOAM is distributed in the hope that it will be useful, but WITHOUT 
    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
    FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License 
    for more details. 
    You should have received a copy of the GNU General Public License 
    along with OpenFOAM; if not, write to the Free Software Foundation, 
    Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 
Application 
    myTurbFoam 
Description 
    Transient solver for incompressible, turbulent flow. 
\*---------------------------------------------------------------------------*/ 
#include "fvCFD.H" 
#include "incompressible/singlePhaseTransportModel/singlePhaseTransportModel.H" 
#include "incompressible/RASModel/RASModel.H" 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
int main(int argc, char *argv[])  
{ 
#    include "setRootCase.H"   
#    include "createTime.H" 
#    include "createMesh.H" 
#    include "createFields.H" 
#    include "initContinuityErrs.H" 
#    include "readTimeControls.H" 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 Info<< "\nStarting time loop\n" << endl;  
 while (runTime.run())      //for (runTime++; !runTime.end(); runTime++) 
  {  

# include "readPISOControls.H" 
# include "CourantNo.H" 
# include "setDeltaT.H" // added 

 
runTime++;            // added 
Info<< "Time = " << runTime.timeName() << nl << endl; 
// Pressure-velocity PISO corrector 
{ 

// Momentum predictor 
fvVectorMatrix UEqn 
( 

fvm::ddt(U) 
          + fvm::div(phi, U) 
          + turbulence->divDevReff(U) 
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); 
 
if (momentumPredictor)  
{ 

solve(UEqn == -fvc::grad(p)); 
} 
 
// --- PISO loop 
for (int corr=0; corr<nCorr; corr++)  
{ 

volScalarField rUA = 1.0/UEqn.A(); 
 
U = rUA*UEqn.H(); 
phi = (fvc::interpolate(U) & mesh.Sf()) 
      + fvc::ddtPhiCorr(rUA, U, phi); 
 
adjustPhi(phi, U, p); 
 
// Non-orthogonal pressure corrector loop 
 
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)  
{ 

// Pressure corrector 
 
fvScalarMatrix pEqn 
( 

fvm::laplacian(rUA, p) == fvc::div(phi) 
); 
 
pEqn.setReference(pRefCell, pRefValue); 
pEqn.solve(); 
 
if (nonOrth == nNonOrthCorr)  
{ 

phi -= pEqn.flux();   
} 

} 
# include "continuityErrs.H"  

U -= rUA*fvc::grad(p); 
U.correctBoundaryConditions(); 

} 
} 
 
turbulence->correct(); 
 
runTime.write(); 
 
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s" 
        << "  ClockTime = " << runTime.elapsedClockTime() << " s" 
        << nl << endl; 

} 
Info<< "End\n" << endl; 
 
return(0);  

} 
// ************************************************************************* // 
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icoMHV3DtrackFoam 
 
/*---------------------------------------------------------------------------*\ 
  =========                 | 
  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 
   \\    /   O peration     | 
    \\  /    A nd           | Copyright held by original author 
     \\/     M anipulation  | 
------------------------------------------------------------------------------- 
License 
    This file is part of OpenFOAM. 
    OpenFOAM is free software; you can redistribute it and/or modify it 
    under the terms of the GNU General Public License as published by the 
    Free Software Foundation; either version 2 of the License, or (at your 
    option) any later version. 
    OpenFOAM is distributed in the hope that it will be useful, but WITHOUT 
    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
    FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License 
    for more details. 
    You should have received a copy of the GNU General Public License 
    along with OpenFOAM; if not, write to the Free Software Foundation, 
    Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 
Application 
    cylinderFoam 
Description 
    Transient solver for incompressible, laminar flow of Newtonian fluids 
    with dynamic mesh. 
Author 
    Sandeep Menon 
\*---------------------------------------------------------------------------*/ 
#include "fvCFD.H" 
#include "dynamicTopoFvMesh.H" 
// Mesh motion solvers 
#include "motionSolver.H" 
#include "tetDecompositionMotionSolver.H" 
#include "faceTetPolyPatch.H" 
#include "tetPolyPatchInterpolation.H" 
#include "setMotionBC.H" 
#include "rotatePoints.H" 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
int main(int argc, char *argv[])  
{ 
#    include "setRootCase.H" 
#    include "createTime.H" 
#    include "createDynamicMesh.H" 
#    include "initContinuityErrs.H" 
#    include "initTotalVolume.H" 
#    include "createFields.H" 
 
 Info<< "Reading transportProperties\n" << endl; 
  
 IOdictionary transportProperties 
 ( 
  IOobject  
  (               
   "transportProperties", 

 runTime.constant(), 
   mesh, 
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 IOobject::MUST_READ, 
 IOobject::NO_WRITE 
 )  

 );  
dimensionedScalar nu 
( 

transportProperties.lookup("nu") 
); 
// Initialize the motion solver 
autoPtr<motionSolver> mPtr = motionSolver::New(mesh); 
 
// Define the rotation axis and angle from the dictionary 
IOdictionary rotationParams 

( 
IOobject  
( 

"flippingFoamDict", 
runTime.findInstance 
( 

"", 
"flippingFoamDict" 

), 
mesh, 
IOobject::MUST_READ, 
IOobject::AUTO_WRITE 

) 
); 

//== For first patch =================================== 
dictionary patchNames1(rotationParams.subDict("patchNames1")); 
wordList patches1 = patchNames1.toc(); 
vector p11(rotationParams.lookup("axisPointStart1")); 
vector p12(rotationParams.lookup("axisPointEnd1")); 
vector t1(rotationParams.lookup("translation1")); 
doubleScalar angle1 = readScalar(rotationParams.lookup("angle1")); 
 
//== For second patch =================================== 
dictionary patchNames2(rotationParams.subDict("patchNames2")); 
wordList patches2 = patchNames2.toc(); 
vector p21(rotationParams.lookup("axisPointStart2")); 
vector p22(rotationParams.lookup("axisPointEnd2")); 
vector t2(rotationParams.lookup("translation2")); 
doubleScalar angle2 = readScalar(rotationParams.lookup("angle2")); 
 
bool solveForMotion = readBool(rotationParams.lookup("solveForMotion")); 
 
// Convert angle to radians 
angle1 *= (3.14159/180.0); 
angle2 *= (3.14159/180.0); 
doubleScalar dangle1,dangle2; 
 
Info<< "\nStarting time loop\n" << endl; 
 
while (runTime.run())  
{ 
    # include "readPISOControls.H" 
    # include "readTimeControls.H" 
    # include "checkTotalVolume.H" 
    # include "CourantNo.H" 
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    # include "setDeltaT.H" 
    runTime++; 
 
    Info<< "Time = " << runTime.timeName() << nl << endl; 
 
    // Translate the axis 
    p11 += t1; p12 += t1; 
    p21 += t2; p22 += t2; 
     

// Update boundary points and solve for mesh-motion 
dangle1 = angle1*runTime.deltaT().value(); 

   dangle2 = angle2*runTime.deltaT().value(); 
 

Info << "Rotating angle: " << dangle1 << "  " << dangle2 << endl << endl; 
rotatePoints(mesh, patches1, dangle1, p11, p12, t1); 
 
// Update mesh motion 1 
if (solveForMotion)  
{ 

            mesh.movePoints(mPtr->newPoints()); 
} 

        rotatePoints(mesh, patches2, dangle2, p21, p22, t2); 
 

// Update mesh motion 2 
if (solveForMotion)  
{ 
            mesh.movePoints(mPtr->newPoints()); 
} 

  
 #       include "volContinuity.H" 
  // Make the fluxes relative to the mesh motion 
  fvc::makeRelative(phi, U); 
   
 #        include "UEqn.H" 
  volScalarField rUA = 1.0/UEqn.A(); 
   
  // --- PISO loop 
   

for (int corr=0; corr<nCorr; corr++)  
{ 

      rUA = 1.0/UEqn.A(); 
      U = rUA*UEqn.H(); 
      phi = (fvc::interpolate(U) & mesh.Sf()); 
      //     + fvc::ddtPhiCorr(rUA, U, phi); 
      // adjustPhi(phi, U, p); 
 

for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)  
{ 

     fvScalarMatrix pEqn 
           ( 
                fvm::laplacian(rUA, p) == fvc::div(phi) 
           ); 
           pEqn.setReference(pRefCell, pRefValue); 

if (corr == nCorr - 1 && nonOrth == nNonOrthCorr)  
{ 

                pEqn.solve(mesh.solver(p.name() + "Final")); 
           } 

else 
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           { 
                pEqn.solve(mesh.solver(p.name())); 

} 
if (nonOrth == nNonOrthCorr)  
{ 

                phi -= pEqn.flux(); 
           } 
  } 

# include "continuityErrs.H" 
// Some boundary conditions require fluxes to be relative 
fvc::makeRelative(phi, U); 
U -= rUA*fvc::grad(p); 
U.correctBoundaryConditions(); 

} 
 

Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s" 
          << "  ClockTime = " << runTime.elapsedClockTime() << " s" 
          << nl << endl; 

 
// Make the fluxes absolute before manipulating the mesh. 
fvc::makeAbsolute(phi, U);   
bool meshChanged = mesh.updateTopology(); 

 
if (meshChanged)  
{ 

     # include "checkTotalVolume.H" 
       

// Update the motion solver 
      mPtr->updateMesh(mesh.meshMap()); 
 
      // Obtain flux from mapped velocity 
      phi = (fvc::interpolate(U) & mesh.Sf()); 
     # include "correctPhi.H" 
     # include "CourantNo.H" 
 } 

 
// Write out current parameters 
rotationParams.instance() = runTime.timeName(); 
rotationParams.add("patchNames1", patchNames1, true); 
rotationParams.add("axisPointStart1", p11, true); 
rotationParams.add("axisPointEnd1", p12, true); 
rotationParams.add("translation1", t1, true);  
rotationParams.add("angle1", angle1*(180/3.14159), true); 

 
rotationParams.add("patchNames2", patchNames2, true); 
rotationParams.add("axisPointStart2", p21, true); 
rotationParams.add("axisPointEnd2", p22, true); 
rotationParams.add("translation2", t2, true);  
rotationParams.add("angle2", angle2*(180/3.14159), true); 
 
rotationParams.add("solveForMotion", solveForMotion, true);  
 
runTime.write(); 
 
if (runTime.outputTime())  
{ 

      // Write out mesh quality 
      volScalarField meshQuality 
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      ( 
IOobject  
( 

                "meshQuality", 
                runTime.timeName(), 
                mesh, 
                IOobject::NO_READ, 
                IOobject::AUTO_WRITE 
           ), 
           mesh, 
           dimensionedScalar("scalar", dimless, 0.0), 
           "zeroGradient" 

); 
meshQuality.internalField() = mesh.meshQuality(true);  
meshQuality.write(); 

       
// Write out the mesh length scales 

      volScalarField lengthScale 
      ( 

IOobject  
( 

                "lengthScale", 
                runTime.timeName(), 
                mesh, 
                IOobject::NO_READ, 
        IOobject::AUTO_WRITE 
                  ), 
                  mesh, 
                  dimensionedScalar("scalar", dimLength, 0.0), 
                  "zeroGradient" 

); 
               

lengthScale.internalField() = mesh.lengthScale(); 
              lengthScale.write(); 
               

// Write out divergence-free fluxes 
              volScalarField divPhi = fvc::div(phi); 
              divPhi.write(); 
         } 
} 
     
Info<< "End\n" << endl; 
 
return(0);  
 
} 
// ************************************************************************* // 
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icoMHV3DtrackFoam 
 
/*---------------------------------------------------------------------------*\ 
  =========                 | 
  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 
   \\    /   O peration     | 
    \\  /    A nd           | Copyright held by original author 
     \\/     M anipulation  | 
------------------------------------------------------------------------------- 
License 
    This file is part of OpenFOAM. 
    OpenFOAM is free software; you can redistribute it and/or modify it 
    under the terms of the GNU General Public License as published by the 
    Free Software Foundation; either version 2 of the License, or (at your 
    option) any later version. 
    OpenFOAM is distributed in the hope that it will be useful, but WITHOUT 
    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
    FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License 
    for more details. 
    You should have received a copy of the GNU General Public License 
    along with OpenFOAM; if not, write to the Free Software Foundation, 
    Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 
Application 
    cylinderFoam 
Description 
    Transient solver for incompressible, laminar flow of Newtonian fluids 
    with dynamic mesh. 
Author 
    Vinh-Tan Nguyen 
\*---------------------------------------------------------------------------*/ 
#include "fvCFD.H" 
/For turbulence models 
#include "incompressible/singlePhaseTransportModel/singlePhaseTransportModel.H" 
#include "incompressible/RASModel/RASModel.H" 
#include "dynamicTopoFvMesh.H" 
// Mesh motion solvers 
#include "motionSolver.H" 
#include "tetDecompositionMotionSolver.H" 
#include "faceTetPolyPatch.H" 
#include "tetPolyPatchInterpolation.H" 
#include "setMotionBC.H" 
#include "rotatePoints.H" 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
int main(int argc, char *argv[])  
{ 
#    include "setRootCase.H" 
#    include "createTime.H" 
#    include "createDynamicMesh.H" 
#    include "initContinuityErrs.H" 
#    include "initTotalVolume.H" 
#    include "createFields.H" 
 
 Info<< "Reading transportProperties\n" << endl; 
  
 IOdictionary transportProperties 
 ( 
  IOobject  
  (  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   "transportProperties", 
 runTime.constant(), 

   mesh, 
 IOobject::MUST_READ, 
 IOobject::NO_WRITE 
 )  

 );  
dimensionedScalar nu 
( 

transportProperties.lookup("nu") 
); 
// Initialize the motion solver 
autoPtr<motionSolver> mPtr = motionSolver::New(mesh); 
 
// Define the rotation axis and angle from the dictionary 
IOdictionary rotationParams 

( 
IOobject  
( 

"flippingFoamDict", 
runTime.findInstance 
( 

"", 
"flippingFoamDict" 

), 
mesh, 
IOobject::MUST_READ, 
IOobject::AUTO_WRITE 

) 
); 

//== For first patch =================================== 
dictionary patchNames1(rotationParams.subDict("patchNames1")); 
wordList patches1 = patchNames1.toc(); 
vector p11(rotationParams.lookup("axisPointStart1")); 
vector p12(rotationParams.lookup("axisPointEnd1")); 
vector t1(rotationParams.lookup("translation1")); 
doubleScalar angle1 = readScalar(rotationParams.lookup("angle1")); 
 
//== For second patch =================================== 
dictionary patchNames2(rotationParams.subDict("patchNames2")); 
wordList patches2 = patchNames2.toc(); 
vector p21(rotationParams.lookup("axisPointStart2")); 
vector p22(rotationParams.lookup("axisPointEnd2")); 
vector t2(rotationParams.lookup("translation2")); 
doubleScalar angle2 = readScalar(rotationParams.lookup("angle2")); 
 
bool solveForMotion = readBool(rotationParams.lookup("solveForMotion")); 
 
// Convert angle to radians 
angle1 *= (3.14159/180.0); 
angle2 *= (3.14159/180.0); 
Info<< "\nAngles: "<<angle1<<" "<< angle2<<"\n" << endl; 
 
doubleScalar dangle1,dangle2; 
 
Info<< "\nStarting time loop\n" << endl; 
 
while (runTime.run())  
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{ 
    # include "readPISOControls.H" 
    # include "readTimeControls.H" 
    # include "checkTotalVolume.H" 
    # include "CourantNo.H" 
    # include "setDeltaT.H" 
    runTime++; 
 
    Info<< "Time = " << runTime.timeName() << nl << endl; 
 
    // Translate the axis 
    p11 += t1; p12 += t1; 
    p21 += t2; p22 += t2; 
     

// Update boundary points and solve for mesh-motion 
dangle1 = angle1*runTime.deltaT().value(); 

   dangle2 = angle2*runTime.deltaT().value(); 
 

Info << "Rotating angle: " << dangle1 << "  " << dangle2 << endl << endl; 
rotatePoints(mesh, patches1, dangle1, p11, p12, t1); 
 
// Update mesh motion 1 
if (solveForMotion)  
{ 

            mesh.movePoints(mPtr->newPoints()); 
} 

        rotatePoints(mesh, patches2, dangle2, p21, p22, t2); 
 

// Update mesh motion 2 
if (solveForMotion)  
{ 
            mesh.movePoints(mPtr->newPoints()); 
} 

  
 #       include "volContinuity.H" 
  // Make the fluxes relative to the mesh motion 
  fvc::makeRelative(phi, U); 
   
 #        include "UEqn.H" 
  volScalarField rUA = 1.0/UEqn.A(); 
   
  // --- PISO loop 
   

for (int corr=0; corr<nCorr; corr++)  
{ 

      rUA = 1.0/UEqn.A(); 
      U = rUA*UEqn.H(); 
      phi = (fvc::interpolate(U) & mesh.Sf()); 
      //     + fvc::ddtPhiCorr(rUA, U, phi); 
      // adjustPhi(phi, U, p); 
 

for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)  
{ 

     fvScalarMatrix pEqn 
           ( 
                fvm::laplacian(rUA, p) == fvc::div(phi) 
           ); 
           pEqn.setReference(pRefCell, pRefValue); 
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if (corr == nCorr - 1 && nonOrth == nNonOrthCorr)  
{ 

                pEqn.solve(mesh.solver(p.name() + "Final")); 
           } 

else 
           { 
                pEqn.solve(mesh.solver(p.name())); 

} 
if (nonOrth == nNonOrthCorr)  
{ 

                phi -= pEqn.flux(); 
           } 
  } 

# include "continuityErrs.H" 
// Some boundary conditions require fluxes to be relative 
fvc::makeRelative(phi, U); 
U -= rUA*fvc::grad(p); 
U.correctBoundaryConditions(); 

} 
 

Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s" 
          << "  ClockTime = " << runTime.elapsedClockTime() << " s" 
          << nl << endl; 

 
// Make the fluxes absolute before manipulating the mesh. 
fvc::makeAbsolute(phi, U);   
bool meshChanged = mesh.updateTopology(); 

 
if (meshChanged)  
{ 

     # include "checkTotalVolume.H" 
       

// Update the motion solver 
      mPtr->updateMesh(mesh.meshMap()); 
 
      // Obtain flux from mapped velocity 
      phi = (fvc::interpolate(U) & mesh.Sf()); 
     # include "correctPhi.H" 
     # include "CourantNo.H" 
 } 

 
// Write out current parameters 
rotationParams.instance() = runTime.timeName(); 
rotationParams.add("patchNames1", patchNames1, true); 
rotationParams.add("axisPointStart1", p11, true); 
rotationParams.add("axisPointEnd1", p12, true); 
rotationParams.add("translation1", t1, true);  
rotationParams.add("angle1", angle1*(180/3.14159), true); 

 
rotationParams.add("patchNames2", patchNames2, true); 
rotationParams.add("axisPointStart2", p21, true); 
rotationParams.add("axisPointEnd2", p22, true); 
rotationParams.add("translation2", t2, true);  
rotationParams.add("angle2", angle2*(180/3.14159), true); 
 
rotationParams.add("solveForMotion", solveForMotion, true);  
 
runTime.write(); 
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if (runTime.outputTime())  
{ 

      // Write out mesh quality 
      volScalarField meshQuality 
      ( 

IOobject  
( 

                "meshQuality", 
                runTime.timeName(), 
                mesh, 
                IOobject::NO_READ, 
                IOobject::AUTO_WRITE 
           ), 
           mesh, 
           dimensionedScalar("scalar", dimless, 0.0), 
           "zeroGradient" 

); 
meshQuality.internalField() = mesh.meshQuality(true);  
meshQuality.write(); 

       
// Write out the mesh length scales 

      volScalarField lengthScale 
      ( 

IOobject  
( 

                "lengthScale", 
                runTime.timeName(), 
                mesh, 
                IOobject::NO_READ, 
        IOobject::AUTO_WRITE 
                  ), 
                  mesh, 
                  dimensionedScalar("scalar", dimLength, 0.0), 
                  "zeroGradient" 

); 
               

lengthScale.internalField() = mesh.lengthScale(); 
              lengthScale.write(); 
               

// Write out divergence-free fluxes 
              volScalarField divPhi = fvc::div(phi); 
              divPhi.write(); 
         } 
} 
     
Info<< "End\n" << endl; 
 
return(0);  
 
} 
// ************************************************************************* // 
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myPimpleDyMFoam 

/*---------------------------------------------------------------------------*\ 
  =========                 | 
  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 
   \\    /   O peration     | 
    \\  /    A nd           | Copyright held by original author 
     \\/     M anipulation  | 
------------------------------------------------------------------------------- 
License 
    This file is part of OpenFOAM. 
    OpenFOAM is free software; you can redistribute it and/or modify it 
    under the terms of the GNU General Public License as published by the 
    Free Software Foundation; either version 2 of the License, or (at your 
    option) any later version. 
    OpenFOAM is distributed in the hope that it will be useful, but WITHOUT 
    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
    FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License 
    for more details. 
    You should have received a copy of the GNU General Public License 
    along with OpenFOAM; if not, write to the Free Software Foundation, 
    Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 
Application 
    myPimpleDyMFoam.C 
Description 
    Transient solver for incompressible, flow of Newtonian fluids 
    on a moving mesh using the PIMPLE (merged PISO-SIMPLE) algorithm. 
    Turbulence modelling is generic, i.e. laminar, RAS or LES may be selected. 
\*---------------------------------------------------------------------------*/ 
#include "fvCFD.H" 
#include "singlePhaseTransportModel.H" 
#include "turbulenceModel.H" 
#include "dynamicFvMesh.H" 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
int main(int argc, char *argv[])  
{ 
#    include "setRootCase.H" 
#    include "createTime.H" 
#    include "createDynamicFvMesh.H" 
#    include "readPIMPLEControls.H" 
#    include "initContinuityErrs.H" 
#    include "createFields.H" 
#    include "readTimeControls.H" 
 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 Info<< "\nStarting time loop\n" << endl;  
 
 while (runTime.run())  
  {  

# include "readControls.H" 
# include "CourantNo.H" 
 
// Make the fluxes absolute 
fvc::makeAbsolute(phi, U); 
 
# include "setDeltaT.H"   
 
runTime++; 
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Info<< "Time = " << runTime.timeName() << nl << endl;  
 
bool meshChanged = mesh.update(); 
//mesh.update(); 

 
if (correctPhi && (mesh.moving() || meshChanged))  
{ 

# include "correctPhi.H" 
 } 
 

// Make the fluxes relative to the mesh motion 
 
fvc::makeRelative(phi, U); 
 
if (mesh.moving() && checkMeshCourantNo)  
{ 

# include "meshCourantNo.H" 
 } 
     

runTime.write(); 
 
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s" 

              << "  ClockTime = " << runTime.elapsedClockTime() << " s" 
             << nl << endl; 
} 
 
Info<< "End\n" << endl; 
 
return 0;  
} 
// ************************************************************************* // 
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Groovy Boundary Condition 
 
inlet  

{ 

type  groovyBC; 
refValue  uniform (0 0 0); 
refGradient  uniform (0 0 0); 
valueFraction  uniform 1; 
value   uniform (0 0 0); 
valueExpression "vector(0,0,velo)"; 
gradientExpression "vector(0,0,0)"; 
fractionExpression "1"; 
 
//parabolic 
variables 
"amax=1.350;R2=(0.014*0.014);xp=pos().x;yp=pos().y;para=(xp*xp+yp*yp); 
velo=(amax)*(para/R2-1);"; 

          
//power law 

         //variables        
//"vmean=-1.350;amax=vmean/0.817;R=0.014;xp=pos().x;yp=pos().y; 
//d=1.0-sqrt(xp*xp+yp*yp)/R;n=1.0/7.0;velo=amax*pow(d,0.14286);"; 

         //timelines       (); 
          

//variables     
//"amax=1.8;R2=(0.014*0.014);xp=pos().x;yp=pos().y;para=(xp*xp+yp*yp); 
//velo=(amax)*(para/R2-1);"; 

         //valueExpression       "vector(0,0,velo)"; 
    } 
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wallShearStress 
 
/*---------------------------------------------------------------------------*\ 
  =========                 | 
  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 
   \\    /   O peration     | 
    \\  /    A nd           | Copyright held by original author 
     \\/     M anipulation  | 
------------------------------------------------------------------------------- 
License 
    This file is part of OpenFOAM. 
    OpenFOAM is free software; you can redistribute it and/or modify it 
    under the terms of the GNU General Public License as published by the 
    Free Software Foundation; either version 2 of the License, or (at your 
    option) any later version. 
    OpenFOAM is distributed in the hope that it will be useful, but WITHOUT 
    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
    FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License 
    for more details. 
    You should have received a copy of the GNU General Public License 
    along with OpenFOAM; if not, write to the Free Software Foundation, 
    Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 
Application 
    wallShearStress 
Description 
    Calculates and writes the wall shear stress, for the specified times. 
\*---------------------------------------------------------------------------*/ 
#include "fvCFD.H" 
#include "incompressible/singlePhaseTransportModel/singlePhaseTransportModel.H" 
#include "incompressible/RASModel/RASModel.H" 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
int main(int argc, char *argv[])  
{ 
     timeSelector::addOptions(); 
     # include "setRootCase.H" 
  # include "createTime.H" 
   instantList timeDirs = timeSelector::select0(runTime, args); 
  # include "createMesh.H" 
   

forAll(timeDirs, timeI) 
{ 

     runTime.setTime(timeDirs[timeI], timeI); 
      Info<< "Time = " << runTime.timeName() << endl; 
      mesh.readUpdate(); 
     
  # include "createFields.H" 
     

volSymmTensorField Reff(RASModel->devReff()); 
 

volVectorField wallShearStress 
      ( 

IOobject  
( 

                "wallShearStress", 
                runTime.timeName(), 
                mesh, 
               IOobject::NO_READ, 
               IOobject::AUTO_WRITE 
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           ), 
           mesh, 
    dimensionedVector 
           ( 
                "wallShearStress", 
                Reff.dimensions(), 
                vector::zero 

 )  
); 

         forAll(wallShearStress.boundaryField(), patchi) 
         { 
              wallShearStress.boundaryField()[patchi] = 
              ( 
                  -mesh.Sf().boundaryField()[patchi] 
                  /mesh.magSf().boundaryField()[patchi] 
              ) & Reff.boundaryField()[patchi]; 

} 
 

         wallShearStress.write(); 
    } 
 
Info<< "End" << endl;  
 
return 0; 
} 
// ************************************************************************* // 
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